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Abstract

Disturbances in renal microcirculatory function contribute to renal pathologies such as
acute kidney injury (AKI), chronic kidney disease (CKD) of different origin, and rejection
of kidney transplants. A main pathophysiological factor is reduced nitric oxide (NO) bioa-
vailability in the renal vasculature. Pharmacological activation of the natural receptor for
NO, the soluble guanylyl cyclase (sGC), improves the renal outcome after experimental
AKI or CKD. This thesis investigates the effect of sGC-activation in renal cortical and
medullary microvessels in situations with NO-deficit, oxidation of sGC, and after hy-

poxia/re-oxygenation.

Microvessels were dissected from freshly harvested kidney slices by hand. A customized
micro-perfusion system, situated on a stage of an inverted microscope, was used for the
perfusion of isolated afferent and efferent arterioles of mice as well as medullary vasa
recta from rats. The reactivity of the microvessels was analysed by measuring the
changes in vessel luminal diameters in response to several pharmacological and physical

manipulations.

The sGC activators BAY 58-2667, runcaciguat, and BAY 60-2770 were used. They have
similar pharmacological actions. BAY 58-2667 and BAY 60-2770 dilated cortical and me-
dullary microvessels, respectively, after inhibition of endothelial and neuronal NO-syn-
thases by L-NAME and pre-constriction with angiotensin 1l (Ang II). Further, BAY 58-2667
dilated contrast medium (iodixanol) treated afferent arterioles, which have reduced NO-
bioavailability. ODQ was administered to oxidize the sGC, which leads to the loss of NO
binding of the enzyme. Under this condition, the dilator effect of runcaciguat on afferent
and efferent arterioles was stronger compared to vessels pre-treated with L-NAME. Fur-
thermore, BAY 58-2667 and BAY 60-2770 were able to dilate efferent arterioles and vasa
recta, respectively, but not afferent arterioles after strong hypoxia and re-oxygenation in

vitro.

The data show that pharmacological sGC-activation dilates renal microvessels under the
condition of NO deficiency, sGC oxidation as well as after hypoxia-re-oxygenation. The
stronger effect of runcaciguat on vessels with oxidized sGC suggests improved action in
kidneys with impaired redox balance as observed in AKI and CKD. The results suggest
that sGC activation may compensate for NO deficiency and impaired sGC function in

microvessels, which may contribute to its renoprotective effect.



Zusammenfassung

Zahlreiche Nierenpathologien wie akutes Nierenversagen (AKI), chronisches Nierenver-
sagen (CKD) unterschiedlichster Genese sowie die Abstol3ungsreaktion bei Nierentrans-
plantaten gehen mit Stérungen der renalen Mikrozirkulation einher. Ein Hauptfaktor hier-
bei ist die verminderte Bioverfiigbarkeit von Stickstoffmonoxid (NO). Pharmakologische
Aktivierung der loslichen Guanylatzyklase (sGC), dem naturlichen Rezeptor fir NO,
schitzt die Niere bei AKI und CKD. In der vorliegenden Dissertationsschrift wird die Wir-
kung von sGC-Aktivierung auf kortikale und medullare Mikrogeféal3e der Niere unter den
Bedingungen eines NO-Defizits, der Oxidation der sGC und nach Hypoxie/Re-Oxygenie-

rung untersucht.

Die renalen Mikrogefafl3e wurden aus Akutschnitten der Niere per Hand isoliert. Afferen-
ten und efferente Arteriolen der Maus als auch medullare Vasa recta der Ratte wurden
mittels eines speziellen Perfusionssystems, welches sich auf einem Mikroskop umge-
kehrter Bauweise befand, perfundiert. Die Reaktionen der Gefalde auf pharmakologische

und physikalische Stimuli wurden durch Messung des Gefal3lumens bewertet.

Es wurden die sGC-Aktivatoren BAY 58-2667, Runcaciguat und BAY 60-2770 verwendet.
Sie haben sehr d@hnliche pharmakologische Eigenschaften. BAY 58-2667 und BAY 60-
2770 erweiterten kortikale bzw. medullare Mikrogefal3e nach Hemmung der endothelialen
und neuronalen NO-Synthasen mittels L-NAME sowie Prakonstriktion mit Angiotensin Il
(Ang Il). BAY 58-2667 dilatierte afferente Arteriolen, die mit einem jodhaltigen Kontrast-
mittel (Jodixanol) behandelt und NO-defizient waren. In weiteren Experimenten wurde die
sGC durch Behandlung mit ODQ oxidiert, wodurch sie die Fahigkeit zur NO-Anlagerung
verliert. Unter diesen Bedingungen war der dilatierende Effekt von Runcaciguat in affe-
renten und efferenten Arteriolen starker als unter L-NAME-Vorbehandlung. BAY 58-2667
und BAY 60-2770 dilatierten efferente Arteriolen bzw. Vasa recta, jedoch nicht afferente

Arteriolen, nach starker Hypoxie in vitro und nachfolgender Re-Oxygenierung.

Die Daten zeigen, dass pharmakologische Aktivierung der sGC renale Mikrogefalie unter
den Bedingungen von NO-Mangel, Oxidation der sGC sowie nach Hypoxie/Re-Oxyge-
nierung erweitert. Der grol3ere Effekt von Runcaciguat in Gefal3en mit oxidierter sGC
konnte mit einer besseren Wirkung dieses Medikaments in Nieren einhergehen, die ein



gestortes Redox-Gleichgewicht haben. Oxidativer Stress ist bei AKI und CKD beschrie-
ben worden. Insgesamt weisen die Ergebnisse auf eine kompensatorische Wirkung von
sGC-Aktivatoren bei NO-Mangel und gestorter sGC-Funktion in Mikrogefal3en hin. Dieser
Effekt konnte zur beobachteten renoprotektiven Aktion von sGC-Aktivatoren beitragen.
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1 Introduction

1.1 Acute kidney injury, acute kidney disease, and chronic kidney disease

Acute kidney injury (AKI) affects 7 to 18% of hospitalized patients. AKI goes along with
adverse long-term outcomes and increased mortality (1). The high incidence especially
in developing countries motivated the International Society of Nephrology to its Oby25
initiative for eliminating preventable deaths from AKI (2). AKI patients are at high risk for
transition to chronic kidney disease (3, 4). The pathological processes, which develop
after AKI have been defined recently and the medical term acute kidney disease (AKD)
has been introduced (4). AKD is used for patients with affected kidney function and/or
structure who meet neither the definition of AKI nor chronic kidney disease (5). According
to the Kidney Disease Improving Global Outcomes (KDIGO) AKI guideline of 2011, AKI
is considered a subset of the AKD section (6).

The prevalence of CKD is higher than 10% worldwide (7). Thus, CKD contributes signifi-
cantly to worldwide mortality, whereby CKD-associated death rates have considerably
risen since 1990 (4).

These data demand for enhanced efforts for better prevention and treatment of acute and

chronic kidney diseases.

1.2 Pathophysiology of AKI and CKD

1.2.1 AKI

Causes for AKl include pathophysiological events which of pre-, intra- or post-renal origin.
Pre-renal AKI is often due to cardiovascular failure particularly in critically ill patients in
the intensive care unit (8). Acute tubule-necrosis due to intoxication (for example io-
dinated contrast media) or insufficient perfusion is the main reason for intra-renal AKI (9).
Post-renal AKI is often attributed to urinary obstruction (different pathologies, (10). The
different forms of AKI share a number of pathophysiological mechanisms, despite of di-

verse causes (see Fig. 1).
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Fig. 1: Causes, important pathophysiological factors, and outcome of AKI. This is a simplified
overview, which does consider neither all causes nor the complexity of the pathophysiological
processes.

Modified after Pikkers P. et al. (11), GFR — glomerular filtration rate, RBF — renal blood flow.

1.2.2 CKD

The most frequent reasons for developing CKD are diabetes mellitus, systemic hyperten-
sion, glomerulonephritis, cystic kidneys, and nephrotoxic drugs. AKI is an important risk
factor and can be a cause of CKD (12). CKD is characterised by gradual loss of kidney
function and this may result in end-stage kidney disease. The pathogenesis of CKD dif-
fers according to the causes; however, the different forms share some basic changes

such as a reduction in renal parenchyma and fibrosis (13).

1.2.3 Renal microvessels in AKI and CKD

The renal vasculature contributes to the orchestra of pathophysiological mechanisms in
AKIl and CKD. In the acute situation, microvessels often constrict and show thrombotic
occlusions. Particularly in ischemia-reperfusion injury, as a common cause for AKI, as
well as for sepsis induced AKI, peritubular capillaries and vasa recta are affected (14-16).
In addition, glomerular arterioles may constrict in response to increased sympathetic
nerve activity and renin-angiotensin-aldosteron system activation, which results in a de-
creased glomerular filtration rate. However, the experimental access to renal mi-

crovessels especially in vivo is still limited. Therefore, statements regarding possible
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changes in microvessel function in AKI are rather hypothetically and need to be confirmed
using adequate methods.

Microvessel rarefication is an important pathophysiological factor the progression from
AKI to CKD (17).

Several studies suggest that the inner part of the outer medulla of the kidney is the most
sensitive part concerning hypoxic damage (18). This may be due to the high demand of
oxygen for resorption in the tubuli, the physiologically low perfusion combined with low
oxygen pressure. The latter is due to the hair pin arrangement of vasa recta, which ex-
clusively supplies this area with blood (19). Vasa recta are capillary like vessels without
a media, but equipped with pericytes. They have similar functional properties as arterioles

and contribute significantly to the control of renal medullary blood flow (20).

1.2.4 NO-sGC-cGMP-pathway for vessel dilatation

The balance between vasoconstrictory and vasodilatory substances determines the tone
of renal vessels and microvessels. It changes in favour of vasoconstriction in AKI and
CKD, thus contributing to a reduced renal perfusion and oxygen supply (21).

The NO-sGC-cGMP axis is a very powerful dilatory system in the renal vasculature (22).
Experiments in isolated renal arterioles and vasa recta reveal the importance of the sys-
tem for microvessel tone and reactivity to vasoconstrictors (23, 24). NO affecting renal
microvasculature origins from different sources. The endothelial NOS (eNOS) generates
the major portion, but the neuronal NOS (nNOS) in macula densa cells and NOS in epi-
thelial cells contribute to NO bioavailability in renal microvessels (25-27). NO diffuses into
vascular smooth muscle cells and activates the sGC by binding to the prosthetic group
(heme), which contains a central iron atom (Fe?*). Oxidative stress leads to oxidation
(Fe®*') and release of the heme group which goes along with a loss of function of the
enzyme (28).

The activated sGC catalyses the production of cGMP, which then activates the protein
kinase G (PKG). Vessel dilation results from the activation of several other kinases and
channels; all of them contributing to a reduction in cytosolic Ca?* (29-31). Fig. 2 shows
the main signalling pathway of NO and possible effects of hypoxia/re-oxygenation.
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Fig. 2: Simple scheme of the NO-sGC-cGMP pathway. eNOS - endothelial nitric oxide synthase,

nNOS - neuronal nitric oxide synthase, iINOS - inducible nitric oxide synthase, sGC- soluble guan-
ylyl cyclase, cGMP — cyclic guanosin monophosphate, GMP - guanosin monophosphate, PKG —
protein kinase G, PDE5 — phosphodiesterase 5, VSMC — vascular smooth muscle cell (own
presentation).

1.2 sGC-stimulators and -activators

Two groups of pharmacological substances are available for sGC activation: so called
stimulators and activators of sGC. Stimulators enhance the NO induced activation of the
sGC. Activators work independently from NO. They do not need a heme group (32). NO
bioavailability is reduced in many pathological situations. In addition, oxidation of the sGC
due to oxidative stress has been described in AKI and CKD, which speaks in favour of
activator application. SGC stimulators showed a protective effect in animal models of
CKD (33, 34) and in heart failure with reduced ejection fraction (35). SGC activators are
already used in the therapy of pulmonary hypertension (36). The protective effect of acti-
vators has been shown in different pre-clinical models of CKD and cardiovascular dis-
eases (37-45). Activators reduced kidney damage, fibrosis, and inflammation. The exact

mechanisms of their action are widely unknown. Since the NO-sGC-cGMP pathway is
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important for vessel tone, one can hypothesize a protective effect via improved vasodila-

tation and renal perfusion.

1.3 Hypoxia—an important pathophysiological factor in AKI and CKD

Hypoxia is a broadly accepted component in the pathogenesis of multiple forms of acute
kidney injury. However, reviews of the existing literature show a lack of understanding of
the pathophysiological events after ischemia re-perfusion in the kidney (46, 47). Hypoxia
may also be important in the transition from AKI to CKD and in the pathogenesis of CKD
of different origin (48-50). Hypoxia does not only result from reduced renal (local) blood
flow. Increased oxygen consumption, for example due to increased filtration in patholog-
ical situations, contributes to the observed hypoxia and low oxygenation, respectively (48).
Experiments in models of ischemia/re-perfusion and hypoxia/re-oxygenation suggest a
significant influence on vessel function. Renal microvessels of acute kidney slices
showed higher reactivity to the vasoconstrictor angiotensin Il after hypoxia/re-oxygena-
tion (51, 52). Further, isolated renal interlobar arteries demonstrated an impaired vaso-
relaxation under similar experimental conditions (53). A critical role in this context plays
oxidative stress, i.e. an increased concentration of reactive oxygen species (for example
superoxide), which strengthens the angiotensin Il signalling via MAPK kinase activation
as well as scavenging of NO from endothelial and epithelial sources (54, 55). Further,
oxidative stress impairs the function of the sGC in vascular smooth muscles (56). These
effects contribute to increased microvessel tone and vascular resistance, which further

worsen renal perfusion and oxygenation.

1.4 Hypothesis and objective

AKI and CKD are characterized by NO deficiency and oxidative stress (57, 58). Hy-
poxia/re-oxygenation is an important pathophysiological factor in most forms of AKI and
CKD, which can induce endothelial dysfunction and excessive reactive oxygen species
(oxidative stress). Activators of sGC stimulate the sGC NO- and heme-independent. We
hypothesize that treatment with sGC activators dilate renal microvessel under these path-

ophysiological conditions and may have protective action in this context.
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To test this hypothesis models of NO-deficiency and hypoxia/re-oxygenation in isolated

renal cortical and medullary microvessels are used.
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2 Methods

2.1 Animals

Male mice (C57BI6J) and rats (Male Sprague-Dawley) were included in the studies. Ani-
mals were housed under standard conditions of Charité animal houses (59-61). The use
of animals was approved by Landesamt fir Gesundheit und Soziales Berlin (LAGeSo0)
and conformed to the Guide for the Care and Use of Laboratory Animals adopted by the
National Institutes of Health.

