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Abstract

Transcription factors (TFs) play a key role in gene regulation. They interact with specific
binding sites or motifs on the DNA sequence and regulate expression of genes downstream
of these binding sites. In silico prediction of potential binding of a TF to a binding site
is an important task in computational biology. From a statistical point of view, the DNA
sequence is a long text consisting of four different letters (’A’,’C’,’G’, and ’T’). The bind-
ing of a TF to the sequence corresponds to the occurence of a word in the sequence, e.g.
’AACCTC’. Hence, word count statistics can be applied to problems such as number of
binding sites and distances between binding sites. The major problem in word count statis-
tics are dependencies between sequence positions. These dependencies arise due to possible
overlaps of words. So far, exact formulae to compute the count distribution of clustered
occurrences only exist based on generating functions. We newly derive a recursive formula
and use it to obtain a normal approximation.

In fact, a TF does not bind to one single word but allows mismatches and substitutions.
This is captured in a statistical model called Position Frequency Matrix (PFM). A PFM
assigns a score to each position of the word and letter. If the summed score reaches a
certain threshold, the TF is assumed to bind to that sequence region. In fact, one can
transform this representation to a set of words which are bound by the TF. Unfortunately,
enumeration of the set of words takes exponential costs. In addition, the set of words grows
enourmously for longer binding sites (around 500,000 for a binding site of length 15). Hence,
word count statistics and its approximations become inefficient and very inaccurate.

Therefore, the need for new statistics and efficient algorithms arises. Instead of enumerating
all words, we use a statistical representation - the PFM - and model dependencies explicitly.
In fact, probabilities for overlaps are dependencies of the summed scores between two posi-
tions. Hence, we reduce the problem to computing the two dimensional convolution of the
score distributions for each possible overlap and derive an exact formula for the variance
of PFM counts. Furthermore, we found an accurate approximation for the distribution
of the number of occurrences using a compound Poisson distribution. Our approximation
outperforms all alternative approaches. In addition, we give Poisson statistics for the num-
ber of occurrences without overlaps such that other standard word count statistics (like
distances between occurences) can be applied. Third, we develop statistics to compute the
significance of co-occurrences and co-operativity among sets of TFs. Fourth, we use the
variance to define a natural measure of similarity between DNA motifs. We explicitly state
formulae for PFMs. Compared to standard approaches, it shows higher correlation with
empirical data. It also allows to cluster sets of TFs and gives results comparable with more
sophisticated clustering algorithms. Finally, we use this similarity measure to compute the
representation quality of PFMs for a set of experimentally verified binding sites. Besides a
threshold optimization method which significantly improves the quality of PFMs in Trans-
fac and Jaspar, we can indeed select DNA motifs, which violate PFM assumptions and,
therefore, cannot be reasonbly represented as PFMs.
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Chapter 1

Introduction

1.1 Molecular Biology

Proteins Research over the last decades has revealed that proteins are the main ingredient
of what we call life. Proteins are not only catalysts of most biochemical reactions in living
systems but also serve as important structural constituents of living systems like blood,
cytoskeleton and hair. Proteins are polymers: molecules made of repeated similar subunits
called monomers. In the case of proteins, the monomers are amino acids. There are 20
amino acids used in living systems. One can break down the description of a protein to
a sequence of amino acids. This, however, ignores important characteristics of the protein
like modifications of the polymer and 3-dimensional structure. The sequence of amino acids
is passed from generation to generation in living systems via the genetic code.

Desoxyribonucleic Acid (DNA) The genetic code is contained in the DNA (desoxyribonu-
cleic acid). The DNA molecule is a double-stranded polymer (Watson and Crick, 1953).
Its monomers are four different nucleotides (Alberts et al., 2002) each characterized by an
included base: adenine (’A’), cytosine (’C’), guanine (’G’) or thymine (’T’). Both strands of
the DNA molecule are directed from 5’ to 3’ (labeled by the number of a carbon atom). The
strands are paired by complementary bases (’A’ is complement of ’T’ and ’C’ is complement
of ’G’) such that the 5’ end from one strand corresponds to the 3’ end of the other strand.
Hence, both strands contain the same information but are read in reverse direction and with
complementary bases (Berg et al., 2002). For example, the sequence 5’-ACCGAT-3’ has
the complementary strand 3’-TGGCTA-5’ or - read in the common direction - the reverse
complementary strand 5’-ATCGGT-3’.

Genetic Code Embedded in the DNA are the genes. Each gene corresponds to a stretch
of DNA containing information for building a protein. This information is encoded by
triplets - codons - of nucleotides each representing an amino acid (Osawa et al., 1992).1

A protein is produced by steps called transcription (from DNA to an intermediator) and,
subsequently, translation (form the intermediator to a protein) - referred to as the central
dogma of molecular biology. The rate or amount of transcription is the expression level of a
gene. Hence, for a gene with a high expression level, the corresponding protein is produced
in high amounts.2

1Codons are not necessarily unique. For example, alanine is also encoded by ’GCC’ and others.
2Here, we ignore post-transcriptional effects like miRNAs (Lim et al., 2005) and others (Scheper et al.,

2007).
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Chapter 1 Introduction

Gene Regulation All cells3 in a living system carry a copy of the same DNA molecule.
However, specialized cells look different and do different things. The main reason for that
is the different composition of proteins obtained by modified expression levels of the corre-
sponding genes. Primarily, the gene expression level is regulated by combinatorial absence
and presence of specific proteins called transcription factors (TFs; Myers and Kronberg,
2000). This specificity is seen in DNA motifs, 5-25 base pairs long, in the vicinity of the
transcription start site (TSS). The set of DNA motifs close to the gene’s TSS is called cis
regulatory module (CRM; Berman et al., 2002; Clyde et al., 2003; Harbison et al., 2004).

A DNA motif is a set of binding sites, which can be bound by a TF (Pabo and Sauer,
1984). They are usually illustrated by sequence logos (Crooks et al., 2004). TFs bind
to their specific binding sites as long as the binding sites are accessible (Spiegelman and
Heinrich, 2004) and the TF is sufficiently abundant in the cell. Binding sites can be rendered
inaccessible by TFs bound nearby and spatially covering the binding site or due to structural
properties of DNA like chromatin structure (Klose and Bird, 2006). Hence, gene expression
is regulated combinatorially by presence/absence of TF-specific binding sites (TFBSs) close
to the TSS and the presence/absence of TFs which are again regulated in the same manner.
Therefore, description of the regulatory region of a gene by its binding sites is crucial to
understanding gene regulation.

Detection of TFBSs Since high throughput methods for genome sequencing are available
(Maxam and Gilbert, 1977; Sanger et al., 1977), computational biology tries to decipher
gene regulation in silico (MacIsaac and Fraenkel, 2006; Tompa et al., 2005). Therefore,
approaches are developed to pinpoint binding sites on sequences. Usually this is done by
searching for experimentally verified binding sites in sequences near to the TSS with length
between 500 to 10,000 bases. Considering binding sites as words or sets of words in an
alphabet with four letters ’A’,’C’,’G’ and ’T’ and the sequence as one long text in the same
alphabet, detection of binding sites becomes the problem of searching words in a text.

Statistics for TFBSs Detection of binding sites results in a certain number of occurrences
of given words in a text of given length. The problem is the interpretation of such a result:
a long random text based on a few letters will almost always contain a certain number of
occurrences just by chance. This raises the question whether the outcome is exceptional
or statistically significant. To answer this question, one assumes a null model for the
text, which randomizes the occurrences of the given words. Then, the significance is the
probability to find at least as many occurrences in the random text as one has observed.
Dependencies complicate the calculation of significance: for example, the occurrence of
the word ’AAAA’ raises the probability to observe a second occurrence of ’AAAA’ shifted
by one position. Additionally, the complementary strand introduces further dependencies,
e.g. an occurrence of ’ACGT’ implies an occurrence on the complementary strand and an
occurrence ’ATA’ increases the probability to observe another occurrence on the reverse
complementary strand shifted by one position. Finally, a TF does not bind to only one
binding site but to hundreds or millions of binding sites depending on the length.

3that have a nucleus
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1.2 Thesis Overview

1.2 Thesis Overview

Besides contributions to word counting, this thesis studies statistics for TFBSs. Based on
a specific model - the position frequency matrix (PFM) model (Stormo, 2000) - for DNA
motifs, we derive efficient and exact formulae to compute the variance of motif counts in
random sequences. Furthermore, we develop an efficient and accurate approximation for
the distribution of the number of occurrences. Based on these results, we approximate
significance values for co-occurrences of a set of different DNA motifs.

The availability of the count distribution leads to several applications in the context of
DNA motifs: We define a natural and general (independent of the chosen DNA motif
model) similarity measure between DNA motifs and introduce a new clustering of PFMs
based on a related measure. Finally, we show how to compute the representation quality
of a DNA motif model with respect to a given set of experimentally verified binding sites.
For those general measures, we explicitly state formulae to deal with the PFM model.

The thesis is divided into two parts. In the theory part, we give a more specific introduction
into DNA motifs, derive the count distribution and its second moment and deal with sets
of TFs. In the second part, we present results indicating the accuracy and efficiency of
our approximations and develop the similarity measure, the clustering and the quality of
representation. A more precise overview of the thesis is given in the remainder of this
section. In Appendix A, our software package to compute all above statistics is described
in detail. Furthermore, a website http://mosta.molgen.mpg.de offers a user interface for
the calculation.

1.2.1 Theory

DNA Motifs Chapter 2 gives an overview of experimental (Elnitski et al., 2006; Maston
et al., 2006) and computational approaches (e.q. Bulyk, 2003; Pavesi et al., 2004; Das and
Dai, 2007) to detect TFBS. Furthermore, we present several models for DNA motifs with
special focus on the PFM model (Stormo, 2000) and describe null models for sequences
(Robin et al., 2005). For the remainder of the thesis, we stick to the Bernoulli (i.i.d.)
model. We also discuss how to derive a set of words from the PFM model such that one can
apply classical word counting approaches (Robin et al., 2005) to compute the significance
of TFBS occurrences. However, computation of this set of words takes exponential time in
the length of the DNA motif (see Section 2.4.4) and, therefore, is infeasible for longer DNA
motifs.

Word Count Statistics Chapter 3 gives a detailed review of word counting approaches
(Reinert et al., 2005; Robin et al., 2005). Starting with exact formulae for occurrences of
single words (Rahmann, 2000; Robin et al., 2005; Zhang et al., 2007), we proceed with
(compound) Poisson approximations (Reinert and Schbath, 1999; Roquain and Schbath,
2007) and normal approximations (Waterman, 2000) to cope with sets of words. Since
some exact formulae are not available in the literature, we newly derive them. This enables
us to give the first normal approximation for non-overlapping occurrences. Furthermore,
we compute the count distribution and its approximations for a number of examples to
clarify the drawbacks of certain approximations. In the subsequent chapter, we present
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Chapter 1 Introduction

generating functions for word counting (Rahmann, 2000; Stefanov et al., 2007) since we
develop generating functions for PFMs under certain assumptions in Chapter 5.

TF Count Statistics In Chapter 5, we present the first exact formulae for the variance
of the number of occurrences of PFMs based on overlap probabilities. Furthermore, we
develop an approximation for the count distribution by considering the complementary
strand and self-overlaps of PFMs using a compound Poisson distribution. Based on this,
we describe two characteristic values indicating palindromicity and self-overlaps of PFMs.
After deriving generating functions under a simplified sequence model, we present an effi-
cient branch-and-bound dynamic programming algorithm to compute overlap probabilities
of PFMs.

cis-regulatory Modules A related problem is the computation of co-occurrences of sets of
PFMs organized in CRMs. Again, based on the overlap probabilities, we derive an accurate
approximation for the significance of co-occurrences in Chapter 6. PFMs which co-occur
exceptionally often are called co-operative. Hence, we show how to obtain the significance
for co-operativity of pairs and sets of PFMs. Since one has to divide the sequence into
windows to compute co-operativity, we also compute the Chen-Stein approximation error
for overlapping windows.

1.2.2 Applications

Count Statistics In Chapter 7, we apply the approximated count distribution to artificial
and real PFMs and compare the results to a simulation study. The approximation is very
accurate and, furthermore, outperforms all competitive approaches (Reinert and Schbath,
1999; Waterman, 2000; Roquain and Schbath, 2007) in at least one case. Furthermore,
interpretation of the characteristic values is presented, as well as a running time comparison
with the state-of-the-art exact count distribution (Zhang et al., 2007).

Co-Occurrences and Co-Operativity For pairs of PFMs, we compute probabilities for co-
occurrences and co-operativity for artificial PFMs in Chapter 8. A simulation shows that
our approximation works well. Comparison to an approach ignoring dependencies yields
much better results for the new approach. Incorporating empirical occurrence frequencies
does not change the picture. We also show and discuss the Chen-Stein bounds and their
relation to similarity between PFMs.

Similarity of DNA Motifs Based on the exact formula of the variance, we develop a
similarity measure for DNA motifs in Chapter 9. Applied to PFMs, we show its performance
in comparison to a simulation and to other approaches (Schones et al., 2005; Roepcke et al.,
2005; Gupta et al., 2007). The simulation is also performed for Transfac (Matys et al., 2003)
PFMs and yields similar results.
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1.2 Thesis Overview

Clustering of PFMs As shown in Chapter 10, a related similarity measure can be used to
retrieve a clustering of PFMs. We develop a new clustering algorithm ensuring consistent
clusters and apply it to a set of Jaspar (Sandelin et al., 2004a) PFMs labeled by the corre-
sponding TF class. In comparison to optimized clustering procedures (Mahony et al., 2007),
we retrieve similar or better results. Furthermore, the clustering automatically generates
representative PFMs for each cluster which can be used as substitute for redundant and,
therefore, similar PFMs.

Quality of Representation In Chapter 11, the final application uses the similarity mea-
sure to compute the quality of representation between DNA motifs and the experimentally
verified binding sequences. For PFMs, we show how to use the quality to optimize pa-
rameters for PFMs and that this optimization yields a better overall quality of Transfac
(Matys et al., 2003) and Jaspar (Sandelin et al., 2004a) PFMs. Finally, comparison of DNA
motifs with and without position dependencies reveal that the quality measure can indeed
differentiate between them.
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Count Statistics
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Chapter 2

DNA Motifs

A DNA motif is a set of prefered binding sequences of a TF. In computational biology,
DNA motifs are mainly used for two different but related tasks:

• Detection of Binding Sites: Based on a given DNA motif, one annotates a given
sequence with its binding sites (see Stormo (2000) for a review). Usually, this involves
a score calculation for each position. If the score exceeds a certain threshold, the
position is called a hit.

• Discovery of New DNA Motifs: Since experimental discovery of DNA motifs (see
Section 2.1) is still difficult, a vast amount of computational methods have emerged
to discover new DNA motifs in silico (for review, see Bulyk, 2003; Pavesi et al., 2004;
Wasserman and Sandelin, 2004; Li and Tompa, 2006; MacIsaac and Fraenkel, 2006;
Sandve and Drabløs, 2006; Das and Dai, 2007). Given a set of sequences, which are
assumed to be regulated by the same TF, one tries to pinpoint the corresponding bind-
ing sites without knowing the actual DNA motif. Often, one applies these methods
to regulatory regions retrieved by experiments (see below) or to sets of co-expressed
genes (Brazma et al., 1998b; van Helden et al., 1998; Bussemaker et al., 2001).

Both tasks depend on a predefined model for the DNA motif. After reviewing experimental
methods to discover DNA motifs, we present models for DNA motifs differing in their
complexity. Finally, we will put more emphasis on the PFM model as this model is going
to be used throughout the thesis.

2.1 Experimental Detection of Transcription Factor Binding Sites

The natural way to detect TFBSs is by wet-lab experiments. Many different approaches and
enhancements have been proposed (for review, see Elnitski et al., 2006; Maston et al., 2006).
Here, we shortly discuss the main approaches and mention their advantages and drawbacks.
Generally, the approaches can be divided into two classes (Elnitski et al., 2006) depending
on whether the TF is known. The approaches also differ in their capability to precisely
localize the binding site and to perform high-throughput experiments. In fact, there is a
trade-off between localization and high-throughput capability. Precise localization is very
time-consuming while high-throughput methods are supposed to run fast. As a consequence,
most high-throughput methods need to be followed by a computational analysis to precisely
locate the binding site.
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2.1.1 Unknown Transcription Factor

DNaseI Hypersensitivity

DNaseI is a nuclease which cleaves DNA. DNaseI hypersensitive regions are parts of the
DNA sequence which are easily cleaved by DNaseI. Such regions have an open chromatin
structure. Due to the open chromatin structure, the DNA is sensitive to cleavage done
by nucleases like DNaseI (Gazit and Cedar, 1980). The genome contains generalized nu-
clease sensitivity regions comprising 10-100 kilobases (e.g. Lawson et al., 1982) and local
hypersensitivity regions of lengths around 100-400bp (Gross and Garrard, 1988). If such a
hypersensitive region is a non-coding sequence, the reason for an open chromatin structure
might be due to binding of TFs. Thus, it can be used as a marker for a region containg
binding sites (Cereghini et al., 1984).

The high-throughput approaches differ in their resolution of hypersensitive regions. The
indirect end-labeling technique yields a resolution of around 500bp (Wu, 1980) while (quan-
titative) PCR methods can resolve nearly every nucleotide (Yoo et al., 1996; McArthur
et al., 2001). Other new methods are quantitative chromatin profiling (Dorschner et al.,
2004), massively parallel signature sequencing (Crawford et al., 2006), and determining
nucleosome positions by tiled microarrays (Yuan et al., 2005).

These methods can be used for whole genome analysis. However, the opening of the chro-
matin structure depends on the cell type and developmental stage as well as environmental
factors. Thus, many experiments have to be performed to detect all regulatory regions.
Furthermore, the insensitivity with respect to a certain TF limits the use for the focussed
detection of TF binding sites.

Promoter Analyses

Promoter analysis is a functional assay measuring the change of expression of a reporter in
dependence on the upstream sequence. Common reporter genes are the luciferase reporter
gene (de Wet et al., 1987) and the green fluorescent protein GFP (Tsien, 1998). The
chosen gene is incorporated into a plasmid which is used to transfect a cell. Depending on
the upstream sequence of the gene in the plasmid, TFs can bind to that upstream sequence
and enhance or inhibit expression of the gene. Due to the expressed reporter protein such
changes in the expression can be measured. Mutations at positions of the binding sites alter
the expression of the reporter gene. Thus, nucleotides which are crucial for the affinity of
the TFs can be located. This assay can also be done in a high-throughput manner based on
lipofection (Strauss, 1996), coinjection (Müller et al., 1997) or nucleofection (Siemen et al.,
2005).

Although high-throughput methods exist to screen different upstream sequences of the
plasmid, the number of sufficient mutations to precisely localize the binding site is high.
Furthermore, different TFs in the transfected cell might have combinatorial effects on the
(mutated) upstream sequence. Then, the location of the binding site can be the combination
of several binding sites.
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Mobility Shift Assays

In a mobility shift assay, the radionucleotide-labeled DNA bound to TFs is put into a
polyacrylamide gel. After switching on the voltage, the molecules move to the anode with
speed depending on the size of the molecule. Due to smaller size, unbound DNA moves
faster than protein bound DNA.

Gel Shift Assay The electrophoretic mobility shift assay (EMSA, see Fried and Crothers,
1981; Garner and Revzin, 1981) detects binding of a TF to DNA (around 25bp length).
In case the protein does not bind to the DNA, the gel fractionates two bands: The DNA
band near the anode and the band for the slower protein near the cathode. In contrast, if
the DNA is bound by the protein, another band occurs between the protein band and the
cathode since the DNA bound by the protein is bigger than each single molecules. This way,
one can localize the binding site by using different DNA sequences (Kadonaga and Tjian,
1986). The major disadvantage is the unwanted detection of non-specific DNA-protein
interactions due to DNA repair molecules and others (Klug, 1997).

DNaseI Protection / Footprinting A TF bound to DNA protects it from cleavage by
covering it. Removing the TFs after cleavage, the radionucleotide-labeled DNA in the
polyacrylamide gel yields many bands: one for each length of DNA sequences. Since bound
TFs prevent DNA pieces of intermediate lengths from cleavage by protection, areas without
bands occur. These indicate the location of binding sites. As these areas look like footprints,
DNaseI protection is also called DNaseI footprinting. The length of the DNA piece is
usually around 500bp, thus, multiple binding sites can be detected simultaneously (Galas
and Schmitz, 1978). Instead of enzyme cleavage chemical cleavage can also be used to
avoid some enzyme-specific limitations (Drouin et al., 2001). In all cases, again, the major
drawback is the detection of unintended interactions (Klug, 1997).

2.1.2 Known Transcription Factor

SELEX and CASTing

Two high-throughput variants of mobility shift assays exist. Both, systematic evolution of
ligands by exponential enrichment (SELEX, see Oliphant et al., 1989; Tuerk and Gold, 1990;
Fitzwater and Polisky, 1996) and cyclic amplification and selection of targets (CASTing,
see Wright et al., 1991), are in vitro approaches so that specific TFs can be used. They
generate a pool of short random oligonucleotides which are subsequently screened using
high-throughput mobility assays.

ChIP Assays

In contrast to in vitro methods, the main problem with in vivo methods is the selection
of a specific TF. Here, chromatin-immunoprecipitation (ChIP) can be used (Boyd et al.,
1998; Orlando, 2000). TFs bound to DNA are crosslinked to the DNA by formaldehyde.
Subsequently, the DNA is cleaved into 100-500bp long sequences. Then, a TF specific
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antibody combined with a retrievable anchor molecule tags the TF. Based on the anchor,
the TF and its bound DNA can be precipitated. The retrieved DNA is further analyzed in
a second step. The main drawback of the ChIP method is the limited availability of TF
specific antibodies.

ChIP-Amplification The retrieved DNA can be sequenced to retrieve the exact sequence of
the binding region. Due to the length of DNA fragments, precise localization of the binding
site is not possible. However, one can combine this technique with DNaseI protection and
cleave DNA before releasing it from the TF (Kang et al., 2002). Thereby, one detects the
precise location of a specific TF.

ChIP-chip Alternative to amplifying the retrieved DNA, microarray analysis can be per-
formed (Ren et al., 2000; Iyer et al., 2001; Hanlon and Lieb, 2004). Due to hybridization
of the retrieved DNA to the probes on the microarray, enrichment of the sequences bound
by the TF can be detected. Ren et al. (2000) chose a cDNA microarray while newer appli-
cations are based on 50mer oligonucleotide tiling arrays (Kim et al., 2005). One problem is
the dependence on statistical assessment of spot intensities of microarrays (for a summary,
see Buck and Lieb, 2004). The main problem remains: the resolution of the location of
binding sites depends on the length of the oligonucleotides. Miniaturization of microarrays
might solve this problem in future.

Summary

Many different experimental methods to localize binding sites exist. Most in vivo methods
- except the ChIP approach - cannot be applied to a specific TF. Although availability
of antibodies to precipitate the DNA-TF complex is limited, the ChIP approach is widely
and sucessfully applied. The ChIP-chip method, as well as most other high-throughput
methods, suffer from restricted resolution of the binding site location. Therefore, in silico
methods are applied in a post-processing step to precisely pinpoint binding sites. These
computational methods for discovery of DNA motifs are based on a model for DNA motifs.
Different models are discussed in the next section.

2.2 Models for DNA Motifs

A set of experimentally retrieved binding sites is often the starting point for further compu-
tational analyses. The experimentally retrieved binding sites are assumed to be instances
of one TF. Furthermore, one assumes that all binding sites are recognized by the same
protein-DNA interaction site of the TF. Hence, the binding sites are aligned in a first step.
Classic multiple sequence alignment algorithms (Thompson et al., 1994; Notredame et al.,
2000; Morgenstern, 2004) are sufficient since neither the length of the binding sites nor the
number of the binding sites is very high (see Notredame (2002) for an overview). Subse-
quently, the aligned set of binding sites is plugged into a model for a DNA motif. The
selection of an appropriate model is crucial. Thus, we give an overview of the most impor-
tant DNA motif models, which split into two types (GuhaThakurta, 2006): pattern-based
and profile-based models.
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2.2.1 Pattern-Based Models

The Model Pattern-based models generally assume that positions are independent. Based
on the multiple sequence alignment, one assigns a consensus letter to each position using
the IUPAC nucleic acid alphabet (IUPAC-IUB Commission on Biochemical Nomenclature,
1970). The alphabet contains a letter for each nucleotide, as well as for each combination
of nucleotides. A good survey of rules to compute the consensus is Day and McMorris
(1992).

Example 2.1. Consider the following multiple sequence alignment where ’-’ denotes a gap
in the alignment:

Site 1: G C C A A
Site 2: G T C A T
Site 3: G C C A A
Site 4: − T C A T
Site 5: G C C A A

One possible consensus is ’GCCAA’ retrieved by the ’majority vote’ rule (Yamauchi, 1991).
One obviously loses much information on the second and the fifth position. Another pos-
sibility is the consensus ’GYCAW’ where ’Y’ denotes a pyrimidine and ’W’ corresponds
either to an ’A’ or a ’T’ (see Choo et al. (1991) for the exact rules).

Detection of Binding Sites Given a pattern-based DNA motif, one can annotate a se-
quence with binding sites. Since the experimentally verified sequences are usually assumed
to be a subset of the real binding sites, one allows a certain number of mismatches between
the consensus and the sequence (Queen et al., 1982). After defining a threshold for the
number of mismatches, one can enumerate the words which have a distance (in terms of
mismatches) less or equal to the threshold (for a more efficient algorithm, see Section 2.4.4).
We call these words the compatible words. In Chapter 11, we derive a new quality measure
for DNA motifs assessing how well the experimentally verified sequences are represented.
The result of the annotation can be statistically assessed either by specialized significance
estimation (Waterman et al., 1984) or by applying standard word counting approaches (see
Chapter 3). However, none of these approaches considers the complementary strand. In
contrast, our new approach (see Chapter 5) can be applied to set of words incorporating
the complementary strand.

Example 2.2. The consensus ’GCCAA’ with a threshold equal to one yields the set of
compatible words

{ ′GCCAA′,′ACCAA′,′CCCAA′,′ TCCAA′,′GACAA′,′GGCAA′,
′GTCAA′,′GCAAA′,′GCGAA′,′GCTAA′,′GCCCA′,′GCCGA′,
′GCCTA′,′GCCAC ′,′GCCAG′,′GCCAT ′ }.

