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ABSTRACT
Modern potential energy surfaces have shifted attention to molecular simulations of chemical reactions. While various methods 
can estimate rate constants for conformational transitions in molecular dynamics simulations, their applicability to studying 
chemical reactions remains uncertain due to the high and sharp energy barriers and complex reaction coordinates involved. 
This study focuses on the thermal cis- trans isomerization in retinal, employing molecular simulations and comparing rate con-
stant estimates based on one- dimensional rate theories with those based on sampling transitions and grid- based models for 
low- dimensional collective variable spaces. Even though each individual method to estimate the rate passes its quality tests, the 
rate constant estimates exhibit considerable disparities. Rate constant estimates based on one- dimensional reaction coordinates 
prove challenging to converge, even if the reaction coordinate is optimized. However, consistent estimates of the rate constant 
are achieved by sampling transitions and by multi- dimensional grid- based models.

1   |   Introduction

Elucidating chemical reaction mechanisms and rates is a central 
goal in computational chemistry. Yet, calculating this type of dy-
namical properties remains significantly more challenging than 
obtaining structural or thermodynamic information. Making 
precise predictions of reaction rates is particularly difficult.

The difficulties arise from two main sources: inaccuracies in the 
model of the potential energy surface (PES) [1], and inaccuracies 
in the method to calculate the rate on this PES [2]. Modeling a 
chemical reaction often requires a highly accurate PES based 
on explicitly evaluating the electronic structure at each nu-
clear configuration. Until recently, the computational cost of 

electronic structure methods has been so large that their use 
has been confined to single- point calculations [3] or short sim-
ulations of small systems [4]. Only a few rate theories can work 
with so little information. Among them Eyring transition state 
theory [5] remains the most frequently used method. However, 
several extensions of Eyring transition state theory, such as vari-
ational transition state theory [6, 7] and Grote- Hynes theory [8], 
have been introduced to account for recrossing and the influ-
ence of the solvent.

With recent advances in electronic structure methods [9, 10] 
and the advent of neural network potentials [11, 12], molecu-
lar dynamics (MD) simulations of chemical reactions in com-
plex environments become possible, allowing for the explicit 
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treatment of solvent effects and entropic effects. A wide vari-
ety of methods to estimate rates [13, 14], that have been devel-
oped in the context of MD simulations of soft- matter systems, 
can now be applied to chemical reactions in complex environ-
ments. Soft- matter systems are characterized by rugged PES 
with multiple minima connected by energy barriers that are 
in the same range as the thermal energy. Examples are pep-
tide [15] and protein dynamics [16], molecular binding [17] 
or crystal nucleation [18]. The accuracy of simulation- based 
rate estimates in the context of chemical reactions, which usu-
ally feature a single high and sharp barrier, is still a matter of 
debate.

It is important to acknowledge that simulation- based rate es-
timates are founded on classical mechanics and therefore do 
not account for quantum tunneling or energy quantization. 
While quantum tunneling is significant in proton transfer re-
actions, its rate diminishes exponentially with the square root 
of the reactant's mass and the barrier height. As a result, for re-
actions involving carbon or other medium- mass atoms, quan-
tum tunneling is observable only when the reactant molecule 
is highly strained and consequently the reaction barrier is low 
[19]. However, energy quantization of the vibrational degrees of 
freedom does have a noticeable effect in most reactions, in par-
ticular, if the reactant molecule is rigid. For the thermal isom-
erization of protonated Schiff bases, which are closely related 
to retinal, neglecting the energy quantization incurs an error in 
the reaction rate of about a factor of three at room temperature 
[2]. It is worth noting that one can incorporate the effect of en-
ergy quantization into the potential energy and thereby achieve 
quantum- corrected classical dynamics [20].

Simulation- based rate estimates broadly fall into two distinct 
categories. The first approach is based on counting transitions 
across the reaction barrier. Since for most chemical reactions, 
the mean first passage time exceeds the accessible simulation 
time by far, one employs dynamical reweighting techniques, 
in which the sampling is enhanced and the transition count is 
subsequently reweighted [21–23]. Infrequent metadynamics [24] 
falls into this category.

The second approach is based on assuming an effective dynam-
ics along a one- dimensional reaction coordinate, which requires 
the free energy surface and diffusion constant or diffusion pro-
file as a function of this reaction coordinate. The influence of 
the neglected degrees of freedom and the curvature of the reac-
tion coordinate on the system's dynamics are captured by these 
two functions, which can be readily estimated from atomistic 
simulations of the full molecular system [25–27]. From the ef-
fective dynamics, one may then derive analytical expressions for 
the rate constants. Kramers' rate theory [28, 29] falls into this 
second category.

The advantage of Kramers' theory is that, given a reaction coor-
dinate, the individual steps of this approach are well- established 
and straight- forward. However, both the free energy surface and 
the diffusion constant depend on the reaction coordinate, and 
thus the accuracy of the rate estimate hinges on the quality of 
this coordinate.

Furthermore, Kramers' analytical expressions for the rate fall 
into three limiting cases (friction regimes), and it is essential 
to ensure the correct friction regime is applied. Both the bar-
rier height and the “sharpness” of the barrier, represented by 
the barrier frequency, determine the friction regime. The high 
friction regime is induced by high barriers (compared to ther-
mal energy) and broad barriers (barrier frequency compared 
to friction due to the implicit degrees of freedom). The low and 
intermediate friction regimes are induced by low and sharp bar-
riers. Chemical reactions with high and sharp barriers fall into 
a middle ground, where it is not a priori clear whether the high 
friction regime applies.

To investigate how these effects play out in a chemical reac-
tion, we study the thermal cis- trans isomerization around the 
C13 = C14 double bond of retinal coupled to a lysine in vacuum 
[30, 31]. As PES, we use an empirical force field, whose compu-
tational efficiency permits a broad comparison of rate estimates. 
For a cis- trans isomerization, one may use an empirical force 
field, because the molecule's sigma bonds stay intact. Our goal is 
to explore whether classical MD in combination with Kramers' 
rate theory can model this reaction with quantitatively accurate 
reaction rates and mechanisms (on a given PES). As a compari-
son, we include rate estimates for overdamped Langevin dynam-
ics along a one- dimensional reaction coordinate (Pontryagin's 
rate theory [32]), grid- based models [33, 34] of an effective dy-
namics in a multidimensional collective variable space, and in-
frequent metadynamics [24].

2   |   Theory

2.1   |   Definitions

The cis- trans isomerization of retinal is a unimolecular reaction 

where A is the cis isomer, B is the trans isomer, and kAB is the 
reaction rate constant. The rate constant is related to the mean 
first- passage time (MFPT) �AB by 

The configuration of the molecule is given by the positions of 
its N atoms in Cartesian space: x ∈ Γx ⊂ ℝ

3N, where Γx is called 
configuration space. We model the dynamics within the Born- 
Oppenheimer approximation, where V(x) represents the Born- 
Oppenheimer potential energy of the electronic ground state. 
Reactant state A ⊂ Γx and the product state B ⊂ Γx are regions 
around minima in V(x), whereas the transition state (TS) corre-
sponds to a saddle point in V(x).

Collective variables are low- dimensional representations of the 
3N- dimensional atomic positions. A collective variable vector is 
a (possibly non- linear) function 

(1)A
kAB
→B

(2)kAB =
1

�AB

(3)q : Γx → ℝ
m
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which maps each position x ∈ Γx onto a low- dimensional vector 
q ∈ ℝ

m, where m≪ 3N.

The free energy along q is defined as: 

where �(q) is the configurational Boltzmann density marginal-
ized to the collective variable space 

Here, �
[
q(x)−q

]
 is the Dirac delta function and Zconf is

the configurational part of the classical partition function 
Zconf = ∫

Γx
dx exp

(
−V(x)∕RT

)
.

A reaction coordinate is a one- dimensional collective variable 
that scales monotonously between reactant state A and product 
state B: 

q is zero for the reactant state A and one for the product state B. 
In this manner, q represents the progress of the reaction. Other 
intervals are also possible, but can be rescaled to [0, 1]. The free 
energy F(q) along the reaction coordinate is defined analogous 
to Equations (4) and (5).