2.2 Dissection and perfusion of microvessels

Details of procedures are available from our own publications (59-61). In short: Animals
were anaesthetized with isoflurane and decapitated. Kidneys were removed quickly after
opening the abdominal layers. They were sliced (1 mm thick) and the slices were kept at
4° Celsius in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Paisley, UK) with 0.1%
albumin (Carl Roth GmbH, Karlsruhe, Germany). Dissection was performed using the
same solution and temperature, and with the help of customized forceps (No. 5, Dumont,
Switzerland). Mouse cortical microvessels were identified by their spatial position in rela-
tion to the glomerulus and by typical vessel wall patterns. Vasa recta (descending) were
dissected from the outer medulla of the rat kidney and identified by their typical “bump-
on-a-log” pattern (62).

Isolated microvessels were transferred to a thermo-controlled organ chamber (Vetec,
Rostock, Germany) and perfused using a customized perfusion system with handmade
pipettes (63, 64). Vessels were perfused with DMEM + 1% albumin and the bath solution
was DMEM + 0.1% albumin. The perfusion pressure was adjusted to reach physiological
perfusion rates and to distend the isolated vessel not too much. Afferent arterioles were
perfused with a pressure in the pressure head of 100 mmHg, efferent arterioles with 40
mmHg and vasa recta with 15 mmHg.

Hypoxia/re-oxygenation experiments: Hypoxia (0.1% O2, 5% CO2) was applied to mi-
crovessels for 30 min, immediately after dissection (hypoxia chamber, Don Whitley Sci-
entific Ltd., West Yorkshire, UK). Re-oxygenation time was 10 min and included the time

needed for establishing the perfusion of the vessels.
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2.3 Human vasarecta

Human DVR were isolated from human kidney tissue obtained from nephrectomy mate-
rial of patients with renal cell carcinoma (Klinik fur Urologie, Charité — Universitatsmedizin
Berlin). All patients provided written informed consent. The study was approved by the

ethical committee of the Charité — Universitatsmedizin Berlin (Approval No. EA4/65/18).

2.3 Data acquisition and analysis

Experiments were continuously monitored using a video system (Moticam 2.0, Motic Asia,
Hong Kong, China) connected to an inverted microscope (Zeiss, Oberkochen, Germany).

Five pictures were taken for each experimental step in the functional steady state situation
of the vessels. The pictures were analyzed with the help of ImageJ (65).The site with the
strongest reactivity to vasoactive substances was used to estimate glomerular arteriolar
responsiveness. In vasa recta, only sites with a pericyte were used. Vasa recta show
detectable active functional reactions only where pericytes are located. The average of
five pictures per experimental step was used for further analysis. For the time-response
experimental part, pictures were taken for every 10 seconds for 10 minutes after the sub-

stance application.

The statistical analysis was performed using “R”, a free software package (http://www.r-
project.org) and GraphPad software (San Diego, CA, USA). We tested differences in con-
centration dependent diameter changes between groups with the two-way, ANOVA like
Brunner test for non-normal distributed data. The Wilcoxon test for independent variables
served for testing differences in single parameters between two groups (GraphPad) while
the Wilcoxon-test for dependent measurements was used for testing the effect of drugs

within a group.

2.4 Experimental procedures

Experiments started within two hours after sacrificing the animal. Microvessels were per-
fused and warmed to 37° C in the chamber (organ bath) on the stage of the inverted

microscope. Afferent arterioles’ viability was tested by a short application of 100 mmol/I|


http://www.r-project.org/
http://www.r-project.org/
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KCI solution, which should result in complete and sustained (10s) constriction. Other cri-
teria for vessel viability were a preserved wall structure and a preserved vessel tone.
Adaptation time for microvessels was 10 min.

N(w)-nitro-L-arginine methyl ester (L-NAME, 10 mol/l)) was applied to inhibit NOS
isoforms non-selectively. Vessel constriction ability was measured by applying angioten-
sin Il in increasing concentrations (10-12-10® mol/l). A bolus of angiotensin Il (10 mol/l)
was used to pre-constrict microvessels before testing the dilatory effect of agonists. En-
dothelial dependent dilatation was tested by application of acetylcholine in increasing
concentrations (10-11-10“4mol/l), while endothelium independent dilatation was tested by
applying the NO-donator sodium nitroprusside (SNP, 102 mol/l). Activation of the sGC
was performed by applying the sGC activators cinaciguat (60) or BAY 60-2770 (59) or
runcaciguat (61). The GC was inhibited by applying the selective inhibitor ODQ (5 *10*
mol/l). All substances were added to the bath solution.
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3. Results

3.1 The NO-sGC-cGMP system in vasa recta

L-NAME (10 mol/l) application for 15 min reduced vasa recta diameter, increased the
following angiotensin Il induced constriction compared to vessels not treated with L-
NAME, and strongly weakened the ACh (10''-10* mol/l) induced dilation (Fig. 3).
Sildenafil (10°-10¢ mol/l), a specific PDE5 inhibitor, dilated pre-constricted vasa recta
dose dependent (Fig. 4). Further, a sildenafil bolus (107 mol/l) dilated to pre-constricted
vessels 10 min after bath application completely (Fig. 4). Bay 60-2770 (10 mol/l) dilated
L-NAME (10 mol/l) treated (NO deficient) and angiotensin Il-pre-constricted (10-° mol/l)
vasa recta to about 90% of initial diameter (Fig. 5). Bay 60-2770 dilated human vasa recta

after pre-constriction with angiotensin 11 (10-12-10- mol/l) completely (Fig. 6).

-
120 1 — 0
= [} § -
3 % 110 o o .20
c £ & E
s § 100 . £ S
cC T 9 = ° T 40 "
g = & 2
P . fr e
s 5 2 g S _go | 1 L-NAME (n=9)
o 2 70 0 2 —l— control (n=13)
= &0 -100

con-12-11-10 -9 -8 -7 -6

L-NAME Control Ang Il (log mol/L)

80 { —— L-NAME (n=8)
—il— control (n=6)
60

40
20

*
?ﬂfr/l?‘q‘\g—j |

con-11-10 -9 -8 -7 -6 -5 -4
ACh (log mol/L)

Diameter change
(% of pre-constriction)

Fig. 3: L-NAME effect on vasa recta. Upper left: L-NAME reduces basal diameter. Upper right: L-
NAME increases response to angiotensin Il (Ang Il). Lower panel: L-NAME decreases response
to ACh. * indicates significant differences (Wilcoxon and Brunner test, respectively). Significant
differences between the curves in the frame in the upper right diagram (Brunner test). Modified
from (59)
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Fig: 4: Sildenafil effect in vasa recta. Left panel: Sildenafil dilates angiotensin Il pre-constricted
vasa recta concentration dependent. Right panel: Bolus application of sildenafil dilates the vessel.
* indicates significant differences between curves (Brunner test). Modified from (59)
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Fig. 5: Bay 60-2770 effect on L-NAME treated, angiotensin Il pre-constricted vasa recta. Left
panel: Bay 60-2770 dilates the vessels concentration dependent. Right panel: Bolus application
of Bay 60-2770 dilates the vessels. * indicates significant differences between curves (Brunner
test). Modified from (59)
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Fig. 6: Bay 60-2770 effect in human vasa recta. Left panel: Angiotensin Il constricts vasa recta
concentration dependent. Right panel: Dilation to Bay 60-2770 bolus application in these angio-
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3.2 Effect of hypoxia/re-oxygenation in vasa recta

Severe hypoxia (0.1% O:2 for 30 min) followed by re-oxygenation increased the angioten-
sin Il response in vasa recta and decreased the response to ACh in angiotensin Il pre-
constricted vessels (Fig. 7). Sildenafil (10" mol/l) did not dilate the vessels in the condi-
tions of hypoxia/re-oxygenation, while SNP (102 mol/l) and Bay 60-2770 (10® mol/l) di-
lated the vessels in the same condition. The dilatory effect of Bay 60-2770 bolus applica-

tion was faster than that of SNP treatment (Fig. 8).
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Fig. 7. Effect of hypoxia on vasa recta. Left panel. Hypoxia increase response to angiotensin Il
(a) Right panel: Hypoxia decreases response to ACh in angiotensin Il pre-constricted vessels. *

indicates significant differences between curves (Brunner test). Modified from (59)

3.3 Effect of NO deficiency and hypoxia/re-oxygenation in glomerular arterioles

Glomerular arterioles of mice have a potent NO-sGC-cGMP system (60, 64). NOS inhibi-
tion (L-NAME, 10 mol/l) increased the angiotensin Il response in afferent and efferent
arterioles (Fig. 9). Cinaciguat (10" mol/l) dilated the L-NAME (10 mol/l) pre-treated and
pre-constricted (angiotensin Il 10® mol/l) vessels. The dilation to cinaciguat was similar in
control vessels without L-NAME treatment. In both protocols, efferent responded more
strongly than afferent arterioles (Fig. 10 and 11). Severe hypoxia (0.1% Oz for 30 min)
followed by re-oxygenation increased the angiotensin Il response in afferent and efferent
vessels (Fig. 12). Cinaciguat dilated the pre-constricted efferent vessels, but not afferent

arterioles (Fig. 12).
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left: Bay 60-2770 bolus application dilates Angiotensin II- pre-constricted vasa recta under
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curves (Brunner test). Modified from (59)

-
[
(=]

-
(=]
o

Diameter (% of initial diameter)

o

=]
(=]

[=:]
o

IS
(=)

N
[=]

AA

—+— L.NAME (1) . I I
—e— control (10)

con -12 -11 10 9 -8 -7 -6
Ang Il (log mol/l)

Diameter (% of initial diameter)

120

100

80

60

40

20

(=]

L-NAME (13) | I
—e— control (8) 1

con -12 -11 10 9 -8 -7 -6

Ang Il (log mol/l)

Fig. 9: Response of afferent (AA, left panel) and efferent arterioles (EA, right panel) to angiotensin

Il (Ang II) after pre-treatment with the NOS inhibitor L-NAME. * indicates significant differences

(p<0.05) in the concentration response (Brunner test). Modified from (60).



Results 17

3.4 Contrast medium treated afferent arterioles

lodixanol reduces the NO-bioavailability and induces oxidative stress in the vessel wall
(66). To test the effect of the sGC activator cinaciguat, vessels were pre-treated with the
iodinated contrast medium iodixanol (23 mg of iodine/ml) from the luminal side. Cinacig-

uat (10" mol/l) dilated pre-constricted afferent arterioles under these conditions (Fig. 11).
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naciguat effects in AA and EA. Panel D: Diameters of control groups for AA and EA. * indicates

significant differences (p<0.05, Brunner test). Modified from (60).
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3.5 Effect of runcaciguat on glomerular arterioles after sGC inhibition with ODQ

The sGC activator runcaciguat (10 mol/l), given as bolus, dilated L-NAME (10 mol/l)

treated and angiotensin 1l (10 mol/l) pre-constricted afferent and efferent arterioles (Fig.

13). After application of ODQ, an inhibitor of sGC, which oxidizes the enzyme, runcaciguat

was more effective compared to the L-NAME treated group as shown in concentration

response curves (Fig. 14).
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4. Discussion

4.1 Short summary of results

The thesis presents data about the action of sGC activators under different pathophysio-
logical conditions in renal microvessels. Activators of the sGC dilated glomerular arteri-
oles and outer medullary descending vasa recta after inhibition of NOS, i.e. under NO
deficiency. The sGC activation induced stronger dilatory effects in efferent compared to
afferent arterioles. Renal pathologies go along with hypoxia or hypoxia/re-oxygenation
and an increased concentration of reactive oxygen species, which may lead to impaired
sGC function. Hypoxia/re-oxygenation in vitro increased angiotensin Il responses in glo-
merular and medullary microvessels and reduced the dilation to ACh in vasa recta. SGC
activators dilated efferent arterioles and vasa recta after hypoxia/re-oxygenation as well
as afferent arterioles after ODQ treatment (oxidized sGC). However, cinaciguat did not
dilate afferent arterioles after strong hypoxia-re-oxygenation. The studies confirm our hy-
pothesis that sGC activators act under NO-deficiency and sGC oxygenation in isolated

renal microvessels.

4.2 Interpretation of results

4.2.1 NO deficiency in renal microvessels

Luminal diameters decreased in arterioles and vasa recta after L-NAME treatment (NOS
inhibition). The response to angiotensin Il, which is a strong constrictor in the renal vas-
culature, was increased in glomerular arterioles and in vasa recta. Further, ACh dilatation
was reduced in the vasa recta. These results suggest an important role of the NO-sGC-
cGMP system for renal microvessel dilation and tone, respectively. The results confirm
observations in renal afferent arterioles and vasa recta from previous studies (27, 67).
The sGC activators used in this thesis were able to dilate pre-constricted vessels with
NO-deficiency. These substances can activate the sGC NO-independently. Several other
studies showed activator induced dilation in NO-deficient vessels. For example, Bay 58-
2667, an sGC activator, dilated iliac arteries in aged rats better than an sGC stimulator or
PDES inhibitor (sildenafil) did (68), suggesting that this class of substances can be useful
in situations where NO bioavailability is reduced in organs and vessels, respectively. In-

terestingly, our data support the idea of a stronger NO-sGC-cGMP system in efferent
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arterioles compared to mouse afferent vessels (24). Results of a study in NOS deficient
mice also indicated a stronger NO-system in efferent arterioles (27). In contrast, the ob-
servation of a stronger reaction of efferent arterioles to angiotensin Il has been related to
a weaker NO-system in these microvessels in rabbits (69, 70). Results may depend on
experimental conditions and species. Ultimately, the low number of investigations does
not allow a conclusion regarding the differential role of the NO-system in glomerular arte-

rioles.

4.2.2 Hypoxia/re-oxygenation

Glomerular arteriolar and vasa recta response to angiotensin Il increased after hy-
poxia/re-oxygenation and the ACh response diminished in vasa recta. This indicates an
increased microvascular tone in pathological situation of ischemia/reperfusion. The
mechanisms behind the hypoxia-induced changes in microvessels function are not fully
understood. Oxidative stress may scavenge NO and activate signalling pathways, which
increase the calcium sensitivity of the contractile machinery (52). In addition, hypoxia/re-
oxygenation may decrease eNOS expression in mesenteric arteries, which can contribute
to NO reduction (53). Authors found a reduced response to the NO donor SNP, suggest-
ing that the sGC or downstream pathways are affected, as well. Increased concentration
of reactive oxygen species after hypoxia/re-oxygenation can oxidize the sGC. Oxidation
inhibits NO-heme interaction and leads to loss of the heme group and loss of function. In
the in vitro study in isolated mesenteric arteries, superoxide-related fluorescence was not
increased (53). However, superoxide and several other ROS are generated in the renal
parenchyma in hypoxia and re-oxygenation, which are able to oxidize the sGC (49, 71-
73). In the chronic disease situation, oxidative stress may lead and induces hypoxia; for
example in diabetic nephropathy (74). Renal microvessels constrict under these condi-
tions and aggravate hypoxia.