The size of the set of compatible words is equal to 16. In Example 2.1, only the three ’GC-
CAA’ (sites 1, 3, 5) from the set of experimentally verified sequences are contained in the
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set of compatible words. In contrast, applying a threshold of zero to the consensus ’GY-
CAW’, the set of compatible words contains 10 words. All experimentally verified sequences
are present except ’ATCAT’, ’CTCAT’, ’TTCAT’ which are obtained by extending ’-TCAT’
to all possibilities.

Discovery of New DNA Motifs Discovery of new pattern-based DNA motifs is done by
searching for over-represented words (Korn et al., 1977). Manual approaches determined
the consensus by eye inspection of the set of given sequences (Pribnow, 1975; Rosenberg and
Court, 1979). Since the amount of data grew, automatic method appeared which searched
for common words and their neighbors in a set of sequences (Galas et al., 1985; Mengeritsky
and Smith, 1987) given a set of alignments. Nowadays, search algorithm also work without
given alignments (see Brazma et al. (1998a) for a review). More recently, also whole cell
expression data and functional annotations are integrated (Jensen and Knudsen, 2000), as
well as sequence conservation (Corá et al., 2005).

Summary The main advantage of pattern-based DNA motifs is the simple nature of the
model. Therefore, construction of the DNA motif is very fast, as well, as calculation of the
set of compatible words. Furthermore, the model is easy to understand and one only needs
one parameter (threshold) for a given consensus. Furthermore, standard count statistics
can be used to compute the significance of an observed number of binding sites. The major
drawbacks are the arbitrary choice of a consensus method and the restricted qualitative
nature of the model which reduces the space of DNA motifs. The model assumes position
independence and all positions are equally important. Thus, in many cases, the DNA
motif does not represent the experimentally verified sequences well. This stimulated the
development of advanced models.

2.2.2 Profile-Based Models

More complex models for the representation of DNA motifs can be summarized under the
concept of profile-based models. In general, a profile is a map from certain objects (letters
or words) to empirical frequencies. In our case, the objects are words (the binding sites)
of a given length. The different models within this class differ in their assumptions and,
therefore, in their parameterization. We start with the most simple model and proceed to
the most complex model.

Position Independence Model

The Model The most simple model is called Position Frequency Matrix (PFM) model
(see Stormo (2000); Wasserman and Sandelin (2004) for a review). In this section, we only
give a short overview since the model is described in more detail in Section 2.4. Since many
DNA motifs do not show dependencies between their positions (Schneider, 1997; Stormo,
1998), the model assumes independence between them. Considering an alphabet A =
{0, 1, 2, . . . , |A| − 1}, each position κ is described by a multinomial probability vector πκ =
(πκ,a)a∈A. A motif of length ` is represented by ` multinomial random variables P1, . . . , P`
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with distribution Pκ ∼ M(|A|, πκ) where M(·, ·) denotes the multinomial distribution.
Stringing together the probability vectors, one obtains the PFM:

Π =

 π1,1 . . . π`,1

. . . . . .
π1,|A| . . . π`,|A|

 (2.1)

Using statistical mechanics theory, one can show that the logarithms of the nucleotide
frequencies πκ,a are proportional to their contribution to the binding energy (Berg and
von Hippel, 1987) if the surrounding sequence is unbiased in terms of base composition.
In this case, the binding energy with a potential binding site a = a1 . . . a` is proportional
to −

∑`
κ=1 log2(πκ,aκ). Relaxing the assumption of unbiased nucleotide composition to a

position independent composition µa for a ∈ A, one can derive the log-likelihood ratio
−
∑`

κ=1 log2(πκ,aκ/µ(aκ)). Hence, one can use this proportionality to detect binding sites
(Staden, 1984).

The PFM can be estimated from a set of experimentally verified binding sites using a
maximum likelihood approach (Stormo, 1990). Based on a multiple sequence alignment of
the verified binding sites, one obtains the position count matrix (PCM), which contains for
each position κ and for each letter a ∈ A the number of binding sites with letter a at position
κ. Dividing by the number of binding sites yields the maximum likelihood estimates π̂κ,a.
To reduce overfitting, the PFM is usually regularized (see Section 2.4.1 for details). The
regularized PFM is often called the Position Weight Matrix (PWM). This also avoids the
singularity of the logarithm at 0. Although in practice, one estimates the PFM from a set
of experimentally verified binding sites, we usually assume the PFM to be given.

Example 2.3. Consider the multiple sequence alignment from Example 2.1. The following
PCM is obtained:

Position : 1 2 3 4 5
A 0 0 0 5 3
C 0 3 5 0 0
G 4 0 0 0 0
T 0 2 0 0 2

Dividing by the number of counts per columns, one obtains the estimated PFM:


0 0 0 1 0.6
0 0.6 1 0 0
1 0 0 0 0
0 0.4 0 0 0.4


This PFM can be regularized yielding the PWM. Here, we use a simple regularization by
adding 0.01 to each element before re-normalizing. One obtains:
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0.0096 0.0096 0.0096 0.9712 0.5865
0.0096 0.5865 0.9712 0.0096 0.0096
0.9712 0.0096 0.0096 0.0096 0.0096
0.0096 0.3942 0.0096 0.0096 0.3942



Detection of Binding Sites The detection of binding sites is based on a score for each
window of length ` on the sequence. The score is the sum of the binding energy contribu-
tions. We define the Position Scoring Matrix (PSM) Ψ = (ψκ,a) containing log-likelihoods
ψκ,a = ln(πκ,a/µaκ)). Then, the score for a potential binding site a = a1 . . . a` is propor-
tional to

∑`
κ=1 ψκ,aκ . Heumann et al. (1994) show that this definition of the score maximizes

the probability that the scored sequence binds to any of the sequences the PFM is based
on. If the score exceeds a certain threshold, the position is called a hit (see Section 2.4.3)
for details). Figure 2.1 illustrates the PFM model, its estimation as well as the PSM.

PFM model

P
1

P
2

P
ℓ

Estimation from set
of experimentally
verified sequences

G C C A A
G T C A T
G T C A T
 C C A A
C C C A A

PCM

...

...

maximum
likelihood

PFM

...
regularization

representation

PWM

...

null model 

loglikelihood
ratios

PSM

...

Figure 2.1: The figure illustrates the PFM model, its estimation and the derivation of the
scoring matrix. The multinomial distributions are represented by probability vectors contained
in the PFM. The PFM can be estimated from a set of experimentally verified binding sites
by the empirical frequencies of position-specific nucleotide counts. Overfitting is avoided by
regularization retrieving the PWM (note that some regularization methods might also use the
null model µ as parameter). To detect binding sites, log-likelihood ratios are computed which
yields the PSM.

Example 2.4. Continuing Example 2.3, the PSM for a background model with a GC con-
tent of 50% (µ = (0.25, 0.25, 0.25, 0.25)) is equal to


−3.25 −3.25 −3.25 1.35 0.85
−3.25 0.85 1.35 −3.25 −3.25
1.35 −3.25 −3.25 −3.25 −3.25
−3.25 0.45 −3.25 −3.25 0.45


Due to computational issues (especially to compute the scoring distribution, see Section
2.4.2), one usually transforms the entries of the PSM to integers. Throughout this thesis,
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we use a bin size of 0.05. The result is


−65 −65 −65 27 17
−65 17 27 −65 −65
27 −65 −65 −65 −65
−65 9 −65 −65 9



Discovery of New DNA Motifs Discovery of new PFMs on a set of given sequences is a
difficult problem. After the development of greedy algorithms (Stormo and Hartzell, 1989;
Hertz et al., 1990), expectation-maximization (EM) algorithms have emerged (Lawrence
and Reilly, 1990; Bailey and Elkan, 1994, 1995; Grundy et al., 1996; Sinha et al., 2004;
Prakash et al., 2004), as well, as Gibbs Sampling methods (Lawrence et al., 1993; Neuwald
et al., 1995; Liu et al., 2001; Thompson et al., 2003). Recently, also simulated annealing
algorithms are proposed (Grad et al., 2004). Still, the problem is far from being solved (Hu
et al., 2005). Nowadays, a huge number of discovery algorithms are used (for review, see Li
and Tompa, 2006; MacIsaac and Fraenkel, 2006; Das and Dai, 2007). Furthermore, some
approaches also integrate data of different kind (Sandve and Drabløs, 2006), e.g. sequence
conservation (Prakash et al., 2004) or functional annotation (McGuire et al., 2000).

Model Extensions

The model presented in the last section assumes independence between all positions. How-
ever, several publications indicate that positions of binding sites are dependent on each
other (Benos et al., 2001; Bulyk et al., 2002). Hence, more complex models relaxing the
independence assumption are proposed in the literature. Here, we shortly describe an ex-
tension of the PFM model using mixture models. Then, we review the incorporation of
adjacent and non-adjacent position dependencies.

Mixture Models The PFM contains one distribution at each position. Thus, one assumes
that all binding sites of a TF stem from the same consensus sequence. Since TFs interact
with other molecules leading to topological changes, the binding site of the TF might alter
(Bilu and Barkai, 2005). To model this issue, the single distributions can be substituted
by mixture distributions where each component represents one type of binding (Barash
et al., 2003; Hannenhalli and Wang, 2005). The high number of parameters restricts their
applicability. However, many positions are usually best described by one component since
the topological change only affects a few positions. Thus, one can also use the context-
specific independence mixture model (Georgi and Schliep, 2006). This model allows different
number of components for each position. Thus, the total number of parameters is reduced
again.
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Adjacent Position Dependencies In the standard PFM model, each column of the PSM
corresponds to one mono-nucleotide. Since the scores is simply added up, each mono-
nucleotide at each each position contributes independently to the overall score. To relax
the independence assumption, one can consider multi-nucleotides at each position (Brendel
and Trifonov, 1984; Stormo et al., 1986; Zhang and Marr, 1993; Gunewardena and Zhang,
2008). Although this representation might fit better to the real binding sites, the problem
arises that one needs many experimentally verified sequences to circumvent over-fitting.
Hence, the multi-nucleotide models have only been rarely used (Stormo, 2000). Still, some
more complex models exist which are presented next.

General Position Dependencies The multi-nucleotide PFM model only incorporates ad-
jacent position dependencies but also non-adjacent dependencies are observed (Agarwal and
Bafna, 1998). Hence, the most flexible model would be modeling the joint distribution over
all words. Since this would require too many parameters, some assumptions are required.
In the tree model, each position of the binding site is modeled as a random variable. In
contrast to the PFM model, the random variabels can be dependent on each other. The
tree model comprises all models where the graph with the random variables as nodes and
the dependencies as edges is a tree or a forest. A further extension is the use of Bayesian
networks (Pearl, 1988) as presented by Barash et al. (2003). Another possibility is variable
length permuted Markov models (Zhao et al., 2005).

Conclusion

The PFM model is a very simple model assuming position independence. Due to its sim-
plicity, computational issues like algorithmic complexity as well as statistical issues like
over-fitting in the discovery of new motifs play a minor role. In contrast, the general draw-
back of the more complex models is the higher number of parameters. Therefore, parameter
estimation as well as computations involving the score distribution introduce severe com-
plications. Since lots of binding sites can be sufficiently represented by the standard PFM
model, we only use the standard PFM model in this thesis. To deal with the issue of
further dependencies, we introduce a new quality measure for the representation quality of
the binding sites by the PFM (see Chapter 11). If this quality value is low, one might try
more complicated models while otherwise the PFM model is appropriate.

2.3 Sequence Models

In computational biology, one is interested in findings with a biological meaning. For
example, the assessment of the regulatory potential of a sequence regarding a given TF
is such a task. Under the assumption that the number of binding sites is correlated with
the regulatory potential, one can count the number of binding sites. This leads to the
main statistical question whether the observed counts are exceptionally high. Given a
probabilistic sequence model, one can compute the probability that such a high number
of counts or more appear in a random sequence generated by the sequence model. If the
probability, the p-value, is very low (e.g. < 5% or< 1%) one calls the number of counts to be
significant under the sequence model. In this way, the sequence model serves as null model
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to reject the null hypothesis that the number of counts is not exceptional. Beforehand, one
usually estimates the parameters for the sequence model from the given sequence. Here,
we describe the main sequence models following Robin et al. (2005, Chapter 2).

2.3.1 Permutation Model

The permutation model is the most intuitive sequence model. The model contains all
sequences which have the same number of each nucleotide a ∈ A as the observed sequence.
In general, we denote the number of counts on a sequence X by NX(a) for the lettter/word
a ∈ A+. Then, we obtain as the set of sequences X := {X : ∀a∈ANX(a) = Nobs(a)}.
Obviously, the model is completely described by the observed number of counts of each
nucleotide Nobs(a). Furthermore, each sequence X ∈ X has equal probability.

Generating a sequence under this model is fairly easy. After initializing a counter for each
nucleotide with its observed number of counts, one starts with an empty sequence. At
each step one nucleotide is randomly selected proportional to the counters whose values
are greater than zero. After adding the nucleotide to the sequence, the corresponding
nucleotide counter is decremented. This procedure is repeated until all counters are zero.
A more illustrative description is one urn containing the whole sequence cut into single
nucleotides. Then, one draws step by step one nucleotide randomly and concatenates to
the sequence until the urn is empty.

Example 2.5. We assume that the TF only binds to the motif ’ACT’ and we ignore the
complementary strand of the DNA. The observed sequence is ’AACTACACT’ and obviously
contains 2 occurrences of the motif. We compute the p-value for this number of counts.
For the set of sequences, one obtains X := {X : NX(’A’) = 4, NX(’C’) = 3, NX(’G’) =
0, NX(’T’) = 2}. The size |X | of this set of sequences is computed by the multinomial
coefficient

|X | =
(∑

a∈ANobs(a)
)
!∏

a∈ANobs(a)!
= 1260.

Hence, each sequence occurs with a probability of 1
1260 ≈ 0.08%.

Next, we are interested in the probability to generate a sequence with at least two occurrences
of ’ACT’. This is more complicated since we have to enumerate all the possibilities of ’ACT’
occurrences. First of all, it is clear that the maximum number of occurrences is 2 since the
sequence only contains two ’T’s. Hence, in this simple example, it would be sufficient to
enumerate these cases. For better understanding, we show how to compute the whole count
distribution. We can enumerate the positions of ’ACT’ for each number of occurrences (see
Table 2.1) to compute the distribution of the number of counts:

• NX(’ACT’) = 2: There are ten possible positions of the two occurrences. The dots
have to be filled with the remaining nucleotides {A,A,C}. Thus, each of the ten possible
positions can occur in 3!

2! variants. Hence, there are 30 different sequences with two
occurences.
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NX(’ACT’) = 1 NX(’ACT’) = 2
(i) A C T . . . . . . A C T A C T . . .
(ii) . A C T . . . . . A C T . A C T . .
(iii) . . A C T . . . . A C T . . A C T .
(iv) . . . A C T . . . A C T . . . A C T
(v) . . . . A C T . . . A C T A C T . .
(vi) . . . . . A C T . . A C T . A C T .
(vii) . . . . . . A C T . A C T . . A C T
(viii) . . A C T A C T .
(ix) . . A C T . A C T
(x) . . . A C T A C T

Table 2.1: This tables enumerates the possible positions for ACT for one (left) and two (right)
occurrences.

• NX(’ACT’) = 1: Following the same reasoning, each of the seven possibilities has
6!

3!·2! = 60 variants. However, this might introduce a second occurrence. In fact, this
happens twice for each of the possibilities of two occurences. E.g. the first possibility
’ACTACT...’ is counted in ’ACT......’ and in the fourth possiblity ’...ACT...’. Hence,
we obtain 60 · 7− (2 · 30) = 360 sequences with exactly one occurrence.

• NX(’ACT’) = 0: The number of sequences without any occurrence of ’ACT’ is equal
to remaining sequences. Since the total number of sequences is 1260, we obtain 1260−
360− 30 = 870 sequences without any occurrence.

Therefore, the probability to observe equal to or more than 2 occurrences is 30/1260 ≈
2.4%.

The example shows that naive calculation of the count distribution rapidly becomes rather
complicated. Considering words with overlaps would further exacerbate the calculation
while longer sequences would make the calculation infeasible. These problems are enhanced
for permutation models based on di- or multi-nucleotides (Prum et al., 1995; Robin et al.,
2005).

Generating sequences from di- or multi-nucleotide models is polynomial in sequence length
(Kandel et al., 1996). This problem can be transformed to sample with equillibrium prob-
ability Eulerian paths (Euler, 1736; Edmonds and Johnson, 1973; Altschul and Erickson,
1985; Wilson, 1986) where the nodes correspond to the di- or multi-nucleotides and edges
are drawn if the suffix of a node matches the prefix of the next node (Robin et al., 2005).
Permutation models are rarely used. Instead, the restrictions of the sequence space are
relaxed at the expense of the equillibrium probability distribution over the observed se-
quences. This leads to the Bernoulli Model.

2.3.2 Bernoulli/Multinomial Model

The Bernoulli or multinomial model considers the sequence X with length n to be a sequence
of independently and identically distributed (i.i.d.) random variables X1, . . . , Xn. Each
position Xi follows the nucleotide distribution µ(a) for a ∈ A. Given µ(a) > 0 for all a ∈ A,
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the sequence space has size |A|n. It is much bigger than the space of the permutation
model. Furthermore, not all sequences have equal probability since Pµ(X) =

∏n
i=1 µ(Xi)

for a realization of X.

The nucleotide distribution µ is usually retrieved by a maximum likelihood approach
(Aldrich, 1997). Given an observed sequence with counts Nobs(a), the likelihood is equal
to

P(X1 = x1, X2 = x2, . . . , Xn = xn) =
∏
a∈A

µ(a)Nobs(a).

Considering µ(a) > 0 and
∑

a∈A µ(a) = 1, one can maximize the likelihood by computing
the derivative and setting the result to zero (Reinert et al., 2005). One obtains the maximum
likelihood estimator µ̂(a) = Nobs(a)/n.

A sequence can be generated by sampling a new nucleotide from µ for each position. In
other words, consider an urn which contains multiple copies of the nucleotides. The number
of copies for each nucleotide is proportional to µ. Then, the sequence is created by drawing
for each position one nucleotide from the urn with replacement. The likelihood to retrieve
a sequence with the same nucleotide composition as the observed sequence is maximal due
to the definition of the nucleotide distribution by the maximum likelihood estimator.

2.3.3 Markov Model

The Markov model is an extension of the Bernoulli model by relaxing the independence
assumption of the positions. In a Markov model of first order, each position only depends
on its predecessor. Hence, the Bernoulli model can also be considered a Markov model of
zero order. The Markov model of first order has a di-nucleotide distribution instead of the
mono-nucleotide distribution µ(a) for a ∈ A. Again, the nucleotide distribution is estimated
from the observed sequence using a maximum likelihood approach yielding a similar result
as above but for di-nucleotides. Also Markov models of higher order are possible (Brendel
et al., 1986). To estimate the minimum order of a Markov model for an observed sequence,
one can perform a χ2 test by comparing the frequencies of the nucleotide distributions (Rice,
1995; Reinert et al., 2005). To consider heterogeneity, non-stationary Markov models can
be applied (Borodovsky et al., 1986; Tavaré and Song, 1989).

2.3.4 Conclusion

The most intuitive model is the permutation model. Due to the necessity of enumerating all
words to compute a p-value, it is hardly used in practise. The Bernoulli model, or Markov
model of zero order, considers the sequence to be a sequence of i.i.d. random variables
which is asymptotically equal to the permutation model for infinite sequence lengths. The
independence assumption simplifies most computations (see Chapter 3). Furthermore, in-
corporation of the complementary strand is straight forward if one assumes equal nucleotide
probabilities for complementary bases. The Markov models of higher order capture more
properties of the given sequence. Since positions are not independent any more, most
calculation become more difficult. In addition, it is not obvious how to incorporate the
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complementary strand. Therefore, we focus on the Bernoulli model throughout the remain-
ing parts of this thesis.

2.4 The Position Frequency Matrix (PFM) Model

In Section 2.2.2, we have introduced the PFM model as a profile-based position indepen-
dence model. On the one hand, the model is sufficiently flexible to model a big class of
DNA motifs. On the other hand, the position independence assumption together with the
Bernoulli sequence model allow efficient computation of many statistical properties. Thus,
we choose this model for motif representation.

Here, we derive some basic facts for PFMs. After introducing regularization methods, we
show how to compute the score distribution under the background model as well as under
the motif model. This leads to threshold selection method which are subsequently discussed.
Given a threshold, we present an algorithm to enumerate the compatible words. We finish
with the description of a PFM visualization approach.

2.4.1 Regularization

The PFM contains the probabilities for each nucleotide and position. Due to the limited
sample size of binding sites, the PFM might contain zero entries. However, nothing should
be impossible, merely very improbable, which prevents overfitting. Therefore, one employs a
regularization of the PFM. This also circumvents the singularity at zero for the logarithm.

The most straight-forward method is the addition of pseudocounts. One adds a small value
to each PFM entry before re-normalizing the matrix. A more sophisticated method devel-
oped by Rahmann et al. (2003) emphasizes the information in high affinity positions. This
method is based on certain requirements of a regularization method: The overall distribu-
tion of the PFM should be conserved and the binding signal should not be destroyed. Since
the signal/relative entropy usually differs between the positions, this leads to a position-
dependent regularization method which in general is able to support biological evidence
(Mirny and Gelfand, 2002). For each position, one computes a weight which reflects the
distance of the position-specific distribution to the overall nucleotide distribution of the
motif. With consideration of the sampling error, one shifts the position-specific distribu-
tion towards the overall distribution based on the weights without destroying a significant
signal.

Example 2.6. Continuing Example 2.3, we first show the regularized PFM after adding
pseuo-counts, again, for comparison:


0.0096 0.0096 0.0096 0.9712 0.5865
0.0096 0.5865 0.9712 0.0096 0.0096
0.9712 0.0096 0.0096 0.0096 0.0096
0.0096 0.3942 0.0096 0.0096 0.3942


Using the more sophisticated approach, one obtains
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0.0124 0.0228 0.0143 0.9713 0.5818
0.0124 0.5818 0.9713 0.0143 0.0228
0.9691 0.0114 0.0072 0.0072 0.0114
0.0062 0.3840 0.0072 0.0072 0.3840


The first qualitative difference occurs for position one: The weight for ’T’ is less than for
’A’ and ’C’ although the entries in the PCM are equal. This is due to the conservation
of the model distribution. Therefore, the distribution used for regularization is the model
nucleotide distribution. Since the model contains hardly ’T’s but more ’A’ and ’C’s, the
’T’ gets less weight. The next difference is in position two where the entry for ’G’ is
different from the entry of ’T’ of the first position although both have equal weights in the
model nucleotide distribution. As the position specific nucleotide distribution at position two
has not such a high relative entropy than the distribution of position one, position two is
more regularized. Thus, the position specific distribution is shifted more towards the model
nucleotide distribution.

Besides these two regularization methods, other methods are developed especially in the
context of the motif discovery program MEME (Bailey and Elkan, 1994, 1995). However,
if not mentioned otherwise, we use the regularization method developed by Rahmann et al.
(2003). Since the regularized PFM (PWM) is used for all computations, from now on, we
use the term PFM and PWM interchangeably.

2.4.2 Score Distribution

A PSM yields a hit on a sequence if the score s reaches the threshold t. The significance of
the hit is the probability of this event under a sequence model. Many articles deal with the
efficient calculation of this probability (Staden, 1989; Claverie and Audic, 1996; Stormo,
2000; Wu et al., 2000; Rahmann et al., 2003; Beckstette et al., 2006; Touzet and Varré,
2007). Here, we derive the score distribution and give a dynamic programming algorithm
following Beckstette et al. (2006).

The score for a word w = w1, . . . , w` is computed by summing the position-specific scores
corresponding to the nucleotides of the word:

s(w) =
∑̀
κ=1

Ψκ,wκ . (2.2)

Given a sequence model instead of an actual word, the score is a random variable S.
Similarily to Eq. (2.2), the score S is the sum of the position-specific scores S(κ) which
are also random variables. Hence, the distribution of S denoted by L(S) is given by the
convolution of S(κ):

L(S) = L(S(1)) ∗ L(S(2)) ∗ . . . ∗ L(S(`)).
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One can use a dynamic programming approach to compute L(S). The idea is simple: Before
starting the summation, we have a Dirac score distribution with all its probability weight
at 0. In each step, we add the scores of the next position. Thus, the score s yields the
probability of the position-specific score Ψκ,a and the probability of the score s − Ψκ,a of
the previous step. Using the Bernoulli sequence model with probabilities µ(a), this is

Q0(s) :=
{

1 if s = 0,
undefined else,

Qκ(s) :=
∑
a∈A

Qκ−1(s−Ψκ,a) · µ(a).

After the last step, Q`(s) contains the probability to observe score s. Hence, we can
write Pµ(S = s) = Q`(s). Replacing µa in the equation for Qκ by a different nucleotide
distribution yields the score distribution of S under another model. Furthermore, we can
also use position dependent nucleotide distribution. In this way, it is straight-forward to
compute the score distribution under the motif model. The distribution of the nucleotides
of the motif are given in the PFM Π. Thus, we can compute the distribution by

Q′
0(s) := Q0(s),

Q′
κ(s) :=

∑
a∈A

Q′
κ−1(s−Ψκ,a) · πκ,a.

Hence, we have PΠ(S = s) = Q′
`(s).

Type-I and II error probabilities Based on these score distributions, we can compute type-
I and type-II error probabilities. The type-I error occurs if the score reaches the threshold
but without an actual binding site at this position (false positive). Using the sequence
model µ as background model for a sequence without binding sites we can compute the
type-I error probability by

α := Pµ(S ≥ t) =
∑
s≥t

Q`(s).

Thus, α is the p-value or significance of a hit.

Likewise, we can compute the type-II error probability. Retrieving a score lower than the
threshold on a position which is an actual binding site is a type-II error (false negative).
Hence, we have to use the sequence model Π instead of µ and get for the type-II error
probability

β := PΠ(S < t) =
∑
s<t

Q′
`(s).
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Example 2.7. Here, we reconsider the example DNA motif (see Ex. 2.1). The upper panel
of Fig. 2.2 contains the distributions for the score of the PSM under the Bernoulli sequence
model µ as background model and the motif model Π. The score distribution under the
background model has in general lower scores and obtains very low probabilities for scores
higher than zero. In contrast, the score distribution under the motif model has mainly scores
higher than zero with increasing probabilities. The lower panel of Fig. 2.2 visualizes α and
β. Both errors are almost equal to a score of 13. At this score, α is equal to 0.03 and β is
0.032.
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Figure 2.2: Score distribution for the example DNA motif (see Ex. 2.1) using the background
model (blue) and the motif model (red). The lower panel contains the cumulated score distri-
butions where the background distribution is reversely accumulated. Hence, they correspond
to the α (blue) and β (red) probabilities.

