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The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an 
important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification 
of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms 
can help to mitigate this, but they require large amounts of annotated data for training and validation. 
Furthermore, label noise introduced during the annotation process may impede the algorithms’ 
performance. Unlike H&E, where identification of MFs is based mainly on morphological features, the 
mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on 
slides stained against PHH3 leads to higher agreement among raters and has therefore recently been 
used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition 
of cells indistinguishable from H&E staining alone, the use of this ground truth could potentially 
introduce an interpretation shift and even label noise into the H&E-related dataset, impacting model 
performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability 
and object level agreement through an extensive multi-rater experiment. Subsequently, MF detectors, 
including a novel dual-stain detector, were evaluated on the resulting datasets to investigate the 
influence of PHH3-assisted labeling on the models’ performance. We found that the annotators’ 
object-level agreement significantly increased when using PHH3-assisted labeling (F1: 0.53 to 0.74). 
However, this enhancement in label consistency did not translate to improved performance for H&E-
based detectors, neither during the training phase nor the evaluation phase. Conversely, the dual-
stain detector was able to benefit from the higher consistency. This reveals an information mismatch 
between the H&E and PHH3-stained images as the cause of this effect, which renders PHH3-assisted 
annotations not well-aligned for use with H&E-based detectors. Based on our findings, we propose an 
improved PHH3-assisted labeling procedure.

In tumor diagnosis, a crucial step is the examination of tissue samples by pathologists to derive important 
tumor-related information and aid in determining suitable treatment options. One factor of interest is the 
proliferation fraction of the respective tumor, which can be assessed through the number of cells undergoing 
cell division, as observed through mitotic figures (MFs)1. The mitotic count (MC), defined as the number of MFs 
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within a standardized area of ten consecutive high-power fields2, is known to highly correlate with biological 
tumor behavior and is part of various tumor grading systems in human3–6 as well as veterinary medicine7–12. 
While the identification of MFs is common in routine pathology, it is a task known to have a low inter-rater 
agreement13–15. The availability of slide scanners has enabled the digitization of entire slides into whole slide 
images (WSIs), which can be analyzed automatically using computer vision methods, and, in particular, deep 
learning (DL)-based approaches. In the context of MF detection, DL algorithms already demonstrated human-
like performance14. Nevertheless, those algorithms rely on large amounts of annotated data, and the annotation 
quality is known to affect the performance of the trained DL model16,17. In contrast to the hematoxylin and eosin 
(H&E) stain, which is the standard stain used in histopathology, staining with the mitosis-specific antibody 
phosphohistone H3 (PHH3) specifically highlights the cell nucleus during mitosis18. The immunohistochemistry 
(IHC) staining against PHH3 is a validated method with diagnostic and prognostic significance, emphasizing its 
utility in the assessment of the MC in various tumor types18–22. Furthermore, different studies reported that MC 
determined using PHH3 as sole stain leads to lower variability of the MC among different raters compared with 
the MC acquired in H&E-stained samples11,18,21,23,24. Nevertheless, H&E remains the default stain in pathology 
due to its widespread adoption and established efficacy for morphological assessment, and therefore, any 
detectors or diagnostic tools intended for clinical use must be designed to work effectively with this particular 
stain. Moreover, PHH3 staining is significantly more expensive than H&E staining, rendering it less attractive 
particularly in cost-sensitive environments such as, for instance, veterinary pathology.

Multiple research groups have explored a workflow that combines both, the superior sensitivity of the PHH3 
stain for mitosis identification to improve annotation label quality and the opportunities brought by utilizing 
machine learning-based detection tools as an assistance for clinicians25–31: First, the specimen is stained with 
one dye (e.g., H&E), and the slide is digitized (see Fig. 1a). After this, the cover-slip is carefully removed and the 
tissue is de-stained, and subsequently immunohistochemically re-stained (e.g., against PHH3), and digitized 
again. This workflow yields two digital images that, after a registration, yield cell-exact correspondences, and 
can be used in tandem to enhance the annotation process, leveraging the complementary information provided 
by the two stains. This methodology, the application of an IHC stain and the co-registration with H&E-stained 
images for label generation, has been used before for various applications in digital pathology, e.g., for the 
segmentation of tissue in colon cancer32, prostate cancer33, and canine breast cancer34, and on a cellular level for 
cell segmentation in papillary thyroid carcinomas35 and melanocytic cells36. Given PHH3- and H&E-stained, 
co-registered images, Tellez et al. proposed to annotate and/or detect on the PHH3-stained image and register 
these biologically sensible annotations to the corresponding cellular objects within the H&E stain25. Ibrahim 

Fig. 1. Overview of the PHH3-assisted annotation pipeline. (a) In an initial step, the slides were stained 
with H&E and digitized. Subsequently, the slides were de-stained, immunolabeled with PHH3 and digitized 
once more. Afterward, the resulting images were registered. (b) During the PHH3-assisted labeling process, 
the experts were able to superimpose the slide stained against PHH3 over its H&E-stained counterpart with 
varying degrees of opacity, which made it possible to assess the information of both stains simultaneously. (c) 
However, not every cell which exhibits a positive label in the slide stained against PHH3 (brown staining) also 
possess distinct morphological features in the H&E.
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et al. approached this problem in a different way, by counter-staining slides stained against H&E with PHH3 
without prior de-staining, and thus combining both stains within one physical slide37. This way, the information 
of both stains is combined physically in the same image. The authors compared the MCs obtained using their 
novel staining technique to those derived from classical H&E staining and found that the novel method achieved 
the highest level of agreement. However, the use of both stains is associated with a significant increase in cost 
for sample preparation, which reduces the likelihood of an application in routine practice. Hence, while the 
use of PHH3-stained slides is viable in annotation workflows, for the use in routine pathology diagnostics, it is 
desirable to use MF detectors that are applicable to solely H&E-stained images. In addition, thresholds related to 
the MC in grading schemes are based on counting MFs in images stained with H&E3–12.

Another option is the concurrent use of both stains in the visual assessment by the pathology expert14,28,30, 
which we denote PHH3-assisted annotation in the following. As illustrated in Fig. 1b, during the annotation 
process, the PHH3 slide is visually overlaid against its H&E-stained counterpart using an alpha-blending 
technique. The respective expert can then manually adjust the transparency as needed. One of the primary 
challenges in MF annotation is the high probability of missing MFs during the annotation process16. In the 
PHH3-assisted approach, an expert can utilize the PHH3 slide to screen the slide for MFs, thereby reducing 
the likelihood of omissions. Concurrently, the morphology of the MFs can be examined in the respective H&E-
stained slide38. This combined procedure aims at a reduction in the overall label error, since the PHH3 stain, if 
applied correctly, reveals the biological truth. However, one caveat is that PHH3 is more sensitive to early mitotic 
phases and less sensitive to later mitotic phases of the cell cycle20. While late telophase MFs are well identifiable 
in H&E because of their characteristic morphology, PHH3 labels early prophase MFs which lack mitotic figure 
morphology and are hence not identifiable in H&E-stained slides alone38,39. As a result, the MFs highlighted in 
slides stained against PHH3 differ from those recognizable in H&E, contributing to an elevated MC, which was 
observed in studies involving various tumors18,40,41.

The use of PHH3 for mitosis recognition has become more widespread in research in recent years, and it 
has also been proposed for use in grading schemes42,43. While the impact on the inter-rater agreement of MF 
annotation in slides stained against PHH3 has been the subject of various studies18,20,21,23,37, the majority of 
these studies investigated the MC determined in H&E separately from the MC determined in PHH3-stained 
slides18,20,21,23. This differs from PHH3-assisted approaches14,28,30, where the use of co-registered double stains is 
meant to make the information of both stains available to the pathologists simultaneously.