NO deficiency and sGC oxidation with the consequence of microvessel constriction and
blood flow reduction demand pharmacological interventions with the aim to dilate vessels
and improve renal perfusion. Although, sGC stimulators showed protective action in mod-
els of CKD (33, 34, 38), activators seem to be superior because of their NO-and hem-
independent action.

Our finding that runcaciguat dilates vasa recta better after treatment with ODQ compared
to ODQ untreated vessels is important in this context, because it suggests that activators

preferentially activate the sGC in tissue with oxidative stress. Further, in the kidney the
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area most prone to hypoxic damage, namely the inner part of the outer medulla including
the vasa recta, will be targeted. Several studies in non-renal vessel also revealed a better
function of sGC activators when sGC oxidation was induced or assumed. ODQ impaired
the vessel response to the activator riociguat, while it enhanced the response to cinacig-
uat in the aorta and pulmonary arteries in rats (75). Further, ODQ potentiated the re-
sponse to Bay 58-2667 (cinaciguat) in heme-free sGC (apo-sGC) and in arteries of dia-
betic mice compared to controls (76). Treatment with Bay 54-6544 (sGC activator) im-
proved pulmonary vessel function in a mouse model of sickle cell disease, while sildenafil,
while a sGC stimulator did not (77). This finding indicates an oxidized sGC in this disease
model. In isolated monkey coronary arteries, the activator Bay 60-2770 relaxed the ves-
sels better than the stimulator Bay 41-2272 (75). The free radical scavenger tempol pre-

vented this effect, suggesting a change in the redox state by hypoxia/re-oxygenation.

4.3 Embedding the results into the current state of research

Renal cortical and medullary microvessels are important not only for renal perfusion and
oxygen supply but are directly connected to renal filtration and concentration function.
Glomerular afferent arterioles contribute 50% to renal resistance and determine the glo-
merular filtration rate. In addition, afferent and possibly efferent arterioles are effectors in
the tubuloglomerular feedback mechanisms (78). Afferent arterioles’ myogenic response
is a one of the three mechanisms of renal autoregulation (79). Only one tenth of medullary
perfusion reaches the renal medulla via juxtamedullary efferent arterioles. Nevertheless,
medullary perfusion is independent of cortical perfusion to a certain extent (80). Outer
medullary descending vasa recta are important in this context. They are the only vessels,
which provide blood to the medulla. Vasa recta resistance is variable. The contractile
elements of the vasa recta are pericytes (20).

Several systems including the sympathetic nervous system, the local and systemic renin-
angiotensin-system as well as many other autocrine and paracrine substances influence
vasa recta and cortical glomerular arteriolar tone (81). Glomerular arterioles react differ-
entially to agonists thereby controlling glomerular filtration rate (81). Surrounding tubuli
release a variety of vasoactive substances and metabolites, which interact in controlling
renal perfusion, glomerular filtration rate and medullary functions (82, 83). Endothelial

dilatory systems such as the NO-system, arachidonic acid derivates and the hyperpolar-
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izing factor contribute significantly to microvessel tone (84). The balance between vaso-
constrictors (norepinephrine, angiotensin I, endothelin, and more) and dilatory sub-
stances gets lost under pathological situations. In AKI, the sympathetic nervous systems
is activated and thus the renin-angiotensin-system (85). At the same time, endothelial
dysfunction promotes vasoconstriction. Taken together, both systems increase renal vas-
cular resistance and lower renal perfusion and oxygenation (18).

Enormous efforts have been undertaken to develop an adequate and specific treatment
for AKI and CKD. The overwhelming part of the experimental studies aimed at patho-
physiological components in epithelial cells, thereby reducing early damage, inflammation,
apoptosis, and fibrosis. Although, many of the study results were promising they have not
been transferred into clinical use.

Impaired renal perfusion has been identified as a pathophysiological factor in AKI and
CKD (86). However, details of the pathophysiological action of the renal microvasculature
are not well known. The thesis show that NO-deficiency and hypoxia/re-oxygenation in-
crease vessel tone and reactivity to vasoconstrictors in vitro. Further, the beneficial action
of the sGC activators in models of NO-deficiency and sGC impairment suggests a thera-

peutic potential for this substance group.

4.4  Strengths and weaknesses of the studies

The studies of this thesis demonstrate the beneficial action of SGC activators in vitro mod-
els of NO deficiency and sGC dysfunction. The studies included three hemodynamically
most important types of microvessels: cortical glomerular arterioles and medullary vasa
recta. These results extend our knowledge about pathophysiological aspects and offers
new therapeutic options for the treatment of AKI and CKD.

Most experiments of this thesis were performed in animal models, which limits the trans-
lation into the human situation. Importantly, we could show the principal beneficial action

of a sGC activator in human vasa recta.

4.5 Implications for practice and/or future research

Performing experiments in isolated microvessels was a step forward to a better under-
standing of pathophysiological mechanisms and in testing a new class of vasoactive sub-
stances in this context. Clinical studies for the application of sGC activators in human

medicine (treatment of CKD) already started. Therefore, it is important to understand the
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mechanisms behind the protective effects. Future work should focus on investigating sGC

activator effects on renal vasculature function ex vivo in different models of AKI and CKD.
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5. Conclusions

The results of the thesis provide evidence for a strong dilator effect of SGC activators in
renal microvessels under conditions of NO-deficiency due to NOS-inhibition or treatment
with an iodinized contrast medium. Further, data suggest an even enhanced action of
sGC activators (runcaciguat) when the sGC is oxidized. The findings indicate renal pro-
tection by sGC activators via reduced renal hemodynamic resistance and improved renal

perfusion.
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Abstract: Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney
injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating
these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow.
We stimulated the NO-sGC-cGMP signalling pathway in DVR at three different levels before and
after hypoxia/re-oxygenation (H/R). Rat DVR were isolated and perfused under isobaric conditions.
The phosphodiesterase 5 (PDE5) inhibitor sildenafil (107% mol/L) impaired cGMP degradation
and dilated DVR pre-constricted with angiotensin II {Ang II, 10 mol/L). Dilations by the soluble
guanylyl cyclase (sGC) activator BAY 60-2770 as well as the nitric oxide donor sodium nitroprusside
(SNP, 103 mol/L) were equally effective. Hypoxia (0.1% O,) augmented DVR constriction by
Ang II, thus potentially aggravating tissue hypoxia. H/R left DVR unresponsive to sildenafil, yet
sGC activation by BAY 60-2770 effectively dilated DVR. Dilation to SNP under H/R is delayed. In
conclusion, H/R renders PDES inhibition ineffective in dilating the crucial vessels supplying the
area at risk for hypoxic damage. Stimulating sGC appears to be the most effective in restoring renal
medullary blood flow after H/R and may prove to be the best target for maintaining oxygenation to
this vulnerable area of the kidney.

Keywords: descending vasa recta; hypoxia; re-oxygenation; soluble guanylyl cyclase; nitric oxide

1. Introduction

Despite its energy-intensive functions of resorption and concentration, the renal
medulla receives a considerably small amount (~10%) of the renal blood flow (RBF). It is
exclusively perfused through descending vasa recta (DVR), which are capillary-like, long
vessels originating from the juxtamedullary nephrons. DVR are lined with pericytes on
their outer surface [1-3]. DVR supply the most energy-consuming cells, while warranting
minimum perfusion to glycolytic cells in remote regions of the inner medulla. Highly
oxygen-consuming structures, such as the S3 segment and the thick ascending limb of
Henle, rely on vasa recta anastomosis for their oxygen supply. On the other hand, blood
supply to deeper structures in the papilla must be minimal to prevent osmolyte washout.
High oxygen demand combined with low perfusion renders the inner part of the outer
medulla particularly susceptible to hypoxic damage in pathological events such as acute
kidney injury (AKI) and chronic kidney disease (CKD) [4]. As DVR are the only vessels sup-
plying blood to these renal areas at risk of hypoxia, maintaining blood supply is uniquely
demanding and is key to providing renoprotection.

The physiological functions of DVR have been extensively characterized over the
last two decades and the specific role that pericytes play in this context has also been
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described (for review see [5-7]). It is the response of pericytes to various stimuli, such as
sympathetic nervous activity, circulating and local hormones, and metabolites generated
by neighbouring tubuli, that enables DVR to constrict and relax [5,8,9].

While experimental ischemia/ re-perfusion reduces the overall RBF, its effect on the
blood flow and oxygenation of the medulla is significantly prolonged compared to the
cortex [10,11]. Moreover, the damage is especially severe in the inner part of the outer
medulla [12]. These findings suggest that medullary blood flow plays an important role
in the genesis of renal damage in various renal pathologies. RBF is critically regulated by
nitric oxide (NO) through its vasodilatory effect. NO is probably the strongest antagonist of
several vasoconstrictors, including angiotensin Il (Ang II), and plays an important role in the
physiology and pathophysiology of renal perfusion [13-16]. Experimentally induced NO
deficiency has been shown to reduce RBF and cause renal damage in several species [17,18].
NO deficiency is a hallmark of AKI and CKD and may contribute to the imbalance of
vasoconstrictor and dilator mechanisms that increase renal vascular resistance and reduce
cortical and medullary RBF [19]. Therefore, improving RBE especially the medullary flow,
by restoring NO production and signalling may be a protective and therapeutic tool in AKI
and CKD. Pharmacological approaches have indeed been successful in animal experiments;
however, they have notbeen translated to the clinical setting to date.

Cyclic GMP (¢cGMP) is the mediator of the NO system in vascular smooth muscle cells.
Several pharmacological agents developed during the last two decades aim at modulating
the effects of the NO system by increasing cellular levels of cGMP. The most prominent
categories of such agents are phosphodiesterase 5 (PDES5) inhibitors and soluble guanylyl
cyclase (sGC) stimulators and activators [20,21]. Some of them are already used in the
clinic, e.g,, to treat pulmonary hypertension [22]. Their dilatory capabilities in microvessels
of the renal cortex have recently been demonstrated [23]. Interestingly, the sGC activator
cinaciguat has been shown to dilate glomerular efferent but not afferent arterioles in mice
after strong hypoxia and subsequent re-oxygenation [24]. This indicates that NO signalling
after hypoxia is differently regulated in the two different types of glomerular arterioles.
However, little is known about the influence of hypoxia on microvascular NO signalling in
the renal medulla. Therefore, we investigated the dilatory capacity of the NO system in
DVR and tested the ability of an sGC activator to dilate these microvessels after hypoxia/re-
oxygenation (H/R). This could provide a new approach for protection and therapy in AKI
and CKD.

2. Results
2.1. Pharmacological Characterization of NO-sGC-Systent in Rat DVR
2.1.1. Effect of NOS Inhibition

NO deficiency was induced in isolated rat DVR by treating them with an inhibitor
of NO synthases (NOS)—N w-nitro-L-arginine methyl ester hydrochloride (L-NAME,
10~* mol/L)—for 15 min. While a control group of vessels incubated under similar condi-
tions did not show a significant change in diameter, vessels treated with L-NAME were
significantly constricted (Figure 1A).

L-NAME-treated and untreated control vessels were subjected to increasing concentra-
tions of Ang I1 (10~ 12-10~° mol /L) to study the effect of NOS inhibition on vasoconstriction.
L-NAME-treated vessels showed a significantly stronger constriction in response to higher
concentrations of Ang IT (10~ °-10~% mol/L) compared to control vessels (Figure 1B). The
absolute initial diameters of L-NAME-treated vessels (mean 4+ SEM: 7.17 4 0.99 um) were
similar to control vessels (7.87 £ 0.70 um, Mann-Whitney test, p > 0.05). To assess if
NOS inhibition also affects vasodilation, L-NAME-treated and untreated control vessels
were pre-constricted using 10~% mol/L Ang II followed by treatment with cumulatively
increasing concentrations of acetylcholine (ACh, 10-''-10~* mol/L). The dilatory response
of L-NAME-treated vessels was, indeed, significantly weaker compared to control vessels
(Figure 1C). The absolute initial diameters of the vessels after pre-constriction were not
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significantly different between the L-NAME-treated and control groups (mean + SEM:
1.97 £ 041 um (L-NAME) vs. 1.80 =+ 0.11 um (control), Mann-Whitney test, p > 0.05).
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Figure 1. Effect of L-NAME on rat DVR. (A) Vessels treated with L-NAME (1 0% mol/L) for 15 min
(n = 12) showed significant constriction compared to untreated control (i = 5) vessels (Mann-Whitney
test, * p < 0.05). Vessel diameters in both groups before treatment were not significantly different
(mean = SEM: 8.48 = 0.84 um (L-NAME) vs. 7.84 = 0.83 um (control), Mann-Whitney test, p > 0.05).
(B) Concentration-response curves showing the constriction induced by Ang Il in DVR with and
without 10 7% mol /L L-NAME pre-treatment for 15 min. L-NAME-treated DVR constricted signifi-
cantly more in response to higher Ang II concentrations (highlighted in a box) than the control group
(Brunner test, * p < 0.001). (C) Concentration-response curves showing the relaxation induced by
10-'1-10~% mol /L acetylcholine (ACh) in DVR with and without pre-treatment with 10~4 mol /L
L-NAME for 15 min. L-NAME-treated vessels showed a lower maximum response to ACh compared
to the control group (Brunner test, * p < 0.01).

2.1.2. Effect of PDES Inhibition

Vasodilation was tested by subjecting isolated rat DVR to cumulatively increasing
concentrations of sildenafil (10-?-107% mol/L). Vessels were pre<onstricted using Ang I1
(107® mol/L) and had a mean diameter 4+ SEM of 3.65 + 0.32 um. The pre-constricted
vessels showed concentration-dependent dilation in response to sildenafil (Figure 2A).
Bolus application of sildenafil (10-7 mol/L) to Ang I pre-constricted vessels resulted in
100% dilation of vessels in 5 min, while control vessels, which did not receive a bolus,
remained constricted throughout the experimental duration of 10 min (Figure 2B). Both
sildenafil-treated and untreated control vessels had comparable absolute diameters after
Ang II pre—constriction (mean + SEM: 3.53 4 0.44 um (sildenafil) vs. 337 + 0.47 um
(control), Mann-Whitney test, p > 0.05).
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Figure 2. Effect of the PDES5 inhibitor sildenafil. Rat DVR were pre-constricted with 10~® mol /L
Ang II. (A) Concentration-response curve showing vasorelaxation induced by 10~ to 10~% mol /L
sildenafil. Vessel diameter did not change in the absence of sildenafil (con). (B) Time-response curves
showing relaxation induced by 10”7 mol/L sildenafil over a period of 10 min. Sildenafil caused
an almost instantaneous relaxation of the vessels with 100% relaxation achieved in 5 min (Brunner
test, * p < 0.001). Control vessels without sildenafil treatment remained constricted throughout the
experiment.