In Equations (4) and (5), R is the ideal gas constant and T is the 
temperature. We calculate and report potential and free energies 
in units of J/mol, correspondingly the thermal energy is also re-
ported as a molar quantity: RT. If units of energy are used for po-
tential and free energies, R should be replaced by the Boltzmann 
constant kB = R∕NA in Equations (4) and (5) and all of the follow-
ing equations. NA is the Avogadro constant.

Equations of motion for the effective dynamics for q and q (un-
derdamped Langevin dynamics, overdamped Langevin dynam-
ics with and without position dependent diffusion), as well as 
the associated Fokker- Planck operators are reported in Section I 
of the Supporting Information.

The equations of motion for the effective dynamics require an 
effective mass (molar) �q, which can be estimated from the equi-
partition theorem [26] 

where ⟨v2 ⟩ is the average squared velocity along q.

The rate theories introduced in the following, with the excep-
tion of the grid- based models, all assume separation of time 
scales. That is, on average, the system should fully sample the 
local equilibrium distribution within A, before it escapes over 
the transition state TS. This is only the case if the free energy 
barrier F‡

AB
 of the reaction is much larger than the thermal en-

ergy: F‡
AB

≫ RT.

2.2   |   Simple Transition State Theory

In simple TST [13, 29] (or equivalently: harmonic TST or 
Vineyard TST), one uses a one- dimensional reaction coordi-
nate q and the free energy F(q) along this reaction coordinate. 
A then corresponds to the region around a minimum on the 
one- dimensional free energy surface, whereas TS is a point qTS 
along the reaction coordinate that separates reactant state A 
(q < qTS) and product state B (q > qTS). Usually TS is positioned 
at the maximum of the free energy barrier. The rate is derived 
by considering the probability flux across TS (see Supporting 
Information Section I) 

The free energy barrier is 

where F‡
AB

 is measured from the free energy minimum of A to 
TS, and, analogously, F‡

BA
 is measured from the free energy min-

imum of B to TS. �A in Equation  (8) is the angular frequency 
of the harmonic approximation of the reactant state minimum. 
� ∈ [0, 1] is the transmission factor, which accounts for the frac-
tion of molecules that proceed from TS to the product state B . 
Molecules, that revert to A after they have already passed TS,
recross the transition state region. At this point, � is an ad- hoc
correction to the rate constant. In this contribution, we will set
� = 1 when applying Equation  (8), meaning that all molecules
that reach TS complete the reaction, and recrossing can be
neglected.

2.3   |   Kramers' Rate Theory

In Kramers' rate theory [28, 29], one uses a one- dimensional re-
action coordinate q. One models the effective dynamics along 
q by underdamped Langevin dynamics, where the free energy 
F(q) takes the role of the potential energy governing the drift 
and the neglected degrees act as a thermal bath. The interaction 
with this thermal bath is modeled by a friction and a random 
force, where the friction force can be scaled by a friction coef-
ficient or collision rate � (with units time− 1). Thus, two thermal 
parameters enter Kramers' model: � and T.

One models F(q) as a double well function, where the minima 
correspond to reactant (A) and product (B) states, and the bar-
rier corresponds to the transition state (TS). Around each of the 
three states, F(q) is approximated by a harmonic function 

(4)F(q) = −RTln�(q)

(5)�(q) = Z− 1
conf∫Γxdx exp

(
−
V(x)

RT

)
�
[
q(x)−q

]

(6)q : Γx → [0, 1]

(7)⟨Ekin ⟩ =
1

2
�q ⟨v2 ⟩ =

1

2
RT

(8)kAB = � ⋅

�A

2�
exp

(
−
F‡
AB

RT

)

(9)
F‡
AB

=F(qTS)−F(qA)

F‡
BA

=F(qTS)−F(qB)

(10)F(q) =

⎧⎪⎪⎨⎪⎪⎩

F(qA)+
1

2
�q �

2
A

�
q− qA

�2
if q≈ qA

F(qTS)−
1

2
�q �

2
TS

�
q− qTS

�2
if q≈ qTS

F(qB)+
1

2
�q �

2
B

�
q− qB

�2
if q≈ qB
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where qA, qB, and qTS are positions of the extrema, �A, �B, and 
�TS are the angular frequencies of the harmonic approximation 
around the extrema. Figure 1a,c,e show the harmonic approxi-
mation for double wells on a circular coordinate.

In total, five parameters originating from the free energy surface 
govern Kramers' model: �A, �B, �TS, F

‡

AB
, and F‡

BA
. To obtain the 

rate constant, the thermal parameters are compared to the free 
energy parameters. Three limiting cases are classified according 
to the thermal energy RT∕F‡

AB
 and the friction �∕�TS (See fig. 15 

in [29]).

The weak friction limit (or sometimes: diffusion- limited re-
gime) is defined by 𝜉∕𝜔TS < RT∕F‡

AB
. In this regime, the deter-

ministic forces (due to the free energy) dominate the diffusive 
forces (friction and the thermal noise terms). Thus, the under-
damped Langevin dynamics is quasi- Hamiltonian. The rare 
interactions with the heat bath cause the total energy of the 
system to slowly oscillate, and the rate constant is derived by 
considering the time evolution for the energy probability den-
sity [29]. One obtains 

where 

is an integral over closed orbits of the phase space correspond-
ing, respectively to the total energy F‡

AB
. I(F‡

BA
) is defined analo-

gously. The limits of the integrals are obtained by setting p = 0 
in the Hamiltonian function: q±

AB
= qA ±

√
2F‡

AB
∕�q�

2
A

 (and 
equivalent q±

BA
= qB ±

√
2F‡

BA
∕�q�

2
B
). The resulting formula is 

the reduced action of the harmonic oscillator at an energy F‡
AB

 
(and equivalent for F‡

BA
). A sharp peak at the transition state cor-

responds to a large value of �TS, and thus might induce the weak 
friction limit.

The moderate- to- high friction limit is defined by 𝜉∕𝜔TS > RT∕F‡
AB

. 
The diffusive forces are stronger than the deterministic forces, 
but not by orders of magnitude. In this regime, one assumes a 
steady state probability flux from state A across the transition 
state region [29]. This assumption replaces the requirement for 
thermal equilibrium between reactant and transition state in 
transition state theory. This yields 

(11)kAB =
I(F‡

BA
)

I(F‡
AB
) + I(F‡

BA
)
⋅ �
I(F‡

AB
)

RT
⋅

�A

2�
exp

(
−
F‡
AB

RT

)

(12)

I(F‡
AB
)= ∮H(q,p)=F‡

AB

p dq

=2 ∫
q+
AB

q−
AB

√
2�q

(
F‡
AB

−F(q)
)
dq

=
2�F‡

AB

�A

FIGURE 1    |    One- dimensional model systems and corresponding rate constants from A to B as a function of �∕�TS: (a,b) low barriers; (c,d) high and 
broad barriers; (e,f) high and sharp barriers. Rates have been calculated by simple TST (Equation 8), Kramers' weak friction (Equation 11), Kramers' 
moderate friction (Equation 13), Kramers' high friction (Equation 14), Pontryagin (Equation 16), grid- based model (Equation 18), and from numeri-
cal simulations. The Threshold between weak and moderate friction is �∕�TS = RT∕F‡

AB
. Threshold between moderate and high friction is at the value 

of �∕�TS where Equations (13) and (14) deviate less than five percent.
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The high friction limit is defined by 𝜉∕𝜔TS ≫ RT∕F‡
AB

. The diffu-
sive forces dominate the deterministic forces. At high values of 
�, the prefactor in Equation (13) can be approximated as �TS∕�

(see Supporting Informatiom Section I), yielding

This regime is also called the spatial diffusion limited regime, or 
the diffusive regime.

The rate constants for the three friction regimes (Equations (11), 
(13), (14)) have the same functional form as in simple TST 
(Equation (8)), but in addition they provide explicit expressions 
for the transmission factor �. Kramers' rate theory provides a 
model for recrossing in terms of the shape of the free energy sur-
face, the temperature, and the strength of the heat bath.

