
 

 

 

D I S S E R T A T I O N 
 

 

zur Erlangung des akademischen Grades 

Doktorin der Naturwissenschaften (Dr. rer. nat.) 

 

 

 

Computational and Neural Mechanisms of Human 

Exploration-Exploitation Behavior 
 

 

 

vorgelegt von 

Liliana Polanski, M.Sc. 
 

 

am Fachbereich Erziehungswissenschaft und Psychologie 

der Freien Universität Berlin 

 

 

 

 

 

 

Berlin, 2024 
  



 

  

 
Erstgutachter: Prof. Dr. Ulman Lindenberger 
Zweitgutachterin: Prof. Dr. Gesa Schaadt 
 
Tag der Disputation: 28.11.2024 
  



 

 
 
 

 
 
 
 
 
 
 
 
 
 

Für Roman. 
Ohne dich hätte ich es nicht geschafft. 

 
 
 
 

To Roman. 
I wouldn’t have made it without you. 

  



 

  

 

 

 

 



 v 

Acknowledgements 
 

 

First of all, I would like to thank my supervisor, Douglas Garrett, for giving me an opportunity to develop 

my own project and experience the kind of research work that made me want to do a PhD in the first 
place. Thank you, Doug, for all the support and guidance, without which I would have never made it 

through; for countless hours you spent helping me (learn how to) make sense of things; for believing in 

me and helping me grow. 

 

I would also like to thank my colleagues from the LNDG, MPI, COMP2PSYCH, and other institutions for 

their invaluable support and advice, for sharing their expertise, their scripts, and simply taking the time 

to discuss my work to help make it better.  

 
I would like to thank Michael Krause for his help with working on the cluster and finding bugs in my code. 

Micha, I am afraid to think how much longer I would have needed for this PhD without your help (much, 

much longer!).  

 

Big thank you to the IT team, the scanner team, and everyone who was involved in the data collection. 

Special thank you to Sabrina and Gabi from Telefonstudio – the lab dataset wouldn’t have existed 

without your help. 
 

Special thank you to Tobias Hauser for insisting that I don’t use the task from Daw et al. (though it was 

a challenge at the time, now the ExploreExploit task is the basis of this thesis), to Julian Kosciessa for 

advising me to log everything during the experiment (Julian, you have no idea how vital this turned out!), 

and to Lennart Wittkuhn for sharing his expertise and scripts to help me prepare the online experiment. 

 

Thank you to the members of the thesis committee for taking the time to evaluate this thesis. 

 
This work wouldn’t have been possible without countless people in and outside of academia, who shared 

their knowledge, their work materials, and their time with me; who supported me, gave me advice, 

listened to my ideas and worries, and let me literally and metaphorically cry on their shoulder. To all of 

you, I am eternally grateful. 

 

  



 

 vi 

Summary  
 

 

For both living organisms and artificial agents, exploration-exploitation decisions are ubiquitous and 

vital. They (co-)determine human behavior in all areas of life, from the smallest everyday decisions like 
grocery shopping to life-changing choices such as choice of a partner or a career. Understanding how 

exploration-exploitation decisions are made is therefore crucial to understanding – and potentially being 

able to influence – how and why humans behave the way they do. This dissertation contributes to 

exploration-exploitation research by examining behavioral, computational, neural, and physiological 

mechanisms behind exploration-exploitation decision-making. After a brief introduction in which I outline 

open questions and how this dissertation addresses them (Chapter 1), I proceed to investigate 

behavioral and computational signatures of exploring and exploiting (Chapter 2). To this end, I use a 

newly designed task which captures naturally paced exploration-exploitation behavior, while allowing 
participants to directly indicate whether they explore or exploit in a model-independent way. Having 

tested participants both in the lab and online, I demonstrate that this task reliably captures key behavioral 

characteristics of exploration-exploitation behavior and is well suited to its further use in combination 

with neurophysiological methods. Using computational modeling, I further probe the underlying decision-

making processes and their relationship to behavior. The best-fitting computational model highlights 

different roles that reward and uncertainty estimates play in exploration and exploitation, as well as 

differences in how quickly acquired information about reward and uncertainty becomes obsolete. I then 
use the task and computational model presented in Chapter 2 to investigate neural (Chapter 3) and eye 

tracking (Chapter 4) mechanisms behind exploration-exploitation decision-making. In Chapter 3, I show 

that uncertainty-driven BOLD signal variability could function as a neural mechanism that allows to adapt 

exploration-exploitation behavior to a rapidly changing environment. In Chapter 4, I demonstrate that 

gaze patterns during the decision-making period predict the trial type (exploration or exploitation) and 

that patterns with different number of dwell locations provide complementary insights into the decision-

making behind exploration-exploitation choices. Lastly, Chapter 5 provides a summary of contributions 

this dissertation makes to the field of exploration-exploitation research, discusses limitations and 
presents suggestions for future studies. All in all, this dissertation presents a comprehensive 

investigation of the underlying mechanisms of human exploration-exploitation behavior. 
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Zusammenfassung 
 

 

Sowohl für lebende Organismen als auch für Computeralgorithmen sind Exploration-Exploitation 

Entscheidungen allgegenwertig und von größter Bedeutung. Diese Entscheidungen können 
menschliches Verhalten in allen Bereichen des Lebens (mit-)bestimmen, von den kleinsten alltäglichen 

Aufgaben wie zum Beispiel das Einkaufen im Supermarkt bis hin zu den lebenswichtigen 

Entscheidungen wie die Wahl eines Lebenspartners oder eines Berufes. Daher ist es von größter 

Wichtigkeit zu untersuchen, wie Exploration-Exploitation Entscheidungen getroffen werden, um zu 

verstehen, wie und warum Menschen sich auf eine bestimmte Art und Weise verhalten (und um dieses 

Verhalten potentiell beeinflussen zu können). Diese Doktorarbeit trägt zu der Exploration-Exploitation 

Forschung bei, indem sie verhaltensrelevante, mathematische, neurologische und physiologische 

Mechanismen hinter der Exploration-Exploitation Entscheidungsfindung untersucht. Nach einer kurzen 
Einleitung (Kapitel 1), in der ich die offenen Forschungsfragen darlege und wie diese Dissertation sie 

behandelt, untersuche ich die verhaltensrelevanten und mathematischen Eigenschaften von 

Exploration-Exploitation Entscheidungen im Kapitel 2. Dafür benutze ich eine neu entwickelte Aufgabe, 

die selbstbestimmtes Exploration-Exploitation Verhalten der Probanden erfasst und es ihnen erlaubt 

direkt anzugeben, ob sie eine Exploration oder Exploitation Entscheidung getroffen haben (und somit 

eine valide Unterscheidung zwischen Exploration und Exploitation gewährleistet). Nachdem ich 

Probanden sowohl im Labor als auch online untersucht habe, zeige ich, dass diese Aufgabe die 
Verhaltenscharakteristiken von Exploration-Exploitation zuverlässig widerspiegelt und sich gut für die 

Kombination mit neurophysiologischen Methoden eignet. Mittels mathematischer Modellierung 

untersuche ich dann die zugrundeliegenden Entscheidungsprozesse und ihren Zusammenhang mit 

dem gezeigten Verhalten. Die Modellierung betont die unterschiedlichen Rollen, die die Schätzung der 

Belohnung und der Unsicherheit für Exploration-Exploitation Entscheidungen spielen, und die 

Unterschiede in der Geschwindigkeit, mit welcher gelernte Informationen über Belohnung und 

Unsicherheit veralteten. Daraufhin benutze ich die gleiche Aufgabe und das mathematische Modell aus 

dem Kapitel 2, um die neuronale (Kapitel 3) und die Eye-tracking (Kapitel 4) Mechanismen der 
Exploration-Exploitation Entscheidungsfindung zu untersuchen. Im dritten Kapitel zeige ich, dass die 

von der Unsicherheit gesteuerte Variabilität des BOLD-Signals einen neuronalen Mechanismus 

darstellen könnte, der eine Anpassung des Exploration-Exploitation Verhaltens an die sich immer 

verändernde Umwelt ermöglicht. Im vierten Kapitel zeige ich, dass die Blickmuster, die während der 

Entscheidungsphase stattfinden, den Trial-typ (also Exploration oder Exploitation) vorhersagen und 

dass die Anzahl der angeschauten Optionen in den Blickmustern ergänzende Einsichten in den 

Entscheidungsfindungsprozess gewähren. Schließlich fasst Kapitel 5 die Beiträge dieser Dissertation 
zu dem Exploration-Exploitation Forschungsgebiet zusammen und weist mögliche Richtungen für die 

zukünftige Forschung auf. Insgesamt stellt diese Dissertation eine umfassende Untersuchung der 

zugrundeliegenden Mechanismen des menschlichen Exploration-Exploitation Verhaltens dar. 
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1.  General Introduction 
 

1.1  The exploration-exploitation dilemma 

One day, a little grey mouse, who usually went to the pantry for a yummy and nutritious portion of bread 

or flour, is attracted by a delicious smell of chocolate from a dark corner of the kitchen. Now she must 
decide; should she go to the pantry, as she has been doing safely for months, or should she explore the 

dark corner, which could promise a treat, but could also be a trap? Choosing between a familiar 

rewarding option (exploitation) and an unfamiliar option that could be more or less rewarding 

(exploration) is vital for both human and non-human animals (Hills et al., 2015), and has been transferred 

to the world of artificial agents in the context of reinforcement learning (Sutton and Barto, 1998). Though 

the solution to the exploration-exploitation dilemma has proven to be elusive, the key to successfully 

navigating it lies in adaptively switching between exploration and exploitation modes (Sutton and Barto, 

1998; Cohen et al., 2007; Bond et al., 2021). Which mode is more adaptive at a given time point depends 
on multiple factors that influence the costs and gains of exploring vs. exploiting. Structured, stable, well-

known environments that consist of options with low reward conflict favor exploitation, whereas volatile 

environments, high option similarity, and uncertainty about the environment invite exploration (Cohen et 

al., 2007; Doya, 2008; Mehlhorn et al., 2015; Bond et al., 2021).  

 

Exploration and exploitation modes can be differentiated based on what can be achieved with each of 

these actions and the costs incurred by forgoing the other. While the purpose of exploitative actions is 
receiving reward, information gathering in order to reduce uncertainty about the environment is often 

the focus of exploratory decisions (Sutton and Barto, 1998; Wilson et al., 2014; Blanchard and 

Gershman, 2018). Further, costs of exploration include forgoing a reliably satisfying reward obtained by 

exploiting a currently preferred option and the risk of choosing a less rewarding option or even incurring 

a penalty. Conversely, the costs of exploitation are comprised of not learning about potentially better 

alternatives and – in non-stationary environments – the possibility that previously learned information 

has become obsolete (Cohen et al., 2007; Doya, 2008).  

1.2  Open questions in exploration-exploitation research 
and how this dissertation addresses them  

Increasing research interest in the exploration-exploitation trade-off over the past two decades has 

yielded a better understanding of the phenomenon. Kalman filter (Daw et al., 2006), UCB and Thompson 

sampling (Gershman, 2018), Markov Decision Process (MDP) (Averbeck, 2015; Schwartenbeck et al., 

2019) have been used to computationally model exploration-exploitation decision-making. Different 

types of exploration have been described: random and directed exploration based on different types of 
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uncertainty (Wilson et al., 2014), undirected exploration based on value differences (Fan et al., 2023), 

and heuristic-driven exploration (Dubois et al., 2021; Dubois and Hauser, 2022). Research showed how 

exploration is influenced by reward volatility (Speekenbrink and Konstantinidis, 2015; Piray and Daw, 

2021), by the interaction of uncertainty and time pressure (Wu et al., 2019), and how exploration-

exploitation behavior may be guided by generalization of learned information (Schulz et al., 2020). 

However, the neural mechanisms of exploration-exploitation behavior remain poorly understood, and I 
will make the case that poor task design is at the heart of this lack of understanding. 

1.2.1 Optimizing assessment via the ExploreExploit task 

Task design in exploration-exploitation research is not trivial, especially for studies focusing on neural 

correlates. Table 1-1 provides an overview of all known task fMRI studies on exploration-exploitation 

behavior in healthy participants. One immediately notices a variety of employed paradigms (though most 

are a variant of a multi-armed bandit task) and the different ways in which exploration and exploitation 

were operationalized. Exploitation has been most often defined as either choosing the highest-paying 

bandit according to a computational model (e.g. Daw et al., 2006; Cockburn et al., 2022) or according 

to the reward structure (e.g. Muller et al., 2019). Another way to define exploitation trials was by selecting 
trials on which the same option was chosen several times in a row (e.g. Boorman et al., 2009; Muller et 

al., 2019). On the other hand, exploration has been operationalized as not choosing the highest-paying 

option (Daw et al., 2006), switching to another alternative (Boorman et al., 2009), choosing a novel 

option (Hogeveen et al., 2022), or relating choice to uncertainty estimates (Tomov et al., 2020).  

 

The variety of construct definitions is closely related to the need to categorize trials into exploration vs. 

exploitation in a valid manner. Most studies employed computational modeling to estimate the expected 

value (and often uncertainty) for the options and used these estimates alone (e.g. Daw et al., 2006) or 
in combination with some option characteristics (e.g. novelty (Hogeveen et al., 2022)) or response 

patterns (e.g. choosing the same bandit multiple times in a row (Boorman et al., 2009)). These methods, 

however, provide only an approximation of participants’ intentions. In contrast to these studies, 

Blanchard and Gershman (2018) capitalized on the distinction of reward as the focus of exploitative 

decisions vs. gaining information as the primary goal of explorative choices. They separated feedback 

(only information on exploration trials vs. only reward on exploitation trials) and response buttons for 

exploration and exploitation responses (Tversky and Edwards, 1966; Navarro et al., 2016), thus allowing 
participants to directly indicate which type of response they gave on each trial.  

 

In this dissertation, I pair the strategy of letting participants directly indicate the trial type (as used by 

Blanchard and Gershman (2018)) with a multi-armed bandit task with nonstationary reward structure 

(as used by e.g. Daw et al. (2006)) to create the ExploreExploit task. Such non-stationary reward 

structure possesses great flexibility allowing one to manipulate various aspects of the individual bandits’ 

rewards (e.g. magnitude, volatility) and the relationships between them (discriminability). Moreover, the 

number of bandits can be easily changed (increased or decreased) to meet the demands of the research  
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Table 1-1. Summary of task fMRI studies in exploration-exploitation domain. 
 

First author (Year) N sbj N 
trials 

Task Trial categorization 
method 

Operationalization of 
exploration & exploitation  

Contrast: Brain regions 

Addicott et al. (2014) 22 200 6-armed bandit with 
non-stationary reward 
structure 

Model (Kalman filter + 
softmax) 

Exploitation: choosing the 
option with the highest 
expected value predicted by 
the model, 
Exploration: choosing the 
option not with the highest 
expected value 

(1) explore – exploit: bilateral superior 
parietal lobule, intraparietal sulcus, 
precuneus, supramarginal gyrus, lateral 
occipital cortex, bilateral superior, 
middle, and precentral frontal gyrus, left 
superior, middle, and precentral frontal 
gyrus, bilateral middle frontal gyrus, 
frontal pole, paracingulate gyrus, 
cerebellum, pallidum, thalamus, 
putamen, caudate, insula 
(2) exploit – explore: superior, middle 
temporal gyrus, planum temporale, 
angular gyrus 

Badre et al. (2012) 15 400 Clock task: find best RT 
in a time interval based 
on reinforcement 
(points): 
reward contingencies 
varied 
probability/magnitude 
trade-offs over time: 
(1) IEV - increasing EV, 
(2) DEV - decreasing 
EV, (3) CEV - constant 
EV when probability 
decreases & magnitude 
increases, (4) CEVR - 
constant EV when 
probability increases & 
magnitude decreases 

RT & model (temporal 
difference learning: tracking 
PE depending on RT 
difference) 

Exploitation:  
(1) RTs incrementally adjust 
to the direction of the highest 
perceived value throughout 
the block (i.e. increase in 
IEV/decrease in DEV) 
(2) difference in means of the 
estimated belief distributions: 
slow minus fast RTs 
(Directed) exploration:  
(1) RT swings: deviations 
from incremental adjusting to 
EV in the direction of a more 
uncertain option, i.e. the one 
with larger SD of the 
estimated belief distribution 
(2) relative uncertainty = 
difference in SDs of the 
estimated belief distributions: 
slow minus fast RTs 

(1) relative uncertainty: all positive: R 
rostrolateral PFC, R dlPFC, R superior 
parietal lobule (SPL), R intraparietal 
sulcus (IPS), bilateral occipital cortex, R 
operculum, bilateral cerebellum  
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Blanchard & 
Gershman (2018) * 

18 200-
250  

Observe or bet: 
2-armed bandit with 
80% red or blue bias, 
5% probability of 
change 

Different response buttons 
for observe (explore) and bet 
blue or bet red (exploit) 

Exploitation: receive reward, 
but no information 
Exploration: receive 
information, but no reward 

(1) explore – exploit: ROI: bilateral 
insula, dorsal ACC; full-brain: bilateral 
thalamus 

Boorman et al. (2009) 18 120 2-armed bandit: 
random reward 
magnitude 1-100 
points, 
probabilities for each 
option changed 0-1 in a 
random walk 

Choosing same vs different 
option, model (Bayesian 
reinforcement-learning 
algorithm with Markovian-
fashion "predictor" (+ 
forgetting: probabilities move 
towards 0.5) and "selector" 
with sigmoidal probability 
distribution) 

Exploitation: 
(1) stay trials: choose same 
option, 
(2) Relative chosen value 
provides evidence in favor of 
the current decision (chosen – 
unchosen subjective action 
value) 
Exploration: 
(1) switch trials: choose 
different option 
(2) Relative unchosen 
probability drives switching to 
the alternative action (log 
unchosen – log chosen action 
probability) 

(1) relative unchosen probability: FPC, 
dlPFC, mid-IPS 
(2) relative chosen value: vmPFC 

Chakroun et al. (2020) 31 300 4-armed bandit with 
non-stationary reward 
structure 

Model (Kalman filter + 
softmax + directed 
exploration + perseveration) 

Exploitation: choosing the 
option with the highest 
expected value predicted by 
the model, 
Directed exploration: out of 
the options not with the 
highest expected value, 
choosing the option with the 
highest exploration bonus 
Random exploration: 
choosing one of the remaining 
2 options 

(1) explore – exploit: middle frontal 
gyrus (FPC), intraparietal sulcus, 
precuneus, precentral gyrus, 
postcentral gyrus, supplementary motor 
cortex, dorsal ACC, cerebellum, 
thalamus, calcarine cortex, anterior 
insula, pallidum, vermis, supramarginal 
gyrus, anterior orbital gyrus, posterior 
cingulate cortex, caudate, lingual gyrus 
(2) exploit – explore: angular gyrus, 
posterior cingulate cortex, precuneus, 
postcentral gyrus, cerebellum, rostral 
ACC, superior temporal gyrus, lateral 
orbital gyrus, central operculum, middle 
temporal gyrus, superior & inferior 
frontal gyrus, medial frontal cortex 
(vmPFC), hippocampus is in the figure 
but not in the table 
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Cockburn et al. (2022) 32 ~ 400 2-armed bandit (5 
options available in 
each block, but only 2 
could be played on 
each trial): 
3 visually familiar 
bandits (from previous 
block), 2 novel bandits; 
2 bandits available on 
each trial 
counterbalanced value 
(probability of reward), 
uncertainty (which 
bandit was sampled 
less) & novelty (familiar 
vs novel) 

Model (fmUCB: UCB with 
familiarity-modulated 
uncertainty bonus + 
forgetting) 

Exploitation: choosing the 
option with higher expected 
value according to the model, 
Exploration: 
(1) novelty (choosing option 
with fewer previous 
exposures) 
(2) uncertainty (choosing 
option that was sampled 
fewer times in the current 
block) 

(1) expected value: selected option 
(positive): vmPFC, bilateral accumbens 
(2) expected value: selected vs rejected 
(sel < rej): FPC, paracingulate, bilateral 
insula 
(3) expected value: selected & rejected 
(positive): vmPFC 
(4) uncertainty bias: selected option 
(positive): subcallosal cortex, vmPFC, 
middle temporal gyrus 
(5) uncertainty bias: selected & 
rejected: positive: medial PFC; 
negative: bilateral lateral occipital 
cortex, superior parietal lobule 

Daw et al. (2006) 14 300 4-armed bandit with 
non-stationary reward 
structure 

Model (Kalman filter + 
softmax) 

Exploitation: choosing the 
option with the highest 
expected value predicted by 
the model, 
Exploration: choosing the 
option not with the highest 
expected value 

(1) explore – exploit: bilateral 
frontopolar cortex, bilateral anterior 
intraparietal sulcus (bordering on 
postcentral gyrus) 
(2) exploit – explore: n.s. 

Dombrovski et al. 
(2020) * 

70 400 Clock task: find best RT 
in a time interval based 
on reinforcement 
(points): 
reward contingencies 
varied 
probability/magnitude 
trade-offs over time 

RT & model (StrategiC 
Exploration/Exploitation of 
Temporal Instrumental 
Contingencies; SCEPTIC) 
 

Exploitation: convergence on 
global maximum (choosing 
RT with highest estimated 
value) 
Exploration: larger RT swings 
(RT autocorrelation) 

(1) regression model: participants with 
stronger anterior hippocampus activity 
related to the global value maximum 
chose RTs near it more often (more 
likely to exploit) 
(2) regression model: participants with 
stronger PE-related activity in posterior 
hippocampus had weaker RT 
autocorrelation (more likely to explore) 

Hogeveen et al.  
(2022) * 

37 224 Novelty-bandit task: 
3-armed bandit with low 
(p=0.2), medium 
(p=0.5), or high (p=0.8) 
reward probability, 
novel choice option 
introduced every 5-12 
(M=6) trials 

Choosing novel option & 
model (partially observable 
Markov decision process; 
POMDP) 

Exploration: 
(1) choose novel option in 2 & 
6 trials following insertion, 
(2) choices with high 
FEV/positive BONUS (more 
uncertain) 
Exploitation: 
(1) choose best alternative in 
2 & 6 trials following insertion, 

(1) BONUS/exploration: 
positive encoding: dlPFC, vlPFC, 
vmFPC, OFC, rostral ACC, posterior 
parietal regions (LIP), inferior temporal 
regions, visual regions (fusiform face 
complex), caudate, putamen, nACC, 
amygdala; negative encoding: lateral 
frontopolar cortex (FPC), posterior 
cingulate cortex 
(2) IEV/exploitation: 
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(2) choices with highest IEV & 
low FEV/negative BONUS 

positive encoding: bilateral vmPFC, 
posterior cingulate cortex, bilateral 
somatomotor regions, anterior temporal 
regions, visual cortex, nACC, amygdala, 
negative encoding: dlPFC, dorsomedial 
PFC, ACC, LIP, anterior insula 

Laureiro-Martinez et 
al. (2014) * 

G1:24, 
G2:26 

300 4-armed bandit with 
non-stationary reward 
structure 

Model (Kalman filter + 
softmax) 

Exploitation: choosing the 
option with the highest 
expected value predicted by 
the model, 
Exploration: choosing the 
option not with the highest 
expected value 

(1) explore – exploit: precuneus, inferior 
& superior parietal lobule, 
supramarginal gyrus, superior & middle 
frontal gyrus, SMA, middle cingulate 
cortex, frontopolar cortex, IFG (p. 
Triangularis), insula, LC 
(2) exploit – explore: superior frontal 
gyrus, anterior & posterior cingulate 
cortex, midorbital gyrus, middle 
temporal gyrus, IFG (p. Triangularis & 
p. Orbitalis), hippocampus, anterior 
insula/vmPFC, paracentral lobule, 
postcentral gyrus 

Muller et al. (2019) 19 800 4-armed bandit: 
1 option 70-90%, 3 
options 20% reward 
probability, 
high reward moved 
(M=20, SD=5 trials) 

Switch heuristic (a streak of 
choosing highest-paying 
option) 

Exploitation: choosing high-
reward option in a sequence 
of consecutive trials 
Exploration: choose low-
reward options 

(1) exploit – explore: more active in 
exploit: medial OFC, hippocampus; 
more active in explore: fronto-parietal 
action network, dorsal ACC, preSMA 

Tardiff et al. (2021) *,** 34 320 2-armed bandit 
1 option always pays 
10 points less than the 
other 
On each trial: P(flip) = 
0.05 (low volatility), 
P(flip) = 0.2 (high 
volatility) 

Choosing lower-paying 
option 

Exploration: choosing lower-
paying option based on 
previously observed outcome 
(e.g., choosing the right option 
after having observed that the 
left option was now worth 120 
points and prior choice of the 
left option had yielded 110 
points) 

(1) average integration in the brain in 
the "peri-explore" period appears to 
increase leading up to exploration, peak 
around the explore choice, and fall 
thereafter. 
(2) integration of each brain system with 
the rest of the brain in the "peri-explore" 
period was significant in the dorsal 
attention, default, frontoparietal, and 
limbic systems 
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Tomov et al. (2020) 31 320 2-armed bandit: 
safe option: smaller 
stable reward; risky 
option: more variable 
rewards 

Model (UCB + Thompson 
sampling; each trial has 
exploitation, directed and 
random exploration 
elements) 

Exploitation: value difference 
(V) 
Directed exploration: relative 
uncertainty (RU) 
Random exploration: total 
uncertainty (TU) 

(1) relative uncertainty (RU): all 
negative: middle and inferior occipital 
gyrus, cerebellum, precentral gyrus, 
dorsolateral superior frontal gyrus, 
SMA, middle and posterior cingulate 
gyrus, middle frontal gyrus 
(2) total uncertainty (TU): positive: 
inferior parietal gyrus, middle occipital 
gyrus, precentral gyrus, insula, 
thalamus, middle frontal gyrus; 
negative: dorsolateral & medial orbital 
superior frontal gyrus, precuneus, gyrus 
rectus 
(3) value difference: n.s. 

 

Notes. N trials (number of trials) includes only trials done in the scanner. N sbj – number of subjects, G – group, UCB – upper confidence bound, EV – expected 

value, PE – (reward) prediction error, RT – reaction time, SD – standard deviation. Brain region abbreviations: L – left, R – right, ACC – anterior cingulate cortex, 

dlPFC – dorsolateral prefrontal cortex, IFG – inferior frontal gyrus, IPS – intraparietal sulcus, FPC – frontopolar cortex, LC – locus coeruleus, LIP – lateral intraparietal 

area, nACC – nucleus accumbens, OFC – orbitofrontal cortex, PFC – prefrontal cortex, SMA – supplementary motor area, vmPFC – ventromedial prefrontal cortex. 
A reference list of publications included in this table can be found in Table 1-S1. 

* Studies based on ROI or a combination of ROI and full-brain analyses.  

** functional connectivity study. 
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question or to adapt to a different study population (e.g. children or older adults). This non-stationarity 

invites participants to explore more than they would in the face of deterministic rewards, thus increasing 

the number of observed exploration trials (Muller et al., 2019; Chakroun et al., 2020). A high number of 

repetitions has been shown to be particularly important for neuroimaging analyses (Nee, 2019). Finally, 

determining the trial type based on a computational model may make further use of model parameters 

(which were used to produce the reward estimates on which trial categorization was based in the first 
place) for unpacking behavioral and neural differences between exploration and exploitation 

problematic. A task design that does not rely on computational modeling for trial categorization allows 

to fully utilize computational modeling as a way to gain insights into the decision-making process behind 

exploration-exploitation choices. Overall, the ExploreExploit task combines multiple useful features of 

previously employed tasks while avoiding their drawbacks, which makes it a versatile and adaptable 

tool to examine behavioral, computational, neural and physiological mechanisms of exploration-

exploitation decision-making. 

1.2.2 Can brain signal variability provide a new lens on the exploration-
exploitation dilemma? 

With some exceptions (Tardiff et al. (2021): functional connectivity analysis), task fMRI studies in 

exploration-exploitation domain (Table 1-1) focused on contrasting BOLD signal to map differences in 
brain activity in certain brain regions to exploration or exploitation trials, or other elements of the 

decision-making process (such as value or uncertainty estimates). With more neuroimaging research, 

it became apparent that the results varied vastly, often encompassing large portions of the brain (Table 
1-1), including frontal, temporal, sensorimotor, parietal and occipital regions, as well as the cingulate 

cortex, cerebellum, and multiple subcortical structures, such as nucleus accumbens (ventral striatum), 

caudate and putamen (dorsal striatum), amygdala and thalamus. In light of a relatively small number of 

studies, varying methodologies, and how distributed topographical results are in the existing 
neuroimaging exploration-exploitation literature, more research is needed to achieve a better 

understanding of the neural mechanisms involved in exploration-exploitation decision-making.  

 

This dissertation adopts a different approach to examining neural mechanisms behind exploration and 

exploitation. Brain signal variability has been shown to potentially provide a neural mechanism that 

supports flexible adaptation of behavior to changes in the environment (Armbruster-Genç et al., 2016; 

Garrett et al., 2020; Waschke et al., 2021), while reflecting changes in various types of uncertainty in 

the environment (Garrett et al., 2014; Kosciessa et al., 2021; Waschke et al., 2021). Furthermore, brain 
regions showing most prominent variability effects did not always coincide with the regions showing 

strongest effects based on the mean signal (Garrett et al., 2013), allowing topographic profiles of 

variability analyses to provide a new angle on the neural basis of cognitive functions. 

 

This dissertation is the first to analyze brain signal variability in the context of exploration-exploitation 

research. Specifically, I examine how uncertainty-driven brain signal variability might serve as a neural 

mechanism that helps to adapt exploration-exploitation behavior to a changing environment. In contrast 
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to previous studies (Garrett et al., 2014, 2015; Kosciessa et al., 2021) that operationalized parametric 

uncertainty levels based on task design, I quantify uncertainty estimates via computational modeling. 

Overall, the existing neuroimaging literature showed higher levels of uncertainty to be associated with 

higher levels of brain signal variability, potentially supporting flexible adaptation to a changing 

environment (Garrett et al., 2014, 2020; Kosciessa et al., 2021). I capitalize on the ability to estimate 

three different types of uncertainty from my computational model. I investigate which uncertainty type 
has the strongest influence on brain signal variability in the context of exploration-exploitation behavior 

by contrasting trials in which uncertainty of each type is modulated. This dissertation further extends our 

understanding of neural underpinnings of exploration-exploitation behavior by presenting topographic 

profiles of variability-based effects, which hint to cognitive functions that might be involved in the 

underlying cognitive processes. 

1.2.3 Gaze analysis as a real-time observable measure of exploration-
exploitation decision-making  

Existing exploration-exploitation studies that utilize eye tracking in the context of value-based decision-

making have focused exclusively on pupillometry (Jepma and Nieuwenhuis, 2011; Hayes and Petrov, 

2015; Pajkossy et al., 2017; Muller et al., 2019; Bond et al., 2021; Tardiff et al., 2021; Fan et al., 2023). 

A strong interest in the relationship between pupil diameter and exploration-exploitation behavior was 
fueled by research showing a connection between arousal produced by the locus-coeruleus-

noradrenaline (LC-NA) system (of which pupil diameter can serve as a proxy measure (Joshi et al., 

2016)) and maintaining focus vs. switching (Rajkowski et al., 1994; Aston-Jones and Cohen, 2005; 

Bouret and Sara, 2005; Cohen et al., 2007; Sara and Bouret, 2012). Furthermore, past explore-exploit 

studies that categorize trials based on a computational model brings the same imprecision to eye 

tracking analyses as in the case of neuroimaging studies. Contrasting eye tracking signals between 

model-defined exploration and exploitation trials entails the same imprecisions as in the case of neural 
data because trial categorization in such cases is inherently dependent on the type of the model 

(Blanchard and Gershman, 2018).  

 

Beyond pupillometry, my thesis establishes how we look (gaze) as a unique signature of the underlying 

dynamics of exploration-exploitation decision-making when the definition of trial type is directly observed 

from participant behavior. Eye tracking (gaze tracking) is a powerful physiological measure that can 

provide real-time insights into the decision-making process (Huddleston et al., 2018; Spering, 2022). 

While computational modeling reflects the latent level of the decision-making process that leads to a 
button press signifying a response, gaze analysis (specifically, scan path analysis, which represents 

spatial information of fixations in temporal order (Jacob and Karn, 2003)) has proven itself a useful 

observed measure for capturing the real-time development of a decision-making process (Polonio et al., 

2015; Byrne et al., 2023). For example, studies utilizing economic games showed that observed gaze 

patterns predicted participants’ choices (Polonio et al., 2015) and differentiated between optimal and 

sub-optimal choice strategies even before a response was given (Byrne et al., 2023). Moreover, value-

based decision-making studies with many-alternative (minimum 6 items) choice sets point to a tendency 
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of participants to shift their gaze between items in a repeated fashion, as if comparing them (Russo and 

Rosen, 1975; Thomas et al., 2021), landing further support to the utility of gaze analyses for 

understanding the evolution of a decision-making process. Gaze analyses, therefore, may provide an 

observed marker for a real-time readout of how a decision to explore or exploit is made before a 

response in the form of a button press has been given. These insights go beyond pupillometry analyses, 

which focus on the link between exploration-exploitation behavior and LC-NA system. 
 

Equipped with a task that allows the categorization of exploration and exploitation trials based on 

observed behavior rather than computational parameters, this dissertation is the first to investigate how 

gaze patterns could shed light on the real-time dynamics of exploration-exploitation decision-making. I 

utilize expected value and uncertainty estimates from the computational model to investigate how these 

features might drive gaze patterns during the decision-making period (before a response is made) while 

a decision to explore vs. to exploit is being made. To better understand how gaze behavior may reflect 

the underlying decision-making process, I investigate what patterns with different numbers of dwell 
locations reveal about the focus of the decision-making process on corresponding trials (see below).  