Rahmann et al. (2003) introduces the concept of power for PFMs based on the two score
distributions. If both distribution can be well separated by a threshold, the PFM is said to
have good/high power. Otherwise, the motif is weak since it is hard to differentiate between
motif and background model. Surprisingly, only one fifth of Transfac PFMs (Matys et al.,
2003) are shown to have a reasonable power (Rahmann et al., 2003).

2.4.3 Threshold Selection

Previously, we have seen that the significance of a hit depends on the threshold t. Thus,
selection of an appropriate threshold is crucial. Here, we introduce five different threshold
selection methods and give examples for some of them.

Type-I Error Probability Instead of deducing the type-I error probability from the thresh-
old, one can define the type-I error probability and compute the corresponding threshold
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(Rahmann et al., 2003; Touzet and Varré, 2007). However, the expected number of false
positives on a sequence of length n is n · α. Hence, one should consider multiple testing.
Therefore, we control the probability αn to find at least one false positive on a sequence
of length n. We obtain αn ≈ 1 − (1 − α)n ≈ 1 − exp(−nα) where the first approximation
is due to the fact that overlaps are ignored. Instead of using the actual sequence length,
we always set n = 500 heurstically to get a threshold independent of the actual sequence
length. We obtain a threshold which has a clear statistical background and also restricts
the number of false positives independently of the motif.

Due to the discrete nature of the score, one usually cannot obtain a threshold which exactly
corresponds to the pre-defined type-I error. Therefore, one could ’control’ the type-I error
such that the pre-defined type-I error is never exceeded. Unfortunately, for very low type-I
errors which cannot be retrieved by a motif, this leads to a threshold which cannot be
reached. Hence, we ’bound’ the type-I error probability such that the next higher threshold
t+ 1 is less or equal to the pre-defined type-I error probability.

Type-II Error Probability In general, one can also pre-define the type-II error probability
β instead of the type-I error. For motifs with weak power, this might lead to a huge
amount of false positives and insignificant hits. Therefore, this threshold selection method
only plays a minor role in practice. Especially, since it can be nicely combined with the
type-I error as shown in the next method.

Balanced Error A reasonable threshold is a threshold which restricts the number of false
positices as well as the number of false negatives. Therefore, we can combine the type-I
and the type-II error by setting t = tbal such that α500 = β and call it ’balanced threshold’
(Rahmann et al., 2003). Again, the discrete nature of the score prevents both probabilities
to be equal. Hence, we set the threshold such that β < α500 and for the next higher
threshold t+ 1 the inequality β > α500 holds.

Type-I Extended Error The balanced threshold can lead to very high false positive num-
bers if the power of the PFM is weak. Therefore, we newly introduce a threshold selection
method (Pape et al., 2006). The threshold is set to the balanced threshold if a pre-defined
type-I error probability is not exceeded. Otherwise, the type-I error is used for threshold
selection (as described earlier). Hence, one achieves a good balance between type-I and
type-II error by ensuring a small number of false positives.

Number of Compatible Words Another new threshold selection method pre-defines the
number of compatible words. This can be useful for analyses comparing two PFMs. One
can achieve that by using the type-I error selelection method (using α instead of α500)
based on an equi-probable sequence model. Since all words have the same probability, the
type-I error probability corresponds to the ratio of the number of compatible words and
the number of all possible words.

Example 2.8. Again, considering the example DNA motif (see Ex. 2.1), we can compute
the different thresholds. Figure 2.3 contains the trajectories for α, β and α500 for all thresh-
olds. The first two trajectories are already discussed in Example 2.7. The new trajectory
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2.4 The Position Frequency Matrix (PFM) Model

is the probability α500 for at least one false positive on a sequence of length 500. For low
thresholds (t < 0), the probability is almost 1. For higher thresholds, the probability drops
and finally reaches around 40%.
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Figure 2.3: Error probabilties α and β for the example DNA motif (see Ex. 2.1) using
the background model (blue) and the motif model (red). The green points correspond to
the probability α500 of at least one false positive on a sequence of length 500. The solid
line indicates the ’balanced’ threshold while the dashed line corresponds to a ’type-I’ error
probability ’bound’ at 10%.

Figure 2.3 also contains the type-I threshold for a level of 10%. The threshold is at t = 115
where we have α = 0.00098, α500 = 0.39 and β = 0.69. On a first look, it seems that
the pre-defined type-I error probability of 0.1 is not really considered since α500 = 0.39.
However, the next higher threshold t+ 1 = 116 achieves error probabilities α = 0, α500 = 0
and β = 1. For this threshold, no word would have a score reaching the threshold. Hence,
the threshold t = 115 is the highest, reasonable threshold. This is the reason for setting
the type-I error threshold such that the next higher threshold is below the pre-defined error
probability. In practice, such extreme examples (large difference between pre-defined and
resulting type-I error probabilities) do not occur since the motifs are longer and the PCM
contains more different values.

The balanced threshold is also depicted in Fig. 2.3. The threshold being at t = 107 is
slightly lower than the type-I threshold at t = 115. For the balanced threshold, we obtain
α = 0.0029, α500 = 0.77 and β = 0.28. Considering the next higher threshold t+1 = 108, the
error probabilities are α = 0.00098, α500 = 0.39 and β = 0.69. Hence, the balanced threshold
fulfils α500 > β and the next higher threshold leads to α500 < β. Applying the type-I extended
threshold, one would disregard the balanced threshold since the corresponding type-I error
probability exceeds 0.1 and, instead, use the type-I threshold of t = 115. Furthermore, the
relative number of compatible words is equal to α because we use a GC content of 50%.
Since 0.00098 · 45 = 1, only one word (’GCCAA’) is in the set of compatible words. This
can be verified by applying the threshold t = 115 to the PSM in Ex. 2.4. However, the set
of compatible words is usually much larger since real motifs are longer.
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Chapter 2 DNA Motifs

2.4.4 Enumerating Compatible Words

Enumeration of compatible words is important to apply word approaches (e.g. for word
counting) to PFMs. The PFM model is fully described by the set of compatible words
to annotate sequences given a threshold. Therefore, it is crucial to enumerate the com-
patible words efficiently. First, we describe a rank algorithm (Zhang et al., 2007) which
only depends on the length of the PFM and the number of compatible words. Hence, we
subsequently discuss the number of compatible words depending on the chosen threshold
method.

Rank Algorithm

The rank algorithm proposed by Zhang et al. (2007) uses a rank-lexikographic order of all
words of the length of the PFM. Since the rank is based on the score of the letter, the
ordering implies that all successors of a given word w with the same prefix have a score
less or equal to s(w). For words whose score does not reach the threshold, one can skip all
successors with the same prefix. While formalizing the algorithm, we give examples and,
finally, analyze the running time.

Based on the PSM, we assign to each position κ and each letter a the rank r of its score and
obtain a re-ordered letter-matrix Ψ∗ with general term ψ∗κ,r = a for r ∈ {0, . . . , |A| − 1}.
The ranks are assigned such that the word with highest resp. lowest score is ψ∗1,0 . . . ψ

∗
`,0

and ψ∗1,|A|−1 . . . ψ
∗
`,|A|−1. Thus, the successor of a given word ψ∗1,r1

. . . ψ∗`,r`
is the word

ψ∗1,r1
. . . ψ∗κ−1,rκ−1

ψ∗κ,rκ+1 ψ
∗
κ+1,0 . . . ψ

∗
`,0 where κ the highest position with letter rank less

than |A| − 1.

Example 2.9. Given the following PSSM for a motif of length ` = 2

Ψ =


0 4
1 4
3 −1
2 0


we obtain the re-ordered letter-matrix

Ψ∗ =


’G’ ’A’
’T’ ’C’
’C’ ’T’
’A’ ’G’

 .

This implies the following ordering (in brackets we write the score of the word) ’GA’ (7),
’GC’ (7), ’GT’ (3), ’GG’ (2), ’TA’ (6), ’TC’ (6), ’TT’ (2), ’TG’ (1), ’CA’ (5), ’CC’ (5),
’CT’ (1), ’CG’ (0), ’AA’ (4), ’AC’ (4), ’AT’ (0) and ’AG’ (−1). Obviously, the ordering
does not yield a monotously decreasing function of the score. However, given a threshold
of 5, the first word below the threshold is ’GT’. Since all words with the same prefix ’G’
cannot yield a score higher than ’GT’, one skips the word ’GG’ and directly proceeds with
’TA’. Although the savings are not astonishing in this example, it is easy to see that for
larger PFMs many words can be skipped.
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Figure 2.4: Sequence logo created by Crooks et al. (2004) for the PFM defined in Ex. 2.1
with consensus ’GCCAA’.

To formalize the skipping procedure, we start with a given word ψ∗1,r1
. . . ψ∗`,r`

, which does
not reach the threshold. Let τ denote the largest position with a non-zero rank. Then, all
successive words with the same prefix of length τ − 1 cannot yield a score higher than the
given word. Hence, we can skip all successive words ψ∗1,r1

. . . ψ∗τ−1,rτ−1
ψ∗τ,rτ+· ψ

∗
τ+1,· . . . ψ

∗
`,·.

In fact, these are |A|`−τ words. The next word with a different prefix, which we have to
consider, is ψ∗1,r1

. . . ψ∗κ−1,rκ−1
ψ∗κ,rκ+1 ψ

∗
κ+1,0 . . . ψ

∗
`,0 with κ being the largest position before

τ with letter rank less than |A| − 1.

Example 2.10. In above example with threshold 5, we can skip 6 words (colored in red
where blue indicates words, which do not reach the threshold but are enumerated): ’GA’
(7), ’GC’ (7), ’GT’ (3), ’GG’ (2), ’TA’ (6), ’TC’ (6), ’TT’ (2), ’TG’ (1), ’CA’ (5), ’CC’
(5), ’CT’ (1), ’CG’ (0), ’AA’ (4), ’AC’ (4), ’AT’ (0) and ’AG’ (−1). Of course, for longer
PFMs with a high threshold, the percentage of skipped words is significantly higher.

For each compatible word, one considers at most ` words, which do not reach the threshold.
Denoting the set of compatible words by A, one obtains an asymptotic complexity of
O(`|A|). Zhang et al. (2007) mention that this is a polynomial time algorithm. However,
depending on the threshold selection method, the size of A can be expressed in terms of the
PFM length. As we see in the next section, this leads to an exponential time algorithm.

Number of Compatible Words

The number of compatible words depends on the threshold. Since we already introduced
different threshold selection methods, we discuss the size of the set of compatible words
A with respect to the threshold selection and the length of the PFM. If one defines the
number of compatible words, obviously, the size of A is an input parameter. However,
the threshold is chosen based on the type-I or type-II probabilities (including the balanced
and the extended type-I errors). To obtain the asymptotic size of A, one can assume an
equi-probable sequence model. In this case, the number of compatible words is given by
α|A|`. Since we assume α (or αn) as a constant input parameter, we obtain asymptotically
|A| = O(|A|`). Hence, the rank algorithm has an asymptotic complexity of O(`|A|`).
Therefore, enumerating the set of compatible words is not possible with a polynomial
in ` algorithm if the threshold is chosen based on the error probabilities. It might also
be possible to circumvent the enumeration of compatible words by using IUPAC codes.
However, it is not obvious how to do this and whether complexity would be improved.

2.4.5 Sequence Logo

A convenient illustration of a DNA motif based on its PFM is the so-called sequence logo
(Schneider and Stephens, 1990), see Fig. 2.4 for an example. The sequence logo shows the
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preference of the TF to a certain nucleotide for each position. If the preference is very high,
the position-specific distribution is a Dirac distribution with all probability weight at the
prefered nucleotide. From a point of information theory (for an introduction, see Shannon
and Weaver, 1949; MacKay, 2003), the information content is maximal (Shannon, 1948).
The more unspecific the preference at a position is, the lower the information content.
Therefore, one can use the information content to represent the strength of affinity of the
TF for each position κ defined by

log2 |A|+
∑
a∈A

πκ,a log2 πκ,a. (2.3)

This formula assumes an equi-probable background distribution. Otherwise, one has to use
the relative entropy (or Kullback-Leibler distance) between the position-specific and the
background distribution defined by

∑
a∈A

πκ,a log2

πκ,a

µ(a)
.

For a given background distribution, the relative entropy reaches its maximum at log2 |A|
if πκ,· is a Dirac distribution. The minimum 0 occurs if the position-specific distribution is
equal to the background distribution. Note that the information content in Eq. (2.3) can be
derived by setting µ(a) = |A|−1 for all a. The contribution of each nucleotide to the relative
entropy is retrieved by multiplication with the position specific nucleotide frequency πκ,a.

Based on these thoughts, one can draw a sequence logo where each position contains the
contribution of each letter encoded by the height of the nucleotide such that the summed
heights correspond to the relative entropy. In Fig. 2.4, the PFM from Ex. 2.1 with consen-
sus ’GCCAA’ is shown created by the program weblogo (Crooks et al., 2004). Obviously,
the first, third, and fourth positions have a very strong preference towards the consensus
letters. In contrast, the second and the fifth positions have a weaker affinity but still a
preference to ’C’, ’T’ respectively ’A’, ’T’ exists. Hence, the sequence logo is a suitable tool
to visualize a DNA motif. However, dependencies between positions are not reflected in
the sequence logos. This would require a more sophisticated approach like structural logos
(Gorodkin et al., 1997).
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Chapter 3

Word Count Statistics

3.1 Introduction

Rapid sequencing of DNA (Maxam and Gilbert, 1977; Sanger et al., 1977) generated a vast
amount of sequences to be analyzed. First studies focused on protein coding sequences and
analyzed codon usage (Almagor, 1983). Later, interest rose in non-coding sequences and in
detection of exceptional words in sequences hinting for biological function (Pevzner et al.,
1989). Pattern occurrences in random strings is a classical problem (Feller, 1968). First
exact results for the expected value of the number of occurrences were revealed based on
simple probabilistic models (Dayhoff, 1984; Santibanez-Koref, 1987). This chapter reviews
different methods for computing the distribution of the number of words (for other reviews,
see Reinert et al., 2005; Robin et al., 2005). We also investigate the distribution of word
clusters (clumps). We present a new exact formula to compute the variance and the exact
distribution without using generating functions or automata. Computational issues are
mainly ignored except for few remarks about algorithmic complexity (for an overview,
consult Gusfield, 1997; Waterman, 2000; Lonardi, 2001).

Our review starts by considering single words (roughly following the exposition in Robin
et al., 2005). We present two exact approaches: First, the classical approach based on
waiting time (Gentleman and Mullin, 1989; Gentleman, 1994; Robin et al., 2005) and,
second, a very recent approach (Zhang et al., 2007) - we call it conditional approach - using
optimally spaced seeds motivated by homology search (Ma et al., 2002). Although this
approach is specifically designed for PFMs, it takes as input a set of words (for PFMs, the
set of compatible words). Hence, we classify it as a word counting approach. Since the exact
approaches for words are infeasible to compute for large sets of words, we also introduce
approximations. Initially, we consider an independence model and obtain a binomial and a
Poisson approximation. For the Poisson approximation, we derive the Chen-Stein bounds
explicitly. We also introduce a normal approximation. Then, we consider clumps instead
of occurrences. After presenting the exact distribution, the binomial approximation and
the Poisson approximation, we introduce the compound Poisson distribution. Although
the compound Poisson distribution is used to compute the distribution of the number of
occurrences, clumps are modelled explicitly. Therefore, we include this this approximation
in Section 3.3 about clumps. We finish by deriving a asymptotic normal distribution. In
the same order, we discuss the statistics for multiple words and clumps of multiple words.
The whole chapter serves as a basis to treat bigger sets of words as encoded by PFMs.
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Preliminaries We briefly repeat the notation from the last chapter and introduce some
new definitions. The random sequence X consists of nucleotides X1, . . . , Xn ∈ An assumed
to be i.i.d. in the alphabet A. The alphabet A is a set {0, 1, . . . , |A| − 1} where for DNA
|A| = 4. For better readability, we sometimes refer to 0 ∈ A as ’A’, 1 ∈ A as ’C’, 2 ∈ A

as ’G’ and 3 ∈ A as ’T’. Each position Xi has the nucleotide distribution µ which is a
map (of the σ-algebra of) A → [0, 1]. We also write µ(w) for the probability of a word
w = w1, . . . , w`:

µ(w) =
∏̀
κ=1

µ(wκ).

Note that we use greek letters for indices within a word.

An occurrence of w is the event of w starting at any position i in the sequence X. The
binary random variables Yi(w) indicate this event:

Yi(w) :=
{

1 if Xi, Xi+1, . . . , Xi+`−1 = w1, w2, . . . , w`,
0 otherwise.

(3.1)

Hence, the number Nn(w) of w occurring in a random sequence of length n is given by
Nn(w) =

∑n−`+1
i=1 Yi(w). This is the key random variable. This chapter reviews different

approaches to compute the distribution L(Nn(w)) and its properties such as its first two
moments. We always assume the parameters of the sequence model (basically µ) to be given,
hence, not to be estimated. Otherwise, the asymptotical distributions change (Lundstrom,
1990; Prum et al., 1995; Waterman, 2000; Robin et al., 2005).

Chen-Stein Error Bounds For (compound) Poisson distributions, one can bound the ap-
proximation error using the Chen-Stein method (Chen, 1975). For a good introduction
with many examples, see Arratia et al. (1989, 1990); Barbour et al. (1992). Furthermore,
Barbour and Chryssaphinou (2001) give a guide to using compound Poisson distributions
as approximations. Quantification of the approximation error is performed in terms of the
total variation distance. Let U and V be any two random processes taking values in the
same space E, then the total variation distance between their distributions is (Barbour
et al., 1992)

dTV (L(U),L(V )) = sup
D⊂E

|P(U ∈ D)− P(V ∈ D)| . (3.2)

The subsets D are assumed to be measurable. For E = N all subsets D ⊆ E are measurable
and the total variation distance can be written as

dTV (L(U),L(V )) =
1
2

∑
i≥0

|P(U = i)− P(V = i)|
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Typically, we measure the total variation distance between a sum of Bernoulli variables
U =

∑
i∈I Ui from a finite integer index set I ⊂ N and a (compound) Poisson approximation

P(ϑ) with ϑ =
∑

i∈I E[Ui]. The main idea is to define for each Bernoulli variable Ui a
neighborhood set Bi ⊆ I of variables which have strong dependencies on Ui. We require
i ∈ Bi. Then, we obtain the Chen-Stein bound derived from Theorem 1 in Arratia et al.
(1990)

dTV (L(U),P(ϑ)) ≤ b1 + b2 + b3, (3.3)

where

b1 =
∑
i∈I

∑
j∈Bi

E[Ui]E[Uj ],

b2 =
∑
i∈I

∑
j∈Bi\{i}

E[UiUj ],

b3 =
∑
i∈I

E|E[Ui − E[Ui]|0(Uj : j /∈ Bi)]|.

Here, 0(·) denotes the σ-algebra generated by Uj : j /∈ Bi. One tries to define a neighbor-
hood such that neither b1 nor b2 are too large but also the antagonist b3 is sufficiently small.
If only local dependencies exist, one can catch all dependencies in the neighborhoods, thus,
obtaining b3 = 0. Furthermore, one can use the improved Chen-Stein bound (Barbour
et al., 1992)

dTV (L(U),P(ϑ)) ≤ 1− e−ϑ

ϑ
(b1 + b2) . (3.4)

3.2 Single Word Occurrences

3.2.1 Exact Count Distribution

First results on the exact distribution of the number of occurrences are retrieved by Gen-
tleman and Mullin (1989). They assume an equi-probable i.i.d. sequence model. In this
publication, the formulae are explicitly stated for any two-letter pattern of length 2 to 8.
Later, algorithms are used to generate them (Gentleman, 1994). Most further research uses
Markov chains as sequence models. Kleffe and Langbecker (1990) employ an automaton to
compute the exact count distribution. Later, Nicodeme et al. (1999) extend this approach
to create generating functions by automatons. Other approaches are based on language
decomposition (Régnier and Szpankowski, 1998; Régnier, 2000; Régnier and Denise, 2004)
or probabilistic arithmetic automata (Marschall and Rahmann, 2008). Eventually, the very
recent conditional approach (Zhang et al., 2007) is motivated by optimally spaced seeds for
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homology search (Ma et al., 2002). Even though this approach is specifically designed for
PFMs, it is a word counting approach and we think it is relevant to introduce it here. Fur-
thermore, it is the only approach, which is straight-forward enough to extend to multiple
words.

Expected Value

The expected value is easily computed because the position dependencies have no influence.
Since the probability of an occurrence at one position is µ(w), the expected number of
occurrences on a sequence of length n is

E[Nn(w)] = (n− `+ 1) · µ(w).

Variance

Due to position dependencies, the variance for the number of occurrences is more compli-
cated to compute. First, we decompose the variance of the number of occurrences into the
(co-)variances of the occurrence indicator random variables:

V[Nn(w)] = V[
n−`+1∑

i=1

Yi(w)] =
n−`+1∑

i=1

V[Yi(w)] + 2 ·
n−`+1∑

i=1

n−`+1∑
j=i+1

Cov[Yi(w), Yj(w)]. (3.5)

Applying the definition of the variance V[Yi(w)] = E[Yi(w)2]−E[Yi(w)]2 yields for the terms
in the first sum µ(w)−µ(w)2. The covariances can be computed using Cov[Yi(w), Yj(w)] =
E[Yi(w) · Yj(w)] − E[Yi(w)]E[Yj(w)]. The second part, again, yields µ(w)2 while the first
part is more difficult to compute. If the occurrences at position i and j do not overlap, thus,
Yi(w) and Yj(w) are independent, it also yields µ(w)2 diminishing the whole term. In case
of an overlap, we have to compute the joint probability of one occurrence at position i and
another occurrence at position j. For this purpose, we define the overlap bit for 0 ≤ d < `
which indicates whether an overlap for a certain distance is possible (Guibas and Odlyzko,
1980; Li, 1980; Guibas and Odlyzko, 1981a):

εd(w) :=
{

1 if ∀0<κ≤`−d wκ+d = wκ,
0 otherwise.

(3.6)

For convenience, we define the overlap bit εd(w) = 1 for d ≥ `. The overlap bit can be
efficiently computed in linear time using the Z-algorithm (Gusfield, 1997, Chapter 1).

Example 3.1. The overlap bit for the word w = ’ACA’ is given by

d A C A εd(w)
0 A C A 1
1 A C A 0
2 A C A 1
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We can compute the probability γd(w) for joint occurrences with distance 0 ≤ d < ` by

γd(w) := Pµ(Yi(w) = 1, Yi+d(w) = 1) = µ(w)εd(w) ·
∏̀

κ=`−d+1

µ(wκ). (3.7)

In Eq. (3.5), we replace the sums over the position i and j by a sum over the distance d
between i and j and apply above equation:

V[Nn(w)] = (n− `+ 1)[µ(w)− µ(w)2] + 2
`−1∑
d=1

(n− `− d+ 1)
[
γd(w)− µ(w)2

]
. (3.8)

This formula demonstrates that the variance depends on the probability of an occurrence
(µ(w)) and the possibilities of self-overlaps (εd(w)). The higher the probability of an oc-
currence, the more occurrences one would expect. For a word with no self-overlap, εd(w)
is 0 for d > 0. Hence, only −µ(w) is left in the right term of the last equation. Therefore,
the variance of the number of occurrences becomes smaller.

Example 3.2. We consider the words v = ’GCCAA’ and w = ’CGCGC’ in an i.i.d.
sequence with equi-probable nucleotide distribution of length n = 10000. Obviously, the
word w is highly self-overlapping in contrast to v. Hence, if the word w occurs at one
position, it is very likely to see a subsequent occurrence either two or four positions farther.
We call such a congregation of overlapping hits a clump with the additional requirement that
no two clumps can overlap. Intuitively, one might conclude that w occurs more often in
the sequence than v. However, due to the equi-probable nucleotide distribution, the expected
value of the number of counts is the same for both words, namely 9.8. Thus, the distance
between two clumps of w has to be larger than for v. Therefore, hits of v occur more equi-
distant than hits of w leading to a smaller variance of the number of counts for v. Indeed,
the variance for v is 9.7 while the variance for w is 11.

Count Distribution

The exact distribution of the number of occurrences is usually computed using a duality
between the number of occurrences Nn(w) and the position of the mth occurrence Tm(w)
called occurrence time. If the mth occurrence is before or at position n− `+1, the number
of occurrences is equal to or greater than m. Thus, we obtain the duality Nn(w) ≥ m ⇔
Tm(w) ≤ n− `+ 1. Hence, under the random sequence model µ, we obtain

Pµ(Nn(w) = m) = Pµ(Tm(w) ≤ n− `+ 1)− Pµ(Tm+1(w) ≤ n− `+ 1)

=
n−`+1∑

i=1

Pµ(Tm(w) = i)−
n−`+1∑

i=1

Pµ(Tm+1(w) = i). (3.9)
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Figure 3.1: The event of an occurrence of a word at position i (vertical bar) on a sequence
(horizontal line) can be decomposed into three disjoint events regarding the mth occurrence
(marked by a cross): (a) the occurrence at i occurs before the mth occurrence, (b) the mth
occurrence is at position i, (c) the mth occurrence is at position i− d where the distance d is
indicated in red.

Now, we are left with computing the distribution for the occurrence time. We can decom-
pose the event {Yi = 1} which has probability µ(w) into three parts (for an illustration, see
Fig. 3.1):

• The occurrence at position i is not yet the mth occurrence. Hence, position i is either
the first, the second, ..., or the m− 1th occurrence.

• The occurrence at position i is exactly the mth occurrence.

• The mth occurrence has already been occurred. Hence, there is a distance d between
the mth occurrence and the position i.

We can write this decomposition by

{Yi(w) = 1} ≡
m−1⋃
k=1

{Tk = i} ∪ {Tm = i} ∪
i−1⋃
j=1

{Tm = j ∩ {Yi(w) = 1|Yj(w) = 1}}. (3.10)

Substituting the events by the corresponding probabilities, we obtain

µ(w) =
m−1∑
k=1

Pµ(Tk = i) + Pµ(Tm = i) +
i−1∑
j=1

Pµ(Tm = j)Pµ(Yi(w) = 1|Yj(w) = 1).

