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Abstract 

Disturbances in renal microcirculatory function contribute to renal pathologies such as 

acute kidney injury (AKI), chronic kidney disease (CKD) of different origin, and rejection 

of kidney transplants. A main pathophysiological factor is reduced nitric oxide (NO) bioa-

vailability in the renal vasculature. Pharmacological activation of the natural receptor for 

NO, the soluble guanylyl cyclase (sGC), improves the renal outcome after experimental 

AKI or CKD. This thesis investigates the effect of sGC-activation in renal cortical and 

medullary microvessels in situations with NO-deficit, oxidation of sGC, and after hy-

poxia/re-oxygenation. 

Microvessels were dissected from freshly harvested kidney slices by hand.  A customized 

micro-perfusion system, situated on a stage of an inverted microscope, was used for the 

perfusion of isolated afferent and efferent arterioles of mice as well as medullary vasa 

recta from rats. The reactivity of the microvessels was analysed by measuring the 

changes in vessel luminal diameters in response to several pharmacological and physical 

manipulations. 

The sGC activators BAY 58-2667, runcaciguat, and BAY 60-2770 were used. They have 

similar pharmacological actions. BAY 58-2667 and BAY 60-2770 dilated cortical and me-

dullary microvessels, respectively, after inhibition of endothelial and neuronal NO-syn-

thases by L-NAME and pre-constriction with angiotensin II (Ang II). Further, BAY 58-2667 

dilated contrast medium (iodixanol) treated afferent arterioles, which have reduced NO-

bioavailability. ODQ was administered to oxidize the sGC, which leads to the loss of NO 

binding of the enzyme. Under this condition, the dilator effect of runcaciguat on afferent 

and efferent arterioles was stronger compared to vessels pre-treated with L-NAME. Fur-

thermore, BAY 58-2667 and BAY 60-2770 were able to dilate efferent arterioles and vasa 

recta, respectively, but not afferent arterioles after strong hypoxia and re-oxygenation in 

vitro. 

The data show that pharmacological sGC-activation dilates renal microvessels under the 

condition of NO deficiency, sGC oxidation as well as after hypoxia-re-oxygenation. The 

stronger effect of runcaciguat on vessels with oxidized sGC suggests improved action in 

kidneys with impaired redox balance as observed in AKI and CKD. The results suggest 

that sGC activation may compensate for NO deficiency and impaired sGC function in 

microvessels, which may contribute to its renoprotective effect.  
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Zusammenfassung 

Zahlreiche Nierenpathologien wie akutes Nierenversagen (AKI), chronisches Nierenver-

sagen (CKD) unterschiedlichster Genese sowie die Abstoßungsreaktion bei Nierentrans-

plantaten gehen mit Störungen der renalen Mikrozirkulation einher. Ein Hauptfaktor hier-

bei ist die verminderte Bioverfügbarkeit von Stickstoffmonoxid (NO). Pharmakologische 

Aktivierung der löslichen Guanylatzyklase (sGC), dem natürlichen Rezeptor für NO, 

schützt die Niere bei AKI und CKD. In der vorliegenden Dissertationsschrift wird die Wir-

kung von sGC-Aktivierung auf kortikale und medulläre Mikrogefäße der Niere unter den 

Bedingungen eines NO-Defizits, der Oxidation der sGC und nach Hypoxie/Re-Oxygenie-

rung untersucht.  

Die renalen Mikrogefäße wurden aus Akutschnitten der Niere per Hand isoliert. Afferen-

ten und efferente Arteriolen der Maus als auch medulläre Vasa recta der Ratte wurden 

mittels eines speziellen Perfusionssystems, welches sich auf einem Mikroskop umge-

kehrter Bauweise befand, perfundiert. Die Reaktionen der Gefäße auf pharmakologische 

und physikalische Stimuli wurden durch Messung des Gefäßlumens bewertet. 

Es wurden die sGC-Aktivatoren BAY 58-2667, Runcaciguat und BAY 60-2770 verwendet. 

Sie haben sehr ähnliche pharmakologische Eigenschaften. BAY 58-2667 und BAY 60-

2770 erweiterten kortikale bzw. medulläre Mikrogefäße nach Hemmung der endothelialen 

und neuronalen NO-Synthasen mittels L-NAME sowie Präkonstriktion mit Angiotensin II 

(Ang II). BAY 58-2667 dilatierte afferente Arteriolen, die mit einem jodhaltigen Kontrast-

mittel (Jodixanol) behandelt und NO-defizient waren. In weiteren Experimenten wurde die 

sGC durch Behandlung mit ODQ oxidiert, wodurch sie die Fähigkeit zur NO-Anlagerung 

verliert. Unter diesen Bedingungen war der dilatierende Effekt von Runcaciguat in affe-

renten und efferenten Arteriolen stärker als unter L-NAME-Vorbehandlung. BAY 58-2667 

und BAY 60-2770 dilatierten efferente Arteriolen bzw. Vasa recta, jedoch nicht afferente 

Arteriolen, nach starker Hypoxie in vitro und nachfolgender Re-Oxygenierung. 