2.4   |   Pontryagin's Rate Theory

The following rate model is often quite generically introduced 
as a means to calculate the mean first- passage time (MFPT) 
�AB or escape rate kAB for diffusion over a barrier. It is derived 
from the Fokker- Planck equation for overdamped Langevin dy-
namics (Smoluchowski equation). Here, we will refer to it as the 
Pontryagin's rate theory [32].

In Pontryagin's rate theory [29, 32], one uses a one- dimensional 
reaction coordinate q and models the effective dynamics along 
q by overdamped Langevin dynamics, which is the high friction 
limit of underdamped Langevin dynamics. In this rate theory, 
the friction coefficient �(q) may vary along the reaction coordi-
nate q. This generalization is important because the fluctuations 
of the neglected degrees of freedom may vary along q [27], and 
additionally the curvature of q may give rise to a position depen-
dent friction. Conventionally, Pontryagin's rate constant is not 
formulated in terms of �(q) but in terms of the closely related 
position dependent diffusion profile 

where �q is a molar mass. The rate constant is then given by the 
following nested integral: 

with � = 1∕RT. A closed- form version is not available, but com-
puting the nested integral numerically is straightforward.

This expression for the rate constant does not make any assump-
tions on the shape of the reactant state and transition barrier and 
includes the full position dependent diffusion profile. Inserting 

the harmonic approximation and assuming constant diffusion 
in Equation (16) yields Kramers' rate equations in the high fric-
tion limit (Equation (14)).

2.5   |   Grid- Based Models

In grid- based models [33, 34], one uses a multidimensional col-
lective variable q ∈ ℝ

m and models the effective dynamics in 
this collective variable space by overdamped Langevin dynam-
ics with position dependent diffusion. The collective variable 
space is discretized into n disjoint cells. The cells are divided
into three sets , , and , where  represents the reactant state 
A,  represents the product state B, and  the intermediate re-
gion. Independent of the assignment to the three sets, the transi-
tion rate Qij from cell i to cell j is 

Equation (17) defines a n×n row- normalized rate matrix Q with 
elements Qij. Q is a discretization of the Fokker- Planck operator 
for overdamped Langevin dynamics, where we assumed that 
the free energy is constant within each grid cell.

Qij between adjacent cells can be calculated as [33–35] 

where qi and qj are the centers of the adjacent grid cells, �(q) is 
given by Equation (5), hij = ‖qj −qi ‖ is the Euclidean distance
between the centers of the cells, ij is the area of the intersecting
surface between cells i and j, i is the volume of the Voronoi cell
i, and Dij is the diffusion on the boundary between cells i and j,
which we approximate as Dij =

1

2

(
D(qi) + D(qj)

)
. Because of the

square root in Equation (18), the approach is called the Square 
Root Approximation of the Fokker–Planck equation (FP- SqRA) 
[33, 34].

In Equation (18), the probability density at the cell boundary be-
tween adjacent cells is approximated by the geometric mean of 
the Boltzmann weights of the cells [33, 34]. Using a harmonic 
mean instead leads to the Harmonic Averaging Approximation 
of the Fokker- Planck equation (FP- HAA): 

and has improved convergence properties [36].

Mean first- passage times � i→B from any cell i to the product state 
B can be computed by solving [37] 

for �B =
[
�1→B,…, �n→B

]T. This vector contains MFPTs for all
cells i to the product state B. To enforce this, Equation (20) must 

(13)kAB=
�

�TS

⎛⎜⎜⎝

�
1

4
+
�2
TS

�2
−
1

2

⎞⎟⎟⎠
⋅

�A

2�
exp

�
−
F‡
AB

RT

�
.

(14)kAB =
�TS

�
⋅

�A

2�
exp

(
−
F‡
AB

RT

)

(15)D(q) =
RT

�q�(q)

(16)kAB=

{
∫
qB

qA

dq�

[
1

D(q�)
e�F(q

�) ∫
q�

−∞

dq�� e− �F(q��)

]}− 1

(17)Qij=

⎧⎪⎪⎨⎪⎪⎩

Qij if i≠ j and cells adjacent
0 if i≠ j and cells not adjacent .

−

n�
l=1,l≠i

Qil if i= j

(18)Qij = Dij

ij
ihij ⋅

√
�(qj)�(qi)

�(qi)

(19)Qij = Dij

ij
ihij ⋅

1

�(qj)

2�(qj)�(qi)

�(qi) + �(qj)

(20)Q �B = − 1
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be solved while imposing the boundary condition that �k→B = 0 
for all k ∈ . The MFPT from A to B is then obtained by averag-
ing over the state- wise MFPTs 

where �A,i = �i∕
∑

i∈�i and �i = ∫
q∈cell i

dq �(q). The rate con-
stant is the inverse of this MFPT (Equation (2)).

2.6   |   Rates From Sampling Transitions

The system is simulated on V(x), and the reaction rate kAB is 
obtained as a statistical estimate of the observed transitions 
between A and B. It is sufficient to define A ⊂ Γx and B ⊂ Γx 
as regions in the configurational space; a transition state 
does not need to be defined. The first- passage times from A to 
B are recorded in a series of n simulations, whose initial states 
are located in A and which are terminated once they reach B. 
This yields a series of first- passage times (�AB,1, �AB,2…�AB,n).

The MFPT �AB can be calculated as the arithmetic mean of these 
first- passage times, or—with better statistical accuracy—by fitting 
the cumulative distribution function of a Poisson process [15] 

to the cumulative distribution histogram of these first passage 
times. In Equation  (22), �AB is the MFPT and acts as a fitting 
parameter, which is inserted into Equation (2) to obtain the re-
action rate.

For reactions with high energy barriers, the transition times are 
orders of magnitude longer than the accessible simulation times. 
Therefore, in infrequent metadynamics simulations [24, 38], a 
time- dependent bias function U(x, t) is introduced that increases in 
strength as the simulation proceeds and pushes the system over the 
barrier into state B. Each accelerated first- passage time is then re-
weighted to the corresponding physical first- passage time by a dis-
cretized time- integral over the length of the trajectory [24, 39, 40] 

where Δt is the time step of the trajectory, Ti is the total number 
of time steps in the ith trajectory, xi,k is the kth configuration 
in this trajectory, and t = kΔt is the corresponding time. This 
reweighting assumes that no bias has been deposited on the 
transition state, which is approximately ensured by the slow 
deposition of the infrequent metadynamics protocol.

3   |   Results

3.1   |   Friction Regimes

To study the effect of the curvature of the free energy surface on 
the friction regime independently from the choice of the reaction 
coordinate, we devised one- dimensional model systems with a 

circular reaction coordinate q ∈ [−�, + �]. As in the actual ret-
inal molecule, the free energy functions F(q) for these models 
exhibits two energy barriers and two minima. The models dif-
fer in the height and the “sharpness” of the barriers, where the 
first model has low and broad free energy barriers, the second 
model has high and broad free energy barriers. The third model 
is the actual free energy function along the C13  =  C14 torsion 
angle of retinal and exhibits sharp and high free energy barriers. 
Figure 1a,c,e show the free energy functions along with the har-
monic approximations for the minima and the barriers. Table 1 
reports the corresponding parameters. We set T = 300 K, and 
thus the thermal energy is RT = 2. 49 kJ mol− 1.

With increasing barrier height, the rate constant due to sim-
ple TST drops by orders of magnitude from kAB ∼ 10− 2ps to 
kAB ∼ 10− 9ps and kAB ∼ 10− 13ps (cyan lines in Figure  1b,d,f). 
However, comparison to the numerical simulations (black dots 
in Figure 1b,d,f) shows that simple TST is a crude approxima-
tion and severely overestimates the rate constants in the low and 
high friction regimes.

The numerical simulations reproduce Kramers' turnover [29, 41], 
i.e., the bell curve characterized by low rates in the weak friction 
regime, high rates in the moderate friction region, and low rates
again in the high friction region (see Supporting Information
Table S.7 for representative numerical values). Kramers' rate the-
ory models this turnover by devising a separate rate equation for 
each of the three friction regimes (Equations (11), (13), and (14)).
The theory requires that F‡

AB
≫ RT, which is well fulfilled for

(21)�AB =
∑
i∈

�A,i� i→B

(22)P(�AB,i) = 1− exp

(
−
�AB,i

�AB

)

(23)�AB,i = Δt

Ti∑
k=1

exp

(
U(xi,k, kΔt)

RT

)

TABLE 1    |    Parameters for one- dimensional rate theories calculated 
for the one- dimensional systems.