2.1.3. Effect of sGC Activation in NO-Deficient Vessels

sGC was activated using increasing concentrations of the NO-independent activator
BAY 60-2770. Rat DVR were pre-treated with 10~ mol/L L-NAME followed by a pre-
constriction with 107 mol/L Ang II. A concentration-dependent dilation was seen in
response to BAY 60-2770 (Figure 3A). The absolute initial diameter of vessels after pre-
constriction was 3.59 4+ 0.32 um (mean 4 SEM). In another set of experiments, L-NAME-
treated Ang-Il-constricted vessels that received a bolus of 10~® mol /L BAY 60-2770 showed
maximum dilation in 6 min, while the vessels that did not receive the bolus remained
constricted throughout the duration of the experiment (10 min, Figure 3B). Both groups of
vessels had comparable initial diameters after preconstriction with Ang II (mean 4 SEM:
322 4 0.38 um (BAY 60-2770) vs. 2.90 + 0.54 um (control), Mann-Whitney test, p > 0.05).
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Figure 3. Effect of the soluble guanylyl cyclase activator—BAY 60-2770. Rat DVR were pre-treated
with 107* mol/L L-NAME and pre-constricted with 10~® mol /L AngIL (A) Concentration-response
curve showing relaxation induced by 107''-107% mol/L BAY 60-2770. Vessel diameter did not
change in the absence of BAY 60-2770 (con). (B) Time-response curves showing relaxation induced
by 10~® mol/L BAY 60-2770 over a period of 10 min. Control vessels without BAY 60-2770 treatment
remained constricted throughout the experiment (Brunner test, * p < 0.001).
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2.2. Characterization of Human DVR

Human DVR were isolated from tissue samples obtained from nephrectomies. The
viability of the vessels was tested by treating them with increasing concentrations of
Ang II (10712-10~% mol/L). The vessels constricted in a concentration-dependent fash-
ion in response to Ang II (Figure 4A). The initial absolute diameter of the vessels was
11.29 + 0.88 um (mean + SEM). To test the effect of sGC activation on human DVR, Ang II
pre-constricted vessels were treated with a bolus of BAY 60-2770 (10“’ mol/L). The vessels
achieved maximum relaxation 3 min post bolus application (Figure 4B).

A B
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= c
o 2 o 2
o © . o 3
S T 40 S g i
g 5 ]
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Figure 4. sGC activation in human DVR. (A) Concentration-response curve showing constriction
induced by 10~12-10-% mol /L Ang II. Vessel diameters did not change in the absence of Ang II (con).
(B) Time-response curve showing relaxation induced by 107° mol/L BAY 60-2770. Vessels were
pre-constricted with 107® mol/L Ang IL. BAY 60-2770 caused an almost instantaneous relaxation of
the vessels with maximum relaxation achieved in 3 min.

2.3. Effect of H/R ont Rat DVR

Isolated rat DVR were incubated in a 0.1% O, environment (hypoxia) or a 20.9% O, en-
vironment (normoxia) for 30 min. Hypoxia did not affect the resting diameters of the vessels
(mean + SEM: 7.31 + 0.45 um (hypoxia) vs. 791 + 0.50 um (normoxia), Mann-Whitney test,
p > 0.05). To study the effect of hypoxia on vasoconstriction, both groups of vessels were
treated with increasing concentrations of Ang IL. Hypoxic vessels showed a significantly
stronger constriction in response to Ang II (Figure 5A). The effect of hypoxia on vasodi-
lation was analysed by pre-constricting hypoxic and normoxic vessels with 107% mol/L
Ang II followed by treatment with cumulatively increasing concentrations of ACh. While
both groups had similar diameters after pre-constriction (mean + SEM: 1.48 + 0.10 um
(hypoxia) vs. 197 £ 0.41 um (control), Mann-Whitney test, p > 0.05), hypoxic vessels
showed a significantly weaker relaxation in response to ACh compared to normoxic vessels
(Figure 5B). In another set of experiments, hypoxic and normoxic vessels pre~constricted
using 107 mol/L Ang II received a bolus of 10~ mol/L sildenafil. While PDE5 inhibition
with sildenafil resulted in the complete relaxation of normoxic vessels, hypoxic vessels re-
mained constricted throughout the experimental duration of 10 min (Figure 5C). The initial
diameters of hypoxic vessels after pre-constriction (mean = SEM: 2.65 =+ 0.47 um) were not
significantly different compared to normoxic vessels (3.53 + 0.44 um, Mann-Whitney test,
p > 0.05).
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Figure 5. Effect of hypoxia/re-oxygenation on rat DVR. Vessels were pre-incubated either in
a 0.1% oxygen (O,) atmosphere (hypoxia) or in a 20.9% O, atmosphere (normoxia) for 30 min.
{A) Concentration-response curves showing constriction induced by 107'2-107% mol /L Ang Il in
hypoxic and normoxic vessels. Hypoxia /re-oxygenation group of vessels showed a significantly
stronger constriction inresponse to Ang Ilcompared to the normoxia group (Brunner test, * p < 0.001).
(B) Concentration-response curve showing relaxationinduced by 10~ 1-10~% mol /L ACh in hypoxic
and normoxic vessels pre-constricted with 10~® mol /L Ang II. Hypoxic vessels relaxed significantly
less in response to higher concentrations of ACh (107%-10"* mol/L, highlighted in a box) com-
pared to normoxic vessels (Brunner test, * p < 0.05). (C) Time-response curves showing the effect of
PDE inhibition using 10~® mol/L sildenafil on hypoxic and normoxic vessels pre-constricted with
107® mol /L Ang IL Sildenafil caused normoxic vessels to relax, while no relaxation was observed in
hypoxic vessels for the entire duration of the experiment (Brunner test, * p < 0.001).

The effect of sGC activation on hypoxic vessels was analysed using the NO donor
sodium nitroprusside (SNP) and the NO-independent sGC activator BAY 60-2770. To deter-
mine the concentration response, SNP was used in cumulatively increasing concentrations
to treat isolated rat DVR that were pre-constricted with 107® mol/L Ang IT and pre- treated
with 10~* mol/L L-NAME (mean diameter + SEM after pre-constriction: 3.59 4 0.32 um).
The vessels relaxed in a dose-dependent manner and 100% relaxation was achieved with
10~ mol/L SNP (Figure 6A).
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Figure 6. Effects of sodium nitroprusside (SNP) and BAY 60-2770 on hypoxic rat DVR.
(A) Concentration-response curve showing relaxation induced by 10-!!~10~5 mol/L sodium ni-
troprusside (SNP) in rat vasa recta. Vessel diameter did not change under control conditions (con), i.e.,
in the absence of BAY 60-2770. Time-response curves showing the effect of (B) the NO donor SNP
(10‘3 mol /L) and (C) the NO-independent sGC activator BAY 60-2770 (10"5 mol/ L) on hypoxic and
normoxic vessels over a period of 10 min. Vessels were pre-incubated either in a 0.1% oxygen (Oz)
atmosphere (hypoxia) or in a 20.9% O, atmosphere (normoxia) with 10~* mol/L L-NAME for 30 min
followed by a pre-constriction with 10~ mol/L Ang II. Relaxation to SNP and BAY 60-2770 were
similar in hypoxic and normoxic vessels, respectively. However, (D) hypoxic vessels showed faster
relaxation in response to BAY 60-2770 compared to SNP (Brunner test, p < 0.05, same data as (B,C)).

Isolated DVR were subjected to hypoxia or normoxia for 30 min in the presence of
10~* mol/L L-NAME to inhibit cellular NOS, followed by pre-constriction with 10 mol/L
Ang II. Both groups of vessels had comparable diameters after pre-constriction (mean + SEM:
2.72 £ 0.82 um (hypoxia) vs. 2.51 4 0.53 um (normoxia), Mann-Whitney test, p > 0.05).
A bolus of 107* mol/L SNP was then applied to these vessels to study the effect of hy-
poxia on the NO-dependent activation of sGC. Both groups of vessels showed similar
relaxation in response to the bolus over a period of 10 min (Figure 6B). The effect of
the NO-independent activation of sGC was similarly analysed by applying a bolus of
10~% mol/L BAY 60-2770 to L-NAME-treated hypoxic and normoxic vessels that were
pre-constricted using 10% mol/L Ang IL. Both groups of vessels showed similar relax-
ation in response to BAY 60-2770 over a period of 10 min (Figure 6C). The absolute initial
diameters of hypoxic vessels after pre-constriction (mean + SEM: 1.70 + 0.19 um) were
smaller compared to normoxic vessels (247 + 0.24 um, Mann-Whitney test, p < 0.05).
However, the NO-independent activator BAY 60-2770 caused a significantly quicker re-
laxation in L-NAME-treated pre-constricted hypoxic vessels compared to the NO donor
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SNP (Figure 6D). The absolute initial diameters of pre—constricted hypoxic vessels treated
with BAY 60-2770 (mean £ SEM: 1.70 =+ 0.19 um) were not significantly different than the
SNP-treated vessels (2.72 + 0.82 um, Mann-Whitney test, p > 0.05).

3. Discussion

In this study, we analysed the function of isolated, perfused outer medullary DVR
to demonstrate the importance of the NO system for vascular tone. Under physiological
conditions, DVR constricted strongly in response to Ang Il and relaxed completely in
response to the ACh treatment that followed. Moreover, the dilatory function of DVR could
be substantially enhanced by pharmacological modulation of the NO system, as evident
from their strong dilatory responses to the PDES5 inhibitor sildenafil and the sGC activator
BAY 60-2770. After exposure to a strong and acute hypoxia, DVR response to Ang II
showed a significant increase, while there was a reduction in ACh-mediated dilation. This
corresponds to the imbalance between vasoconstriction and dilation that leads to reduced
renal (medullary) perfusion seen in ischemia/reperfusion models of AKI Interestingly, the
natural agonist of sGC, NO, as well as the sGC activator could dilate DVR after H/R, but
sildenafil could not. Although all of these pharmacological agents increase cellular cGMP
levels, their ability to do so seems to be differently affected by H/R.

We used isolated, perfused DVR to characterize the NO-sGC<GMP system and to
test the dilatory potency of pharmacological substances. This method is rarely applied due
to its technically demanding nature that necessitates long-term training. Nevertheless, it
is a well-established method and has been used in functional, electrophysiological, and
imaging studies [25,26]. It has several advantages compared to the living kidney slice
technique. For instance, while living kidney slices suffer from a lack of oxygen in the inner
parts owing to their commonly used thickness of 200-300 um, isolated, perfused DVR allow
for sufficient oxygenation. This lack of oxygen in the slices may lead to metabolic changes
in the tubuli and vessels, resulting in a release of a cocktail of substances with potentially
vasoactive properties. In the case of isolated, perfused DVR, however, the experimental
conditions can be uniformly controlled with the help of the bath and perfusion solutions.
They can also be easily exposed to hypoxia and re-oxygenated in a precise and controlled
fashion. Moreover, the perfusion also closely simulates physiological conditions as the flow
itself is an important determinant of endothelial function.

The responses of isolated, perfused rat DVR to Ang Il and ACh in our experiments
were consistent with previously published studies [27-29]. The inhibition of NOS clearly
enhanced Ang I response and diminished ACh-induced dilation, suggesting that NO is an
important regulator of DVR diameter. NO activates sGC in vascular smooth muscle cells
and pericytes, leading to ¢cGMP production. This cGMP then activates protein kinase G,
which phosphorylates several proteins that reduce the levels of cytosolic calcium, which in
turn causes vasodilation [30].

While NO is the natural agonist of sGC, pharmacological agents can activate sGC
independently of NO. These sGC activators are functional with both oxidized and haem-
free variants of sGC [22]. We tested the sGC activator BAY 60-2770 in DVR, in which
NO was depleted using L-NAME. BAY 60-2770 was indeed able to dilate pre-constricted
DVR in a dose-dependent manner. This observation indicates that BAY 60-2770 may have
a high potency to dilate NO-deficient DVR in vivo. Cinaciguat, another sGC activator,
has also been shown to normalize renal resistance and blood flow in rats after L-NAME
treatment [31]. However, activators are considered to exert a systemic action, which
may reduce the overall arterial blood pressure and reverse the intended restoration of
renal perfusion in pathological situations [31,32]. We also tested BAY 60-2770 on human
DVR; however, these tests were without L-NAME pre-treatment due to the limited time
available for acute experiments after harvesting the tissue and its subsequent transport to
the laboratory. Nevertheless, BAY 60-2770 very effectively dilated pre-constricted human
DVR and has potential for clinical application. In addition to sGC, cGMP levels are
also regulated by PDEs. Here, we showed that PDES5 is an important component of the



50

Int. |. Mol. Sci.2022,23, 7016

9of 14

NO-sGC-cGMP system, and its inhibition had a strong dilatory effect on DVR under
physiological conditions.

After characterizing the NO-sGC<GMP system, we tested the ability of sildenafil,
BAY 60-2770, and the NO donor SNP to dilate DVR after H/R. In most models of renal
pathologies, including AKI and CKD, H/R is a major contributor to the pathogenesis
of renal damage [33]. Animal models of ischemia/re-perfusion injury show reduced
oxygenation and perfusion of the kidney. Furthermore, the restoration of blood flow and
oxygenation after ischaemia is remarkably delayed in the renal medulla compared to the
cortex [34,35]. This delay does not only indicate that the regulation of medullary perfusion
after ischaemia is at least partly independent of that of the cortex, but also underscores
the critical role that DVR play in it. Likely reasons for this medullary malperfusion could
be a combination of functional changes such as the thrombotic occlusion of microvessels
and an increased DVR tone [34]. The latter seems to be caused by an imbalance between
vasoconstrictors and dilators. An increase in NO production and a reduced response
to Ang II, as seen in ex vivo functional experiments in rat DVR, 48 h after warm renal
ischaemia/re-perfusion, can be interpreted as a compensatory reaction to this imbalance.
A rise in iNOS expression may trigger the increase in NO-biocavailability [26]. In kidney
slices, fixed immediately following acute H/R (1 h each), vasa recta have been shown to
have reduced diameters at pericyte sites and disruptions in their fluorescent dye-filled
lumina [34]. Interestingly, the diameters of isolated DVR in the present study after 30 min
of hypoxia followed by 10 min of re-oxygenation did not differ significantly from those of
normoxic controls in the absence of vasoactive substances. However, the vessel response to
Ang II was stronger, and ACh-induced dilation was weaker. Ang IT activates NO synthase
via Ang Il receptor type I, resulting in NO release. This NO then dampens the Ang II-
induced vasoconstriction in renal microvessels [36]. This crosstalk between Ang Il and the
NO system may be impaired after H/R, contributing to the stronger Ang Il response and
diminished ACh response. Another important factor that comes into play in this context is
oxidative stress. Superoxide, a prominent representative of reactive oxygen species, does
notonly increase the Ang Il response, since it is a part of the signalling, but also scavenges
NO at the same time [37-39]. A similar increase in the Ang Il response of DVR after H/R
has also been observed in living kidney slices [40]. Taken together, functional changes
in the outer medullary DVR seem to play a critical role in the disruption of medullary
perfusion caused by ischaemia/re-perfusion.