Our hypothesis is that while the PHH3-assisted labeling methodology may result in a high level of agreement 
among pathologists, it may also introduce a hindsight bias 44, i.e., that the reviewers judge potential MF objects 
differently in H&E after knowing the biological truth through the PHH3 image, even if the respective cell 
is lacking MF morphology. This could lead to the inclusion of MFs in the dataset that would not have been 
annotated in the absence of PHH3, even if the annotation was carried out with an utmost level of diligence and 
using a consensus of multiple experts for each object. If these cells lack MF morphology and are therefore not 
identifiable in the H&E, an information mismatch occurs as soon as the information of the PHH3 is missing, 
which leads to an interpretation shift for MF labels. From the perspective of an object detector operating in 
the H&E, the annotation of those cells can be considered false positives, i.e., an asymmetric label noise. This 
may consequently impede the performance of the model during training or result in an underestimation of the 
model’s performance, in particular the recall, if it is evaluated on such a dataset.

We took several steps to investigate our hypothesis. To assess the influence of PHH3-assisted labeling on 
the annotations of human experts, we conducted an extensive multi-expert experiment. Thirteen pathologists 
annotated MFs in two phases on twenty region of interests (ROIs) of four tumor types with and without PHH3 
assistance. The resulting data set was used to investigate the impact of PHH3 assistance on the pathologists’ 
agreement. In addition, the MFs newly found by PHH3 assistance were re-evaluated in a post-hoc experiment 
to find out what kind of cells were newly annotated by PHH3 assistance. In order to investigate the influence of 
PHH3-assisted labeling on the performance of deep learning models, the data set resulting from the study was 
used to evaluate different models. The primary contribution of this work is to challenge the assumption that 
PHH3-aided labeling procedures inherently provide optimal labels for H&E-stained sections without additional 
steps. Our findings permit the formulation of an annotation scheme and recommendations for the optimal 
utilization of PHH3 in the annotation of MFs in H&E.

Results
Human rater study
A study was conducted with 13 pathology experts to investigate the impact of co-registered PHH3 slides on 
the annotation of MFs by human experts. The set of images used in the study consisted of 20 ROIs of four 
different tumor types of which ten were of canine and ten were of human origin. The study had two phases: in 
the first phase (P1), the experts were asked to annotate MFs only in H&E-stained slides. In the second phase 
(P2), conducted after a wash-out period, they were asked to repeat the task with PHH3 assistance, i.e., with 
H&E and PHH3-stained slides available simultaneously. In P2 the experts had three different classes available 
for annotation, depending on whether an MF was identifiable only in PHH3, only in H&E, or in both stains. By 
considering only the last two annotation classes, we only focus on those MFs which the experts classified as at 
least being identifiable in the H&E. Further details regarding the study design and the study dataset can be found 
in the methods section.

The agreement of the pathologists was assessed both for the MC and for the individual MF instances. 
To assess the inter-rater agreement of the MC, we employed the intraclass correlation coefficient (ICC). We 
computed the ICC for a case in which each target was rated by a fixed set of k raters. We then reported the 
average over k ratings, which is equivalent to the Spearman-Brown adjusted reliability. To measure agreement 
at the object level, we compared each rater’s annotation to the consensus of all other raters’ annotations for each 
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phase of the experiment, resulting in an independent ground truth definition for each of the two study phases. 
We recognized MFs in our ground truth if they were recognized by at least half of the remaining experts (i.e., 
six). The agreement between the individual raters’ annotations and the described consensus was then measured 
via Dice Similarity Coefficient/F1-score, as proposed for this task by Veta et al.13. Additionally, we calculated 
precision and recall (see Fig. 2).

The usage of PHH3 assistance resulted in a substantial improvement in instance-level agreement between 
raters (see Fig. 2). In Fig. 2a the precision and recall values for the H&E-based annotation (P1) and the PHH3-
assisted annotation (P2) for each rater are plotted against each other. Each rater demonstrated an increase in 
either recall, precision, or both when comparing the results of phase P1 to P2. If there was a slight decrease in 
either precision or recall in phase P2, it was always accompanied by a substantial increase in the other metric. 
The aggregated results over all raters are given in Fig. 2b. Each metric increased by a large margin through the use 
of PHH3 assistance. In particular, we found that the average F1-score increased from 0.53± 0.11 to 0.74± 0.11, 
the average precision from 0.53± 0.20 to 0.78± 0.17, and the average recall from 0.67± 0.19 to 0.77± 0.19. For 
the F1-score and the precision, this difference was found to be statistically significant (t(12) = −5.86, p < 0.05 
and t(12) = −5.18, p < 0.05). Details about the statistical tests are given in the methods section.

The investigation of the agreement of the MC demonstrated that the annotations performed using only the 
H&E-stained slides yielded an ICC of 0.9. Nevertheless, the utilization of PHH3-assisted labeling in P2 led to an 
ICC of 0.99, thereby achieving a nearly perfect level of agreement.

The average number of MFs found per expert per image increased from 20.48± 19.25 in phase P1 to 
29.00± 14.25 in phase P2. The total number of MFs upon which at least six raters agreed increased from 252 
in P1 to 549 in P2. In Phase P2, 308 MFs were newly annotated while 11 MFs annotated in phase P1 were not 
annotated as MFs in phase P2 by at least six experts.

To investigate the morphology of the MFs that were newly discovered by PHH3-assisted labeling, these MFs 
were re-assessed in a post-hoc experiment involving three board-certified pathologists. Each newly discovered 
MF was independently reviewed by the pathologists in solely the H&E image in a blinded experiment. The 
objective of the experiment was to determine whether a given cell displayed distinct MF morphology in the H&E 
or not. In case the experts reached a differing conclusion, the class was determined by majority vote. More details 
of the experiment design are provided in the methods section. Of the 308 newly found MFs in condition P2, 
172 were classified as not being recognizable based on the H&E-stained image alone by at least two of the three 
experts. The examination of the agreement of the pathologists in this decision showed a low agreement with a 
Fleiss’ kappa value of 0.20, which highlights the difficulty of this task. Further analysis of the 308 newly found 
cells by an experienced pathologist showed that the majority (48%) represented prophase or prometaphase, 37% 
Metaphase, and 15% anaphase or telophase.

Deep learning experiment
As shown above, the inter-rater agreement increased significantly if the experts were aided by the secondary 
stain of PHH3, and consequentially, we can expect a reduction in the dataset label noise. It is therefore interesting 
to observe which effect this increased consistency in the training and evaluation dataset has on deep learning 
pipelines.

We evaluated two different state-of-the-art object detection architectures on datasets derived from the 
human rater experiment (termed study dataset in the following) and another independent dataset. We used the 
Fully Convolutional One-Stage Object 165 Detector (FCOS) by Tian et al.45 as a single-stain detector based 
solely on H&E staining. This architecture was then extended with a second feature extractor, as shown in Fig. 5, 

Fig. 2. Panel (a) displays the precision and recall of each rater plotted against the consensus of the remaining 
raters of phase one and three. The results of the first (P1) and second (P2) phases of the study are marked by a 
dot and a cross, respectively. Each rater is represented by a different color. The F1 value, precision, and recall of 
each rater against the consensus of the remaining raters is given in panel (b). Means are indicated by the black 
crosses. The box represents the interquartile range (IQR) with the median as a line inside it, while the whiskers 
extend to the smallest and largest observations within 1.5· IQR from the quartiles. A significant difference 
between the values found in P1 and P2 is indicated by an asterisk.
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to function as a dual-stain detector (termed Dual-Input FCOS (DI-FCOS) in the following). The training of the 
described detectors required a dataset which had two different ground truth definitions available, one based on 
H&E and the second based on PHH3-assisted labeling. For this purpose, a sub-set of the final test set of the 2022 
edition of the MIDOG challenge was used, to which we will refer in the following as the MIDOG dataset. The 
dataset has been annotated using a consensus of three raters both using only the H&E images and, additionally, 
using PHH3 assistance28.