In the last sum, the conditional probability is equal to µ(w) for all j if the occurrence at
position i does not overlap with j. For all other cases, we can use the overlap bit ε. Solving
for Pµ(Tk = i) leads to the recurrence formula

Pµ(Tm = i) = µ(w)−
m−1∑
k=1

Pµ(Tk = i)−
i−∑̀
j=1

Pµ(Tm = j)µ(w) (3.11)

−
i−1∑

j=i−`+1

Pµ(Tm = j)ε`−(i−j)(w)
∏̀

κ=`−(i−j)

µ(wκ).

Thus, we can recursively compute the occurrence time probabilities and, therefore, also the
exact count distribution in Eq. (3.9). Unfortunately, the computation is time consuming.
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3.2 Single Word Occurrences

We have to fill a matrix of size O(mn) and each entry takes O(m+(n−`)+`2) time leading
to a complexity of O(mn(m + n + `2)). Using hash tables for the intermediate sums and
the product, one can decrease the complexity to O(mn) at the expense of memory usage.
However, using generating functions simplifies the recurrence by removing many terms (see
Section 4). This allows a faster computation. Nevertheless, complexity always depends on
the sequence length. Approximations of the count distribution can circumvent this problem
as we will see below the following example.

Example 3.3. Again, we consider the words v = ’GCCAA’ and w = ’CGCGC’ in an
i.i.d. sequence with equi-probable nucleotide distribution of length n = 10000. Figure 3.2
shows the exact count densities and distribution functions for both words. The upper panel
contains the densities. At a first glimpse, both trajectories look similar. Their maximum
is at 9. However, the probability at the maximum is smaller for w while the corresponding
probabilities for less than seven and more than 14 hits are higher. Thus, it has a higher
variance as the last example already concluded. The lower panel of Fig. 3.2 depicting the
distributions confirms this observation since the distribution function for w is not as steep
as for v.
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Figure 3.2: Densities (upper panel) and distribution (lower panel) functions of the number
of hits for the word ’GCCAA’ (circles) and ’CGCGC’ (crosses) in an i.i.d. sequence with equi-
probable nucleotide distribution and length 10, 000.

Although the distributions look very similar, the tails of the distribution, which are important
for p-value calculations, differ almost in one order of magnitude. Therefore, the p-value to
observe at least 29 hits of v is 2.8 ·10−07 while the corresponding p-value for w is 1.9 ·10−06.
Differences between both distributions are due to the self-overlap of w leading to strong
position dependencies. This illustrates that incorporation of these dependencies is highly
important.
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Conditional Approach

In Zhang et al. (2007), a new approach for computating the exact count distribution is
proposed. The two main ideas are to compute the probability for the number of occurrences
recursively for smaller regions and conditioning on sequence prefixes of the smaller region.
The published approach uses a Markov sequence model of order 1. Hence, we simplify the
approach to the i.i.d. model. First, we compute the probability to observe at least one
occurrence. In a second step, we extend this to deal with at least k occurrences which is
equivalent to the count distribution.

At Least One Occurrence Let Fi(w) denote the probability Pµ(Nn−i+1(w) ≥ 1) to observe
at least one occurrence of w in a sequence of length n− i+ 1. We compute this probability
by conditioning on a given prefix

Fi(w) := Pµ(Nn−i+1(w) ≥ 1) =
∑
a∈A

Pµ(Nn−i+1(w) ≥ 1|X1 = a)µ(a) =
∑
a∈A

fi,a(w)µ(a),

(3.12)

where fi,a(w) denotes the conditional probability of {Nn−i+1(w) ≥ 1|X1 = a} with a ∈ A.
One can derive these conditional probabilities by incrementing the length of the given
prefix. Thus, we extend our definition to fi,v(w) := Pµ(Nn−i+1(w) ≥ 1|X1 . . . X|v| = v)
with v ∈ A+ such that it can also deal with words. This yields

fi,v(w) =
∑
a∈A

fi,va(w)µ(a), (3.13)

where va denotes the concatenation of v and a. However, one does not need to compute
fi,v(w) for all w ∈ P(An) where P(·) denotes the power set. As long as |v| ≤ |w|, an
occurrence of w at position 1 is only possible if v matches a prefix of w. Furthermore, if
no suffix of v matches a prefix of w for |v| ≤ |w| there cannot be an occurrence of w before
position i+ |v|. In these cases, the probability for {Nn−i+1(w) > 0|X1 . . . X|v| = v} is equal
to the probability for {Nn−i+|v|+1(w) > 0}. Next, we incorporate the possibility of a suffix
of v which matches the prefix of w. This yields with u being the longest suffix of v which
is also a prefix of w and i′ = i+ |v| − |u|

fi,v(w) =
{
Fi′(w) if |u| = 0,
fi′,u(w) otherwise.

Thus, if u is not the empty word (|u| = 0) we consider u as a prefix of the sequence region.
Finally, if v = w the probability conditioned on v being a prefix is 1. Furthermore, for
small i the word w is longer than the sequence region. Hence, we obtain two stop criteria
for the recursion

fi,v(w) =
{

0 if n− i+ 1 < |w|,
1 if w = v.
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3.2 Single Word Occurrences

Therefore, |v| > |w| does not need to be considered in the recursive formula. In addition,
one can employ a dynamic programming algorithm to compute fi,v(w) and Fi(w) efficiently
(for details, see Zhang et al., 2007).

At Least k occurrences We can extend this approach to compute the probability to
observe at least k occurrences. We define

F
(k)
i (w) := Pµ(Nn−i+1(w) ≥ k) =

∑
a∈A

f
(k)
i,a (w)µ(a), (3.14)

with f
(k)
i,v (w) = Pµ(Nn−i+1(w) ≥ k|X1 . . . X|v| = v) for v ∈ A+. In this recursive formula,

we only have to change Eq. (3.13) to

f
(k)
i,v (w) =

{ ∑
a∈A f

(k−1)
i,va (w)µ(a) if w = va,∑

a∈A f
(k)
i,va(w)µ(a) otherwise.

(3.15)

Thus, we compute the event of at least k occurrences by the events of k− 1 occurrences in
smaller regions and conditioned on a prefix of the sequence region.

3.2.2 Position Independence

The consideration of position dependencies between the occurrence indicators Yi(w) is the
main reason for the high complexity of the exact count distribution. Ignoring these de-
pendencies leads to very simple approximations which are fast to compute but not very
accurate. Here, we present the binomial approximation and its asymptotic counterpart,
the Poisson approximation.

Binomial Distribution

Assuming all Yi(w) to be independent, then the count distribution Nn(w) is a sum of
n − ` + 1 i.i.d. Bernoulli random variables with success probability µ(w) as parameter.
Hence, the probability to observe m occurrences on a sequence of length n− `+ 1 implies
that n−`−m+1 positions do not have an occurrence. Considering all possible permutations
of the positions of the occurrences attains

Pµ(Nn(w) = m) =
(
n− `− 1

m

)
µ(w)m (1− µ(w))n−`−m+1

which is the binomial distribution with parameters n− `+ 1 and µ(w).
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Poisson Distribution

Assuming that the length of the word w is small in comparison to the sequence length, we
can substitute n− `+1 by n. Then, the binomial distribution converges to a Poisson distri-
bution if the expected number of occurences µ(w)n remains constant (O(1)) for sequence
length n→∞. This implies that µ(w) = O(n−1) and log n = O(`). We obtain the Poisson
distribution for the number of counts with ϑ = (n− `+ 1)µ(w)

Pµ (Nn(w) = m) =
(ϑ)m eϑ

m!
.

Example 3.4. In Fig. 3.3, several count distributions are shown for the words v = ’GCCAA’
and w = ’CGCGC’ in an i.i.d. sequence with equi-probable nucleotide distribution of length
n = 10000. The exact distribution serves as reference. For the non-self-overlapping word v,
the binomial as well as the Poisson distribution yield an accurate approximation. In gen-
eral, both distributions are very similar showing that the sequence length is sufficiently long
such that the words occur rarely. In contrast to the approximation for v, the probabilities for
w do not match the exact distribution but are equal to the values for v. Since we assume an
equi-probable nucleotide distribution, both words have the same occurrence probability. As
neither the binomial nor the Poisson approximation is capable to consider the self-overlap,
it is not surprising that both words obtain the same distribution.
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Figure 3.3: Densities (upper panel) and distribution (lower panel) of the number of hits for
the word ’GCCAA’ (circles) and ’CGCGC’ (crosses) in an i.i.d. sequence with equi-probable
nucleotide distribution and length 10, 000. Green indicates the exact calculation while blue
labels the binomial approximation and red corresponds to the Poisson approximation.

Again, the differences between the distributions are very subtle but can be important for
significance calculation. The p-value for Ni(v) ≥ 29 for the binomial approximation is
3.2 · 10−07 and for the Poisson approximation 3.2 · 10−07 in comparison to the true value
of 2.8 · 10−07. Already for the non self-overlapping word, the p-values are underestimated.
For the word w, the differences are more significant: The p-values from the binomial and
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3.2 Single Word Occurrences

the Poisson distribution do not change as discussed above but the exact distribution yields
a p-value of 1.9 ·10−06. Hence, the p-value is underestimated by an order of magnitude.

Chen-Stein Error Bounds The assumption of independence does not hold. Hence, the
approximation contains an error. Using the Chen-Stein method, we can estimate the error.
Robin et al. (2005) compute the Chen-Stein error bounds for non-overlapping words but for
higher-order Markov models. Here, we give the explicit bounds for any word w but only in
an i.i.d. sequence. From the above derivation, we know that the Poisson distribution has
mean ϑ. Hence, we compute the total variation distance (see Eq. (3.2)) of

dTV (L(Nn(w)),P(ϑ)) ≤ 1− e−ϑ

ϑ
(b1 + b2) .

Based on the index set I = {1, . . . , n}, we define the set Bi of the neighborhood to contain
all depending random variables. Since the word w has length `, the set Bi for Yi(w) contains
{i−`+1, i−`+2, . . . , i+`−1} for ` ≤ i ≤ n−`+1. The other neighborhood sets are smaller
due to boundary effects at the beginning and the end of the sequence. For convenience, we
ignore this such that |Bi| = 2`− 1 for all i. The first bound b1 is easy to compute:

b1 =
∑
i∈I

∑
j∈Bi

E[Yi(w)]E[Yj(w)] = (n− `+ 1)(2`− 1)µ(w)2.

The second bound b2 contains the second moments between Yi which we have already
defined to be γd(w) in Eq. (3.7). Hence, we obtain

b2 =
∑
i∈I

∑
j∈Bi\{i}

E[Yi(w)Yj(w)] = 2
∑
i∈I

`−1∑
d=1

γd(w) = 2(n− `+ 1)(G(w)− µ(w))

where the last step is done by defining G(w) =
∑`−1

d=0 γd(w).

Now, we can analyze the asymptotics of the boundary under the assumptions of the Poisson
approximation. Since log n = O(`) and µ(w) = O(n−1), we obtain for b1 = O(n−1 log n),
thus, limn→∞ b1 = 0. The bound b2 is zero if the word w is not self overlapping. Since
ϑ−1(1 − e−ϑ) ∈ [0, 1], the total variation distance dTV(L(Nn(w)),P(ϑ)) tends to zero for
non-overlapping words. For overlapping words, we can bound b2 only by O(`). In these
cases, we can still explicitly compute the total variation distance to correct significance
values. Thus, we can state that self-overlaps violate the requirements for an accurate
Poisson approximation since such words occur in clumps. Then, a more appropriate model
for the number of occurrences is a compound Poisson distribution (see Section 3.3.3) or one
can use a Poisson distribution for the number of clumps (see Section 3.3.2).
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3.2.3 Normal Approximation

The Poisson distribution is based on the assumption that the word only occurs rarely
(µ(w)n = O(1)) in the sequence. For very short words, this is not true. In this case, one
can use a central limit theorem for a normal approximation (for a proof, see Waterman,
2000, Chapter 12). Here, one assumes that the expected number of occurrences tends to
infinity with sequence length n→∞. Since the normal distribution is completely defined by
the expected value and the variance, it suffices to compute both parameters asymptotically
for n→∞. Computation of the asymptotic mean is straight-forward:

lim
n→∞

n−1E[Nn(w)] = lim
n→∞

n−1E[
n−`+1∑

i=1

Yi(w)] = µ(w).

For the variance, we start with the exact formula in Eq. (3.8). With n→∞ one obtains

lim
n→∞

n−1V[Nn(w)] = µ(w)− µ(w)2 + 2
`−1∑
d=1

γd(w)− 2(`− 1)µ(w)2.

Since γ0(w) = µ(w), we can move the first term into the sum and accordingly change the
index of the sum from d = 1 to d = 0. Due to the factor 2 we have to subtract µ(w), as
well. Similarly, we proceed with µ(w)2 obtaining

lim
n→∞

n−1V[Nn(w)] = 2
`−1∑
d=0

γd(w)− 2`µ(w)2 − µ(w)(1− µ(w)).

The last term −µ(w)(1−µ(w)) stems from −µ(w) which we had to add for the index shift
and the µ(w)2 to change the factor `− 1 to `. Considering multiple words, we will see that
this transformation is convenient. Substituting G(w) into the equation, we obtain for the
asymptotic variance

σ2 := lim
n→∞

n−1V[Nn(w)] = 2G(w)− 2`µ(w)2 − µ(w)(1− µ(w)).

The number of counts n−1Nn(w) is now asymptotically normal distributed with mean µ(w)
and variance n−1σ2. If σ 6= 0 we obtain asymptotically

√
n
(
n−1Nn(w)− µ(w)

)
σ

∼ N (0, 1).

This approximation assumes long sequences and that the word occurs frequently. Due to
the reduction to a standard normal distribution, one can apply known statistics.
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3.3 Clumps for Single Words

Example 3.5. The words v = ’GCCAA’ and w = ’CGCGC’ on an i.i.d. sequence with
equi-probable nucleotide distribution have respectively an asymptotical mean of 0.00098 and
0.00098 and an asymptotic variance of 0.00097 and 0.0011. Thus, the variance for the
self-overlapping word w is higher than for v. As we have seen using the exact approach,
this is correct. Hence, the parameters of the normal approximation do reflect position
dependencies. Multiplying both the asymptotic mean and the asymptotic variance by the
sequence length n = 10, 000, obtains the two parameters for the count distribution based on
a normal approximation. Figure 3.4 compares the approximation with the exact approach.
In general, the approximations differ from the exact solution. However, for both words the
approximations have similar accuracy due to the incorporation of the position dependencies.
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Figure 3.4: Densities (upper panel) and distribution (lower panel) of the number of hits for
the word ’GCCAA’ (circles) and ’CGCGC’ (crosses) in an i.i.d. sequence with equi-probable
nucleotide distribution and length 10, 000. Green indicates the exact calculation while light
blue labels the normal approximation after applying the continuity correction.

The differences also influence the significance values. One retrieves a p-value of 7.5 · 10−10

to observe at least 29 occurrences of v. In comparison to the exact p-value 2.8 · 10−07,
there is a difference of several orders of magnitude. For word w, the difference is similar
(p-value for normal approximation is 6.5 ·10−09 and the exact one is 1.9 ·10−06). Again, the
accuracy does not change between v and w. However, especially the tails of the distribution
are significantly underestimated since the word only occurs rarely. This can be explained as
the normal approximation is not accurate in the tail.

3.3 Clumps for Single Words

In the last section, we have seen that self-overlapping words tend to have overlapping
aggregations of occurrences. We call such an overlapping aggregation a clump (for an
illustration, see Fig. 3.5). Especially, the Poisson approximation encounters problems with
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words occurring in clumps. There are two solutions within the Poisson regime. First,
one can consider clumps instead of occurrences. Due to our definition, clumps cannot
overlap. Thus, a Poisson approximation for the distribution of the number of clumps yields
accurate results. Second, one can explicitly model the clumps using a compound Poisson
distribution.

Figure 3.5: The left panel contains four occurrences of a word (boxes) on a sequence (straight
line) which are organized into two clumps with size three respectively one. The right panel
illustrates the occurrences of a different word with the same number of clumps and clump sizes.

After presenting a formal definition of clumps, we discuss the difficulties in dealing with
clumps. Then, we show how to compute the exact distribution of the number of clumps.
Subsequently, we describe a simple binomial/Poisson approximation and extend the latter
one to a more sophisticated Poisson approximation. Then, we introduce the compound
Poisson distribution to model clumps explicitly. Finally, we give a asymptotic normal
approximation.

Formal Definition Formally, we define a clump to start at an occurrence which does not
overlap to the left with another occurrence. The size of a clump is the number of overlapping
occurrences within one clump (see Fig. 3.5). We introduce an indicator random variable
Ỹi(w) for the start of an occurrence of a clump of word w at position i by

Ỹi(w) := Yi(w)
`−1∏
d=1

(1− Yi−d(w)) . (3.16)

The probability of {Ỹi(w) = 1} is not easy to compute due to the dependencies of the Yi(w)s.
We denote the number of clumps in an i.i.d. sequence of length n by Ñn(w) =

∑n−`+1
i=1 Ỹi(w).

The random indicator Ỹ1 involves the usually unobservable letters Xi for −` < i < 1. We
ignore those since the corresponding error can be efficiently bounded in terms of the total
variation distance for rare words on long sequences (Reinert and Schbath, 1999).

Intuitively, it might appear easier to deal with clumps instead of word occurrences due to
the removal of self-overlaps. Instead, clumps are more difficult to handle. We present some
difficulties and introduce notation to formalize them.

(Principal) Periods By its definition, a clump occurs if there are no preceding overlapping
occurrences of the word. Thus, one can compute the probability of a clump occurrence by
considering all possible preceding overlaps. Since some overlaps induce further overlaps,
the problem is to consider each possible overlap exactly once. To capture this notion of
overlap, we introduce the concept of the period and principal period.

Example 3.6. The word ’CGCGC’ can overlap with itself at a distance of two and four.
For an overlap of distance four, the overlap for a distance of two is automatically induced:
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i− 4 i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4
occurrence at position i C G C G C
overlapping occurrence C G C G C
induced occurrence C G C G C

The period of a word w is a distance 0 < η < ` such that an occurrence at i can overlap
with an occurrence at i+ η. The set Υ(w) of all periods is defined by

Υ(w) := {η : εη(w) = 1, 0 < η < `}. (3.17)

Obviously, if Υ(w) = {} then w is not self-overlapping. As we have seen in the last example,
overlaps at some periods induce further occurrences. To remove such periods, we define the
set Υ′(w) of principal periods containing all periods which are not multiples of the minimal
period. The root of a period is the non-overlapping prefix of the preceding occurrence (for
a more formal discussion, see Lothaire, 1983; Rivals and Rahmann, 2003).

Example 3.7. The word w = ’CGCGC’ has periods Υ(w) = {2, 4} and the set of principal
periods Υ′(w) = {2} since the period η = 4 is a multiple of the minimal period η = 2. The
(principal) root of η = 2 is ’CG’.

Probability of a Clump The probability µ̃(w) := Pµ(Ỹi(w) = 1) of a clump at one position
can be computed by considering the probabilities for preceding overlapping occurrences
(Schbath, 1995a,b) - namely using a probability ω(w) for self-overlap. A self-overlap occurs
if any of the principal roots occur just before an occurrence of w. Since two different
principal roots can never occur at the same time (Schbath, 1995a), the events are disjoint
and their probabilities can be summed up:

ω(w) := Pµ(Ỹi(w) = 0|Yi(w) = 1) =
∑

η∈Υ′(w)

η∏
κ=1

µ(wκ). (3.18)

A clump occurs if there is an occurrence of w and no preceding self-overlapping occurrences.
Hence, the probability µ̃(w) for a clump is the probability of an occurrence µ(w) and no
self-overlap 1− ω(w) yielding

µ̃(w) := E[Ỹi(w)] = Pµ(Ỹi(w) = 1|Yi(w) = 1)Pµ(Yi(w) = 1) = [1− ω(w)]µ(w). (3.19)

As the second term is always ≤ 1, the probability of a clump must be smaller than the
probability of a word occurrence.
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Example 3.8. We consider the word w = ’ACA’ in a two-letter alphabet with µ(’A’) =
p ∈ (0, 1) and µ(’C’) = 1 − p. The probability for w is µ(w) = (1 − p)p2. A clump of
w only starts if there are no preceding overlapping occurrences. Since Υ(w) = {2} which
is also the set of principal periods, an overlap can only occur two positions before, more
precisely if there is an ’AC’. ’AC’ occurs with a probability of µ(’AC’) = (1 − p)p. We
obtain ω(w) = (1 − p)p as there are no further overlap possibilities. The probability of the
clump is µ̃(w) = [1− ω(w)]µ(w) = (p2 − p3)(1− p+ p2).

More Dependencies The indicator Yi(w) for a word occurrence only depends on the
indicators Yi+d(w) for |d| < ` which can form an overlapping occurrence. All other Yj(w)
are independent of Yi(w). In contrast, clumps cannot overlap due to their definition. Hence,
the joint probabilities Pµ(Ỹi(w) = 1, Ỹi+d(w) = 1) = 0. Since the definition for Ỹi(w)
(see Eq. (3.16)) comprises the ` − 1 preceding positions of i, those positions can overlap
with another clump and, therefore, introduce dependencies between Ỹi(w) and Ỹj(w) for
0 < |i − j| < 2` − 1. In other words, one only ensures independence if there is a gap of
at least ` − 1 positions between the end of the preceding clump and the start of the next
clump.

Example 3.9. We consider the same word as in the last example, w = ’ACA’. We show
that the clump indicators Ỹi(w) and Ỹi−d(w) are not independent for 0 < d < 2` − 1 with
` = 3.

In the last example, we concluded that no ’AC’ is allowed in front of a clump of w. We
denote this by an ’X’ and ’Y’, which are not allowed to be ’A’ respectively ’C’ at the same
time. The occurrences of w depending on d are shown here:

d i− 6 i− 5 i− 4 i− 3 i− 2 i− 1 i i+ 1 i+ 2
X Y A C A

1 X Y A C A
2 X Y A C A
3 X Y A C A
4 X Y A C A

For 0 < d < `, two clumps at i − d and i overlap, thus, the probability for the joint event
is 0 and, therefore, not the product of the single event probabilities µ̃(w)2 > 0. Considering
d = 3, still the positions for ’XY’ which are supposed to be unequal to ’AC’ do overlap with
’CA’ from the preceding clump. Hence, the position cannot be ’AC’, thus, we obtain the
joint probability µ̃(w)µ(w) 6= µ̃(w)2. For d = 4, ’X’ overlaps with the last ’A’ from the
preceding occurrence. Thus, only ’Y’ is not allowed to be a ’C’ which has probability 1− p.
We obtain for the joint probability µ̃(w)(1 − p)µ(w) 6= µ̃(w)2. In contrast, d > 3 does not
imply any letters for ’X’ or ’Y’. Hence, we have to prohibit ’AC’ for ’XY’ and obtain for
the joint probability µ̃(w)(1 − ω)µ(w) = µ̃(w)2. The main difficulty in the computation of
the exact count distribution is the caluclation of the joint events for ` ≤ d < 2`
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3.3.1 Exact Distribution

The exact count distribution of the number of clumps has only recently been published
(Stefanov et al., 2007) for Markov sequences of order one derived by generating functions.
To our knowledge, there are no explicit formulae which are not based on generating functions
in the literature. The same holds for the variance. Here, we derive such formulae for
the exact variance and the exact word count distribution (see Section 3.2.1) in the i.i.d.
sequence model. After stating the mean and the variance of the distribution, we present
explicit recurrence formulae.

Expected Value

The expected value of number of clumps is based on the probability µ̃(w) to observe a
clump at one position

E[Ñn(w)] = E[
n−`+1∑

i=1

Ỹi(w)] = (n− `+ 1)µ̃(w). (3.20)

Using Eq. (3.19) for the probability of the clump, the expected value can easily be com-
puted.

Variance

The variance of the number of clumps is hard to compute due to the introduced depen-
dencies by the requirement of no preceding overlapping occurrence (see Ex. 3.9). First,
we derive the variance considering these dependencies. However, they only have minor
influence on the results. Thus, we simplify the formulae by ignoring them in a second step.
The variance can be written similar to Eq. (3.5) as

V[Ñn(w)] =
n−`+1∑

i=1

V[Ỹi(w)] + 2 ·
n−`+1∑

i=1

n−`+1∑
j=i+1

Cov[Ỹi(w), Ỹj(w)].

The term in the first sum is µ̃(w) − µ̃(w)2. The sum over the covariances now involves
dependencies. First, we re-structure the sum such that the position of Ỹj(w)s are expressed
in terms of the distance d to Ỹi(w). This yields

V[Ñn(w)] = (n− `+ 1)
(
µ̃(w)− µ̃(w)2

)
+ 2 ·

n−`+1∑
i=1

n−`−i+1∑
d=1

Cov[Ỹi(w), Ỹi+d(w)]. (3.21)

The critical term is the covariance. We can decompose it according to the definition of the
covariance:

Cov[Ỹi(w), Ỹi+d(w)] = Pµ(Ỹi(w) = 1, Ỹi+d(w) = 1)− µ̃(w)2. (3.22)
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For the number of word occurrences, the joint probability becomes µ(w)2 vanish the co-
variance for d ≥ ` due to independence of the occurrence indicators. In the overlapping
case, the joint probability is computed by the overlap probability γd(w). This is different
for clumps. Starting with the overlapping case, overlaps of clumps are not possible. Thus,
the covariance becomes −µ̃(w)2. For ` ≤ d < 2`, the Ỹi(w) and Ỹi+d(w) are no longer inde-
pendent due to the involvement of the preceding Yi−d(w) in the definition of Ỹi(w). They
can overlap with the random indicators covered by the preceding clump. In these cases, we
cannot use 1− ω(w) for no self-overlap but have to compute this probability explicitly. In
fact, if the overlap is possible, we only have to skip the positions which are already covered
by the preceding occurrence (see Ex. 3.9). The self-overlap probability ωd(w) for a clump
at i+ d and a preceding clump at i for d ≥ ` is the probability of no clump at i+ d given
the clump at i and an occurrence at i+ d. In other words, ωd(w) is the probability that an
occurrence is no clump given a preceding clump. We obtain

ωd(w) := Pµ(Ỹi+d(w) = 0|Yi+d(w) = 1, Ỹi(w) = 1) (3.23)

=
∑

η∈Υ′(w)

εd−η(w)
η∏

κ=1+max(η−d+`,0)

µ(wκ)

where εd−η(w) is equal to 0 if the word w does no allow such an overlap. The maximum
ensures that we correctly incorporate principial periods, which do not overlap with the
preceding occurrence. The periods are always smaller than the word length η < `. Thus,
for d ≥ 2` we obtain d − ` > η, thus, ωd(w) = ω(w). Furthermore, we obtain ωd(w) := 1
for 0 < d < ` such that the complementary event, the occurrence at i + d is a clump, has
probability 0. We can write for the joint probability of a clump at i and i+ d

Pµ(Ỹi+d(w) = 1, Ỹi(w) = 1) = Pµ(Ỹi+d(w) = 1|Yi+d(w) = 1, Ỹi(w) = 1) (3.24)
·Pµ(Yi+d(w) = 1|Ỹi(w) = 1)µ̃(w)

= [1− ωd(w)]µ(w)µ̃(w).