Die Daten zeigen, dass pharmakologische Aktivierung der sGC renale Mikrogefäße unter 

den Bedingungen von NO-Mangel, Oxidation der sGC sowie nach Hypoxie/Re-Oxyge-

nierung erweitert. Der größere Effekt von Runcaciguat in Gefäßen mit oxidierter sGC 

könnte mit einer besseren Wirkung dieses Medikaments in Nieren einhergehen, die ein 
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gestörtes Redox-Gleichgewicht haben. Oxidativer Stress ist bei AKI und CKD beschrie-

ben worden. Insgesamt weisen die Ergebnisse auf eine kompensatorische Wirkung von 

sGC-Aktivatoren bei NO-Mangel und gestörter sGC-Funktion in Mikrogefäßen hin. Dieser 

Effekt könnte zur beobachteten renoprotektiven Aktion von sGC-Aktivatoren beitragen. 
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1 Introduction 

1.1  Acute kidney injury, acute kidney disease, and chronic kidney disease 

Acute kidney injury (AKI) affects 7 to 18% of hospitalized patients. AKI goes along with 

adverse long-term outcomes and increased mortality (1). The high incidence especially 

in developing countries motivated the International Society of Nephrology to its Oby25 

initiative for eliminating preventable deaths from AKI (2). AKI patients are at high risk for 

transition to chronic kidney disease (3, 4). The pathological processes, which develop 

after AKI have been defined recently and the medical term acute kidney disease (AKD) 

has been introduced (4). AKD is used for patients with affected kidney function and/or 

structure who meet neither the definition of AKI nor chronic kidney disease (5). According 

to the Kidney Disease Improving Global Outcomes (KDIGO) AKI guideline of 2011, AKI 

is considered a subset of the AKD section (6). 

The prevalence of CKD is higher than 10% worldwide (7). Thus, CKD contributes signifi-

cantly to worldwide mortality, whereby CKD-associated death rates have considerably 

risen since 1990 (4).  

These data demand for enhanced efforts for better prevention and treatment of acute and 

chronic kidney diseases. 

1.2  Pathophysiology of AKI and CKD 

1.2.1 AKI 

Causes for AKI include pathophysiological events which of pre-, intra- or post-renal origin. 

Pre-renal AKI is often due to cardiovascular failure particularly in critically ill patients in 

the intensive care unit (8). Acute tubule-necrosis due to intoxication (for example io-

dinated contrast media) or insufficient perfusion is the main reason for intra-renal AKI (9). 

Post-renal AKI is often attributed to urinary obstruction (different pathologies, (10). The 

different forms of AKI share a number of pathophysiological mechanisms, despite of di-

verse causes (see Fig. 1). 
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Fig. 1: Causes, important pathophysiological factors, and outcome of AKI. This is a simplified 

overview, which does consider neither all causes nor the complexity of the pathophysiological 

processes. 

Modified after Pikkers P. et al. (11), GFR – glomerular filtration rate, RBF – renal blood flow. 

1.2.2 CKD 

The most frequent reasons for developing CKD are diabetes mellitus, systemic hyperten-

sion, glomerulonephritis, cystic kidneys, and nephrotoxic drugs. AKI is an important risk 

factor and can be a cause of CKD (12). CKD is characterised by gradual loss of kidney 

function and this may result in end-stage kidney disease. The pathogenesis of CKD dif-

fers according to the causes; however, the different forms share some basic changes 

such as a reduction in renal parenchyma and fibrosis (13). 

1.2.3 Renal microvessels in AKI and CKD 

The renal vasculature contributes to the orchestra of pathophysiological mechanisms in 

AKI and CKD. In the acute situation, microvessels often constrict and show thrombotic 

occlusions. Particularly in ischemia-reperfusion injury, as a common cause for AKI, as 

well as for sepsis induced AKI, peritubular capillaries and vasa recta are affected (14-16). 

In addition, glomerular arterioles may constrict in response to increased sympathetic 

nerve activity and renin-angiotensin-aldosteron system activation, which results in a de-

creased glomerular filtration rate. However, the experimental access to renal mi-

crovessels especially in vivo is still limited. Therefore, statements regarding possible 
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changes in microvessel function in AKI are rather hypothetically and need to be confirmed 

using adequate methods.  

Microvessel rarefication is an important pathophysiological factor the progression from 

AKI to CKD (17). 