1.3  Overview of the dissertation 

The aim of this dissertation is to investigate behavioral, computational, neural and physiological 

mechanisms underlying human exploration-exploitation behavior. The data used in this dissertation was 

collected in two studies of young adults: (1) a lab study during which they performed the ExploreExploit 

task in the MRI scanner with concurrent eye tracking, and (2) a behavioral replication study, during 

which young adults performed the ExploreExploit task online. Computational modeling was applied to 

both behavioral data sets and further used to support fMRI and eye tracking analyses. Methodological 

details pertaining to the task design, experimental setup and computational modeling procedures, 

though relevant for the entire dissertation, are described in detail in Chapter 2. The Chapters of this 
dissertation are written in such a way that they can be read as self-contained manuscripts. Materials 

contained in this dissertation are currently being prepared for publication. 

 

In Chapter 2, I present newly designed ExploreExploit task – a multi-armed bandit task with non-

stationary reward structure, which allows participants to freely indicate whether they are exploring or 

exploiting on each trial. Analyses of the behavioral data from the lab study and from the online replication 

study show that this task captures key features of exploration-exploitation behavior and produces stable 

(replicable) results across experimental contexts. Among others, the ExploreExploit task allows one to 
examine such behavioral features as performance markers (optimal choice percentage, switch 

percentage), how much participants engage in each action throughout the task (exploration/exploitation 

percentage), how long they spent continuously in each mode (continuous exploration/exploitation 

sequences), how reward (exploring and exploiting a bandit with highest-middle-lowest reward) and 

uncertainty (number of trials before the same bandit is explored again) drive exploration and exploitation, 

and how reward observed during exploration influences action taken on the next trial. Next, I present a 

computational model that best reflects the behavioral data from the ExploreExploit task. This model 
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sheds further light on the role that different aspects of the decision-making process (maximizing reward, 

reducing uncertainty, learning and forgetting information) play in exploration-exploitation behavior and 

how they are related to observed task performance.   

 

Capitalizing on the behavioral and computational results presented in Chapter 2, Chapter 3 takes the 

investigation of the underlying mechanisms of exploration-exploitation behavior further into the 
neuroimaging domain. In this chapter, I examine whether uncertainty-driven brain signal variability could 

provide a neural mechanism for adapting exploration-exploitation behavior to a changing environment. 

To this end, BOLD signal variability in the fMRI data was analyzed using multivariate partial least 

squares (PLS) analyses. The results show that BOLD signal variability indeed changed in the direction 

of uncertainty change and was most strongly related to posterior estimation uncertainty (uncertainty that 

results from a change in knowledge about the options’ values after a choice has been made). The results 

also indicate that changes in BOLD signal variability were associated with task performance and that 

higher levels of BOLD signal variability might be beneficial for more flexible behavior. Topographically, 
these effects spanned a broad network of brain regions, including those involved in supporting 

behavioral flexibility and uncertainty processing. The results highlight the importance of these cognitive 

functions for adapting exploration-exploitation behavior to a dynamic, changing environment. 

 

In Chapter 4, I analyze eye tracking data to show how gaze patterns could provide an observed marker  

of the real-time decision-making process that leads to a subsequent button press indicating exploration 

or exploitation response. Using a series of logistic regression analyses, I examine whether gaze patterns 
during the decision-making period predict the trial type (exploration or exploitation). For analyses, 

fixations to the same bandit were grouped into “dwell locations” and gaze patterns included patterns 

with one, two or three dwell locations (bandits) during the decision-making period. Not only did gaze 

behavior reflect the computational model in how expected value and uncertainty drive exploration and 

exploitation responses, but gaze patterns indeed predicted the trial type. Furthermore, gaze patterns 

with different numbers of dwell locations (fixated bandits) might reflect different characteristics of – and 

thus deliver complimentary insights into – the decision-making process behind exploration-exploitation 

behavior. Fixating on just one option likely indicated a strong focus on that specific option, especially if 
it was the bandit with the highest expected value (in which case the probability of exploitation was nearly 

80%). In patterns with two fixated bandits, the option fixated last was most likely an indicator of an 

upcoming exploration response, if it had the highest uncertainty, and exploitation response, if it had the 

highest expected value. Trials with three dwell locations revealed a complex relationship between how 

(type of the pattern) and where (expected value and uncertainty of the options) participants looked in 

determining the trial type. The results further show an association between gaze patterns and task 

performance: participants who performed worse, used typical (“correct”) gaze strategy, but applied them 
to (“incorrect”) options with lower expected values.  

 

Chapter 5 summarizes contributions of this dissertation to the exploration-exploitation research field and 

outlines limitations and possible directions for future research.  
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2.  Disentangling exploration and exploitation: 
Behavioral and computational mechanisms 

 

 

Abstract 
In the field of exploration-exploitation decision-making, the accurate determination of which type of 
decision is made by participants is often non-trivial, yet this determination remains a prerequisite to 

obtaining precise results when contrasting behavior or neurophysiological signals. In the current study, 

we present a newly developed ExploreExploit task, which combines multiple characteristics of 

previously used paradigms to allow participants to directly indicate whether they explore or exploit. The 

task captures naturally-paced exploration-exploitation behavior, encourages high exploration rates 

throughout the task horizon, and allows for a variety of modifications to the reward structure. Having 

tested 47 young adults in the lab and 52 young adults online, we show that this task successfully 

captures behavioral characteristics of exploration-exploitation behavior. We further present a 
computational model that highlights the role of reward and uncertainty reduction for each behavior type, 

reflects how learning and forgetting processes contribute to successful task performance, and that 

illustrates how decision-making processes behind exploration-exploitation decision-making relate to 

behavior. We demonstrate that the ExploreExploit task shows stable behavioral and computational 

modeling results in the lab and in online settings. Taken together, these features make our task a novel 

addition to the collection of exploration-exploitation paradigms and make it particularly suitable to be 

paired with neuroimaging and physiological methods for further investigation of exploration-exploitation 

behavior. 
 

 

Keywords: exploration, exploitation, multi-armed bandit, task design, reinforcement learning  
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2.1  Introduction 

A choice between a familiar rewarding option (exploitation) and an alternative option of unknown reward 

(exploration) is omnipresent in human lives and determines a wide range of decisions, from everyday 

food choices to the choice of career or life partner. Though multiple definitions of exploitation and 

exploration have been used in the literature (e.g., staying with an option or choosing a different one; 

selecting the option with the highest reward or not; (see Mehlhorn et al., 2015 for a review)), a common 

perspective is that agents are focused on receiving reward during exploitation, while exploration is driven 

by information gathering and uncertainty reduction (Cohen et al., 2007; Mehlhorn et al., 2015). Though 

the question of how humans master the exploration-exploitation trade-off has received substantial 
attention since it was first espoused (Cohen et al., 2007; Daw et al., 2006; Sutton & Barto, 1998), 

describing and contrasting exploration and exploitation has remained experimentally challenging for a 

number of important reasons.  

 

Though a multi-armed bandit with non-stationary reward structure (Daw et al., 2006; Jepma & 

Nieuwenhuis, 2011; Speekenbrink & Konstantinidis, 2015; Tversky & Edwards, 1966) became a popular 

paradigm in exploration-exploitation research due to its ability to elicit naturally paced behavior and keep 
the motivation for exploration high throughout the task horizon, this task requires a computational model 

to allow experimenters to determine whether a participant has explored or exploited. This makes 

interpreting experimental results contingent on the choice of the models and their assumptions about 

exploration strategies, (as discussed in detail in Blanchard & Gershman, 2018). The authors note that 

without a directly observable behavioral marker, it is hard to reliably categorize exploration and 

exploitation trials and separate exploratory choices from random error. This lowers the validity of 

contrast analyses between exploration and exploitation, including in the neurophysiological domains 

(Blanchard & Gershman, 2018). Conversely, other paradigms use novelty (Averbeck, 2015; Cockburn 
et al., 2022; Hogeveen et al., 2022) or a combination of reward magnitude and obtained information 

(Dubois et al., 2021; Wilson et al., 2014) to anchor the definition of exploration trials in behavior. 

However, these paradigms aim to elicit exploration on specific trials (e.g. by introducing a novel stimulus 

(Averbeck, 2015) or by manipulating how much information is available about an option (Wilson et al., 

2014)) at the cost of not observing naturally paced exploration-exploitation behavior. In addition, only 

these trials may be analyzed (Wilson et al., 2014), which greatly decreases the trial counts (especially 

in the exploration condition) and makes such designs difficult to use with neuroimaging methods. Still 

other paradigms assign different response buttons to exploration and exploitation responses and 
provide only information as feedback on exploration trials and only reward as feedback on exploitation 

trials (Blanchard & Gershman, 2018; Navarro et al., 2016; Tversky & Edwards, 1966), thus creating a 

direct measure of whether participants explore or exploit. The use of a deterministic reward structure 

(Navarro et al., 2016; Tversky & Edwards, 1966), however, does not encourage exploration throughout 

the course of the block, and deploying fixed-magnitude probabilistic rewards (Blanchard & Gershman, 

2018; Tversky & Edwards, 1966) provides limited possibilities for testing the influence of effects related 

to the reward magnitude and for scaling the number of bandits.  
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Here, we present a newly developed ExploreExploit task, a 3-armed bandit task which combines useful 

features of previously used paradigms to overcome a variety of experimental limitations. With the 

ExploreExploit task, our design capitalizes on the distinction between exploration and exploitation based 

on the goal of the respective action: gaining information to reduce uncertainty vs. gaining reward. In our 

task, participants receive only information as feedback after exploratory responses and only reward after 

exploitative choices, while also use separate response buttons for indicating their wish to explore or 
exploit a bandit on a given trial (Blanchard & Gershman, 2018; Navarro et al., 2016; Tversky & Edwards, 

1966). A behavioral marker of the trial type coded directly into response buttons allows us to 

unambiguously assign each trial to either exploration or exploitation in a way that does not require 

computational modeling (Daw et al., 2006) or evaluating how the chosen option differs from other options 

in novelty (Hogeveen et al., 2022), reward, or uncertainty (Gershman, 2018; Wilson et al., 2014). Hence, 

participants themselves indicate whether they have explored or exploited. This allows easy assignment 

of behavior and neural data to exploration and exploitation, ensuring more precise results when 

contrasting exploration and exploitation trials. In addition, in designs requiring mode-based trial 
categorization, the use of model parameters in further analyses of exploration-exploitation data is 

potentially problematic because these parameters served to create value estimates, which, in turn, were 

used for trial categorization. A direct measure of trial categorization in our task allows to avoid this issue 

and to use computational model parameters to support further analyses gaining deeper insights into 

exploration-exploitation behavior. Another key feature of the ExploreExploit task is its non-stationary 

reward structure (Daw et al., 2006; Sutton & Barto, 1998), which encourages a constantly high rate of 

exploration responses throughout the block, thus increasing the number of exploration trials available 
for analysis. Importantly, a multi-armed bandit task with a non-stationary reward structure allows the 

observation of naturally paced dynamic switching between exploration and exploitation. The 

ExploreExploit task uses “magnitude-based” rewards that differ in how much reward each bandit 

provides on each trial. This makes the reward structure flexibly modifiable, allowing the investigation of 

various influences of different reward characteristics (e.g. reward range, reward similarity, wins and 

losses) on exploration-exploitation behavior.  

 

In the current study, we describe behavioral characteristics of exploration and exploitation using the 
ExploreExploit task, allowing us to observe dynamic exploration-exploitation behavior while 

unambiguously categorizing the trial type by directly observable participant responses. We aimed to 

verify the behavioral features of exploration and exploitation seen in previous studies, which often relied 

on computational modeling for determining trial type. For instance, we expected exploration to take up 

ca. 30% of trials (Chakroun et al., 2020; Muller et al., 2019) and to remain at that level throughout the 

block (Blanchard & Gershman, 2018). We also expected continuous exploitation sequences to be longer 

than continuous exploration sequences (Blanchard & Gershman, 2018; Muller et al., 2019). If choice 
behavior reflects the focus on gaining reward during exploitation, the bandit with the highest reward 

should be exploited on the majority of exploitation trials. At the same time, the distribution of exploration 

trials across bandits should be much more equal, emphasizing the role of information gathering during 

exploration. Furthermore, we utilized computational modeling to examine the details of behavioral 

mechanisms underlying exploration-exploitation decision-making.  
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Having tested 47 young adults in the lab and having replicated both behavioral and computational results 

with 52 young adults online, we show that the ExploreExploit task is well suited to characterize 

exploration-exploitation behavior, to investigate the influence of the reward structure and task 

environment on these behaviors, and to examine computational and neurophysiological mechanisms 

behind exploration-exploitation choices in future studies. 

2.2  Materials and Methods 

2.2.1 Lab study 

Participants 

52 healthy young adults participated in the study. Five participants were excluded due to incorrectly 

saved data, not understanding the assignment of the response buttons, or because they were identified 

during the experiment as not understanding the task. The data of excluded participants was used to 

inform data-based exclusion criteria, which were applied in the online replication study (such as less 

than 15% exploration or exploitation trials, or less than 50% exploitation trials on which the highest-

paying bandit was chosen; see Data exclusion criteria in Supplementary Methods for details). The final 
sample thus consisted of 47 participants (age 18 – 35 years, M = 23.9, SD = 3.9; 27 female, 20 male). 

Subjects received 10 euros per hour plus a 10-euro bonus for their participation. To increase motivation, 

the bonus was described as result-dependent at the beginning of the experiment, but all participants 

who finished the study received the same amount and were debriefed at the end. Participants were 

recruited thorough an internal participant database at the Max-Planck-Institute for Human Development. 

The study was approved by the DGPs ethics committee and written informed consent was obtained 

from each participant. 

Procedure 

The lab study – including all instructions and experiment presentation – was conducted in German and 

took ca. 3 hours in total. Participants performed the ExploreExploit task while in the MRI scanner (we 

focus on behavioral data in this chapter). The experiment consisted of a practice session (ca. 15 min) 

outside of the scanner, that allowed participants to familiarize themselves with the task, and a main 

experiment session (ca. 50 min) inside the scanner. During the practice session, participants completed 

2 short practice blocks of 25 trials each. The main task session consisted of 5 blocks of 100 trials each. 

Both during the practice session and during the main task, participants could take self-paced breaks 
after each block. 

 

The main task was presented with MATLAB R2017b (https://www.mathworks.com) on a Dell Precision 

Tower 5810 PC running Windows7. Experimental stimuli were projected onto a screen inside the 

scanner room and viewed with a mirror placed atop of the coil. Additionally, MRI-compatible headphones 
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were used to play the sound, which marked the beginning of each trial (see task design description 

below). The responses were given with an MRI-compatible button box (8-Button Bimanual Fiber Optic 

Response Pad; Current Designs, https://www.curdes.com/), using the index, middle, and ring fingers of 

each hand.  

 

Task instructions were presented before the practice session. Participants were informed about the 
reward range and that rewards of each bandit and each block were independent of each other. They 

were explicitly instructed to use both exploration and exploitation. The goal of the task was described 

as earning as much reward as possible. At the same time, in line with previous studies (Addicott et al., 

2014), participants were told that finding the bandit with the highest reward would help them to achieve 

this goal. The latter instruction was given to ensure that participants aim to find and exploit the best-

paying bandit, since the percentage of optimal choice (percentage of exploitation trials on which the 

highest-paying bandit was chosen) was used as a measure of task performance (see Optimal choice 

as a measure of task performance in Supplementary Methods). 

Task design 

The ExploreExploit task (programmed in MATLAB 2018a) was created by combining a multi-armed 

bandit task with a non-stationary reward structure and separate behavioral responses for exploration 

and exploitation. The task design and trial structure are schematically depicted in Figure 2-1A. The 

bandits were represented by geometric figures: triangle, circle, and square. On each trial, participants 

had to choose whether to explore or exploit one of the 3 bandits, yielding 6 response possibilities. 

Crucially, if they chose to explore, they would see how many points the chosen bandit would have 
yielded at the current trial, but these points would not be added to their account. After exploiting a bandit, 

participants saw non-informative feedback in the form of the first letter of the word for the figure that 

represented the bandit (German: D – for Dreieck (triangle), V – for Viereck (square), and K – for Kreis 

(circle)), but the points that the chosen bandit provided on that trial were added to the participant’s 

account. Thus, exploring a bandit provided information but no reward, while exploiting a bandit provided 

reward but no information. This allowed to separate the motivation for choosing exploration vs. 

exploitation. In combination with separate buttons for exploitative and exploratory responses, it allowed 
for an unambiguous categorization of trials as exploration or exploitation. 

 

Geometric figures were all black presented on a grey background. They were centered vertically on the 

screen and the central figure was also centered horizontally. The two figures on the sides were placed 

horizontally such that they divided the distance between the central figure and the end of the screen in 

half. Experimental script adapted stimuli presentation to the screen size of the computer on which it was 

run. To minimize changes in luminance, all figures were on screen at all times except for when feedback 

was presented, at which point a number or a letter appeared in place of the figure that represented the 
chosen bandit (see Figure 2-1).  

 

A trial began with a decision-making period that lasted from 1000 to 2000 ms, drawn from a uniform 

distribution. At the end of the decision-making period, a sound cue (500 Hz, 200 ms) indicated that a 
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response could be given. From the beginning of the sound cue participants had max. 1500 ms to give 

a response. If a response was given earlier, the response phase terminated and the remaining time was 

not added to any other part of the trial. A variable-length post-choice delay (300-700 ms, uniform 

distribution) followed the response. Following this, feedback was presented for 1000 ms. The end of 

feedback marked the end of the trial and the decision-making period for the next trial started directly 

after that.  
 

 

After each block, participants could take a self-paced break. During this time, they saw information about 
the total reward they earned in that section of the task (expressed as a percentage of the maximum 

reward they could earn on all trials in a given block) and how often they made optimal choices 

Figure 2-1. Task design. Trial structure of the ExploreExploit task in the lab study (A) and online study (B). C 
– Stimulus-response mapping in the lab study (left) and online study (right). For example, in the lab study, 
triangle corresponds to the index finger and square to the ring finger. Left hand corresponds to exploration 
and right hand corresponds to exploitation. Hence, to explore the bandit denoted by triangle, one should 
press a button with the left index finger. To exploit the bandit denoted by square, one would respond with 
the right ring finger. In the online study, fingers of each hand were mapped to the horizontal position of the 
figures. 
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(expressed as a percentage of trials on which the highest-paying bandit was exploited relative to the 

number of exploitation trials in the block). 

 

A possible response button mapping could be achieved by matching each geometric figure on the 

screen the same finger on each hand based on their horizontal order (as was done in the online study 

where a keyboard was used to give responses; discussed below). However, holding the button box in 
the scanner in the horizontal position that would correspond to the horizontal layout of keys on a 

keyboard would be difficult and could cause a disruption to the stimulus-response mapping throughout 

the experiment. For this reason, each of the 3 bandits arranged in a horizontal line on the screen was 

assigned to the same finger on both hands, starting with the index finger for the left-most bandit 

(stimulus-response mapping is depicted in Figure 2-1C). This allowed participants to hold the button 

box in any position that they felt comfortable with. Each hand corresponded to either exploration or 

exploitation. Exploration-exploitation assignment to the hands as well as the position of the bandits on 

the screen were counterbalanced between participants. A computer keyboard was used to give 
responses during the practice session with the same figure-to-finger mapping as in the scanner.  

Stimuli 

The non-stationary reward structure (see Daw et al., 2006 for a detailed description) was created 

independently for each bandit and each block. Reward points were sampled with SD = 4 around the 

mean that moved as a random walk with SD = 4 in the range of 10-90 points. For each bandit, rewards 

were centered at a mean of 50 across all blocks to avoid inducing expectations of any given bandit being 

more (or less) beneficial than any other. The resulting rewards varied from 1 to 100 points. Three reward 
structures (each containing 3 bandits and 5 blocks of 100 trials; Figure 2-S1) were randomly assigned 

to participants. Because practice blocks were much shorter (25 trials), separate reward structures were 

created for practice. As in the main experiment, rewards for each bandit were centered around a mean 

of 50 throughout all practice trials. 

2.2.2 Online replication study  

Participants 

For the online replication study, we collected data from 54 young adults. Two participants were excluded 

because their data had less than 15% exploration or exploitation trials, or less than 50% exploitation 

trials on which the highest-paying bandit was chosen (see Data exclusion criteria in Supplementary 

Methods for details). The resulting sample consisted of 52 participants (age 18 – 35, M = 23.4, SD = 

4.1). They were recruited on Prolific (https://www.prolific.co/) using the following criteria: age 18 – 35 

years, absence of psychological or neurological disorders, fluent English, and approval rate on Prolific 

of at least 95%. The experiment could only be done on a PC or laptop. Participants were paid 8 GBP 

per hour and the experiment took ~1 hour to complete. The study was approved by the ethics committee 
of the Max-Planck-Institute for Human Development.  
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Task design and procedure  

The ExploreExploit task was adapted for use online and with international participants. In the following, 

we present information about task and experimental procedure specific to the online study. 
 

The consent form and task instructions (in English) were hosted on GDWG LimeSurvey 

(https://www.gwdg.de/application-services/online-surveys). Consent was indicated by clicking on a 

“Yes” button at the end of the consent form. Participants also filled out a short demographic 

questionnaire and completed a short test to check that they understood the instructions. Only 

participants who successfully passed the test were redirected to the task that was hosted on Pavlovia 

(https://pavlovia.org/).  

 
The task design and instructions were similar to the ones used in the lab, but adaptations were made to 

account for the online nature of the study. The task was programmed in Python 3 and JavaScript, using 

PsychoPy2 Experiment Builder v2020.1.2 (Peirce et al., 2019) and materials from Wittkuhn et al. (2022). 

New reward structures were produced for both practice and the main task. Instead of using a sound cue 

to indicate that participants could start the response, the figures that represented the bandits were not 

present on the screen during the decision-making period and their appearance was the cue that the 

response could be given (Figure 2-1B). Participants used keyboard keys for a, s, d, and j, k, l with their 
ring, middle, and index finger of each hand. The stimulus-response mapping assigned the left-most 

bandit on the screen to the left-most finger of each hand (Figure 2-1C).  

2.2.3 Statistical analyses 

Statistical analyses were performed using R version 4.2.2 (R Core Team, 2022). Main R packages used 

for data analyses are listed in Table 2-S1. Our analyses consist of a series of linear (mixed) models, 

such as regression and analysis of variance (ANOVA). Whenever necessary, subject ID was used as a 

random intercept to account for within-subject variance. Paired FDR-corrected (Benjamini & Hochberg, 

1995) t-tests were used as follow-ups to ANOVA analyses. We report semi-partial R2 (Nakagawa & 

Schielzeth, 2013) for regression and semi-partial h2 (h2) (Richardson, 2011) for ANOVA models as 

measures of effect size. Correlation analysis report Pearson correlation coefficients, unless indicated 

otherwise. Prior to calculating the median of a response distribution, we excluded extreme outliers: data 

points that were more than 3 times interquartile range outside of the first or third quartile (Q1 - 3xIQR; 

Q3 + 3xIQR). Prior to statistical tests, extreme outliers on a subject-level were excluded as well. Due to 

an unexpected mismatch between software and hardware functionality, participants in the lab study 

often missed the first trial in the block. We thus omitted the first trial for lab study participants for analyses 
that included missed trials. Task performance was measured with percentage optimal choice, defined 

as the number of exploitation trials on which the highest-paying bandit was chosen in relation to the total 

number of exploitation trials (see Optimal choice as a measure of task performance in Supplementary 

Methods). Exploration percentage was calculated as the number of exploration trials in relation to the 

number of valid trials, making it a direct opposite of exploitation percentage. 
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2.2.4 Computational modeling 

Computational modeling was done in MATLAB 2020a using custom scripts and materials from Dubois 

et al. (2021). Reinforcement learning models commonly used to model data from multi-armed bandit 

tasks in exploration-exploitation studies (e.g. Daw et al., 2006; Gershman, 2018) expect both reward 

and information to be delivered as feedback on every trial. Hence, they were not directly suitable for 

modeling the data from the ExploreExploit task. Given that exploration trials yielded only information 

and not reward, while exploitation trials yielded only reward and no further information, we implemented 
different expected values for exploration and exploitation, which became a key feature of the 

computational models we tested (see below).  

Best-fitting model for the ExploreExploit task 

In the following, we focus on the best-fitting model (the same model showed the best fit for the data of 

participants in the lab and online). Detailed information on the full model space can be found in the 

Computational models section in Supplementary Methods. 

 

Separate expected values were modeled for exploring and exploiting each bandit. To do so, we 
capitalized on the Upper Confidence Bound (UCB) algorithm (Auer, 2002) that accounts for the influence 

of uncertainty about an option. The expected value of exploitation (V_exploit i,t) for bandit i on trial t was 

defined as the expected reward of this bandit (Qi,t):  

 

𝑉_𝑒𝑥𝑝𝑙𝑜𝑖𝑡!,# =	𝑄!,#	 

 

The expected value of exploration (V_explore i,t) was comprised of the sum of the expected reward value 

(Qi,t) of bandit i on trial t and the expected uncertainty (si,t) about this reward, which were weighted by 

the parameters b1 and b2, respectively (estimated as free parameters):  

 

𝑉_𝑒𝑥𝑝𝑙𝑜𝑟𝑒!,# =	𝛽$ ∗ 	𝑄!,# 	+	𝛽% ∗ 	𝜎!,# 

 
For all bandits, the initial expected reward value (Q0) was fixed to 50 (the middle of the reward range 

and the mean reward for each bandit over all blocks) and the starting value for expected uncertainty (s0) 

was fixed to 20 (also note that the mean SD across all trials for rewards of all bandits in all reward 

structures in the lab study was 21).  

 
After a bandit was explored, information (rt – observed reward on trial t) was received as feedback. A 

temporal difference (TD) learning model (Sutton, 1988; Sutton & Barto, 1998) with the learning rate a 

(free parameter) was used to model how one may incorporate newly gained information into the existing 

belief about the reward of that bandit.  

 

𝑄!,#&$ =	𝑄!,# + 2𝑟# −	𝑄!,#4 ∗ 	𝛼 
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At the same time, uncertainty about the reward of the explored bandit decreased: 

 

𝜎!,#&$ =	6𝜎!,#% − 	𝛼 ∗	𝜎!,#% 	 

 

“Forgetting” – a function that makes beliefs about the reward structure less precise, was applied to both 

expected reward value and expected uncertainty for bandits that were not explored or, in case of 

exploitation, for all bandits. Forgetting for both expected reward value and expected uncertainty was 

modeled as a return to starting values (Q0 and s0). Importantly, the winning model included separate 

forgetting rates l1 and l2 (free parameters) for expected reward value and expected uncertainty, 

respectively: 
 

𝑄!,#&$ =	𝜆$ 	 ∗ 	𝑄!,# + (1	 −	𝜆$) ∗ 	𝑄' 

 

𝜎!,#&$ =	𝜆% ∗ 	𝜎!,# + (1	 −	𝜆%) ∗ 	𝜎' 

 

Since there were six response possibilities defined by the combinations of three bandits and two actions 

(exploration and exploitation), six expected values were passed to the softmax choice rule to determine 

the probability of each response (Pi,a,t – probability of applying action a to bandit i on trial t). A trial 

outcome was then chosen according to the probabilities returned by the softmax algorithm, using inverse 

temperature t (free parameter) to determine the stochasticity of the choice; the lower the inverse 

temperature, the more stochastically the response was chosen (the less it is driven by the largest 

expected value):  

 

𝑃!,(,# =	
exp(𝜏 ∗ 	𝑉!,(,#)

∑ exp(𝜏 ∗ 	𝑉),*,#)),*
 

 

where j denotes all other bandits and x denotes all other actions. 

Model selection 

Models were fit using the fmincon optimization function in MATLAB and maximum likelihood estimation 

(MLE) (Wilson & Collins, 2019). The values of free parameters were picked from a uniform distribution 
with the ranges summarized in Table 2-S3. Bayesian information criterion (BIC) was used for model 

comparison and this was done separately for the MRI and the online group. BIC penalizes model 

complexity and a lower BIC value indicates a better model fit (Wilson & Collins, 2019).  

Parameter recovery 

In line with existing recommendations (Wilson & Collins, 2019), we performed parameter recovery for 

the winning model to check that parameter estimates were reliable. To this end, we simulated 1000 data 

sets with parameter values derived from a uniform distribution with the same parameter ranges used for 
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model fitting (Table 2-S3) and fit the corresponding model to the simulated datasets to obtain estimated 

parameter values. We then correlated the original parameter values (with which the data sets were 

simulated) with the estimated values produced by the model fitting procedure. In addition, we correlated 

the recovered parameters amongst themselves to verify that the parameter recovery process did not 

introduce trade-offs between parameters (Wilson & Collins, 2019). Finally, we correlated estimated 

parameter values and behavioral metrics (e.g. percentage of optimal choice, percentage of exploration 
trials, and percentage of switch trials (switching between exploration and exploitation)) to check whether 

model parameters reflected behavior (Danwitz et al., 2022). These correlations were calculated using 

the Spearman correlation coefficient.  

Data simulation 

Further, we simulated data using the winning model and each participant’s estimated parameter values 

for this model; we created 10 simulated datasets and picked the one that produced the smallest absolute 

deviation to the real data in exploration percentage and optimal choice percentage (min (abs (% explore 
real - % explore simulated) + abs (% optimal choice real - % optimal choice simulated))). 

2.3  Results 

2.3.1 Behavioral results from the lab study 

Task performance 

Participants in the lab showed good task performance with a high percentage of optimal choice, ranging 

from 72% to over 90% (M = 85.3, SD = 4.4; Figure 2-2, left), and a low percentage of missed trials (M 

= 0.8, SD = 1.58; Figure 2-S4). High optimal choice percentage demonstrates that participants were 

motivated and understood the reward structure well.  

 
Participants were instructed to treat rewards in each task block as independent. To verify that they did 

so, we counted the number of times participants chose the same bandit on the last trial of one block and 

the first trial of the next block (expressed as a fraction of total number of transitions between blocks; 

max. 4 transitions for participants with 5 blocks). We then used a linear regression model to test whether 

the fraction of transitions choosing the same bandit was significantly different from 33% (33% marking 

the probability of choosing the same bandit by chance): lm (fractionsame – 0.33 ~ 1). Number of transitions 

between blocks on which the same bandit was chosen last on the previous and first on the next block 

did not differ from chance level (b = 0.02, 95% CI = [-0.02, 0.07], p = 0.34). 
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ExploreExploit task captures a wide range of exploration-to-exploitation ratios 

Participants engaged in exploration on an average of 34% of trials (M = 34.2, SD = 12.8). However, 

subjects exhibited a wide range of exploration-exploitation ratios (Figure 2-2, middle), from highly 

exploitative behavior (15% exploration) to highly exploratory behavior (70% exploration). Switch trials, 

on which participants switched between exploration and exploitation, made up 40% of trials (M = 40.5, 

SD = 16.5, Figure 2-2, right).  

On average, 1/3 of exploration trials throughout the block 

Next, we examined the course of exploration throughout the block (100 trials). For each participant, we 

calculated the fraction of exploration trials in each position based on the number of total trials available 

in a given position (max. 5, because there were 5 blocks). The average fraction of exploration throughout 

the block (excluding trials 1-4, which marked the initial exploration period in the beginning of the block) 

was 32% (M = 32%, SD = 4%) (Figure 2-3A).  

 

We used a linear mixed model to test whether there was a significant change in the course of exploration 

throughout block trials. The model included fraction of exploration trials as a dependent variable and 
trial number as an independent variable, in addition to subject ID as a random intercept. The first 4 trials 

were removed, as they reflect a sharp transition from exploration to exploitation. There was a weak but 

significant decrease of exploration throughout the block (b = -5.82e-04, 95% CI = [-0.0007, -0.0003], p 

= 7.52e-08, R2 = 0.0047). Though significant, this result indicates a decline of 0.06% with an effect size 

of 0.5%, which we regard as negligible.  

Figure 2-2. Task performance. Behavioral metrics in the lab and online studies: optimal choice percentage 
(right), exploration percentage (middle), and percentage of switch trials (right). Optimal choice was calculated 
as the percentage of exploitation trials on which the highest-paying bandit was exploited. Note that 
exploitation percentage is the opposite of exploration percentage. Switch trials denote switching between 
exploration and exploitation. 
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Uncertainty tolerance before exploring again 

Next, we checked how many trials passed since the bandit was last explored until it was explored again, 

that is how high participants’ uncertainty about a non-explored option got before they decided to explore 
it. On average, the median number of trials participants waited until exploring the bandit again was 7 

trials (M = 7.7, SD = 2.7) (Figure 2-3B). On average, participants did not wait longer than 15 trials 

(median) until exploring an option again (Figure 2-3B). 

Figure 2-3. Characterizing exploration. A – Distribution of exploration trials throughout the block, averaged 
over all blocks. B – How much uncertainty participants tolerate before they explore the bandit again (median 
number of trials before a bandit is explored again). C – Median number of trials in a continuous exploration and 
exploitation sequence. D – 1-trial exploration sequences: same – participant explored the same bandit that was 
exploited on the previous trial, different – participant explored a different bandit from the one they exploited on 
the previous trial. 



Chapter 2 

 29 

More time is spent continuously exploiting than exploring 

On average, participants exhibited a median continuous sequence length of 3.7 trials (M = 3.7, SD = 

2.3) in exploitation and 1.4 (M = 1.4, SD = 0.6) trials exploration (Figure 2-3C). A linear mixed model 
with the median sequence length as a dependent variable and response type as independent variable 

(plus subject ID as a random intercept) showed that continuous exploitation sequences were 

significantly longer than exploration sequences (b = -2.28, 95% CI = [-2.94, -1.63], p = 1.34e-08, R2 = 

0.31). Note that one bandit continuously provided the highest reward for, on average, 8 trials (mean and 

SD between 3 reward structures used in the lab study: M = 8, SD = 14), so participants’ behavior, on 
average, underestimated the time one could spend in exploitation mode. 