We can substitute the probability of an occurrence at i + d given the clump at i by µ(w)
since for d < ` the probability 1−ωd(w) = 0 and for d ≥ ` the occurrence is independent of
the preceding clump. Based on this formula, we can compute the covariance in Eq. (3.22)
for d > 0 by

Cov[Ỹi(w), Ỹi+d(w)] = µ̃(w) [1− ωd(w)]µ(w)− µ̃(w)2

= µ̃(w)$d(w)

with $d(w) := [1 − ωd(w)]µ(w) − µ̃(w). In case ωd(w) = ω(w), we obtain $d(w) = 0
and, thus, the covariance becomes 0. This occurs for large d since there no principal
period is large enough that the corresponding preceding positions overlap with the preceding
occurrence. We obtain for the variance
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3.3 Clumps for Single Words

V[Ñn(w)] = (n− `+ 1)
(
µ̃(w)− µ̃(w)2

)
+ 2µ̃(w)

n−`+1∑
i=1

n−`−i+1∑
d=1

$d(w).

Although this is a compact formula, many terms in the sums yield 0 or −µ̃2. Hence, we can
decompose the corresponding sums. Substituting ωd(w) = ω(w) for d > 2`−1 resepectively
ωd(w) = 0 for d < `, yields $d(w) = 0 respectively $d(w) = −µ̃(w) leading to

V[Ñn(w)] = (n− `+ 1)
[
µ̃(w)− µ̃(w)2

]
(3.25)

+2(n− 3`+ 1)µ̃(w)

[(
2`−1∑
d=`

$d(w)

)
− (`− 1)µ̃(w)

]

+2µ̃(w)

(
2`−1∑
k=`

k∑
d=`

$d(w)

)
− 3`(`− 1)µ̃(w)2.

The first line corresponds to the variances of Ỹi(w), the second line contains the covariances
for all i and j where i− j > 2`− 1. The third line summarizes the remaining covariances.
This equation is easier to analyze as the previous equation in terms of asymptotics. We
need this for the normal approximation (see Section 3.3.4).

Example 3.10. We compare the mean and the variance of the clumps of the words v =
’GCCAA’ and w = ’CGCGC’ in an i.i.d. sequence with equi-probable nucleotide distribution
of length n = 10000. The non self-overlapping word v has an empty set of periods. Hence,
neither the expected value nor the variance should change for clumps in comparison to word
occurrences. Indeed, E[Nn(v)] = E[Ñn(v)] = 9.8 and V[Nn(v)] = V[Ñn(v)] = 9.7. The
situation differs for the self-overlapping word w with principal period 2. Here, the expected
value for the number of clumps is E[Ñn(w)] = 9.2 where the expected number of occurrences
is E[Nn(w)] = 9.8. Since one clump contains one or more occurrences, the number of
clumps on the sequence has to be lower in average than the number of occurrences. This
is reflected by the lower expected value. The variance V[Ñn(w)] = 9.1 is also smaller than
V[Nn(w)] = 11.0 due to the missing self-overlap of the clump. It is also interesting to
compare the values for v and w. The expected number of clumps for w is smaller than for
v. The reason is that w has the same expected number of occurrences as v but occurs in
clumps. Thus, the number of clumps has to be smaller while for v the number of clumps is
equal to the number of occurrences.

Count Distribution

The count distribution of the number of clumps is derived similar to the exact count dis-
tribution of word occurrences. As for the variance calculation, the main differences are
the additional dependencies. Therefore, also this expression becomes more complex. We
consider the corresponding decomposition of Eq. (3.10) visualized in Fig. 3.1 for the occur-
rence of a clump. This means, we decompose the event of an occurrence of a clump instead
of a word. Thus, we substitute the probability µ(w) by µ̃(w). Let T̃m denote the position
of the mth clump. In the recurrence formula for Pµ(Tm = i) in Eq. (3.11), we have to
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substitute the word occurrences by the clump occurrences and consider the dependencies.
Thus, we obtain

Pµ(T̃m = i) = µ̃(w)−
m−1∑
k=1

Pµ(T̃k = i)−
i−∑̀
j=1

Pµ(T̃m = j)[1− ωi−j(w)]µ(w).

The formula for the number of counts is correspondingly:

Pµ(Ñn(w) = m) =
n−`+1∑

i=1

Pµ(T̃m(w) = i)−
n−`+1∑

i=1

Pµ(T̃m+1(w) = i).

Using this formula, we can recursively compute the probability for the number of clumps.
However, the drawbacks remain, which we already discussed for number of counts (especially
the computational inefficiency). Hence, one might want to use approximations which we
present in the following.

Example 3.11. Again, we consider the words v = ’GCCAA’ and w = ’CGCGC’ in an
i.i.d. sequence with equi-probable nucleotide distribution of length n = 10000. Figure 3.6
shows the exact count densities for occurrences and clumps. The upper panel contains the
densities for the number of occurrences. Both trajectories are very similar except that w
achieves a higher variance. In contrast, in the lower panel, the trajectory for the number of
clumps for w is shifted towards smaller numbers while the density for v does not change. In
fact, the reason is the same as given in Ex. 3.10: The clumps for the non self-overlapping
word v always contain exactly one occurrence. Thus, the number of clumps cannot differ
from the number of occurrences. However, the self-overlapping word w usually obtains
clumps with size > 1. Since the sequence still contains as many occurrences as the non
self-overlapping word, the number of clumps has to be smaller for w.

The shift of the distribution for w is also reflected in the p-values for the number of clumps.
The p-value to observe at least 29 hits of v is 2.8 · 10−07 while the the same number of
clumps for w yield a p-value of 7.7 · 10−08. Since the distribution for w is shifted towards
smaller number of clumps, one naturally obtains a better p-value than observing the same
number of clumps of v.

3.3.2 Position Independence

As for the number of word occurrences, a simple approach to compute the distribution
for the number of clumps assumes independence between positions. Correspondingly, the
number of clumps has a binomial distribution. The probability for an occurrence is µ̃(w).
However, one can also approximate this probability to avoid computing the set of principal
periods by

µ̃∗(w) := µ(w) [1− µ(w)]`−1 .

In the same line, we obtain a Poisson approximation P(ϑ) with parameter ϑ = (n−`+1)µ̃(w)
or ϑ∗ = (n − ` + 1)µ̃∗(w) depending on the level of accuracy. For the choice of ϑ, we can
compute Chen-Stein error bounds.
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Figure 3.6: Densities for number of occurrences (upper panel) and clumps (lower panel) for
the word ’GCCAA’ (circles) and ’CGCGC’ (crosses) in an i.i.d. sequence with equi-probable
nucleotide distribution and length 10, 000.

Chen-Stein Error Bounds Given the approximation of the distribution of the number of
clumps by a Poisson distribution P(ϑ) with ϑ = (n− `+ 1)µ̃(w), we can compute bounds
for the approximation error. Following Reinert et al. (2005) but simplifying to the i.i.d.
sequence model, we compute the total variation distance

dTV

(
L(Ñn(w)),L(P(ϑ))

)
.

where the bound components are defined below Eq. (3.3). First of all, we have to define the
index set I which contains all random variable indices {1, . . . , n−`+1}. The neighborhoods
with local dependencies are chosen to be the indices with dependent variables. We have
seen that the dependencies stretch over 2`−2 positions to the left. For simplicity, we define
the neighborhood symmetrically and obtain Bi := {i − 2` + 2, i − 2` + 3, . . . , i + 2` − 2}.
Again, we ignore boundary effects. Hence, the Ỹis are independent if they are not belonging
to their neighborhoods. Therefore, b3 = 0 so we can use the improved bound in Eq. (3.4)

dTV

(
L(Ñn(w)),L(P(ϑ))

)
≤ 1− e−ϑ

ϑ
(b1 + b2) .

The first bound b1 is similar to the word counting bound:

b1 =
∑
i∈I

∑
j∈Bi

E[Ỹi(w)]E[Ỹj(w)] = (n− `+ 1)4(`− 1)µ̃(w)2 ≤ (n− `+ 1)4(`− 1)µ(w)2.
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Note that this bound is similar to the result in Reinert and Schbath (1999) although derived
differently. For the second bound b2, we obtain slightly better bounds since we only consider
one word. Keeping in mind that the joint probability for overlapping clumps is 0, yields

b2 =
∑
i∈I

∑
j∈Bi\{i}

E[Ỹi(w)Ỹj(w)] = 2(n− `+ 1)
2`−2∑
d=`

µ̃(w)[1− ωd(w)]µ(w).

Analzying the asymptotics, we again assume the word occurs rarely. Thus, log n = O(`) and
µ(w) = O(n−1), thus, b1 is bounded by O(n−1 log n) similar to counting word occurrences.
However, b2 which could not be bounded efficiently for self-overlapping words improves for
clumps. Since 1 − ω(w) and 1 − ωd(w) are always between 0 and 1 and the sum involves
O(`) terms, we obtain the same bound as for b1: b2 = O(n−1 log n). Hence, for n→∞, the
approximation error vanishes also for self-overlapping words. Therefore, one might choose a
Poisson approximation for the clump counts instead of approximating the word occurrences
for self-overlapping words.

Example 3.12. Figure 3.7 compares the exact count distribution with the compound Pois-
son approximation for the words v = ’GCCAA’ and w = ’CGCGC’ in an i.i.d. sequence
with equi-probable nucleotide distribution of length n = 10000. First of all, in all panels,
the binomial and the Poisson approximations are very similar. Thus, we combine both for
the discussion. The upper left panel shows that the exact distribution is well approximated
by the binomial/Poisson distribution. However, the approaches considering the self-overlap
(lower panel) slightly improves the approximation. For the self-overlapping word ’CGCGC’
(right panels), the differences are significantly higher: The naive approximations (upper
right panel) over-estimate the number of clumps. This is not surprising since the naive
approach does not consider the overlap. Hence, it cannot adjust for larger clumps leading
to a smaller number of clumps to conserve the expected value. In contrast, the approach
considering self-overlap (lower right panel) yield accurate approximations for the number
of clumps.
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Figure 3.7: Densities for the number of clumps. Upper panel contains the naive binomial
(blue circles) and Poisson (red circles) approximations. The lower panel shows the binomial
(blue circles) and Poisson (red circles) approximations considering the self-overlap. The green
symbol indicates the exact distribution. The left panel contains the word ’GCCAA’ and the
right panel the word ’CGCGC’ in an i.i.d. sequence with equi-probable nucleotide distribution
and length 10, 000.
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3.3 Clumps for Single Words

GCCAA CGCGC
exact 2.8 · 10−07 7.7 · 10−08

binomial* 3.0 · 10−07 3.0 · 10−07

Poisson* 3 · 10−07 3 · 10−07

binomial 3.2 · 10−07 9 · 10−08

Poisson 3.2 · 10−07 9.2 · 10−08

Table 3.1: p-values to observe at least 29 hits for naive (indicated by a star) and standard
binomial/Poisson approximations.

The p-values to observe at least 29 hits are given in Table 3.1. The stars indicate the
approximations based on µ̃∗ for the binomial and ϑ∗ for the Poisson distribution. The p-
values for the non-overlapping word ’GCCAA’ are very accurate. Although the estimates
of the naive approximations are somewhat better, the differences are negligibly small. For
the word ’CGCGC’ only the approximations where the self-overlap is taken into account
achieve good results. The naive estimates are almost one magnitude of order too high.

3.3.3 Compound Poisson Approximation

Occurrences of self-overlapping words tend to aggregate in clumps. This explains why
the Poisson approximation for the number of occurrences does not converge to the true
distribution (see Chen-Stein error bounds in Section 3.2.2). One can solve the problem by
explicitly modelling the clumps using a compound Poisson distribution.

The compound Poisson distribution is the distribution of a random sum
∑V

i=1 Ui where
V is a Poisson random variable (for a detailled discussion of the compound Poisson dis-
tribution called Poisson-stopped-sum distributions, see Johnson et al., 1995, Chapter 9).
Furthermore, one assumes Ui to be independently and identically distributed. As we have
seen before this section, the number of clumps Ñn(w) can be approximated by a Pois-
son distribution. Denoting the clump size of clump i by Zi, we obtain for the number of
counts

Nn(w) =
Ñn(w)∑

i=1

Zi.

Thus, we only have to find the distribution of the clump size. A clump of size 1 occurs if no
successive occurrence overlaps with the first occurrence of the clump. The probability for
this event is 1 − ω(w). Hence, observing a clump of size 2 means that we first observe an
overlapping occurrence (probability ω(w)), which has no successive overlapping occurrence
(probability 1 − ω(w)). Thus, we obtain a geometric distribution for the clump size of w
denoted by Z(w):

Pµ(Z(w) = k) = [1− ω(w)]ω(w)k−1.
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Since Zi ∼ Z, we can now compute the compound Poisson distribution for the number
of occurrences N(w). In fact, the compound Poisson distribution consisting of a Poisson
random sum of geometrically distributed random variables is called Pólya-Aeppli distribu-
tion (Johnson et al., 1995, Chapter 9.7) first described by Pólya (1930). The probability to
observe no occurrence means that no clump is observed. The corresponding probability is
given by the Poisson probability Pµ(Ñn(w) = 0) = e−ϑ with ϑ = E[Ñn(w)] = (n−`+1)µ̃(w).
The probability for x occurrences is slightly more complicated since the number of clumps
x̃ is not given. However, x occurrences can be in 1 to x clumps. Depending on the number
of clumps, the number of different clump sizes differ. For example, if x occurrences are
contained in either 1 or x clumps, each clump has the same size. However, partitioning the
x occurrences into x̃ clumps, there are

(
x−1
x̃−1

)
different possibilities: Consider occurrences

denoted by X and a partitioning (bounds at ∧) into clumps like

X X X . . . X X X
∧ ∧

Labeling the occurrences by 1 to x, each bound corresponds to one of these numbers (if
we define that the bound occurs to the right of the corresponding occurrence). In the
above sketch, the first bound has number 2. Now, we can think of an urn containing all
numbers from 1 to x− 1 and we draw x̃− 1 bounds. We have to subtract 1 to ensure that
the last clump contains at least one hit. Therefore, we only draw x̃ − 1 bounds such that
the last clump contains occurrences from this bound till the last occurrence. The x − 1
balls in the urn ensure that there is at least one further occurrence after the last bound.
From combinatorics, it is clear that these are

(
x−1
x̃−1

)
possibilities. Combining the geometric

distribution incorporating the different possibilities with the Poisson distribution yields for
x > 0

Pµ(Nn(w) = x) =
x∑

x̃=1

(
x− 1
x̃− 1

)
ϑx̃e−ϑ

x̃!
[1− ω(w)]x̃ ω(w)x−x̃. (3.26)

The exponents for ω(w) respectively 1 − ω(w) reflect the number of required overlaps
resp. non-overlaps for all x̃ clumps. Using ω(w)x−x̃ = ω(w)xω(w)−x̃ and including the
definition for x = 0 yields as final expression for the Pólya-Aeppli distribution (for a different
derivation, see Johnson et al., 1995, Chapter 9.7)

Pµ(Nn(w) = x) =

{
e−ϑ : x = 0

e−ϑωx
∑x

x̃=1

(
x−1
x̃−1

) [ϑ(1−ω)ω−1]x̃
x̃! : x > 0

.

Note that this formula is only valid for words allowing self-overlap (ω(w) > 0). Otherwise,
one might use Eq. (3.26) or equivalently the Poisson approximation in Section 3.3.2.

Example 3.13. Figure 3.8 compares the exact count distribution with the compound Pois-
son approximation for the words v = ’GCCAA’ and w = ’CGCGC’ in an i.i.d. sequence
with equi-probable nucleotide distribution of length n = 10000. The upper panel contains
the densities for the number of occurrences, the cumulated distributions are shown in the
lower panel. In each panel, there is almost no difference between both trajectories. Thus, the
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3.3 Clumps for Single Words

compound Poisson approximation considering self-overlaps by explicit modelling of clump
(sizes) is a fairly good approximation in both cases. The number of clumps are not shown
since they are already discussed in Ex. 3.12.
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Figure 3.8: Densities (upper panel) and cumulated dsitributions (lower panel) for the number
of occurrences for the words ’GCCAA’ (circles) and ’CGCGC’ (crosses) in an i.i.d. sequence with
equi-probable nucleotide distribution and length 10, 000. Green indicates the exact calculation
while brown labels the compound Poisson approximation.

The p-value to observe at least 29 hits of v is 3.2 · 10−07 in comparison to the exact p-
value of 2.8 · 10−07. Also the approximation for the self-overlapping word is very accurate:
The compound Poisson distribution approximated the exact p-value of 1.9 · 10−06 by 2.1 ·
10−06. Thus, the compound Poisson distribution is a good choice for a fast and accurate
approximation of the number of occurrences.

Chen-Stein Error Bounds One can also compute Chen-Stein error bounds for the approx-
imation (Reinert and Schbath, 1998, 1999). First of all, one can show that the compound

Poisson distribution
∑Ñn(w)

i=1 Zi(w), which sums up the clump sizes Zi(w), is similar to a
compound Poisson distribution, which counts the number of clumps of size k (see Section
3.5.1 for a similar approach). Let Z̃k(w) denote the number of clumps of size k for word
w. Then, we obtain the approximated compound Poisson distribution

∑
k≥1 kZ̃k(w) where

Z̃k(w) are independent Poisson random variables. The parameter of these processes are the
expected value of the number of k-clumps. The probability µ̃k(w) to observe a clump of
size k is computed by the fact that the clump starts with probability [1 − ω(w)]µ(w), has
k − 1 overlapping occurrences with probability ω(w)k−1 and no subsequent overlap with
probability 1− ω(w). Hence, we obtain

µ̃k(w) := [1− ω(w)]2µ(w)ω(w)k−1. (3.27)
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Chapter 3 Word Count Statistics

Then, the expected value and, thus, the parameter of the independent Poisson process
Z̃k(w) is

ϑk := E[Z̃k(w)] = (n− `+ 1)µ̃k(w). (3.28)

With ϑ := µ̃(w), we can compute the probability for number of occurrences by (Kemp,
1967)

Pµ(Nn(w) = 0) = e−ϑ,

Pµ(Nn(w) = x+ 1) =
ϑ

x+ 1

x∑
x′=0

(x+ 1− x′)
ϑx+1−x′

ϑ
Pµ(Nn(w) = x′).

The calculation of the error bounds is complicated by many technical difficulties, thus,
we refer the reader to Reinert and Schbath (1999) and only report the main results. The
neighborhoods for the Chen-Stein bounds are defined such that all dependent random
variables are included. The bound b1 is easy to compute. However, the second moments for
b2 involves iterations over all possible concatenated (overlapping) words for each k-clump.
The probabilities are bounded by considering the set of words which precede and succeed
a k-clump.

The total variation distance between the number of occurrences Nn(w) and the compound
Poisson distribution CP is

dTV (L(Nn(w)), CP) ≤ (n− `+ 1)
[
2(`− 1)µ(w)µ̃(w) + (4`− 3)µ̃(w)2)

]
+4(n− `+ 1)µ(w)2(`− 1) + (`− 1)(µ(w)− µ̃(w)).

The error for the number Ñn(w) of clumps approximated by a Poisson distribution P(ϑ)
with ϑ = (n− `+ 1)µ̃(w) is bounded by

dTV

(
L(Ñn(w)),P(ϑ)

)
≤ (n− `+ 1)

[
2(`− 1)µ(w)µ̃(w) + (4`− 3)µ̃(w)2)

]
+4(n− `+ 1)µ(w)2(`− 1).

Asymptotically, we again use the rare word assumption leading to log n = O(`) and
µ(w) = O(n−1). The first line and the first term of the second line yield O(n log n · n−2) =
O(n−1 log n) converging to 0 for large n. The additional term for the compound Poisson
approximation involves `(µ(w) − µ̃(w)). Since 0 < µ̃(w) ≤ µ(w), it can be bound by
O(n−1 log n). Hence, both bounds are O(n−1 log n). Therefore, the approximation error
converges to 0 for large n.
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3.3 Clumps for Single Words

3.3.4 Normal Approximation

The normal approximation needs the expected value and the variance as parameters. Based
on the exact formulae (see Section 3.3.1), it is straight-forward to derive the asymptotic
distribution. To our knowledge, a normal approximation for the number of clumps has not
yet been published. As for the number of occurrences, we use the asymptotic expected
value and variance. The asymptotic expected value is

lim
n→∞

n−1E[Ñn(w)] = µ̃(w).

The asymptotic covariance can be derived from Eq. (3.25). In fact, the third line of Eq.
(3.25) vanishes since it is O(`). Hence, we obtain

σ̃2 := lim
n→∞

n−1V[Ñn(w)] = µ̃(w)

(
1− µ̃(w) + 2

(
2`−1∑
d=`

$d(w)

)
− 2(`− 1)µ̃(w)

)
. (3.29)

The number of counts n−1Ñn(w) is asymptotically normal distributed with mean µ̃(w) and
variance n−1σ̃2. For σ̃ 6= 0, we obtain the asymptotic distribution

√
n
(
n−1Ñn(w)− µ̃(w)

)
σ̃

∼ N (0, 1)

for long sequences and the assumption that the word occurs frequently.

Example 3.14. Figure 3.9 compares the exact count distribution for clumps with its lim-
iting normal approximation for the words v = ’GCCAA’ and w = ’CGCGC’ in an i.i.d.
sequence with equi-probable nucleotide distribution of length n = 10000. The upper panel
contains the densities for the number of occurrences. The limiting normal distribution does
not fit well to the exact distribution - neither for the word v nor for w. In Ex. 3.5, we
have seen that the normal approximation for the number of occurrences incorporates the
self-overlap but is nevertheless a weak approximation. The reason is that the words only
occur rarely. We can draw the same conclusion for the number of clumps since both ap-
proximations - for v and w - are equally weak.

The p-value to observe at least 29 hits of v respectively w is 6.4e−10 respectively 5e−11 in
comparison to the exact p-values of 2.8e− 07 and 7.7e− 08. Obviously, the limiting normal
approximation cannot be used for p-value approximation for rare words.
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Figure 3.9: Densities (upper panel) and distribution (lower panel) of the number of clumps
for the word ’GCCAA’ (circles) and ’CGCGC’ (crosses) in an i.i.d. sequence with equi-probable
nucleotide distribution and length 10, 000. Green indicates the exact calculation while light
blue labels the limiting normal approximation.

3.4 Multiple Words

DNA motifs are usually not described by only one word but a set W = {w(1), . . . , w(q)} of
q different words. Any occurrence of w ∈ W is considered to be an occurrence of the DNA
motif. Thus, the number of occurrences in a sequence of length n is given by

Nn(W) =
∑
w∈W

Nn(w).

Of course, the count random variables are not independent. Thus, we have to derive new
formulae to compute the count distribution. For simplicity, we assume the same length
for all words |w| = ` ∀w∈W . For DNA motifs modeled by PFMs this is always the case.
Furthermore, extension to different lengths is possible but heavily complicates notation and
formulae.

First, we derive formulae for the exact expected value and the variance. Calculation of the
corresponding count distribution is computationally very demanding. The main problem is
introduced by possible overlaps. The occurrence probability depends on a preceding over-
lapping hit. For set of words, one has to consider all possible predecessors. This makes the
classical recursive formula (Robin et al., 2005) for the exact distribution high-dimensional
(quadratic in the number of words). However, we present the conditional approach (Zhang
et al., 2007) since its extension to multiple words is straight-forward. The distribution can
also be derived from generating functions, which are presented - although only for single
words and clumps - in Chapter 4, or can be computed based on language decomposition
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3.4 Multiple Words

approaches (Régnier, 2000; Régnier and Denise, 2004) and probability arithmetic automata
(Marschall and Rahmann, 2008). Subsequently, we present the independence model based
on the binomial/Poisson distribution. We close with the asymptotic normal approximation
(Bender and Kochman, 1993; Waterman, 2000).

3.4.1 Exact Count Distribution

First and Second Moments

The expected value of the sum of random count variables is straight-forward since depen-
dencies do not matter. The expected value is the sum of the individual expected values,
yielding

E[Nn(W)] = (n− `+ 1)
∑
w∈W

µ(w).

As always, calculation of the variance is more complicated due to the dependencies. First,
we decompose the variance into the co-/variances of the words:

V[Nn(W)] =
∑
w∈W

∑
v∈W

Cov[Nn(w), Nn(v)]. (3.30)

The variances Cov[Nn(w), Nn(w)] are already known from Eq. (3.8). The covariances be-
tween different words are computed similarily: First, we extend the definition of the overlap
bit for two words for 0 ≤ d < ` to

εd(w, v) :=
{

1 if ∀0<κ≤`−d wκ+d = vκ

0 otherwise
(3.31)

Again, we set εd(w, v) = 1 for d ≥ `. As we show in the subsequent example, the overlap bit
is not necessarily symmetric. An exception is, of course, the self overlap εd(w) = εd(w,w).

Example 3.15. The overlap bit vector εd(w, v) for the word w = ’ACA’ and v = ’CAA’ is
given by

d A C A εd(w, v)
0 C A A 0
1 C A A 1
2 C A A 0

In contrast, the overlap bit εd(v, w) is

d C A A εd(v, w)
0 A C A 0
1 A C A 0
2 A C A 1
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Chapter 3 Word Count Statistics

Based on the overlap bit vector, we can now define the overlap probability for w and v by

γd(w, v) := Pµ(Yi(w) = 1, Yi+d(v) = 1) = µ(w)εd(w, v)
∏̀

κ=`−d+1

µ(vκ). (3.32)

Also γd(w, v) are not necessarily symmetric.

Now, we can start decomposing the covariance into its indicator random variables. Since
the words are assumed to be different but of equal length, we cannot have an occurrence of
w and v at the same position. Otherwise, w could be a prefix or suffix of v. Furthermore,
non-overlapping occurrences are independent. Thus, we obtain for w 6= v

Cov[Nn(w), Nn(v)] =
n−`+1∑

i=1

n−`+1∑
j=1

Cov[Yi(w), Yj(v)] (3.33)

= −(n− `+ 1)µ(w)µ(v)

+
`−1∑
d=1

(n− `− d+ 1)[γd(w, v) + γd(v, w)− 2µ(w)µ(v)].