To increase the statistical informativeness of the results we trained each object detector in a five-fold Monte 
Carlo cross-validation scheme. For this, the MIDOG dataset was randomly split five times into 70% training, 
and 15% each for validation and test cases. To ensure comparability of the results, all models were trained and 
tested on the same five splits. Besides on the test split of the MIDOG dataset, the detectors were also evaluated 
on the study dataset derived from P1 and P2 of the human rater experiment. We used the average precision (AP) 
to measure the performance of the object detection algorithms.

For DL models receiving H&E images as input (i.e., single-stain models), we evaluated the use of PHH3-
assisted annotations in both training and evaluation, and contrasted these results against training and testing 
with annotations generated on solely H&E images, all by multi-expert consensus.

Firstly, we found that the performance of the single-stain detectors decreased when evaluating on the PHH3-
assisted annotations, regardless if we trained on the H&E-only annotations or the PHH3-assisted annotations 
(see Table 1). We found this result consistently for both independently annotated datasets (MIDOG dataset and 
study dataset). The single-stain detectors hence do not benefit from the improved consistency in the evaluation 
dataset.

Secondly, we found that training on the PHH3-assisted label sets does not improve the performance of the 
single-stain detectors, regardless on which dataset these were evaluated. Single-stain detectors are thus not able 
to leverage the improved consistency in the training dataset, independent of which evaluation set was used.

Furthermore, the overall best performance for the single-stain detectors was found when training and 
evaluation was done on labels generated as consensus of experts solely on H&E stain.

In summary, these results indicate that H&E-based detectors do not benefit from PHH3-assisted labels, 
whether they are used in the training or evaluation sets.

Fig. 3. Average precision of the single-stain FCOS and dual-stain DI-FCOS models on the test sets, evaluated 
in a five-fold cross-validation on the label-sets of the study dataset. Boxes visualize the first quartile and third 
quartile, lines indicate median and pluses indicate mean values of the runs.

 

Test dataset Model Stains Parameters

Trained using H&E-only labels
Trained using PHH3-assisted 
labels

Evaluation labels Evaluation labels

H&E-only PHH3-assisted H&E-only PHH3-assisted

MIDOG 
dataset

FCOS (ResNet18) H&E 19.0 M 0.70± 0.03 0.64± 0.02 0.71± 0.03 0.68± 0.04
FCOS (ResNet101) H&E 51.0 M 0.74± 0.04 0.68± 0.05 0.71± 0.04 0.69± 0.06
DI-FCOS (ResNet18) PHH3,H&E 39.9 M 0.74± 0.04 0.73± 0.05 0.72± 0.04 0.79± 0.05

Study 
dataset

FCOS (ResNet18) H&E 19.0 M 0.64± 0.02 0.58± 0.03 0.61± 0.04 0.61± 0.02
FCOS (ResNet101) H&E 51.0 M 0.66± 0.03 0.60± 0.02 0.62± 0.03 0.60± 0.04
DI-FCOS (ResNet18) PHH3,H&E 39.9 M 0.66± 0.04 0.72± 0.06 0.61± 0.05 0.81± 0.05

Table 1. Results of the single stain (FCOS) and dual stain (DI-FCOS) object detection models on the different 
label sets of the test split of the MIDOG dataset and the 13 expert study dataset, evaluated in five-fold cross-
validation. Given are the mean and standard deviation of the average precision (AP) as a result of cross 
validation. Best results for each dataset and each training setting are highlighted in bold.
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The situation changes when we allow the detectors to also utilize the additional PHH3 image (DI-FCOS 
condition in Table 1). By providing the model with the same information available to human annotators, the 
network significantly improves and achieves top scores on both independently collected datasets. This points 
directly to an information mismatch between the condition where only one stain is available and when both 
stains are available, leading to an interpretation shift as to which objects can be identified as MFs. We should note 
that we explicitly asked annotators to not annotate any objects that did not have clear morphological features. 
Hence, this indicates that PHH3-assisted labeling imposes a hindsight bias on the annotating experts, i.e., the 
presence of PHH3 markers inadvertently influences their judgment and causes over-recognition of cellular 
objects that have no clear MF morphology in H&E44. This leads to the inclusion of MFs in the dataset that would 
not have been annotated without PHH3 assistance, as they lack clear MF morphology in the H&E staining.

We found additional evidence of an interpretation shift when comparing the dual-input DI-FCOS models 
(which can utilize both stains) between models trained on the PHH3-assisted and the H&E-only labels. If and 
only if the dual-stain models were trained and evaluated on the PHH3-assisted labels, we found a superior 
performance (see bold-marked results in right column of Table 1). Training on the H&E-annotated labels strips 
this detector from a part of its competitive advantage (average APs dropping from 0.81 to 0.72 (study) and 
0.79 to 0.73 (MIDOG)). To investigate a possible effect of the dual-stain DI-FCOS model just having a greater 
capacity and thus being able to perform better, we also investigated the single-stain approach using a much larger 
backbone (ResNet101 vs. ResNet18), which more than doubled the number of parameters of the model and 
exceeded the number of parameters of the dual-stain model by a considerable amount. The similar performance 
of the DI-FCOS model and the FCOS model with the larger backbone on the H&E-only label sets, along with 
the superior performance of the DI-FCOS model on the PHH3-assisted label sets, indicates that the superior 
performance of the DI-FCOS model was not merely due to its larger model size.

To further substantiate our analysis regarding the hypothesis that the PHH3 assistance caused the inclusion 
of MFs into the dataset that lack MF morphology and are hence not identifiable by a single-stain detector solely 
based on H&E, we ran another experimental evaluation. In it, we used the three expert consensus from the post-
hoc experiment to create a further, cleaned label set for the study dataset derived from P2, excluding the 172 
MF cells which the three experts classified as non-recognizable in the post-hoc analysis. The evaluation of the 
single-input detectors on the cleaned version of the PHH3-assisted label sets revealed the best results for these 
detectors (see Fig. 3). Compared to the results on the PHH3-assisted (evaluation) label sets, the performance 
increased by a large margin. This aligns with our hypothesis that the single-stain detectors were unable to 
detect MFs in the PHH3-assisted dataset due to a difference of available information between the H&E- and 
PHH3-stained images, leading to an interpretation shift for MF labels. The exclusion of the cells lacking MF 
morphology presumably reduced the effect of the interpretation shift and led to better performance of the single-
input detectors. We did not observe the same performance gains for the dual-input models. Specifically, the 
performance of the DI-FCOS model trained on a PHH3-assisted label set deteriorated when evaluated on the 
cleaned version of the PHH3-assisted label set. This supports our assumption that the dual-input detectors were 
not subject to the information mismatch between labels and image information like the single-input detectors. 
Otherwise, the exclusion of the unclear MFs should have also positively affected the dual-input detectors.

To further examine the impact of training with H&E-only and PHH3-assisted labels on the decision of single 
input detectors, we employed a Uniform Manifold Approximation and Projection (UMAP)-based46 visualization 

Fig. 4. A UMAP representation of the latent space of a MF classifier at varying stages of mitosis, showcasing 
a shift of the decision boundaries for the prophase/prometaphase. The projections are colored according 
to whether a respective cell was identified by the majority of the models included in the respective cross-
validation and thus constituted a true positive (orange) or not (blue). The first row depicts the decisions of the 
ResNet18-based single stain detector, which was trained with H&E-only labels. In contrast, the second row 
illustrates the decisions based on the same architecture but trained with PHH3-assisted labels. To facilitate 
a more comprehensive visualization of the distributions, the orange and blue lines demarcate the region 
encompassing the three quartiles of the respective true positive and false negative decisions.
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approach on the latent space embeddings of the 308 MFs from the study dataset for which we had information 
available about the mitotic phase (see Fig. 4). To achieve a sensible discrimination of the MFs into the latent 
space, a single mapping network was trained on the MIDOG dataset. We then projected the latent space of this 
network into a two-dimensional space by means of the UMAP projection.