1-trial sequences dominate exploration 

As can be seen in Figure 2-3C, exploration was dominated by 1-trial sequences. We used a linear 

mixed model to test whether 1-trial exploration was used more often on the same bandit that was 

exploited immediately prior to that exploration trial (checking the value of the preferred bandit). The 

dependent variable in the model was the number of 1-trial exploration sequences that were applied to 

either the same bandit that was exploited immediately before that or to a different bandit. The 

independent variables were previous bandit (same – participants explored the same bandit they were 
exploiting; different – the explored bandit was different from the one previously exploited), and subject 

ID as a random intercept. Prior to the analysis, one participant was excluded because of an extreme 

outlier value on using 1-trial exploration applied to different bandit. There was a weak significant effect 

of previous bandit (b = 9.52, 95% CI = [1.93, 17.11], p = 0.01, R2 = 0.04; Figure 2-3D): 1-trial exploration 

sequences were used more often to explore the same bandit, which was exploited immediately before 
that.  

Observing a low reward leads to disengaging from a bandit; observing a high reward 
is followed by exploiting that bandit 

We then examined how the reward seen on an exploration trial relates to the response made on the 

following trial. For this purpose, we divided exploration and exploitation responses into 2 sub-categories 
depending on whether the same or different bandit was chosen as the one explored on the trial before. 

Hence, there were 4 possible responses: explore-same (exploring the same bandit again), explore-

different (exploring another bandit), exploit-same (exploiting the bandit that was just explored), and 

exploit-different (exploiting another bandit).  

 

The number of trials for each response made after seeing each possible value of reward (rewards could 

take values from 1 to 100) was expressed as a fraction of total number of trials on which that reward 
value was observed. If a reward value was observed by only one participant in the study, it was omitted 

to avoid skewing the response distribution. To reduce noise in the response distribution, we binned 

rewards (ranging 1-100 points) into 10 bins with 10 reward points each.  
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Results are presented in Figure 2-4A. The explore-same category was rarely present in the data, 

suggesting that one exploration trial was enough to update participants’ idea about how a given bandit’s 

reward was changing. Two responses (explore-different and exploit-different) were most prevalent after 

observing a reward the lower reward range, suggesting that subjects will typically disengage from such 

low-value bandits. On the other hand, seeing a reward in the upper reward range was predominantly 

followed by exploit-same responses, indicating that observed reward magnitude was considered 
sufficient for transitioning to exploitation. 

The best-paying bandit dominates exploitation, but more equal distribution of bandits 
chosen during exploration 

To test whether exploration-exploitation behavior of the participants reflected the goal of gathering 
information vs collecting reward, respectively, we analyzed how the reward rank of the bandit (1 – 

highest-paying bandit on the current trial, 2 – bandit with middle reward, 3 – lowest-paying bandit) related 

to exploration and exploitation choices. Most exploitation choices were directed to the bandit with the 

highest reward, while the distribution of exploration trials was much more equal among bandits (Figure 
2-4B).  

 

We used a Type III repeated-measures ANOVA model, specifying number of trials in each category as 

a dependent variable and within-subject factors response type (exploration, exploitation) and bandit rank 
(1, 2, 3) as independent variables. We also modeled an interaction between them. The F-test showed 

a significant interaction (F(2, 92) = 633.25, p < 2.2e-16, h2 = 0.93), which we followed up with a series 

of paired t-tests (FDR-corrected). Specifically, we compared the same response type between different 

reward ranks and different response types within the same rank.  Results revealed that responses within 

each rank were significantly different and there were significant differences between the same response 
for each two ranks (all p < 0.006, results are summarized in Table 2-1).  

2.3.2 Online replication study 

Behavioral results seen in the lab study were replicated in the online study.  

 

Participants in the online study generally showed good task performance (optimal choice percentage: 

M = 77.2, SD = 7.6), though they made significantly fewer optimal choices than participants in the lab 

study (b = -8.14, 95% CI = [-10.67, -5.60], p = 6e-09, adj. R2 = 0.28). Percentage of missed, exploration, 

and switch trials did not differ significantly (all p < 0.4) between the two studies. Online participants 

treated rewards of each block as independent (i.e., the same bandit was chosen last on one block and 

first on the next at chance level; b = 0.01, 95% CI = [-0.06, 0.08], p = 0.73). 

 

Like in the lab study, online participants explored 1/3rd of the time (M = 32.5, SD = 8.2), switched 40% 

of the time (M = 39.5, SD = 14.8), and expressed a wide range (17-60%) of exploration-exploitation 

ratios (Figure 2-2). Exploration declined very slightly throughout the block (b = -3.74e-04, 95% CI = [-

0.0005, -0.0001], p = 0.0002, R2 = 0.0022). The median time most participants waited until exploring the 



Chapter 2 

 31 

 
 

Figure 2-4. Influence of reward on exploration and exploitation. A – Number of trials a bandit of rank 1 
(highest reward on the current trial), 2 (middle reward) or 3 (lowest reward) was explored and exploited. B – 
Responses made after seeing a reward on a preceding exploration trial. Rewards are binned with 10 reward 
points per bin. Responses are expressed as a fraction of all trials for a given bin. Same and different refers to the 
bandit chosen in relation to the one that was explored on the preceding trial. Lab – lab study, online – online 
study. 
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Table 2-1. Exploring and exploiting each bandit rank. Results of follow-up comparisons (FDR-corrected). df – 
degrees of freedom, h2 – semi-partial eta squared. 

Contrast df t-ratio p-value h2 

Lab study 

exploit rank 1 - exploit rank 2 46 31.25 <.0001 0.95 

exploit rank 1 - exploit rank 3 46 33.11 <.0001 0.95 

exploit rank 2 - exploit rank 3 46 14.94 <.0001 0.82 

explore rank 1 - explore rank 2 46 10.18 <.0001 0.69 

explore rank 1 - explore rank 3 46 11.42 <.0001 0.73 

explore rank 2 - explore rank 3 46 5.13 <.0001 0.36 

exploit rank 1 - explore rank 1 46 17.31 <.0001 0.86 

exploit rank 2 - explore rank 2 46 -2.84 0.0067 0.14 

exploit rank 3 - explore rank 3 46 -9.58 <.0001 0.66 

Online study 

exploit rank 1 - exploit rank 2 51 22.31 <.0001 0.90 

exploit rank 1 - exploit rank 3 51 25.73 <.0001 0.92 

exploit rank 2 - exploit rank 3 51 21.66 <.0001 0.90 

explore rank 1 - explore rank 2 51 9.52 <.0001 0.64 

explore rank 1 - explore rank 3 51 10.78 <.0001 0.69 

explore rank 2 - explore rank 3 51 5.12 <.0001 0.34 

exploit rank 1 - explore rank 1 51 20.24 <.0001 0.88 

exploit rank 2 - explore rank 2 51 3.15 0.0027 0.16 

exploit rank 3 - explore rank 3 51 -9.44 <.0001 0.63 

 

bandit again was 7 trials (M = 7.2, SD = 2.5), with the upper range going to 16 trials (Figure 2-3B). 

Median length of continuous exploitation sequences was significantly longer than the median length of 

continuous exploration sequences (b = -1.97, 95% CI = [-2.40, -1.53], p = 5.95e-12, R2 = 0.33; Figure 
2-3C). One-trial long sequences were most frequent in exploration (Figure 2-3C) and were applied 

significantly more often to the same bandit (that was exploited prior to exploration trial) than to a different 

bandit (b = 9.15, 95% CI = [0.64, 17.66], p = 0.03, R2 = 0.03; Figure 2-3D), though the effect was quite 

weak.  
 

Like in the lab study, observing a reward in the lower reward range on an exploration trial resulted in 

disengaging from the bandit on the following trial (exploring or exploiting a different bandit), while 

observing a reward in the higher reward range was followed by exploiting the same bandit on the next 

trial (Figure 2-4A). There was a strong dominance of choosing the bandit with the highest reward (rank 

1) on exploitation trials, while exploration trials were much more equally distributed among the bandits 

of reward ranks (Figure 2-4B). An F-test with the number of exploration and exploitation trials applied 

to bandits of different reward ranks showed a significant interaction (F(2, 102) = 457.86, p < 2.2e-16, h2 

= 0.9) between response type (explore, exploit) and reward rank of the bandit (1, 2, 3). All follow-up 

comparisons testing the difference between the same response type between different ranks and 
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different response types within the same rank were significant (all p < 0.002, results are summarized in 

Table 2-1). The effects replicated those seen in the lab study, with the only difference that the bandit 

with the second-highest reward was exploited more often than it was explored (this effect had the 

opposite direction in the lab study).  

2.3.3 Computational modeling results 

Model comparison 

We assessed how well multiple computational models (within either UCB or discounting model families 

– cf. Computational models in Supplementary Methods) reflected participants’ behavior in the 

ExploreExploit task. Model comparison revealed that the model with the lowest BIC score for most 

participants in both lab and online studies was model 17 (Figure 2-5A). The winning model (described 

in detail in Computational modeling in Methods) was a UCB-type model (with the exploration value for 
each bandit comprised of a weighted sum of expected reward and uncertainty about it). A special 

characteristic of this model was the presence of separate forgetting rates (l1 and l2) for expected reward 

(Q) and expected uncertainty (s).  

Figure 2-5. Computational modeling results. A – Model comparison: number of participants with the lowest BIC 
score for the respective model in the lab study (top) and the online study (bottom). B – Parameter recovery for 
the winning model: top – correlation between simulated and fitted (recovered) parameter values; bottom – 
correlation of fitted (recovered) parameter values with each other. Alpha – learning rate (a), beta1 – weight for 
reward in exploration (b1), beta2 – weight for uncertainty in exploration (b2), lambda1 – forgetting rate for 
reward (l1), lambda2 – forgetting rate for uncertainty (l2), tau – inverse temperature (t). 
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Parameter Recovery 

There was a fairly good correspondence between the simulated and recovered parameters of the 

winning model (Figure S2-5), with correlations between simulated and recovered parameters (Figure 
2-5B) ranging from 0.68 for the inverse temperature parameter (t) to 0.90 for the forgetting rate for 

reward (l1). The absence of strong correlations between recovered parameters (Figure 2-5B) indicated 

that parameters of the winning model did not appreciably trade-off against each other (Wilson & Collins, 
2019). 

Correlations between estimated parameter values and behavioral metrics 

We computed correlations (Spearman rank correlation) between estimated parameter values and 

behavioral metrics from each participant’s data (optimal choice percentage, exploration percentage, and 

switch trials percentage). Results demonstrate that estimated model parameters reflected behavior in 

the ExploreExploit task (Figure 2-6, see Table 2-2 for a summary of all significant correlations). We 

discuss significant correlation in the following. 
 

 

Table 2-2. Correlations between estimated parameter values and behavioral metrics. Only correlations with a 
significant (p < 0.05, uncorrected) result in at least one of the studies are listed (cf. Figure 2-6). l1 – forgetting 
rate for expected reward, l2 – forgetting rate for expected uncertainty, t – inverse temperature, a – learning 
rate, cor - Spearman rank correlation coefficient. 

Parameter Behavior, % Study cor p-value 

l1 explore 
lab -0.53 1.23e-04 

online -0.36 7.03e-03 

switch lab -0.71 2.26e-08 

Figure 2-6. Correlations between estimated model parameters and behavioral metrics. Only significant (all p < 
0.05, uncorrected) correlations are presented. Alpha – learning rate (a), beta1 – weight for reward in exploration 
(b1), beta2 – weight for uncertainty in exploration (b2), lambda1 – forgetting rate for reward (l1), lambda2 – 
forgetting rate for uncertainty (l2), tau – inverse temperature (t). 
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l1 online -0.66 7.05e-08 

l1 optimal choice 
lab - n.s. 

online 0.32 0.01 

l2 explore 
lab -0.69 7.74e-08 

online -0.44 9.40e-04 

l2 switch 
lab -0.68 1.42e-07 

online -0.65 1.39e-07 

t explore 
lab -0.45 1.22e-03 

online - n.s. 

t switch 
lab -0.30 0.03 

online - n.s. 

a optimal choice 
lab - n.s. 

online 0.27 0.04 

 

 

There was a negative correlation between forgetting rates for reward (l1) and uncertainty (l2) and 

exploration percentage, indicating that as forgetting rates decrease (so that expected reward and 

uncertainty values quickly go back to baseline, where they are the same for all bandits), exploration rate 

increases. 

 

We found a negative correlation between inverse temperature (t, higher values = less stochastic 

choices) and exploration percentage, thus revealing that as choice stochasticity increases, so too does 

the rate of exploration. 

 

We also noted a positive correlation between learning rate (a) and optimal choice percentage in the 

online study, indicating that participants who update expected reward and uncertainty stronger (and 

consequently switch to a different bandit quickly after seeing it providing more reward) choose the 

highest-paying bandit more often and perform better. 

 

Lastly, optimal choice percentage correlated positively with the forgetting rate for expected reward (l1) 

in the online study. This shows that, as forgetting rate increases and rewards for all bandits are 

“forgotten” slower (so that learned information about the expected value is regarded as valid for a longer 

time), participants make more optimal choices. This is likely because they exploit their preferred option 

longer (as suggested by negative correlations between switch percentage and forgetting rate for reward, 

and between exploration percentage and forgetting rate for reward – so the higher forgetting rate for 

reward, the higher exploitation percentage and the lower the switch percentage).  

 
In the online study, correlation patterns largely replicated those seen in the lab study. A correlation 

between optimal choice percentage and learning rate (a), as well as a correlation between optimal 

choice percentage and forgetting rate for reward (l1) were present in the online study, but not in the lab 

study, possibly because performance was close to the ceiling in the lab study).  



Behavioral and Computational Mechanisms 

 36 

Simulated data captures behavioral features of the empirical data 

We simulated data for each participant (combining participants from the lab and online study) using 

estimated parameters from the winning model. Overall, behavioral characteristics of the simulated data 
showed fairly good resemblance to the real data. While exploration and optimal choice percentage were 

well approximated in the simulated data (positioned along the identity line), switch percentage was often 

overestimated in the lower range and underestimated in the higher range (Figure 2-7A).  

 

The length of continuous exploration and exploitation sequences was largely underestimated in the 

simulated data (Figure 2-7B), while it reflected correctly how many trials passed until a bandit was 

explored again (Figure 2-7C). The distribution of exploration trials across the reward ranks matched 

that found in the real data, but the number of exploitation trials allocated to bandit ranks 2 and 3 was 
overestimated (Figure 2-7D).   

2.4  Discussion 

In the current study, we presented the ExploreExploit task, which by combining key characteristics of 
previously used paradigms allows for a reliable and detailed investigation of human exploration-

exploitation behavior. Successful replication of both behavioral and computational modeling results in 

the online experiment demonstrates that ExploreExploit task can be employed in multiple experimental 

contexts and produces stable results regardless of experimental setting. 

2.4.1 The value of the ExploreExploit task lies in successfully combining 
important features of previously used paradigms 

In contrast to multi-armed bandit paradigms which use a computational model to determine the trial type 

(e.g. Daw et al., 2006), the ExploreExploit task provides a behavioral marker of the trial type coded 

directly into response buttons (Tversky & Edwards, 1966), thus allowing participants to directly indicate 

whether they are exploring or exploiting. This feature analyses contrasting exploration and exploitation 
trials more robust due to precise alignment of neural and physiological data with behavior (trial category). 

The task is thus well suited to examine neurocognitive and physiological (such as eye tracking) 

correlates of exploration-exploitation behavior. 

 

In line with previous literature, exploration trials comprised, on average, ~30% of trials (Chakroun et al., 

2020; Muller et al., 2019) and exploration rate was close to 1/3 throughout the block (Blanchard & 

Gershman, 2018). In contrast to tasks with deterministic rewards (e.g. Navarro et al., 2016), the 

ExploreExploit task ensures a higher proportion of exploration trials, continuously encouraging 
exploration throughout the block. This feature further supports the use of the ExploreExploit task with 

neuroimaging methods, allowing one to compute more reliable contrasts based on a higher number of 

exploration trials (Nee, 2019).  
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Figure 2-7. Real data for each participant plotted vs their simulated data. Green – identity line. A – Behavioral 
metrics: percentage of optimal choice (left), exploration (middle), and switch trials (right). B – Median number 
of trials in continuous exploration (left) and exploitation (right) sequences. C – Median number of trials until a 
bandit is explored again (how much uncertainty is tolerated). D – Upper panel: number of trials exploring bandit 
of rank 1 (left), 2 (middle) and 3 (right); lower panel: number of trials exploiting bandit of rank 1 (left), 2 
(middle) and 3 (right). 
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In contrast to exploration-exploitation paradigms which focus on specific trials at the cost of observing 

a natural flow of behavior (e.g. Wilson et al., 2014), the ExploreExploit task probed naturally-paced 

exploration-exploitation behavior by capturing highly explorative, exploitative, and switching behavior 

when it occurred. Most participants exploited more than they explored, using longer continuous 

exploitation sequences and shorter continuous exploration sequences, indicating that they understood 

and could follow the underlying non-stationary reward structure well.  
 

In line with the conceptual distinction between exploration and exploitation as focusing on gaining 

reward vs. information (Blanchard & Gershman, 2018; Mehlhorn et al., 2015), participants mostly 

exploited the highest-paying bandit, while exploration trials were much more evenly distributed between 

the bandits of all reward ranks. Notably, the reward rank of the bandit played a distinct role in both 

exploitation and exploration, with more trials of both types spent engaging with higher ranked bandits. 

In addition, we extend previous findings showing that participants explore more after receiving a lower 

reward and less after receiving a high reward (Song et al., 2019) by presenting a more detailed picture. 
In our study, exploitation clearly dominated after a reward in the upper reward range was observed. 

However, seeing a reward in the lower range was not necessarily followed by exploration responses, 

but instead by responses indicating disengagement from the low-reward option; participants either 

explored or exploited another bandit. Such response functions for each response category provide a 

useful tool to directly observe the influence of reward structure manipulations on exploration-exploitation 

behavior. 

 
A reward structure based on reward magnitude (as opposed to reward probability) provides a wider 

range of opportunities for examining the influence of the reward structure features on exploration-

exploitation behavior. Such features include magnitude-related reward characteristics (e.g. changes in 

mean reward and volatility of the reward structure (Speekenbrink & Konstantinidis, 2015)) or a 

combination of magnitude- and probability-based features (e.g. sensitivity to gains and losses (Tom et 

al., 2007)). Importantly, magnitude-based rewards also allow for easier scaling of the number of bandits, 

since multiple magnitude-based options are more easily discriminated than multiple probability-based 

alternatives. Increasing the number of bandits could be useful to address further questions, such as 
generalization in exploration-exploitation behavior in environments with spatially correlated rewards 

(Schulz et al., 2018; Wu et al., 2018).  

2.4.2 Our computational model reflects adaptations of exploration-
exploitation decision-making to the task, as well as relationships 
between decision-making processes and behavior 

The ExploreExploit task provides a direct behavioral marker of the trial type, so that computational 

modeling is not required to categorize trials. Model parameters can thus be used to gain deeper insight 

into the mechanics of the exploration-exploitation decision-making without potential issues caused by 

model parameters being used to produce reward estimates, which are typically then used to categorize 

the trials. For example, learning rates in our study are high, reflecting an adaptation to a changing reward 
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structure, in which most recent information possesses highest relevance (Behrens et al., 2007; Courville 

et al., 2006). In contrast, the learning rate in a rarely-changing environment would be lower, since 

occasional changes are treated as outliers rather than indicators of change (Piray & Daw, 2021). Further, 

a negative correlation between the weights for reward and uncertainty in the expected value of 

exploration suggests that the more uncertainty was taken into account, the weaker was the influence of 

reward, and vice versa. While exploration is modeled as driven by a combination of reward and 
uncertainty, this result shows how motivation to know more about the bandit with most reward and 

motivation to know more about the most uncertain bandit might be trading off. In addition, our 

computational model contains separate forgetting rates for reward and uncertainty, thus emphasizing 

the distinctiveness of reward and uncertainty information. 

 

In addition, estimated parameter values reflected behavioral metrics in the ExploreExploit data, offering 

further insights into how the elements of the decision-making process might influence behavioral 

performance. A simulation study (Danwitz et al., 2022) on computational modeling for a multi-armed 
bandit task (Daw et al., 2006) reported a positive relationship between the optimal choice percentage 

and the tendency to choose items with the higher expected value (softmax stochasticity parameter), as 

well as a positive relationship between the optimal choice percentage and exploration bonus parameter 

(parameter denoting the weight for uncertainty in the expected value). This study also reports positive 

relationship between the switch percentage and exploration bonus parameter, as well as a negative 

relationship between switch percentage and optimal choice percentage. While our results also show a 

positive association of exploration and switch percentage, suggesting that longer exploitation sequences 
might represent a more typical type of exploration-exploitation balance, we don’t find a correlation 

between switch percentage and optimal choice. The latter effect is likely explained by the fact that 

switching between bandits is considered in (Danwitz et al., 2022), so that higher switch percentage by 

definition involves choosing sub-optimal options more often, while switching in our study reflects 

transitions between exploring and exploiting. Extending the findings of (Danwitz et al., 2022), our study 

highlights the importance of the learning rate (quickly reacting to change) and forgetting rate for reward 

(preserving a certain degree of stability of the estimates) for high optimal choice percentage in a 

changing environment.  
 

Though some behavioral features (like optimal choice percentage, exploration percentage, and 

exploring different reward ranks) were well approximated in simulated data, others (like switching 

between exploration and exploitation and the length of continuous exploration and exploitation 

sequences) were less well approximated. More research is needed to fine-tune our computational model 

to capture these behavioral characteristics.  

2.4.3 Using the ExploreExploit task in future research 

Thanks to the combination of a flexible reward structure and unambiguous separation of exploration and 

exploitation responses, the ExploreExploit task can be used in the future to verify the effects of the 
reward structure manipulations on exploration-exploitation behavior previously presented in the 
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literature (e.g. higher volatility leading to higher exploration rates (Speekenbrink & Konstantinidis, 

2015)). The frequency of each response type based on characteristics of the reward structure (sigmoid 

functions in Figure 2-4) can easily be read out in the ExploreExploit data, providing a useful tool for 

observing how manipulations of the reward structure affect exploration-exploitation behavior. The 

features of the reward structure that can be manipulated in the ExploreExploit paradigm include a wide 

array of characteristics, e.g. reward range (Clarenau et al., 2024), reward stochasticity and volatility 
(Piray & Daw, 2021; Speekenbrink & Konstantinidis, 2015), sensitivity to wins and losses (Tom et al., 

2007), and generalization (Schulz et al., 2018; Wu et al., 2018). Moreover, the winning computational 

model in our study provides a tool for simulating the influence of changes in the reward structure on 

behavior and, if needed, fine-tune rewards to elicit desired behavior.  

 

Although the ExploreExploit task has shown stable results in lab and online, it also has the potential to 

be visually implemented as a game (cf. Dubois & Hauser, 2022) and be presented in a smartphone app, 

which could greatly increase the outreach, potential sample sizes and diversity of the samples. 
Smartphone-based experiments were reported to produce comparable results to in-lab studies (Pin & 

Rotesi, 2023). Furthermore, the ExploreExploit task is particularly well suited to be paired with 

neurocognitive and physiological methods to examine the correlates of exploration and exploitation 

behavior. Unambiguous categorization of the trial type based on a direct behavioral measure increases 

validity of contrasting neural data between exploration and exploitation due to a more precise pairing 

between behavior (trial type) and neural signals. For a computational model to achieve the same results 

at trial categorization, it would have to be extremely precise in estimating behavior and be based on 
correct assumptions about how this behavior is produced (e.g. exploration strategies (Blanchard & 

Gershman, 2018)). In addition, our task produces a relatively high number of exploration trials, which is 

beneficial for analyses that require a large number of trials to be viable (e.g. fMRI analyses (Nee, 2019)). 

2.4.4 Summary 

The ExploreExploit task combines a multitude of useful features to allow for a detailed and robust 

investigation of exploration-exploitation behavior. They include providing a direct readout of the trial 

type, capturing naturally-paced exploration-exploitation behavior, allowing for a variety of modifications 

of the reward structure, and encouraging relatively high exploration rates throughout the task horizon. 

In addition, our task shows stable behavioral and computational modeling results in multiple 
experimental settings. These features make ExploreExploit a novel and easily implemented addition to 

the collection of exploration-exploitation paradigms in the literature today.  

 

Pairing the ExploreExploit task with neurocognitive and physiological methods could be ideal for 

understanding the biological bases of exploration-exploitation. We examine such pairings in the next 

two chapters of this dissertation; Chapter 3 investigates the neural correlates of exploration-exploitation 

behavior as measured with fMRI, while Chapter 4 examines the eye tracking signatures of exploration-

exploitation behavior. 
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3.  Uncertainty-driven brain signal variability 
adapts exploration-exploitation behavior to 
a changing environment 

 

 

Abstract 
Past research has shown that uncertainty-driven brain signal variability could be a useful marker to 

understand how behavior adapts to changing environmental demands. However, it remains unknown 

whether brain signal variability could be a neural mechanism supporting successful adaptation of 

exploration-exploitation behavior to a changing environment. In the present study, we administered a 

newly designed ExploreExploit task that allows unambiguous separation of exploration and exploitation 
trials during fMRI. In a sample of 40 younger adults, we demonstrate that BOLD signal variability driven 

by uncertainty could provide a neural mechanism for flexibly switching between exploration and 

exploitation. We show that better and more flexible performance was related to greater BOLD variability 

decreases during exploration. Moreover, participants who showed more flexible behavior (not staying 

too long continuously in exploitation mode), increased BOLD variability less strongly during exploitation, 

while at the same time exhibiting higher levels of BOLD variability. Higher levels of BOLD signal 

variability in the beginning of exploitation might thus enable participants to move out of the exploitation 
mode faster and allow them to more flexibly switch between exploration and exploitation. Our results 

present a broad network of brain regions underlying neural variability effects, including those associated 

with uncertainty processing and behavioral flexibility, thus emphasizing the importance of these 

functions for balancing exploration and exploitation in a changing environment. 

  

Keywords: exploration, exploitation, fMRI, brain signal variability, reinforcement learning, uncertainty 
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3.1  Introduction 

Past neuroimaging work on exploration-exploitation has mostly concentrated on mapping brain regions 

to exploration and/or exploitation independently, highlighting a large number of vastly distributed brain 

regions that might be involved in one or both modes, including frontal, temporal, sensorimotor, parietal 

and occipital regions, as well as the cingulate cortex, cerebellum, and multiple subcortical structures, 

such as nucleus accumbens (ventral striatum), caudate and putamen (dorsal striatum), amygdala and 

thalamus (Addicott et al., 2014; Badre et al., 2012; Blanchard & Gershman, 2018; Boorman et al., 2009; 

Chakroun et al., 2020; Cockburn et al., 2022; Daw et al., 2006; Dombrovski et al., 2020; Hogeveen et 

al., 2022; Muller et al., 2019; Tardiff et al., 2021; Tomov et al., 2020). However, the neural mechanisms 
allowing one to flexibly switch between exploration and exploitation remain poorly understood. Previous 

work has highlighted the role of neural variability in providing a basis for flexibility needed to successfully 

adapt to environmental demands – from “computational noise” being an integral part of learning and 

decision-making (Findling & Wyart, 2021) to the essential role of variability for brain and behavioral 

development across the lifespan (Lindenberger & Lövdén, 2019). Moment-to-moment variability of brain 

signals provides a promising and underexplored angle to better understand the relationship between 

brain activity and behavior (Garrett, Samanez-Larkin, et al., 2013; see Waschke et al., 2021 for a recent 
review).  

 

Uncertainty of the environment plays a crucial role in exploration-exploitation behavior; while higher 

levels of uncertainty invite exploration, allowing to gain information about the options and thus decrease 

uncertainty (at the cost of potentially forgoing the best reward), known and stable environments warrant 

exploitation, allowing to focus on collecting reward (at the cost of growing uncertainty about non-chosen 

options, if their values change over time) (Bond et al., 2021; Cohen et al., 2007; Doya, 2008; Mehlhorn 

et al., 2015). Uncertainty has long been hypothesized as a driving force behind brain signal variability 
(see Garrett, Samanez-Larkin, et al., 2013; and Waschke et al., 2021 for a detailed discussion). The 

variability of the BOLD signal lends itself as a potential candidate for a mechanism that underpins flexible 

switching between exploration and exploitation, which is needed to successfully adapt to changes in the 

environment. Previous studies have highlighted the link between uncertainty and brain signal variability, 

including BOLD signal in particular (Waschke et al., 2021). Increases in brain signal variability have 

been shown in tasks requiring the brain to be more attuned to the environment due to higher perceptual 

(Garrett et al., 2014; Orbán et al., 2016) or rule (Kosciessa et al., 2021) uncertainty, working memory 

load (Garrett et al., 2015; Guitart-Masip et al., 2016) and feature-richness of the perceptual input (Garrett 
et al., 2020). Increasing uncertainty about how many perceptual features were relevant for making a 

response (which could be thought of as rule uncertainty (Bach & Dolan, 2012)) led to a parametric 

increase in neural variability measured with EEG (Kosciessa et al., 2021). Though the relationship 

between brain signal variability may be more complex. As uncertainty or task demands parametrically 

increase, brain signal variability often plateaus (Kosciessa et al., 2021) or adopts an inverted-U shape 

(Garrett et al., 2014, 2015), possibly explained by exceeding available processing resources (Waschke 

et al., 2021). 
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Notably, both higher levels of BOLD signal variability and its stronger modulation with uncertainty have 

been associated with better task performance (Waschke et al., 2021). For example, participants who 

showed higher levels of BOLD variability, made fewer errors both in a task requiring cognitive flexibility 

(switching task) and in a task requiring cognitive stability (distractor inhibition task) (Armbruster-Genç et 

al., 2016). Administering amphetamine resulted in higher levels BOLD signal variability and more 

consistent behavioral performance in older adults performing a task with three different levels of 
cognitive load (though the effects were complex) (Garrett et al., 2015). Better behavioral performance 

in the form of higher accuracy or more stable reaction times was observed in participants who increased 

BOLD signal variability more in response to more uncertain stimuli (Garrett et al., 2020) or more 

uncertain tasks (Grady & Garrett, 2018). In a recent study, participants who showed stronger decrease 

of BOLD signal variability during learning (as uncertainty decreased with each learning step), also 

showed higher accuracy in estimating the underlying stimulus distribution, possibly indicating a more 

efficient belief updating process (Skowron et al., 2024).  

 
Though brain signal variability has been brought in connection with behavioral adaptability and cognitive 

flexibility, it’s role in the context of exploration-exploitation behavior – or even in the context of 

reinforcement learning in general (Waschke et al., 2021) – has not yet been examined. In the current 

study, we employ the ExploreExploit task during fMRI in a sample of 40 younger adults to examine (a) 

how changes in uncertainty during exploration and exploitation might drive BOLD signal variability, and 

(b) how uncertainty-driven BOLD variability could provide a neural mechanism underlying the ability to 

balance exploration and exploitation in a changing environment. We expected changes in BOLD signal 
variability to follow the direction of changes in uncertainty: variability increasing when uncertainty 

increased and decreasing when uncertainty decreased. In contrast to previous (Garrett et al., 2014, 

2015, 2020; Kosciessa et al., 2021), which assumed different levels of uncertainty based only on task 

design, we use computational modeling to estimate uncertainty directly. The ability to estimate three 

different types of uncertainty from our computational model allowed us to examine which uncertainty 

type had strongest influence on brain signal variability in the context of exploration-exploitation behavior 

by contrasting trials in which uncertainty of each type was changing. We also expected that participants, 

who modulate BOLD signal variability more strongly in the direction of uncertainty change, would show 
better behavioral performance (exploit highest-paying bandit more often) and more flexible behavior 

(switch between exploration and exploitation more often). Furthermore, our study makes an important 

contribution to neuroimaging research on exploration-exploitation decision-making by investigating 

which neural systems underpin exploration and exploitation in the context of BOLD signal variability, as 

they may differ greatly from the brain regions found in studies based on mean BOLD signal (Garrett, 

Samanez-Larkin, et al., 2013).  

3.2  Materials and Methods 

Sample characteristics, task design, experimental procedure, and computational modeling were 

described in detail in Chapter 2. Here, we briefly reiterate key information and add fMRI-specific details.  
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3.2.1 Participants 

Fifty-two young adults took part in the experiment. All participants fulfilled standard MRI-compatibility 

criteria (e.g., no metal in the body, no claustrophobia, no pregnancy), were right-handed, and had normal 

or corrected-to-normal vision. No a priori sample size calculations were performed, but we aimed to 

collect 50 complete data sets, which is considerably more than the sample sizes of comparable 

neuroimaging studies in the field (Blanchard & Gershman, 2018; Boer et al., 2017; Cockburn et al., 

2022; Daw et al., 2006; Muller et al., 2019; Tomov et al., 2020). In addition to 5 participants excluded 
for the analyses of behavioral data (see Chapter 2 for details), we excluded another 7 participants 

because their fMRI data did not meet the criteria necessary for the intended analyses (see Calculating 

IQR BOLD section for details). In addition, 6 additional participants were excluded from analyses based 

on not having adequate data on sequences of 5 continuous exploitation trials (see below). The final 

sample thus consisted of 40 participants (and 34 participants for analyses based on a sequence of 5 

continuous exploitation trials).  

3.2.2 Task design and computational model 

Participants performed the ExploreExploit task in the MRI scanner. On each trial, they made a decision 

to either explore or exploit one of the three bandits. The key feature of this task is that feedback consisted 

only of information (but not reward) on exploration trials and only of non-stationary reward (but not 
information) on exploitation trials. This, in combination with using separate response buttons for each 

response, allowed for the unambiguous categorization of exploration and exploitation trials during 

behavior (eg. Blanchard & Gershman, 2018). Categorizing trials based on a direct measure provided by 

participants themselves, rather than computational modeling, eliminates (or at least minimizes) issues 

that might obscure results of contrasting neural data between exploration and exploitation trials, such 

as trial categorization being inherently dependent on the type of the model or exploration being 

indistinguishable from random error (eg. Blanchard & Gershman, 2018). 
 