Small 
barrier

High 
barrier Inter- polated

TS TS′

RT kJ mol− 1 2.49 2.49 2.49

F‡
AB

kJ mol− 1 10.98 50.84 72.11 72.10

F‡
BA

kJ mol− 1 12.96 52.74 76.15 76.14

�A ps− 1 4.78 10.13 6.83

�B ps− 1 4.98 10.21 7.60

�TS ps− 1 4.89 10.17 48.38 46.21

Energy ratio

RT∕F‡
AB

— 0.23 0.05 0.03 0.03

Threshold between weak and moderate friction

�∕�TS — 0.23 0.05 0.03 0.03

� ps− 1 1.12 0.51 1.45 1.39

Threshold between moderate and high friction

�∕�TS — 1.90 2.30 1.50 1.57

� ps− 1 9.29 23.39 72.57 72.55
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the second (F‡
AB

= 20. 4 RT) and the third model (F‡
AB

= 29. 0 RT) 
and to a lesser extent for the first model (F‡

AB
= 4. 4 RT).

The friction regime is determined by the relative sizes of the 
ratios RT∕F‡

AB
 and �∕�TS. The ratio RT∕F‡

AB
 compares the ther-

mal energy to the free energy barrier. Within the assumptions 
of Kramers' theory, RT∕F‡

AB
≪ 1. The ratio �∕�TS compares the 

time it takes to cross the transition state region, 1∕�TS, to the 
average time between two interactions with the thermal bath. 
𝜉∕𝜔TS > 1 means that, on average, several interactions with the 
thermal bath occur while the system crosses the transition state 
region, implying a high friction regime. 𝜉∕𝜔TS < 1 means that, 
on average, no interaction with the thermal bath occurs while 
the system crosses the transition state region, implying a weak 
friction regime. For �∕�TS ≈ 1, transition time and interaction 
with the thermal bath occur on the same timescale.

All other parameters being equal, an increase in the curvature of 
the free energy barrier leads to an increase in �TS and thus might 
shift the effective dynamics into the weak or intermediate fric-
tion regime. In our model systems, the �TS increases across the 
models from �TS ≈ 5 ps

− 1 to �TS ≈ 10 ps
− 1 and finally reaching 

�TS = 48. 38 ps− 1, and �TS� = 46. 21 ps− 1 for the model represent-
ing the actual retinal. Simultaneously, the free energy barrier in-
creases across the models. The resulting boundaries between the 
friction regimes are shown as vertical dashed lines in Figure 1b,d,f.

Kramers' rate constants kAB as a function of �∕�TS are repre-
sented as blue, purple, and green lines for the three friction lim-
its (Figure 1b,d,f). Each of the three rate equations agrees well 
with the numerical results when applied within the appropriate 
friction regime. Outside of their respective friction regime, the 
three rate equations yield very inaccurate results. In particular, 
the rate equation for the high friction regime vastly overesti-
mates the rates in the weak and moderate friction regime.

Additionally, we report the results from Pontryagin's rate theory 
(red line, Equation (16)) and the grid- based model (yellow line, 
Equation  (18)), which both assume overdamped Langevin dy-
namics. For a position independent friction coefficient �, these 
models closely align with the high friction regime of Kramers' 
rate theory, and equally overestimate the rate constant in the 
weak and moderate friction regime. These results underline 
the importance of determining the system's friction regime and 
choosing the appropriate rate model.

For the free energy function of retinal (third model system), 
the moderate friction regime ranges from � = 1. 45 ps− 1 to 
� = 72. 57 ps− 1. The friction coefficient � of the effective dy-
namics along q is not a parameter that can be chosen freely,
but it is determined by the influence of the neglected degrees
of freedom and is calculated from the diffusion constant D(q) 
(Equation (15)) and the effective mass �q (Equation (7)). This is
explored in the following section.

3.2   |   Atomistic Model of Retinal

Our model of retinal (Figure  2a) consists of the retinal mole-
cule, which is covalently bound to a capped lysine residue via a 

protonated Schiff base [42]. This corresponds to the chemical 
structure of retinal in a protein environment. Since the lysine res-
idue cannot move freely in a protein environment, we placed po-
sition restraints on all heavy atoms of lysine (backbone and side 
chain) as well as on the atoms in the caps. All atoms in retinal, 
including the cyclohexene ring were allowed to move freely. As 
a potential energy function of this molecule, we use an empirical 
atomistic force field. Our goal is to calculate the reaction rate con-
stants of the thermal cis- trans isomerization around the C13 = C14 
double bond (Figure 2b,c), where the cis- configuration is the re-
actant state A and the trans- configuration is the product state B.

3.3   |   C13 = C14- Torsion Angle as Reaction 
Coordinate

As an initial reaction coordinate for the one- dimensional rate 
models, we choose the torsion angle � constituted by the chain of 
carbon atoms C12- C13 = C14- C15 (Figure 2). Figure 3 shows two 
free energy functions along this reaction coordinate, which were 
numerically calculated by well- tempered metadynamics simula-
tions [38] (blue line) and by umbrella sampling simulations [43] 
combined with weighted histogram analysis [44] (orange line). 
The statistical uncertainty of the free energy profiles are shown 
as shaded areas in Figure 3, but they are only about as large as 
the linewidth. The figure also shows the position dependent dif-
fusion D(�) obtained from umbrella sampling simulations fol-
lowing [27]. Because of the sharp barriers, the diffusion profile 
could not be estimated in the transition regions, and we relied 
on the interpolation (dotted line in Figure 3) in these regions.

Both F(�) have minima at the cis- configuration (� = 0 rad) 
and at the trans- configuration (� = ±� rad), where we set the 
trans state to F(�) = F(�) = 0. Cis-  and trans- configurations 
have the same free energy in F(�) from umbrella sampling, 

FIGURE 2    |    (a) Retinal covalently linked to a capped lysine residue. 
Position restraints have been applied to heavy atoms highlighted in 
gray. (b) trans- configuration. (c) cis- configuration.
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whereas, in F(�) from metadynamics, the cis- configuration 
is about 1. 6 kJ mol− 1 lower than the trans- configuration. The 
minima are separated by two free energy barriers TS and TS′ 
corresponding to rotating clockwise and counterclockwise 
around �, respectively. Both methods, umbrella sampling 
and metadynamics, predict that the barriers TS and TS′ are 
equal in height. Umbrella sampling yields a barrier height of 
F‡
cis→trans

= 89 kJ mol− 1, whereas metadynamics yields barriers 
that are about 10 kJ mol− 1 higher (F‡

cis→trans
= 99 kJ mol− 1).

Even though we monitored the convergence of the two free 
energy methods carefully, the difference in the predicted free 
energy barrier is sizeable. At room temperature, the differ-
ence corresponds to about four times the thermal energy of 
RT = 2. 49 kJ mol− 1, and in absolute terms it is well above the 
limit for chemical accuracy of 1 kcalmol− 1 = 4. 2 kJ mol− 1. 
Because the free energy difference enters exponentially in each 
of the rate models, this difference strongly affects the predicted 
rate. We return to this discussion in Section 3.6, but for now we 
will discuss rates based on the umbrella sampling F(�). The 
parameters for the one- dimensional rate theories for F(�) from 
umbrella sampling and from metadynamics are reported in 
Supporting Information Tables S.1 and S.2.

Next, we determine the friction regime by comparing the 
energy ratio is RT∕F‡

cis→trans
= 0. 028 to the friction ratio 

�TS∕�TS. The friction coefficient of the effective dynamics 
along � is �TS = 132 ps− 1 for transitions via TS (determined via 
Equations (15) and (7)). The curvature of TS is �TS = 244 ps− 1, 
yielding the friction ratio �TS∕�TS = 0. 54. The corresponding 
ratio for the other barrier is �TS� ∕�TS� = 0. 50. Both friction ra-
tios are much higher than the energy ratio, and therefore the 
effective dynamics along � fall into the moderate- to- high or 
even high friction regime.