Several studies suggest that the inner part of the outer medulla of the kidney is the most 

sensitive part concerning hypoxic damage (18). This may be due to the high demand of 

oxygen for resorption in the tubuli, the physiologically low perfusion combined with low 

oxygen pressure. The latter is due to the hair pin arrangement of vasa recta, which ex-

clusively supplies this area with blood (19).  Vasa recta are capillary like vessels without 

a media, but equipped with pericytes. They have similar functional properties as arterioles 

and contribute significantly to the control of renal medullary blood flow (20). 

1.2.4 NO-sGC-cGMP-pathway for vessel dilatation 

The balance between vasoconstrictory and vasodilatory substances determines the tone 

of renal vessels and microvessels. It changes in favour of vasoconstriction in AKI and 

CKD, thus contributing to a reduced renal perfusion and oxygen supply (21).  

The NO-sGC-cGMP axis is a very powerful dilatory system in the renal vasculature (22). 

Experiments in isolated renal arterioles and vasa recta reveal the importance of the sys-

tem for microvessel tone and reactivity to vasoconstrictors (23, 24). NO affecting renal 

microvasculature origins from different sources. The endothelial NOS (eNOS) generates 

the major portion, but the neuronal NOS (nNOS) in macula densa cells and NOS in epi-

thelial cells contribute to NO bioavailability in renal microvessels (25-27). NO diffuses into 

vascular smooth muscle cells and activates the sGC by binding to the prosthetic group 

(heme), which contains a central iron atom (Fe2+). Oxidative stress leads to oxidation 

(Fe3+) and release of the heme group which goes along with a loss of function of the 

enzyme (28).  

The activated sGC catalyses the production of cGMP, which then activates the protein 

kinase G (PKG). Vessel dilation results from the activation of several other kinases and 

channels; all of them contributing to a reduction in cytosolic Ca2+ (29-31). Fig. 2 shows 

the main signalling pathway of NO and possible effects of hypoxia/re-oxygenation.  



Introduction 7 

 

 

Fig. 2: Simple scheme of the NO-sGC-cGMP pathway. eNOS - endothelial nitric oxide synthase, 

nNOS - neuronal nitric oxide synthase, iNOS - inducible nitric oxide synthase, sGC- soluble guan-

ylyl cyclase, cGMP – cyclic guanosin monophosphate, GMP - guanosin monophosphate, PKG – 

protein kinase G, PDE5 – phosphodiesterase 5, VSMC – vascular smooth muscle cell (own 

presentation). 

1.2  sGC-stimulators and -activators 

Two groups of pharmacological substances are available for sGC activation: so called 

stimulators and activators of sGC. Stimulators enhance the NO induced activation of the 

sGC. Activators work independently from NO. They do not need a heme group (32). NO 

bioavailability is reduced in many pathological situations. In addition, oxidation of the sGC 

due to oxidative stress has been described in AKI and CKD, which speaks in favour of 

activator application. SGC stimulators showed a protective effect in animal models of 

CKD (33, 34) and in heart failure with reduced ejection fraction (35). SGC activators are 

already used in the therapy of pulmonary hypertension (36). The protective effect of acti-

vators has been shown in different pre-clinical models of CKD and cardiovascular dis-

eases (37-45). Activators reduced kidney damage, fibrosis, and inflammation. The exact 

mechanisms of their action are widely unknown. Since the NO-sGC-cGMP pathway is 
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important for vessel tone, one can hypothesize a protective effect via improved vasodila-

tation and renal perfusion. 

 

1.3  Hypoxia – an important pathophysiological factor in AKI and CKD 

Hypoxia is a broadly accepted component in the pathogenesis of multiple forms of acute 

kidney injury. However, reviews of the existing literature show a lack of understanding of 

the pathophysiological events after ischemia re-perfusion in the kidney (46, 47). Hypoxia 

may also be important in the transition from AKI to CKD and in the pathogenesis of CKD 

of different origin (48-50). Hypoxia does not only result from reduced renal (local) blood 

flow. Increased oxygen consumption, for example due to increased filtration in patholog-

ical situations, contributes to the observed hypoxia and low oxygenation, respectively (48). 

Experiments in models of ischemia/re-perfusion and hypoxia/re-oxygenation suggest a 

significant influence on vessel function. Renal microvessels of acute kidney slices 

showed higher reactivity to the vasoconstrictor angiotensin II after hypoxia/re-oxygena-

tion (51, 52). Further, isolated renal interlobar arteries demonstrated an impaired vaso-

relaxation under similar experimental conditions (53). A critical role in this context plays 

oxidative stress, i.e. an increased concentration of reactive oxygen species (for example 

superoxide), which strengthens the angiotensin II signalling via MAPK kinase activation 

as well as scavenging of NO from endothelial and epithelial sources (54, 55). Further, 

oxidative stress impairs the function of the sGC in vascular smooth muscles (56). These 

effects contribute to increased microvessel tone and vascular resistance, which further 

worsen renal perfusion and oxygenation. 