The computational model we used (see Chapter 2) provides separate expected values for exploring and 

exploiting each bandit (3 exploration and 3 exploitation values). The updating process during exploration 

includes (1) learning for the explored bandit: new information is incorporated into the estimated reward 

value and uncertainty (sigma) about this value becomes smaller, and (2) forgetting for the unexplored 

bandits: an information leak brings the expected reward values and uncertainty (sigma) about reward 

back to their starting values. During exploitation, forgetting is applied to all bandits, since feedback 

contains no information on exploitation trials. 

3.2.3 Capturing multiple types of uncertainty with computational modeling 

Capitalizing on our winning computational model (see Chapter 2), we identified three uncertainty-related 
variables which could be used to disentangle the influence of different types of uncertainty on IQR BOLD 

in the context of exploration and exploitation. These variables represent prior and posterior estimation 
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uncertainty (sigma prior and sigma posterior), as well as choice uncertainty (Figure 3-1), which we 

specify below (cf. Bruckner et al., 2022). 

Estimation uncertainty 

Prior sigma – uncertainty about the estimated reward value – can be considered a proxy for the SD of 

a belief distribution in a Bayesian framework (Pearson et al., 2011). It represents the uncertainty that a 

person has about the value of a bandit prior to making a choice. Posterior sigma, on the other hand, can 
be thought of as a proxy for the SD of a posterior belief distribution, representing the uncertainty after a 

choice has been made. Notably, though prior and posterior sigma values existed for each bandit on 

each trial, the measure we used in our analyses represents total prior or posterior uncertainty on each 

trial, calculated by summing prior sigma values and posterior sigma values across all 3 bandits (cf. 

Chakroun et al., 2020; Tomov et al., 2020). This approach allows to examine the total level of uncertainty 

on a given trial and simplifies the analyses. For the sake of simplicity, we refer to total prior uncertainty 

and total posterior uncertainty simply as prior sigma and posterior sigma, respectively.  
 

During exploration, information is learned for one bandit and forgotten for the other two, so the 

uncertainty that makes up the sum of the posterior sigma values on the current trial – and the sum of 

the prior sigma values on the next trial – decreases. In contrast, the reward estimates of all bandits are 

forgotten during exploitation, so the sum of the posterior sigma values on the current trial – and the sum 

of the prior sigma values on the next trial – increases. 

Choice uncertainty 

In addition, we utilize information entropy of the response distribution (Muller et al., 2019; Shannon, 
1948) to calculate an entropy measure, which reflects how uncertain a choice may be (cf. Bruckner et 

al., 2022). Entropy was calculated as a negative sum across all bandits of the product of the response 

probability and its log value: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	−	E𝑝(𝑥!)	log2𝑝(𝑥!)4,
+

!,$

 

 

where p(xi) denotes the response probability p(x) of bandit i. Of note, we calculated entropy separately 

for exploration and exploitation responses. On exploration trials, entropy was calculated only across 

exploration response probabilities (3 out of 6). Likewise, only exploitation response probabilities (another 

3 out of 6) were used to calculate entropy on exploitation trials. Low entropy values indicate more 

deterministic choices (the value of 0 corresponding to a 100% deterministic choice), while higher entropy 

values indicate more uncertain choices (e.g., a value of 1.09 in the case of 3 options indicates a flat 
response probability distribution in which each response has a probability of 1/3). 
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3.2.4 Utilizing uncertainty to inform hypotheses 

A key aim of the current study was to investigate the link between uncertainty and BOLD signal variability 

in the context of exploration-exploitation decision-making. For this purpose, we examined computational 

modeling results to identify the relationships between the variables (prior sigma, posterior sigma, and 

entropy) that represented different types of uncertainty. First, we broadly hypothesized that BOLD signal 

variability should increase when uncertainty increases (Grady & Garrett, 2018). To create contrasts that 

would allow to delineate the relationship between BOLD signal variability and different types of 
uncertainty, we examined the relationships between uncertainty-related variables present in our 

computational model. We aimed to identify such types of exploration and/or exploitation trials on which 

these variables could be observed to change in the same or different directions. As a result, we produced 

trial contrasts that could reveal (1) whether BOLD signal variability tracked level of uncertainty on 

exploration and exploitation trials and (2) to which uncertainty type BOLD signal variability was most 

robustly related. We describe the hypotheses in detail in Results section. 

Figure 3-1. Schematic representation of choice and estimation uncertainty. Equations refer to the 
computational model used in our study. If a bandit is explored, its estimation uncertainty decreases (prior sigma 
is larger than posterior sigma). If a bandit is not explored (or in case of exploitation), its value is forgotten, so 
the estimation uncertainty increases (prior sigma is smaller than posterior sigma). Information entropy was 
calculated separately for exploration and exploitation responses based only on exploration or exploitation 
response probabilities, respectively. Higher entropy values reflect a flatter response distribution and more 
uncertain choice; lower entropy values indicate a more deterministic choice. 
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3.2.5 MRI data acquisition 

The experiment was conducted with a 3T Siemens TimTrio MRI scanner (Erlangen, Germany) and a 

32-channel head coil. We used a T1-weighted MPRAGE sequence (192 saggital slices, voxel size 1 x 

1 x 1 mm, TR = 2500 ms, TE = 4.77 ms, FoV = 256 mm, flip angle = 7º) to collect structural MRI data, 

and a multiband EPI sequence (MB factor = 4, 40 transverse slices, voxel size 3 x 3 x 3 mm, TR = 645 

ms, TE = 30 ms, FoV = 222 mm, flip angle = 60º) to collect functional MRI data during each task block. 

Subsequently, two short (5 volumes) sequences with the same parameters as the EPI sequence but 
opposite phase encoding directions (A>P, P>A) were collected to be used for distortion correction during 

data preprocessing. Recorded data were processed according to brain imaging data structure (BIDS) 

format guidelines (Gorgolewski et al., 2016). 

3.2.6 MRI data preprocessing 

Collected images were converted from DICOM to NIfTI format using HeuDiConv (version 0.9.0, 

https://heudiconv.readthedocs.io/) and ReproIn heuristic (version 0.6.0, Castello et al., 2020). Brain 

extraction of T1-weighted images was done with ANTs (Avants et al., 2014). Functional MRI data was 

preprocessed using FSL (version 5.0.11, Smith et al., 2004). The first 12 volumes of each functional 

image were discarded to ensure steady-state tissue magnetization. Field maps needed to correct 

distortions caused by B0 field inhomogeneities were created using FSL topup (Andersson et al., 2003) 
and short EPI sequences recorded with opposite phase-encoding directions. Preprocessing of functional 

data was done for each run separately using FSL FEAT (Woolrich et al., 2001) and included motion 

correction, smoothing (7 mm kernel), and unwarping with previously prepared field maps. In addition, 

the data was detrended (at a 3rd order polynomial) using spm_detrend function from SPM12 

(www.fil.ion.ucl.ac.uk/spm/software/spm12/) and filtered with an 8th-order Butterworth filter (high-pass 

cut-off: 0.01 Hz) implemented in MATLAB. Functional images were registered with ANTs first to the 

individual T1-weighted structural image (using 6 DOF) and then to a standard 3 mm MNI152 template 
(using linear rigid-body transformation). To further reduce the influence of noise in the data (Garrett et 

al., 2010, 2015; Kosciessa et al., 2021), we performed spatial independent component analysis (ICA) 

using FSL MELODIC (Beckmann & Smith, 2004). Components were manually classified as signal or 

noise (see Garrett et al., 2014; Kosciessa et al., 2021 for details on classification criteria) and those 

flagged as noise were regressed out of the data via the regfilt function in FSL. The data for each run 

was demeaned and masked with a grey matter mask based on MNI152 template grey matter tissue 

prior (at probability of 0.25). 

3.2.7 MRI data analyses 

Calculating IQR BOLD 

MRI data analyses were performed using MATLAB 2020a (https://www.mathworks.com) and custom 

scripts based on materials from (Kloosterman & Garrett, n.d.; Kosciessa et al., 2021). In the current 
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study, we opt for the interquartile range (IQR) of the BOLD signal distribution (IQR BOLD) as a measure 

to express brain signal variability. Like standard deviation (SD), IQR is a measure of dispersion of a 

distribution, but it is based on data between the 25th and the 75th percentiles (Dekking et al., 2005), and 

is thus less susceptible to outliers than SD. In light of a limited number of trials, especially in case of 

exploration, we opted for IQR as a measure of BOLD signal variability. Exploration and exploitation trials 

were grouped into conditions (details provided in Results), for which we then calculated IQR BOLD to 
be used in subsequent analyses.  

 

To reliably calculate the IQR, we aimed to have at least 20 data points (i.e. TRs) per condition. This 

corresponded to a minimum of 4 trials per condition, since each trial provided a minimum of ca. 6 TRs. 

Participants whose data did not have at least 4 trials in a certain condition were excluded from analyses 

involving that condition. In particular, conditions based on a sequence of consecutive 

exploration/exploitation trials were affected. Seven participants did not have enough trials in each 

position in a sequence of 3 continuous exploration or exploitation trials to calculate BOLD variability, 
which would prevent them from being included in some task PLS and all behavioral PLS analyses.  

 

To calculate IQR BOLD, we first used an in-house version of the Variability Toolbox 

(https://github.com/LNDG/vartbx) implemented in SPM12 to compute voxel-wise GLM beta estimates 

for each TR (Haynes, 2015). For this purpose, the data for all runs of each participant were 

concatenated. Each TR was specified as a regressor and convolved with the canonical HRF function, 

resulting in a 4D NIfTI file containing whole-brain beta maps for each time point. Next, we identified trials 
that composed each condition of interest and the TRs that fell into these trials. For each condition, we 

then calculated IQR over the condition-specific beta estimates, within voxel. This approach provides a 

number of advantages over calculating one beta estimate per trial for specific contrasts, as was done in 

past work (Garrett et al., 2010, 2014). First, trials can be post-hoc grouped into conditions without the 

need to rerun the first-level GLM analysis to obtain beta estimates for each condition. In addition, a 

variability-based analysis benefits from an increased number of data points produced by obtaining a 

beta estimate for each TR instead of each trial (cf. LSS method (Arco et al., 2018; Mumford et al., 2014)).  

Multivariate PLS analysis 

To investigate the role of IQR BOLD as a potential mechanism providing flexibility for switching between 

exploration and exploitation, we then used multivariate PLS analyses (McIntosh et al., 1996). In the 

following, we present a summary of the key procedures of the PLS analysis (see Krishnan et al. (2011) 

for a detailed description of the method). Task PLS is used to examine the average effects of the task 

design on brain activity, while Behavioral PLS reveals how individual differences in neural activity are 

linked to individual differences in behavior or group characteristics (Krishnan et al., 2011). Singular value 

decomposition (SVD) is used to decompose a design (task PLS) or behavior (behavior PLS) x brain 
data (voxels) matrix into 3 matrices: a matrix of singular vectors representing task design (task PLS) or 

behavior (behavior PLS) weights, another matrix of singular vectors representing brain data weights, 

and a diagonal matrix of singular values (or so-called latent variables, LVs). The LV matrix that 



Neural Mechanisms 

 52 

represents design or behavior variables is called “design” or “behavior scores”, while the matrix that 

represents the brain data is called “brain scores” (Krishnan et al., 2011). 

 

For both Task and Behavioral PLS, statistical significance of singular values associated with LVs was 

assessed using 1000 permutations. To this end, the rows of the original matrix containing brain data 

(voxels) were shuffled, while behavior or design variables remained unchanged (Krishnan et al., 2011; 
McIntosh et al., 1996). SVD was then repeated to produce a new set of singular values. A sampling 

distribution of singular values under the null hypothesis was based on results of 1000 permutation tests. 

If the p-value associated with the LV was < 0.05, it was considered statistically significant.  

 

Further, a bootstrapping procedure with 1000 resampling steps was used to identify a set of voxels 

(spatial pattern) that reliably related to task conditions (task PLS) or behavior variables (behavior PLS) 

within an LV. To this end, participants were resampled 1000x with replacement (Efron & Tibshirani, 

1986; Krishnan et al., 2011). Each voxel weight (from the original data) was then subsequently divided 
by its bootstrapped standard error, resulting in bootstrap ratios (BSRs) that are considered a type of 

non-parametric z-score (Efron & Tibshirani, 1986; McIntosh et al., 1996).  

 

We first employed Task PLS to investigate the relationship between uncertainty and IQR BOLD during 

exploration and exploitation. Moreover, we aimed to disentangle the influence of different types of 

uncertainty (estimation uncertainty: prior sigma, posterior sigma; choice uncertainty: entropy) on IQR 

BOLD in exploration and exploitation based on relationships between uncertainty-related variables in 
our computational modeling results (see Chapter 2 and section X above, Utilizing uncertainty to inform 

hypotheses).  

 

We employed Behavioral PLS to examine whether modulation of IQR BOLD with uncertainty in 

exploration and exploitation could be a potential mechanism underlying task flexibility and optimal 

performance. Specifically, we investigated the link between voxel-wise modulation of IQR BOLD (from 

trial 1 to 3) in exploration and exploitation and (a) optimal choice percentage (level of performance) and 

(b) switch percentage (task flexibility). Optimal choice percentage was defined as how often participants 
exploited the best-paying bandit in relation to all exploitation trials, while switch percentage reflected the 

degree of changing from exploration to exploitation mode (and vice versa) relative to all trials. 

 

We used (mixed) linear models (as implemented in lme4 package (Bates et al., 2014) in R (version 

4.2.2, R Core Team, 2022) to provide further statistical support to some of the PLS analyses. Effect 

sizes were quantified using the partR2 package (Stoffel et al., 2021) to calculate semi-partial R2 (R2) for 

all predictors in the model (Nakagawa & Schielzeth, 2013). 

Reporting results 

We thresholded BSRs at +/-3, unless otherwise indicated. We report brain region results with a minimum 

cluster size of 25 voxels and a minimum distance of 10 mm between the clusters. Harvard-Oxford 

cortical and subcortical atlases (https://cma.mgh.harvard.edu/) in FSLeyes (McCarthy, 2023) were used 
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to automatically label the brain regions at the peak coordinates of the cluster. In addition, we used the 

Oxford thalamic connectivity probability atlas (Behrens et al., 2003) to visualize connections of different 

thalamic regions. For one cluster of above-threshold BSRs, peak coordinates did not provide a label in 

either a cortical or subcortical atlas, so we visually inspected the cluster and identified the region label 

based on the near-peak voxels that could be assigned to a specific brain region. 

3.3  Results 

3.3.1 Elucidating the relationships between prior estimation uncertainty, 
posterior estimation uncertainty, and choice entropy 

To identify which contrasts of exploration and/or exploitation trials could be used to examine the 

relationship between IQR BOLD and uncertainty in exploration-exploitation decision-making, we first 

examined how different types of uncertainty related to each other. We then used these relationships as 

a basis for creating hypotheses for IQR BOLD analyses (presented in the next section).  

All uncertainty types show the same direction of change in a sequence of trials  

Our computational modeling results (Chapter 2) revealed that values of all uncertainty-related variables 

changed in the same manner within a sequence of exploration or exploitation trials; uncertainty 

decreased with each consecutive exploration trial due to learning new information, and increased with 

each consecutive exploitation trial due to forgetting (Figure 3-2A). In addition, the sequence length of 

consecutive trials differed in exploration and exploitation, with exploration sequences being mostly 

composed of a maximum of three trials, while exploitation sequences were often longer. Therefore, 
examining the IQR BOLD across the totality of trials in each position in a sequence could show (1) 

whether IQR BOLD generally tracks the uncertainty levels (increases during exploitation and decreases 

during exploration, like uncertainty does), and (2) whether the increase of IQR BOLD plateaus or takes 

on an inverted U-shape as uncertainty keeps growing during longer sequences of exploitation trials, 

possibly reflecting that the task has become too demanding (Garrett et al., 2014, 2015). 

Negative relationship between choice and estimation uncertainty on exploitation trials  

First, we searched for a way to separate the association between IQR BOLD and sigma (estimation 

uncertainty) vs. entropy (choice uncertainty) in exploration and exploitation. For most participants, 
within-subject correlations of both prior and posterior sigma with entropy revealed a positive relationship 

between both sigma variables and entropy in exploration trials, and a negative relationship in 

exploitation trials (Figure 3-2B). A deeper examination of the relationship between sigma and entropy 

in exploitation revealed that the negative correlation was driven by switch trials (the first trial of an 

exploitation sequence) and arose because when the difference between bandits was large enough to 

make the choice rather deterministic (lower entropy), participants tended to explore in rather short 

sequences thus not allowing sigma to decrease much (higher sigma). Consequently, both sigma and  
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Figure 3-2. Uncertainty measures in the data of an exemplary subject. A – prior sigma (top), posterior sigma 
(middle) and entropy (bottom) decrease in exploration and increase in exploitation trial sequences. Only 
sequences with 2 and more trials are plotted here. B – positive correlation between posterior sigma and entropy 
in exploration (left) and negative correlation between posterior sigma and entropy in exploitation (right). 
Correlation expressed as Spearman’s correlation coefficient. C – for prior sigma (top panel), the highest level of 
uncertainty is observed on explore switch trials and lowest level in exploit switch trials; for posterior sigma 
(bottom panel), the highest uncertainty level is observed on the last exploit trial (noswitch) and lowest 
uncertainty level was observed on the last explore trial (noswitch). First 20 trials (same as in panel A) were 
selected for visualization. 
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entropy would drive IQR BOLD in the same direction in exploration, but in different directions in 

exploitation trials.  

Switch trials differentiate between prior and posterior estimation uncertainty 

Next, we looked for an analysis that would allow us to separate the link between IQR BOLD and prior 

vs. posterior sigma variables. Contrasting switch (first trial in a sequence) and noswitch (other trials) 

trials in exploration vs exploitation could provide such separation. This relationship arises because (1) 
posterior sigma on one trial becomes prior sigma on the next, and (2) uncertainty in a sequence of trials 

decreases to the minimum on the last exploration trial before a switch to exploitation (reflecting that 

information gained on each exploration trial made the beliefs about the reward structure more precise) 

and increase to the maximum on the last exploitation trial before a switch to exploitation (reflecting that 

receiving no information as feedback on exploitation trials makes beliefs about the reward structure 

more uncertain with each exploitation trial). For example, in case of prior sigma (Figure 3-2C), it is high 

on the first trial in an exploration sequence (switch trial). As exploration goes on and more is learned 
about the reward structure, prior sigma on each successive exploration trial in a sequence will be 

smaller, resulting in the smallest value of prior sigma on the last trial of the exploration sequence 

(noswitch trial). At this point the participant has a precise enough idea of the reward structure and 

switches to exploitation. The posterior sigma from the last exploration trial becomes prior sigma of the 

first exploitation trial in a sequence (a switch trial) and is, therefore, lower than the values of prior sigma 

on subsequent exploitation trials in the sequence (which increase reflecting the forgetting process). The 

last trial of the exploitation sequence (noswitch trial) will thus have the highest value of prior sigma, at 

which point uncertainty becomes too high so that participants decide to explore, so that the posterior 
sigma from the last exploitation trial becomes prior sigma on the first exploration trial. The opposite is 

the case for posterior sigma (Figure 3-2C). Consequently, posterior sigma was lowest in explore 

noswitch and highest in exploit noswitch category, while both switch categories had more similar values 

in between. Conversely, prior sigma was lowest on exploit switch trials and highest on explore switch 

trials, while noswitch trials had more similar values in between.  

3.3.2 IQR BOLD tracks uncertainty in exploration and exploitation 

First, we utilized a multivariate task PLS analysis to examine whether the level of IQR BOLD in a 

exploration or exploitation trials reflects the direction of uncertainty change. Exploration sequences of 

more than 3 trials were rare, we limited the number of trials in a sequence to 3 for both exploration and 
exploitation. This analysis thus included 6 conditions based on combinations of exploration/exploitation 

and trial position (1, 2, 3) in a sequence of 3 consecutive trials of the same type. Importantly, only trials 

that belonged to a sequence of at least 3 trials were included in analyses involving these conditions 

(trials that belonged to sequences of 1 or 2 trials were thus excluded).  

 

If IQR BOLD is related to uncertainty in exploration and exploitation, we should see parametric change 

of IQR BOLD that reflects the direction of uncertainty change in a sequence of exploration and 

exploitation trials, with IQR BOLD increasing – in line with uncertainty – from trial 1 to trial 3 in 
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exploitation, and decreasing from trial 1 to trial 3 in exploration (Figure 3-3A). Next, we used brain 

scores (reflecting the brain-dependent latent score from the PLS results) for each participant as a 

dependent variable in a mixed model, with behavior category (exploration, exploitation) and trial position 

(1, 2, 3) in a sequence as independent variables, and participant ID as a random intercept. The presence 

of an interaction would provide further statistical support for a parametric increase of IQR BOLD in 

exploitation and a decrease in exploration. 
 

In line with our expectation, we found a parametric effect in our PLS results expressing a decrease of 

IQR BOLD from trial 1 to 3 in exploration and an increase from trial 1 to 3 in exploitation (LV1: permuted 

p < 0.001, Figure 3-4A). IQR BOLD levels in trial 1 were most similar between exploration and 

exploitation, with increasing separation in later trials. Mixed modeling confirmed a significant interaction 

between behavior category (exploration, exploitation) and trial number (1, 2, 3) (t(197) = -5.87, p = 

1.82e-08, R2 = 0.05). 

 
Strong effects (BSR threshold = +/-3) were observed across a large proportion of the brain (Figure 3-
4B, see Table 3-S1 for cluster peak coordinates). Notably, while there was a small separate cluster in 

the bilateral thalamus, another group of voxels from a larger cluster was clearly localized to the left 

thalamus, spanning mostly thalamic regions with structural connections to prefrontal and temporal brain 

areas (Figure 3-4C). To better assess the spatial distribution of the effects, we increased the BSR 

threshold to 5 (Figure 3-S1) to better allow localization of brain regions showing the strongest effect. 

Doing so revealed multiple clusters in frontal (frontal pole, inferior and superior frontal gyri, frontal 
operculum), lateral occipital, and temporal (3 temporal gyri, temporal fusiform cortex) regions, as well 

as in the paracingulate gyrus, precuneus, and the hippocampus (Table 3-S1). 

 

To dig deeper into how IQR BOLD might track uncertainty in a sequence of consecutive trials in our 

task, we next analyzed consecutive exploitation trials in positions 1 to 5, thus allowing both linear and 

nonlinear effects to be estimated. As with our 3-trial sequence analyses above, only trials that belonged 

to a sequence of at least 5 consecutive exploitation trials were included. This analysis was only possible 

for exploitation, since sequences with more than three trials in exploration were rare. If IQR BOLD 
showed a quadratic effect (Figure 3-3B) in a sequence of 5 consecutive exploitation trials, this could 

indicate that, as uncertainty and the corresponding mental load increase further during exploitation, IQR 

BOLD tracks them only up to a certain point after which further linear increases become too resource 

intensive. To fully assess whether IQR BOLD showed a quadratic effect, we additionally ran a mixed 

model with brain scores as a dependent variable, a linear and a quadratic effect of the trial position (1, 

2, 3, 4, 5) in a sequence as independent variables, and participant ID as a random intercept. 
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Figure 3-3. Schematic representation of hypotheses for Task PLS analyses. A – parametric decrease of IQR 
BOLD in a sequence of 3 exploration trials and increase in a sequence of 3 exploitation trials. B – parametric 
increase of IQR BOLD in a sequence of 5 exploitation trials (linear effect); alternative: inverted-U shape 
(quadratic effect). C – Left: in exploration, IQR BOLD should increase as the level of both sigma and entropy 
increases. Right: in exploitation, the level of IQR BOLD increases with either sigma or entropy levels (L, M, H – 
low, medium, high). D – IQR BOLD is highest on explore switch trials, lowest on exploit switch trials and has 
middle values on noswitch trials of both types; alternative: IQR BOLD is highest on exploit noswitch trials, lowest 
on explore noswitch trials and has middle values on switch trials of both types. 
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Task PLS results revealed that IQR BOLD level increased from trial 1 to 3 and then stagnated from trial 

3 to 5 (LV1: permuted p < 0.001, Figure 3-S2). Brain regions observed in this analysis included the 

posterior cingulate and lateral occipital cortex, as well as frontal (frontal pole, orbitofrontal cortex, inferior 

frontal gyrus) and temporal (middle and superior temporal gyri) regions, and in the hippocampus (Table 
3-S2). Mixed modeling confirmed unique linear (t(134) = 4.88, p = 2.97e-06, R2 = 0.03) and quadratic 

(t(134) = -3.68, p = 0.0003, R2 = 0.02) effects of trial.  
 

 

Figure 3-4. Results of task PLS analysis with IQR BOLD sequences of 3 exploration and exploitation trials 
thresholded at BSR +/-3. A – IQR BOLD (expressed as brain scores) levels in trials 1, 2, 3 in exploration (purple) 
and exploitation (blue). Error bars – SEM. B – axial brain view. MNI coordinates of the first slice: z = -17. Each 
next slice increases z coordinate in increments of 3. BSR – bootstrap ratio. C – sagittal (left), coronal (middle) 
and axial (right) slices (MNI coordinates x, y, z: -7, -19, 2) showing thalamus activation, localized mostly to parts 
of the thalamus connected to prefrontal (purple) and temporal (turquoise) regions, according to the Oxford 
thalamic connectivity probability atlas. L, R – left, right. A, P – anterior, posterior. 
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3.3.3 IQR BOLD changes in the direction of estimation uncertainty rather 
than choice uncertainty during exploitation 

We then examined whether IQR BOLD was more strongly related to estimation or choice uncertainty by 

testing the relationship of IQR BOLD to both sigma (estimation uncertainty) and entropy (choice 

uncertainty). Since uncertainty estimates were continuous in nature, we grouped them into low, medium, 

and high levels. Conditions included in this analysis were based on combinations of 

exploration/exploitation and three levels of posterior sigma/entropy. Since prior and posterior sigma 

showed similar associations to entropy and posterior sigma plays a prominent role in our results, we 

present posterior sigma for this condition to make our results more succinct. The levels of sigma and 
entropy were calculated individually for each participant to yield approximately the same number of trials 

in each low/med/high category. 

 

Since sigma and entropy showed a positive relationship in exploration trials, we expected IQR BOLD to 

show an increase from low to high values of both sigma and entropy in exploration trials. On the other 

hand, since sigma and entropy showed a negative relationship in exploitation trials, we expected IQR 

BOLD to be highest when either sigma is high and entropy is low (suggesting that IQR BOLD follows 

the direction of estimation uncertainty) or when entropy is high and sigma low (suggesting that IQR 
BOLD follows choice uncertainty) (Figure 3-3C). 

 

As expected, IQR BOLD in exploration was highest when both sigma and entropy were highest, and 

decreased as both sigma and entropy decreased (LV1: permuted p < 0.001, Figure 3-S3). The effect 

was present in the posterior cingulate cortex, frontal regions (inferior and superior frontal gyri, 

orbitofrontal cortex, and multiple clusters in the frontal pole), temporal (middle and superior temporal 

gyri, temporal pole), parietal (supramarginal gyrus) and occipital (lateral occipital cortex, lingual gyrus) 
areas, as well as subcortical regions (caudate and putamen; Table 3-S3). For exploitation trials, IQR 

BOLD was highest when sigma was highest and entropy lowest (LV1: permuted p < 0.001, Figure 3-5). 

Further, IQR BOLD decreased with decreasing levels of sigma/increasing levels of entropy. The effect 

was observed in the anterior and posterior cingulate cortices, as well as in the frontal regions (inferior 

gyrus and multiple clusters in the frontal pole), in multiple temporal regions (middle and superior 

temporal gyri, temporal pole) as well as in the hippocampus, in the lateral occipital cortex, and the 

supramarginal gyrus (Table 3-S4).  

3.3.4 IQR BOLD changes in the direction of posterior estimation 
uncertainty rather than prior estimation uncertainty 

Examining switch and noswitch trials in exploration and exploitation allows us to disentangle whether 

IQR BOLD rather moves in the direction of prior sigma (reflecting estimation uncertainty that exists prior 
to making a choice) or in the direction of posterior sigma (reflecting estimation uncertainty that results 

from making a choice). Conditions included in this analysis were based on combinations of 
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exploration/exploitation and switch/noswitch categories (switch trials being the first trial in a sequence 

of continuous exploration or exploitation trials, noswitch trials – all other trials). 

 

If IQR BOLD is more strongly related to prior sigma, we would expect IQR BOLD to be highest in the 

explore switch condition (when prior sigma is highest) and lowest in the exploit switch condition (when 

prior sigma is lowest), with noswitch conditions being in the middle (Figure 3-3D). On the other hand, if 

IQR BOLD rather reflects posterior sigma, we would expect IQR BOLD to be highest in exploit noswitch 

condition (highest posterior sigma) and lowest in explore noswitch condition (lowest posterior sigma), 
with switch trials being in the middle. 

 

We found that explore and exploit trials could be reliably separated from each other, with IQR BOLD 

being highest in the exploit noswitch and lowest in the explore noswitch condition (LV1: permuted p < 

Figure 3-5. Results of task PLS analysis with IQR BOLD at low, medium and high levels of sigma and entropy 
in exploitation trials. Top – axial brain view. MNI coordinates of the first slice: z = -24. Each next slice increases 
z coordinate in increments of 3. BSR – bootstrap ratio. Bottom – IQR BOLD levels (expressed as brain scores) at 
low, medium and high levels of sigma (green) and entropy (blue). Error bars – SEM. 
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0.001, Figure 3-6), corresponding to the level of posterior estimation uncertainty. The spatial distribution 

of the effect covered large areas of the brain when BSR threshold was set to +/-3. Of note, only a small, 

single cluster (the precentral gyrus) showed the opposite effect (higher IQR BOLD in exploration than 

in exploitation; highest IQR BOLD in explore noswitch and lowest in exploit noswitch). At an even more 

conservative threshold of BSR +-6 (Figure 3-S4), cluster peaks most related to the effect could be 

localized to the middle frontal gyrus (dlPFC), posterior cingulate cortex, angular gyrus, lingual gyrus and 
lateral occipital cortex, as well as middle temporal gyrus and the hippocampus (Table 3-S5).  

 

3.3.5 Higher optimal choice percentage is associated with higher level of 
IQR BOLD 

Next, we examined how IQR BOLD might be differentially related to behavior in exploration and 

exploitation. To do so, we first estimated IQR BOLD level for each condition of interest, and then also 

voxel-wise beta weights (slopes) for IQR BOLD change across sequences of 3 consecutive exploration 

or exploitation trials (level and change analyses were performed separately). We expected higher level 

of IQR BOLD and stronger modulation of IQR BOLD in the direction of uncertainty to be positively related 

to behavioral performance in the form of optimal choice.  
 

There was no significant association between IQR BOLD modulation in sequences of 3 consecutive 

trials and optimal choice percentage on the latent level (LV1: permuted p = 0.42). Any further 

interpretation should thus be treated with caution. The direction of the relationship suggested higher 

optimal choice percentage (better performance) was related to a stronger IQR BOLD decrease in 

Figure 3-6. Results of Task PLS analysis with IQR BOLD in switch and noswitch exploration and exploitation 
trials thresholded at BSR +/-3. Left – IQR BOLD levels (expressed as brain scores). Error bars – SEM. NS, S – 
noswitch, switch. Right – axial brain view. MNI coordinates of the first slice: z = -32. Each next slice increases z 
coordinate in increments of 3. BSR – bootstrap ratio. 



Neural Mechanisms 

 62 

exploration, but, in contrast to our expectations, it was related to a more modest increase of IQR BOLD 

in exploitation (Figure 3-S5, Table 3-S6). 

 

To better understand the role of IQR BOLD for performance in our task, we ran a behavior PLS analysis 

with optimal choice percentage and IQR BOLD level (as opposed to modulation) on trials 1, 2, and 3 

separately for exploration and exploitation. For both exploration (LV1: permuted p < 0.001, Figure 3-7) 
and exploitation (LV1: permuted p < 0.001, Figure 3-S6), higher optimal choice percentage was 

associated with higher level of BOLD signal variability across the totality of trials in each condition. In 

terms of the spatial pattern, these results differed from those observed in the Behavior PLS with IQR 

BOLD modulation. The analysis with IQR BOLD level in exploration showed significant effects in the 

middle temporal gyrus, inferior frontal gyrus and frontal pole, as well as in the angular gyrus (Table 3-
S7). The brain pattern in exploitation was similar, though more frontally distributed, and included the 

inferior frontal gyrus, frontal pole and orbitofrontal cortex, as well as the angular gyrus and precentral 

gyrus (Table 3-S8).  
 

Figure 3-7. Results of behavior PLS analysis with level of IQR BOLD in exploration trials 1, 2, 3 and optimal 
choice percentage. Top panel – axial brain view. MNI coordinates of the first slice: z = 3. Each next slice 
increases z coordinate in increments of 3. BSR – bootstrap ratio. Bottom panel – correlation of IQR BOLD level 
(expressed as brain scores) with optimal choice percentage. Bootstrapped CI for correlations: trial 1 – [0.73, 
0.91], trial 2 – [0.76,0.91], trial 3 – [0.71, 0.90]. 
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3.3.6 Stronger modulation of IQR BOLD in the direction of uncertainty 
change reflects higher switch percentage in exploration and longer 
periods of staying in the same mode in exploitation 

We further examined the link between IQR BOLD modulation in exploration and exploitation and switch 

percentage as a measure of flexibility. In a constantly changing environment (as is the case in our task), 

it is important to constantly update information about which bandit currently provides a good payout. Not 

changing between exploration and exploitation modes often enough (low switch percentage) can thus 

be detrimental for performance, since a change of the best-paying bandit can easily be missed. We 

therefore expected higher levels of switch percentage to correlate positively with stronger modulation of 

IQR BOLD – a decrease of IQR BOLD in exploration and an increase in exploitation. 