The UMAP projections were then color-coded depending on whether the majority of the models of the 
respective cross validation found a respective cell which thus constituted a true positive or whether a cell was 
not found and hence constituted a false negative. We assume that this way we are able to visualize the effect of 
the labeling method on the decision boundaries of the respective models trained using the labels acquired with 
this labeling method. Further details on the training of the mapping network and the visualization process are 
provided in the Methods section.

In our projection the discrimination between recognized and non-recognized MFs is predominantly along 
the horizontal axis. A clustering of true positives and false negatives is visible for each plot. We also visualized the 
75th percentile of the respective distributions in Fig. 4. Comparing the distributions of false negative predictions 
of prophase and prometaphase MFs for the models trained with H&E-only labels and PHH3-assisted labels, a 
shift of the decision boundary along the horizontal axis is visible comparing the PHH3-assisted vs. the H&E-
based models. There is no such shift present for the other mitotic phases. This is an indication that training 
with PHH3-assisted labels shifted the decision boundary towards MFs which were harder to identify only for 
prophase/prometaphase MFs.

Discussion
Reliable and robust MF detectors can be of great help in computer-aided tumor grading. High label quality is 
crucial for the training and evaluation of such DL-based detectors, but is particularly difficult to achieve given 
the low inter-rater agreement and reproducibility13. Previous studies have attempted to resolve this ground truth 
problem by utilizing co-registered slides, re-stained against PHH3, an IHC stain that specifically highlights MFs. 
Those PHH3-stained slides were given to the pathologists either as a sole stain or alongside the H&E-stained 
slides to avoid omissions of MFs in the H&E-stained slides and to enhance the inter-rater agreement25–31.

A fundamental, yet so far untested, assumption about PHH3-assisted labeling was that, given the reported 
higher inter-rater agreement on an object level, the resulting definition of a ground truth (with regard to 
the H&E-stained images) is of much higher quality than annotations on H&E alone. An improved labeling 
consistency should reduce the label noise, benefiting the evaluation metrics if used for acquisition of the test set, 
and also benefiting the prediction quality of the models trained with such data. Given this, we would thus expect 
to find improved metrics if trained or evaluated on the PHH3-assisted labels.

However, we found the opposite to be true in our study. On two independently collected datasets, we found 
the AP metric to decrease if we train or evaluate single-stain detectors on PHH3-assisted labels. The use of 
PHH3-assisted annotation workflows imposes an information mismatch, leading to an interpretation shift of 
what constitutes a mitotic figure. This ultimately leads to the inclusion of MFs into the H&E dataset which 
would not have been annotated without the PHH3 assistance available, as these MFs are hard to recognize in 
H&E-stained images alone. While some objects might be borderline identifiable (leading to a semantic label shift 
inconsistent with H&E-based annotations), other objects might not be distinguishable at all (introducing label 
noise if only the H&E image is considered).

The introduction of such unrecognizable MFs is evidenced by the results of the post-hoc analysis of MFs 
that were newly annotated in the PHH3-assisted annotation setting. The majority of those newly annotated cells 
were classified as being not recognizable as MFs with H&E due to the absence of characteristic morphological 
features. Excluding these cells from the PHH3-assisted label set resulted in an improvement in the evaluation 
performance of the H&E-based single input detectors (see Fig. 3), which demonstrated their negative influence 
on the the evaluation results.

Furthermore, our investigations indicated that training single-input detectors with PHH3-assisted labels 
shifted the decision boundary for prophase and prometaphase MFs, skewing it towards less distinct MFs (see 
Fig.4). This shift was likely due to the inclusion of early prophase MFs through PHH3-assisted annotations, 
which were not easily identifiable in H&E staining. Given that prophase is one of the longest phases of the 
mitotic cycle38, it is expected that the use of PHH3-assisted annotations increases the representation of this 
phase within the dataset, potentially driving the observed shift in the model’s decision threshold.

The discrepancy in information between the H&E- and PHH3-stained images is further indicated by 
the superior performance of the dual-input detectors  (see Table 1). In contrast to single-input detectors, the 
dual-input detectors have access to the same information as the annotating experts. Consequently, from the 
perspective of the dual-input detector, there is no information shift. The information shift occurs only when the 
information from the PHH3-stained slide is absent, as it is from the perspective of the single input detectors. 
This ultimately resulted in the lower performance of the single-input detectors on the PHH3-assisted label sets.

The substantial difference between dual-stain detectors trained on the PHH3-assisted labels and those 
trained on H&E-based labels emphasizes this interpretation: We can conclude that this might be indicative of 
the dual-stain detector learning to classify early prophase and other morphologically indistinguishable cells as 
MFs only if it was trained on the PHH3-assisted label set, which includes these objects. If trained on the H&E-
based annotations, while having the PHH3 staining information available, the detector will learn to classify 
those objects as non-MFs. This interpretation is supported by our results, where the average AP considerably 
drops when trained on H&E-based labels alone.

We found a relatively low level of agreement among our experts in the post hoc experiment as to whether or 
not a given cell exhibited morphological characteristics of an MF. Since the experts involved in this experiment 
were all board-certified pathologists with extensive experience in identifying MFs, we do not attribute the low 
agreement to a lack of expertise. Rather, we attribute the low agreement to the difficulty of the task. The cells 
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given to the experts in the post-hoc experiment were those identified by the majority of pathologists in the 
annotation experiment only after PHH3-assistance. Therefore, it can be assumed that these did not generally 
show conspicuous MF morphology, representing borderline cases. This is corroborated by the subsequent 
assessment of the newly discovered cells, which revealed that the majority of cells were either in prophase or 
prometaphase. A particularly low agreement between pathologists is reported for these phases, which is why it 
has already been recommended not to count them when determining the MC38,39.

A limitation of our DL experiments is that a DL model serves only as an indirect measure of information 
availability. If the information is not present, the DL model cannot utilize it. However, the absence of 
improvement in a DL pipeline cannot be solely attributed to a lack of additional meaningful information that 
could be utilized for the decision. To the contrary, the model could just not be using the additional information. 
The high concordance between all DL results and the statistical evaluations conducted by human participants 
reassures us that this limitation was not significant within our study. Furthermore, the dataset only contained 
84 ROIs which is relatively small compared to the size of other datasets for MF detection like the training set 
of the MIDOG 2022 challenge28 or even datasets consisting of completely annotated WSIs47. Since the focus 
of this work was to investigate the information mismatch between H&E- and PHH3-stained slides rather than 
developing an MF detector with competitive performance, we consider this as a minor limitation. Additionally, 
at least for the H&E part of the dataset, all compared detectors (FCOS using ResNet18, FCOS using ResNet 101, 
DI-FCOS) were trained on the same physical slides, so it can be assumed that they were all equally influenced 
by the available data variance.

Since the IHC label present in the PHH3-stained slides is dependent on the biological process of cell 
division, the PHH3-assisted ground truth can be considered a more accurate estimate of the actual biological 
truth. Therefore, an MF detector trained with PHH3-assisted labels in H&E images alone could be similarly 
perceived as biologically more accurate. However, if the biological information is not available in the H&E slides, 
as indicated by our work, the detector will perform less accurately. If the cutoff is optimized on the PHH3-
assisted annotations, it is likely that the detector will include those doubtful MF candidates, and also other 
morphologically similar objects, reaching a high false positive rate. Ultimately, the goal of MF detection in 
digital pathology is commonly to determine the MC for use in grading schemes. The current schemes are also 
based on solely H&E stains3–12. Hence, while the PHH3-assisted label set might represent the biological truth of 
cell division more accurately, it reflects different boundary conditions than those present in routine oncologic 
histopathology.