 

1.4  Hypothesis and objective 

AKI and CKD are characterized by NO deficiency and oxidative stress (57, 58). Hy-

poxia/re-oxygenation is an important pathophysiological factor in most forms of AKI and 

CKD, which can induce endothelial dysfunction and excessive reactive oxygen species 

(oxidative stress). Activators of sGC stimulate the sGC NO- and heme-independent. We 

hypothesize that treatment with sGC activators dilate renal microvessel under these path-

ophysiological conditions and may have protective action in this context. 
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To test this hypothesis models of NO-deficiency and hypoxia/re-oxygenation in isolated 

renal cortical and medullary microvessels are used. 
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2 Methods 

2.1 Animals 

Male mice (C57Bl6J) and rats (Male Sprague-Dawley) were included in the studies. Ani-

mals were housed under standard conditions of Charité animal houses (59-61). The use 

of animals was approved by Landesamt für Gesundheit und Soziales Berlin (LAGeSo) 

and conformed to the Guide for the Care and Use of Laboratory Animals adopted by the 

National Institutes of Health. 

2.2 Dissection and perfusion of microvessels 

Details of procedures are available from our own publications (59-61). In short: Animals 

were anaesthetized with isoflurane and decapitated. Kidneys were removed quickly after 

opening the abdominal layers. They were sliced (1 mm thick) and the slices were kept at 

4° Celsius in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Paisley, UK) with 0.1% 

albumin (Carl Roth GmbH, Karlsruhe, Germany). Dissection was performed using the 

same solution and temperature, and with the help of customized forceps (No. 5, Dumont, 

Switzerland). Mouse cortical microvessels were identified by their spatial position in rela-

tion to the glomerulus and by typical vessel wall patterns. Vasa recta (descending) were 

dissected from the outer medulla of the rat kidney and identified by their typical “bump-

on-a-log” pattern (62). 

Isolated microvessels were transferred to a thermo-controlled organ chamber (Vetec, 

Rostock, Germany) and perfused using a customized perfusion system with handmade 

pipettes (63, 64). Vessels were perfused with DMEM + 1% albumin and the bath solution 

was DMEM + 0.1% albumin. The perfusion pressure was adjusted to reach physiological 

perfusion rates and to distend the isolated vessel not too much. Afferent arterioles were 

perfused with a pressure in the pressure head of 100 mmHg, efferent arterioles with 40 

mmHg and vasa recta with 15 mmHg. 

Hypoxia/re-oxygenation experiments: Hypoxia (0.1% O2, 5% CO2) was applied to mi-

crovessels for 30 min, immediately after dissection (hypoxia chamber, Don Whitley Sci-

entific Ltd., West Yorkshire, UK). Re-oxygenation time was 10 min and included the time 

needed for establishing the perfusion of the vessels.  
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2.3 Human vasa recta 

Human DVR were isolated from human kidney tissue obtained from nephrectomy mate-

rial of patients with renal cell carcinoma (Klinik für Urologie, Charité – Universitätsmedizin 

Berlin). All patients provided written informed consent. The study was approved by the 

ethical committee of the Charité – Universitätsmedizin Berlin (Approval No. EA4/65/18). 

 

2.3 Data acquisition and analysis 

Experiments were continuously monitored using a video system (Moticam 2.0, Motic Asia, 

Hong Kong, China) connected to an inverted microscope (Zeiss, Oberkochen, Germany).  

Five pictures were taken for each experimental step in the functional steady state situation 

of the vessels. The pictures were analyzed with the help of ImageJ (65).The site with the 

strongest reactivity to vasoactive substances was used to estimate glomerular arteriolar 

responsiveness. In vasa recta, only sites with a pericyte were used. Vasa recta show 

detectable active functional reactions only where pericytes are located. The average of 

five pictures per experimental step was used for further analysis. For the time-response 

experimental part, pictures were taken for every 10 seconds for 10 minutes after the sub-

stance application. 

The statistical analysis was performed using “R”, a free software package (http://www.r-

project.org) and GraphPad software (San Diego, CA, USA). We tested differences in con-

centration dependent diameter changes between groups with the two-way, ANOVA like 

Brunner test for non-normal distributed data. The Wilcoxon test for independent variables 

served for testing differences in single parameters between two groups (GraphPad) while 

the Wilcoxon-test for dependent measurements was used for testing the effect of drugs 

within a group. 

2.4 Experimental procedures 

Experiments started within two hours after sacrificing the animal. Microvessels were per-

fused and warmed to 37° C in the chamber (organ bath) on the stage of the inverted 

microscope. Afferent arterioles’ viability was tested by a short application of 100 mmol/l 

http://www.r-project.org/
http://www.r-project.org/
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KCl solution, which should result in complete and sustained (10s) constriction. Other cri-

teria for vessel viability were a preserved wall structure and a preserved vessel tone. 