 
Behavior PLS analysis showed a significant relationship between IQR BOLD modulation in both 

exploration and exploitation and switch percentage (LV1: permuted p = 0.005, Figure 3-8). As expected, 

participants who switched more, decreased IQR BOLD more in exploration. However, contrary to our 

expectations, IQR BOLD increased more in those who switched less in exploitation. Spatially, the effects 

were located in multiple relatively small clusters, including the posterior cingulate cortex, frontal pole, 

middle and superior frontal gyri, the insula, as well as a number of occipital and parietal brain regions 

(Table 3-S9). 
 

We then performed several additional analyses to further probe why a more modest – and not stronger 

– increase of IQR BOLD in exploitation is related to better and more flexible performance.  

 

First, we examined the relationships between behavioral variables more closely. Switch percentage was 

determined by how long participants remained in one mode and correlated negatively with the median 

continuous exploration sequence length (r = -0.45, p = 0.003, Figure 3-S7) and median continuous 

exploitation sequence length (r = -0.86, p = 4.08e-13). Despite the latter relationship being stronger, a 
regression analysis revealed that exploration sequence length had a unique explanatory effect on the 

switch percentage (t(37) = -3.10, p = 0.003, R2 = 0.05) in addition to the effect of exploitation sequence 

length (t(37) = -10.66, p = 7.67e-13, R2 = 0.60).  

3.3.7 A more variable brain system underpins switching out of 
exploitation 

Further, we tested whether the lack of IQR BOLD modulation in exploitation in participants who switch 

more could be related to displaying generally higher levels of BOLD signal variability. For this purpose, 

we examined the relationship between the level of IQR BOLD in trials 1, 2, and 3 of exploitation 

sequences and switch percentage in a subsequent Behavioral PLS analysis. Higher switch percentage 

was associated with higher IQR BOLD level (LV1: permuted p < 0.001, Figure 3-9) in the posterior 

cingulate and insular cortices, as well as in the precentral and angular gyri (Table 3-S11). 
Topographically, these effects didn’t match the effects observed in the PLS analysis with IQR BOLD 



Neural Mechanisms 

 64 

modulation and switch percentage. However, there was indeed a negative correlation between the brain 

scores from the PLS analysis with IQR BOLD modulation on exploitation trials and brain scores from 

the analysis with IQR BOLD level on exploit trial 1 (Spearman’s rank correlation: rho = -0.70, p = 

0.000001), trial 2 (Spearman’s rank correlation: rho = -0.52, p = 0.0006), and trial 3 (Spearman’s rank 

correlation: rho = -0.34, p = 0.03) (Figure 3-10). These latter results suggest that although participants 

who switched more increased IQR BOLD less during exploitation, they nevertheless exhibited a 

generally more variable neural system from moment to moment.  
 

Figure 3-8. Results of behavior PLS analysis with modulation of IQR BOLD in the first 3 exploration and 
exploitation trials and switch percentage. Top panel – axial brain view. MNI coordinates of the first slice: z = 0. 
Each next slice increases z coordinate in increments of 3. BSR – bootstrap ratio. Bottom panel – correlation of 
IQR BOLD modulation (expressed as brain scores) with switch percentage. Bootstrapped CI for correlations: 
Exploration – [-0.67, -0.19], Exploitation – [-0.89, -0.71]. 
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3.4  Discussion 

In the current study, we presented evidence that uncertainty drives BOLD signal variability, providing a 

potential neural mechanism underlying flexible switching between exploration and exploitation modes. 

Specifically, we demonstrate that the level of IQR BOLD parametrically decreased as uncertainty 
decreased during exploration trials, and increased with growing uncertainty during exploitation trials. 

We further show that IQR BOLD was most strongly related to posterior estimation uncertainty (posterior 

sigma), a proxy for the standard deviation of the posterior belief distribution about the estimated value 

of the reward options. Moreover, our results suggest that more flexible performance was associated 

with a stronger IQR BOLD decrease during exploration and that higher levels of IQR BOLD in the 

beginning of the exploitation period could provide the mechanism allowing one to shift out of exploitation 

mode more quickly, thus leading to more flexible and successful performance. 

Figure 3-9. Results of behavior PLS analysis with level of IQR BOLD in exploitation trials 1, 2, 3 and switch 
percentage. Top panel – axial brain view. MNI z coordinates are indicated. Each next slice increases z 
coordinate in increments of 3. BSR – bootstrap ratio. Bottom panel – correlation of IQR BOLD level (expressed as 
brain scores) with switch percentage. Bootstrapped CI for correlations: trial 1 – [0.78, 0.92], trial 2 – [0.76,0.92], 
trial 3 – [0.68, 0.91]. 
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3.4.1 Uncertainty-driven BOLD signal variability as a mechanism to 
balance exploration and exploitation in a changing environment 

In line with existing literature, we show that the change of IQR BOLD levels mirrors the change of 

uncertainty, which might reflect an adaptation of the neural system to a dynamic, uncertain environment 

(Garrett, Samanez-Larkin, et al., 2013; Grady & Garrett, 2018). Compared to deterministic 

environments, uncertainty about the options grows fast and previously learned information quickly 

becomes obsolete in a changing environment (Behrens et al., 2007; Bruckner et al., 2022; Courville et 
al., 2006). When one option is exploited, other options are not sampled, thus resulting in rapidly growing 

uncertainty about their value estimates. In our task, this process is even more extreme, since information 

and reward feedback are completely separated and no information is presented on exploitation trials. 

The values of all options are thus forgotten during exploitation, resulting in an increase of uncertainty 

about all options on each successive exploitation trial. Conversely, choosing an explore response in our 

task provides the only way to decrease uncertainty through exploration (Blanchard & Gershman, 2018; 

Gershman, 2018) in order to create and maintain an up-to-date picture of the world (Pearson et al., 
2011).  

 

Though previous literature linked uncertainty to brain signal variability (Waschke et al., 2021), our study 

is the first to examine the relationship between different types of uncertainty (prior and posterior 

estimation uncertainty, choice entropy) and BOLD signal variability. Both prior estimation uncertainty 

(Daw et al., 2006) and choice uncertainty (Muller et al., 2019) have been shown to play a significant role 

in exploration-exploitation behavior. Our results nevertheless indicate that BOLD signal variability was 

most robustly linked to posterior estimation uncertainty. While choice uncertainty additionally reflected 
value discriminability and prior estimation uncertainty shared influences of both exploration and 

exploitation modes on switch trials, it was posterior estimation uncertainty that reflected uncertainty 

change effects unique to each mode, which were also seen in the IQR BOLD trial-sequence analysis.  

Figure 3-10. Relationship between IQR BOLD modulation and level in exploitation. Correlations between (a) 
brain scores extracted from a behavior PLS analysis with IQR BOLD modulation in exploitation and switch 
percentage and (b) brain scores extracted from a behavior PLS analysis with IQR BOLD level at exploit trial 1, 2, 
3 and switch percentage. 
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Previous research suggested that brain signal variability (and BOLD signal variability in particular) might 

provide a neural mechanism for flexibly adapting behavior to an uncertain, changing environment 

(Waschke et al., 2021). While higher BOLD signal variability was previously observed for more feature-

rich stimuli, which can be thought of as having higher levels of perceptual uncertainty (Garrett et al., 

2020), and tasks endowed with more uncertainty compared to less uncertain tasks (Grady & Garrett, 
2018), our study is the first to demonstrate parametric changes of BOLD signal variability following 

changes in uncertainty in the context of exploration-exploitation decision-making. Importantly, while 

uncertainty levels were inferred from the task design in these studies, our study is the first to quantify 

uncertainty based on model-derived estimates. Changes of BOLD signal variability with uncertainty 

observed in our study might indicate a neural adaptation to a situation when the beliefs about the 

environment become more uncertain (as is the case when uncertainty increases during exploitation), on 

the one hand, vs. a scenario when the picture of the world becomes more precise (as is the case on 

exploration trials). In the former case, the agent should be prepared to face a greater number of possible 
“states” of the world and react to them accordingly, while, in the latter case, instead of spending 

resources on high preparedness, the agent can focus on choosing the best action according to the 

known state of the environment (Garrett, Kovacevic, et al., 2013; Grady & Garrett, 2018).  

3.4.2 BOLD signal variability differentially relates to behavior in 
exploration and exploitation 

Our study highlights an overall important role of BOLD signal variability for good performance (both 

flexibly switching between exploration and exploitation and choosing the highest-paying bandit. Good 

behavioral performance was associated with high levels of BOLD signal variability in both exploration 

and exploitation, despite them being thought of as opposite functions, requiring flexibility to decide what 

to explore and focus to concentrate on exploitation. Though this may sound surprising at first, previous 
literature has already demonstrated similar effects. Higher levels of BOLD signal variability were 

associated with better behavioral performance in both a switching task, which required cognitive 

flexibility, and a distractor inhibition task, which required cognitive stability (Armbruster-Genç et al., 

2016). Our results lend further support to the interpretation that participants who have higher levels of 

BOLD signal variability are likely to perform better overall (Garrett, Samanez-Larkin, et al., 2013). 

 

Despite this similarity, our study also highlights how modulation of BOLD signal variability differentially 

relates to behavior on exploration vs. exploitation trials. Based on the results of task PLS analyses, one 
might conclude that neural mechanisms behind exploration and exploitation are nothing more than the 

opposites of each other (BOLD variability increasing as uncertainty increased during exploitation and 

decreasing as uncertainty decreased during exploration). However, the results of behavior PLS 

analyses indicate that the neural mechanisms driving exploration and exploitation might be more 

complex than could be accounted for by treating the two response modes as mere opposites.  
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For exploration, a decrease of IQR BOLD following a decrease in uncertainty during the first three 

exploration trials might indicate that the decision process became easier with each successive trial, as 

the beliefs about the reward structure became more precise. A negative association between switch 

percentage and IQR BOLD modulation in exploration (which corresponds to a positive association 

between higher switch percentage and stronger IQR BOLD modulation in the direction of uncertainty 

change), might also suggest that the easier it was to make a decision on each successive exploration 
trial, the easier it was to switch between exploration and exploitation modes, possibly because of a 

better understanding of the reward structure. Skowron et al. (2024) recently reported similar effects: 

BOLD signal variability decreased as beliefs about the underlying stimulus distribution became more 

precise with evidence observed on each successive trial. Moreover, participants who showed stronger 

reduction of BOLD signal variability also showed more accurate behavioral performance, possibly 

indicating more efficient learning (Skowron et al., 2024). Our results thus fit an interpretation of stronger 

decrease of variability with each successive exploration trial as a possible marker of a more efficient 

learning process. 
 

For exploitation, we observed an increase of IQR BOLD following an increase in uncertainty in the first 

three exploitation trials. However, contrary to our expectations, it was a smaller, not larger, increase of 

IQR BOLD (a direction opposite to the direction of uncertainty change) that was associated with higher 

switch percentage (more flexible performance). The latter effect was explained by the length of 

continuous exploitation sequences – participants who increased IQR BOLD in exploitation less, spent 

less time continuously in exploitation and thus switched more. In addition, participants who switched 
more and increased IQR BOLD less during exploitation, nevertheless showed higher levels of BOLD 

signal variability on each of the three exploitation trials. Taken together, these results may point to a 

process similar to attractor dynamics. Behavioral stability and flexibility have been previously described 

as functions of attractor states (Durstewitz & Seamans, 2008; Ueltzhöffer et al., 2015). The authors 

characterize stability as a low-energy state, which is illustrated by a deep attractor basin and requires 

more effort to switch to a different mode of action. In contrast, flexibility is described as a high-energy 

state with a shallow attractor basin, allowing easy switching between different actions (Durstewitz & 

Seamans, 2008; Ueltzhöffer et al., 2015). Participants who showed lower increases of IQR BOLD during 
the first three exploitation trials and at the same time had higher levels of IQR BOLD on each of these 

trials might keep their neural system in a high-energy (i.e., high variability) state, in which switching to 

exploration may happen more easily. On the other hand, going deeply into an exploitation mode would 

require more energy to switch to exploration. 

3.4.3 Topographic results reveal how flexible adaptation to the 
environment might support exploration-exploitation decision-
making in a changing, uncertain environment 

Studies utilizing BOLD signal variability to examine behavioral flexibility are rare (Armbruster-Genç et 

al., 2016; Grady & Garrett, 2018); our work represents the first study to link BOLD variability to reward-

based learning and exploration-exploitation. Spatial distributions of the BOLD effects seen in our task 
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often encompassed large portions of the brain, revealing the unusual strength of the relationship 

between BOLD signal variability and uncertainty in the context of exploration-exploitation. Overall, our 

topographic results emphasize the particular importance of uncertainty processing and behavioral 

flexibility for balancing exploration and exploitation in a changing environment. 

 

Note that analyses based on the mean BOLD signal and BOLD signal variability often produce 
complementary results in terms of the brain regions involved in a task (Garrett, Samanez-Larkin, et al., 

2013). Therefore, a relationship between a brain region and a cognitive function should be demonstrated 

by variability-based studies to support the interpretation of the given region’s function. While our study 

makes a significant first contribution to elucidating variability-based neural mechanisms behind 

exploration-exploitation decision-making, more neuroimaging research based on BOLD variability is 

needed in the domains of value-based decision-making and reinforcement learning (Waschke et al., 

2021).  

Behavioral flexibility 

Especially frontally-projecting thalamic regions (as were also found in our data) have been shown to 

play a crucial role in behavioral flexibility (Shine et al., 2023), including switching between task-relevant 

rules (Marton et al., 2018; Rikhye et al., 2018) and options (Chakraborty et al., 2016), as well as 

discovering changes in the reward structure and using them to adapt behavior (Chakraborty et al., 2016). 

Moreover, frontally-projecting neurons in the thalamus have been reported to reflect performance 

variability by accounting for both the positive influence of reward-related exploration and the negative 

influence of memory fluctuations (Wang et al., 2020). As for BOLD variability, higher BOLD signal 
variability in the thalamus has been associated with lower error rates when task switching was required 

(Armbruster-Genç et al., 2016), thus showing its relevance for behavior. Moreover, thalamic BOLD 

signal variability could play a prominent role in in the functioning of the brain overall, as it was shown to 

be a key link between local regional variability and functional integration of the whole brain (Garrett et 

al., 2018). Our results show that the thalamus might support behavioral flexibility needed to successfully 

balance exploration and exploitation, as well as establish uncertainty-driven BOLD signal variability as 

a possible neural mechanism supporting this function in the context of exploration-exploitation decision-
making. 

Uncertainty processing 

Effects linking IQR BOLD to uncertainty on the ExploreExploit task were observed in such brain regions 

as the thalamus and insula, which have been strongly implicated in general uncertainty-related 

processing during decision-making (Bach & Dolan, 2012; Morriss et al., 2019; Shine et al., 2023). For 

instance, parametric increases in thalamic mean BOLD signal tracked parametric increases in 

uncertainty (Kosciessa et al., 2021), while modulations of BOLD signal variability in the insula were 

related to task performance as participants decreased uncertainty about the underlying stimulus 
distribution (Skowron et al., 2024). Modulation of BOLD signal variability in response to perceptual 

uncertainty level in both regions also showed relevance for behavioral performance; participants who 

increased BOLD signal variability in response to an increase in uncertainty, performed best on a host of 
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different tasks (Garrett et al., 2020). In the context of exploration-exploitation research, increased mean 

BOLD signal in both regions was associated with higher uncertainty in exploration-exploitation tasks 

(Chakroun et al., 2020; Tomov et al., 2020) and increasing uncertainty during a series of exploitation 

trials (Chakroun et al., 2020). Furthermore, mean BOLD activity in both regions was reported to be 

higher in exploration compared to exploitation in a study that used a direct behavioral measure to 

unambiguously categorize exploration and exploitation trials (like our own) (Blanchard & Gershman, 
2018). Our results thus extend the findings of existing exploration-exploitation studies by showing that 

BOLD signal variability could provide a neural mechanism supporting uncertainty processing in an 

exploration-exploitation task. 

 

In addition, studies investigating adaptation of BOLD signal variability to different levels of uncertainty 

reported effects in several other brain regions which are also found in our results. For example, a study 

by Grady and Garrett (2018) examined BOLD signal variability as participants engaged in internally vs. 

externally focused tasks, hypothesizing that BOLD variability would be higher on externally oriented 
tasks as they entail more uncertainty reflecting the need to monitor and adapt to the external world. 

They found the hypothesized effect in a number of regions that also feature prominently in our results, 

such as frontal cortex (inferior, middle, and superior frontal gyri), posterior cingulate, posterior parietal 

cortex, precuneus, and insula. Another study examined BOLD signal variability as perceptual input was 

parametrically degraded by adding noise (Garrett et al., 2014) and found an inverted U-shape effect 

seen in a number of brain areas that overlap with our results, including inferior and middle frontal gyri, 

middle temporal gyrus, anterior cingulate, hippocampus, and thalamus. These brain regions 
demonstrated changes in BOLD signal variability related to changes in uncertainty in different types of 

tasks, such as perceptual processing (Garrett et al., 2014), externally vs. internally focused cognition 

(Grady & Garrett, 2018), and exploration-exploitation decision-making (current study). It is therefore 

possible that these regions are involved in supporting neural adaptations to changes in uncertainty 

levels in general.  

3.4.4 Summary 

In summary, we show that BOLD signal variability reflects uncertainty changes during exploration and 

exploitation. This might be a mechanism which underlies flexible switching between the two modes, 

necessary for good performance and, more generally, for successfully navigating a rapidly changing 
world. Our results highlight the importance of brain regions supporting flexible behavior for successfully 

adapting exploration and exploitation to a changing, uncertain environment. 
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4.  Gaze patterns as a real-time observed 
marker of exploration-exploitation decision-
making in a reinforcement learning task 

 

 

Abstract 
In contrast to latent-level accounts of the decision-making process achieved via computational 

modeling, gaze analysis an observable (and grossly underutilized) measure of decision-making 

dynamics. Using eye movements as a marker of the underlying decision-making processes in 

combination with our newly designed ExploreExploit task, we investigate the utility of fixation-based 

dwell location patterns during decision-making in predicting exploration and exploitation responses 
and level of task performance. To our knowledge, the current study is the first to analyze gaze 

behavior in the context of exploration-exploitation decision-making in a reward-based reinforcement 

learning task. We demonstrate that gaze behavior during the decision-making period reflects both the 

expected value and uncertainty of the options and predicts the trial type (exploration or exploitation). 

Moreover, we show that trials with different numbers of dwell locations might provide complementary 

insights into the decision-making process, such as how confident participants are in their choice at the 

beginning of the trial and how they compare options under consideration. Our results also indicate that 
poorer task performance is associated with participants applying correct gaze strategies to an 

inaccurate mental image of the reward structure. Our results demonstrate the utility of eye tracking 

data as a real-time observable measure of the processes that lead to a decision to explore or exploit.  
 

Keywords: exploration, exploitation, eye tracking, gaze patterns, value-based decision-making, 

reinforcement learning 

 

  



Chapter 4 

 77 

4.1  Introduction 

On the use of scan path analysis as a directly observable signature of decision-
making 

While computational modeling provides an indispensable window into the mechanics of decision-making 

processes at a latent level, eye movements continue to provide a directly observable signature of 

decision-making processes in real time (Huddleston et al., 2018; Spering, 2022). Although it remains 

dramatically underutilized in the field, gaze analysis has been used in a number of value-based research 

fields, such as consumer behavior (Gidlöf et al., 2013; Jacob & Karn, 2003), value-based decision-

making (Gluth et al., 2020; Krajbich & Rangel, 2011; Thomas et al., 2021), decision-making under risk 

(Glöckner & Herbold, 2011; Zhou et al., 2016), and economic decision-making (Byrne et al., 2023; Krol 

& Krol, 2017; Polonio et al., 2015) to better understand how decisions evolve, to probe the role of item 
characteristics (e.g. value), and to predict choice. Among gaze analysis techniques, scan path analysis 

is particularly suited to capturing the development of a decision process over time (Byrne et al., 2023; 

Kümmerer & Bethge, 2021; Polonio et al., 2015) as it represents spatial positions of eye fixations in a 

temporal order (Byrne et al., 2023; Jacob & Karn, 2003). In economic decision-making studies, scan 

paths have been shown to differentiate between decision strategies that resulted in an optimal choice 

and those that did not (Polonio et al., 2015). Scan paths have also been used as a basis for machine 

learning analyses differentiating optimal and sub-optimal choice strategies (Byrne et al., 2023; Krol & 
Krol, 2017).  

 

In addition, many-alternative (6 alternatives (Russo & Rosen, 1975), 9-36 alternatives (Thomas et al., 

2021)) value-based decision-making studies demonstrated that, instead of looking at all items 

sequentially and then choosing the one with the highest value, participants selected the preferred item 

using a simpler kind of comparative processing, during which their gaze often alternated between two 

items (Russo & Rosen, 1975; Thomas et al., 2021). For example, Russo and Rosen (1975) describe 

patterns created by gaze as often alternating between two out of six options as “xyx” or “xyxy…”, 
revealing that subjects will shrink the pool of viable options and iterate between them until a decision is 

made. However, it is not yet clear how and why options enter the set of alternatives that are considered 

for a choice. 

 

Beyond gaze patterning, the eye tracking literature also demonstrates that options that are fixated more 

often and for a longer total time are more likely to be chosen (Jacob & Karn, 2003; Krajbich et al., 2010; 

Thomas et al., 2021). Studies on value-based decision-making report more fixations on trials on which 

choices were more difficult (defined as value similarity between alternatives) (Callaway et al., 2021; 
Krajbich et al., 2010). In addition, value-based decision-making studies emphasized a strong role of the 

expected value of options in driving both fixation duration and probability of fixating on an item again 

(Gluth et al., 2020; Krajbich & Rangel, 2011; Thomas et al., 2021). Callaway and colleagues (2021) 

demonstrated that both expected value and uncertainty influenced gaze behavior; fixations were most 

often allocated to the option with the highest expected value and highest uncertainty during choices 

between three alternatives. While the last fixated item was shown to have higher probability of being 



Physiological Mechanisms 

 78 

chosen in general, and especially if it had high expected value (Callaway et al., 2021; Krajbich et al., 

2010; Thomas et al., 2021), such effects were not present for the first fixated item (Krajbich et al., 2010). 

The absence of the effect for the first fixated item is not surprising given that each trial in these paradigms 

begins with a need to collect sensory evidence about what options participants could choose from. 

Instead, the probability of choosing the first fixated item grew with the duration of the first fixation 

(Callaway et al., 2021; Krajbich et al., 2010; Thomas et al., 2021). 
 

The majority of past research on eye movements in value-based decision-making has made use of task 

designs in which participants must first collect visual information to know which options are available to 

be chosen (e.g. Krajbich & Rangel, 2011). Consequently, in tasks with a small number of alternatives, 

each option presented on the current trial must be fixated on at least once; as such, weighing and 

selecting the options can be done only after the initial collection of visual information about which 

alternative options are available on the current trial (Spering, 2022). Moreover, if an item is fixated again, 

it is unclear whether that reflects the process of comparing and selecting alternatives or is caused by 
not having acquired enough sensory evidence during the first fixation of that item (Russo & Rosen, 

1975). However, the necessity to look at each option at least once to know what one is choosing from 

could be eliminated by a task in which the same options are presented on each trial, obviating the need 

to collect any visual information prior to decision-making. Only in this experimental scenario can fixating 

on choice options be regarded as a valid signature of decision-making that is relatively independent of 

sensory evidence accumulation (Russo & Rosen, 1975; Spering, 2022). 

Using scan path analysis to understand explore-exploit decision-making 

No previous studies have analyzed gaze behavior in the context of exploration-exploitation decision-

making. Here, we capitalize on the unique design elements of the ExploreExploit task (also utilized in 

Chapters 2 and 3) to do so; by not requiring participants to collect any visual information prior to making 

a choice, gaze behavior on ExploreExploit trials cannot be muddied by the need to look at choice 

options. We achieve this given that visual input during decision-making is static at all times (i.e., 

participants are shown three fixed geometric figures representing the bandits).  

 
We first sought to establish that gaze reflected the decision-making processes behind responses in our 

task. We expected the chosen bandit to be fixated more often than unchosen ones, showing that the 

eye tracking data reflected choice in a model-independent way. We also expected that fixating on a 

higher-paying vs. more uncertain bandit would be associated with exploitation and exploration 

respectively, revealing that gaze reflects the decision-making processes formulated in our computational 

model (see Chapter 1).  

 

We then applied the idea of the scan path as a temporal sequence of spatially localized dwell locations 
(Jacob & Karn, 2003) to investigate whether the order in which participants looked at the bandits during 

the decision-making period (dwell patterns) predicted the choice to explore or exploit. Our aim was to 

uncover how temporal ordering of dwell locations could provide a detailed signature of exploration-

exploitation decision-making, beyond what is shown by more general measures such as fixation count 
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and duration. Dwell pattern analyses were anchored by the idea of an association between expected 

value and exploitation on one hand, and uncertainty and exploration on the other. Since our study is the 

first to investigate gaze in the exploration-exploitation domain, we formed several general hypotheses. 

First, we reasoned that dwelling on the highest-paying bandit should predict exploitation and dwelling 

on the most uncertain bandit should predict exploration. Since it is not necessary for our participants to 

collect visual evidence to make a choice, any particular trial could include any number of dwell locations, 
resulting in patterns of different lengths. The effect of fixating on the bandit with highest expected value 

predicting exploitation and on the bandit with highest uncertainty predicting exploration could be most 

evident on trials on which just one bandit was fixated, as this could correspond to an “easy choice” (cf. 

Krajbich et al., 2010). In patterns with multiple dwell locations, the start and the end bandit could be 

particularly informative for a choice (cf. Callaway et al., 2021). A focus on the start bandit might indicate 

that participants start the trial with a preference for one option, and this preference is confirmed in the 

course of the decision-making. A focus on the end bandit might suggest that participants were less sure 

at the beginning of the trial and formed a preference towards the end of the decision-making period. In 
addition, in patterns with multiple dwell locations, it may be expected that several bandits that are 

considered for an explore or exploit choice could be compared by alternating the gaze between them 

(e.g. the highest-paying or most uncertain bandit could be looked at interspersed with other bandits, 

taking a form of xyx, xyxy or xyxz) (cf. Russo & Rosen, 1975). Combined, such gaze analytic insights 

could provide novel elucidation of the real-time dynamics of exploration-exploitation decision-making.   

4.2  Materials and Methods 

The eye tracking data presented was collected as part of the fMRI study, previously described in 

Chapters 2 and 3. Please refer to these chapters for detailed information on participants, task design, 

and computational modeling. In the following, we briefly summarize the most important methods-related 

points of the current study and describe acquisition and analysis of the eye tracking data.  

4.2.1 Participants  

Fifty-one young adults were tested in the current study and 47 had usable behavioral data (see Chapter 
2). The eye tracking data for four of these participants was not available due to hardware problems 

during data acquisition. In addition, we excluded five participants (as we did in Chapter 3) who had 

virtually no sequences of multiple exploration or exploitation trials in a row. The final sample thus 

consisted of 38 participants. 

4.2.2 Task design 

The ExploreExploit task is a 3-armed bandit task in which participants choose whether they want to 

explore or exploit one of the bandits on each trial (see Figure 2-1 in Chapter 2 for details). The rewards 

behind each bandit change according to a random walk. Crucially, the feedback consists only of reward 
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after exploitation choices and only of information after exploration was chosen. There were 500 trials in 

the task. 

4.2.3 Computational model 

We developed a reinforcement learning computational model, which was shown to best reflect the 

behavior in our task (see Computational modeling section in the Methods of Chapter 2 for details). This 

model calculates the expected value (EV) for each bandit on each trial, as well as the prior uncertainty 

(prior sigma; before the choice is made) and posterior uncertainty (posterior sigma; after one bandit was 
explored or exploited) associated with it. Since we examine only the decision-making period (time 

starting with the end of feedback on a previous trial and ending with a button press; cf. Figure 2-1) in 

the current study, we use only prior sigma (in the following, referred to as sigma) as a measure of 

uncertainty. 

4.2.4 Eye tracking data acquisition and preprocessing 

The eye tracking data was collected using EyeLink 1000 eye tracker (SR Research Ltd., Mississauga, 

Ontario, Canada) at a sampling rate of 1000 Hz. A 5-point calibration and validation procedure was done 

prior to the first task block and repeated, if needed, prior to any other block.  

 

The preprocessing of the eye tracking data was done using EyeLink software, the FieldTrip toolbox 
(Oostenveld et al., 2011) and custom MATLAB (version R2020a, https://de.mathworks.com/) scripts 

(Kloosterman & Garrett, n.d.). Fixations were defined as data points not classified as saccades or blinks 

by the EyeLink software. For each geometric figure that represented a bandit, we defined location boxes 

(i.e. regions of interest) in such a way that horizontal space between the figures was divided evenly 

between the boxes. Fixations within each box were assigned to the respective bandit and fixations 

outside of the location boxes were removed from subsequent analyses. We further excluded fixations 

with a duration shorter than 50 ms and longer than 800 ms (Kloosterman & Garrett, n.d.). In general, 
most participants’ (19 subjects) data contained less than 10% of trials with no valid eye tracking data. 

Among included participants, the highest level of missingness was seen in 4 participants with 30%-40% 

missing data and one participant falling into the range of 50-60% (Figure 4-S1). Regardless, enough 

trials remained in all of these participants to model effects of interest in the current study. 

 

Since the goal of this study was to investigate gaze in the time until decision to explore or exploit, the 

time in each trial began with the end of feedback on the previous trial and ended with the button press. 

This includes the decision-making period (Figure 1 in Chapter 2; the duration of the decision-making 
period was sampled from a 1000 to 2000 ms uniform distribution, but due to an issue with the experiment 

code, this time was increased to ca. 1175 - 2200 ms, which did not affect performance on the task) and 

the time from the response cue to the button press (max. 1500 ms). In the following, we refer to the 

combination of these trial parts as the “decision-making period,” by which we mean the time until the 
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button press. When we speak of the “trial time” in the following text, it refers directly to the time of the 

decision-making period on that trial. 

4.2.5 Eye tracking data analyses 

Measures of interest 

For the analyses, we combined consecutive fixations within the same location box (i.e., fixations on the 
same bandit) into dwell locations (also called gaze locations). Dwell location is thus equivalent to bandit 

type. We define dwell time as the cumulative time spent in one location box (i.e., fixating on that specific 

bandit). Dwell time is expressed as a fraction of the total decision-making period, within-trial.  

 

To link gaze behavior to our computational behavioral modeling parameters, we first characterized each 

bandit on each trial based on its expected reward (Q) (to which we refer as expected value (EV) in the 

current study) and uncertainty (sigma) associated with it. Specifically, each bandit was assigned an EV 
rank and a sigma rank, which ranged from 1 to 3 (rank 1 – bandit with the highest EV/sigma, rank 2 – 

bandit with the middle EV/sigma, rank 3 – bandit with the lowest EV/uncertainty on the respective trial). 

We then used the logic of scan paths (the temporal sequence of spatial positions of fixations) to create 

“dwell patterns,” defined as sequences of dwell locations based on the expected value (EV) or sigma 

ranks of the respective bandits. We separately analyzed trials with one, two, or three or more dwell 

locations (referred to as 1 dwell location, 2 dwell locations, and 3 dwell locations in the following text). 

For trials with 1 dwell location, the dwell pattern is equivalent to the rank of the fixated bandit (Figure 4-
1). For trials with 2 dwell locations, the dwell pattern starts with one of the possible 3 ranks and ends 

Figure 4-1. Structure of dwell patterns. Dwell patterns with 1 (A), 2 (B), and 3 (C) dwell locations. Dwell patterns 
were based on expected value (EV) or sigma ranks. E.g. pattern 121 means that participant visited the location 
box of the bandit with rank 1, then that of the bandit with rank 2, and then went back to bandit of rank 1 again. 
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with one of the other 2 ranks (resulting in 6 patterns in total). Finally, a pattern with 3 dwell locations 

starts with one of the 3 ranks, followed by one of the other 2 ranks, which is in turn followed by one of 

the other 2 ranks relative to the second position (resulting in 12 patterns in total). We refer to patterns 

with three dwell locations that start and end with the same rank as xyx patterns (e.g. 121, 131, as 

opposed to 123, 132). 

 
Lastly, for dwell patterns with two or three locations, we additionally analyzed dwell time in each position 

in the dwell pattern, expressed as the fraction of total time in the sequence.  

Statistical Analyses 

For the analyses, we used a series of mixed-effects regression models implemented in the lme4 

package (Bates et al., 2014) in R (version 4.3.2) (R Core Team, 2022). All such models include subject 

ID as a random intercept. For analyses with a dichotomous dependent variable (e.g., explore vs exploit 

trial type), we used a generalized linear mixed model with a logit link function (a mixed-effects logistic 
regression model) fit by maximum likelihood (REML; default option in the lme4 package (Bates et al., 

2015) in R). In all logistic regression models with trial type as a dependent variable, exploitation was 

coded as 0 and exploration was coded as 1. We report results of logistic regression models as tables 

with standardized odds ratios (OR) and their respective 95% confidence intervals (95% CI). Results of 

mixed linear regression models are reported as tables with the regression weights (b) and their 95% CI. 

Results tables were produced using tab_model() function from sjPlot package (Lüdecke, 2023). We 
used the emmeans package (Lenth, 2022) to plot the effects of our statistical models.  

 

Additionally, standardized odds ratios (OR) and their 95% CI are used as effect size measure in reported 

results of the logistic regression models (Chen et al., 2010; Ialongo, 2016; Peng et al., 2002). For a 

binary dependent variable and a binary independent variable (as is often the case in our models), OR 

can be interpreted as follows: OR larger than 1 indicates that the odds of the outcome coded as 1 (e.g. 

exploration) are higher than the odds of the outcome coded as 0 (e.g. exploitation) when the level of the 
binary predictor is 1 (e.g. xyx pattern) as opposed to 0 (e.g. non-xyx pattern) (Chen et al., 2010; Peng 

et al., 2002). In addition, for general linear mixed models we used marginal R2 (R2) as a measure of the 

effect size (Nakagawa & Schielzeth, 2013), as implemented in the partR2 package (Stoffel et al., 2021) 

in R. 