Table  2 shows the rate constants derived from one- 
dimensional rate theories for the moderate and high friction 
regime. Methods that assume high friction (Kramers' (high 

friction), Pontryagin, grid- based) all yield a rate constant 
of kcis→trans ≈ 0. 009− 0. 015 s

− 1 for the cis- trans transition. 
The two methods that are based on overdamped Langevin 
dynamics (Pontryagin and grid- based models) yield indis-
tinguishable rate constants (kcis→trans ≈ 0. 009 s

− 1), which is 
slightly lower than the high friction limit of Kramers' rate the-
ory (kcis→trans ≈ 0. 015 s

− 1).

The high friction Kramers' rate constant 
(kcis→trans ≈ 0. 015 s

− 1) is higher than the one form the moderate 
friction regime (kcis→trans ≈ 0. 006 s

− 1). Since the two methods 
would coincide in the high friction region, this indicates, that 
the effective dynamics along � fall into the moderate friction 
regime and are best described by Kramers' rate theory for mod-
erate friction.

Simple TST is a reasonable approximation in the moderate fric-
tion regime and yields a rate constant of kcis→trans ≈ 0. 008 s

− 1, 
only slightly overestimating Kramers' rate constant for moder-
ate friction. The rate constant of the reverse reaction, ktrans→cis, 
are reported in Table 2 and shows the same effects.

3.4   |   Comparison to Infrequent Metadynamics

Even though the results from one- dimensional rate theories 
(using � as a reaction coordinate) seem consistent, they devi-
ate drastically from rate constants estimated from molecular 
simulations (Table  2). We used infrequent metadynamics and 
biased along � to simulate the cis- trans isomerization. The re-
sulting rate constant, kcis→trans = 2. 23 ⋅ 10− 5 s− 1, is more than 
two orders of magnitude smaller than the most appropriate one- 
dimensional rate theory kcis→trans = 5. 83 ⋅ 10− 3 s− 1 (Kramers' 
with moderate friction). By moving from a one- dimensional sys-
tem (Figure 1) to a high- dimensional system (Figure 2) we have 
lost the agreement between one- dimensional rate theories and 
numerical simulations.

The deviation between Kramers' rate theory and numerical sim-
ulation for retinal is in stark contrast to the good agreement be-
tween the two approaches for the one- dimensional systems. It 
is, however, in line with the results from [48], where we found a 
similar disparity between simulated rate constants and the mod-
erate friction limit of Kramers' rate theory.

Two known error sources of infrequent metadynamics are (i) 
slow processes that occur orthogonal to the biased coordinate, 
e.g.,  due to sub- minima in the reactant state [45, 46], and (ii)
perturbation of the transition state region because bias is depos-
ited there [15, 24]. Retinal is a very rigid molecule and does
not exhibit sub- minima within the cis-  or within the trans- 
configuration, making the first error source unlikely. Our rate
constants are insensitive to the variations in the bias deposition
rate, which confirms that the transition state region is unper-
turbed (Figure  S.4). Thus, for this specific system, the limita-
tions of infrequent dynamics metadynamics do not explain the
deviation results of one- dimensional rate theories.

A second error source might be a wrong choice of the fric-
tion regime. However, the analysis in Section  3.3 shows that, 
for this system, the difference between the high friction and 

FIGURE 3    |    Free energy surfaces F(�) and diffusion profiles D(�) 
estimated from umbrella sampling (US) and metadynamics (MetaD) by 
biasing the C13 = C14 torsion angle �. Statistical standard errors are giv-
en by the thickness of the curves.
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the intermediate friction results are small and do not explain 
the discrepancy with the simulation results. Specifically, 
high friction: kcis→trans = 1. 45 ⋅ 10− 2 s− 1, moderate friction: 
kcis→trans = 5. 83 ⋅ 10− 3 s− 1, simulation: kcis→trans = 2. 23 ⋅ 10− 5 s− 1.

We conclude that the disparity between Kramers rate constant 
for moderate friction and the simulated results is based in the 
high- dimensionality of the system. One- dimensional rate theo-
ries are sensitive to the choice of reaction coordinate [47]. To ex-
plain the gap between the simulated rate constant and Kramers' 
rate constant, we will next optimize the reaction coordinate.

3.5   |   Optimized Reaction Coordinate

The reaction coordinate q = � cleanly separates the reactant and 
the product state and thus fulfills an important criterion for a good 
reaction coordinate. However, closer inspections show that other 
degrees of freedom besides the torsion angle participate in the cis- 
trans isomerization. The bonding environments around C13 and 
C14 are planar when retinal is in the cis-  or trans- configuration, 

but both C13 and C14 bend out of plane in the vicinity of the transi-
tion state [2, 48]. The out- of- plane motion around C13 is captured
by the improper dihedral defined by 

{
C13, C14, C12, C20

}
. Likewise, 

the out- of- plane motion around C14 is captured by the improper 
dihedral �2 defined by 

{
C14, C15, C13, H

}
. The correlation between 

� and the two improper dihedrals has been demonstrated at the
levels of DFT/B3LYP and DFTB [2, 48], and is also captured by
our umbrella sampling simulations using an empirical force field.

Figure 4a shows the configurations of a series of umbrella sam-
pling simulations projected into the two- dimensional space 
spanned by � and �1. These distributions seem to “jump” at 
the transition states (� = ±

�

2
). The projection into the space 

spanned by � and �2 shows a similar behavior (Figure  4b). 
Note that the amplitude of the “jump” is not very large, only 
± 0. 4 rad, compared to the range of � itself (in Supporting 
Information Figure S.5 the zoom on �1 and �2 has been removed 
to give a more realistic impression of the amplitude).

We optimized nonlinear reaction paths s
(
�s
)
 in the space

spanned by �, �1, and �2 using the path- finding algorithm from 

TABLE 2    |    Rate constants determined through different methodologies for the thermal cis- trans isomerization over the C13 = C14 double bond 
in retinal. (. . . ): results sensitive to the grid.

F(q) via US F(q) via MetaD

Method Equation CV ktrans→cis [s−1] kcis→trans [s−1] ktrans→cis [s−1] kcis→trans [s−1]

C13 = C14- torsion angle as reaction coordinate

Simple TST (8) � 5. 17× 10− 3 7. 55× 10− 3 2. 05× 10− 4 1. 60× 10− 4

Kramers (moderate friction) (13) � 3. 99× 10− 3 5. 83× 10− 3 1. 67× 10− 4 1. 30× 10− 4

Kramers (high friction) (14) � 9. 90× 10− 3 1. 45× 10− 2 4. 96× 10− 4 3. 86× 10− 4

Pontryagin (16) � 1. 08× 10− 2 8. 93× 10− 3 4. 68× 10− 4 2. 17× 10− 4

Grid- based (19) � 1. 07× 10− 2 8. 95× 10− 3 4. 67× 10− 4 2. 17× 10− 4

Optimized reaction coordinate �s
Simple TST (8) Path 2. 41× 10− 4 2. 57× 10− 4 9. 56× 10− 6 1. 19× 10− 5

Kramers (moderate friction) (13) Path 4. 45× 10− 5 4. 81× 10− 5 1. 85× 10− 6 2. 26× 10− 6

Kramers (high friction) (14) Path 4. 61× 10− 5 4. 98× 10− 5 1. 92× 10− 6 2. 34× 10− 6

Pontryagin (16) Path 5. 80× 10− 5 3. 66× 10− 5 2. 51× 10− 6 1. 73× 10− 6

Grid- based (19) Path 5. 78× 10− 5 3. 66× 10− 5 2. 53× 10− 6 1. 75× 10− 6

Grid- based model for multidimensional collective variables

Grid- based (diffusion grid1) (19) �, �1, �2 (5. 66× 10− 6) (7. 05× 10− 6) 8. 13× 10− 6 1. 23× 10− 5

Grid- based (averaged grid1) (19) �, �1, �2 (1. 14× 10− 5) (1. 44× 10− 5) 1. 58× 10− 5 2. 40× 10− 5

Grid- based (diffusion grid2) (19) �, �1, �2 (7. 14× 10− 6) (9. 05× 10− 6) 1. 03× 10− 5 1. 56× 10− 5

Grid- based (averaged grid2) (19) �, �1, �2 (1. 02× 10− 5) (1. 35× 10− 5) 1. 40× 10− 5 2. 13× 10− 5

Sampling

Method Equation CV ktrans→cis [s−1] kcis→trans [s−1]

InMetaD (23) � 2. 18× 10− 5 2. 23× 10− 5

InMetaD (23) �, �1, �2 2. 22× 10− 5 2. 60× 10− 5
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[49]. The paths are parametrized by a path progression param-
eter �s, which can be used as a reaction coordinate in rate the-
ories: q = �s. In total, we optimized four reaction paths: two 
reaction paths for the transition from cis to trans, each rotating 
in a different direction, and similarly two reaction paths for the 
transition from trans to cis (Figure 4c,d). The progress of the op-
timization is shown in Supporting Information Figure S.6. The 
optimized reaction coordinates are correlated to �1 and �2 but 
do not exhibit any sudden jumps in the two- dimensional distri-
butions (Supporting Information Figures S.7 and S.8).