Conditional Approach

The conditional approach (Zhang et al., 2007) for single words presented in Section 3.2.1
can be extended to deal with multiple words. The main difference is that one has to consider
all possible prefixes of the words in W. Only some of the definitions change slightly. For
the probability of at least k occurrences of W in a sequence of length n− i+1, we obtain

F
(k)
i (W) := Pµ(Nn−i+1(W) ≥ k) =

∑
a∈A

f
(k)
i,a (W)µ(a),

with f
(k)
i,v (W) = Pµ(Nn−i+1(W) ≥ k|X1 . . . X|v| = v) for v ∈ A+. For the main recursion,

one obtains

f
(k)
i,v (W) =

{ ∑
a∈A f

(k−1)
i,va (W)µ(a) if va ∈ W∑

a∈A f
(k)
i,va(W)µ(a) otherwise

.

The remaining formulae have to be changed accordingly.
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3.4 Multiple Words

3.4.2 Position Independence

The calculation of the dependencies between the random indicators can be circumvented
by assuming position independence. In this case, we retrieve a fairly easy formula for the
count distribution. Since the words in W are assumed to be different, we can construct a
random indicator for set of words by

Yi(W) :=
∑
w∈W

Yi(w).

Due to the assumed independencies between the occurrences, we can directly compute the
probability for Yi(W):

µ(W) := Pµ(W) =
∑
w∈W

µ(w).

Then, we can use the binomial distribution and obtain

Pµ(Nn(W) = m) =
(
n− `+ 1

m

)
µ(W)m(1− µ(W))n−`−m+1.

Furthermore, we can apply a Poisson approximation with parameter ϑ = (n− `+ 1)µ(W).
Although it is already clear that the approximation cannot work for self-overlapping words
(see Section 3.2.2), we derive the bounds since they cannot be found in the literature.

Chen-Stein Error Bound The Chen-Stein error bounds can be derived using a similar
neighborhood as for the single word case. Instead of using a single index, we define a
tuple (i, w) containing the position i and the word w ∈ W. The index set is defined by
I := {1, . . . , n − ` + 1} ×W. The neighborhood for (i, w) contains the tuples with indices
for overlapping occurrences for all words B(i,w) := {i−`+1, i−`+2, . . . , i+`−1}×W ⊂ I.
We bound the total variation distance by

dTV (L(Nn(W),P(ϑ)) ≤ 1− e−ϑ

ϑ
(b1 + b2).

The bound b1 contains the product of the first moments for all the neighborhoods

b1 =
∑

(i,w)∈I

∑
(j,v)∈B(i,w)

E[Yi(w)]E[Yj(v)] =
n−`+1∑

i=1

∑
w∈W

`−1∑
d=−`+1

∑
v∈W

µ(w)µ(v)

=
n−`+1∑

i=1

∑
w∈W

(2`− 1)µ(w)µ(W) = (n− `+ 1)(2`− 1)µ(W)2.

We sum over all tuples and for each tuple we consider the neighborhood comprising the
overlapping positions to the left and to the right for all words. Using µ(W) =

∑
w∈W µ(w)
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and counting the sum iterations yields above result. The second bound b2 involves second
moments which become 0 if i = j and w 6= v leading to

b2 =
∑

(i,w)∈I

∑
(j,v)∈B(i,w)\{(i,w)}

E[Yi(w)Yj(v)]

=
n−`+1∑

i=1

∑
w∈W

∑
v∈W

`−1∑
d=1

(γd(w, v) + γd(v, w))

where γd(w, v) denotes the probability for the joint occurrence of w followed by v in a
distance of d.

Under the rare word assumption (log n = O(`) and µ(W) = O(n−1)), we can bound b1 and
b2. For b1, we obtain b1 = O(n−1 log n). Considering b2, we have to bound the probabil-
ity for joint occurrences γd(w, v). Without any assumptions about the (self-)overlapping
structure of the words, one obtains γd(w, v) = O(n−1). Thus, we obtain b2 = O(`). Hence,
the approximation error does not necessarily converge to zero. However, if all the words
are neither self-overlapping nor overlap with any other word in W, the joint probabilities
become 0. In this case, the error of the approximation vanishes.

3.4.3 Normal Approximation

The asymptotic normal distribution can also be computed for multiple words (Bender and
Kochman, 1993). The first derivation of the multi-dimensional normal approximation was
derived based on the δ-method (Lundstrom, 1990) which is described in Waterman (2000).
Subsequently, explicit formulae for the asymptotic covariance matrix were published (Prum
et al., 1995; Schbath et al., 1995) as well as formulae for the general Markov case (Reinert
and Schbath, 1998).

In Section 3.4.1, the formulae for the exact mean and variance are derived. Based on them,
we compute the asymptotic mean and variance. Again, the asymptotic mean is easy to
compute:

lim
n→∞

n−1E[Nn(W)] = lim
n→∞

n−1
n−`+1∑

i=1

∑
w∈W

E[Yi(w)] = µ(W).

Thus, the asymptotic mean of the sum of the occurrences of a set of words W is the sum
of the asymptotic means of the words. Furthermore, the asymptotic mean of the words is
the probability of an occurrence at one position.

The variance can be decomposed into the pair-wise co-variances similar to Eq. (3.30)

lim
n→∞

n−1V(Nn(W)) = lim
n→∞

n−1
∑
w∈W

∑
v∈W

Cov[Nn(w), Nn(v)].
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Hence, we have to compute the asymptotic covariance based on Eq. (3.33). However, we
do not assume v 6= w here, thus, we add the second moment E[Yi(w)Yi(v)] = µ(w) if w = v
and otherwise 0 by multiplying with ε0(w, v) which is 1 if w = v and otherwise 0. We
obtain

σ2
v,w := lim

n→∞
n−1 Cov[Nn(w), Nn(v)]

= ε0(v, w)µ(w)− µ(w)µ(v) +
`−1∑
d=1

[γd(w, v) + γd(v, w)− 2µ(w)µ(v)]

= µ(w)µ(v)− ε0(v, w)µ(w) +
`−1∑
d=0

[γd(w, v) + γd(v, w)− 2µ(w)µ(v)]

= G(w, v) +G(v, w)− 2`µ(w)µ(v)− µ(w) [ε0(w, v)− µ(v)] .

First, we incorporate the first terms into the sum by changing the index from d = 1 to
d = 0. However, the sum contains γd twice, thus, we have to subtract µ(w) if w = v.
Furthermore, the sum also contains −µ(w)µ(v) twice, hence, we add this, again. Finally,
we substitute the sum over γd by G(w, v) =

∑`−1
d=0 γd(w, v).

In fact, the number of counts of words Nn := (Nn(w(1)), Nn(w(2)), . . . , Nn(w(q))) is a multi-
dimensional normal distribution. Let the asymptotic expected values be

µ := (E[Yi(w(1))],E[Yi(w(2))], . . . ,E[Yi(w(q))]) (3.34)

and the asymptotic covariance matrix denoted by

Σ := (σ2
v,w)v,w∈W . (3.35)

Then, the count vector n−1Nn is asymptotically normal with mean µ and covariance matrix
n−1Σ. Furthermore, if det(Σ) 6= 0, we obtain the multi-dimensional standard normal
distribution by

√
nΣ−1/2

(
n−1Nn − µ

)
∼ N (0,1)

were 0 is a q-dimensional vector filled with 0s and 1 is a q× q matrix with diagonal entries
1 and otherwise 0. This approximation assumes long sequences and that the word occurs
frequently.

Finally, the summed number of occurrences is retrieved by multiplying a q-dimensional
column vector t = (1, 1, . . . , 1)T from the right to the count vector Nn. This yields Nnt ∼
N (µt, n−1tT Σt) leading to n−1Nn(W) ∼ N (µ(W), n−1σ2) with σ2 :=

∑
w∈W

∑
v∈W σ2

w,v.
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3.5 Clumps for Sets of Words

For a set of words, we can differentiate between two different types of clumps. Homogeneous
clumps are overlapping occurrences of the same word. Two homogeneous clumps of the
same word cannot overlap. In contrast, two homogeneous clumps of two different words
might overlap. The second type of clump is called heterogeneous since it can contain any
combination (including multiplicities) of words of the set. By definition, heterogeneous
clumps cannot overlap.

Example 3.16. The set of words is given by W = {’GCCAA’, ’CGCGC’}. The sequence
’ACGCGCGCCAAT’ contains one homogeneous clump of the word ’CGCGC’ of size 2
starting at position 2. Furthermore, there is one homogeneous clump for ’GCCAA’ of size
1 starting at position 7. However, if we consider heterogeneous clumps, the whole sequence
only contains one clump of size 3 starting at position 2 and ending at position 11.

In Section 3.3 about clumps for single words, we can only consider homogeneous clumps.
There, the random indicator for a clump of a single word w is defined by Ỹi(w) :=
Yi(w)

∏`−1
d=1 Yi−d(w). This definition can be adopted for homogeneous clumps in the frame-

work of multiple words. However, definition of heterogeneous clumps of a set of words W
is slightly more complicated. Under the assumption that words have equal lengths, we
obtain

Y̆i(W) :=

(∑
w∈W

Yi(w)

)
`−1∏
d=1

(
1−

∑
w∈W

Yi−d(w)

)
. (3.36)

The definition ensures that no predecessor of any word in W overlaps with the initial
occurrence at position i of a word in W starting the clump. Note that usually Y̆i(W) 6=∑

w∈W Ỹi(w). The number of counts of homogeneous clumps is Ñn(W) :=
∑

w∈W Ñn(w)
which is also usually different from the number of heterogeneous clumps given by N̆n(W) :=∑n−`+1

i=1 Y̆i(W).

The first part considers homogeneous clumps. After deriving the first two moments, we
present the independence approach with Chen-Stein error bounds. Then, we describe the
more elaborate compound Poisson approximation (Reinert and Schbath, 1999). However,
this approach is not capable of considering overlaps between clumps of different words.
Finally, we derive a normal approximation for homogeneous clumps. The second part
considers heterogeneous clumps - consisting of one or more different or equal words. After
deriving the formula for the expected value, we present the important compound Poisson
approach (Roquain and Schbath, 2007) to compute occurrences and clumps by considering
all possible overlaps.

3.5.1 Homogeneous Clumps

Expected Value and Variance

For homogeneous clumps, the calculation of the expected value is the sum of the expected
value of the single word case. One obtains
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E[Ñn(W)] =
∑
w∈W

E[Ñn(w)] = (n− `+ 1)
∑
w∈W

µ̃(w).

The variance can be decomposed into the covariances of the random indicators by

V[Ñn(W)] =
∑
w∈W

∑
v∈W

Cov[Ñn(w), Ñn(v)] (3.37)

=
∑
w∈W

∑
v∈W

n−`+1∑
i=1

n−`+1∑
j=1

Cov[Ỹi(w), Ỹj(v)]

=
∑
w∈W

∑
v∈W

n−`+1∑
i=1

Cov[Ỹi(w), Ỹi(v)]

+
∑
w∈W

∑
v∈W

n−`−i+1∑
d=1

[
Cov[Ỹi(w), Ỹi+d(v)] + Cov[Ỹi(v), Ỹi+d(w)]

]
.

From the second to the last line, we change the index j to distance d from position i. Fur-
thermore, we separate the covariances, which have distance 0. These are easy to compute.
For w = v, we obtain µ̃(w) − µ̃(w)2 and for w 6= v the covariance yields −µ̃(w)µ̃(v) since
two clumps of different words cannot start at the same position. The remaining covari-
ance terms can be computed by considering the overlap probabilities. For clumps of single
words, we introduced the self-overlap probability ωd(w) in Eq. (3.23). For computation
of the covariance between two different words, we have to extend the definition such that
the preceding clump can be based on a different word. Applying the same reasoning, we
obtain

ωd(w|v) := Pµ(Ỹi+d(w) = 0|Yi+d(w) = 1, Ỹi(v) = 1)

=
∑

η∈Υ′(w)

εd−η(v, w)
η∏

κ=1+max(η−d+`,0)

µ(wκ).

The only modification is that the d − η has to be a valid overlap between v followed by
w. The joint probability of a clump of words v at position i and a clump of words w at
position i+ d is analogous to Eq. (3.24)

Pµ(Ỹi+d(w) = 1, Ỹi(v) = 1) = (1− ωd(w|v))µ(w)µ̃(v).

Note that the joint probability is not symmetric in terms of the order of the clump of w
and v. The covariance term is the joint probability minus the product of the single event
probabilities. Defining $d(w|v) := [1− ωd(w)]µ(w)− µ̃(w) yields

Cov[Ỹi(v), Ỹi+d(w)] = µ̃(v)$d(w|v).
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Substituting these terms into Eq. (3.37) for the variance finalizes the calculation. Further-
more, we present the formula for pair-wise covariance of the number of clumps which we
need for the normal approximation. Starting point is the corresponding Eq. (3.25) for the
number of counts. We separate the covariance terms such that it is easier to compute the
asymptotic covariance (see Section 3.5.1)

Cov[Ñn(w), Ñn(v)] = (n− `+ 1) [ε0(w, v)µ̃(w)− µ̃(w)µ̃(v)] (3.38)

+(n− 3`+ 1)

(
2`−1∑
d=`

µ̃(w)$d(v|w) + µ̃(v)$d(w|v)

)
−2(n− 3`+ 1)(`− 1)µ̃(w)µ̃(v)

+

(
2`−1∑
k=`

k∑
d=`

µ̃(w)$d(v|w) + µ̃(v)$d(w|v)

)
− 3`(`− 1)µ̃(w)µ̃(v).

Position Independence

Under the assumption that occurrences are independent of each other, a simple approxi-
mation is obtained. With

µ̃∗(W) :=
∑
w∈W

µ̃∗(w)

one can approximate the expected value of the number of homogeneous clumps. However,
the approximation is only reasonable for very weakly (self-) overlapping sets of words W.
Besides the binomial approximation with µ̃∗(W) as success probability and n− `+1 trials,
we obtain a Poisson approximation with parameter ϑ∗ = (n− `+ 1)µ̃∗(W). A more severe
Poisson approximation is based on the expected value such that we obtain the parameter
ϑ = µ̃(W).

Chen-Stein Error Bounds The Chen-Stein error bounds for a Poisson P(ϑ) approxmia-
tion for the number of homogeneous clumps of a set of words W is given in Reinert and
Schbath (1998, 1999). Since the cited approaches also bound the approximation error for
a compound Poisson approximation (see next section), they are more complicated than
needed. Therefore, we derive the bounds explicitly. As usually, the total variation distance
is given by

dTV

(
L(Ñn(W),P(ϑ)

)
≤ 1− e−ϑ

ϑ
(b1 + b2).

The Chen-Stein bounds are derived by combining the bounds for clumps of single words and
the multiple word occurrences case. The index set is defined by I := {1, . . . , n− `+1}×W.
To capture all dependencies in the neighborhoods, we have to include all 2` − 2 positions
to the left. Again, we define them symmetrically by B(i,w) := {i− 2`+ 2, i− 2`+ 3, . . . , i+
2`− 2} ×W. We obtain the bound b1
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b1 =
∑

(i,w)∈I

∑
(j,v)∈B(i,w)

E[Ỹi(w)]E[Ỹj(v)] =
n−`+1∑

i=1

∑
w∈W

2`−2∑
d=−2`+2

∑
v∈W

µ̃(w)µ̃(v)

= 4(n− `+ 1)(`− 1)µ̃(W)2.

The second bound is slightly more complicated to compute. On the one hand, two clumps
of the same word cannot overlap. However, they can depend on each up to a distance of
d = 2` − 2. On the other hand, two clumps of different words can overlap, thus, we have
to consider the overlap probabilities. For distances d ≥ `, they are independent. First, we
separate these three cases and obtain

b2 =
∑

(i,w)∈I

∑
(j,v)∈B(i,w)\{(i,w)}

E[Ỹi(w)Ỹj(v)] =
n−`+1∑

i=1

∑
w∈W

∑
v∈W

2`−2∑
d=−2`+2

E[Ỹi(w)Ỹi+d(v)]

= b21 + b22 + b23

with

b21 := 2
n−`+1∑

i=1

∑
w∈W

2`−2∑
d=`

[µ̃(w) (1− ωd(w))µ(w)] ,

b22 :=
n−`+1∑

i=1

∑
w∈W

∑
v∈W\{w}

`−1∑
d=1

(
E[Ỹi(w)Ỹi+d(v)] + E[Ỹi(v)Ỹi+d(w)]

)
,

b23 := 2
n−`+1∑

i=1

∑
w∈W

∑
v∈W\{w}

2`−2∑
d=`

µ̃(w)µ̃(v).

Now, we can simplify the expressions. For b21, we can use µ̃(w) ≤ µ(w) and 0 ≤ ωd(w) < 1
to obtain

b21 ≤ 2(n− `+ 1)(`− 2)µ(W)2.

The bound b22 still contains the second moments. Since we can bound the probability for
a clump by the probability for an occurrence, we obtain the inequality E[Ỹi(w)Ỹi+d(v)] ≤
γd(w, v) ≤ µ(w). Hence, b22 can be bounded by

b22 ≤ 4(n− `+ 1)(`− 1)(q − 1)µ(W).

Finally, b23 is easy to calculate and yields b23 ≤ 2(n− `+ 1)(`− 2)µ2(W).

Under the rare word assumption, the asymptotics for b1 are similar to the multiple word
case b1 = O(n−1 log n). We reassemble the bound b2 by its parts. b21 yields O(n−1 log n),
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b22 = O(log n) and b23 = O(n−1 log n). Hence, we can sum up the asymptotics to b2 =
O(log n + n−1 log n). As we have already seen, the second term converges to 0. However,
the first term grows with O(log n), thus, the approximation does not converge to 0 but
tends to +∞. In contrast, if we assume that the words in W do not overlap with each
other, we attain an improved bound b22 = 0 and, thus, an overall error of O(n−1 log n)
which converges to 0.

In summary, the Poisson approximation for the number of clumps only works for a limited
number of words, which are not allowed to overlap. For overlapping words, the error does
not converge to 0. The reason is that we do not model the overlap structure between words
accurately. Hence, one might use a compound Poisson approximation, which considers
these dependencies.

Compound Poisson Approximation

The main result for a compound Poisson approximation is published in Reinert and Schbath
(1998) for the general Markov case (for an overview, see Reinert et al., 2000, 2005). The
special case of an independent sequence model substantially simplifies the formulae (Reinert
and Schbath, 1999). After presenting the approach of the independent seequence model, we
will see that two problems emerge. Therefore, we describe an improved approach circum-
venting these problems (Roquain and Schbath, 2007) by considering heterogeneous clumps
(see Section 3.5.2).

Classical Approach The classical approach is similar to the compound Poisson distribution
for a single word (see Section 3.3.3) based on the probability for clumps of size k. First, we
define the set of periods for two words using the overlap bit εd(w, v)

Υ(w, v) := {η ∈ {1, . . . , `− 1} : εη(w, v) = 1} (3.39)

Hence, the set of periods Υ(w, v) contains the possible overlaps of v occuring after w. The
proof also requires an assumption

A1 ∀w 6=v v is not a substring of any homogeneous 2-clump of w.

This assumption ensures that any word v can only partly overlap any clump of any word
w. Otherwise, v could occur within a clump. Thus, observing such a clump would auto-
matically imply an occurrence of v. Such strong dependencies are excluded by assumption
A1.

Example 3.17. The two words v = ’CACA’ and v = ’ACAC’ do not fulfil assumption
A1 since the 2-clump ’CACACA’ contains a complete occurrence of v starting at position
2.
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3.5 Clumps for Sets of Words

To state the bound for the compound Poisson approximation, we have to introduce some
notation:

M(w, v) := 1(w 6= v)
∑

η∈Υ(w,v)

1
µ(v1, . . . , v`−η)

,

R(w, v) := (n− `+ 1) [(`− 1)(µ(w)µ̃(v) + µ̃(w)µ(v)) + (4`− 3)µ̃(w)µ̃(v)] ,
T (w, v) := (n− `+ 1)µ(w)µ(v) [4(`− 1) +M(w, v) +M(v, w)] .

We consider the compound Poisson random variable
∑

k≥1 k
∑

w∈W Z̃k(w) where Z̃k(w)
denotes the number of k-clumps of word w, see Eq. (3.28), and has the expected value

E[Z̃k(w)] = (n− `+ 1)µ̃k(w).

Hence, we want to bound the total variation distance between the number of all counts∑
w∈W Nn(w) and the corresponding compound Poisson process CP as described above.

The proof (Reinert and Schbath, 1999) is similar to the one-dimensional case. In fact,
one computes the second moments by considering each k-clump with any possible words
occuring just before and after the clump. Distinguishing the two cases that a k-clump of a
word w does respectively does not overlap with a k′-clump of a word v, yields the bounds

dTV

(
L

(∑
w∈W

Nn(w)

)
, CP

)
≤

∑
v,w∈W

[R(w, v) + T (w, v)] + 2
∑
w∈W

(`− 1) [µ(w)− µ̃(w)] .

Next, we compute the asymptotics for constant number of words. The bound for R(w, v) is
O(n−1 log n), for T (w, v) one obtains O(n−1 log n)+O(

∑
w 6=v n

−1(M(w, v)+M(v, w))), and
for the last term O(n−1 log n). Obviously, the total variation distance is strongly influenced
by M(w, v)+M(v, w) catching the between-word overlapping structure. The more overlaps
are possible, the bigger they become. If the words do not overlap, the set of periods is empty,
thus, M(w, v) = M(v, w) = 0. Therefore, the total variation distance converges to 0 for
non-overlapping words but does not necessarily do so for overlapping words.

Normal Approximation

Based on the exact variance, we can derive a normal approximation for frequent words in
long sequences. In vector notation, we define the asymptotic expected value by

µ̃ := lim
n→∞

n−1E[(Ñn(w(1), . . . , Ñn(w(q))] = (µ̃(w(1)), . . . , µ̃(w(q))). (3.40)

The variance given in Eq. (3.38) asymptotically becomes
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σ2
v,w := lim

n→∞
n−1 Cov[Ñn(w), Ñn(v)]

=

(
2`−1∑
k=`

k∑
d=`

µ̃(w)$d(v|w) + µ̃(v)$d(w|v)

)
+µ̃(w) [ε0(w, v) + µ̃(v)]− 2`µ̃(w)µ̃(v).

The number of counts of homogeneous clumps Ñn := (Ñn(w(1)), . . . , Ñn(w(q))) is a multi-
dimensional normal distribution. Let the asymptotic covariance matrix be

Σ := (σ2
v,w)v,w∈W .

Then, the count vector n−1Ñn is asymptotically normal with mean µ̃ and covariance matrix
n−1Σ. For det(Σ) 6= 0, we obtain the multi-dimensional standard normal distribution by

√
nΣ−1/2

(
n−1Ñn − µ̃

)
∼ N (0,1).

Similar to the other normal approximations, we can transform the count vector to be χ2 dis-
tributed. Also, the summed number of clumps is obtained by multiplying the q-dimensional
column vector t = (1, 1, . . . , 1)T from the right to the count vector Ñn yielding n−1Ñnt ∼
N (µ̃t, n−1tT Σt). Hence, Ñn(W) ∼ N (µ̃(W), n−1σ2) with σ2 :=

∑
w∈W

∑
v∈W σ2

w,v.

3.5.2 Heterogeneous Clumps

Calculation of moments for heterogeneous clumps is much more complicated due to more
dependencies. Therefore, we only show how to compute the expected value such that the
additional dependencies become obvious. In a second step, we present a compound Poisson
approximation (Roquain and Schbath, 2007).

First Moment

Before we can state the expected value of the number of heterogeneous clumps, we have
to compute the probability µ̆(W) of an occurrence of a heterogeneous clump. In contrast
to homogeneous clumps, heterogeneous clumps start if any of the words W occurs without
any overlapping occurrence of any word in W (see Eq. (3.36)). For homogeneous clumps,
the preceding occurrences are disjoint since two principial roots of the same word can never
occur at the same time (Schbath et al., 1995). Thus, we obtain the self-overlap probability
ω(w) by summing over all principal roots (see Eq. (3.18)). For heterogeneous clumps, this
is not possible since the preceding occurrences are not necessarily disjoint. Consider the
following example:
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Example 3.18. Given the set of words W = {’AAC’, ’ACA’, ’CAA’}, a clump at position
i can start by an occurrence of any of the words which does not overlap with any preceding
occurrence of W. A clump starting with ’CAA’ does not allow a preceding ’AA’ as this
would be an overlapping occurrence of ’AAC’ at position i− 2. Furthermore, an occurrence
of ’ACA’ would be implied at position i− 1.

The problem can be solved by computing the principal periods between two words (Chrys-
saphinou et al., 2001; Roquain and Schbath, 2007) with respect to W:

Υ′
W(w, v) :=

{
Υ′(w) if w = v,
{η ∈ Υ(w, v) : ∀u∈W∀j∈Υ(w,u)η − j /∈ Υ(u, v)} otherwise.

(3.41)

Thus, the set of prinicipal periods contains the possible overlaps of w followed by v such that
there is no occurrence of W inbetween. Hence, the principal periods are disjoint among W.
Therefore, we can use them similarily to the principal periods of one word. However, the
multi dimensionality yields a matrix Ω with entries ωw,v for the possible overlaps between
w and a subsequent v. We define ωw,v by

ωw,v :=
∑

η∈Υ′(w,v)

η∏
κ=1

µ(vκ). (3.42)

and retrieve as overlap matrix Ω = (ωw,v)w,v∈W . The probability µ̆k(W) to observe a k-
clump means that one observes an occurrence without any previous overlapping occurrence
(which is 1 − Ω with 1 being the identity matrix of dimension q × q), k − 1 overlapping
occurrences (Ωk−1) and, finally, no further overlapping occurrence (1− Ω). With µ(W) =
(µ(w))w∈W , this yields

µ̆k(W) = ‖Ωk−1(1− Ω)2µ(W)‖1 (3.43)

where ‖ · ‖1 denotes the 1-norm defined by ‖z‖1 :=
∑d

i=1 |zi| for all z ∈ Rd.