Since the acute period is characterized by an increased tone and reactivity to Ang I,
accompanied by reduced dilatory capacity, restoring vasodilation would be protective
for the kidney. The NO donor SNP showed a full dilatory potency. This was unexpected
because increased ROS generation after H/R may oxidize sGC, thereby rendering it less
responsive to NO [37,41]. The NO-independent activation of sGC using BAY 60-2770 also
led to complete DVR dilation, which was faster than the SNP-induced dilation. Surprisingly,
sildenafil did not affect the DVR diameter after H/R at all, which may at least partly be due
to low ¢cGMP levels, as indicated by the significantly reduced response to ACh. However,
direct damage to the enzyme due to the strong hypoxia cannot be ruled out.

Our findings suggest a beneficial effect of NO donors and sGC activators in hypoxia-
damaged DVR in an acute pathological situation, where dilation is reduced and reactivity
to Ang Il is increased. While the period of re-oxygenation was relatively short in our
experiments, prolonged re-oxygenation periods following strong hypoxia have also been
shown to increase Ang Il response in cortical microvessels in living kidney slices [42].
Therefore, one can speculate that longer re-oxygenation periods in vivo induce oxidative
stress, resulting in stronger oxidation of sGC, making it unfit to be activated by NO. In
such a situation, sGC activators are especially beneficial as they activate oxidized sGC more
efficiently [43]. Therefore, the effect of sGC activators might be more pronounced inkidneys
damaged by ischaemia/ reperfusion, suggesting potential for therapeutic application.
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4. Materials and Methods
4.1. Experimental Animals

Male Sprague Dawley rats were maintained at the animal facility of the Charité—
Universitdtsmedizin Berlin under a 12 h light/ dark cycle. They were housed in enriched
cages and were allowed free access to rat chow and tap water.

4.2. Dissection of DVR

To isolate DVR, rats (250 g) were anesthetized with isoflurane and then decapitated. The
left kidney was then taken out immediately and sliced along the corticomedullary axis. A
customized set of forceps (No. 5, Dumont, Switzerland) was used to isolate DVR from the
renal outer medulla. A single DVR was then transferred to a perfusion chamber assembled on
the stage of an inverted microscope. For some of the experiments, small bundles of DVR were
dissected and pre-treated, e.g,, in a hypoxic chamber, so that they could be easily retrieved
after the pre-treatment to isolate single DVR for perfusion experiments. To follow the 3R
principle of ‘reduce’, multiple DVR were isolated from each animal; however, no more than
one DVR per animal was used for the same experimental protocol. Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Paisley, UK) with 0.1% albumin (Carl Roth GmbH, Karlsruhe,
Germany) was used as a bath solution for dissections as well as in the perfusion chamber.

4.3. Hunan DVR

Human DVR were isolated from non-malignant outer medullary renal tissue. The tissue
was obtained from 6 patients who underwent nephrectomies due to renal cell cardnoma at the
Klinik fiir Urologie, Charité—Universititsmedizin Berlin between October 2019 and March
2022. All patients provided written informed consent. The study was approved by the ethical
committee of the Charité—Universititsmedizin Berlin (Approval No. EA4/65/18).

4.4. Perfusion of Isolated DVR

A set of handmade glass pipettes were used to perfuse the DVR. In the perfusion
chamber, a single DVR was fixed in place using a holding pipette on each end. A smaller
pipette placed inside the left holding pipette (inner pipette) was advanced into the lumen of
the vessel (Figure 7A). The vessel was then perfused with DMEM supplemented with 1%
albumin. The perfusion was carried out under a pressure of 15 mm Hg using a pressure
head. This pressure is suitable to open the lumen of the DVR without any sign of overstretch-
ing. After warming to 37 °C, vessels were allowed to adapt for 5 min before starting the
experiment. All experiments were performed within 2 h after the animals were sacrificed.

4.5. Measurentent of DVR Diameters

During the experiments, vessels were continuously displayed on a computer screen
using a video camera (Moticam 2.0, Motic Asia, Hong Kong, China). Luminal diameters
served for the estimation of vascular tone and reactivity and were measured using the free-
ware Image] at the site where the reaction to the agonist being tested was the strongest [44].
DVR do not react to agonists uniformly across their length since pericytes, their vasoactive
parts, do not completely cover their outer surface (Figure 7B,C). To analyse the effects of
pre-treatments and for concentration-response curves, an image was taken every second
and average vessel diameters were calculated using measurements from five consecutive
images. For time-response curves, diameters were measured from single images taken
every 10 s over a period of 10 min.

4.6. Protocols

All chemicals and drugs were purchased from Sigma-Aldrich (Darmstadt, Germany),
unless otherwise specified. Stock solutions of substances insoluble in distilled water were
prepared in dimethyl sulfoxide (DMSO, purity > 99.7%, Bellefonte, PA, USA). The final
concentration of DMSO did not exceed 0.1% in any of the experiments. All chemicals were
stored at —20 °C. Concentrations are given as final molar concentration in the bath solution.
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Figure 7. (A) Microperfusion of rat DVR using holding and perfusion pipettes. (B) Resting and
(C) constricted DVR with the site of constriction marked in red.

4.6.1. Pharmacological Characterization of NO-sGC System

To test the contribution of the NO system to the DVR tone, vessels were incubated in
bath solution with or without L-NAME (10~* mol/L) for 15 min. Then, Ang II was given
in increasing concentrations (1072 to 10~ mol /L, 2 min each). After reaching a stable con-
striction, ACh was applied in cumulatively increasing concentrations (107! to 10~* mol/L,
3 min each).

The effect of PDES inhibition on DVR was tested using sildenafil (Biomol GmbH,
Hamburg, Germany). Isolated rat DVR were pre-constricted using 10~ mol/L Ang II
followed by treatment with increasing concentrations of sildenafil (10-?—10~% mol/L,
3 min each) to obtain the concentration-response curves. The dynamics of vessel dilation
were investigated by applying a bolus of sildenafil (10~7 mol/L) or a corresponding amount
of DMSO (solvent control) and tracking the changes in vessel diameters over a period
of 10 min.

To study the effect of sGC activation, isolated rat DVR were pre-treated with 10~* mol/L
L-NAME for 15 min followed by pre-constriction with 10~® mol /L Ang II. A concentration—
response curve was then obtained by applying the sGC activator BAY 60-2770 (Bayer AG,
Wuppertal, Germany) in cumulatively increasing concentrations (10~!! to 10~° mol/L,
3 min each). To obtain the time-response curve, L-NAME-treated Ang II pre-constricted DVR
were treated with a bolus of 107 mol/L BAY 60-2770 or a corresponding amount of DMSO
(solvent control) and the changes in vessel diameters were tracked over a period of 10 min.
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4.6.2. Human DVR

To check vessel viability and simultaneously pre-constrict the DVR, Ang Il was applied
in increasing concentrations (1072 to 10~° mol/L, 2 min each). After reaching a stable
constriction, BAY 60-2770 (10~ mol/L) was applied and the changes in the diameter were
tracked over a period of 10 min.

4.6.3. Effect of Hypoxia on the NO System

To investigate how hypoxia influences the NO system, DVR were incubated in an
environment with either 0.1% Oz (hypoxia) or 20.9% O, (normoxia) for 30 min. Hypoxic
conditions were achieved using a hypoxia chamber (H35 hypoxystation, Don Whitley
Scientific Ltd., West Yorkshire, UK). After a re-oxygenation period of 10 min, Ang II
concentration-responses (10712 t0 10~® mol /L, 2 min each) were measured. In an additional
series of experiments, ACh was applied (107! to 10~* mol/L, 3 min each) after pre-
constriction with Ang II (107 mol/L) to obtain the concentration-response for ACh in
normoxic and hypoxic DVR. Sildenafil was applied as bolus ( 10-7 mol/L) after H/R and
pre-constriction with Ang IT (10~® mol/L). Changes in vessel diameters were tracked over
a period of 10 min.

The NO donor SNP was used to test the natural stimulation of sGC. The concentration—
response was measured after L-NAME (10~* mol/L) pre-treatment and Ang I1(10~® mol /L)
pre-constriction. Furthermore, the time response to bolus application of SNP (1072 mol/L)
was measured in normoxic and hypoxic DVR. Time-responses to the sGC activator BAY 60-
2770 were measured after Ang II (10~® mol/L) pre—constriction and L-NAME (10~ mol/L)
pre-treatment in DVR after H/R or normoxia.

4.7. Statistics

Mean and standard error of the mean (SEM) were calculated using GraphPad
Prism 9.3.1 (GraphPad software, San Diego, CA, USA). Data were tested for normal distri-
bution using the Shapiro-Wilk test. Although most data were normally distributed, we
used nonparametric statistical tests in this study as they provide the most robust testing.
Differences between concentration- or time-dependent changes in vascular diameters were
tested by Brunner test for repeated measurements, provided by the “R” project, which
is a nonparametric counterpart of the two-way ANOVA [45]. Differences between initial
diameters were tested by using the Mann-Whitney test for independent measurements.
The effect of L-NAME on vascular diameters was tested using the Wilcoxon test for depen-
dent measurements (GraphPad Prism 9.3.1). Differences were assumed to be significant if
p-values were <0.05.
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Background and Purpose: Generation of cGMP via NO-sensitive soluble guanylyl
cyclase (sGC) has been implicated in the regulation of renal functions. Chronic kidney
disease (CKD) is associated with decreased NO bioavailability, increased oxidative
stress and oxidation of sGC to its haem-free form, apo-sGC. Apo-sGC cannot be
activated by NO, resulting in impaired cGMP signalling that is associated with chronic
kidney disease progression. We hypothesised that sGC activators, which activate
apo-sGC independently of NO, increase renal cGMP production under conditions of
oxidative stress, thereby improving renal blood flow (RBF) and kidney function.
Experimental Approach: Two novel sGC activators, runcaciguat and BAY-543, were
tested on murine kidney. We measured ¢cGMP levels in real time in kidney slices of
cGMP sensor mice, vasodilation of pre-constricted glomerular arterioles and RBF in
isolated perfused kidneys. Experiments were performed at baseline conditions, under
L-NAME-induced NO deficiency, and in the presence of oxidative stress induced by
oDQ.

Key Results: Mouse glomeruli showed NO-induced cGMP increases. Under baseline
conditions, sGC activator did not alter glomerular ¢cGMP concentration or
NO-induced ¢cGMP generation. In the presence of ODQ, NO-induced glomerular
cGMP signals were markedly reduced, whereas sGC activator induced strong
c¢GMP increases. L-NAME and ODQ pretreated isolated glomerular arterioles were
strongly dilated by sGC activator. sGC activator also increased ¢cGMP and RBF in
ODQ-perfused kidneys.

Conclusion and Implication: sGC activators increase glomerular cGMP, dilate glomer-
ular arterioles and improve RBF under disease-relevant oxidative stress conditions.
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1 | INTRODUCTION

Chronic hypertension leads to end-organ damage, which especially
affects blood vessels and kidneys. End-organ damage goes along with
gradual increase in proteinuria, impaired kidney function including
reduced glomerular filtration rate (GFR) and the development of
chronic kidney disease (CKD) (Griffin, 2017). Persisting chronic kidney
disease often results in end-stage renal disease and ultimately the
need for a kidney transplant {Brenner et al, 2001; Coresh, 2017).
Currently, the first-line management of chronic kidney disease
consists of inhibiting the renin-angiotensin-ald one system,
which is known to play a pivotal role in chronic kidney disease devel-
opment {Siragy & Carey, 2010). Although therapies inducing reduction
of systemic blood pressure (BP) have shown beneficial effects on
kidney function in patients with renal disease, these effects are not
fully maintained in chronic therapy (Breyer & Susztak, 2016) or in
patients with type-2-diabetes and advanced end-stage renal disease
(Schievink et al, 2016). Recently, dium-glucose-c porter
2 (SGLT2) inhibitors which are approved for the treatment of type-
2-diabetes, have been demonstrated to prevent GFR decline in
chronic kidney disease patients (Lin et al., 2019; Muskiet et al., 2017).
However, despite reduction of cardiovascular risk by SGLT2 inhibitors
in chronic kidney disease patients (Briasoulis et al., 2018; Vallon &
Thomson, 2017), an initial GFR decrease under SGLT2 inhibitors was
reported (Sugiyama et al, 2020). Thus, there is still a need for new
chronic kidney disease therapies with a different molecular mode of
action, which can overcome limitations of currently used drugs.

The ¢cGMP signalling system is a central regulator of cardiovascu-
lar homeostasis and has great potential as a target for new effective
pharmacological therapies. Recent studies illustrated that genetic
variants in components of this pathway significantly influence BP and
the risk of cardiovascular and renal disease (Emdin et al, 2018;
Erdmann et al., 2013; International Consortium for Blood Pressure,
Ehret et al,, 2011; Maass et al., 2015). The soluble guanylyl cyclase
(sGC) generates cGMP upon activation by NO. An impairment of the
NO/sGC/cGMP pathway and a decline in cGMP contributes to the
development vascular dysfunction. Enhanced NO signalling also was
associated with a higher GFR as determined via cystatin C and
creatinine (Krishnan et al,, 2018; Ott et al, 2012). Genetic variants of

Therefore, sGC activators represent a promising class of drugs for chronic kidney
LINKED ARTICLES: This article is part of a themed issue on ¢cGMP Signalling in Cell

Growth and Survival. To view the other articles in this section visit http://onlinelibrary.
wiley.com/doi/10.1111/bphv179.11/issuetoc

cGMP imaging, glomerular arterioles, GC, NO, renal blood flow, sGC activators, vasodilation

sGC and c¢cGMP-dependent protein kinase type |, a downstream
effector of sGC, are causally associated with altered vascular structure
and remodelling, and sGC gain of function is associated with a higher
GFR and lower risk for chronic kidney disease (Emdin et al., 2018).
Therefore, sGC-enhancing drugs might be beneficial for treating
chronic kidney disease patients.