Adaptation time for microvessels was 10 min. 

N(ω)-nitro-L-arginine methyl ester (L-NAME, 10-4 mol/l)) was applied to inhibit NOS 

isoforms non-selectively. Vessel constriction ability was measured by applying angioten-

sin II in increasing concentrations (10-12-10-6 mol/l). A bolus of angiotensin II (10-6 mol/l) 

was used to pre-constrict microvessels before testing the dilatory effect of agonists. En-

dothelial dependent dilatation was tested by application of acetylcholine in increasing 

concentrations (10-11-10-4 mol/l), while endothelium independent dilatation was tested by 

applying the NO-donator sodium nitroprusside (SNP, 10-3 mol/l). Activation of the sGC 

was performed by applying the sGC activators cinaciguat (60) or BAY 60-2770 (59) or 

runcaciguat (61). The GC was inhibited by applying the selective inhibitor ODQ (5 *10-4 

mol/l). All substances were added to the bath solution.  
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3. Results 

3.1 The NO-sGC-cGMP system in vasa recta 

L-NAME (10-4 mol/l) application for 15 min reduced vasa recta diameter, increased the 

following angiotensin II induced constriction compared to vessels not treated with L-

NAME, and strongly weakened the ACh (10-11-10-4 mol/l) induced dilation (Fig. 3). 

Sildenafil (10-9-10-6 mol/l), a specific PDE5 inhibitor, dilated pre-constricted vasa recta 

dose dependent (Fig. 4). Further, a sildenafil bolus (10-7 mol/l) dilated to pre-constricted 

vessels 10 min after bath application completely (Fig. 4). Bay 60-2770 (10-6 mol/l) dilated 

L-NAME  (10-4 mol/l) treated (NO deficient) and angiotensin II-pre-constricted (10-6 mol/l) 

vasa recta to about 90% of initial diameter (Fig. 5). Bay 60-2770 dilated human vasa recta 

after pre-constriction with angiotensin II (10-12-10-6 mol/l) completely (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: L-NAME effect on vasa recta. Upper left: L-NAME reduces basal diameter. Upper right: L-

NAME increases response to angiotensin II (Ang II). Lower panel: L-NAME decreases response 

to ACh. * indicates significant differences (Wilcoxon and Brunner test, respectively). Significant 

differences between the curves in the frame in the upper right diagram (Brunner test). Modified 

from (59) 
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Fig: 4: Sildenafil effect in vasa recta. Left panel: Sildenafil dilates angiotensin II pre-constricted 

vasa recta concentration dependent. Right panel: Bolus application of sildenafil dilates the vessel. 

* indicates significant differences between curves (Brunner test). Modified from (59) 

 

 

 

 

 

 

 

 

 

Fig. 5: Bay 60-2770 effect on L-NAME treated, angiotensin II pre-constricted vasa recta. Left 

panel: Bay 60-2770 dilates the vessels concentration dependent. Right panel: Bolus application 

of Bay 60-2770 dilates the vessels. * indicates significant differences between curves (Brunner 

test). Modified from (59) 

 

 

 

 

 

 

 

 

 

Fig. 6: Bay 60-2770 effect in human vasa recta. Left panel: Angiotensin II constricts vasa recta 

concentration dependent. Right panel: Dilation to Bay 60-2770 bolus application in these angio-

tensin II pre-constricted vessels. Modified from (59) 
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3.2 Effect of hypoxia/re-oxygenation in vasa recta 

Severe hypoxia (0.1% O2 for 30 min) followed by re-oxygenation increased the angioten-

sin II response in vasa recta and decreased the response to ACh in angiotensin II pre-

constricted vessels (Fig. 7). Sildenafil (10-7 mol/l) did not dilate the vessels in the condi-

tions of hypoxia/re-oxygenation, while SNP (10-3 mol/l) and Bay 60-2770 (10-6 mol/l) di-

lated the vessels in the same condition. The dilatory effect of Bay 60-2770 bolus applica-

tion was faster than that of SNP treatment (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Effect of hypoxia on vasa recta. Left panel: Hypoxia increase response to angiotensin II 

(a) Right panel: Hypoxia decreases response to ACh in angiotensin II pre-constricted vessels. * 

indicates significant differences between curves (Brunner test). Modified from (59) 