Our findings demonstrate that PHH3-assisted annotation significantly enhances the object-level agreement 
of MFs among experts. While this was the first time the impact of PHH3-assisted annotation was investigated, 
these results align with previous studies comparing the inter-rater agreement of MF counting using H&E with 
the inter-rater agreement of MF counting using PHH311,18,20,23,37. One possible reason for this might be that the 
experts overlooked fewer MFs using the PHH3-assisted pipeline. This is supported by the higher average number 
of MFs identified per expert per slide and the recall rate for individual objects, which increased by the use of the 
PHH3s-assisted annotation procedure. The significant increase in precision also shows that the experts agreed 
more on the objects they annotated, as the individual expert made fewer false positive annotations in relation to 
the ground truth formed by the rest of the experts. This indicates that the IHC label in PHH3 provided a strong 
decision criterion to which the experts adhered to.

Although Fig. 2a may suggest that some experts improved more in precision while others showed greater 
gains in recall, this cannot be attributed to differences in how the experts utilized the PHH3 assistance, as all 
experts underwent the same training prior to the second stage of the human rater experiment. Therefore, it is 
reasonable to assume that the observed discrepancies are due to variations in the internal cutoff values applied 
to MF morphology and IHC labeling, as well as the relative weighting of these factors in the raters’ decision-
making processes.

The tissue preparation utilized in this study is considerably more complex and costly in comparison to the 
conventional processing using only H&E staining. Additionally, re-staining of H&E sections is not a routine 
procedure, which also carries the risk of damaging the tissue, making it challenging to register the resulting 
slides and requiring the entire preparation procedure to be repeated. Furthermore, both sections must be 
scanned and the data stored, which further increases the demands on the computational resources. It is therefore 
unlikely that this method, or the double staining proposed by Ibrahim et al.37, will replace the routine counting 
of MFs in H&E-stained sections. However, it can be of high value in the annotation of MF datasets used to train 
and evaluate automatic detection pipelines, if the PHH3-positive and morphologically doubtful annotations are 
excluded post-hoc, as this study shows (see Fig. 3).

For this reason, we propose an adapted annotation procedure based on our results. Given the high recall of 
the PHH3-assisted annotation procedure, the double-stained sections could be utilized in an annotation system 
to identify potential MF candidates in an initial step, potentially also only by a single expert. Consequently, the 
PHH3-assisted annotation procedure could potentially replace complex AI-assisted annotation methods16,28. 
As the visual contrast between MFs and the surrounding tissue is considerably higher in slides stained against 
PHH3 than in those stained with H&E, screening for MFs can be considered less tiring and faster. Since the cells 
that carry a positive signal in the IHC biologically represent mitosis, the possibility of accidentally labeling non-
MFs is also reduced. While cells that show both a clear IHC signal and very clear MF morphology in the H&E 
can be directly included in the data set, all other identified cells would be classified as MF candidates. Those MF 
candidates should be forwarded to a panel of experts for independent evaluation, as was done in the post-hoc 
experiment in this study. The experts will determine whether the respective MF candidate can be recognized as 
an MF in the H&E-stained slide. In this assessment, the experts should utilize the same morphological criteria to 
inform their decision as for example those described by Donovan et al.38. To mitigate potential cognitive biases 
introduced by the availability of the PHH3 stain, the experts should perform this task solely with the H&E stains 
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available. Additionally, some MF lookalikes should be included in the cells in this assessment to prevent indirect 
influences due to hindsight bias. If the expert panel was only presented with MF candidates that were positive 
in the IHC, this knowledge could bias them towards a lower internal threshold regarding the morphological 
features, which in turn could again lead to the inclusion of MFs in the dataset that do not have a distinct MF 
morphology. The cells which a majority of experts recognize as MFs can then be included in the data set.

Our study represents conclusive evidence that PHH3-restained slides, co-registered with H&E slides can 
be of great use in the efficient and accurate annotation of MFs. However, our results also imply that the direct 
application of these labels to H&E leads to an interpretation shift, as a considerable number of objects that are 
positive in PHH3 are not distinguishable in H&E, which can be interpreted as label noise in the context of the 
H&E image. We propose to remedy this problem with a secondary evaluation and consensus by a panel of 
experts using image patches. Since this is a relatively expeditious task, we are optimistic that these steps could 
represent the new gold standard for mitotic figure annotation.

Methods
Dataset description
Two different datasets were used in this study, one for the training and evaluation of the object detectors and 
one generated by the human rater experiment, which serves as a hold-out dataset for the evaluation of the object 
detectors. Both datasets utilize corresponding ROI pairs of tumor tissue stained with two stains as depicted in 
Fig. 1a: The source slides were initially stained with H&E, digitized, and subsequently de-stained and re-stained 
with PHH3 before being digitized again. The resulting WSIs were then registered using a registration algorithm 
for WSIs48. From the co-registered pairs of re-stained original WSIs, the ROIs were selected by two pathologists 
(C.A.B. and S.J.) following the criteria outlined in the grading schemes4,11,49, and excluding areas that might be of 
insufficient tissue, scan or stain quality in either stain, or areas where loss of tissue occurred in the second stain.

Image dataset for human rater study
The dataset used in the annotation study consists of 20 ROIs representing four different tumor types, two of 
which were of human origin and two of veterinary origin. Tumors of different tumor types and species were 
included in order to draw broader conclusions from the results of the study. The MC is included in the respective 
grading scheme of each tumor type included in this study4,11,49. Five samples each of human astrocytoma and 
meningioma were collected from the diagnostic archive of the Institute of Neuropathology, University Hospital 
Erlangen, Germany, after prior ethics approval by the institutional review board (Ethik-Kommission der 
Friedrich-Alexander-Universität Erlangen-Nürnberg, AZ 92 14B, AZ 193 18B). Slides containing animal tissue 
were retrieved retrospectively from the diagnostic archive, which requires no ethics approval according to local 
laws and regulations. Informed consent was obtained from all subjects and all methods were carried out in 
accordance with relevant guidelines and regulations. The slides were digitized using an Hamamatsu NanoZoomer 
S60 at 40× magnification. From the diagnostic archive of the Institute of Veterinary Pathology, University of 
Veterinary Medicine, Vienna, Austria, five samples each of canine cutaneous mast cell tumor (CCMCT) and of 
canine mammary carcinoma (CMC) were collected. For these slides, no ethics approval is needed, according 
to local laws and regulations. All specimens were originally acquired for diagnostic reasons. These veterinary 
slides were digitized with a 3DHistech Pannoramic Scan II at 40× magnification. Each ROI was selected to cover 
2.37mm2 of tissue, which is equivalent to approximately ten high power fields2. In the remainder of this paper 
we refer to the dataset generated by annotating these images as study dataset.

MIDOG dataset
To examine the impact of PHH3-assisted MF annotation on the performance of MF detectors, we trained 
detectors with annotations acquired only using H&E-stained slides and with annotations that were generated 
through PHH3-assisted annotation. For this purpose, a sub-set of the final test set of the 2022 edition of the 
MIDOG challenge28 was used. The dataset contained ten samples of CCMCT, nine samples of CMC, ten samples 
of canine hemangiosarcoma, nine samples of feline lymphoma, ten samples of feline soft tissue sarcoma, three 
samples of human astrocytoma, ten samples of human bladder cancer, nine samples of human colon carcinoma, 
ten samples of human melanoma, and four samples of human meningioma. We refer to this as the MIDOG 
dataset. Two different ground truth definitions were available for this dataset. The first definition relied solely 
on H&E-stained slides, while the second was created with PHH3-assisted labeling. The H&E-only annotations 
were created as described in previous works16 by three pathologist with at least five years of experience in MF 
identification assisted by a DL model with high recall that screened the slides for MF candidates. To be accepted 
as an MF, at least two pathologists had to agree upon a candidate. The PHH3-assisted annotations were created 
by a single expert using an open source web-based annotation server50 where the two corresponding stains could 
be superimposed on each other with variable transparency as depicted in Fig. 1b. This way, the expert was able to 
assess the IHC label present in the PHH3-stained slide and the morphological features visible in the H&E slide 
at once. If the registration was not perfect, e.g., due to tissue deformation, the position of the respective cell in 
the H&E-stained slide was annotated. Cells that had a positive IHC label but that were lacking MF morphology 
in the H&E stain were not annotated, as these cells are not identifiable as MFs in the H&E-stained slides28. This 
also covers the case of out-of-focus MFs in the H&E image, which would also lead to an information mismatch 
if MFs identified solely in PHH3 were used as annotations for the H&E image.