Hence, we obtain for the expected value of the number of counts of heterogeneous clumps
E[N̆n(W)] = (n − ` + 1)

∑
k≥1 kµ̆k(W). Note that Reinert et al. (2005, Section 1.6.2)

also report the expected value of the number of heterogeneous (mixed) clumps based on
Chryssaphinou et al. (2001). Erroneously, the stated formula calculates the expected value
of the number of renewal counts and not of heterogeneous clumps. However, both counts are
asymptotically similar (Chryssaphinou et al., 2001). Renewal counts which are related to
heterogeneous clumps, are described extensively in literature (Breen et al., 1985; Biggins and
Cannings, 1987; Chryssaphinou and Papastavridis, 1988; Tanushev and Arratia, 1997).
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Compound Poisson Approximation

The compound Poisson approach considering homogeneous clumps (see Section 3.5.1) suf-
fers from two major drawbacks: First, the assumption A1 about the overlapping structure
of the set of words might not always be fulfilled. Second, the bound for the approximation
does not converge to zero for strongly overlapping words. The reason for the second disad-
vantage is that the overlaps between different words are not considered in the compound
Poisson approximation. In contrast, dealing with heterogeneous clumps incorporates such
dependencies. Based on this idea, a recently published approach solves these problems
(Roquain and Schbath, 2007) which is presented in the following.

In Eq. (3.43), the probability µ̆k(W) for the occurrence of a heterogeneous k-clump is stated.
Denoting the number of heterogeneous k-clumps by Z̆k(W) yields as expected value

E[Z̆k(W)] = (n− `+ 1)µ̆k(W).

Based on this expected value, one can define a compound Poisson distribution CP similar to
the homogeneous case by

∑
k≥1 kZ̆k(W). The total variation distance for the i.i.d. sequence

model can be bounded by

dTV (L(Nn(W)), CP) ≤ 18(n− `+ 1)`µ(W)2 + 2`µ(W), (3.44)

which slightly improves the bound for the Markov case in Roquain and Schbath (2007).
The bound is proven by using Chen-Stein with an index set for random indicator variables
for each position and for each k-clump. Iterating over the possible words which are a
k-clumps yields above bounds (for the proof, see Roquain and Schbath, 2007). For the
number N̆n(W) of clumps, one obtains the bound

dTV

(
L(N̆n(W)),P

)
≤ 18(n− `+ 1)`µ(W)2

where P denotes the Poisson distribution for
∑

k≥1 Z̆k(W). Under the rare word condition,
both bounds have the same asymptotic behaviour since both summands in Eq. (3.44)
yield O(n−1 log n). Hence, the approximation error converges to 0 independent of the (self)
overlap of the words.
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Generating Functions

Generating functions can be used to represent an infinite sequence of numbers in a closed
form. Since discrete probability distributions on N may be infinite, they are often presented
as generating functions, as well as recursive formulae. As we have seen in the previous chap-
ter, the exact formula for the count distribution is a complicated recursive formula. Here,
we derive generating functions for the number of counts of words and clumps, which are
easier to understand and to manipulate. After summarizing basic properties and transfor-
mations of generating functions, we focus on single words. After deriving the formulae for
the absence probability based on the waiting time of the first occurrence, we can compute
the count probability distribution (Goulden and Jackson, 1983; Fudos et al., 1996; Koutras,
1997; Régnier and Szpankowski, 1998; Robin and Daudin, 1999; Noonan and Zeilberger,
1999; Rahmann, 2000). For word counts, our exposition is based on Rahmann (2000). Fi-
nally, we consider clumps following the presentation in Stefanov et al. (2007). Derivation
of generating functions for set of words is more complicated since the order of word occur-
rences matter. Hence, we don’t cover this and refer to Robin and Daudin (2001); Bassino
et al. (2007).

4.1 Preliminaries

A generating function is a formal power series (Niven, 1969). It is used to represent finite
and infinite sequences. Let g = 〈gn〉 = 〈g0, g1, g2, . . .〉 for n ≥ 0 denote an infinite sequence,
one can encode the elements of the sequence gn as coefficients of a polynomial using a
’dummy’ variable z:

g(z) =
∑
n≥0

gnz
n.

The coefficient gn of g(z) is also denoted by [zn]g(z). There are two different views to look
at generating functions. On the one hand, g(z) can be seen as a function of a complex
variable z. Then, convergence of g(z) becomes an issue. On the other hand, one can focus
on the sequence represented by the formal power series (Graham et al., 1994, Chapter 7).
In this case, one can manipulate g(z) without considering convergence. See Wilf (1994) for
a detailled exposition of both views.

To derive the count distribution, we only need a few basic closed forms and manipulations.
For the sequence g = 〈1, 1, 1, . . .〉, one obtains the closed formula 1/(1− z) since
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(1− z) ·
∑
n≥0

zn = 1 + z + z2 + z3 + . . .

−z − z2 − z3 − . . .

= 1.

A basic manipulation is to shift a sequence 〈g0, g1, . . .〉 by k positions to the right and filling
the k left most positions with zeros: 〈0, 0, . . . , 0, g0, g1, . . .〉. The respective power series
operation is multiplication by zk. Thus, we obtain

g(z) · zk =
∑
n≥k

gn−kz
n.

Furthermore, it is obvious to see that for two generating functions g(z) and f(z) we obtain
for the sum g(z) + f(z) the sum of the coefficients 〈gn + fn〉.

The final operation we need is the convolution h(z) = g(z)f(z). Calculating the product
of both sums and ordering the result by the powers of z, we obtain hn =

∑n
k=0 gn−kfk. A

special case occurs if f(z) = 1/(1 − z). In this case, the resulting sequence contains the
cumulative sums:

g(z)
1− z

=
∑
n≥0

[(
n∑

k=0

gk

)
zn

]
.

For more manipulations and elementary generating functions, see Comtet (1974)

Probability Generating Function As mentioned in the introduction, one can use a gen-
erating function to represent a discrete probability distribution. For a random variable X
which takes values in N≥0 with P(X = n) = gn, the probability generating function g(z) is
defined by

g(z) :=
∑
n≥0

gnz
n

with the additional requirement that the probabilities sum up to 1 which means that g(1) =
1.

Example 4.1. Let X be a shifted geometrically distributed random variable with parameter
p, thus, P(X = n) = (1− p)np. Hence, the probability generating function g(z) is

g(z) =
∑
n≥0

(1− p)npzn =
p

1− (1− p)z
.

The last step is obained by shifting p in front of the sum, using (1−p)nzn = [(1−p)z]n and
then applying

∑
n≥0 x

n = (1− x)−1 for x = (1− p)z.
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The probability generating function h(z) of the sum of two independent discrete random
variables X and Y with probability generating functions g(z) and f(z) is the product
h(z) = g(z)f(z). This can be easily seen by writing the probability for X + Y = n. Given
that Y = k, we neccessarily obtain X = n − k. Since one has to sum up the probabilities
for all such decompositions of n, one yields hn =

∑n
k=0 gn−kfk, which is the convolution of

both distributions.

One can also express a sum with a random number of terms as a probability generating
function. Let Xi be i.i.d. random variables with probability generating function g(z) with
coefficients gn and Y with probability generating function f(z) with coefficients fn. If
Y is independent of all Xi, the random variable

∑Y
y=1Xy has the probability generating

function

∑
n≥0

fn

 n∑
i≥0

giz
i

n

= f (g(z)) .

Here, we use that the sum of n i.i.d. random variables is the nth power of its probability
generating function since one has to perform n convolutions.

4.2 Single Word Count Distribution

We consider a word w of length `. For simplified notation, we drop the index/parameter
w if the word is obvious from context. For derivation of generating functions, it is more
appropriate to define the indicator random variables for an occurrence to be 1 at the last
position of the occurrence. Therefore, we define

Y i :=
{

0 : 1 ≤ i < `
Yi−` : ` ≤ i ≤ n

(4.1)

The main difference is that the indicators at the very beginning of the sequence are 0
instead of the indicators at the last `− 1 position of the sequence. This simplifies recursive
calculation of certain probabilities. We obtain for the occurrence probability Pµ(Y i = 1) =
µ(w) for i ≥ ` where µ(w) denotes the probability for word w.

4.2.1 Absence Probability

The absence probability an is the probabiltiy that there is no occurence of the word in the
sequence of length n:

an := Pµ(
n∑

i=1

Y i = 0)

We can express the absence probabiltiy by using the waiting time till the 1st occurence:
If the first occurence is after the nth position, the word is absent. Let W be the random
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variable for the position of the first occurence (in fact, it is the position where the first
hit ends). Due to the new definition of an occurrence, T 1 cannot be less than `. Defining
t0 = 0, tn := Pµ(T 1 = n) for n > 0, we obtain for the absence probability

an = Pµ(T 1 > n) = 1− Pµ(T 1 ≤ n) = 1−
n∑

i=0

ti. (4.2)

Thus, given the probability distribution for the first occurence, we can simply compute the
absence probability. Therefore, we introduce the return probability in the next paragraph
to be able to derive formulae for the waiting time afterwards.

Return Probability

The return probability rn is the probability to observe an occurrence n steps after an-
other occurrence. There can also be further occurrences in between. Thus, we can define
independently of i

rn := Pµ(Y i+n = 1|Y i = 1) = Pµ(Y i+n = 1|T 1 = i).

Due to the i.i.d. property of the sequence model, the occurrence probabilities are indepen-
dent of the waiting time if the occurrences do not overlap, thus, Pµ(Y i+n = 1|T 1 = i) =
Pµ(Y i+n) = µ(w) for n ≥ `. For overlapping occurrences, we can use the overlap bit εd
defined in Eq. (3.6). Since the return probability for n = 0 is obviously 1, we obtain for
the return probabilities

rn =


1 if n = 0,
εn
∏`

κ=`−n+1 µ(wκ) if 1 ≤ n < `,
µ(w) otherwise.

Capturing the overlap in the correlation polynomial c(z) with c(z) :=
∑`−1

n=0 εnz
n, the

first ` return probabilities in d(z) :=
∑`−1

n=0 rnz
n, we obtain for the generating function

r(z) :=
∑

n≥0 rnz
n the expression

r(z) = d(z) +
µ(w)z`

1− z
. (4.3)

Note that the second term is derived by shifting the generating function
∑

n≥0 µ(w)zn =
(1− z)−1µ(w) by ` positions to the right (multiplying with z`).
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4.2 Single Word Count Distribution

Figure 4.1: Decomposition of the event of an occurrence at position n by the waiting time
and the return probability. The upper row shows a waiting time of ` for the first occurrence
and a returned occurrence after n − ` positions. In the second row, the waiting time is ` + 1
and the return after n− `− 1 steps. One has to consider all such events till the waiting time
is n (last row).

Waiting Time

The probability for the waiting time for the first occurrence at the first ` − 1 positions
equals to 0 since the first occurrence is not before position ` due to the definition of the
occurrence indicators Y i. Hence, we obtain t0 = t1 = . . . = t`−1 = 0. Based on the results
for the return probability, we can compute the remaining waiting time probabilities

We decompose the event {Y n = 1} of an occurrence at position n. The occurrence at n can
be expressed in terms of the waiting time (see Fig. 4.1 for an illustration): For all ` ≤ i ≤ n,
the first occurrence is at position i and another occurrence returns after n− i positions. For
i = n, we consider the possibility that there is no occurrence before n. Hence, we obtain
for the event {Y n = 1} ≡

⋃n
i=`{Y n = 1, T 1 = i}. Conditioning the events on T 1 = i, one

obtains for n ≥ `

Pµ(Y n = 1) =
n∑

i=0

Pµ(Y n = 1|T 1 = i)Pµ(T 1 = i) =
n∑

i=0

rn−iti. (4.4)

Hence, we can recursively compute tn by solving above equation for the last term in the
sum:

tn = µ(w)−
n−1∑
i=0

rn−iti.

Defining the generating function for the waiting time by t(z) :=
∑

n≥0 tnz
n, we can express

it by considering that the sum in Eq. (4.4) is the convolution of r(z) and t(z). Furthermore,
Eq. (4.4) equals to 0 for n < `. Hence, we can use for the left hand side (1 − z)−1µ(w)z`

and obtain

µ(w)z`

1− z
= r(z)t(z).

Solving for t(z), we obtain

t(z) =
µ(w)z`

r(z)(1− z)
. (4.5)
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Absence Probability

In Eq. (4.2), the absence probability is defined in terms of the waiting time. Based on the
absence probability an = 1 −

∑n
i=0 ti in a sequence of length n, we obtain the generating

function a(z) :=
∑

n≥0 anz
n for the absence probability taking the product of 1 −

∑n
i=0 ti

and 1− z:

a(z) =
1− t(z)
1− z

. (4.6)

Example 4.2. We consider the word w =’ACA’ in a two-letter alphabet with µ(’A’) = p.
Hence, the occurrence probability is µ(w) = p2(1− p). The correlation polynomial is given
by c(z) = 1 + z2 since the word overlaps at position 0 and 2. The generating function for
the return probability is

r(z) = 1 + p(1− p)z2 +
p2(1− p)z3

1− z
.

The generating function for the waiting time yields

t(z) =
p2(1− p)z3

(1− z)
(
1 + p(1− p)z2 + p2(1−p)z3

1−z

) =
p2(1− p)z3

1− z − (p2 − p)z2 − (p− 2p2 + p3)z3
.

For the generating function of the absence probability a(z) = (1− t(z))/(1− z), one obtains

a(z) =
1 + (p− p2)z2

1− z + (p− p2)z2 + (−p+ 2p2 − p3)z3
.

Solving for [zn]a(z) for 0 ≤ n < 8 yields

a0 = a1 = a2 = 1, a3 = 1− p2 + p3, a4 = 1− 2p2 + 2p3,
a5 = 1− 3p2 + 4p3 − 2p4 + p5, a6 = 1− 4p2 + 6p3 − 3p4 + p6,
a7 = 1− 5p2 + 8p3 − 4p4 + p7.

Obviously, the probability for no occurrence in a sequence with length less than 3 is 1 since
the word is larger than the sequence. For a sequence of length 3, the absence probability
is the complement of the occurrence probability: 1 − µ(w) = a3. A sequence of length 4
can contain the word either at position 3 or 4. Since the occurrences cannot overlap, they
cannot occur at the same time, therefore, they are disjoint. Hence, we obtain a4 = 1−2µ(w).
For longer sequences, it is more difficult to manually derive the probabilities, however, the
generating function a(z) contains all probabilities.
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4.2 Single Word Count Distribution

4.2.2 Number of Occurrences

Calculation of the absence probability is based on the waiting time till the first occurrence.
Similarily, the count distribution can be computed by considering the waiting times till
the kth occurrence. We derive the corresponding generating functions using the inter-
occurrence time. This leads to the generating function for the probability distribution of
the number of counts.

Inter-Occurrence Time

The inter-occurrence time is the distance between two successive occurrences. Denoting the
waiting time till the kth occurrence by T k, the inter-occurrence time is defined for k ≥ 1

Vk := T k+1 − T k. (4.7)

Note that Vk are identically and independently distributed. However, they are usually not
equal in distribution to the waiting time T = T 1 till the first occurrence.

Simililarily to the computation of the return probabilities, we decompose the event of
an occurrence at position m + n given the first occurrence at m into the events with a
first occurrence at m with a successive occurrence at m + i and a further (not necessarily
successive) occurrence at m+ n. This yields

{Y m+n = 1|T = m} ≡
n⋃

i=1

{Y m+n = 1, V1 = i|T = m}.

In probabilities and, in a second step, using the independence between T and V1, one
obtains

Pµ(Y m+n = 1|T = m) =
n∑

i=1

Pµ(Y m+n = 1|V1 = i, T = m)Pµ(V1 = i|T = m)

=
n∑

i=1

Pµ(Y m+n = 1|Y m+i = 1)Pµ(V1 = i).

Since the left hand side is the return probability after n steps, we have with vn = Pµ(Vi = n)
for n > 0

rn =
n∑

i=1

rn−ivi.

Note that v0 = 0 by definition because a successive occurrence cannot have a distance of 0.
Hence, we obtain for the generating function v(z) :=

∑
n≥0 vnz

n the equation r(z) − 1 =
r(z)v(z) since r0 = 1. Solving for v(z) yields

79



Chapter 4 Generating Functions

v(z) =
r(z)− 1
r(z)

= 1− 1
r(z)

. (4.8)

Waiting Time till kth Occurrence

Due to the independence and the identical distribution of Vi, we can state the waiting time
till the kth occurrence by

T k = T +
k−1∑
j=1

Vj
d= T + (k − 1)V1,

where d= denotes equality in distribution. Since the probability for the sum of independent
discrete random variables can be computed by the product of the corresponding probability
generating functions, one directly obtains with t(k)

n := Pµ(T k = n) for k ≥ 1 and t(k)(z) :=∑
n≥0 t

(k)
n zn

t(k)(z) = t(z) [v(z)]k−1 . (4.9)

One can also write t(k+1)(z) = t(k)(z)v(z). However, for the previous formula, we can plug
in t(z) and v(z)

t(k)(z) =
µ(w)z` [r(z)− 1]k−1

(1− z) [r(z)]k
.

Based on the generating function of the waiting time, we can derive generating functions
of the number of counts.

Number of Occurrences

Let Nn =
∑n

i=1 Y i be the random variable for the number of occurrences in a sequence of
length n. To compute its probability distribution, we use the same duality principle as in
the previous chapter: The probability to observe at least k occurrences in a sequence of n
is equivalent to the probability that the waiting time till the kth occurrence is at most n, in
formula, {Nn ≥ k} ≡ {T k ≤ n}. Based on the above generating functions, we obtain for the
probability of k occurrences Pµ(Nn = k) = Pµ(T k ≤ n)− Pµ(T k+1 ≤ n) and, therefore

f (k)(z) =
t(k)(z)− t(k+1)(z)

1− z
= t(k)(z)

1− v(z)
1− z

. (4.10)

Note that this is no longer a probability generating function since the coefficient zn[f (k)(z)]
corresponds to the probability for k occurrences in a sequence of length n.
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Example 4.3. Continuing Ex. 4.2, we can compute the inter-arrival time and the waiting
times till the kth occurrence. For the inter-arrival time, we obtain

v(z) =
pz2

(
1− p− (1− 2p+ p2)z

)
1− z + (p− p2)z2 − (p− 2p2 + p3)z3

and for the waiting time till the kth occurrence

t(k)(z) =

[
pz2(1−p−(1−2p+p2)z)

1−z+(p−p2)z2−(p−2p2+p3)z3

]k

pz

1− (1− p)z
.

Finally, the probability for k counts in a sequence of length n is encoded in the nth coefficient
of

f (k)(z) =

[
pz2(1−p−(1−2p+p2)z)

1−z+(p−p2)z2−(p−2p2+p3)z3

]k

pz

(1− z + (p− p2)z2 − (p− 2p+ p3)z3) [1− (1− p)z]
.

Salvy and Zimmermann (1994) show how to evaluate the coefficients.

4.3 Number of Homogeneous Clumps

Instead of counting overlapping occurrences, one can also count the number of clumps. The
exact distribution derived by generating functions has only recently be published (Stefanov
et al., 2007). After defining the indicator for a clump, we derive the formulae for the inter-
arrival times of clumps. Based on this, we can directly compute the count distribution for
the number of clumps.

As before, we define a clump to be an occurrence without any preceding overlapping oc-
currence. Similar to the last section, we define the positions of an occurrence at the end of
the word in the sequence. Hence, we obtain for the clump indicator

Ỹ i := Y i

`−1∏
d=1

(1− Y i−d). (4.11)
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4.3.1 Inter-arrival Time

The waiting time T̃ to observe the first clump is equal to the waiting time T till the first
occurrence. This is obvious since the first clump always starts at the position of the first
occurrence. The waiting time T̃k till the kth clump for k > 1 are not necessarily equal to the
waiting time T k till the kth occurrence (equality holds if the word is not self-overlapping).
Hence, the same holds for the inter-arrival times Ṽk = T̃k+1 − T̃k. Since Ṽk are identically
distributed, we denote the inter-arrival time of clumps by Ṽ .

Figure 4.2: Decomposition of the inter-arrival time for a clump into (non-) overlapping
inter-arrival times of occurrences..

The inter-arrival times between two clumps is composed of inter-arrival times between
occurrences. In fact, the only occurrences between two clumps necessarily overlap with
their preceding occurrence. Otherwise, the next clump would start at the first occurrence
which does not overlap. Hence, depending on the size L of the preceding clump, the inter-
arrival time to the next clump is the sum of L overlapping occurrence inter-arrival times
and one non-overlapping occurrence inter-arrival time (see Fig. 4.2). Therefore, we define
conditional random variables for overlapping inter-arrival times V̀k and non-overlapping
inter-arrival times V́ by

V̀k := (Vk|Vk < `), V́ := (V |V ≥ `). (4.12)

Then, we can easily express the clump inter-arrival time by its decomposition

Ṽ =

(
Z∑

k=1

V̀k

)
+ V́ (4.13)

where Z denotes the size of the preceding clump. The size of the clump is distributed
according to a shifted geometric distribution Pµ(Z = k) = ωk(1− ω) with parameter 1− ω
where ω denotes the probability for a self-overlap. A self-overlap occurs if the occurrence
inter-arrival time is less than `. Thus, we obtain ω =

∑`−1
k=1 vk where vk denotes the

probability Pµ(V = k) as defined above.1.

Generating Functions Now, we define the corresponding generating functions. The gen-
erating function v̀(z) for the overlapping inter-arrival times consists of the first `− 1 terms
of v(z). Due to Pµ(V̀ ) = Pµ(V |V < `) = Pµ(V )/Pµ(V < `) = ω−1Pµ(V ), we obtain

1Note that this definition of ω is consistent with the definition in Chapter 3 in Eq. (3.18).
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4.3 Number of Homogeneous Clumps

v̀(z) := ω−1
∑`−1

n=0 vnz
n. Accordingly, we have to consider the factor 1− ω for the generat-

ing function v́(z) for the non-overlapping inter-arrival times. By derivation from v(z), we
also have to remove the first `− 1 terms. Thus, we obtain

v́(z) := (1− ω)−1

(
v(z)−

`−1∑
n=0

vnz
n

)
. (4.14)

Finally, the clump size Z is a shifted geometric distribution, thus, according to Ex. 4.1
its generating function is g(z) := (1 − ω)(1 − ωz)−1. In Eq. (4.13), we sum up Z times
V̀k. As described in the preliminaries, this is achieved by plugging v̀(z) into g(z) under the
assumption that Z is independent of V̀k. Multiplying by v́(z) to consider the last term in
Eq. (4.13) yields

ṽ(z) :=
(1− ω)v́(z)
1− ωv̀(z)

=
v(z)−

∑`−1
n=0 vnz

n

1−
∑`−1

n=0 vnzn
. (4.15)

4.3.2 Number of Counts

Based on the inter-arrival time for clumps, it is straight-forward to derive the number of
counts. Again, we use the duality between the number of clumps and the waiting time till
the kth clump. For the waiting time, we obtain the generating function

t̃(k)(z) := t(z) [ṽ(z)] (4.16)

since the first occurrence of a clump is equal to the first occurrence of the word. Then, the
generating function f̃ (k)(z) for the number of k counts in a sequence of length n is

f̃ (k)(z) := t̃(k)(z)
1− ṽ(z)
1− z

. (4.17)

Example 4.4. Continuing the previous example, we obtain for the overlapping inter-arrival
times v̀(z) = z2 since ω = (p− p2). The clump inter-arrival time is

ṽ(z) =

[
1− p− (1− 2p+ p2)z + (1− 3p+ 3p2 + p3)z2

]
p2z3

[1− z + (p− p2)z2 − (p− 2p2 + p3)z3] [1− (p− p2)z2]
.

Now, we can compare the inter-arrival times of clumps and occurrences. For n = 2, the
main difference shows up: The probability for an inter-arrival time of occurrences of 2 is
p− p2 while for clumps the probability is 0 since clumps cannot overlap. For a distance of
3, both inter-arrival probabilities are p2−p3 since no overlaps can be involved. The same is
true for a distance of 4 yielding a probability of p3 − p4. However, for longer distances the
probabilties differ again because the preceding clump can have size larger than 1. A distance
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of 5 yields a occurrence inter-arrival probability of p2 − 3p3 + 4p4 − 2p5 while the clumps
inter-arrival probability is p2−2p3 +2p4−p5. In fact, the corresponding probabilities for the
inter-arrival of clumps are always larger than for occurrences. This is due to the fact that
the inter-arrival probabilities for clumps have to compensate for the big difference for the
distance of 2. Furthermore, we have already seen in the previous chapter that the distances
between clumps are in average larger than for the corresponding word occurrences if the
word allows self-overlaps.
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TF Count Statistics

5.1 Introduction

TFs are often represented as PFMs. As described in Section 2.4.4, the number of compat-
ible words of a PFM depends on the chosen threshold selection method. Here, we focus
on the selection methods based on the error probabilities. In this case, the number of
compatible words is asymptotically O(|A|`) where A is the alphabet and ` the length of
the PFM. Hence, they cannot be enumerated efficiently. Furthermore, such a high num-
ber of words makes every word counting approach infeasible. This explicitly includes the
conditional approach from Zhang et al. (2007) as we show in Chapter 7. Therefore, many
heuristic approaches have been proposed comprising Ahab (Rajewsky et al., 2002), Clover
(Frith et al., 2004), Consensus (Hertz and Stormo, 1999), MEME (Bailey and Elkan, 1994;
Bailey and Gribskov, 1998), MotifScanner (Thijs et al., 2001) and p-value calculation for
multiple alignments (Nagarajan et al., 2005). However, these methods are based on heuris-
tically selected statistical criteria instead of a rigorous derivation of the count distribution.
Furthermore, there are no methods which incorporate the complementary strand into the
analysis which is important for palindromic PFMs.

In this chapter, we present our main contribution: we propose an approximation based
on the compound Poisson distribution for the number of occurrences of a PFM without
enumerating all compatible words. Furthermore, we incorporate both strands of the DNA
molecules. We explicitly consider dependencies of overlapping hits. As background model,
we use a symmetric i.i.d. model incorporating the average GC content of the upstream
sequence, which can be justified by Chargaff’s second law. We restrict ourselves to the GC
content instead of base pair composition to make the computation invariant with respect
to the choice of the leading strand.

A comparison of the new approach with existing approximations based on word counting
(Schbath, 1995a; Waterman, 2000; Roquain and Schbath, 2007) is given in Chapter 7. In
contrast to the most recent exact calculation (Zhang et al., 2007), its complexity neither
depends on the number of compatible words nor on the sequence length.