To employ one- dimensional rate theories on these optimized 
reaction coordinates, we calculated free energy functions 
F(�s), using umbrella sampling and metadynamics, as well as 
diffusion profiles (see Figure 4e for paths from cis to trans and 
Figure S.9 in the Supporting Information for paths from trans 
to cis). We will discuss the rate constant derived from the um-
brella sampling for the reaction cis → trans in detail. The rate 
constants for the reverse reaction have similar values and show 
the same trends (see Table 2).

For the optimized reaction coordinate, umbrella sampling yields 
a barrier height of F‡

cis→trans
= 98 kJ mol− 1, which is 9 kJmol− 1 

higher than the free energy barrier for �. Due to this higher free 
energy barrier, all one- dimensional rate theories yield lower 
rates for �s than for � and therefore are in much better agree-
ment with the numerical results. Nonetheless, a discussion of 
the friction regime is worthwhile.

Despite the increase in the free energy barrier, the energy ratio 
is only slightly lower than for �: RT∕F‡

cis→trans
= 0. 025. By con-

trast, the friction ratio for �s is about ten times higher than for �
: namely, �TS∕�TS = 5. 09 (for path cis_trans1). This is caused by 
an increased friction coefficient of the effective dynamics and a 
broader free energy barrier (�TS = 785 ps− 1 and �TS = 154 ps− 1 

for path cis_trans1). Consequently, the effective dynamics along 
q = �s fall into the high friction regime.

This is also reflected by the values for Kramers' rate con-
stants for the moderate friction regime and for the high 
friction regime. For q = �s, these two equations yield al-
most the same value (kcis→trans = 4. 81 ⋅ 10− 5 s− 1 and 
kcis→trans = 4. 98 ⋅ 10− 5 s− 1, see Table  2), which is only the 
case in the high friction regime. Another consequence of 
the higher friction regime is that simple TST considerably 
overestimates the rate constant (kcis→trans = 2. 57 ⋅ 10− 4 s− 1). 
Pontryagin's rate theory and the grid- based model yield the 
same rate constant (kcis→trans = 3. 66 ⋅ 10− 5 s− 1), which is lower 
than the result from Kramers' rate theory. Since the effective 
dynamics fall  into the high friction regime, this deviation is 
not likely caused by the assumption of overdamped Langevin 
dynamics in these theories. The more likely cause is that 
Kramers' rate theory assumes a position independent diffu-
sion constant, whereas both Pontryagin and grid- based mod-
els account for variations in the diffusion constant along the 
reaction coordinate.

In summary, optimizing the reaction coordinate had two effects 
on the one- dimensional rate models: the free energy barrier in-
creased, and the friction ratio �TS∕�TS increased. Both effects 
lower the estimate of the rate constant and thus improve the 
agreement with the simulation results.

3.6   |   Umbrella Sampling vs. Metadynamics

For both reaction coordinates, q = � and q = �s, we find that 
the free energy barriers from metadynamics are consistently 7 
to 10 kJ mol− 1 higher than the free energy barriers from um-
brella sampling (Supporting Information Table  S.3 and S.4). 

FIGURE 4    |    (a) Scatter plots of the umbrella sampling simulations (one color per umbrella) for dihedral � vs. improper dihedral �1. (b) The same 
for dihedral � vs. improper dihedral �2. (c) 3- dimensional free energy surface F(�,�1,�2) from metadynamics projected into the (�,�1)- space. Lines 
show optimized reaction coordinates. (d) The same but projected into (�,�2)- space (e) Free energy profiles from metadynamics and umbrella sam-
pling, as well as diffusion profiles for optimized reaction coordinates for the cis- to- trans isomerization.
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Consequently, the rate constants based on metadynamics are 
about an order of magnitude lower than those based on umbrella 
sampling.

The sampling for both methods is generous, such that the sta-
tistical uncertainty is negligible (Figures  3 and 4e). The free 
energy functions do not change noticeably when we vary the 
parameters of the method (force constant and positioning of the 
umbrella potentials, width of the Gaussian bias potentials in 
metadynamics, Supporting Information Figure S.11). However, 
in metadynamics, the error estimated by block analysis [50] as 
well as the free energy difference between the cis-  and the trans- 
configuration converged only slowly for both reaction coordi-
nates (Supporting Information Figure S.10).

Figure 4 indicates that the optimal reaction coordinate follows 
a Z- shaped curve embedded in multiple collective variables. If 
the metadynamics bias does not account for all of these relevant 
collective variables, the system can be pushed into a position 
parallel to the transition state. However, from this position, the 
system is unable to transition into state B. As a result, repeated 
failed crossing attempts lead to a buildup of bias in basin A, over-
filling this minimum. Once the system escapes the local mini-
mum due to the excessive bias, it might not adequately sample 
the transition state or other important configurations, especially 
if the metadynamics bias does not account for the slow collective 
variables necessary for proper exploration. This may ultimately 
cause an overestimation of the free energy barrier. For a detailed 
discussion of this effect, see [51], especially Figure 2 therein.

The slow convergence of the error estimates as well as the free 
energy difference could therefore indicate that further degrees 
of freedom are relevant to the optimal reaction coordinate. 
Candidates are the torsion around the neighboring single bonds, 
that is, C12- C13, and C14- C15. Projecting the configurations into 
the space spanned by these torsion angles and �, we find simi-
lar “jumps” as in Figure 4, albeit less pronounced (Supporting 
Information Figure  S.12). The optimized reaction coordinate 
�s is still correlated with the torsion around these single bonds, 
but does not exhibit any sudden jumps in the two- dimensional 
distributions (Supporting Information Figure S.7), even though 
these torsion angles were not explicitly part of the optimization 
process. By comparing Supporting Information Figures S.7 and 
S.8, we observe that for metadynamics along �s, the sampling in
the transition state region is clearly reduced compared to um-
brella sampling. This supports the conclusion that transitions
are more challenging, leading to an overestimation of the free
energy barriers.

3.7   |   Multidimensional Collective Variables

An alternative to one- dimensional rate theories are grid- 
based models in multidimensional collective variable spaces. 
We calculated the three- dimensional free energy function 
F(�,�1,�2) using metadynamics with three- dimensional 
Gaussian bias functions, as well as using umbrella sampling 
with three- dimensional harmonic constraints. The position de-
pendent diffusion profile for the diffusion in each of the three 
directions were calculated using umbrella sampling with three- 
dimensional harmonic restraining potentials on a coarse grid 

(grid1) and a fine grid (grid2). See Supporting Information 
Figures S.13 and S.14.

The projection of F(�,�1,�2) into the two- dimensional spaces 
(�,�1) and (�,�2) are shown in Figure  4c,d, and explain
the sudden “jumps” in the two- dimensional distributions
in Figure  4a,b. The free energy minima of the cis-  and the
trans- configuration are slanted in the two- dimensional space.
Specifically, the configurations overlap for values of � near the
barrier, and thus � does not cleanly discriminate between cis-  
and trans- configuration. In Figure 4c, when going from nega-
tive values of � to positive values across the cis- minimum, �1 
steadily decreases from +0.3 rad to − 0. 3 rad. At the transition
state, the value of �1 is restored to �1 = + 0. 3 rad within a short
interval of �, giving rise to “jumps” in the two- dimensional dis-
tribution. The correlation of � to �2 shows a similar behavior
(Figure 4d). The optimized path follows this sudden change in
�1 and �2 by zigzagging through the three- dimensional space.