Human expert mitotic figure annotation study
To investigate the impact of co-registered PHH3 slides on inter-rater agreement, a study was conducted with 13 
pathology experts. The study consisted of two phases, with a four week washout period to prevent participants 
from recalling the cases. To further prevent bias, the slides were presented in randomized order and under 
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different names in each phase. The whole study was conducted using the online annotation tool EXACT50 (see 
supplementary Figure S 4). During the initial phase, participants only had access to H&E-stained ROIs. In the 
subsequent phase, participants could overlay co-registered PHH3-stained ROIs on the H&E-stained images with 
adjustable transparency, allowing for simultaneous examination of both stains. Additionally, participants were 
given three different labels to choose from when annotating MFs in the second phase, depending on whether 
an MF was identifiable in both H&E and PHH3, only in H&E because of a lacking IHC signal in the PHH3, or 
only in PHH3 because of unclear MF morphology in the H&E. In all experiments in this paper, only annotations 
of the first two classes are considered. , i.e., only cells showing clear MF morphology in H&E .This means that 
only cells where the annotators perceived a clear MF morphology in the H&E were included into our definition 
of ground truth. In case of imperfect registration, participants were instructed to annotate the position of the 
respective cell in the H&E-stained image. Before the second phase a pathologist highly experienced in PHH3-
assisted labeling (C.A.B.) conducted an online training with the participants.

To build the consensus set of agreed-upon mitotic figure objects, we used a distance-based clustering 
approach. An annotation was added to a cluster if it was no more than 7.5 micrometers away from the center 
of the cluster, approximately corresponding to the diameter of a nucleus51. This was done since the object 
coordinates determined by individual raters might vary significantly, and we wanted to avoid attribution of MF 
objects to multiple consensus annotations.

The cluster centroid was accepted to the consensus set as MF if it contained MF annotations from at least 
six experts. This threshold was chosen because the instance-based metrics were computed in a one-versus-all 
fashion. Specifically, if the instance-level agreement for one expert was to be computed, the remaining twelve 
experts were used to generate a consensus set. Thus, a threshold of six effectively indicates that at least 50% of the 
expert group agreed on the identification of an MF.

Setting the consensus threshold at six experts was considered appropriate due to the nature of the task. 
In object detection, especially for challenging objects such as MFs, raters can often miss detections. Previous 
studies have shown that even expert raters tend to overlook difficult-to-identify MFs13,16. Therefore, requiring 
a higher number of experts to agree might lead to the exclusion of legitimate MFs, thus reducing the overall 
detection performance. Although the consensus threshold is a hyperparameter that can influence the 
results, our observations indicate that similar trends persisted across various thresholds (see supplementary 
Figures S1 and S2).

To assess the statistical significance of the discrepancy between the instance-based metrics observed across 
the two study phases, we employed a paired t-test. The normality of the differences was evaluated using a 
Shapiro-Wilk test. Given that we conducted a test for each metric, we also applied a Bonferroni correction 
to minimize the occurrence of Type I errors by dividing the significance threshold by the number of tests. All 
statistical evaluations were carried out using the scipy python package, version 1.10.1.

To assess the morphology of the MFs that were annotated by the majority of the experts only with PHH3 
assistance, the MFs that were newly found in the second phase of the study were re-assessed in a post-hoc 
experiment by three board-certified pathologists with high expertise in MF identification (C.A.B., T.A.D., and 
R.K.). The experts determined whether a respective cell (MF-candidate) was recognizable as an MF based on 
its morphological features visible in the H&E. To reduce a bias introduced by a possible signal in the PHH3, the 
experts re-evaluated the cells only based on the H&E-stained slides. Additionally, a certain number of mitotic 
figure lookalikes were added to the cells that the pathologists examined. This was done to prevent the experts 
from assuming that a cell in question had a positive IHC label in any case, as it had been annotated in the second 
phase of the study, which might have introduced a bias on the experts. In total, two-thirds of the cells that were 
given to the experts were newly annotated cells, while one-third were lookalikes. However, the experts were 
unaware of this distribution.

Fig. 5. Architectural overview of our dual-stain MF detector. We extended the FCOS architecture by a 
secondary feature stem for PHH3, fused by mid-fusion using a dedicated fusion network.
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Afterwards, the 308 newly found cells were reevaluated by a single expert (T.A.D) to classify them into the 
different phases of cell division.

Detection architectures
To assess the impact of PHH3-assisted labeling on the performance of object detectors, we used the Fully 
Convolutional One-Stage Object Detector (FCOS)45, which has already been successfully used to solve other 
detection tasks in digital pathology52–54. Unlike other popular object detection architectures like Faster R-CNN55 
or RetinaNet56, FCOS does not rely on anchor boxes and hence comes with a reduced set of hyperparameters 
to tune.

To serve as a dual-input object detector, we extended the FCOS detector as depicted in Fig. 5 by adding a 
second feature extraction branch. This modification enabled the model to be trained on corresponding H&E 
and PHH3 patches simultaneously, by forwarding the corresponding patches through the respective feature 
extraction branches of the network. As in the single-input FCOS model, we used the stem of a ResNet18 pre-
trained on ImageNet in each of the feature extraction branches. Each feature extraction branch generates a 
distinct feature embedding for each of the corresponding image patches. To integrate the two feature embeddings 
into a unified feature embedding that encompasses the information from both input modalities, mid-fusion is 
employed. This refers to a technique where different input modalities are combined at an intermediate stage 
within the network57. In particular, the features of each ResNet level are fused before they are forwarded to the 
feature pyramid, using one merging network for each input level of the feature pyramid. Let H ∈ RC×H×W  and 
P ∈ RC×H×W  be the feature maps of a level of the H&E and PHH3 backbone, where C represents the number 
of channels of the respective level and H and W are the sizes of the feature maps which depend on the size of the 
input image. Then the fused features F ∈ RC×H×W  are computed by F = ReLU(Conv(LayerNorm(Cat(H,P))))
, where Cat denotes a concatenation of the feature vectors along the channel dimension and Conv is a 1× 1 
convolution which halves the number of input channels to C after the concatenation. The rest of the network 
follows the standard FCOS architecture as described by the authors45. To confirm that a difference in model 
performance between the FCOS and DI-FCOS models is not due to the DI-FCOS models’ higher number of 
parameters due to its second feature extraction branch, we also compare it to an FCOS detector with a ResNet101 
backbone pre-trained on ImageNet. For all experiments, the feature maps from the second, third, and fourth 
blocks of the respective backbone were used to construct the feature pyramids for both the standard FCOS 
and the DI-FCOS model. We used a fixed learning rate of 10−4 and AdamW as the optimizer. All models were 
trained until convergence, which was observed using the AP metric on the validation set, which we also used for 
early stopping and for model selection using a patience of 5. All models were trained on patches with a height 
and width of 512 pixels at 40x magnification, and patches were selected so that at least 50% of the training 
patches contained MFs. A standard image augmentation pipeline was employed during the training of each 
object detector in this study. This consisted of four augmentation operations including color jitter, Gaussian blur, 
pixel drop, and random rotation.