Recent studies indicated that oxidative stress, which is triggered
by comorbidities in chronic kidney disease, like hypertension, diabetes
or obesity, could be one of the drivers of kidney function decline in
chronic kidney disease (Coppolino et al, 2018; Samarghandian
et al, 2017; Sinha & Dabla, 2015; Su et al., 2019). Oxidative stress is
leading to sGC oxidation and ultimately the loss of its haem group,
resulting in the formation of haem-free apo-sGC. Apo-sGC can no
longer bind and be stimulated by the endogenous ligand NO (Stasch
et al,, 2015). Thus, oxidative stress disrupts NO/sGC/cGMP signalling
and, thereby, counteracts physiological regulation of kidney function
by NO. sGC activators are small molecules that activate sGC in a
haem- and NO-independent manner and, thus, have the potential to
restore sGC/cGMP signalling under conditions of oxidative stress.
Runcaciguat is a novel potent and selective sGC activator, which
activates apo-sGC in vitro, ex vivo and in vivo (Hahn, 2018) and has
great potential to prevent the decline of kidney function {Benardeau
et al,, 2020; Hahn et al,, 2021). However, the potential kidney-specific
mechanisms behind the renoprotective effects of runcaciguat are not
well characterised. Therefore, we aimed to investigate where and
under what conditions runcaciguat and its close analogue BAY-543
(Rihle et al., 2020) induce cGMP production in the kidney and how
these sGC activators influence the diameter of isolated gk L
arterioles as well as renal blood flow (RBF) in isolated perfused whole
kidney preparations.

Our data show that sGC activators increase the glomerular cGMP
concentration under oxidative stress conditions. Moreover, sGC
activators induce dilation of pre-constricted glomerular afferent and
efferent arterioles in the absence of NO and presence of oxidative
stress and they significantly improve RBF under oxidative stress
conditions. These findings show that sGC activators have direct effects
on the renal vasculature and counteract the oxidative stress-induced
decline in RBF. Thus, sGC activators could represent a new therapeutic
approach for the treatment of chronic kidney disease patients.
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2 | METHODS

2.1 | Materials
The sGC activator runcaciguat (BAY 1101042) (Hahn, 2018; Hahn
et al, 2021) and its analogue BAY-543 (Rihle et al, 2020) were
synthesised by Bayer AG (Wuppertal, Germany) and dissolved in
DMSO (Sigma-Aldrich, Darmstadt, Germany). Structurally, runcaciguat
and BAY-543 are closely related, differing only in one side group
(Figure S1). In the previous studies cited above, their ECs, to activate
purified sGC {11 nM for both compounds) and their ability to dilate
pre-contracted rabbit arteries ex vivo (ICs of 199 and 75 nM for
runcaciguat and BAY-543, respectively) were found to be very similar.
The sGC oxidant 1H-[1,2,4]oxadiazolo[4,3-ajquinoxaline-1-one
(ODQ) was from Axxora (Ann Arbor, MI, USA; real-time cGMP imag-
ing) or Sigma-Aldrich (all other experiments). Atrial natriuretic peptide
(ANP) was from Tocris (Minneapolis, MN, USA), angi in Il (Ang 1)
and N-nitroarginine methyl ester (L-NAME) from Sigma-Aldrich, and
the L- and N-type cakium channel blocker cilnidipine from Cayman
Chemical (Ann Arbor, MI, USA). The NO donor diethylamine
NONOate (DEA/NO) was from Axxora. (DEA/NO) was stored in
100 mM stock solutions in NaOH (10 mM) and diluted in perfusion
buffer immediately before application. Due to its short half-life time
{=~16 min at room temperature and pH 7.4), DEA/NO is well-suited to
induce fast, transient cGMP increases during real-time cGMP imaging
experiments. For analysis of isolated glomerular arterioles and
perfused kidneys, the NO-releasing compound S-nitroso-N-
acetylpenicillamine (SNAP; Cayman Chemical) was preferred as it has
slower kinetics of NO release (several hours, varies between tissues)
as compared with DEA/NO which ensures sustained continuous NO
release at 37°C in these experiments.

2.2 | Animals

In the present study, we used mice, because they are amenable to
genetic modifications and murine kidneys represent a good model
to analyse renal function in mammals. All animal procedures were
performed in accordance with the Directive 2010/63/EU, the German
Tierschutz-Versuchstierverordnung and the local authorities in
Tdbingen, Berlin and Regensburg. Animal studies are reported in
compliance with the ARRIVE guidelines (Percie du Sert et al., 2020)
and with the recommendations made by the British Journal of
Pharmacology (Lilley et al., 2020). Mice were housed in groups of up
to eight animals in open type |ll cages at 22°C and 50%-60% humidity
ina 12 h light/12 h dark cycle with access to standard rodent chow
{ssniff; Soest, Germany) and tap water ad libitum.

For real-time ¢cGMP imaging, 8- to 18-week-old R26-CAG-
cGiS00{L1) mice (Thunemann et al, 2013} of either sex on a
C57BL/6N genetic background were used. Genotyping of these
animals was performed by PCR analysis of ear biopsy DNA using
the following primers: P1 (CTCTGCTGCCTCCTGGCTTCT), P2
(CGAGGCGGATCACAAGCAATA) and P3 (TCAATGGGCGGGGG

TCGTT). These primers amplify a 330 base pair fragment of the
wildtype allele {(P1 and P2) and a 250 base pair fragment of the
transgene (P1 and P3). These mice were killed with CO, followed
by cervical dislocation.

Other experiments were performed with C57BL/6N mice (RRID:
IMSR_CRL:027; Charles River, Wilmington, MA, USA) at an age of
12-16 weeks. Only male mice were used for these studies to exclude
sex-specific variation of arteriole diameters and RBF. If not stated
otherwise, experimental animals were killed by cervical dislocation.

23 | Preparation of kidney slices

For the preparation of acute tissue slices, kidneys were dissected from
R26-CAG-cGiS00(L1) mice, and the renal capsule was carefully
removed in ice-cold carbogen-gassed Ringer buffer {127.0 mM NaCl,
25 mM KCl 05 mM MgCh, 1.1 mM CaCl,, 1.1 mM NaH,PO,,
260 mM NaHCO,, 200 mM p-glucose). The pH was adjusted by
continuous gassing with carbogen. Kidneys were sectioned with a
vibratome (VT1200, Leica, Buffalo Grove, IL. USA) to a thickness of
700 pm. Whole kidneys and slices were incubated in ice-cold
carbogen-gassed Ringer buffer for up to 8 h until real-time ¢cGMP
imaging was performed as described below.

24 | Real-time cGMP imaging

Forster resonance energy transfer (FRET)VcGMP imaging was
performed as described previously (Thunemann et al, 2013). The
set-up consisted of an upright Examiner.Z1 microscope (Zeiss,
Oberkochen, Gemany), a Yokogawa CSU-X1 spinning disc confocal
scanner (Yokogawa Denki, Musashino, Japan), three diode
lasers (445, 488 and 561 nm), three water immersion objectives
{W N-ACHROMAT 10/0.3, W Plan-APOCHROMAT 20/1.0 DIC
[UV] VIS-IR, W Plan-APOCHROMAT 40/1.0 DIC VIS-IR; all from
Zeiss) and one air objective (EC Plan-NEOFLUAR 2.5/0.085; Zeiss).
Yellow fluorescent protein (YFP) fluorescence of the cGMP sensor
¢Gi500 was detected with a CCD camera (Spot Pursuit, Diagnostic
Instruments, Sterling Heights, MI, USA) through a 525/50 nm
emission filter after excitation with the 488nm laser. For
FRET-based imaging, the donor fluorophore, cyan fluorescent
protein {CFP), was excited with the 445 nm laser, and a Dual-View
beam splitter {Photometrics, Tucson, AZ, USA} with 505 nm dichroic
mirror, 470/24 nm and 535/30 nm emission filters was used for
simultaneous acquisition of CFP and YFP emission. Signals were
recorded with an electron-multiplying charged-coupled device
(EM-CCD) camera (QuantEM 512SC, Photometrics) at a frame rate
of 0.2 Hz and an exposure time of 0.2 s. The system was controlled
by VisiView 4.0.0.12 {Visitron Systems, Puchheim, Germany). Kidney
slices were continuously superfused with carbogen-gassed Ringer
buffer with or without drugs at a flow rate of 1 ml/min at room
temperature. The custom-built superfusion system consisted of an
fast protein liquid chromatography pump (Pharmacia P-500, GE
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Healthcare, Chicago, IL, USA), fast protein liquid chromatography
injection valves (Pharmacia V-7, GE Healthcare), a magnetic platform
{Warner Instruments, Hamden, CT, USA), a superfusion chamber
{RC-26, Warner Instruments), a mesh-assisted Slice Hold-Down
(SHD-26H/10, Warner Instruments) and sample loops of different
sizes (7 ml for ODQ; 2 ml for other drugs). To ensure that drug
exposure was comparable between different tissue slices, the same
drug volumes were applied for the same time span. A vacuum pump
with adjustable vacuum (Laboport N86, KNF Neuberger, Hamburg,
Germany) was connected to the system to constantly remove
excess buffer.

2.5 | Image acquisition and post-processing

Online image acquisition was performed with VisiView 4.00.12
(Visitron Systems, Puchheim, Germany), and offline post-processing
and analysis were performed with Fiji software (RRID:SCR_002285)
(Rueden et al., 2017; Schindelin et al., 2012). Images were aligned in
x/y dimension with the Fiji plugin MultiStackReg v1.45 (RRID:
SCR_016098). For further evaluation, Excel (RRID:SCR_016137;
Office 16; Microsoft, Redmond, WA, USA) and Origin 2019 (RRID:
SCR_014212; OriginLab, Northampton, MA, USA) were used. CFP
and YFP emission were used to calculate the CFP/YFP ratio. The
relative CFP/YFP ratio change (black traces in the respective graphs;
referred to as R (cGMP)), which correlates with the cGMP concentra-
tion change, was obtained by normalisation to the baseline recorded
for ~3 min at the beginning of each experiment. This normalisation is
necessary to account for variations in the basal fluorescence intensity
between the preparations. For peak evaluation, R (cGMP) traces were
smoothed according to the Savitzky-Golay filtering method (smooth-
ing window = 30 points) and the Peak Analyzer tool of Origin was
used to calculate the AUC for each signal.

2.6 | Dissection and perfusion of glomerular
arterioles

Kidneys were removed and sliced along the corticomedullary axis.
Afferent and efferent arterioles were prepared according to proce-
dures detailed by Liu and colleagues (Liu et al.,, 2012). In short, affer-
ent and efferent arterioles with attached glomeruli were isolated and
transferred into a chamber assembled on the stage of an inverted
microscope. Arterioles were perfused using a system of pipettes,
which allowed to hold and perfuse the vessels. Both, afferent and
efferent arterioles were perfused from the free end, so orthograde in
case of afferent arterioles and retrograde in case of efferent arterioles.
Perfusion pressure was 100 mmHg for afferent arterioles and
40 mmHg for efferent arterioles, and the perfusion rates were in
physiological ranges. DMEM (DMEM/F-12, Gibco, Darmstadt,
Germany) containing 0.1% BSA (Carl Roth, Karlsruhe, Gemrmany) was
used during vessel dissection. The same solution was present in the

experimental chamber, whereas the DMEM perfusion solution which
was applied to the arteriolar lumen contained 1.0% BSA.

2.7 | Protocols for perfusion of glomerular
arterioles

Arterioles were allowed to acclimatise for 10 min after establishing
the perfusion. Viability was tested by short-term application of KCI
{100 mM). Only vessels which showed full and sustained constriction
were used for subsequent experiments. Arterioles were treated for
15 min with the non-specific NOS inhibitor L-NAME to induce NO
deficiency, or for 10 min with the sGC-oxidising substance ODQ and
vehicle (DMSO), respectively. Ang Il, which belongs to the strongest
vasoconstrictors particuladly in the renal vasculature (Patzak
et al,, 2001), was applied to pre-constrict the vessels. Here, Ang Il was
applied in ascending concentrations {2 min for each concentration).
After application of the highest Ang Il concentration, cumulative
concentrations of runcaciguat or of the known vasodilators NO (in the
form of SNAP; sGC-dependent) and cilnidipine (sGC-independent)
were administered to the Ang ll-constricted arteries for 2 min each.
In the ‘L-NAME + vehicle' group, DMSO was applied instead of
runcaciguat in corresponding concentrations. To analyse the time
course of runcaciguat-induced vasodilation, arterioles pretreated with
L-NAME and pre-constricted with Ang Il were subjected to a
prolonged 10 min treatment with runcaciguat or vehicle.

2.8 | Measurement of arteriole diameters

Perfused arterioles were continuously displayed on the computer
screen using a video camera and the respective software
(Moticam 2.0, Motic Asia, Kowloon, Hong Kong). Luminal diameters
served for the estimation of arteriolar tone and reactivity. For the
assessment of concentration-response relationships, pictures were
recorded at a frame rate of 1 Hz. Then, the vessel diameter in five
pictures was averaged in steady state conditions for each concen-
tration effect to limit the influence of movement artefacts. For
long-term investigations of runcaciguat action (10 min), pictures
were recorded at a frame rate of 0.1 Hz. Either way, the arteriolar
diameters were measured using ImageJ2 (RRID:SCR_003070)
(Rueden et al, 2017). For analysis of the Ang Il concentration-
response relationship, arteriolar diameters were normalised to the
initial diameter after L-NAME/ODQ/vehicle and before Ang Il appli-
cation. For evaluation of the dilation of pre-constricted arterioles
induced by runcaciguat, SNAP and cilnidipi diameter chang
were normalised to the total constriction induced by L-NAME/
ODQ/vehicle + Ang Il. Both nomalisation procedures are typically
applied in vessel physiology to limit the influence of intra- and

inter-individual variations of arteriole diameters and thereby focus
the evaluation on pharmacological effects. The part of the vessel
with the strongest response was chosen for analysis.
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2.9 | Preparation and analysis of isolated perfused
whole kidneys

Mice were anaesthetised with an intraperitoneal injection of xylazine
hydrochloride (10 mg-kg ', Serumwerk Bernburg, Bernburg, Ger-
many) and ketamine HCI (100 mgkg '; betapharm Arzneimittel,
Augsburg, Germany) and placed on a warmed table. Isolation and
perfusion of mouse kidneys followed a published method {Schweda
et al,, 2003). In short, the abdominal cavity was opened by a midline
incision, and the aorta was clamped distal to the right renal artery.
The mesenteric artery was ligated and a metal perfusion cannula
{0.8 mm outer diameter) was inserted into the abdominal aorta. Then,
the aorta was ligated proximal to the right renal artery and perfusion
was started in situ with an initial flow rate of 1 ml-min~'. The right
kidney was excised, placed in a tempered humid chamber and per-
fused at constant pressure (100 mmHg). Finally, the renal vein was
cannulated (1.5 mm outer diameter polypropylene catheter). The
venous effluent was drained outside the humid chamber and col-
lected for determination of venous blood flow. The basic perfusion
medium supplied from a 37°C-tempered 200 ml-reservoir consisted
of a modified Krebs-Henseleit solution containing amino acids
(10 ml-L~* Aminoplasmal B. Braun 10%), 8.7 mM o-glucose, 0.3 mM
pyruvate, 2.0 mM t-lactate, 1.0 mM ketoglutarate, 1.0 mM L-malate
and 6.0 mM urea. The perfusate was supplemented with 60g.L !
BSA, 10 mU-L ! vasopressin 8-lysine and freshly washed human red
blood cells {10% haematocrit). Ampicillin (30 mgL Y) and fluc-
loxacillin {30 mg-L ') were added to inhibit possible bacterial growth
in the medium. To improve the functional preservation of the prepa-
ration, the perfusate was continuously dialysed against a 10-fold vol-
ume of the same composition, but lacking erythrocytes and BSA. For
oxygenation of the perfusion medium, the dialysate was gassed with
94% 02/6% CO..