3.3 Effect of NO deficiency and hypoxia/re-oxygenation in glomerular arterioles 

Glomerular arterioles of mice have a potent NO-sGC-cGMP system (60, 64). NOS inhibi-

tion (L-NAME, 10-4 mol/l) increased the angiotensin II response in afferent and efferent 

arterioles (Fig. 9). Cinaciguat (10-7 mol/l) dilated the L-NAME (10-4 mol/l)  pre-treated and 

pre-constricted (angiotensin II 10-6 mol/l) vessels. The dilation to cinaciguat was similar in 

control vessels without L-NAME treatment. In both protocols, efferent responded more 

strongly than afferent arterioles (Fig. 10 and 11). Severe hypoxia (0.1% O2 for 30 min) 

followed by re-oxygenation increased the angiotensin II response in afferent and efferent 

vessels (Fig. 12). Cinaciguat dilated the pre-constricted efferent vessels, but not afferent 

arterioles (Fig. 12).   
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Fig. 8: Effect of hypoxia on vasa recta. Upper left: Sildenafil does not dilate angiotensin II pre-

constricted vasa recta after hypoxia. Upper right: Sodium nitroprusside (SNP) bolus application 

dilates angiotensin II pre-constricted vasa recta under normoxia and after hypoxia similarly. Lower 

left: Bay 60-2770 bolus application dilates Angiotensin II- pre-constricted vasa recta under 

normoxia and after hypoxia similarly. Lower right: Bay 60-2770 dilates Angiotensin II- pre-con-

stricted vasa recta faster than SNP after hypoxia. * indicates significant differences between 

curves (Brunner test). Modified from (59) 

 

Fig. 9: Response of afferent (AA, left panel) and efferent arterioles (EA, right panel) to angiotensin 

II (Ang II) after pre-treatment with the NOS inhibitor L-NAME. * indicates significant differences 

(p<0.05) in the concentration response (Brunner test). Modified from (60). 
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3.4 Contrast medium treated afferent arterioles 

Iodixanol reduces the NO-bioavailability and induces oxidative stress in the vessel wall 

(66). To test the effect of the sGC activator cinaciguat, vessels were pre-treated with the 

iodinated contrast medium iodixanol (23 mg of iodine/ml) from the luminal side. Cinacig-

uat  (10-7 mol/l) dilated pre-constricted afferent arterioles under these conditions (Fig. 11). 

 

 

Fig.10: Effect of sGC activator cinaciguat in L-NAME pre-treated and angiotensin II-pre-con-

stricted afferent (AA, panel A) and efferent arterioles (EA, panel B). Panel C: Comparison of ci-

naciguat effects in AA and EA. Panel D: Diameters of control groups for AA and EA. * indicates 

significant differences (p<0.05, Brunner test). Modified from (60). 
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Fig. 11: Effect of cinaciguat in angiotensin II pre-treated afferent (AA, panel A) and efferent arte-

rioles (EA, Panel B) without L-NAME pre-treatment. Panel C: Comparison of the cinaciguat effects 

in AA and EA. Panel D: Cinaciguat induced dilation in iodixanol-treated AA. * indicates significant 

differences (p<0.05, Brunner test). Modified from (60). 
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Fig. 12: Effect of hypoxia on angiotensin II (Ang II) induced constriction in afferent (AA) and effer-

ent arterioles (EA). Lower panels: Cinaciguat effect on AA and EA after hypoxia/re-oxygenation 

in angiotensin II pre-treated arterioles. * indicates significant differences (p<0.05, Brunner test). 

Modified from (60). 

 

3.5 Effect of runcaciguat on glomerular arterioles after sGC inhibition with ODQ 

The sGC activator runcaciguat (10-6 mol/l), given as bolus, dilated L-NAME (10-4 mol/l) 

treated and angiotensin II (10-6 mol/l) pre-constricted afferent and efferent arterioles (Fig. 

13). After application of ODQ, an inhibitor of sGC, which oxidizes the enzyme, runcaciguat 

was more effective compared to the L-NAME treated group as shown in concentration 

response curves (Fig. 14). 
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Fig.   13: Effect of runcaciguat given as bolus in L-NAME treated and angiotensin II-pre-con-

stricted afferent and efferent arterioles. *** indicates significant differences between the curves 

(p<0.001, Brunner test; figure modified from (61). 

 

 

 

 

Fig. 14: Effect of runcaciguat on angiotensin II-pre-constricted afferent and efferent arterioles after 

L-NAME or ODQ treatment. Left panel: Video-microscopic pictures demonstrating “1” an afferent 

arteriole in the control situation, “2” after 15 min treatment with L-NAME , “3” after additional pre-

constriction with Angiotensin II (10-4 mol/l), “4” and after additional application of runcaciguat. The 

black arrow indicates the site of measurement of the arteriolar luminal diameter.  * indicates sig-

nificant differences between both curves (p<0.05, Brunner test, figure modified from (61). 
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4. Discussion 