To obtain our grid- based rate model, we discretized the three- 
dimensional space (�,�1,�2), and calculated the rate matrix 
Q from the free energy surface and the diffusion profiles using 
Equation (19), which then yielded the reaction rate constants via 
Equations (20) and (21). Convergence of the rates with respect 
to different discretizations of (�,�1,�2) is better for metady-
namics than for umbrella sampling (Supporting Information 
Figure S.1). The rate constants of the three- dimensional models 
are in good agreement with the rate constants from the simula-
tions (Table 2).

Most importantly, in the three- dimensional models, the results 
from metadynamics and from umbrella sampling are in excel-
lent agreement. The rate estimates are somewhat sensitive to 
the model of the diffusion profile. In particular, using a uniform 
diffusion profile along each of the three collective variables (av-
eraged grid1 and grid2) yields rate constants that are slightly 
closer to the simulated results than when estimating a fully po-
sition dependent diffusion profile (diffusion grid1 and grid2). 
This might be caused by numerical effects when using the fully 
position dependent diffusion profile.

We additionally repeated the infrequent metadynamics simu-
lations using three- dimensional Gaussian bias functions in the 
space spanned by �, �1, and �2. The resulting rate constants are 
very close to those obtained from infrequent metadynamics 
with one- dimensional biasing (Table 2).

3.8   |   Computational Cost

The main computational costs for one- dimensional rate theories 
(simple TST, Kramers' rate, Pontryagin's rate, and grid- based 
models) come from the enhanced sampling MD simulations 
(metadynamics or umbrella sampling), while reweighting to 
obtain the free energy surface from these simulation data and 
evaluation of the rate equations exerts a negligible computa-
tional cost. Pontryagin's rate and grid- based models additionally 
require a diffusion profile. When using umbrellas sampling, 
FES and diffusion profile [27] can be obtained from the same 
set of simulations. In this case the diffusion profile has negligi-
ble computational cost. If metadynamics is used to generate the 
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FES, additional simulations might be required to estimate the 
diffusion profiles.

To compare the computational cost of one- dimensional rate the-
ories and grid- based models (Table 3), we therefore focus on the 
computational cost of MD simulations for generating the FES. 
For the path- based FES, this cost estimate includes the simula-
tion time for optimizing the four paths (clockwise and counter- 
clockwise rotation for both kcis→trans and ktrans→cis, total), as well 
as the simulation time for generating the FES along the opti-
mized paths. We additionally include the computational cost of 
the MD simulations for infrequent metadynamics, where again 
the cost of reweighting these trajectories is negligible (Table 3).

Across all methods, the required simulation time ranges be-
tween 1 �s and 12 �s. Considering that the mean- first passage 
time of the cis- trans isomerization (at the present force field) is 
� = k− 1 ∼ 5× 104 s, this is a remarkably short simulation time.
Using enhanced sampling, reweighting, and appropriate rate
models, we bridged ten orders of magnitude in time scales from
microseconds of total simulation time to hours in molecular pro-
cess. However, relative to modern computational capabilities, the 
cost remains significant. At a time step of 2 fs, a simulation time
of 1 �s amounts to 500 million force calls, which is currently only
feasible for computationally very efficient energy functions.

Since MD simulations for a small molecule in a vacuum with 
an atomistic force field are relatively inexpensive, we sampled 
generously without optimizing the simulation times. Therefore, 
the computational costs presented in Table 3 are not a quanti-
tative benchmark, but should be considered as representative 
examples.

4   |   Computational Methods

4.1   |   One- Dimensional Model Systems

The model free energy functions on the circular reaction coordi-
nate q ∈ [−�,�] in Figure 1a,b are defined by 

in units kJ mol− 1. We set a = 2. 4RT and b = − 1 kJ mol− 1 for 
Figure 1a, and a = 10. 4 � − 1 kJ mol− 1 and b = − 1 kJ mol− 1 for 
Figure 1b. The free energy function in Figure 1c was prescribed 
by a spline interpolation of a metadynamics profile measured 
along � of the retinal system studied in this work.

Numerical simulation was carried out by implementing the ISP 
integrator [52] for underdamped Langevin dynamics (Supporting 
Information Equation  (S.7)) for a particle with effective mass 
m = 1 amu ⋅ nm2

⋅ rad− 2 and using a time step of Δt = 0. 001 ps. 
The temperature of the system was T = 300 K, and the gas con-
stant R = 8. 314463 Jmol− 1K− 1 for all simulations. We varied the 
value of the friction coefficient � in ranges that matched the free 
energy barrier of the model potentials: Figure 1a: � = 0. 002 ps− 1 
to � = 72 ps− 1; Figure  1b: � = 0. 005 ps− 1 to � = 150 ps− 1; 
Figure 1c: � = 0. 02 ps− 1 to � = 713 ps− 1.

For the model systems in Figure  1b,c, we used infrequent 
metadynamics [24] to enhance the sampling. For Figure  1b, 
Gaussian bias functions of height 0. 1 kJ mol− 1 and width 
0. 6 rad were deposited every 300 time steps (weak friction re-
gime); 0. 05 kJ mol− 1 and width 0. 4 rad every 150 time steps
(moderate and high friction regime). For Figure  1c, Gaussian
bias functions of height 0. 8 kJ mol− 1 and width 0. 1rad were
deposited every 100 time steps (weak friction regime); and of
height 0. 5 kJ mol− 1 and width 0. 1 rad every 100 time steps
(moderate and high friction regime). Well- tempering has been
enforced using a biasing factor of 100. Forces were calculated by 
adding the gradient of the free energy profile to the gradient of
the biasing potential U(q, t).

The transition rates in Figure 1a,b were estimated by realizing 
100 simulations starting at the left minimum qA = − 1. 6 rad 
and measuring the first- passage time to reach the barrier at 
qTS = 0 rad or qTS� = −� rad. The reciprocal of the mean and 
standard deviation of the first- passage times gives the escape 
rate with its uncertainty. The transition rates in Figure 1b were 
estimated by the same procedure, but simulations started at 
qA = 0 rad and stopped at qTS = 1. 6 rad or qTS� = − 1. 6 rad.

Transition rates for the simple TST formula and Kramers' rate 
theory in the moderate and high friction limits were calculated 
by applying the Equations (8), (13), (14), where �A, �B, or �TS were 
calculated from the second derivative of the free energy profile. 
The integrals in Kramers' rate theory in the weak friction regime 
(Equation (11)) and Pontryagin's rate theory (Equation (16)) were 
evaluated by discretizing the interval [−�, + �] in 100 subsets 
of equal length and employing the trapezoidal rule. The same 
discretization was used for the grid- based model (Equation (18)).

4.2   |   Atomistic Model of Retinal

Retinal parameters for atomistic force field calculations 
were taken from DFT studies on the protonated Schiff base 
[30], adapted to GROMACS format [31], while the connect-
ing amino acid was modeled using the AMBER99SB*- ILDN 
forcefield [53]. The starting structure was obtained by cutting 
out the lysine amino acid and retinal cofactor from a recent 
crystal structure [54]. All simulations are carried out at 300 K 

(24)F(q) = acos2q− bsinq

TABLE 3    |    Aggregated MD simulation times to calculate rates for 
both isomerization directions (kcis→trans and ktrans→cis).