 

Since participants don’t have to collect visual information during the decision-making period and 

consequently don’t have to look to any specific option on any particular trial (after button mappings are 

learned during piloting and in the first few exploration/exploitation trials), we first established the validity 
of the eye tracking data in relation to decision-making by analyzing whether the eye tracking data 

reflected choice. We used a mixed-effects logistic regression model with “fixated” (1 – the bandit/dwell 

location was fixated on the current trial, 0 – not fixated) as the dependent variable and “chosen” (1 – the 

bandit was chosen on the current trial, 0 – unchosen), trial type (exploration, exploitation), and their 

interaction as independent variables. This model tests whether the chosen bandit was looked at more 

often than the unchosen bandits and whether this was different between exploration and exploitation. 
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Next, we analyzed whether, on trials on which the chosen bandit was fixated, it was fixated longer than 

the unchosen bandits. For this, we used a linear mixed-effects regression model with dwell time as the 

dependent variable and chosen and trial type (defined as described above), as well as an interaction 

between them, as independent variables.  

 

Next, we checked whether gaze behavior reflected key parameters of our computational model. First, 
we ran separate mixed-effects logistic regression models based on either expected value (EV) and 

uncertainty (sigma) ranks, with trial type as a dependent variable and EV/sigma rank (1 – rank 1, 2 – 

rank 2, 3 – rank 3), fixated (1 – the bandit was fixated on the current trial, 0 – not fixated), and their 

interaction as independent variables. Then, we investigated whether there was an interaction between 

gaze behavior driven by EV (expressed as fixating on the bandit with the highest expected value) and 

sigma (expressed as fixating on the bandit with the highest uncertainty) in determining the trial type. 

This corresponds to the role of value and uncertainty in determining the choice in the computational 

model, reflecting that the highest expected value and highest uncertainty contribute most to the 
probability of the bandit being chosen. For this analysis we used a mixed-effects logistic regression 

model with variables ev_rank1 (1 – bandit of EV rank 1 (highest expected value) was fixated on the 

current trial, 0 – not fixated), sigma_rank1 (same as for EV, but for sigma rank 1 (highest uncertainty)), 

and an interaction between them as independent variables predicting the trial type.  

 

We then asked whether dwell patterns during the decision-making period predicted the trial type 

(exploration or exploitation). To this end, we used a series of mixed-effects logistic regression models 
to analyze patterns with 1, 2, and 3 dwell locations (found on trial with 1, 2, and 3 or more dwell locations, 

respectively) expressed as sequences of EV (expected value) or sigma (uncertainty) ranks of the 

respective bandits in the pattern. We analyzed patterns with max. 3 dwell locations because, in contrast 

to patterns with fewer dwell locations, such patterns could capture looking at all 3 bandits, while still 

providing a reasonable number of trials to analyze in our design. To elucidate whether looking at different 

ranks of EV and sigma could predict choosing exploration vs. exploitation, we first ran models for EV 

and sigma separately, and then followed with a combined model to examine potential interaction effects 

between EV and sigma for predicting trial type.  
 

To better understand gaze patterns, we then investigated whether the dwell time (how long participants 

looked at a bandit) in a specific position in a pattern also predicted the trial type. Dwell time was the time 

spent in a given gaze location (bandit), defined as a fraction of total time of the dwell pattern. We 

investigated whether dwell time in each location differentially predicted trial type, using mixed-effects 

logistic regression models for patterns with 2 and 3 dwell locations. Since patterns with 1 dwell location 

have only one position, we did not include them in the analysis.  
 

Finally, to probe the relationship between the presence of the dwell patterns and task performance, we 

correlated the frequency of dwell patterns with 1, 2, and 3 dwell locations in exploration and exploitation 

with behavioral measures of task performance, which included (1) optimal choice percentage and (2) 
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switch percentage. For patterns with 3 dwell locations, we limited the analysis to xyx patterns (see 

Results below).  

4.3  Results 

4.3.1 Fixations reflect choice 

First, we examined whether the eye tracking data reflected choice. A logistic regression model predicting 

fixation (bandit fixated or not) showed a strong main effect of choice (OR = 14.53, 95% CI = [13.63, 

15.50], p < 2e-16; all model results are reported in Table 4-S1); a bandit was more likely to be fixated if 

it was chosen on the current trial. Importantly there was a significant interaction between choice (chosen, 

unchosen) and the trial type, showing that exploration was more likely when an unchosen bandit was 

fixated and exploitation was more likely when a chosen bandit was fixated (OR = 0.54, 95% CI = [0.49, 
0.60], p < 2e-16; Figure 4-2A).  

 

Moreover, on those trials on which the chosen bandit was fixated, the dwell time on the chosen bandit 

was longer than on the unchosen bandits (b =0.28, 95% CI = [0.27, 0.29], p < 2e-16, R2 = 0.11; Table 
4-S1). Importantly, this model also showed a significant interaction between choice (chosen, unchosen) 

and trial type; dwell time on the chosen bandit was much longer on exploitation than on exploration 

trials, while there was only a modest difference for the unchosen bandits ((b =-0.04, 95% CI = [-0.05, -

0.03], p = 8.89e-10, R2 = 0.001; Figure 4-2B). 

4.3.2 Fixations reflect computational modelling parameters 

In the next step, we examined whether fixations were driven by both expected value (EV) and 

uncertainty (sigma), thus reflecting the key parameters of our computational model of behavior. First, 

we used two separate logistic regression models to examine whether fixating on different EV or sigma 

ranks differentially predicted the trial type, which was the case in both models.  
 

The distribution of fixations to bandits of different EV and sigma ranks in exploration and exploitation is 

presented in Figure 4-3A. The EV-based model (Table 4-S2, Figure 4-3B) produced significant 

interactions between fixation (bandit fixated or not) and EV rank (fixated x rank 2: OR = 3.25, 95% CI = 

[2.93, 3.61], p < 2e-16; fixated x rank 3: OR = 3.29, 95% CI = [2.96, 3.66], p < 2e-16), showing that the 

slope of EV rank 1 (highest expected value) decreased when the bandit was fixated as opposed to not 

fixated, while the opposite was true for the slopes of EV ranks 2 and 3. Similarly, interactions between 
fixation (bandit fixated or not) and sigma ranks significantly predicted the trial type (fixated x rank 2: OR 

= 0.87, 95% CI = [0.79, 0.95], p = 0.03; fixated x rank 3: OR = 0.51, 95% CI = [0.47, 0.57], p < 2e-16). 

While the slopes for sigma ranks 1 and 2 increased from when the bandit was not fixated to when it was 

fixated, the opposite was true for rank 3 (Table 4-S2, Figure 4-3B). 
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Since the exploration and exploitation values of the bandits were driven most strongly by the highest 

expected value and the highest uncertainty in the computational model, we selected only EV rank 1 and 

sigma rank 1 for a combined EV and sigma logistic regression model. In this combined model, trial type 

was significantly predicted by an interaction between fixating on a bandit with EV rank 1 and fixating on 

a bandit with sigma rank 1 (OR = 1.39, 95% CI = [1.19, 1.63], p < 2e-16; Table 4-S3, Figure 4-3C), 

Figure 4-2. Fixations and dwell time reflect choice. (A) Left – number of trials on which fixation on a chosen 
bandit was present, expressed as a fraction of total number of trials in each response condition. Right – 
interaction between choice (0 – unchosen, 1 – chosen) and trial type in a model predicting fixation (0 – not 
fixated, 1 – fixated). (B) Left – dwell time on the chosen bandit on trials on which chosen bandit was fixated, 
expressed as a fraction of total time in the decision-making period on the respective trial. Right – interaction 
between choice (0 – unchosen, 1 – chosen) and trial type in a model predicting dwell time. Dwell time on each 
bandit is expressed as a fraction of total time in the decision-making period on respective trial. 
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indicating that exploitation was most probable when the bandit with EV rank 1 was fixated and the bandit 

with sigma rank 1 was not. Conversely, the highest probability of exploration occurred when the bandit 

with sigma rank 1 was fixated and the bandit with EV rank 1 was not.  

Figure 4-3. Gaze reflects computational model. A – Number of trials on which fixation on a bandit with 
different EV ranks (left) or sigma ranks (right) was present, expressed as a fraction of total number of trials in 
each response condition. B – Bandits with different EV ranks (left) or sigma ranks (right) differentially predict 
trial type depending on whether they were fixated or not. C – interaction between fixating on the bandit with 
highest expected value (EV rank 1) and bandit with highest uncertainty (sigma rank 1) significantly predicts trial 
type. Predicted probability: 0 on the y-axis corresponds to 100% probability of exploitation (0% probability of 
exploration), 1 on the y-axis corresponds to 100% probability of exploration (0% probability of exploitation). 
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4.3.3 Number of dwell locations differentially predicts trial type 

The median number of dwell locations per trial ranged from 1 to 3 (Figure 4-4, left) and trials with more 

dwell locations were increasingly infrequent (Figure 4-S2). The number of dwell locations significantly 

predicted the trial type (OR = 1.34, 95% CI = [1.29, 1.38], p < 2e-16; Table 4-S4), showing that 

exploration became more likely as the number of dwell locations per trial increased (Figure 4-4, right). 

This result pointed to different base rates of exploration across trials, suggesting that trials with different 

number of dwell locations might capture different characteristics of exploration-exploitation decision-
making. To capture different insights that trials with different number of dwell locations might provide 

into how expected value and uncertainty drive gaze behavior during exploration-exploitation decision-

making, we analyzed them separately. These analyses are presented in the following sections. 

 

4.3.4 Dwell patterns with one dwell location 

For separate EV and sigma models based on patterns with 1 dwell location, there was just one fixed-

effects predictor, indicating the EV or sigma rank of the fixated bandit (1 – rank 1, 2 – rank 2, 3 – rank 

3). A combined model included trial type as the dependent variable and ev_rank (1,2,3 – EV rank of the 

fixated bandit), sigma_rank (1,2,3 – sigma rank of the fixated bandit), and an interaction between them 

as independent variables. Dwell patterns thus correspond to the EV/sigma rank of the only fixated bandit 

(see Figure 4-5A for data distributions).  

Figure 4-4. Trial type and number of dwell locations. Left – subjects’ median number of dwell locations on 
exploration and exploitation trials. Right – main effect of n locations in a model predicting trial type. Predicted 
probability: 0 on the y-axis corresponds to 100% probability of exploitation (0% probability of exploration); 1 on 
the y-axis corresponds to 100% probability of exploration (0% probability of exploitation). 
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For both EV and sigma, dwell patterns (ranks) differentially predicted the trial type (Table 4-S5, Figure 
4-5B). When the fixated bandit had EV rank 1, the probability of exploitation was very high (close to 

80%), while looking at either the EV rank 2 (OR = 2.38, 95% CI = [2.10, 2.70], p < 2e-16) or 3 bandit 

(OR = 2.51, 95% CI = [2.15, 2.92], p < 2e-16) significantly increased the probability of exploration. In a 

Figure 4-5. Dwell patterns with 1 dwell location. A – distribution of dwell patterns on trials with 1 dwell 
location based on EV ranks (left) and sigma ranks (right), expressed as a fraction of total number of trials with 1 
dwell location in each response condition. B – main effect of start rank (bandit) in the model based on EV ranks 
(left) and sigma ranks (right). Note that start bandit is the only fixated bandit on trials with 1 dwell location. C – 
interaction between patterns based on EV and sigma ranks predicts trial type. Predicted probability: 0 on the y-
axis corresponds to 100% probability of exploitation, 0% probability of exploration, 1 on the y-axis corresponds 
to 100% probability of exploration, 0% probability of exploitation. 
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model with sigma-based ranks, probability of exploitation was highest when the only fixated bandit was 

of rank 3 (i.e., when uncertainty was lowest; OR = 0.60, 95% CI = [0.53, 0.67], p < 2e-16), with a 

significant increase in exploration probability when bandits with sigma rank 1 or 2 were fixated. We also 

found a significant EV x sigma interaction (OR = 1.58, 95% CI = [1.07, 2.32], p = 0.02; Table 4-S6, 

Figure 4-5C). Plotting model results revealed that exploration probability for EV ranks 1 and 2 showed 

a similar negative trajectory over ranks of sigma (decreasing most at sigma rank 3), while for EV rank 
3, a modestly increasing trajectory was noted across sigma ranks. 

4.3.5 Dwell patterns with two dwell locations 

For models based on patterns with 2 dwell locations, we examined the influence of the start and end 

bandit (bandit looked at first or last, respectively) on predicting response. Separate logistic regression 

models were used to avoid overparameterization. Each model had the same form as the model 

described above for patterns with 1 dwell location. 

 

For both EV, sigma, and their combination (see Figure 4-6A for data distribution), logistic regression 

models predicting the trial type based on the start location (the rank of the first bandit in the pattern) 
produced no significant results (Table 4-S7, Figure 4-S3). In contrast, analyses of the end location 

(Table 4-S8, Figure 4-6B) revealed that EV rank 1 significantly decreased the chances of exploration 

compared to EV ranks 2 (OR = 1.68, 95% CI = [1.42, 1.99], p = 1.94e-09) and 3 (OR = 1.80, 95% CI = 

[1.49, 2.16], p = 5.66e-10). Similarly, sigma rank 1 in the end location significantly increased the 

probability of exploration compared to ranks 2 (OR = 0.79, 95% CI = [0.66, 0.94], p = 0.009) and 3 (OR 

= 0.66, 95% CI = [0.55, 0.79], p = 4.97e-06). A combined model with EV- and sigma-based ranks of the 

end location in a dwell pattern revealed a significant difference between the EV ranks (EV rank 1 vs 2: 

OR = 1.55, 95% CI = [1.12, 2.15], p = 0.009; EV rank 1 vs 3: OR = 1.83, 95% CI = [1.31, 2.56], p = 
0.0004), but no significant main effects of sigma ranks or interactions between EV and sigma ranks 

(Table 4-S9, Figure 4-6C).  

4.3.6 Dwell patterns with three dwell locations 

On trials with 3 dwell locations, xyx patterns were far more prevalent than patterns including all 3 bandits 

(Figure 4-7A). We thus tested a model with predictors xyx (1 = current pattern is of type xyx; 0 = non-

xyx pattern), start (1, 2, 3 - the rank of the start bandit), and interaction between them as independent 

variables. For a model combining EV and sigma, we combined the most prevalent EV-based and sigma-
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based xyx patterns into one variable each. These were patterns starting and ending with 1 for EV (121, 

131) and patterns starting and ending with 3 for sigma (313, 323). We thus created predictors called 

ev_1y1 (a combination of EV-based 121 and 131 patterns) and sigma_3y3 (a combination of sigma-

based 313 and 323 patterns). For both EV- and sigma-based variable, trials with 3+ dwell locations  
 

Figure 4-6. Dwell patterns with 2 dwell locations. A – distribution of dwell patterns on trials with 2 dwell 
locations based on EV ranks (left) and sigma ranks (right), expressed as a fraction of total number of trials with 
2 dwell locations in each response condition. B – main effect of end rank (bandit) in the model based on EV 
ranks (left) and sigma (right panel). C – no significant interaction between the end rank in patterns based on EV 
and sigma. Predicted probability: 0 on the y-axis corresponds to 100% probability of exploitation, 0% probability 
of exploration, 1 on the y-axis corresponds to 100% probability of exploration, 0% probability of exploitation. 
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on which any pattern that was part of the combination occurred were coded as 1, and 0 otherwise. The 

model also included an interaction term between ev_1y1 and sigma_3y3. 

explore
exploit

Sigma
explore
exploit

A

SigmaB

C

Figure 4-7. Dwell patterns with 3 dwell locations. A – distribution of dwell patterns with 3 dwell locations 
based on EV ranks (left) and sigma ranks (right), expressed as the fraction of total number of trials with 3+ dwell 
locations in each response condition. B – interaction between xyx (0 – non-xyx pattern, 1 – xyx pattern) and the 
rank of the start bandit (which is the same as the rank of the end bandit in xyx patterns) in both the model 
based on EV ranks (left) and sigma ranks (right) significantly predicted trial type. C – no significant effect of 
interaction between most common xyx patterns based on EV and sigma ranks. For this analysis, most common 
xyx EV-based patterns (121 and 131) were combined into 1y1 predictor and most common xyx sigma-based 
patterns (313 and 323) were combined into 3y3 predictor. Predicted probability: 0 on the y-axis corresponds to 
100% probability of exploitation, 0% probability of exploration, 1 on the y-axis corresponds to 100% probability 
of exploration, 0% probability of exploitation. 
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Significant xyx by start interactions in the EV-based model (Table 4-S10, Figure 4-7B) indicated that 

while exploration probability was fairly similar for non-xyx patterns with different start ranks, exploration 

markedly decreased for xyx patterns that started/ended with 1, while it remained the same and even 

slightly increased for xyx patterns that started (and ended) with 2 (OR = 1.96, 95% CI = [1.37, 2.80], p 

= 0.0002) and 3 (OR = 3.04, 95% CI = [2.08, 4.44], p = 1.01e-08). Note that patterns starting with 1 and 

3 showed opposite trajectories of exploration probability between non-xyx and xyx patterns. 
Consequently, the highest exploitation probability was predicted for xyx patterns starting with EV rank 1 

and the highest exploration probability was predicted for xyx patterns starting with EV rank 3 (Figure 4-
7B).  

 

The only significant effect in the sigma-based model (Table 4-S10, Figure 4-7B) was an interaction 

showing a much stronger decrease in exploration probability between non-xyx and xyx patterns if the 

patterns started with rank 3 (OR = 0.60, 95% CI = [0.42, 0.87], p = 0.007), while there was only a slight 

decrease for patterns starting with ranks 1 and 2. Exploration probability was predicted to be highest for 
non-xyx patterns starting with sigma rank 3 and lowest for xyx patterns starting (and ending) with sigma 

rank 3.  

 

A model combining the most prevalent xyx-type patterns based on EV ranks (patterns 121 and 131) and 

sigma ranks (patterns 313 and 323) showed a significant effect of EV patterns in predicting the trial type, 

but no significant effect of sigma patterns or interaction between EV and sigma patterns (Table 4-S11, 

Figure 4-7C). 

4.3.7 Dwell time in each position in a dwell pattern 

Since our results above showed that models combining the expected value (EV) and sigma patterns 
mostly produced significant results only for expected value and not for sigma or their interactions, we 

used only EV-based patterns for the following analyses of dwell time. 

 

We used mixed-effects logistic regression models for patterns with 2 and 3 dwell locations to predict 

trial type from dwell time in each position in a pattern. Since patterns with 1 dwell location only have one 

position, these patterns were not analyzed. For patterns with 2 dwell locations, we ran a model with 

position (1 – start position in the pattern, 2 – end position in the pattern), dwell time (time spent in the 
position), and an interaction between them as independent variables. As only the end bandit significantly 

predicted response type in patterns with 2 dwell locations, we also included EV rank of the end bandit 

as a predictor. For patterns with 3 dwell locations, the model included position (1, 2, 3 – start, middle, 

or end position in the pattern, respectively), dwell time, an interaction between position and dwell time, 

as well as xyx (1 – pattern is of type xyx, 0 – non-xyx pattern) as predictors. The xyx predictor was based 

on EV rank and was included in the model due to its effect in predicting trial type in patterns with 3 dwell 

locations shown above. 
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For patterns with 2 dwell locations, a logistic regression model showed that an interaction between dwell 

time and position (OR = 1.78, 95% CI = [1.14, 2.78], p = 0.01) significantly predicted the trial type, after 

accounting for the effect of the EV rank of the end bandit. The longer participants looked at the first 

bandit, the more the chances of exploration decreased, while the longer they looked at the second 

bandit, the more chances of exploration increased (Table 4-S12, Figure 4-S4A).  

 
Similarly, a model predicting the trial type from the dwell time spent in each position in patterns with 3 

dwell locations showed a significant dwell time x position 2 interaction (OR = 2.96, 95% CI = [1.70, 5.13], 

p = 0.0001), after accounting for the effect of whether it was an xyx pattern or not. As participants spent 

more time in the first dwell location, exploitation became ever more likely, while spending more time in 

the second position increased the chances of exploration (there was no significant interaction effect 

between dwell time and position 3; Table 4-S13, Figure 4-S4B). 

4.3.8 Correlations between frequency of dwell patterns and behavioral 
performance 

We then examined possible relationships between frequency of the EV-based dwell patterns with 1, 2, 

and 3 dwell locations (limited to xyx patterns for the latter) in exploration and exploitation trials and task 

performance (optimal choice percentage and switch percentage). All correlation results (uncorrected) 
are listed in Tables 4-S14 – 4-S16 for dwell patterns with 1-3 dwell locations, respectively.  

 

For patterns with 2 dwell locations, there was a significant negative correlation (Figure 4-8) between 

switch percentage and the frequency of patterns 31 (Pearson’s r = -0.35, p = 0.03; Spearman’s rho = -

0.38, p = 0.02) and 32 (Pearson’s r = -0.37, p = 0.02; Spearman’s rho = -0.31, p = 0.06) in exploration. 

In addition, the presence of pattern 31 correlated positively with exploitation percentage (explore 31: 

Pearson’s r = 0.35, p = 0.03; Spearman’s rho = 0.35, p = 0.03), while correlation of pattern 32 and 
exploitation percentage approached significance (explore 32: Pearson’s r = 0.29, p = 0.08; Spearman’s 

rho = 0.27, p = 0.11). Together these results indicate that the more participants first looked at the bandit 

of EV rank 3 but ended on either rank 1 or 2, the more they exploited and the less likely they were to 

switch.  

 

For patterns with 3 dwell locations (only xyx patterns were examined), there was a significant negative 

correlation (Figure 4-9) between the frequency 323 pattern in exploration and optimal choice 

percentage (Pearson’s r = -0.31, p = 0.07; Spearman’s rho = -0.40, p = 0.02) as well as switch 
percentage (Pearson’s r = -0.38, p = 0.03; Spearman’s rho = -0.39, p = 0.02). Additionally, there was a 

significant positive correlation with exploitation percentage (Pearson’s r = 0.38, p = 0.03; Spearman’s 

rho = 0.35, p = 0.04).  



Physiological Mechanisms 

 94 

These results suggest that as the proportion of EV-based pattern 323 in exploration increased, 

participants switched less, spending more time exploiting the non-optimal bandit during that time, thus 

making fewer optimal choices overall. 

4.4  Discussion 

In the current study, we investigated how gaze during the decision-making period could provide insights 

into the process behind a decision to explore or exploit. For this purpose, we analyzed fixation-based 

dwell location patterns defined by the expected value (EV) or uncertainty (sigma) ranks of the bandits 
in the ExploreExploit task. Our results show the great utility of dwell patterns during the decision-making 

Figure 4-8. Correlations between patterns with 2 dwell locations and behavior. Correlations between 
frequency of EV-based patterns 31 (A) and 32 (B) on exploration trials with switch percentage (left) and 
exploitation percentage (right). Frequency of dwell patterns is expressed as a fraction of total number of trials 
with 2 dwell locations in exploration and exploitation (separately). r – Pearson’s correlation coefficient, rho – 
Spearman’s correlation coefficient, p – p-value. 
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period for predicting a response (exploration or exploitation) and their association with task performance 

(optimal choice percentage).  

4.4.1 Using gaze as a veridical signature of the decision-making process  

Commonly used paradigms in value-based decision-making studies that have been combined with eye 

tracking often require participants to collect visual information about the available options before making 

a choice (Gluth et al., 2020; Krajbich & Rangel, 2011; Thomas et al., 2021). Not only does this 

information-gathering process at least partially determine the eye movements in the beginning of the 
trial (Spering, 2022), it cannot easily be separated from the processes of evaluation and option 

comparison throughout the trial. This inherent combination of perceptual information-collection and 

decision-making elements is reflected in the use of evidence accumulation models in such designs 

Figure 4-9. Correlations between patterns with 3 dwell locations and behavior. Correlations between 
frequency of EV-based pattern 323 on exploration trials and optimal choice percentage (A), switch percentage 
(B), and exploitation percentage (C). Frequency of dwell patterns is expressed as a fraction of total number of 
trials with 3+ dwell locations in each response condition. r – Pearson’s correlation coefficient, rho – Spearman’s 
correlation coefficient, p – p-value. 
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(Krajbich & Rangel, 2011; Thomas et al., 2021). Furthermore, work on how gaze allocation is related to 

the subjective value of fixated and not-fixated items is still ongoing and presents a complex picture, 

highlighting the difficulty of interpreting the underlying decision-making mechanisms related to observed 

gaze behavior. For example, while it was traditionally assumed that the value of fixated items increased, 

Sepulveda and colleagues (2020) showed that participants fixated more on the item they intended to 

choose, regardless of whether they had to choose the item they preferred most or the one they preferred 
least. Their results indicate that allocation of visual attention does not lead to increased value per se, 

but instead modulates goal-directed evidence accumulation (Sepulveda et al., 2020).  

 

In contrast to such paradigms, the advantage of the ExploreExploit task is that there is no need to look 

at the options prior to choice because they are always fixed. This feature makes it particularly well suited 

to be paired with gaze data related to the underlying decision-making process. Accordingly, the 

presence of strong effects of the chosen bandit – both in how often and for how long it was fixated – 

lends particularly convincing evidence that the gaze data in our task reflects choice rather than evidence 
accumulation, and can thus be considered a viable signature of the underlying decision-making process.  

4.4.2 Gaze behavior reflects parameters of our computational model of 
exploration-exploitation decision-making 

Beyond previous research showing that both EV and uncertainty drive fixations in a value-based 

decision-making task (Callaway et al., 2021), we show that participants’ decision to explore or exploit 

was determined by fixating on bandits with the highest expected value (EV) and bandits with the highest 

uncertainty (sigma). The particular importance of high EV in predicting exploitation trials and of high 

sigma in predicting exploration trials was highlighted by both the interaction analysis and separate 

analyses of EV and sigma ranks predicting the trial type. These results are in line with the general 

conceptualization of exploitation as a behavior focused on reward maximization and of exploration as a 
behavior driven by uncertainty reduction (Blanchard & Gershman, 2018; Sutton & Barto, 1998), as is 

also implemented in the reinforcement learning model used in the current study.  

 

Similarly, the results of dwell pattern analyses with 1, 2, and 3 dwell locations unanimously point to the 

unique ways that one may fixate on high-reward options during exploitation and on bandits with high 

uncertainty during exploration. When examining patterns with 2 and 3 dwell locations, there were 

significant effects of EV, but no significant effects of sigma or interactions. In contrast, there was an 

interaction between EV and sigma in a combined model for patterns with 1 dwell location. This 
interaction highlighted the divergence of trajectories of EV ranks for the lowest uncertainty bandit (sigma 

rank 3) in predicting the trial type, suggesting that EV might play the primary role in determining the trial 

type, while sigma could play a more subtle role in driving the decisions. The relative importance of the 

expected value might indicate that gaining information during exploration serves the purpose of gaining 

reward during exploitation, thus highlighting that two modes are connected and part of the same 

behavioral complex that allows participants to optimally function in their environment.  
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Taken together, these findings demonstrate that gaze behavior during the decision-making period 

provides an observed marker of the decision-making process behind the choice to explore or exploit, in 

line with how this process is formulated in our computational model.  

4.4.3 Trials with different numbers of dwell locations provide 
complementary insights into the explore-exploit decision-making 
process 

Our results suggest that patterns with 1, 2, and 3 dwell locations might highlight qualitatively different 

features of exploration-exploitation decision-making. Specifically, trials with just 1 dwell location – the 

most prevalent type of trial for most participants – seem to reflect decisions with a strong focus on a 

particular option, as indicated by the probability of exploitation of ~80% on trials on which the bandit with 

the highest EV was fixated. This is consistent with results showing that in a value-based choice task 
with three alternatives, the number of fixations was lower when the difference in value between 

alternatives was higher (and the choice was consequently easier) (Callaway et al., 2021; Krajbich et al., 

2010) and might reflect that participants were relatively confident in their choice already at the beginning 

of the decision-making period. On trials with two dwell locations, only the end location (bandit) plays a 

key role in predicting the trial type, reminiscent of the choice bias towards the last fixated alternative 

shown by previous value-based decision-making studies (Callaway et al., 2021; Krajbich et al., 2010; 

Thomas et al., 2021). Such trials might reflect decisions that started with less confidence in which option 
should be chosen and a preference was formed by the end of the trial. Patterns with three dwell locations 

highlight a particular importance of the xyx pattern type (pattern in which the first and the last bandit are 

the same) for predicting the decision to explore or exploit. This result could indicate that these trials 

might have needed more deliberation to make a decision, which was achieved using repeated gaze 

allocation as a mechanism supporting the comparison of specific alternatives (Russo & Rosen, 1975; 

Thomas et al., 2021).  

 

Although examining three dwell locations allows one to capture whether participants looked at all 
available bandits, participants indeed did not look at all three locations prior to choice on the majority of 

trials. This is a result that is derivable due to the design of the ExploreExploit task, which does not 

require participants to collect visual information about which options are available to make a choice. As 

most paradigms in the field would do, requiring evidence accumulation of choice options on a given trial 

would necessarily force fixations towards all available options, thus disallowing subjects to behaviorally 

reveal that they are not considering a given option.  

 

All types of examined patterns emphasize the importance of fixating on the bandit with the highest 
expected value for predicting an exploitation response and on the importance of fixating on the bandit 

with the highest uncertainty for predicting an exploration response. However, the interaction between 

xyx pattern type and EV (or sigma) rank in patterns with 3 dwell locations reveals a novel and nuanced 

picture. Beginning and ending a pattern with a bandit with the highest EV (patterns 121 and 131) might 

represent a gaze behavior that is particularly strongly associated with exploitation. At the same time, 
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the sigma-based model highlights the differential role of starting a pattern with the bandit with the lowest 

uncertainty (sigma rank 3) for deciding whether to explore or exploit, based on whether it’s an xyx pattern 

or not. These results suggests that, while the expected value seems to be the driving force behind 

choosing the response, uncertainty might have a more subtle role in exploration-exploitation decision-

making. Previous research also showed that in large item sets in which not every item could be fixated, 

participants did not look at items sequentially, but instead compared options by shifting their gaze back 
and forth between them (Thomas et al., 2021). Similarly, Russo and Rosen (1975) suggested that 

participants use binary processing (reflected in fixation patterns of type xyx or xyxy…) as a strategy to 

compare alternatives in a multi-alternative value-based choice task. Such alternating gaze behavior 

possibly allows participants to focus their attention and decision-making resources on the options they 

are currently considering and might serve to arrive at a decision more efficiently by considering pairs of 

competitor options and eliminating one of them. This could be a possible mechanism explaining higher 

prevalence of xyx patterns, especially patterns beginning and ending with EV rank 1 (highest expected 

value) in our data, as well as a particularly important role of EV rank 1 patterns for predicting exploitation 
responses. Of note, evaluating more dwell locations could reveal further patterns than were possible in 

our current design (such as xyxy); as such, future studies might extend the duration of the decision-

making period to allow for more dwell locations to be visited.  

 

Our results indicate that the temporal order of dwell locations during a decision-making period provides 

a detailed decision-making signature (beyond more general measures such as fixation count and dwell 

time), which allows one to predict the trial response and shows an association with task performance. 
Our study allows future research to produce specific hypotheses as to how gaze can provide insights 

into the decision-making process behind exploration and exploitation, as well as to potentially use gaze 

signatures for an real-time prediction of behavior (Deng et al., 2020; cf. Ji et al., 2004) 

4.4.4 Participants who perform worse use typical gaze strategies but 
apply them to an incorrect model of the reward structure 

Correlating frequency of dwell location patterns with behavioral performance revealed that patterns 

emphasizing dwelling on options with the lowest expected value (EV) on exploration trials were 

associated with exploiting more, switching less, and choosing the optimal bandit less often. Both 

patterns with 2 (31 and 32) and 3 (323) dwell locations support the interpretation that worse performers 

may often apply typical gaze strategies to an incorrect mental picture of the reward structure. Although 

it is reassuring that all significant correlations point in the same direction of interpretation, emphasizing 
that dwelling on bandits in the lower range of the reward structure is detrimental to performance, caution 

is warranted in interpreting these findings, since these dwell patterns were observed on a relatively small 

number of trials (relative to other xyx patterns, especially those beginning with one) and correlations 

were exploratory. Replication studies are needed to confirm their robustness. Of note, behavioral 

performance in our task was very high and trials on which the aforementioned gaze patterns occurred 

were genrally rare. To capture the whole performance spectrum better, future studies could contrast 

more and less difficult task blocks (e.g. by manipulating bandit similarity) and thus shed more light on 
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the association between gaze patterns including lower EV ranks (e.g. 323) and worse task performance 

(lower optimal choice percentage).  

4.4.5 Summary 

Our study provides a first account of the association between gaze during explore-exploit decision-

making and how it reflects task performance. Our results emphasize the importance of looking at the 

bandit with the highest expected value for exploitation and of looking at the bandit with the highest 

uncertainty for exploration. We also find that the expected value of the bandits could be the driving force 
behind gaze behavior, while uncertainty might have a more subtle role. We further show that trials with 

different numbers of dwell locations (fixated bandits) provide complementary insights into exploration-

exploitation decision-making, highlighting how option features might have been considered in the 

decision-making process. Crucially, our findings reveal that it is both where (EV/sigma ranks of the 

bandit) and how (dwell pattern type) participants look at options that determine their decision to explore 

or exploit. Lastly, we show that participants who perform worse, use the same forms of gaze strategy 

as better-performing participants, but appear to have an erroneous understanding of the reward 

structure prior to choice. Our study offers a key starting-point for future studies to formulate specific 
hypotheses regarding gaze behavior during exploration-exploitation decision-making, while providing 

directly observable insights that neither button presses nor computational modeling alone can provide. 
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5.  General Discussion 
The aim of this dissertation was to examine behavioral, computational, neural, and physiological 
mechanisms of human exploration-exploitation behavior. In Chapter 2 of this dissertation, I presented a 

newly designed ExploreExploit task, which combines the benefits of previously used paradigms while 

avoiding their drawbacks. Using the ExploreExploit task and a computational model that best reflected 

behavior in this task, I examined fMRI and eye tracking data to shed light on neural and physiological 

mechanisms underlying exploration-exploitation behavior. In Chapter 3, I showed that BOLD signal 

variability could function as a neural mechanism that allows to flexibly adapt exploring and exploiting to 

a changing environment. In Chapter 4, I demonstrated that different gaze patterns during the decision-

making period predicted response and provided complementary insights into the decision-making 
process that lead to a decision to explore or exploit. In this chapter, I summarize contributions of this 

dissertation to the field of exploration-exploitation research, discuss limitations and outline suggestions 

for future studies. 