4.1  Short summary of results 

The thesis presents data about the action of sGC activators under different pathophysio-

logical conditions in renal microvessels. Activators of the sGC dilated glomerular arteri-

oles and outer medullary descending vasa recta after inhibition of NOS, i.e. under NO 

deficiency. The sGC activation induced stronger dilatory effects in efferent compared to 

afferent arterioles. Renal pathologies go along with hypoxia or hypoxia/re-oxygenation 

and an increased concentration of reactive oxygen species, which may lead to impaired 

sGC function. Hypoxia/re-oxygenation in vitro increased angiotensin II responses in glo-

merular and medullary microvessels and reduced the dilation to ACh in vasa recta. SGC 

activators dilated efferent arterioles and vasa recta after hypoxia/re-oxygenation as well 

as afferent arterioles after ODQ treatment (oxidized sGC). However, cinaciguat did not 

dilate afferent arterioles after strong hypoxia-re-oxygenation. The studies confirm our hy-

pothesis that sGC activators act under NO-deficiency and sGC oxygenation in isolated 

renal microvessels.  

4.2  Interpretation of results 

4.2.1 NO deficiency in renal microvessels 

Luminal diameters decreased in arterioles and vasa recta after L-NAME treatment (NOS 

inhibition). The response to angiotensin II, which is a strong constrictor in the renal vas-

culature, was increased in glomerular arterioles and in vasa recta. Further, ACh dilatation 

was reduced in the vasa recta. These results suggest an important role of the NO-sGC-

cGMP system for renal microvessel dilation and tone, respectively. The results confirm 

observations in renal afferent arterioles and vasa recta from previous studies (27, 67). 

The sGC activators used in this thesis were able to dilate pre-constricted vessels with 

NO-deficiency. These substances can activate the sGC NO-independently. Several other 

studies showed activator induced dilation in NO-deficient vessels. For example, Bay 58-

2667, an sGC activator, dilated iliac arteries in aged rats better than an sGC stimulator or 

PDE5 inhibitor (sildenafil) did (68), suggesting that this class of substances can be useful 

in situations where NO bioavailability is reduced in organs and vessels, respectively. In-

terestingly, our data support the idea of a stronger NO-sGC-cGMP system in efferent 
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arterioles compared to mouse afferent vessels (24). Results of a study in NOS deficient 

mice also indicated a stronger NO-system in efferent arterioles (27). In contrast, the ob-

servation of a stronger reaction of efferent arterioles to angiotensin II has been related to 

a weaker NO-system in these microvessels in rabbits (69, 70). Results may depend on 

experimental conditions and species. Ultimately, the low number of investigations does 

not allow a conclusion regarding the differential role of the NO-system in glomerular arte-

rioles.  

4.2.2 Hypoxia/re-oxygenation  

Glomerular arteriolar and vasa recta response to angiotensin II increased after hy-

poxia/re-oxygenation and the ACh response diminished in vasa recta. This indicates an 

increased microvascular tone in pathological situation of ischemia/reperfusion. The 

mechanisms behind the hypoxia-induced changes in microvessels function are not fully 

understood. Oxidative stress may scavenge NO and activate signalling pathways, which 

increase the calcium sensitivity of the contractile machinery (52). In addition, hypoxia/re-

oxygenation may decrease eNOS expression in mesenteric arteries, which can contribute 

to NO reduction (53). Authors found a reduced response to the NO donor SNP, suggest-

ing that the sGC or downstream pathways are affected, as well. Increased concentration 

of reactive oxygen species after hypoxia/re-oxygenation can oxidize the sGC. Oxidation 

inhibits NO-heme interaction and leads to loss of the heme group and loss of function. In 

the in vitro study in isolated mesenteric arteries, superoxide-related fluorescence was not 

increased (53). However, superoxide and several other ROS are generated in the renal 

parenchyma in hypoxia and re-oxygenation, which are able to oxidize the sGC (49, 71-

73). In the chronic disease situation, oxidative stress may lead and induces hypoxia; for 

example in diabetic nephropathy (74). Renal microvessels constrict under these condi-

tions and aggravate hypoxia. 

NO deficiency and sGC oxidation with the consequence of microvessel constriction and 

blood flow reduction demand pharmacological interventions with the aim to dilate vessels 

and improve renal perfusion. Although, sGC stimulators showed protective action in mod-

els of CKD (33, 34, 38), activators seem to be superior because of their NO-and hem-

independent action. 

Our finding that runcaciguat dilates vasa recta better after treatment with ODQ compared 

to ODQ untreated vessels is important in this context, because it suggests that activators 

preferentially activate the sGC in tissue with oxidative stress. Further, in the kidney the 
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area most prone to hypoxic damage, namely the inner part of the outer medulla including 

the vasa recta, will be targeted. Several studies in non-renal vessel also revealed a better 

function of sGC activators when sGC oxidation was induced or assumed. ODQ impaired 

the vessel response to the activator riociguat, while it enhanced the response to cinacig-

uat in the aorta and pulmonary arteries in rats (75). Further, ODQ potentiated the re-

sponse to Bay 58-2667 (cinaciguat) in heme-free sGC (apo-sGC) and in arteries of dia-

betic mice compared to controls (76). Treatment with Bay 54-6544 (sGC activator) im-

proved pulmonary vessel function in a mouse model of sickle cell disease, while sildenafil, 

while a sGC stimulator did not (77). This finding indicates an oxidized sGC in this disease 

model. In isolated monkey coronary arteries, the activator Bay 60-2770 relaxed the ves-

sels better than the stimulator Bay 41-2272 (75). The free radical scavenger tempol pre-

vented this effect, suggesting a change in the redox state by hypoxia/re-oxygenation.  