While the validation was conducted on patches which were sampled in a manner consistent with that 
employed for the training patches, the evaluation of the test images was performed differently. During the 
evaluation of the test images, the images were divided into overlapping patches of 512 by 512 pixels with an 
overlap of 50 pixels at 40x magnification, and the detector was applied to these patches. The resulting detections 
were then transferred back into the coordinate system of the original image, to calculate the AP. As the patches 
overlapped, duplicate detections were removed after transfer to the original coordinate system using non-
maximum suppression. To investigate the decision boundaries of the single-stain detectors, we conducted a 
UMAP-based feature analysis. A ResNet18 model, trained for MF classification, was used as a mapping network 
to generate meaningful discrimination in feature space. The mapping network was trained on a random split of 
training and validation sets from the MIDOG dataset. Once the model converged, as observed by the validation 
loss, the classification layer was removed, and the trained feature stem was used as the mapping network. During 
the training of the mapping network, the same augmentation pipeline was employed as used during the training 
of the detection networks. For the decision boundary analysis, we utilized 308 MFs of the post-hoc analysis, for 
which the corresponding mitotic phase was known, which allowed us to analyze each mitotic phase separately. To 
densely populate the feature space and better infer the learned decision behavior of the networks, we employed 
test-time augmentation while forwarding the cells through the mapping network, yielding a total of 2000 
projected MF representations. The same augmentations applied during the network’s training were also used 
here. Subsequently, the resulting 512× 1 dimensional feature vectors were projected into a 2× 1 dimensional 
space using UMAP. To visualize the models’ decision boundaries, the projected features were color-coded based 
on whether the respective MF was detected by the majority of models in the cross-validation, indicating a true 
positive, or not. Since the same projected feature vectors were used for the plots in each column of Fig. 4, the 
only variation across the plots in each column lies in the color coding. Distribution densities were calculated for 
the true positive and false negative distributions to highlight differences. The regions containing three quartiles 
of each distribution was then marked for clearer visualization. Since we expect a different behavior for the 
different mitotic phases, we have created one such plot per cross-validation for pro- and prometaphase mitoses, 
metaphase mitoses and ana- and telophase mitoses.

Data availability
The data that support the findings of this study are available on reasonable request from the corresponding au-
thor M.A. The data are not publicly available due to being part of the confidential test set of the MIDOG 2022 
challenge.

Received: 12 August 2024; Accepted: 21 October 2024

Scientific Reports |        (2024) 14:26273 11| https://doi.org/10.1038/s41598-024-77244-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


References
 1. Baak, J. P. et al. Prospective multicenter validation of the independent prognostic value of the mitotic activity index in lymph node-

negative breast cancer patients younger than 55 years. J. Clin. Oncol. 23, 5993–6001 (2005).
 2. Meuten, D. J., Moore, F. M. & George, J. W. Mitotic count and the field of view area: Time to standardize. Vet. Pathol. 53, 7–9 (2016).
 3. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: 

experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).
 4. Louis, D. N. et al. The 2021 who classification of tumors of the central nervous system: A summary. Neuro Oncol. 23, 1231–1251 

(2021).
 5. Kadota, K. et al. A grading system combining architectural features and mitotic count predicts recurrence in stage i lung 

adenocarcinoma. Mod. Pathol. 25, 1117–1127 (2012).
 6. Bloom, H. & Richardson, W. Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been 

followed for 15 years. Br. J. Cancer 11, 359 (1957).
 7. Kiupel, M. et al. Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict 

biological behavior. Vet. Pathol. 48, 147–155 (2011).
 8. Peña, L., Andrés, P. D., Clemente, M., Cuesta, P. & Pérez-Alenza, M. Prognostic value of histological grading in noninflammatory 

canine mammary carcinomas in a prospective study with two-year follow-up: relationship with clinical and histological 
characteristics. Vet. Pathol. 50, 94–105 (2013).

 9. Patnaik, A. K., Ehler, W. J. & Macewen, E. G. Canine cutaneous mast cell tumor: Morphologic grading and survival time in 83 dogs. 
Vet. Pathol. 21, 469–474 (1984).

 10. McNiel, E. A. et al. Evaluation of prognostic factors for dogs with primary lung tumors: 67 cases (1985–1992). J. Am. Vet. Med. 
Assoc. 211, 1422–7 (1997).

 11. Goldschmidt, M. H., Peña, L., Rasotto, R. & Zappulli, V. Classification and grading of canine mammary tumors. Vet. Pathol. 48, 
117–131 (2011).

 12. Valli, V. E., Kass, P. H., Myint, M. S. & Scott, F. Canine lymphomas: Association of classification type, disease stage, tumor subtype, 
mitotic rate, and treatment with survival. Vet. Pathol. 50, 738–748 (2013).

 13. Veta, M., Diest, P. J. V., Jiwa, M., Al-Janabi, S. & Pluim, J. P. Mitosis counting in breast cancer: Object-level interobserver agreement 
and comparison to an automatic method. PLoS One 11, e0161286 (2016).

 14. Bertram, C. A. et al. Computer-assisted mitotic count using a deep learning-based algorithm improves interobserver reproducibility 
and accuracy. Vet. Pathol. 59, 211–226 (2022).

 15. Malon, C. et al. Mitotic figure recognition: Agreement among pathologists and computerized detector. Anal. Cell. Pathol. 35, 
97–100 (2012).

 16. Bertram, C.  A. et al. Are pathologist-defined labels reproducible? comparison of the tupac16 mitotic figure dataset with an 
alternative set of labels. In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 204–213 (Springer, 2020).

 17. Wilm, F. et al. Influence of inter-annotator variability on automatic mitotic figure assessment. In Bildverarbeitung für die Medizin 
2021: Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021, 241–246 (Springer, 2021).

 18. Duregon, E. et al. Better see to better agree: Phosphohistone h3 increases interobserver agreement in mitotic count for meningioma 
grading and imposes new specific thresholds. Neuro Oncol. 17, 663–669 (2015).

 19. Colman, H. et al. Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone h3 in low and 
intermediate-grade infiltrating astrocytomas. Am. J. Surg. Pathol. 30, 657–664 (2006).

 20. Voss, S. M., Riley, M. P., Lokhandwala, P. M., Wang, M. & Yang, Z. Mitotic count by phosphohistone h3 immunohistochemical 
staining predicts survival and improves interobserver reproducibility in well-differentiated neuroendocrine tumors of the 
pancreas. Am. J. Surg. Pathol. 39, 13–24 (2015).

 21. Laflamme, P. et al. Phospho-histone-h3 immunostaining for pulmonary carcinoids: impact on clinical appraisal, interobserver 
correlation, and diagnostic processing efficiency. Hum. Pathol. 106, 74–81 (2020).

 22. Skaland, I. et al. Validating the prognostic value of proliferation measured by phosphohistone h3 (pph3) in invasive lymph node-
negative breast cancer patients less than 71 years of age. Breast Cancer Res. Treat. 114, 39–45 (2009).

 23. Alkhasawneh, A. et al. Interobserver variability of mitotic index and utility of phh3 for risk stratification in gastrointestinal stromal 
tumors. Am. J. Clin. Pathol. 143, 385–392 (2015).

 24. van Steenhoven, J. E. et al. Assessment of tumour proliferation by use of the mitotic activity index, and ki67 and phosphohistone 
h3 expression, in early-stage luminal breast cancer. Histopathology 77, 579–587 (2020).

 25. Tellez, D. et al. Whole-slide mitosis detection in H &E breast histology using PHH3 as a reference to train distilled stain-invariant 
convolutional networks. IEEE Trans. Med. Imaging 37, 2126–2136 (2018).

 26. López-Tapia, S., Olivencia, C., Aneiros-Fernández, J. & Pérez de la Blanca, N. Improvement of mitosis detection through the 
combination of phh3 and he features. In Digital Pathology: 15th European Congress, ECDP 2019, Warwick, UK, April 10–13, 2019, 
Proceedings 15, 144–152 (Springer, 2019).