5.1  Main contributions of this dissertation to the field of 
exploration-exploitation research 

First, this dissertation expands the toolkit of exploration-exploitation research with the ExploreExploit 
task. Making use of the key distinction in motivation for exploratory and exploitative actions (receiving 

information vs. reward, respectively (Blanchard & Gershman, 2018)), the ExploreExploit task allows 

participants to indicate directly whether they explore or exploit on a given trial, thus ensuring valid trial 

categorization. In addition, this task possesses a flexible reward structure (Daw et al., 2006) that allows 

for the manipulation of multiple features of the reward environment (such as reward range, magnitude, 

probability, wins and losses, volatility, etc.) and for one to adjust the task structure itself (increase or 

decrease number of bandits, incorporate different task horizons, novel options, etc.). At the same time, 
our task allows participants to explore or exploit on any trial as they see fit (unlike paradigms forcing 

exploration on certain trials by providing a novel option (e.g. Hogeveen et al., 2022) or by manipulating 

uncertainty levels of the options (e.g. Wilson et al., 2014)). The ExploreExploit task thus captures natural 

exploration-exploitation behavior. In addition, the best-fitting computational model presented in this 

dissertation adapts commonly used reinforcement learning models (Daw et al., 2006; Sutton & Barto, 

1998) to a task in which information and reward feedback are strictly separated, thus laying the grounds 

for computational modeling of similar tasks. All in all, the ExploreExploit task not only captures key 

behavioral features of exploration and exploitation, but also does so in multiple experimental settings, 
proving itself a robust paradigm capable of producing replicable results. 

 

Further, this dissertation demonstrates that uncertainty-driven BOLD signal variability could potentially 

be a neural mechanism behind flexibly adapting exploration-exploitation behavior to a changing 

environment. Exploration-exploitation studies typically examined different types of uncertainty only in 

the context of their relation to different exploration types, such as relative and total uncertainty 
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representing directed and random exploration (Gershman, 2018; Tomov et al., 2020), or studies 

concentrate only on one uncertainty measure (e.g. choice entropy (Muller et al., 2019)). This dissertation 

is the first to systematically examine the role of different types of uncertainty (prior and posterior 

estimation uncertainty, choice uncertainty) in flexibly adapting exploration-exploitation behavior to a 

changing environment. I show that BOLD signal variability was most robustly related to posterior 

estimation uncertainty, which reflects uncertainty about the reward structure participants have after they 
make a choice and receive feedback about it, and was the only uncertainty type that reflected uncertainty 

changes unique to exploration and exploitation modes. This dissertation thus demonstrates a strong link 

between uncertainty changes and BOLD signal variability during exploration-exploitation decision-

making, in line with the idea that higher uncertainty levels in the environment require a more variable 

neural system to be prepared to adapt to a larger number of possible “states” of the world (Grady & 

Garrett, 2018; Waschke et al., 2021). Furthermore, my results highlight brain regions (like the thalamus 

and the insula) that are likely involved in uncertainty processing (Bach & Dolan, 2012) and form the 

neural basis for flexibly adapting behavior to changes in the environment (Shine et al., 2016), thus 
emphasizing the importance of these functions for exploration-exploitation decision-making and an 

important role of BOLD signal variability in supporting these functions. 

 

Both higher levels (Armbruster-Genç et al., 2016; Garrett et al., 2011; Grady & Garrett, 2018) and 

stronger modulation (Garrett et al., 2013, 2015, 2020; Skowron et al., 2024) of BOLD signal variability 

have been shown to be beneficial for performance in a vast array of tasks. My results contribute to a 

more nuanced understanding of this relationship. In my task, a higher level of BOLD signal variability in 
both exploration and exploitation was associated with better performance, as was shown in multiple 

previous studies (CITE). However, stronger variability modulation only during exploration was 

associated with better and more flexible performance. Contrary to our expectation, during exploitation, 

less strong modulation of BOLD variability was related to better and more flexible performance. This 

finding might suggest that stronger BOLD variability modulation is not beneficial for behavioral 

performance per se, but instead the strength of the modulation adapts to meet the task demands. 

Specifically, while stronger modulation of BOLD variability in exploration possibly reflected a more 

efficient learning process (Skowron et al., 2024), stronger modulation of variability in exploitation was 
related to staying longer (possibly too long) in exploitation mode. Though participants who showed more 

flexible behavior modulated variability in exploitation less, they nevertheless had higher levels of brain 

signal variability overall, potentially indicating a more variable neural system that allowed them to switch 

out of exploitation mode faster. As has been shown in a study that pharmacologically modulated BOLD 

variability in younger and older participants, the relationship between the increase of variability and 

performance might not be linear and pharmacologically increasing some participants’ BOLD signal 

variability too much might have had an adverse effect on performance (Garrett et al., 2015). This 
dissertation thus contributes to the understanding of a complex relationship of BOLD signal variability 

changes and behavior. 

 

Further, this dissertation is the first to examine the mechanisms of exploration-exploitation decision-

making using gaze data. In line with the existing literature reporting that scan paths (fixation-based gaze 
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patterns) during the decision-making phase can differentiate between optimal and sub-optimal 

responses (Byrne et al., 2023; Krol & Krol, 2017; Polonio et al., 2015), I show that gaze patterns during 

the decision-making period robustly predicted whether participants would explore or exploit. To date, 

eye tracking studies have only used pupillometry to examine the role of uncertainty and expected value 

in exploration-exploitation decision-making, showing that higher levels of total uncertainty were 

associated with higher pupil diameter (Fan et al., 2023) and that pupil dilation prior to choice correlated 
with the value belief of the chosen option (Slooten et al., 2018). Extending this literature, this dissertation 

sheds light on how the expected value and uncertainty of the options might drive a decision to explore 

or exploit, revealed through eye tracking; gaze patterns indeed reflected the prominent influence of the 

expected value in exploitation and uncertainty in exploration (as is formulated in the computational 

model used in this study). Furthermore, my results show that participants who performed worse, applied 

typical gaze patterns to options in the lower part of the reward spectrum. This dissertation emphasizes 

the potential of the gaze data during the decision-making period to predict subsequent exploration or 

exploitation response based on the expected value and uncertainty of the options, as well as the 
relationship between gaze patterns during the decision-making period and behavioral performance. 

 

Crucially, in contrast to experimental paradigms used in eye tracking studies on value-based decision-

making (Byrne et al., 2023; Callaway et al., 2021; Polonio et al., 2015; Thomas et al., 2021), the 

ExploreExploit task does not require participants to collect visual information about the options to make 

a choice (and thus does not require to look at all options on each trial). The gaze data can thus reflect 

which options are considered for a choice on a given trial and provide a veridical signature of the 
decision-making process (Spering, 2022; Thomas et al., 2021). This is another useful feature of the 

ExploreExploit task that makes it a valuable tool for eye tracking research in exploration-exploitation 

domain. This dissertation shows that the number of bandits that were looked at during the decision-

making period might reflect different characteristics of the decision-making process, such as being 

relatively confident in the choice at the beginning of the decision-making period or rather forming a 

decision by the end of it. This result was most prominent when only one bandit was looked at and it had 

the highest expected value (in this case the probability of the response being exploitation reached 80%). 

In addition, when more deliberation is needed, comparing options in pairs might be the strategy allowing 
to arrive at a decision most efficiently (Russo & Rosen, 1975; Thomas et al., 2021). Taken together, 

these results extend our understanding of the decision-making process in an exploration-exploitation 

task. 

5.2  Limitations 

The ExploreExploit task contains multiple important features that allow for a thorough investigation of 

exploration-exploitation behavior. However, no task design is without limitations. In the following, I 

discuss them and make suggestions for how they could be addressed in future research. 

 

For example, the use of optimal choice percentage as a measure of task performance is necessary and 

valuable in our study, because, in contrast to the obtained reward percentage, it can indicate that 
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participants (1) understood how to do the task, (2) diligently did the task, and (3) learned and could 

follow the reward structure. See Optimal choice as a measure of task performance in Supplementary 

Methods of Chapter 2 for a detailed discussion. However, using optimal choice to assess task 

performance also entails certain costs, as outlined below.  

 

First, optimal choice percentage does not reflect the trade-off between exploration and exploitation 
(reward percentage would reflect the trade-off, but it would punish exploration very strictly due to no 

reward on exploration trials). It is thus possible that, even with the smallest number of exploitation trials, 

participants could obtain a very high percentage of optimal choice, if they exploited the highest-paying 

bandit on those trials. In this case, one might think that such data sets reflect suboptimal decision-

making processes and don’t possess sufficient quality to be included in the analysis. However, in 

addition to benefits of optimal choice as a measure of task performance discussed in Chapter 2, it should 

be pointed out that (1) allowing participants to explore and exploit as they see fit (i.e., natural exploration-

exploitation behavior) was one of the key objectives of this task, and (2) to ensure the quality of the data, 
only data sets with at least 15% of exploration and exploitation trials were included in the analysis. 

Indeed, participants showed a wide range of exploration-exploitation ratios (see Results in Chapter 2). 

While the majority of the data sets had a high exploitation percentage, there were some that had a 

majority of exploration trials, and others with a very high switch percentage (often switching between 

exploration and exploitation). The presence of such unusual exploration-exploitation ratios might even 

provide an incentive for further research to examine why participants showed a specific behavior (e.g. 

high exploration or switch rates), and how these behaviors could be elicited through manipulations of 
the reward environment.  

 

For example, one might speculate that participants who switched more often (alternating often between 

exploration and exploitation) perceived the reward structure as strongly volatile, preferred to receive 

information about changes in rewards more often, and thus opted for not spending multiple trials 

exploiting to avoid losing track of the reward structure. It is also possible, that participants who showed 

high exploration rates needed more information to form proper estimates of the reward structure and 

feel confident enough to switch to exploitation. Personality traits, such as higher risk aversion or lower 
uncertainty tolerance, might potentially also contribute to higher exploration or switch percentage in the 

data. Though the task instructions aimed to give the same weight to obtaining the most reward and 

exploiting the highest-paying bandit (making optimal choices), it cannot be excluded that some 

participants had high exploration rates because they overweighted the importance of finding the best-

paying bandit. Importantly, all data sets included in the analysis showed that participants could learn 

and follow the reward structure well. Future studies could thus specifically investigate whether 

interindividual differences in exploration-exploitation and switch ratios are associated with subjective 
volatility perception or personality traits. Future studies could also use the ExploreExploit task to 

specifically investigate the possibility to increase/decrease within-person exploration and switch rates 

by producing reward structures with multiple levels of volatility. Of note, similar work has been done by 

Speekenbrink and Konstantinidis (Speekenbrink & Konstantinidis, 2015) using a multi-armed bandit task 

and a computational model to categorize trials as exploration or exploitation. Their results suggested 
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that a more volatile reward structure might lead to increased switching between bandits (Speekenbrink 

& Konstantinidis, 2015).  

 

Next, participants were encouraged to find the highest-paying bandit in the instructions. Though this 

instruction was necessary and beneficial for driving task performance and improving participants’ ability 

to track the reward structure, doing so limited the scope of response strategies to finding the best option 
and prevented us from observing other strategies that might have been useful in our task. For example, 

instead of selecting exploration more often or longer in order to find the best-paying bandit and incurring 

a cost of missing out on reward on each exploration trial, finding a “good enough” option and exploiting 

it (so-called satisficing, (Simon, 1956)) might have been a more appropriate strategy. (See Optimal 

choice as a measure of task performance in Supplementary Methods of Chapter 2 for a detailed 

discussion.) In environments, in which choosing an option that does not provide the highest reward 

results in a fairly high percentage of the maximum reward nonetheless (as is the case in our task), a 

satisficing strategy might be preferred; it leads to an acceptable level of reward, while accounting for the 
trade-off between the benefits of further searching for a better option and the costs such search would 

bring (Gigerenzer & Selten, 2002; Lieder et al., 2017; Payne et al., 1988).  

 

Future research could address this question by specifically designing a reward structure for the 

ExploreEpxloit task containing blocks in which the best response strategy would be to choose a good 

enough option (satisficing) and blocks in which the best strategy would be finding the highest-paying 

bandit. Notably, if only the similarity of rewards provided by different bandits is manipulated to achieve 
this, an unintended consequence might be that different options become indistinguishable, if their 

rewards are too similar, or the best option becomes too obvious, if rewards are too far apart. One could 

thus manipulate not only the reward participants obtain, but also the costs participants incur when not 

choosing the highest-paying bandit or when spending too much time searching for it. To this end, the 

number of bandits could be increased to produce a grid structure (for example, 4 x 7 grid (Lieder et al., 

2017), 1 x 30 grid and 11 x 11 grid (Wu et al., 2018) have been used in the literature), which would 

already pose a greater strain on participants’ resources. The costs of not following the right response 

strategy could be adjusted by introducing time pressure (e.g. in the form of a reward loss that increases 
the longer it takes to make a response), which would favor satisficing, or a punishment in the form of a 

reward loss that increases the further away the reward of a chosen bandit is from the highest-paying 

bandit. Importantly, the percentage of obtained reward in our data did not differentiate between 

participants who could and those who could not do the task (see Optimal choice as a measure of task 

performance in Supplementary Methods of Chapter 2). It is crucial to implement mechanisms to evaluate 

that participants understand the task and can follow the reward structure. Such a mechanism could be 

an extensive practice session followed by a test in which participants should reach a certain level of 
optimal choice responses, thus showing that they have a good understanding of the task and of the 

reward structure. 

 

Lastly, participants received only reward as feedback on exploitation trials and only information as 

feedback on exploration trials (which is an essential feature of the task).  A total separation of reward 
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and information feedback allows to delineate participants’ motivation to obtain reward and thus choose 

exploitation vs. motivation to gather information and thus choose exploration. It is therefore beneficial 

and necessary in the experimental context, allowing for an unambiguous separation of exploration and 

exploitation trials. However, such a strict separation of reward and information does not reflect real-life 

decisions, in which feedback includes both information and reward. For example, when trying out a new 

restaurant (exploration), one still hopes to get (and does or does not get) tasty food (reward) and one 
learns about the quality of food at that place. On the other hand, when going to a favorite restaurant 

(exploitation), one can enjoy a good meal (reward), but also receives information whether the quality of 

food as es expected or different. In case of the ExploreExploit task, a complete separation of information 

and reward might have influenced participants’ behavior in different ways. For example, participants 

seemed to use exploration most often to receive information about the highest-paying bandit; one-trial 

exploration sequences (the most prevalent length of exploration sequences) were indeed more often 

directed to the bandit that was exploited prior to that exploration trial. Because feedback on exploitation 

trials does not contain any information about the reward of the chosen option, the only way to check for 
a change in the rewards of the preferred bandit (currently exploited bandit) would be to choose that 

bandit on an exploration trial. Behavioral results suggest that such “checking” might have been a 

motivation for a high number of exploration trials directed to the bandit with the highest reward (which 

was exploited most often). Though checking the preferred (highest-paying) bandit reflects that 

exploration is driven by a combination of reward and information seeking (as is also formulated in our 

computational model), the need for checking is dictated by the task design. If participants knew how 

much reward they received when they exploited a bandit, the distribution of exploration trials to bandits 
with different reward ranks might favor the bandit with the second highest reward (based on a 

combination of highest reward and highest uncertainty).  

5.3  Future directions 

This dissertation presents several novel avenues for investigating behavioral, neural, and physiological 

mechanisms behind exploration-exploitation decision-making, providing a fruitful basis for future studies. 

In the following, I suggest analyses that could be done in the future to advance our understanding of 

exploration-exploitation behavior.  

 

For example, to show that computational model-derived estimates of uncertainty and BOLD signal 

variability truly change in the same direction during exploration-exploitation decision-making, future 

studies could investigate whether a positive relationship between uncertainty and BOLD signal variability 
holds in a task in which uncertainty decreases with each exploration trial, but – in contrast to the 

ExploreExploit task – does not grow during exploitation trials. In changing environments, prior 

information about rewards is guaranteed to become more and more obsolete the longer the options are 

not explored (Cohen et al., 2007). In the current study, this is the case for all options during exploitation 

because the ExploreExploit task does not present information as feedback on exploitation trials. If BOLD 

signal variability indeed follows uncertainty levels during exploration-exploitation decision-making, the 

effects should be different in tasks with a static, deterministic environment. A task with a deterministic 
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reward structure, in which the best option remains best throughout the course of a set number of trials 

(cf. Navarro et al., 2016), requires a short initial period of exploration to learn about the rewards of all 

options and determine the highest-paying one (resolve initial uncertainty), followed by exploitation until 

the end of the block to collect as much reward as possible. In such a task, BOLD signal variability should 

decrease during initial exploration (as uncertainty decreases) and remain at a constantly low level during 

the following exploitation period (uncertainty level should remain constantly low since the environment 
is known and guaranteed not to change). Because uncertainty about the expected rewards doesn’t grow 

to provide a new incentive for exploration, no further adaptation is necessary in the course of a block in 

a task with a static, deterministic reward environment. The reward structure of the ExploreExploit task 

could be modified to include blocks with deterministic rewards and blocks with changing rewards, and 

thus specifically examine whether BOLD signal variability is coupled to the uncertainty regardless of the 

environment. Based on the findings of this dissertation, one might expect deterministic blocks to produce 

weaker effects in brain regions related to behavioral flexibility and uncertainty processing, such as the 

thalamus and insula (Bach & Dolan, 2012; Shine et al., 2023), reflecting that these functions don’t play 
a primary role in deterministic environments. 

 

Another potential direction for future studies could be the combination of eye tracking and fMRI to 

investigate the mechanisms behind exploration-exploitation behavior from several angles 

simultaneously. For example, Liu et al. (2017) combined eye movements analysis (using it to visualize 

information accumulation supporting memory formation) with fMRI analysis of the hippocampus and 

oculomotor network activity. In the same fashion, future exploration-exploitation studies could combine 
gaze pattern analyses and variability-based fMRI analyses, focusing on key areas for uncertainty 

processing and behavioral flexibility (but also on frontal, temporal and parietal regions that prominently 

featured in the results of the current study). Such analyses could be particularly useful in combination 

with deterministic and non-stationary rewards, as the difference in the role of uncertainty in these 

environments might allow for key inferences about the role of behavioral flexibility for successful 

adaptation of exploration-exploitation behavior to the environment. Of note, a combined analysis of eye 

tracking and fMRI data is already possible with the dataset from the current study (except that it does 

not contain deterministic task blocks). However, though undoubtably informative, such analyses were 
outside the scope of my dissertation, in which I focused on establishing key links between exploration-

exploitation behavior and BOLD signal variability (fMRI) and gaze data (eye tracking) alone. 

5.4  Conclusion 

Overall, this dissertation presents a comprehensive investigation of exploration-exploitation behavior in 

human participants. Addressing fundamental issues of task design at the outset, this dissertation 

ensures a new foundation for future work on the behavioral, computational, neural and physiological 

mechanisms underlying exploration-exploitation decision-making.  
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B. Supplementary Materials to Chapter 2 
 

Supplementary Methods  

Data exclusion criteria 

Five out of 52 participants in the lab study were excluded: the data of one participant was incorrectly 

saved; one participant swapped the response buttons; three participants were identified during the 

experiment as not understanding the task. In addition, one participant did not understand the task in one 
block and one participant swapped the response buttons in one block. This block was excluded from 

the respective participant’s data. The final sample thus comprised 47 participants (45 participants with 

five task blocks and two participants with four task blocks). 

 

As the lab study was the first study using the ExploreExploit task, we used its data to aid defining the 

inclusion-exclusion criteria for further studies, especially those carried out online, which do not provide 

a possibility for the experimenter to interact with the subject.  
 

We a-priori selected exploration/exploitation percentage and optimal choice percentage (defined as a 

percentage of trials on which the highest-paying bandit was exploited relative to the number of 

exploitation trials in the block) as measures of interest for exclusion criteria. Choosing (almost) 

exclusively exploitation or exploration indicates poor task comprehension or lack of motivation and 

makes statistical analyses difficult due to a big mismatch in trial counts. We set the cut-off for the 

minimum percentage of exploration and exploitation trials to 15%, to ensure that only data sets that 

include both behaviors are evaluated. Though optimal choice percentage, as a measure of task 
performance, was a-priori selected as an exclusion criterion, there were multiple possibilities as to where 

to set the cut-off (16% for six combinations of behavior and bandit, 33% for three bandits, or 50% for 

two behavior types). Plotting the data of excluded and included participants in the lab study (Figure 2-
S2; presented below) revealed that, in contrast to other measures, the optimal choice percentage 

differentiated near perfectly between the included and excluded blocks at 50% of optimal choice. Two 

included blocks in the lab study fell slightly under the cut-off of 50%. These blocks were kept int the 

data; they occurred in otherwise well-performing subjects in a block with particularly frequent changes 

of the best bandit, which resulted in lower optimal choice percentage than what participants typically 
showed. 

 

The exclusion criteria of at least 15% exploration/exploitation trials and min. 50% optimal choices were 

applied to the data from the online study. Out of 54 participants tested in the online study, two were 

excluded: one because of incorrectly saved data, another because of not meeting 
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exploration/exploitation and optimal choice criteria. In addition, single blocks were excluded in some 

data sets: two participants had three blocks excluded, four participants had two blocks excluded, and 

three participants had one block excluded. 

 

The data for each block was evaluated separately, which allowed to exclude single blocks and keep the 

rest of the dataset. If more than three blocks had to be excluded, the data of the respective participant 
was excluded entirely. 

 

Figure 2-S2. Included vs. excluded blocks in the lab study. Optimal choice percentage < 50% differentiated 
between included and excluded runs, while reward, exploration, and missed trials percentage did not. 
Exploration and reward percentage was calculated based on all trials right after the experimental block was 
finished. 
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Optimal choice as a measure of task performance 

Research has shown that participants adaptively choose decision strategies based on the 

characteristics of the task environment (Gigerenzer & Selten, 2002; Lieder et al., 2017; Lieder & Griffiths, 

2015; Payne et al., 1988). Non-compensatory environments, in which the best option can be 

unambiguously identified, were associated with decision strategies that prioritize finding the best option, 

while compensatory environments encouraged a satisficing strategy – looking for the best option only 

until an option that exceeds certain criterion is found (Lieder et al., 2017; Lieder & Griffiths, 2015). In 
compensatory environments, a satisficing strategy (Simon, 1956) ensures a balance between invested 

effort (such as time and cognitive resources) and the result, allowing to earn – though not maximal – 

but high enough payoff (Lieder et al., 2017; Payne et al., 1988).  

 

In the ExploreExploit task, a reward can be earned on every trial by exploiting one of the bandits. Since 

rewards for each bandit come from independent random walks, the best and second-best rewards on 

each trial are sometimes markedly different and sometimes quite similar. Choosing a reward that is 

further away from the maximal reward on one trial, can thus be compensated by choosing a reward that 
is much closer to the highest reward on another trial. It is thus possible to make random exploitation 

responses (even exclusively exploitation responses, which is certainly a proper task performance) and 

amass a considerable amount of maximal reward. Using reward earned as a measure of task 

performance would make it difficult to assess how well participants understood the task and how 

diligently they performed it. In line with previous studies in the field (Speekenbrink and Konstantinidis, 

2015), we decided to use optimal choice, defined as exploiting the highest-paying bandit, as a measure 

of task performance. Not selecting the best option on one trial cannot be compensated by selecting it 

on another, providing a non-compensatory quality to optimal choice. To highlight the importance of this 
non-compensatory feature of the environment for performing the task, participants were encouraged to 

look for the best-paying bandit in the task instructions (cf. Instructions section in the Methods).  

 

In line with these considerations, reward earned, calculated based on all valid trials (including both 

exploitation and exploration trials) did not differentiate between included and excluded blocks in the lab 

study, while optimal choice did (Figure 2-S2). In addition, reward percentage calculated based on 

exploitation trials only, and thus not confounded by the number of exploration trials, on which no reward 
could be earned, showed a markedly limited range, illustrating the compensatory quality of reward as a 

behavioral measure. Despite a strong correlation with optimal choice percentage (lab: r = 0.90, p < 2.2e-

16; online: r = 0.93, p < 2.2e-16), the lower limit of reward percentage lied at more than 90% in the lab 

study and more than 85% in the online study (Figure 2-S3).  

Computational models 

This section describes computational models that were fit to the data from the ExploreExploit task. In 

total, there we tested 18 models, comprising UCB-type and discounting models (described in detail 
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below), their nested versions (leaving out certain parameters), and combination models (combining 

elements of UCB-type and discounting models). Table 2-S2 (presented below) contains a summary of  

 

parameters used in each model. The winning model (the model that best fit the data of both the lab and 

online studies; model 17 in Table 2-S2) is described in detail in Computational modeling section in the 

main text.  

Expected value for exploitation 

To reflect the difference in feedback between on exploration and exploitation trials (only information or 

reward, respectively), we modeled different expected values for exploring or exploiting each bandit. The 

expected value of exploitation (V_exploit i,t) for bandit i on trial t was defined as the expected reward of 

this bandit (Qi,t):  

 

𝑉_𝑒𝑥𝑝𝑙𝑜𝑖𝑡!,# =	𝑄!,#	 

 

Expected value for exploration: UCB-type models 

We tested two strategies to computationally define the expected value of exploration (V_explore i,t) for 

the bandit i on trial t. In the first type of model, we capitalized on the Upper Confidence Bound (UCB) 

algorithm (Auer, 2002) that accounts for the influence of uncertainty about an option. Thus, the expected 

value of exploration (V_explore i,t) consisted of the sum of the expected reward value (Qi,t) of bandit i on 

trial t and the expected uncertainty (si,t) about this reward. In the full model of this type (model 5 in Table 

Figure 2-S3. Reward earned. Left – Reward percentage. Right – Correlation between optimal choice and reward 
percentage. Reward percentage was calculated based on total reward available only on exploitation trials, to 
avoid a confounding influence of a higher number of exploration trials, on which no reward could be earned. 
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2-S2), expected reward and uncertainty were weighted by parameters b1 and b2, respectively, which 

were estimated as free parameters:  

 

𝑉_𝑒𝑥𝑝𝑙𝑜𝑟𝑒!,# =	𝛽$ ∗ 	𝑄!,# 	+	𝛽% ∗ 	𝜎!,# 

 

Expected value for exploration: discounting models 

The second way of modeling exploration consisted of applying a discounting factor to the sum of the 

expected reward value and expected uncertainty of a bandit i on trial t after it was explored, as well as 
a step-wise restoration of this value in the exploitation trials. In the full model, the sum of the expected 

reward and uncertainty was multiplied by either an exponential (model 15 in Table 2-S2) or hyperbolic 

(model 16 in Table 2-S2) discounting factor (Green and Myerson, 1996, 2004) on the trial following 

exploration, including the number of trials that the bandit has been explored (n_exploret) and a free 

parameter k, that determines how strongly the value of exploring a certain bandit is discounted after it 

has been explored. The discounting factor was set to 0 if the bandit was not explored on a previous trial.  

 

After the bandit was first exploited, a stepwise restoration factor was applied to bring the value of 

exploration, reduced by the discounting, back to its level before discounting. To model step-wise 

restoration factor, the sum of expected reward and uncertainty was multiplied by a free parameter 

g , which determined how fast the value is restored to its original magnitude. In addition, g  was taken to 

the power of the number of trials that the bandit has been exploited for (n_exploitt). The step-wise 

restoration factor was then subtracted from the sum of expected reward and uncertainty. If a bandit was 

not exploited on the previous trial, the stepwise-restoration factor was set to 0.  

 

Exploration value with exponential discounting (multiplicative factor) and stepwise restoration 

(subtraction factor): 

 

𝑉_𝑒𝑥𝑝𝑙𝑜𝑟𝑒!,# = 2𝑄!,# 	+	𝜎!,#4 ∗ exp J−𝜅 ∗ 𝑛-*./01-#L −	2𝑄!,# 	+	𝜎!,#4 ∗ 	𝛾
+_-*./0!#! 

 

Exploration value with hyperbolic discounting (multiplicative factor) and stepwise restoration (subtraction 
factor): 

𝑉_𝑒𝑥𝑝𝑙𝑜𝑟𝑒!,# = 2𝑄!,# 	+	𝜎!,#4 ∗ 	
1

1 + 	𝜅 ∗ 𝑛-*./01-#	
	−	2𝑄!,# 	+	𝜎!,#4 ∗ 	𝛾+_-*./0!#! 

 

Learning after the bandit was explored 

After a bandit was explored, we modeled a learning process to incorporate information (rt – observed 

reward on trial t) received as feedback into the existing idea about the rewards of the respective bandit. 

In addition, uncertainty about the expected reward of that bandit decreased. In all but one model, the 
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expected reward and uncertainty about it were updated with a temporal difference (TD) learning model 

(Sutton, 1988; Sutton and Barto, 1998) with a learning rate a (free parameter):  

 

𝑄!,#&$ =	𝑄!,# + 2𝑟# −	𝑄!,#4 ∗ 	𝛼 

 

𝜎!,#&$ =	6𝜎!,#% − 	𝛼 ∗	𝜎!,#% 	 

 

To test for differences in updating of reward and uncertainty, we implemented models with separate 

learning rates a1 and a2 for the expected reward und uncertainty about it, respectively: 

 

𝑄!,#&$ =	𝑄!,# + 2𝑟# −	𝑄!,#4 ∗ 	𝛼$ 

 

𝜎!,#&$ =	6𝜎!,#% −	𝛼% 	 ∗ 	𝜎!,#%  

 

We tested an alternative learning function – the Kalman filter (Kalman, 1960; Daw et al., 2006) to 

dynamically update both the expected mean and the standard deviation of the reward values (model 1 

in Table S2-2): 

 

𝑄!,#&$ =	𝑄!,# + 2𝑟# −	𝑄!,#4 ∗ 	𝐾# 

 

𝜎!,#&$ =	6𝜎!,#% −	𝐾# 	 ∗ 	𝜎!,#%  

 

where Kt is the learning factor (also known as “Kalman gain”), which is updated on each trial t: 
 

𝐾# =	
𝜎!,#%

𝜎!,#% + 𝑠'%
 

 

where s02 is the variance with which individual rewards were sampled from around the mean (cf. Stimuli).  

Forgetting the after the bandit was exploited or not explored 

The reward and uncertainty values of bandits that were exploited or not explored were forgotten with a 

forgetting rate l (free parameter):  

 

𝑄!,#&$ = 	𝜆 ∗	𝑄!,# + (1	 − 	𝜆) ∗ 	𝑄' 

 

𝜎!,#&$ = 	𝜆 ∗	𝜎!,# + (1	 − 	𝜆) ∗ 	𝜎' 
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We also implemented models with separate rates l1 and l2 for forgetting of the expected reward and 

uncertainty, respectively:  

 

𝑄!,#&$ =	𝜆$ 	 ∗ 	𝑄!,# + (1	 −	𝜆$) ∗ 	𝑄' 

 

𝜎!,#&$ =	𝜆% ∗ 	𝜎!,# + (1	 −	𝜆%) ∗ 	𝜎' 

 

We defined forgetting as returning to the starting value of Q0 and s0. 

Choice function 

Six expected values, which corresponded to 6 response possibilities (exploring or exploiting 3 bandits), 
were passed to the softmax choice rule to determine the probability of each response (Pi,a,t – probability 

of applying action a to bandit i on trial t). A trial outcome was then chosen according to the probabilities 

returned by the softmax algorithm, using inverse temperature (t, free parameter) to determined 

stochasticity of the choice: the lower the inverse temperature, the more stochastically the response will 

be chosen (the less it is driven by the largest expected value):  
 

𝑃!,(,# =	
exp(𝜏 ∗ 	𝑉!,(,#)

∑ exp(𝜏 ∗ 	𝑉),*,#)),*
 

 

where j denotes all other bandits and x denotes all other actions. 

 

Table 2-S2. Models included in the model comparison and their parameters. Bold – best-fitting model in both 
lab and online study, defined by a UCB-type exploration value and separate forgetting rates for expected 
reward and uncertainty. KF – Kalman filter; TD – temporal difference learning; b1, b2 – weights for reward and 
uncertainty in UCB-type expected value for exploration; a – learning rate; a1, a2 – separate learning rates for 
reward and uncertainty, respectively; l – forgetting rate; l1, l2 – separate forgetting rates for reward and 
uncertainty, respectively; exp – exponential discounting; hyp – hyperbolic discounting; k – discounting rate 
parameter; restore – stepwise restoration factor. 

Model 
Expected 
reward & 
uncertainty 

b1, b2 
weights Learning Forgetting Discounting Restoration 

mod1 KF b1, b2 - l - - 

mod2 TD+𝜎 b1, b2 a l - - 

mod3 TD+𝜎 - a l - - 

mod4 TD+𝜎 b1, b2 a - - - 

mod5 TD+𝜎 b1, b2 a1, a2 l1, l2 - - 
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mod6 TD+𝜎 - a - - - 

mod7 TD+𝜎 - a l exp, no k - 

mod8 TD+𝜎 - a l hyp, no k - 

mod9 TD+𝜎 - a l exp, k - 

mod10 TD+𝜎 - a l hyp, k - 

mod11 TD+𝜎 b1, b2 a l exp, no k - 

mod12 TD+𝜎 b1, b2 a l hyp, no k - 

mod13 TD+𝜎 - a - exp, no k restore 

mod14 TD+𝜎 - a - hyp, no k restore 

mod15 TD+𝜎 - a - exp, k restore 

mod16 TD+𝜎 - a - hyp, k restore 

mod17 TD+𝝈 b1, b2 a l1, l2 - - 

mod18 TD+𝜎 b1, b2 a1, a2 l - - 
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Supplementary Figures  

Figure 2-S1. Example of a reward structure. Colors denote bandits, dashed line separates task 

blocks. Rewards for each bandit and each block were independent. 
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Figures 2-S2 – 2-S3 are presented in Supplementary Methods. 