4.3  Embedding the results into the current state of research 

Renal cortical and medullary microvessels are important not only for renal perfusion and 

oxygen supply but are directly connected to renal filtration and concentration function. 

Glomerular afferent arterioles contribute 50% to renal resistance and determine the glo-

merular filtration rate. In addition, afferent and possibly efferent arterioles are effectors in 

the tubuloglomerular feedback mechanisms (78). Afferent arterioles’ myogenic response 

is a one of the three mechanisms of renal autoregulation (79). Only one tenth of medullary 

perfusion reaches the renal medulla via juxtamedullary efferent arterioles. Nevertheless, 

medullary perfusion is independent of cortical perfusion to a certain extent (80). Outer 

medullary descending vasa recta are important in this context. They are the only vessels, 

which provide blood to the medulla. Vasa recta resistance is variable. The contractile 

elements of the vasa recta are pericytes (20).  

Several systems including the sympathetic nervous system, the local and systemic renin-

angiotensin-system as well as many other autocrine and paracrine substances influence 

vasa recta and cortical glomerular arteriolar tone (81). Glomerular arterioles react differ-

entially to agonists thereby controlling glomerular filtration rate (81). Surrounding tubuli 

release a variety of vasoactive substances and metabolites, which interact in controlling 

renal perfusion, glomerular filtration rate and medullary functions (82, 83). Endothelial 

dilatory systems such as the NO-system, arachidonic acid derivates and the hyperpolar-
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izing factor contribute significantly to microvessel tone (84). The balance between vaso-

constrictors (norepinephrine, angiotensin II, endothelin, and more) and dilatory sub-

stances gets lost under pathological situations. In AKI, the sympathetic nervous systems 

is activated and thus the renin-angiotensin-system (85). At the same time, endothelial 

dysfunction promotes vasoconstriction. Taken together, both systems increase renal vas-

cular resistance and lower renal perfusion and oxygenation (18).  

Enormous efforts have been undertaken to develop an adequate and specific treatment 

for AKI and CKD. The overwhelming part of the experimental studies aimed at patho-

physiological components in epithelial cells, thereby reducing early damage, inflammation, 

apoptosis, and fibrosis. Although, many of the study results were promising they have not 

been transferred into clinical use.  

Impaired renal perfusion has been identified as a pathophysiological factor in AKI and 

CKD (86). However, details of the pathophysiological action of the renal microvasculature 

are not well known. The thesis show that NO-deficiency and hypoxia/re-oxygenation in-

crease vessel tone and reactivity to vasoconstrictors in vitro. Further, the beneficial action 

of the sGC activators in models of NO-deficiency and sGC impairment suggests a thera-

peutic potential for this substance group.  

4.4  Strengths and weaknesses of the studies 

The studies of this thesis demonstrate the beneficial action of sGC activators in vitro mod-

els of NO deficiency and sGC dysfunction. The studies included three hemodynamically 

most important types of microvessels: cortical glomerular arterioles and medullary vasa 

recta. These results extend our knowledge about pathophysiological aspects and offers 

new therapeutic options for the treatment of AKI and CKD.  

Most experiments of this thesis were performed in animal models, which limits the trans-

lation into the human situation. Importantly, we could show the principal beneficial action 

of a sGC activator in human vasa recta.  

4.5  Implications for practice and/or future research 

Performing experiments in isolated microvessels was a step forward to a better under-

standing of pathophysiological mechanisms and in testing a new class of vasoactive sub-

stances in this context. Clinical studies for the application of sGC activators in human 

medicine (treatment of CKD) already started. Therefore, it is important to understand the 
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mechanisms behind the protective effects. Future work should focus on investigating sGC 

activator effects on renal vasculature function ex vivo in different models of AKI and CKD. 
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5. Conclusions  

The results of the thesis provide evidence for a strong dilator effect of sGC activators in 

renal microvessels under conditions of NO-deficiency due to NOS-inhibition or treatment 

with an iodinized contrast medium. Further, data suggest an even enhanced action of 

sGC activators (runcaciguat) when the sGC is oxidized. The findings indicate renal pro-

tection by sGC activators via reduced renal hemodynamic resistance and improved renal 

perfusion. 
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