2.10 | Determination of renal blood flow and
cGMP secretion

Perfusate flow from kidneys isolated as described above was
calculated by collection and gravimetric determination of the venous
effluent. After establishing a constant perfusion pressure (100 mmHg),
perfusate flow rates stabilised within 12-15 min. Stock solutions of
the indicated drugs were added to the perfusate. For evaluation, the
amount of venous effluent was normalised to the perfusate flow
under control conditions or after application of 30 yM ODQ as
indicated in the respective graphs to exclude differences in baseline
perfusion between the preparations. For determination of renal cGMP
production, venous effluent was collected over a period of 1 min
during four intervals along the study and its cGMP concentration was
determined after acetylation of samples using a cGMP enzyme immu-
noassay Kit (Cat# 581021, Cayman Chemical, Hamburg, Germany).
The cGMP secretion was calculated by multiplying ¢cGMP concentra-
tion and perfusate flow.

211 | Data and statistical analysis

The data and statistical analysis comply with the recommendations of
the British Joumal of Pharmacology on experimental design and
analysis in pharmacology (Curtis et al., 2018). Variances in group sizes
within individual comparisons are due to exclusion of defective
preparations and yields, which were lower than expected. Data are
presented as mean = SD or mean + SEM as specified in the figure
legends. P values <0.05 were considered significant Randomisation
and blinding were not applicable because the experimental setups
demanded application of substances in distinct succession. Instead,
analysis and evaluation were performed uniformly and were based
exclusively on objective parameters.

Statistical analysis was performed with Origin 2019 (OriginLab,
Northampton, MA, USA; FRET/cGMP imaging) or GraphPad PRISM 8
(RRID:SCR_002798; GraphPad Software, San Diego, CA, USA;
analysis of isolated perfused kidneys). For not normally distributed
data sets, statistical differences were analysed non-parametrically by
Mann-Whitney U-test. In case of normally distributed data, statistical
differences were analysed parametrically by Student's t-test (equal
variances) or Welch's t-test (unequal variances). The DEA/NO
concentration-response curve was calculated with the sigmoidal
‘DoseResp’ fitting function of origin.

Time- and concentration-dependent differences of diameter
changes of arterioles were statistically assessed with the free soft-
ware R (RRID:SCR_001905; version 3.6.3) (R Core Team, 2020) using
the Brunner test {Brunner & Langer, 1999). Sample sizes subjected to
statistical analysis were at least five animals per group (n = 5), with
n = number of independent values. This test is a non-parametric
counterpart of the two-factorial ANOVA and tests the main
hypothesis of a global difference between two groups. It is
appropriate for the comparison of serial repeated measurements
without normal distribution.

212 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to
corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-
OGY http://www guidetopharmacology.org and are permanently
archived in the Concise Guide to PHARMACOLOGY 2019/20
{Alexander et al., 2019).

3 | RESULTS

3.1 | Renalglomeruli express a functional
NO/cGMP signalling pathway

To measure the spatiotemporal ¢cGMP dynamics in the kidney, we
used transgenic cGMP sensor mice expressing the FRET-based cGMP
indicator ¢Gi500 {(Russwurm et al, 2007; Thunemann et al., 2013).
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NO-induced cGMP generation in real time in glomeruli of kidney slices. FRET-based ¢cGMP imaging was performed with acute

kidney slices from R26-CAG-cGiS00(L1) mice. (a) Schematic representation and representative images of kidney slices. Yellow colour represents
yellow fluorescent protein (YFP} fluorescence of the cGMP sensor ¢GiS00 in renal cells. White arrowheads point towards some glomeruli. Dashed
rectangle indicates the magnified region shown to the right. (b) Representative real-time FRET/cGMP measurement of a kidney slice. During
recording, increasing concentrations of diethylamine NONOate (DEA/NO) or 100 nM atrial natriuretic peptide (ANP) were applied to the slice for
2 min each. Before the second last stimulation with 10 pM DEA/NO, slices were pre-incubated for 5 min with ODQ {50 puM). Black trace
represents the cyan fluorescent protein {CFP)/YFP ratio R, which indicates cGMP concentration changes. The white arrowhead points towards
the glomerulus measured in this experiment. (¢} Concentration-response curve (solid grey line) based on the relative R (cGMP) changes induced by
increasing concentrations of DEA/NO (n = 19). The dashed red line indicates EC . (d) Statistical analysis was performed with the relative

R {cGMP} changes induced by ANP {100 nM) in the presence and absence of ODQ {n = 16). Data represent mean + SEM. COR, renal cortex;

MED, renal medulla. Scale bars, 200 pm

Specifically, we used the R26-CAG-cGi500{L1) mouse line that
expresses the cGMP sensor globally in all tissues. By FRET imaging of
live kidney slices ex vivo, cGMP signals were recorded in real time in
response to the endogenous sGC ligand NO and in response to the
sGC activator BAY-543 alone and in combination with NO. The
sGC-oxidising agent ODQ was used to mimic chronic kidney disease-
related oxidative stress conditions. Slices were kept in carbogen-
gassed Ringer buffer during preparation and measurements to keep
the tissue vital.

Visual inspection of the sensor-derived fluorescence confirmed
that the cGMP sensor was broadly expressed in the kidney of cGMP
sensor mice (Figure 1a). Note that the yellow fluorescence seen in the
photomicrographs indicates expression of the sensor protein but not
the ¢cGMP concentration. The latter is determined by ratiometric
analysis of the sensor's CFP and YFP fluorescence as described
in Section 2.5. Individual glomeruli were selected as regions of

interest and several glomeruli were averaged to quantify the cGMP
concentration in the absence and presence of various drugs.

First, we tested the capacity of renal glomeruli to generate cGMP
in response to the NO-releasing compound DEA/NO. DEA/NO
concentration-dependently increased the cGMP concentration in the
glomeruli of ¢cGMP sensor mice with an ECgy of 44+ 0.1 M
(Figure 1b,c). Application of ODQ (50 uM} slightly reduced the basal
cGMP production and, as expected, abolished NO-induced cGMP
generation (Figure 1b). As a control, atrial natriuretic peptide (ANP),
which increases ¢GMP via simulation of the particulate guanylyl
cyclase A, was applied to the kidney slices at the end of each
experiment. ANP (100 nM) potently increased glomerular ¢cGMP
levels independent of ODQ application (Figure 1bd), indicating that
sGC-independent cGMP generation was not affected by ODQ and
that the tissue was still vital at the end of each experiment. Together,
these data demonstrated the presence of a functional and oxidation-
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sGC activator-induced cGMP generation in glomeruli of ODQ-treated kidney slices. FRET-based cGMP imaging was performed in

glomeruli of kidney slices from R26-CAG-cGiS00(L1)} mice. {(a) Representative measurement of a glomerulus without ODQ application. During the
recording, diethylamine NONQate (DEA/NO; 10 pM), BAY-543 (10 pM), or a combination of both substances was applied to the slices for 2 min.
Black trace represents the cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) ratio R, which indicates cGMP concentration changes.
White arrowhead points towards the glomerulus represented in the measurement shown to the right. (b) Representative measurement of a
glomerulus with ODQ application. DEA/NO (10 uM), BAY-543 (10 uM), or a combination of both substances was applied with or without 5 min
pretreatment with ODQ (50 pM). {c) Statistical analysis was performed with the AUC of the signals. Note that negative AUC values in the
presence of ODQ might be due to reduced endogenous cGMP generation compared with baseline conditions. Data represent mean + SEM

{n = 14, 16, 14, 16, 24, 16 and 21 from left to right). Scale bars, 200 pm. *P < 05; ns., not significant

sensitive NO/sGC/cGMP signalling pathway in the glomeruli of
murine kidneys. In subsequent FRET imaging experiments, 10 pM
DEA/NO was used as a concentration that induces non-saturated
c¢GMP responses.

3.2 | The sGC activator BAY-543 increases
glomerular cGMP under oxidative stress

Next, we analysed modulation of glomerular sGC/cGMP signalling by
the sGC activator BAY-543, a close analogue of runcaciguat. As
expected from our previous results (Figure 1bc), under baseline
conditions {i.e. in the absence of ODQ), application of DEA/NO alone
reproducibly induced an increase of ¢cGMP in glomeruli {Figure 2ac).
In the absence of ODQ, application of BAY-543 did not alter the
c¢GMP concentration and did not affect NO-induced cGMP signals.
Interestingly, in the presence of ODQ, BAY-543 (10 pM) increased the
cGMP concentration to a similar extent as 10 pM DEA/NO (Figure 2b,
c). Under the same oxidative stress conditions, that is, in the presence
of ODQ, NO no longer increase ¢cGMP (Figure 2bc), consistent with

the findings reported in Figure 1b. Altogether, our data shown in Fig-
ures 1 and 2 indicated that the sGC activator BAY-543 stimulates
¢GMP production in mouse glomeruli under oxidative stress condi-
tions, which have impaired NO-induced cGMP signalling.

3.3 | Runcaciguatinduces dilation of renal
arterioles

To further explore the physiological effects of ¢GMP production
induced by sGC activators on kidney function, we assessed their
effect on the diameters of glomerular vessels in ex vivo experiments.
Afferent and efferent glomerular arterioles were isolated from mouse
kidneys, mounted on pipettes and perfused. The diameter of afferent
and efferent arterioles were measured under resting conditions and in
the presence of vasoactive agents. For both afferent and
efferent arterioles, three groups of vessels were randomly assigned
as ‘L-NAME + runcaciguat’, *ODQ + runcaciguat' and ‘L-NAME
+ wehicle', which correspond to the groups used for pretreatment
with L-NAME or ODQ and subsequent application of runcaciguat or
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FIGURE 3 Runcaciguat-induced dilation of angiotensin Il (Ang I} pre-constricted glomerular arterioles pretreated with L-NAME or ODQ.
Diameter changes of afferent (AA) and efferent arterioles (EA) upon application of various substances were monitored. (a) Representative

4
ement: E

sequence of an afferent arteriole di

NO g

tion was inhibited with L-NAME (10~ M) and then the afferent

arteriole was pre-constricted with mcremental concentrations of Ang 11{10~ -12 to 10 * M). The diameter change of the pre-constricted afferent
arteriole in response to runcaciguat (107 M, bolus application) was followed. (b} Images illustrate the monitored vessel during each step of the
sequence as indicated by roman numbers. Black arrows point towards the segment subjected to quantitative evaluation. The inner vessel wall in
this segment is highlighted with black lines. Black arrowhead points towards the attached glomerulus. (c, d) Resting afferent and efferent
arterioles were pretreated with L-NAME {"L-NAME + vehicle’ and ‘L-NAME + runcaciguat’ groups) or ODQ (10 * M; ‘ODQ + runcaciguat’

group) and then pre-constricted with incremental concentrations of Ang Il in presence of L-NAME or ODQ. Values are given as percent change of
the initial diameter after L-NAME or ODQ pretreatment and before Ang Il application. (e, f) Pre-constricted afferent and efferent arterioles were
treated with cumulative concentrations of runcaciguat or vehicle (DMSO). Values are given as percent of the maximal constriction induced by
Ang |l. Data represent mean + SD. In panels (c)-{f), n values are indicated in parentheses. The colour code given in panels (d)-(f) corresponds to
the experimental groups indicated in panel {(c). scale bar, 10 pm. ‘P < 0.05

vehicle. The perfusion conditions were strictly identical in these three
groups. In one set of experiments, vessels were pretreated with the
NOS inhibitor L-NAME {10 % M, 15 min} to induce NO deficiency.
Then, increasing concentrations of Ang Il were added on top of
L-NAME to pre-constrict the vessels, followed by wvehicle or
runcaciguat (‘L-NAME + vehicle’ or "L-NAME -+ runcaciguat’ group;
for an example of the experimental protocol, see Figure 3a,b). Another
set of experiments was performed in a similar manner, but vessels
were pre-incubated with ODQ (10~* M, 10 min) to mimic oxidative
stress and oxidise the haem group of sGC (*ODQ + runcaciguat’
group). Ang |l concentration-dependently decreased the vessel diame-
ter by approximately 60% of the initial diameter at concentrations
between 10 %M and 10 M in both afferent (Figure 3c) and efferent

arterioles (Figure 3d). The absolute afferent and efferent arteriole
diameters under resting conditions as well as before and after Ang Il
application were similar throughout the three different groups
(Table 1). In addition, superimposition of the Ang Il concentration-
response curves produced from afferent (Figure 3c) and efferent
arterioles (Figure 3d) before application of vehicle or runcaciguat
showed similar sensitivity of the vessel preparations to Ang Il
Together, these results indicated a good reproducibility of the mea-
surements and similar initial conditions for the subsequent application
of vehicle or runcaciguat.