Method Reaction Simulation Time

Coordinate time step

MetaD US

[10− 6s] [10− 6s] [10− 15s]

1D FES Dihedral � 2. 0 0. 996 2. 0

1D FES Path � 8. 0 9. 6 1. 0

3D FES Dihedrals

�,�1,�2 1. 0 3. 92 2. 0

InMetaD 12.0 2.0
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in vacuum using stochastic dynamics with GROMACS [55] 
version 2019.4 built- in Langevin integrators with a 2 fs step 
size and an inverse friction coefficient of 2 ps. For the path 
collective variables, occasionally lower time steps were used. 
Position restraints of 10, 000 kJ mol− 1nm− 2 were put on all 
heavy atoms of the peptide chain as well as on the lysine chain 
carbon atoms (Figure  2), while the LINCS constraint algo-
rithm [56] was applied to all hydrogen bonds. Before all sim-
ulations, energy minimization and NVT equilibration were 
performed. Metadynamics [39, 40, 57, 58] and umbrella sam-
pling [43] simulations were carried out by plugging PLUMED 
[25] with GROMACS. Diffusion profiles were calculated by
following Ref  [27]. The reaction coordinate was optimized
using the PLUMED implementation of the adaptive path
CV method in Ref.  [49] in combination with metadynamics.
Effective masses of the reactant states were calculated by
measuring the average squared velocity along the reaction co-
ordinate and applying Equation (7). Frequencies �A, �B, �TS,
and �TS′ were calculated from spring constants obtained by
harmonically fitting the corresponding wells or barriers. Free
energy barriers are measured from the FES directly. One- 
dimensional rate methods (simple TST, Kramers', Pontryagin)
can then be applied straightforwardly. For grid- based meth-
ods, 500 cells were used for one- dimensional discretizations,
while a discretization of (31,23,23) was used in the 3D CV
space (�,�1,�2), with �1 and �2 being discretized in the region 
between − 1 and 1 radians for metadynamics and − 0. 7 and
0.7 radians for umbrella sampling. Rates from direct numeri-
cal simulation were obtained from infrequent metadynamics
runs, where acceleration factors were calculated directly by
PLUMED. See Supporting Information Section IIA for a com-
plete description of the computational details.

5   |   Discussion and Conclusion

Figure 5 summarizes the results of this study. For the thermal 
cis- trans isomerization in retinal, different methods to calculate 
the rate constant yield drastically different results. Specifically, 
reaction- coordinate based rate estimates using the torsion angle 
q = � as an intuitive reaction coordinate differ by about two or-
ders of magnitude from the infrequent metadynamics results, 
which is based on counting transitions. Furthermore, within the 
reaction- coordinate based estimates, the results are very sensi-
tive to the method of calculating the free energy profile: The re-
sults with an umbrella sampling FES differ systematically form 
those with a metadynamic FES.

These deviations are not primarily caused by a poor choice of the 
friction regime in the Kramers' rate estimates. For q = �, the ef-
fective dynamics falls into the intermediate friction regime, but 
using rate equations for overdamped friction instead changes 
the rate constant only by about a factor of 2. Thus, for a particu-
lar choice for calculating F(q), all one- dimensional rate theories 
yield similar results. The same is true for the optimized reaction 
coordinate, whose effective dynamics falls into the high friction 
regime. However, it remains crucial to confirm the friction re-
gime and use the appropriate formula, because Kramers' rate for 
high friction scenarios may significantly overestimate the rate 
constant when applied in the wrong friction regime (Figure 1).

Optimizing the reaction coordinate lowered the rate estimates 
of the one- dimensional rate theories by two orders of magnitude 
compared to q = �. These lower rate constants are likely more 
accurate, since the free energy function of a poor reaction coor-
dinate underestimates the true reaction barrier.

It is surprising at first that, for the cis- trans isomerization, an 
improved reaction coordinate has such a massive effect on the 
accuracy of the rate constant. Cis and trans configurations are 
defined by the torsion angle �, and therefore q = � cleanly sepa-
rates reactant and product states [22], which is a crucial criterion 
for an optimal reaction coordinate. However, the optimization 
of q revealed that the intuitive reaction coordinate fails another 
important criterion. In the transition state, the optimized reac-
tion coordinate forms a large angle to the intuitive reaction co-
ordinate q = � (Figure 4c,d). Consequently, the probability flux 
across the barrier is nearly orthogonal to q = �, rather than par-
allel as expected for an optimal reaction coordinate [22].

This curvature of the optimal reaction coordinate arises, be-
cause at the transition state the C13 and C14 slightly bend out 
of plane, and thus the reaction coordinate takes a short detour 
into otherwise rigid degrees of freedom, namely the improper 
dihedral angles �1 and �2. This detour is possible because, at the 
transition state, the electronic structure changes. In this case, 
the p- orbitals of C13 and C14 do no longer overlap. This effect is 
captured by DFT- calculations [2] and reproduced by the empiri-
cal force field used in this study.

Since a change in the electronic structure at the transition state 
is a hallmark of chemical reactions, we suspect that such short 
detours into orthogonal degrees of freedom (with respect to an 
intuitive reaction coordinate) will be the rule rather than the 
exception when modeling chemical reactions. However, find-
ing such a curved optimal reaction coordinate is not trivial, 
even if an initial reaction coordinate and candidates for further 
correlated degrees of freedom are known, as in the case of ret-
inal [2, 48]. Besides the path- based method [49] we used in our 
study, a wide range of other methods to identify optimal reaction 

FIGURE 5    |    Rate constants determined through different methodol-
ogies for the thermal cis- trans isomerization over the C13 = C14 double 
bond in retinal.



14 of 16 Journal of Computational Chemistry, 2025

coordinates have been proposed [59–61], including recent ap-
proaches based on neural networks [62, 63].

An alternative to optimizing the reaction coordinate is to improve 
the estimate of the rate constant for a sub- optimal reaction co-
ordinate q by including non- Markovian effects into the effective 
dynamics along q. The corresponding equations are based on the 
generalized Langevin equation (GLE). Here, non- Markovian be-
havior arises from the memory kernel, which is a time- integral 
over the time- dependent friction coefficient [64–66]. Memory ker-
nels are notoriously hard to predict, but recently multiple methods 
have emerged to model them [67–69]. In addition, Grote–Hynes 
theory provides an equation for the memory kernel [8]. The result-
ing rate equation has the same functional form as Kramers rate 
equation for the moderate friction regime (Equation (13)), where 
the Markovian friction � is replaced by the Laplace transform of 
the time- dependent friction coefficient [13]. In general, the closer 
the reaction coordinate follows the probability flux of the reac-
tion, the smaller are the non- Markovian effects [65]. Although 
non- Markovian rate theories provide accurate rate estimates even 
for imperfect reaction coordinates, using these suboptimal reac-
tion coordinates risks obscuring important mechanistic details 
needed for understanding the reaction. For example in retinal, 
the out- of- plane bending of C13 and C14 near the transition state is 
not captured by the initial reaction coordinate q = �.

For our system, despite using an optimized reaction coordinate, 
metadynamics and umbrella sampling produced different free 
energy barriers, leading to significantly different rate estimates, 
as shown in Figure 5. This is likely caused by the strong cur-
vature of the optimized reaction coordinate and might indicate 
that q = �s is not yet fully optimal.

Grid- based models in a multidimensional collective variable 
space offer an alternative to optimizing the one- dimensional re-
action coordinate or including memory effects. Using the torsion 
angle � and two improper torsion angles at C13 and C14 as collec-
tive variables, we obtained rate estimates that are in very good 
agreement with the simulation results (Figure 5). Moreover, for 
these multidimensional models, the free energy functions de-
rived from metadynamics and umbrella sampling agree, leading 
to similar rate constants. Multidimensional models have addi-
tional advantages: they can be applied to multistate dynamics, 
do not assume timescale separation, and they yield information 
on all of the slow processes in the system [33, 34]. The trade- off 
is the need to estimate a multidimensional free energy surface.

Furthermore, methods that model the reaction rate by envision-
ing a flux over a dividing surface [70] rather than a maximum 
in an energy landscape can be considered. In variational transi-
tion state theory (VTST), different approaches are used to opti-
mize the dividing surface and minimize the TST reaction rate 
[6, 7, 71]. The reactive flux method [72], links the flux across 
a dividing surface to a correlation function which can be esti-
mated from molecular simulations. Modern methods based on 
this framework include transition path sampling [22, 73], tran-
sition interface sampling [74] and forward flux sampling [75].

Our results show that rate constants for chemical reactions can 
be determined with high accuracy (within the classical approx-
imation) from molecular simulations. The caveat is that the 

methods need to be carefully chosen for the system at hand. Of 
the various parameters that influence the rate constant, the cur-
vature of the reaction coordinate at the transition state emerges 
as the most critical one.
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