 

Figure 2-S4. Missed trials. Left – Percent missed trials. Right – Distribution of missed trials throughout 

the block (fraction of number total trials in the respective position). 

 

 
 

 

Figure 2-S5. Parameter recovery: simulated vs. fitted parameter values for the winning model. 
Alpha – learning rate (a), beta1 – weight for reward in exploration (b1), beta2 – weight for uncertainty in 

exploration (b2), lambda1 – forgetting rate for reward (l1), lambda2 – forgetting rate for uncertainty (l2), 

tau – inverse temperature (t). 
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Supplementary Tables  

 

Table 2-S1. R packages used for data analyses. 
 

Package Functionality Citation 

lmer4 Linear (mixed) models (Bates et al., 2014) 

afex Repeated-measures ANOVA (Singmann et al., 2022) 

emmeans Follow-up comparisons (Lenth, 2022) 

effectsize h2 (Ben-Shachar et al., 2020) 

partR2 R2 (Stoffel et al., 2021) 

rstatix Identify outliers (Kassambara, 2021) 

Hmisc Correlation matrix (Harrell, 2023)  

tidyverse Data manipulation (Wickham et al., 2019)  

ggplot2 Plotting (Wickham, 2016)  

viridis Plotting (Garnier et al., 2023) 

ggcorrplot Plotting (Kassambara, 2023)  
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Table 2-S2 is presented in Supplementary Methods. 
 

 

Table S2-3. Value ranges used for estimating free parameters. 

 

Free parameter Value range 

a, a1, a2 0 - 1 

b1 0 - 2 

b2 0 - 5 

l, l1, l2 0 - 1 

t 0.001 - 5 

g 0 - 1 

k 0 - 2 
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C. Supplementary Materials to Chapter 3 
 

Supplementary Figures  

 

Figure 3-S1. Results of task PLS analysis with IQR BOLD sequences of 3 exploration and 
exploitation trials with the BSR threshold raised to 5. Axial brain view. MNI coordinates of the first 

slice: z = -17. Each next slice increases z coordinate in increments of 3. BSR – bootstrap ratio. 

 

 
 
 
Figure 3-S2. Results of task PLS analysis with IQR BOLD in sequences of 5 exploitation trials. 
Left – IQR BOLD levels (expressed as brain scores) in a sequence of 5 exploitation trials increase from 

trial 1 to 3 and remain largely the same through trials 4 and 5. Error bars – SEM. Right – axial brain 

view. MNI coordinates of the first slice: z = -23. Each next slice increases z coordinate in increments of 

3. BSR – bootstrap ratio. (Figure on the next page) 
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Figure 3-S3. Results of task PLS analysis with IQR BOLD at low, medium and high levels of sigma 
and entropy in exploration trials. Top – axial brain view. MNI coordinates of the first slice: z = -24. 

Each next slice increases z coordinate in increments of 3. BSR – bootstrap ratio. Bottom – IQR BOLD 

levels (expressed as brain scores) at low, medium and high levels of sigma (green) and entropy (blue). 

Error bars – SEM. 
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Figure 3-S4. Results of task PLS analysis with IQR BOLD in switch and noswitch exploration and 
exploitation trials with the BSR threshold raised to 6. Axial brain view. MNI coordinates of the first 

slice: z = -32. Each next slice increases z coordinate in increments of 3. BSR – bootstrap ratio. 

 

 
 

 
Figure 3-S5. Results of behavior PLS analysis with modulation of IQR BOLD in the first 3 
exploration and exploitation trials and optimal choice percentage. Top panel – axial brain view. 

MNI coordinates of the first slice: z = 14. Each next slice increases z coordinate in increments of 3. BSR 

– bootstrap ratio. Bottom panel – correlation of IQR BOLD modulation (expressed as brain scores) with 

optimal choice percentage. Note that these results were not significant at the latent level. Bootstrapped 

CI for correlations: Exploration – [-0.83, -0.51], Exploitation – [-0.85, -0.50]. (Figure on the next page) 
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Figure 3-S6. Results of behavior PLS analysis with level of IQR BOLD in exploitation trials 1, 2, 
3 and optimal choice percentage. Top panel – axial brain view. MNI z coordinates are indicated. Each 

next slice increases z coordinate in increments of 3. BSR – bootstrap ratio. Bottom panel – correlation 
of IQR BOLD level (expressed as brain scores) with optimal choice percentage. Bootstrapped CI for 

correlations: trial 1 – [0.78, 0.92], trial 2 – [0.77,0.91], trial 3 – [0.76, 0.91]. (Figure on the next page) 
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Figure 3-S7. Correlation between switch percentage and median continuous sequence length in 
exploration and exploitation. 
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Supplementary Tables  

Table 3-S1. Cluster peak coordinates from task PLS analysis with sequences of 3 continuous 
exploration and exploitation trials. The upper part of the table refers to clusters observed with a BSR 

threshold of +/- 3. The bottom part of the table presents results with a BSR threshold increased to 5 in 

order to reveal clusters that were otherwise part of one big cluster. BSR – bootstrap ratio.  

BSR [-3 3] 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) 

X Y Z   

R Superior Frontal Gyrus 12 27 60 10.29 11893 

R Lateral Occipital Cortex 42 -78 33 9.34 12435 

R Putamen 30 -18 0 4.80 33 

R Thalamus * 9 -9 9 4.42 45 

L Thalamus * -3 -6 3 4.42 45 

BSR [-3 5] 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) 

X Y Z   

R Superior Frontal Gyrus 12 27 60 10.29 940 

R Inferior Frontal Gyrus 54 33 9 10.03 255 

R Lateral Occipital Cortex 42 -78 33 9.34 1090 

L Frontal Operculum Cortex -33 18 12 9.04 293 

L Lateral Occipital Cortex -39 -72 21 8.67 649 

R Temporal Fusiform Cortex 30 -39 -15 8.33 1626 

L Hippocampus -24 -36 -6 8.30 172 

R Frontal Operculum Cortex 33 21 9 7.85 63 

R Frontal Pole 18 60 30 7.28 109 

L Paracingulate Gyrus -9 12 42 7.23 39 

L Inferior Frontal Gyrus -51 33 9 7.16 63 

L Frontal Pole -3 57 3 7.15 231 

L Middle Temporal Gyrus -57 -27 -6 7.07 65 

R Precuneus Cortex 12 -57 60 7.01 28 

R Middle Temporal Gyrus 60 -57 0 6.80 40 

L Inferior Temporal Gyrus -60 -21 -24 6.49 43 

L Superior Frontal Gyrus -15 12 57 6.44 49 

L Precentral Gyrus -33 -3 51 6.35 50 

R Middle Temporal Gyrus 66 -9 -12 6.22 30 

 

Note: * original cluster peak coordinates (x,y,z - 0 0 3) were shifted to obtain a label.  
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Table 3-S2. Cluster peak coordinates from task PLS analysis with sequences of 5 continuous 
exploitation trials. BSR – bootstrap ratio.   

 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

Cingulate Gyrus, posterior division 0 -48 30 8.12 1333 

R Lateral Occipital Cortex 54 -72 27 7.66 550 

L Frontal Pole -3 66 9 6.58 1464 

R Frontal Pole 51 36 12 5.84 234 

L Middle Temporal Gyrus -60 -3 -15 5.67 151 

R Middle Temporal Gyrus 66 -3 -24 5.64 704 

L Inferior Frontal Gyrus -54 30 12 5.59 64 

R Hippocampus 33 -27 -12 4.75 39 

R Frontal Orbital Cortex 42 24 -21 4.61 31 

R Frontal Pole 27 36 -15 4.32 59 

L Superior Temporal Gyrus -60 -42 12 4.12 27 

L Frontal Pole -42 42 9 4.05 46 

 

 

Table 3-S3. Cluster peak coordinates from task PLS analysis with low, medium and high levels 
of sigma and entropy in exploration. BSR – bootstrap ratio.  

 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

L Cingulate Gyrus, posterior division -3 -45 15 5.92 930 

L Inferior Frontal Gyrus -54 33 12 5.81 153 

L Caudate -9 9 -3 5.75 28 

R Superior Temporal Gyrus 63 -3 -12 5.52 70 

L Precuneous Cortex -21 -51 3 5.35 43 

L Superior Frontal Gyrus -21 18 42 5.14 33 

L Supramarginal Gyrus -57 -45 15 5.08 464 

R Middle Temporal Gyrus 60 -30 -3 5.07 127 

L Frontal Orbital Cortex -24 27 -12 5.05 86 

L Temporal Pole -39 6 -24 5.00 76 

R Frontal Pole 42 42 9 4.93 106 

R Lateral Occipital Cortex 60 -63 36 4.92 273 

L Putamen -24 6 9 4.83 52 

R Frontal Pole 12 54 33 4.74 221 

R Frontal Pole 51 39 -12 4.64 101 

R Lateral Occipital Cortex 33 -87 30 4.59 125 
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R Lateral Occipital Cortex 33 -90 -3 4.59 60 

Frontal Pole 0 66 -6 4.58 136 

R Lingual Gyrus 18 -60 3 4.53 48 

L Frontal Pole -15 66 15 4.52 37 

R Superior Temporal Gyrus 54 -3 -18 4.22 28 

 

 

Table 3-S4. Cluster peak coordinates from task PLS analysis with low, medium and high levels 
of sigma and entropy in exploitation. BSR – bootstrap ratio.  

 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

Cingulate Gyrus, posterior division 0.0 -48.0 33 7.63 2121 

R Frontal Pole 6.0 66.0 21 7.10 2109 

R Frontal Pole 36.0 39.0 -15 6.51 727 

R Middle Temporal Gyrus 63.0 -6.0 -15 6.43 573 

R Lateral Occipital Cortex 42.0 -75.0 39 6.15 672 

R Frontal Pole 6.0 57.0 -6 5.80 369 

L Inferior Frontal Gyrus -54.0 24.0 18 5.41 898 

L Superior Temporal Gyrus -54.0 -42.0 3 5.33 110 

R Hippocampus 24.0 -12.0 -18 5.28 49 

L Temporal Pole -45.0 18.0 -27 5.16 254 

L Cingulate Gyrus, anterior division -3.0 33.0 6 4.62 26 

R Supramarginal Gyrus 63 -39 27 4.49 45 

L Supramarginal Gyrus -60 -33 42 4.25 65 

 

 

Table 3-S5. Cluster peak coordinates from task PLS analysis with switch and noswitch 
exploration and exploitation trials. BSR – bootstrap ratio. The upper part of the table refers to clusters 

observed with a BSR threshold of +/- 3. The bottom part of the table presents results with a BSR 

threshold increased to 6 in order to reveal clusters that were otherwise part of one big cluster. 

 

BSR [-3 3] 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

L Precentral Gyrus -30 -24 57 -4.89 93 

R Middle Frontal Gyrus 45 15 51 11.30 28913 

L Lateral Occipital Cortex -48 -60 39 10.99 4438 

L Occipital Pole -18 -99 -3 4.66 31 

BSR [-3 6] 
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Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

L Precentral Gyrus -30 -24 57 -4.89 93 

R Middle Frontal Gyrus 45 15 51 11.30 5437 

L Lateral Occipital Cortex -48 -60 39 10.99 1227 

R Angular Gyrus 45 -48 51 10.77 1680 

L Cingulate Gyrus, posterior division -3 -48 24 10.55 1553 

L Middle Temporal Gyrus -60 -54 -3 9.55 437 

R Middle Temporal Gyrus 60 -9 -15 9.51 66 

R Lingual Gyrus 33 -39 -9 8.60 73 

L Hippocampus -27 -36 -9 8.22 70 

 

 

Table 3-S6. Cluster peak coordinates from behavior PLS analysis with IQR BOLD change in the 
first 3 exploration and exploitation trials and optimal choice percentage. BSR – bootstrap ratio.  

 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

R Frontal Pole 24 66 18 4.96 27 

R Lateral Occipital Cortex 18 -75 45 4.93 81 

R Middle Frontal Gyrus 39 15 54 4.82 40 

R Superior Frontal Gyrus 18 6 60 4.81 25 

R Precuneous Cortex 6 -66 21 4.43 47 

 

 

Table 3-S7. Cluster peak coordinates from behavior PLS analysis with level of IQR BOLD in the 
first 3 exploration trials and optimal choice percentage. BSR – bootstrap ratio.  

 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

L Middle Temporal Gyrus -51 -60 6 6.16 36 

L Inferior Frontal Gyrus -54 15 9 4.99 35 

R Frontal Pole 15 66 18 4.20 27 

R Angular Gyrus 63 -48 18 4.12 26 

 

 

Table S8. Cluster peak coordinates from behavior PLS analysis with level of IQR BOLD in the 
first 3 exploitation trials and optimal choice percentage. BSR – bootstrap ratio.  
 

Anatomical Region MNI Coordinates BSR 
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X Y Z Cluster Size 

(voxels) 

R Precentral Gyrus 21 -9 63 5.25 31 

L Inferior Frontal Gyrus -57 12 6 5.25 30 

R Frontal Pole 15 57 18 4.87 29 

R Frontal Orbital Cortex 42 18 -15 4.85 39 

R Angular Gyrus 63 -45 30 4.49 35 

 

 

Table 3-S9. Cluster peak coordinates from behavior PLS analysis with IQR BOLD change in the 
first 3 exploration and exploitation trials and switch percentage. BSR – bootstrap ratio.  

 

Anatomical Region MNI Coordinates BSR Cluster Size 

(voxels) X Y Z 

L Precentral Gyrus -51 6 3 7.04 57 

L Lateral Occipital Cortex -45 -72 33 6.99 41 

R Cuneal Cortex 12 -81 18 6.49 101 

R Frontal Pole 9 54 42 6.47 76 

L Cingulate Gyrus, posterior division -6 -27 36 6.46 46 

L Supramarginal Gyrus -54 -36 45 6.32 276 

L Superior Frontal Gyrus -15 0 63 6.27 98 

L Intracalcarine Cortex -6 -69 15 6.03 171 

L Precuneous Cortex -3 -72 48 5.25 67 

L Lateral Occipital Cortex -45 -69 45 5.23 73 

R Frontal Operculum Cortex 45 15 0 5.21 47 

L Middle Temporal Gyrus -54 -24 -12 5.07 52 

L Precentral Gyrus -36 -3 54 4.61 29 

R Middle Frontal Gyrus 45 6 45 4.51 31 

L Insular Cortex -30 24 9 4.47 26 

L Lateral Occipital Cortex -15 -63 60 4.07 28 

 

 

Table 3-S10. Median sequence length of exploration and exploitation trials (separately) predicts 
PLS results. In separate regression models, exploitation brain scores from the behavior PLS analysis 

with IQR BOLD modulation and switch percentage were predicted by median continuous sequence 

length in exploration and exploitation. b – beta, SE – standard error, CI – confidence interval, t(df) – t-

value, p – p-value, adj. R2 – adjusted R2 as a measure of effect size. 

 

b SE CI 95% t(38) p adj. R2 

Exploitation 
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3463 916 [1608; 5317] 3.78 0.0005 0.25 

Exploration 

9194 3655 [1795; 16593] 2.51 0.016 0.12 

 

 

Table 3-S11. Cluster peak coordinates from behavior PLS analysis with level of IQR BOLD in the 
first 3 exploitation trials and switch percentage. BSR – bootstrap ratio.  

 

Anatomical Region MNI Coordinates BSR Cluster Size 
(voxels) X Y Z 

R Cingulate Gyrus, posterior division 6 -30 33 8.55 54 

L Insular Cortex -39 -12 0 5.79 32 

Precentral Gyrus 0 -21 48 5.47 39 

R Angular Gyrus 57 -45 21 4.64 32 

L Precentral Gyrus -39 -12 36 4.34 39 
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D. Supplementary Materials to Chapter 4 
 

Supplementary Figures  

 

Figure 4-S1. Number of trials without valid eye tracking data for each participant. Number of trials 
is expressed as a fraction of total available (max. 500) trials. 

 

 
 

Figure 4-S2. Number of trials with different number of dwell locations for each participant. 
Number of trials is expressed as a fraction of total available (max. 500) trials. Category 3+ contains all 

trials with 3 and more dwell locations. 
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Figure 4-S3. Start rank in patterns with 2 dwell locations. For dwell patterns with 2 dwell locations, 

there was no significant effect of start rank (bandit) in the model based on either EV ranks (left) or sigma 

ranks (right). Predicted probability: 0 on the y-axis corresponds to 100% probability of exploitation, 0% 

probability of exploration, 1 on the y-axis corresponds to 100% probability of exploration, 0% probability 

of exploitation. 

 

 
 

 

Figure 4-S4. Dwell time in each position in patterns with 2 and 3 dwell locations. Predicted 

probability: 0 on the y-axis corresponds to 100% probability of exploitation, 0% probability of exploration, 

1 on the y-axis corresponds to 100% probability of exploration, 0% probability of exploitation. 
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Supplementary Tables  

 

Table 4-S1. Fixations and dwell time reflect choice. Left - results of a logistic regression model 

predicting whether the bandit was fixated based on whether it was chosen and the trial type. Right - 

results of a linear regression model predicting the dwell time on the bandit based on whether it was 

chosen and the trial type. CI – confidence interval, p – p-value, R2 – marginal R2, N – number of subjects. 

 

  Fixated Dwell time  

Predictors Odds 
Ratios CI p Estimates CI p  R2  

(Intercept) 0.45 0.40 – 0.50 <0.001 0.52 0.50 – 0.54 <0.001    

trial type [explore] 1.52 1.45 – 1.60 <0.001 -0.02 -0.04 – -0.01 <0.001  0.0006  

chosen [1] 14.53 13.63 – 15.50 <0.001 0.28 0.27 – 0.29 <0.001  0.1187  

trial type [explore] × 
chosen [1] 

0.54 0.49 – 0.60 <0.001 -0.04 -0.06 – -0.03 <0.001  0.0014  

N 38 id 38 id    

Observations 47940 24979    

Marginal R2 / Conditional 
R2 

0.288 / 0.312 0.180 / 0.230    

 

 

Table 4-S2. Gaze reflects computational model: EV- and sigma-based models. Results of logistic 

regression models predicting the trial type from the EV rank (left) / sigma rank (right) of the bandit and 

whether it was fixated. CI – confidence interval, p – p-value, N – number of subjects. 
 

  Trial type [EV model] Trial type [sigma model] 

Predictors Odds 
Ratios CI p Odds 

Ratios CI p 

(Intercept) 0.81 0.69 – 0.96 0.015 0.41 0.35 – 0.48 <0.001 

rank [2] 0.48 0.44 – 0.52 <0.001 1.08 1.00 – 1.15 0.036 

rank [3] 0.52 0.48 – 0.56 <0.001 1.42 1.32 – 1.52 <0.001 

fixated [1] 0.55 0.51 – 0.60 <0.001 1.64 1.54 – 1.76 <0.001 

rank [2] × fixated [1] 3.25 2.93 – 3.61 <0.001 0.87 0.79 – 0.95 0.003 

rank [3] × fixated [1] 3.29 2.96 – 3.66 <0.001 0.51 0.47 – 0.57 <0.001 

N 38 id 38 id 
Observations 47940 47940 
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Marginal R2 / 
Conditional R2 

0.021 / 0.084 0.009 / 0.073 

 

 

Table 4-S3. Gaze reflects computational model: combined EV and sigma model. Results of logistic 

regression model predicting the trial type based on whether the bandit with EV rank 1 and the bandit 
with sigma rank 1 were fixated. CI – confidence interval, p – p-value, N – number of subjects. 

 

  Trial type 

Predictors Odds Ratios CI p 

(Intercept) 0.72 0.60 – 0.86 <0.001 

ev rank1 [1] 0.47 0.42 – 0.52 <0.001 

sigma rank1 [1] 1.28 1.12 – 1.46 <0.001 

ev rank1 [1] × sigma rank1 [1] 1.39 1.19 – 1.63 <0.001 

N id 38 
Observations 15980 
Marginal R2 / Conditional R2 0.037 / 0.098 

 

 

Table 4-S4. Number of dwell locations predicts trial type. Results of logistic regression model 

predicting the trial type based on the number of dwell locations visited on the respective trial. CI – 
confidence interval, p – p-value, N – number of subjects. 

 

  Trial type 

Predictors Odds Ratios CI p 

(Intercept) 0.52 0.44 – 0.60 <0.001 

n locations 1.34 1.29 – 1.38 <0.001 

N id 38 
Observations 15980 
Marginal R2 / Conditional R2 0.023 / 0.086 

 

 

Table 4-S5. Dwell patterns with 1 dwell location predict trial type: EV- and sigma-based models.  
Results of logistic regression models predicting the trial type based on the prevalence of dwell patterns 
with 1 dwell location based on EV ranks (left) and sigma ranks (right). Start bandit is the only bandit in 

the pattern. CI – confidence interval, p – p-value, N – number of subjects. 
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  Trial type [EV model] Trial type [sigma model] 

Predictors Odds 
Ratios CI p Odds 

Ratios CI p 

(Intercept) 0.28 0.23 – 0.33 <0.001 0.49 0.40 – 0.59 <0.001 

start [2] 2.38 2.10 – 2.70 <0.001 0.93 0.82 – 1.06 0.300 

start [3] 2.51 2.15 – 2.92 <0.001 0.60 0.53 – 0.67 <0.001 

N 38 id 38 id 
Observations 7924 7924 
Marginal R2 / 
Conditional R2 

0.046 / 0.118 0.016 / 0.092 

 

 

Table 4-S6. Dwell patterns with 1 dwell location predict trial type: combined EV and sigma model. 
Dwell Results of logistic regression model predicting the trial type from EV and sigma ranks in the dwell 

patterns with 1 dwell location. CI – confidence interval, p – p-value, N – number of subjects. 

  Trial type 

Predictors Odds Ratios CI p 

(Intercept) 0.35 0.28 – 0.43 <0.001 

ev start [2] 1.97 1.58 – 2.45 <0.001 

ev start [3] 1.95 1.52 – 2.48 <0.001 

sig start [2] 0.90 0.74 – 1.10 0.308 

sig start [3] 0.67 0.57 – 0.80 <0.001 

ev start [2] × sig start [2] 1.09 0.81 – 1.49 0.565 

ev start [3] × sig start [2] 1.13 0.78 – 1.63 0.515 

ev start [2] × sig start [3] 1.26 0.91 – 1.73 0.162 

ev start [3] × sig start [3] 1.58 1.07 – 2.32 0.021 

N id 38 
Observations 7924 
Marginal R2 / Conditional R2 0.053 / 0.124 

 
 

Table 4-S7. Start bandit in patterns with 2 dwell locations does not predict trial type: EV- and 
sigma-based models. Results of logistic regression models predicting the trial type based on EV rank 
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(left) and sigma rank (right) of the start location in patterns with 2 dwell locations. CI – confidence 

interval, p – p-value, N – number of subjects. 

  Trial type [EV model] Trial type [sigma model] 

Predictors Odds 
Ratios CI p Odds 

Ratios CI p 

(Intercept) 0.74 0.59 – 0.93 0.011 0.64 0.50 – 0.81 <0.001 

start [2] 0.87 0.73 – 1.02 0.088 1.15 0.96 – 1.37 0.142 

start [3] 0.89 0.74 – 1.08 0.234 1.08 0.91 – 1.29 0.395 

N 38 id 38 id 
Observations 3394 3394 
Marginal R2 / 
Conditional R2 

0.001 / 0.111 0.001 / 0.110 

 

 

Table 4-S8. End bandit in patterns with 2 dwell locations predicts trial type: EV- and sigma-based 
models. Results of logistic regression models predicting the trial type based on EV rank (left) and sigma 

rank (right) of the end location in patterns with 2 dwell locations. CI – confidence interval, p – p-value, 

N – number of subjects. 
 

  Trial type [EV model] Trial type [sigma model] 

Predictors Odds 
Ratios CI p Odds 

Ratios CI p 

(Intercept) 0.49 0.39 – 0.62 <0.001 0.85 0.67 – 1.09 0.202 

end [2] 1.68 1.42 – 1.99 <0.001 0.79 0.66 – 0.94 0.009 

end [3] 1.80 1.49 – 2.16 <0.001 0.66 0.55 – 0.79 <0.001 

N 38 id 38 id 
Observations 3394 3394 
Marginal R2 / 
Conditional R2 

0.019 / 0.129 0.008 / 0.117 

 
 

Table 4-S9. End bandit in patterns with 2 dwell locations predicts trial type: combined EV and 
sigma model. Results of logistic regression model predicting the trial type based on EV and sigma 

ranks of the end location in patterns with 2 dwell locations. CI – confidence interval, p – p-value, N – 

number of subjects. 

  Trial type 

Predictors Odds Ratios CI p 
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(Intercept) 0.58 0.42 – 0.81 0.001 

ev end [2] 1.55 1.12 – 2.15 0.009 

ev end [3] 1.83 1.31 – 2.56 <0.001 

sig end [2] 0.83 0.59 – 1.16 0.276 

sig end [3] 0.79 0.59 – 1.08 0.139 

ev end [2] × sig end [2] 1.05 0.68 – 1.63 0.811 

ev end [3] × sig end [2] 0.89 0.56 – 1.43 0.632 

ev end [2] × sig end [3] 1.08 0.69 – 1.70 0.726 

ev end [3] × sig end [3] 0.85 0.52 – 1.38 0.504 

N id 38 
Observations 3394 
Marginal R2 / Conditional R2 0.022 / 0.133 

 

 

Table 4-S10. Patterns with 3 dwell locations predict trial type: EV- and sigma-based models. 
Results of logistic regression models predicting the trial type based on whether it was an xyx-type pattern 

and EV (left) / sigma (right) rank of the start location in patterns with 3 dwell locations. CI – confidence 

interval, p – p-value, N – number of subjects. 
 

  Trial type [EV model] Trial type [sigma model] 

Predictors Odds 
Ratios CI p Odds 

Ratios CI p 

(Intercept) 1.01 0.77 – 1.32 0.943 0.81 0.61 – 1.08 0.150 

xyx [1] 0.48 0.38 – 0.61 <0.001 0.94 0.72 – 1.24 0.672 

start [2] 1.01 0.73 – 1.39 0.955 1.07 0.77 – 1.49 0.686 

start [3] 0.77 0.55 – 1.06 0.110 1.36 0.98 – 1.88 0.064 

xyx [1] × start [2] 1.96 1.37 – 2.80 <0.001 0.85 0.58 – 1.24 0.396 

xyx [1] × start [3] 3.04 2.08 – 4.44 <0.001 0.60 0.42 – 0.87 0.007 

N 38 id 38 id 
Observations 4353 4354 
Marginal R2 / 
Conditional R2 

0.036 / 0.099 0.007 / 0.069 
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Table 4-S11. Patterns with 3 dwell locations predict trial type: combined EV and sigma model. 
Results of logistic regression model predicting the trial type based on most prevalent xyx-type patterns 

based on EV and sigma ranks in patterns with 3 dwell locations. CI – confidence interval, p – p-value, 

N – number of subjects. 

  Trial type 

Predictors Odds Ratios CI p 

(Intercept) 0.96 0.80 – 1.15 0.653 

ev1y1 [1] 0.50 0.42 – 0.60 <0.001 

sig3y3 [1] 1.21 0.96 – 1.51 0.102 

ev1y1 [1] × sig3y3 [1] 0.84 0.62 – 1.13 0.246 

N id 38 
Observations 4353 
Marginal R2 / Conditional R2 0.035 / 0.097 

 
 

Table 4-S12. Dwell time spent in each position in patterns with 2 dwell locations. Results of logistic 

regression model predicting the trial type based on the dwell time spent in each position in patterns with 

2 dwell locations. CI – confidence interval, p – p-value, N – number of subjects. 

  Trial type 

Predictors Odds Ratios CI p 

(Intercept) 0.56 0.42 – 0.74 <0.001 

position [2] 0.75 0.59 – 0.96 0.022 

dwelltime 0.75 0.55 – 1.03 0.072 

end [2] 1.70 1.51 – 1.92 <0.001 

end [3] 1.83 1.61 – 2.09 <0.001 

position [2] × dwelltime 1.78 1.14 – 2.78 0.012 

N id 38 
Observations 6788 
Marginal R2 / Conditional R2 0.020 / 0.140 

 

 

Table 4-S13. Dwell time spent in each position in patterns with 3 dwell locations. Results of logistic 
regression model predicting the trial type based on the dwell time spent in each position in patterns with 

3 dwell locations. CI – confidence interval, p – p-value, N – number of subjects. 
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  Trial type 

Predictors Odds Ratios CI p 

(Intercept) 1.10 0.88 – 1.38 0.414 

position [2] 0.70 0.58 – 0.86 0.001 

position [3] 0.87 0.71 – 1.06 0.174 

xyx [1] 0.74 0.68 – 0.81 <0.001 

dwelltime 0.60 0.41 – 0.89 0.012 

position [2] × dwelltime 2.96 1.70 – 5.13 <0.001 

position [3] × dwelltime 1.54 0.91 – 2.62 0.110 

N id 38 
Observations 13059 
Marginal R2 / Conditional R2 0.006 / 0.081 

 

 

Table 4-S14. Correlation results between the frequency of dwell patterns with 1 dwell location in 
each condition and behavioral measures. r – Pearson’s correlation coefficient, rho – Spearman’s 

correlation coefficient, p – p-value. Bold – correlations with p-value < 0.05, uncorrected. 

 

Exploration 

 % optimal choice % switch 

 Pearson Spearman Pearson Spearman 

pattern r p rho p r p rho p 

1 0.09 0.59 0.11 0.50 -0.11 0.49 -0.10 0.57 

2 -0.01 0.96 -0.09 0.61 0.14 0.41 0.09 0.58 

3 -0.15 0.38 -0.06 0.71 0.05 0.76 0.06 0.72 

Exploitation 

 % optimal choice % switch 

 Pearson Spearman Pearson Spearman 

pattern r p r p r p r p 

1 0.07 0.70 0.24 0.15 -0.22 0.18 -0.16 0.35 

2 -0.02 0.91 -0.11 0.50 0.19 0.27 0.23 0.16 

3 -0.25 0.14 -0.24 0.14 0.10 0.54 0.01 0.96 

 

 

Table 4-S15. Correlation results between the frequency of dwell patterns with 2 dwell locations 
in each condition and behavioral measures. r – Pearson’s correlation coefficient, rho – Spearman’s 

correlation coefficient, p – p-value. Bold – correlations with p-value < 0.05, uncorrected. 
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Exploration 

 % optimal choice % switch 

 Pearson Spearman Pearson Spearman 

pattern r p rho p r p rho p 

12 0.26 0.11 0.11 0.52 0.29 0.08 0.24 0.14 

13 0.05 0.78 0.05 0.75 0.21 0.22 0.13 0.45 

21 -0.05 0.78 0.03 0.86 -0.20 0.24 -0.05 0.76 

23 -0.11 0.54 -0.03 0.88 0.17 0.33 0.24 0.18 

31 -0.10 0.55 -0.22 0.18 -0.35 0.03 -0.38 0.02 

32 -0.12 0.48 0.09 0.61 -0.37 0.02 -0.31 0.06 

Exploitation 

 % optimal choice % switch 

 Pearson Spearman Pearson Spearman 

pattern r p r p r p r p 

12 0.02 0.90 0.05 0.77 -0.10 0.54 -0.08 0.63 

13 -0.10 0.58 -0.03 0.85 0.09 0.61 0.12 0.46 

21 0.01 0.96 -0.04 0.79 0.03 0.86 0.04 0.81 

23 -0.19 0.29 -0.18 0.33 -0.10 0.58 -0.004 0.98 

31 0.09 0.58 0.18 0.28 0.02 0.92 -0.08 0.63 

32 0.09 0.61 0.03 0.88 -0.31 0.08 -0.24 0.17 

 

 

Table 4-S16. Correlation results between the frequency of dwell patterns with 3 dwell locations 
(xyx patterns only) in each condition and behavioral measures. r – Pearson’s correlation coefficient, 

rho – Spearman’s correlation coefficient, p – p-value. Bold – correlations with p-value < 0.05, 

uncorrected. 
 

Exploration 

 % optimal choice % switch 

 Pearson Spearman Pearson Spearman 

pattern r p rho p r p rho p 

121 0.02 0.90 -0.01 0.95 -0.12 0.46 -0.07 0.67 

131 0.10 0.57 0.07 0.68 -0.17 0.30 -0.03 0.84 

212 -0.03 0.88 -0.03 0.87 -0.01 0.95 -0.01 0.97 

232 -0.32 0.07 -0.23 0.19 -0.06 0.72 -0.13 0.45 

313 0.23 0.18 0.19 0.27 -0.05 0.76 -0.10 0.59 
323 -0.31 0.07 -0.40 0.02 -0.38 0.03 -0.39 0.02 

Exploitation 

 % optimal choice % switch 
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 Pearson Spearman Pearson Spearman 

pattern r p r p r p r p 

121 -0.001 0.99 0.12 0.46 -0.20 0.22 -0.14 0.41 

131 0.01 0.93 0.07 0.67 -0.19 0.25 -0.16 0.34 

212 0.22 0.20 0.16 0.36 0.07 0.69 0.04 0.81 

232 0.13 0.49 0.02 0.90 -0.05 0.78 0.09 0.61 

313 -0.18 0.29 -0.20 0.26 0.10 0.57 -0.04 0.80 

323 -0.20 0.30 -0.29 0.12 -0.25 0.19 -0.23 0.22 
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