Addition of increasing concentrations of runcaciguat (102 M to
10% M) to the pre-constricted afferent (Figure 3e) or efferent arteri-
oles (Figure 3f) for 2 min induced strong vasodilation. ODQ pretreated
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TABLE 1 Diameters of glomerular arterioles at different time points during the experiment
Afferent arteriole diameter {(pum) Efferent arteriole diameter (um)
| n n I I n
L-NAME + vehide 77+28(n=7) 73+30(h=7 3321700=7 772140 =7) 67+16(n=7) 34217(n=7)
L-NAME + runcaciguat 91216(n=9) B86221(n=9) 322100 =9) 75212ph=12) 70215(h=12) 26220(n=12)
0DQ + runadguat 79+14(h=5) 67+07(n=5) 28+08(=5 6.6+11{n=5 62+25(n=5) 29+11(n=5)

Note: Afferent and efferent arterioles were pretreated with L-NAME (10~ M; ‘L-NAME + vehicle and ‘L-NAME -+ runcaciguat’ groups) or ODQ

{10 M; *ODQ + runcaciguat’ group) and pre-constricted with incremental concentrations of Ang Il (10~ 2-10# M). Shown are absolute diameters of
afferent and efferent arterioles under resting conditions (1), after application of L-NAME or ODQ (ll} and after addition of the highest Ang Il concentration
{I1). An example for the procedure is shown in Figure 3a. Data represent mean + SD. n values are indicated in parentheses.
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FIGURE 4 Time course of runcaciguat-induced dilation of angiotensin Il (Ang 1) pre-constricted glomerular arterioles. Glomerular arterioles
were pretreated with L-NAME {10~ M) and pre-constricted with Ang Il {10 *? to 10~ % M), as shown before. Then, runcaciguat (107 M;
‘L-NAME + runcaciguat’) or DMSO {*L-NAME -+ vehicle') were applied and diameter changes of (a) afferent arterioles and (b) efferent arteriole
were monitored over 10 min. Data represent mean + SD. n values are indicated in parentheses. The colour code givenin panel (b) corresponds to

the experimental groups indicated in panel {a). *P < 0.05

afferent arterioles were significantly more sensitive to runcaciguat
than L-NAME pretreated afferent arterioles (Figure 3e,). ODQ
pretreated efferent arterioles also showed a trend towards increased
sensitivity to runcaciguat as compared with L-NAME pretreated effer-
ent arterioles, but the difference did not reach statistical significance
{Figure 3f). The dilating effect of runcaciguat on L-NAME pretreated
vessels started at significantly lower concentrations in efferent arteri-
oles than in afferent arterioles but was not significantly different
between ODQ pretreated efferent and afferent arterioles (Figure 3e,
f). These observations suggested a greater sensitivity for sGC activa-
tor of efferent over afferent arterioles under NO deficiency. The
highest applied dose of runcaciguat (10 * M) induced significantly
stronger dilation of L-NAME pretreated efferent than afferent arteri-
oles {efferent: 110%, afferent: 49%, Figure 3e.f). Maximal dilatations
did not differ significantly in vessels pretreated with ODQ (efferent:

91%, afferent 83%, Figure 3ef). The dilation induced by runcaciguat
{10 * M) in the presence of ODQ was comparable with the maximal
dilation that could be achieved by application of the NO donor SNAP
or the L- and N-type calcium channel blocker cilnidipine (Figure S2).
Further experiments showed that SNAP-induced but not cilnidipine-
induced dilation was efficiently blocked by ODQ (Figure S2).
Together, these results indicated that runcaciguat is a potent vasodila-
tor of glomerular arterioles under conditions of NO deficiency and
oxidative stress.

To further evaluate the time course of sGC activator action, we
evaluated how afferent and efferent arteriole diameters changed
during prolonged 10 min bolus applications of runcaciguat (10~7 M).
In these experiments, arterioles were pretreated with L-NAME
(10 % M) and pre-constricted with Ang 11 {10~ **-10* M, not shown).
Again, the diameters before application of runcaciguat or vehicle were
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similar (data not shown). The maximum vasodilatation achieved 34 | Runcaciguatincreases cGMP and improves

10 min after application of runcaciguat was 50% of constriction in RBF in perfused mouse kidneys

afferent arterioles (Figure 4a) and 60% in efferent arterioles

{Figure 4b). Maximal vasodilation and kinetics of diameter changes To complement the ¢cGMP imaging data generated in kidney slices

were not significantly different between afferent and efferent (Figures 1 and 2) and vascular reactivity measurements with isolated

arterioles. glomerular arterioles (Figures 3 and 4), we went on to analyse RBF
Overall, these data indicated a reduction in renal resistance trig- and ¢GMP production under close-to-native conditions in whole

gered by the sGC activator runcaciguat under conditions of oxidative kidneys. To do so, mouse kidneys were isolated and perfused at

stress and NO deficiency. At the tested concentration range, constant pressure {100 mmHg) as described previously (Schweda

runcaciguat induced dilation of afferent and efferent arterioles. The et al, 2003). Once perfusion of the kidney had stabilised (i.e. after

vasodilating effect of runcaciguat was stronger after pretreatment 20 min perfusion), ODQ was infused to mimic NO deficiency and
with ODQ than with L-NAME, suggesting that runcaciguat activates oxidative stress as observed in chronic kidney disease patients

the sGC more potently under conditions of oxidative stress. (Elshamaa et al., 2011; Martens & Edwards, 2011; Stasch et al., 2015).
(a)  Effect of runcaciguat on RBF (b)  Effect of runcaciguat on
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FIGURE 5 Renal blood flow (RBF) and cGMP secretion in perfused mouse kidneys. Kidneys were isolated and perfused at constant pressure
{100 mmHg). {a) RBF was analysed by measuring the amount of venous effluent. After stabilization of perfusion (i.e. after 20 min), ODQ (30 pM)
followed by incremental concentrations of runcaciguat {(0.01,0.1, 1 and 10 pM) and S-nitroso- N-acetylpenicillamine (SNAP; 10 pM) were applied
sequentially, while the venous effluent was continuously quantified. Filled circles indicate time points at which the cGMP concentration in the
venous effluent was determined (n = 6). (b) The cGMP concentration in the venous effluent was determined via enzyme immunoassay and
multiplied by the perfusate flow to determine cGMP secretion as a measure of intrarenal cGMP formation. (c, d) Similarly, the effects of SNAP
{10 pMy) in the absence or presence of ODQ (30 puM) on RBF (¢} and on renal cGMP secretion (d) were determined (n = 5). Data represent mean
+ SD. *P < 0.05; n.s., not significant; ctrl, control
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0ODQ (30 uM) strongly reduced RBF to approximately 50% of control
(Figure 5a). In line with this finding, ODQ ako reduced the cGMP
content in the venous effluent as compared with baseline conditions
{Figure 5b). Reduction of RBF by ODQ plateaued roughly 10 min after
the start of infusion. Under these oxidative stress conditions,
runcaciguat (10 pM) increased the ¢cGMP content from 1.21 £ 0.6 to
13.1+0.7 pmol-min * per g kidney (Figure 5b). At the same time,
runcaciguat dose-dependently increased RBF to a level above the
baseline recorded in the absence of ODQ at the beginning of the
experiment (Figure 5a). After this increase in RBF by runcaciguat,
addition of the NO donor SNAP did not significantly change ¢cGMP
production (13.1+ 0.7 versus 15.3+ 1.2 pmolmin-! per g kidney)
(Figure 5b) and did not further change RBF (Figure 5a). In addition, we
analysed the effects of SNAP on RBF and cGMP secretion under basal
versus oxidative stress conditions (Figure 5cd). Under basal condi-
tions, SNAP potently increased renal perfusion and cGMP content,
while it failed to do so in the presence of ODQ. In summary, these
data showed that in the presence of ODQ mimicking chronic kidney
disease-related oxidative stress conditions, runcaciguat increases the
renal ¢cGMP concentration and RBF in perfused mouse kidneys,
whereas NO is no longer able to do so under these conditions.

4 | DISCUSSION

This study showed that sGC activators increase the glomerular cGMP
concentration, induce dilation of pre-constricted glomerular arterioles
and improve RBF under conditions of NO deficiency and oxidative
stress. It is known that oxidation of sGC from its native to the haem-
free form, apo-sGC, prevents binding of NO and thereby shuts down
the NO/sGC/cGMP signalling pathway (Stasch et al,, 2015). This leads
to reduced production of cGMP, which is important for the regulation
of body homeostasis and kidney function (Krishnan et al., 2018;
Wang-Rosenke et al., 2008). As sGC activators act in an NO- and
haem-independent manner, these compounds might be able to
restore cGMP signalling under pathophysiological conditions involving
oxidative stress. Because chronic kidney disease is associated with
oxidative stress (Matsuda & Shimomura, 2013; Moon & Won, 2017)
and oxidation of sGC might be a critical driver of chronic kidney
disease, sGC activators represent a promising new option for chronic
kidney disease treatment. However, the mode of action of sGC activa-
tors in renal tissue and specifically their impact on renal blood vessels
is poorly understood.

To explore the spatiotemporal dynamics of NO- and sGC
activator-induced cGMP signals in the kidney, we performed real-time
c¢GMP imaging in kidney slices of transgenic cGMP sensor mice. To
our knowledge, this is the first demonstration of ¢cGMP signals in live
kidney tissue. We showed that NO and sGC activator increase the
cGMP concentration in glomeruli in the absence and presence of oxi-
dative stress, respectively. Furthermore, runcaciguat induced dilation
of glomerular arterioles and improved RBF under di rel t

types, the combined results strongly suggest that runcaciguat acts on
apo-sGC in vascular smooth muscle cells of glomerular arterioles,
leading to an increase of cGMP, activation of ¢GMP-dependent
protein kinase type | and vasodilation. This model is consistent with
the cellular distribution of sGC in the kidney. Using a highly specific
antibody against the i1 subunit of sGC, expression of the protein was
detected in renal vascular cells, including glomerular arterioles (Theilig
et al., 2001). Expression data, however, do not show the functionality
of sGC in a specific compartment. It is well known that enzyme activ-
ity is regulated by post-translational mechanisms including, in the case
of sGC, protein oxidation. Our cGMP imaging data link sGC expres-
sion in glomeruli with respective enzyme activity in the absence and
presence of oxidative stress. Because the R26-CAG-cGiS00(L1) mice
used in this study express the cGMP sensor in all cell types, we cannot
exclude the possibility that cGMP signals measured in our FRET imag-
ing experiments were also derived from non-vascular smooth muscle
cells that express sGC, such as interstitial fibroblasts (Theilig
et al., 2001). However, it is unlikely that these cells were involved in
sGC activator-induced dilation of renal arterioles. To analyse which
specific renal cell types are capable of generating cGMP in response
to NO and sGC activators, additional experiments could be performed
using transgenic mice with cell type-specific expression of the cGMP
sensor (Thunemann et al., 2013). Furthermore, it would be interesting
to analyse the effects of sGC activators on cGMP signals in chronic
kidney disease kidneys.

Real-time ¢GMP imaging illustrated that BAY-543 induces cGMP
generation in glomeruli specifically in the presence of oxidative stress.
This finding complements previous in vitro experiments showing that
apo-sGC has a higher sensitivity for sGC activators than native sGC
{Schmidt et al., 2009). To further dissect the mechanism of sGC
activator action on kidney function, we investigated the effects of
runcaciguat on the diameter of murine glomerular afferent and effer-
ent arteries. It is known that pre-glomerular resistance and glomerular
haemodynamics contribute to the control of the murine GFR (Patzak
et al., 2004). Under pathological conditions, such as hypertension and
type-2-diabetes, an increase in vascular resistance provokes a reduc-
tion of vascular diameter and arterial remodelling in the kidney, lead-
ing to impaired vascular reactivity and kidney perfusion (Polichnowski
et al., 2013; Touyz et al., 2018). In the present study, we showed that
runcaciguat improves vascular reactivity of pre-constricted murine
glomerular afferent and efferent arterioles under conditions of NO
deficiency and oxidative stress. Runcaciguat induced a concentration-
dependent relaxation of pre-constricted glomerular arterioles with an
apparent higher sensitivity for ODQ ower L-NAME pretreated

arterioles. This finding is ¢ inant action of sGC
activator under oxidative stress as measured in our ¢cGMP imaging
experiments with kidney slices. Interestingly, the stronger action of
runcaciguat in efferent compared with afferent arterioles indicate an
influence on the GFR. This must be investigated in further experi-

ments, for example, via cannulation of the ureter during experiments

t with a pred

on isolated perfused kidneys.

conditions of oxidative stress and NO depletion. Although the present
study did not experimentally distinguish between specific renal cell

To validate the ¢GMP imaging and vascular reactivity data
obtained in kidney slices and isolated arterioles in a more physiological
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setting, we evaluated the effects of runcaciguat in perfused whole
mouse kidneys. In order to mimic chronic kidney disease-related
oxidative stress, ODQ was infused. ODQ rapidly induced stable
reduction of kidney perfusion, which could be reversed by runcaciguat
in a concentration-dependent manner. In parallel, ODQ induced a
significant reduction of the renal cGMP content, which was restored
by runcaciguat. At the same time, the improvement of kidney perfu-
sion and ¢cGMP secretion by the NO donor SNAP was completely
abolished by ODQ. These data indicate that in contrast to NO, run-
caciguat increases cGMP levels and RBF under oxidative stress condi-
tions. Together with the experiments in isolated renal arterioles, these
findings strongly suggest a beneficial effect of sGC activators on the
perfusion of diseased kidneys by dilating glomerular arterioles under
conditions of NO deficiency and oxidative stress. Our study was per-
formed with mouse kidneys, but it is likely that sGC activators have
similar effects on human kidney perfusion. Indeed, a recent study
reported that the sGC activator BAY 60-2770 relaxes human intra-
renal arteries (Frees et al., 2020}, indicating that the murine kidney is a
suitable model for preclinical studies.

Within the scope of this study, the effect of sGC activators on
the renal vasculature was analysed in detail. In addition to their
vasodilative effects, sGC activators may also be renoprotective via
antifibrotic, antiproliferative and anti-inflammatory effects on vascular
and non-vascular compartments of the kidney. In this context, it is
interesting to note that the sGC activator Bl 703704 {Boustany-Kari
et al, 2016) and the sGC stimulator praliciguat (Liu et al., 2020)
inhibited the progression of diabetic nephropathy in obese ZSF1 rats
in doses that did not alter BP, perhaps via suppression of inflamma-
tion and apoptosis in tubular cells (Liu et al, 2020). sGC activators
may inhibit glomerular remodelling also via direct effects on vascular
smooth muscle cells independent of vasodilation. It is well known that
NO/sGC/cGMP signalling in vascular smooth muscle cells regulates
vascular plasticity and remodelling during diseases like atherosclerosis
(Lehners et al,, 2018).

In summary, our results indicate that sGC activators increase
c¢GMP production in vascular smooth muscle cells in glomerular
arterioles and, thereby, improve kidney perfusion under disease-
relevant conditions of oxidative stress and NO depletion. The unique
selectivity of sGC activators for oxidised apo-sGC has great potential
to limit off-target effects on healthy tissue, where sGC is mainly
present in its native reduced form (Sharkovska et al., 2010). Most of
the comorbidities in chronic kidney disease are associated with
increased oxidative stress burden, leading to endothelial dysfunction
with low NO production as well as NO-unresponsive apo-sGC. It is an
intriguing concept that sGC activators could overcome the pathophys-
iological blockade of the endogenous NO/sGC/cGMP in renal tissue.
Thus, sGC activators like runcaciguat could provide a novel and
effective chronic kidney disease treatment
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