 27. Li, J., Adachi, T., Takeyama, S., Yamaguchi, M. & Yagi, Y. U-net based mitosis detection from h &e-stained images with the semi-
automatic annotation using phh3 ihc-stained images. In Medical Imaging 2022: Image Processing, vol. 12032, 669–681 (SPIE, 2022).

 28. Aubreville, M. et al. Domain generalization across tumor types, laboratories, and species-insights from the 2022 edition of the 
mitosis domain generalization challenge. Medical Image Analysis94, 103155 (2024).

 29. Mercan, C. et al. Virtual staining for mitosis detection in breast histopathology. In 2020 IEEE 17th International Symposium on 
Biomedical Imaging (ISBI), 1770–1774 (IEEE, 2020).

 30. Gu, H. et al. Enhancing mitosis quantification and detection in meningiomas with computational digital pathology. Acta 
Neuropathol. Commun. 12, 7 (2024).

 31. Baumann, E. et al. Hover-next: A fast nuclei segmentation and classification pipeline for next generation histopathology. In 
Medical Imaging with Deep Learning (2024).

 32. Kataria, T. et al. Automating ground truth annotations for gland segmentation through immunohistochemistry. Mod. Pathol. 36, 
100331 (2023).

 33. Bulten, W. et al. Epithelium segmentation using deep learning in h &e-stained prostate specimens with immunohistochemistry as 
reference standard. Sci. Rep. 9, 864 (2019).

 34. Ammeling, J. et al. Automated mitotic index calculation via deep learning and immunohistochemistry. In BVM Workshop, 123–
128 (Springer, 2024).

 35. Stenman, S. et al. Antibody supervised training of a deep learning based algorithm for leukocyte segmentation in papillary thyroid 
carcinoma. IEEE J. Biomed. Health Inform. 25, 422–428 (2020).

 36. Tada, M., Lang, U. E., Yeh, I., Wei, M. L. & Keiser, M.  J. Learning melanocytic cell masks from adjacent stained tissue. arXiv 
preprint arXiv:2211.00646 (2022).

 37. Ibrahim, A. et al. Improving mitotic cell counting accuracy and efficiency using phosphohistone-h3 (phh3) antibody counterstained 
with haematoxylin and eosin as part of breast cancer grading. Histopathology 82, 393–406 (2023).

 38. Donovan, T. A. et al. Mitotic figures-normal, atypical, and imposters: A guide to identification. Vet. Pathol. 58, 243–257 (2021).

Scientific Reports |        (2024) 14:26273 12| https://doi.org/10.1038/s41598-024-77244-6

www.nature.com/scientificreports/

http://arxiv.org/abs/2211.00646
http://www.nature.com/scientificreports


 39. Meyer, J. S. et al. Breast carcinoma malignancy grading by bloom-richardson system vs proliferation index: reproducibility of grade 
and advantages of proliferation index. Mod. Pathol. 18, 1067–1078 (2005).

 40. Dessauvagie, B. et al. Validation of mitosis counting by automated phosphohistone h3 (phh3) digital image analysis in a breast 
carcinoma tissue microarray. Pathology 47, 329–334 (2015).

 41. Mirzaiian, E. et al. Utility of phh3 in evaluation of mitotic index in breast carcinoma and impact on tumor grade. Asian Pacific J. 
Cancer Prevention: APJCP 21, 63 (2020).

 42. Cui, X., Harada, S., Shen, D., Siegal, G. P. & Wei, S. The utility of phosphohistone h3 in breast cancer grading. Appl. Immunohistochem. 
Molecular Morphol. 23, 689–695 (2015).

 43. Tracht, J., Zhang, K. & Peker, D. Grading and prognostication of neuroendocrine tumors of the pancreas: a comparison study of 
ki67 and phh3. J. Histochem. Cytochem. 65, 399–405 (2017).

 44. Roese, N. J. & Vohs, K. D. Hindsight bias. Perspectives on psychological science 7, 411–426 (2012).
 45. Tian, Z., Shen, C., Chen, H. & He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF 

international conference on computer vision, 9627–9636 (2019).
 46. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 

preprint arXiv:1802.03426 (2018).
 47. Bertram, C. A., Aubreville, M., Marzahl, C., Maier, A. & Klopfleisch, R. A large-scale dataset for mitotic figure assessment on whole 

slide images of canine cutaneous mast cell tumor. Sci. Data 6, 274 (2019).
 48. Marzahl, C. et al. Robust quad-tree based registration on whole slide images. In MICCAI Workshop on Computational Pathology, 

181–190 (PMLR, 2021).
 49. Sledge, D.  G., Webster, J. & Kiupel, M. Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to 

diagnosis, prognosis, and treatment selection. Veterinary journal (London, England : 1997)215, 43–54 (2016).
 50. Marzahl, C. et al. Exact: a collaboration toolset for algorithm-aided annotation of images with annotation version control. Sci. Rep. 

11, 4343 (2021).
 51. Aubreville, M. et al. Mitosis domain generalization in histopathology images-the MIDOG challenge. Med. Image Anal. 84, 102699 

(2023).
 52. Vogelbacher, M. et al. Identifying and counting avian blood cells in whole slide images via deep learning. Birds 5, 48–66 (2024).
 53. Aubreville, M. et al. Deep learning-based subtyping of atypical and normal mitoses using a hierarchical anchor-free object detector. 

In BVM Workshop, 189–195 (Springer, 2023).
 54. Ganz, J. et al. Deep learning-based automatic assessment of agnor-scores in histopathology images. In BVM Workshop, 226–231 

(Springer, 2023).
 55. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural 

Inf. Process. Syst. 28, 1137 (2015).
 56. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE international 

conference on computer vision, 2980–2988 (2017).
 57. Qingyun, F. & Zhaokui, W. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery. 

Pattern Recogn. 130, 108786 (2022).

Acknowledgements
M.A. and R.K. acknowledge support by the German Research Foundation (project number 520330054). K.B. 
received funding by the German Research Foundation (DFG) project 460333672 CRC1540 EBM. K.B. further 
acknowledges support by d.hip campus – bavarian aim in form of a faculty endowment. C.A.B. acknowledges 
funding by the Austrian Science Fund (FWF, project number: I 6555).

Author contributions
J.G., M.A., C.A.B., T.A.D., K.B., and S.J. conceived the study. J.G. and J.A. developed the deep learning algo-
rithms. C.M. developed the online annotation tool. J.G. was responsible for conducting the study. C.A.B. and 
S.J. collected the tissue samples. B.R., C.P., D.D., E.A.D., F.T., G.W., K.L., M.T., M.J.W., M.J.D., N.A., P.B., R.E., 
R.K., and S.M. participated in the study. E.R. and J.G. were responsible for graphical design. J.G. performed the 
analysis of all results. J.G. and M.A. wrote the manuscript with the help of all other co-authors. K.B. and M.A. 
supervised the project.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at  h t t p s : / / d o i . o r g / 1 
0 . 1 0 3 8 / s 4 1 5 9 8 - 0 2 4 - 7 7 2 4 4 - 6     .  

Correspondence and requests for materials should be addressed to M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2024) 14:26273 13| https://doi.org/10.1038/s41598-024-77244-6

www.nature.com/scientificreports/

http://arxiv.org/abs/1802.03426
https://doi.org/10.1038/s41598-024-77244-6
https://doi.org/10.1038/s41598-024-77244-6
http://www.nature.com/scientificreports


Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024 

Scientific Reports |        (2024) 14:26273 14| https://doi.org/10.1038/s41598-024-77244-6

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	Information mismatch in PHH3-assisted mitosis annotation leads to interpretation shifts in H&E slide analysis
	Results
	Human rater study
	Deep learning experiment

	Discussion
	Methods
	Dataset description
	Image dataset for human rater study
	MIDOG dataset


	Human expert mitotic figure annotation study
	Detection architectures
	References