While repeating the statistical framework with its notation from the word count chapter,
we relate the word counting approaches to TF counts. Subsequently, we derive the first two
moments of the count distribution asymptotically. The third section contains the develop-
ment of the count statistic approximation based on the second moments. Since we explicitly
model the self-overlap of the PFM that results in dependencies, we can calculate two char-
acteristic values for the self-overlap and the palindromicity of a PFM. In the next section,
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we present a generating function formalism for TF under an equi-probable sequence model
and by restriction to one strand. However, if the assumption of equi-probable nucleotide
distribution is not fulfilled, the formalism still yields a feasible approximation. Finally, we
introduce an algorithm to compute the important second moments.

5.2 Statistical Framework

Each PFM represents a DNA motif. It contains specific probabilities for each nucleotide
at every position. We assume that the binding sites of each TF are described by only one
PFM. An extension to more than one PFM can be obtained by choosing the representative
PFM of a cluster (see Chapter 10). The position specific scoring matrix (PSM) ΨA

κ,a of TF
A is chosen to be the log-likelihood ratios of the nucleotide distribution of the PFM and the
background probabilities µ(a) for every position κ and for nucleotides a ∈ A. We denote
the length of the PSM by `A.

Using the PSM, we can assign a score to every position of the potential binding site de-
pending on the observed nucleotide. Sliding a window of length `A over a random sequence
X1 . . . Xn and summing up the scores in each window, yields a random score Sj(A) for
every position j of the sequence

Sj(A) = sA(Xj . . . Xj+`−1) :=
`−1∑
κ=0

ΨA
κ,Xj+κ

. (5.1)

j 1 2 3 4 5 6 7 8

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

3'

5' 3'

5'

Y'
j
(A)

Y
j
(A)

X'
j

X
j

Figure 5.1: Example for our notation: The lower 5’-3’ strand is the leading strand. Given a
motif CTAT, there are two overlapping occurrences on the shown sequence region. Y1(A) =
Y ′

3(A) = 1 indicate a hit starting at position 1 on the leading strand and another hit ending
at position 3 on the complementary strand. This definition of Yj(A) and Y ′

j (A) simplifies
notation.

Considering the complementary strand requires additional notation: In general, we use the
same variables with a prime for this purpose. We call the strand of the corresponding gene
the 5′ − 3′ strand. Correspondingly, the complementary strand is called the 3′ − 5′ strand.
In contrast to the 5′−3′ strand, we assign a hit to the position at the complementary strand
where the actual hit ends (see Figure 5.1). This means, that S′j(A) refers to the score of
the nucleotides X ′

j+`−1 . . . X
′
j where X ′

k denotes the complementary letter of Xk.

We call a position a hit if the corresponding window yields a score s higher than a certain
threshold tA. Denoting a hit at position j by the indicator random variable Yj = 1, we
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obtain the definition: Yj(A) := 1[Sj(A) ≥ tA]. Similarily, a detected binding site on the
complementary strand at position j is denoted by Y ′

j (A) = 1 (see Figure 5.1).

The probability of an occurrence in random sequences can be calculated using the score
distribution (see Section 2.4.2). One obtains

Pµ(Yj(A) = 1) = Pµ(Sj(A) ≥ tA) = αA.

All positions including the complementary strand are identically distributed. However,
due to possible overlaps the positions are not independent. This is the main difficulty to
compute the second moment and the count distribution.

The number of counts is defined by summing over all positions and both strand. Thus, we
obtain for a sequence of length n

Nn(A) :=
n−`A+1∑

j=1

(
Yj(A) + Y ′

j (A)
)
.

5.2.1 Relation to Word Count Approaches

Instead of assigning a score to each position of a sequence, we can determine for each
word a ∈ A`A its score sA(a). Each word corresponding to a hit (sA(a) ≥ tA) is called a
compatible word of A. The set of all compatible words is denoted by A. We introduce
indicator random variables Yj(a) which are 1 if the word at position j of the sequence is a
and otherwise 0. Since a hit of TF A at position j occurs if the word at position j of the
sequence is in A, we obtain the equivalence

Yj(A) ≡
∑
a∈A

Yj(a),

since hits are necessarily disjoint at each position.

5.3 First Two Moments

Before we present a new approximation of the count distribution, we compute the exact
expected value, as well as the asymptotic variance. Then, we extend the variance to a pair
of TFs obtaining the asymptotic covariance. Later, we show how to derive a similarity
measure (Chapter 9), a clustering (Chapter 10), and a quality measure (Chapter 11) based
on this concept.
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5.3.1 Expected Value

The expected value is fairly easy to derive since position dependencies do not matter. Given
the probability of an occurrence by αA and a sequence length n, one obtains

E[Nn(A)] =
n−`A+1∑

j=1

(
E[Yj(A)] + E[Y ′

j (A)]
)

= 2(n− `A + 1)αA.

Asymptotically with n→∞, the expected value is

lim
n→∞

n−1E[Nn(A)] = 2αA.

5.3.2 Variance

As usual, the second moment is more complicated to compute due to the position depen-
dencies introduced by possible overlapping occurrences. However, we will see that one can
compute the exact asymptotic variance without knowing the set of compatible words. We
introduce the variance by shortly reviewing the approach for set of words as presented in
Section 3.4.3 for the normal approximation.

Asymptotic Variance for Words

Before we can state the asymptotic variance, we repeat some further notation regarding the
self-overlap of a word a ∈ A` (for a more detailed exposition, see Section 3.4.1). We define
the probabilities γd(a) for a self-overlap of word a at position d. For that, we use the overlap
bit εd(a) which is 1 if the word allows the overlap (ad = a1, ad+1 = a2, . . . , a` = a`−d+1)
and otherwise 0. We obtain the overlap probability under the background model µ:

γd(a) := Pµ(Yj(a) = 1, Yj+d(a) = 1) = εd(a) · αa ·
∏̀

κ=`−d+2

µ(aκ), (5.2)

where µ(aκ) is the nucleotide probability of aκ. For correspondence with the TF setting,
we denote Pµ(Yj(a) = 1) by αa instead of µ(a). We capture the overlap probabilities for
each d in the overlap sum G(a) defined as

G(a) :=
`−1∑
d=0

γd(a).

The variance of the counts of A on a sequence of length n is the sum over all covariances
between the hit indicator random variables:
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V[Nn(a)] =
n−`+1∑

i=1

n−`+1∑
j=1

Cov[Yi(a), Yj(a)].

Since the covariance between non-overlapping hits is zero, we only have to consider over-
lapping hits. The covariance for overlapping hits is given by

Cov[Yi(a), Yi+d(a)] = E[Yi(a) · Yi+d(a)]− E[Yi(a)] · E[Yi+d(a)]
= γd(a)− α2

a,

for 0 ≤ d < `. Hence, we can express the asymptotic variance by

lim
n→∞

n−1V[Nn(a)] = 2G(a)− 2`α2
a − αa (1− αa) .

The first term corresponds to the self-overlap probability of a. The second term contains the
product of the expected values of the two indicator random variables. Lastly, we subtract
αa which is added twice with G(a) (overlap at d = 0) and add α2 since we added it 2`
instead of 2`− 1 times.

Asymptotic Covariance for Words

Since a TF can be defined by occurrences of a set of words, we introduce the asymptotic
covariance before dealing with TFs. Hence, we have to introduce the overlap probabilities
for two different words a and a′. We extend the definition of the overlap bit εd(a, a′) which
is 1 if the words allow the overlap (ad = a′1, ad+1 = a′2, . . . , a` = a′`−d+1) and otherwise 0.
Note that we assume without loss of generality, both words have equal length ` = |a| = |a′|.
Hence, we obtain the overlap probability

γd(a, a′) := Pµ(Yj(a) = 1, Yj+d(a′) = 1) = εd(a, a′) · αa ·
∏̀

κ=`−d+2

µ(a′κ).

Similarily, we capture the overlap probabilities for each d in the overlap sum G(a, a′) defined
as

G(a, a′) :=
`−1∑
d=0

γd(a, a′).

The covariance between the counts of a and a′ on a sequence of length n is the sum over
all covariances between the hit indicator random variables:

Cov[Nn(a), Nn(a′)] =
n−`+1∑

i=1

n−`+1∑
j=1

Cov[Yi(a), Yj(a′)].
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Applying the same reasoning as before, we can express the asymptotic covariance between
a and a′:

lim
n→∞

n−1 Cov[Nn(a), Nn(a′)] = G(a, a′) +G(a, a′)− 2`αaαa′ − αa

(
ε0(a, a′)− αa′

)
.

The two first terms correspond to the overlap probability of a followed by a′ and a′ followed
by a. The third term contains the product of the expected values of the two random
variables. Lastly, we add the covariance for a and a′ occuring at the same position.

Asymptotic Variance for TFs

We introduce the asymptotic variance by ignoring the complementary strand for the begin-
ning. We consider one TF A with length `A and a set of compatible words A. Obviously,
the length of each word is the same within each corresponding set. The probability αA for
a hit of TF A is in terms of its set of compatible words

αA = Pµ(Yj(A) = 1) = Pµ

(∑
a∈A

Yj(a) = 1

)
=
∑
a∈A

αa.

The definition of the self-overlap probabilities for TFs follows the same reasoning. A self-
overlap occurs if any word a ∈ A overlaps with any word a′ ∈ A. Hence, we can define the
self-overlap probability for a TF. Since the events of the indicator random variables Y a

j for
a ∈ A are disjoint for fixed position j, we obtain

γd(A) := Pµ(Yj(A) = 1, Yj+d(A) = 1) =
∑
a∈A

∑
a′∈A

γd(a, a′).

The sums iterate over the set of compatible words. In fact, we can avoid the sum since the
event of two overlapping occurrences means that the score Sj and Sj+d reach the threshold.
Here, we compute the exact value for Pµ(Sj+k ≥ tA, Sj(A) ≥ tA). We define the set of
scores which are assumed to be integers due to score discretization by

S(A) :=

{
s :
∑̀
κ=1

min
a∈A

ΨA
κ,a ≤ s ≤

∑̀
κ=1

max
a∈A

ΨA
κ,a

}
. (5.3)

Then, the scores greater than or equal to the threshold can be defined by St(A) := {s ∈
S(A) : s ≥ tA}. Using these definitions, we can express Pµ(Yj+d(A) = 1, Yj(A) = 1) in
terms of a two-dimensional score distribution

γd(A) = Pµ(Yj+d(A) = 1, Yj(A) = 1) =
∑

s∈St(A)

∑
s′∈St(A)

Pµ(Sj+d(A) = s′, Sj(A) = s). (5.4)

The overlapping probabilities γ′d(A) can be computed correspondingly.
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Example 5.1. Figure 5.2 shows the 2-dimensional score distributions for a PFM with
strong consensus ’ACACACACAC’ (see same figure for sequence logo) for different shifts
d.

The first panel contains the distribution for a shift d = 0. In this case, both score random
variables are completely determined by each other. Hence, both scores are equal, thus,
the 2-dimensional score distribution is in fact 1-dimensional since it only contains strictly
positive probabilities on the diagonal. Furthermore, one observes that also on the diagonal
many scores are have probability 0 in-between possible scores. Due to the construction of
the PFM, its PSM only contains two different scores (for a GC content of 50%). Hence,
the scores are very granular. Therefore, the plots are mainly blue since most score values
are not possible. In Figure 5.3, the corresponding plots are shown for a similar PFM with
slight perturbations such that the scores are less granular.

The next panel for d = 1 seems to neither show correlated scores nor any probability weight,
which is above both thresholds. However, the scores are negatively correlated similar to the
corresponding plot in 5.3. Hence, the PFM does not allow such an overlap. Increment-
ing the shift by 1, yields a very positively correlated score distribution. In addition, the
probability to reach both thresholds is greater than 0. Obviously, observing one occurrence
’ACACACACAC’ only requires an additional ’AC’ for a second occurrence with a shift
d = 2.

The shift of d = 3 resp. d = 4 is similar to d = 1 and d = 2 and so on because every even
shift allows an overlap while odd shifts prevent an overlapping occurrence. With increasing
even shifts, the scores are more uncorrelated since more additional nucleotides (’AC’s) have
to be observed.

The last panel containing a score distribution, shows a shift of d = 10 which implies in-
dependence. In fact, this distribution looks very similar to the distributions for odd shifts.
However, they are not equal. The reason is that the thresholds are set to α < .05, thus,
only one mismatch is allowed. On the one hand, rigorous inspection of the distribution for
d = 7 and d = 9 show that they slightly differ. The probability for a joint occurrence for
d = 7 is 0 while for d = 9 it is greater than zero. On the other hand, a shift of d = 10
is also not equal to the distribution d = 9 but has a weakly higher probability to reach both
thresholds since the first letter is not determined by the preceding overlapping hit.

Considering the scores as state space, the Sj(A)s become a first-order Markov chain (Fu
and Koutras, 1994) because the score only depends on the score of the previous position.
Hence, (5.4) can also be written in terms of its transition matrix to the dth power. For
the sake of simplicity, we focus on the two-dimensional score distribution for each d. This
distribution can be computed by the two-dimensional convolution of the position specific
score distributions. An efficient dynamic programming algorithm is presented in section
5.6.

The sum of the overlap probabilities is given by

G(A) :=
`A−1∑
d=0

γd(A).
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Chapter 5 TF Count Statistics

Figure 5.2: Distribution of the 2-dimensional scores for PFM ’repeat’ (bottom right panel)
for different shifts d. From top to bottom and left to right, the shift is increased by 1 starting
with d = 0. The black lines denote the thresholds.
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As before, we can express the number of hits for a TF by the occurrences of a ∈ A. It is the
sum of the number of hits for all compatible words: Nn(A) =

∑
a∈ANn(a). Hence, we can

split up the asymptotic variance for the TF into sums of asymptotic covariances of words
and then rewrite it with the introduced notation:

lim
n→∞

n−1V[Nm(A)] =
∑
a∈A

∑
a′∈A

lim
n→∞

n−1 Cov[Nn(a), Nn(a′)]

= 2G(A)− 2`α2
A − αA (1− αA) .

Next, we introduce the asymptotic covariance and subsequently extend to incorporate the
complementary strand.

Asymptotic Covariance for TFs

It is straight-forward to apply previous definitions to compute the asymptotic covariance.
First, we have to define the overlap probabilities for two different TFs. An overlap occurs
between TF A with length `A and B with length `B if any of the words in A overlap with
any of the words in the set B of compatible words of B. Similarily to before, we obtain

γd(A,B) := Pµ(Yj(A) = 1, Yj+d(B) = 1) =
∑
a∈A

∑
b∈B

γd(A,B).

The overlap probabilities are obtained by the corresponding two dimensional score distribu-
tion. The sum of the overlap probabilities is G(A,B) :=

∑`A−1
d=0 γd(A,B). Based on these

definition, one obtains

lim
n→∞

n−1 Cov[Nn(A), Nn(B)] =
∑
a∈A

∑
b∈B

lim
n→∞

n−1 Cov[Nn(a), Nn(b)]

= G(A,B) +G(B,A)− (`A + `B − 1)αAαB − γ0(A,B).

Since we also want to consider reverse complementary overlaps, we have to further extend
the asymptotic covariance. Denoting the reverse complementary set of words A by A′ and
the corresponding TF variable by A′, the symmetry of the restrictive background model µ
yields αA = αA′ and correspondingly for B, and G(A′, B) = G(A,B′), G(A′, B′) = G(A,B),
γ0(A′, B) = γ0(A,B′), γ0(A′, B′) = γo(A,B). Hence, we obtain the following formula for
the asymptotic covariance between two TFs A and B:

lim
n→∞

n−1 Cov[Nn(A), Nn(B)] = lim
n→∞

n−1 Cov[Nn(A) +Nn(A′), Nn(B) +Nn(B′)]

= 2 ·
[
G(A,B) +G(A′, B) +G(B,A) +G(B′, A)

]
−4 · (`A + `B − 1)αAαB

−2
(
γ0(A,B) + γ0(A′, B)

)
.
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5.4 Count Distribution

Our derivation for the count distribution uses the probability of an occurrence, as well as
the self-overlap of the PFM. For example, a PFM with the consensus ’CTAACT’ has a
higher probability for two hits overlapping in two positions than to obtain two independent
hits. Counting the number of occurrences while taking care of the self-overlap has already
been discussed for a single word (Guibas and Odlyzko, 1981b; Robin and Schbath, 2001)
and a small set of given words (Reinert et al., 2000). As mentioned before, there are two
reasons for avoiding the Chen-Stein approach proposed by Reinert et al. (2000); Roquain
and Schbath (2007): First of all, the enumeration of all compatible words encoded in the
PFM is computationally demanding and only possible for small PFMs. Second, the incor-
poration of the complementary strand can lead to two hits at one position. In terms of
word counting, this means that the words in the set of compatible words are not necessarily
different contradicting one important assumption for the (compound) Poisson approxima-
tion. Therefore, we use the discrete nature of the PFM score to compute the probabilities
of overlapping hits (Pape et al., 2006). Based on these probabilities, we use a generaliza-
tion of the Poisson distribution to model overlaps. We couple a probability vector for the
number of hits with a Poisson distribution. This is a compound Poisson distribution or a so
called stopped-sum distribution (Johnson et al., 1995). As we have seen by reviewing word
counting approaches, this distribution is widely used in this context (see Chapter 3).

For better readability, we avoid the index/parameter A if the TF is obvious from context.
As previously mentioned, the probability of an occurrence by chance in a symmetric i.i.d.
sequence model is α. Hence, the indicator random variables Yj and Y ′

j have a Bernoulli
distribution with Pµ(Yj = 1) = Pµ(Y ′

j = 1) = α and Pµ(Yj = 0) = Pµ(Y ′
j = 0) = 1− α. As

before, the number of binding sites in a region of length n of a sequence is:

Nn =
n−`+1∑

j=1

(
Yj + Y ′

j

)
.

In fact, Yj and Y ′
j are defined on an infinite sequence but in practice we are concerned with

finite sequences. Hence, the dependencies of Yj and Y ′
j are different at the beginning and

the end of the sequence. These boundary effects are negligibly small under the rare hit
assumption (Barbour et al., 1992). The rare hit assumption holds because we set α and the
corresponding threshold t such that only a very small fraction of all possible words reach
the score threshold.

Now, we compute the distribution for the number of occurrences Pµ(Nn). Although we
know the probability of Yj and we assume the symmetric i.i.d. sequence model, calculation
of p is not straightforward due to dependencies between Yjs and Y ′

j s. The dependencies are
caused by self-overlap of the PFM and by incorporation of the complementary strand both
leading to overlapping binding sites.

5.4.1 Computing Probabilities of Clumps

Dealing with overlapping hits requires a refined vocabulary - similar to word counting
approaches: A hit and its overlapping hits together can be defined as a clump. The size
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of the clump corresponds to the number of contained overlapping hits. Also a single hit
without any overlaps is called a clump of size 1. Thus, a clump is a left- and right-maximal
set of overlapping hits on both strands.

Z
1
~

Z
2
~

Z
N
~~

Figure 5.4: The horizontal line symbolizes the sequence. At certain position (marked by a
cross), a clump occurs. The size of each clump is modelled by an i.i.d. probability vector θ.
The number of clumps Ñn is distributed as a Poisson random variable P(ϑ).

Now, we incorporate the notion of clumps into our definitions. We assume that the number
of clumps Ñn is distributed as a Poisson random variable P(ϑ) with unknown rate parameter
ϑ. The size Zi of clumps are assumed to be identically and independently distributed by
an unknown probability vector θ (see Figure 5.4) with Pµ(Zi = k) = θk. Both assumptions
can be justified by the fact that they hold for word counting (Robin, 2002). The number of
counts per sequence is given by Nn =

∑Ñn
i=1 Zi. Nn follows a compound Poisson distribution

CP(ϑ,θ).

In the remaining part of this section, we show how to compute approximations of the
unknown parameters of rate ϑ and the probability vector θ. First of all, we reduce the
computation of ϑ to the computation of θ. Then, we start with the probability θ1 of
having exactly one hit. Based on θ1, we recursively compute the remaining parameters.
Furthermore, the analysis of the resulting formulation discovers two characteristic values
describing the self-overlap of the PFM.

Computing the rate ϑ

The parameter ϑ is the rate of clump occurrences. We cannot use the probability α of a false
positive directly to compute it because α is the probability for hits including overlapping
hits. In contrast, we need the rate for non-overlapping hits which is equal to the rate of
clumps. Using the law of total probability, we obtain:

E[Nn] = E[E(Nn | Ñn)] = E[ÑnE(Z)] = E[Ñn]E[Z] = ϑE[Z],

where Z ∼ Zi. Thus, we can express ϑ in terms of θ: E[Nn] is the expected number of hits.
The probability of a hit by chance is α as we defined the threshold in this way. Hence, the
expected number of hits is given by the fact that a hit can occur at each sequence position
on each strand, thus

ϑ =
E[Nn]
E[Z]

=
2α (n− `+ 1)∑

k>0 kθk
. (5.5)
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Parameters for the probability vector

The probability vector θ = (θk)k>0 contains probabilities for the different sizes of clumps
k > 0. Here, we show how to compute approximations (θ̂k)k>0 of these probabilities. At
first, we focus on one strand of the sequence only. Subsequently, we extend the approach
to deal with the complementary strand as well.

θ1 corresponds to the event that there is exactly one hit at a certain position j while no
overlapping hits occur given the hit at position j. Using the fact that an overlapping hit is
a hit within the range of the length ` of the PFM, we obtain

θ1 = Pµ(Yj−`+1 = 0, . . . , Yj−1 = 0, Yj+1 = 0, . . . , Yj+`−1 = 0 | Yj = 1). (5.6)

The conditional probability on the right hand side of (5.6) is hard to compute because the
events in the collection ({Yj+d = 0})−`+1≤d≤`−1,d6=0 are not independent, given {Yj = 1}.
However, in a first order approximation we pretend that conditional independence holds
and compute

θ̂1 =
`−1∏

d=−`+1,d6=0

Pµ(Yj+d = 0 | Yj = 1) =
`−1∏

d=−`+1,d6=0

(1− Pµ(Yj+d = 1 | Yj = 1)). (5.7)

Due to the symmetric i.i.d. random sequence, we can prove the symmetry Pµ(Yj−d = 1 |
Yj = 1) = Pµ(Yj+d = 1 | Yj = 1) by applying the law of conditional probabilities and
substituting j = j′ + d:

Pµ(Yj−d = 1 | Yj = 1) =
Pµ(Yj−d = 1, Yj = 1)

Pµ(Yj = 1)

=
Pµ(Yj′+d−d = 1, Yj′+d = 1)

Pµ(Yj′+d = 1)
= Pµ(Yj′+d = 1 | Yj′ = 1). (5.8)

Symmetry follows due to the symmetric i.i.d. background model. Thus, we obtain for
(5.7)

θ̂1 =

(
`−1∏
d=1

[1− Pµ(Yj+d = 1 | Yj = 1)]

)2

. (5.9)

Next, we extend the approach to both strands by continuing to assume conditional inde-
pendence for all hits and simplify notation by

γ̄d := Pµ(Yj+d = 1 | Yj = 1) = α−1γd, (5.10)
γ̄′d := Pµ(Y ′

j+d = 1 | Yj = 1) = α−1γ′d,
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where Y ′ refers to the hit random variable on the other strand and γd resp. γ′d are the
corresopnding joint probabilities as defined in Eq. (5.2). These terms are the probability
of two overlapping hits Pµ(Yj+d = 1, Yj = 1) for d as given above. In Section 5.3.2 about
the variance, calculation of the overlap probabilities is outlined. Now, (5.9) becomes

θ̂1 = (1− γ̄′0)
`−1∏
d=1

(1− γ̄d)2(1− γ̄′d)
2. (5.11)

Probability of an k-clump with k > 1

We recursively compute the probability θ̂k to have a clump with exactly k hits for k > 1.
Without loss of generality, we assume that we count hits starting with Y1, Y

′
1 , Y2, Y

′
2 , Y3 and

so on. Considering a clump of size two, the first overlapping hit at a clump position j
can either occur in the interval d ∈ [j + 1, j + ` − 1] on the same strand or in the interval
d ∈ [j, j + ` − 1] on the opposite strand. The idea is to cancel the probability in (5.11)
for each position j + d and to replace it with the probability of a hit at this position. We
denote these extension factors ξd for a hit on the 5′−3′ strand and ξ′d for a hit on the 3′−5′

strand. We obtain for a pair of hits for 0 < d < `

Pµ(Yj+d = 1, Y ′
j+d = 0, Y ′

j = 0, {Yj+κ = 0, Y ′
j+κ = 0}−`<κ<d+`,κ 6=0,d|Yj = 1) ≈ θ̂1 · ξd,

Pµ(Y ′
j+d = 1, Yj+d = 0, Y ′

j = 0, {Yj+κ = 0, Y ′
j+κ = 0}−`<κ<d+`,κ 6=0,d|Yj = 1) ≈ θ̂1 · ξ′d,

Pµ(Y ′
j = 1, {Yj+κ = 0, Y ′

j+κ = 0}−`<κ<`,κ 6=0|Yj = 1) ≈ θ̂1 · ξ′0.

For the definitions of ξd, ξ′d and ξ′0, it is important to note that one also has to replace the
probability at the other strand at position d with the probability γ̄′0 for an exact palindromic
hit at position d of the old hit except the new hit is on the 3′−5′ strand. In this case (ξ′d), an
exact palindromic hit is not possible (because we would have counted the hit before). We
also replace the probabilities for hits at the subsequent positions given the hit at position j
with the probabilities of a hit given the hit at j+d. Lastly, one has to extend the positions
without a hit to the positions covered by the new hit but not by the former hit. Thus, we
obtain the definitions for 0 < d < `

ξd :=
γ̄d

1− γ̄d
· 1− γ̄′0
1− γ̄′d

·

(
`−d−1∏
κ=1

1− γ̄κ

1− γ̄d+κ
· 1− γ̄′κ
1− γ̄′d+κ

)
·

(
`−1∏

κ=`−d

(1− γ̄κ)
(
1− γ̄′κ

))
,

ξ′d :=
γ̄′d

1− γ̄′d
·

(
`−d−1∏
κ=1

1− γ̄κ

1− γ̄d+κ
· 1− γ̄′κ
1− γ̄′d+κ

)
·

(
`−1∏

κ=`−d

(1− γ̄κ)
(
1− γ̄′κ

))
.

For the other strand, we must not replace the exact palindromic hit because the hit is
already on that strand. We have an overlapping hit if any of these encoded events occur.
Thus, we can sum up the terms (see also Figure 5.5)
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ξ :=
`−1∑
d=1

ξd, ξ′ :=
`−1∑
d=1

ξ′d, ξ′0 :=
γ̄′0

1− γ̄′0
. (5.12)
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Figure 5.5: X and the black arrow indicate the given hit while 0s indicate where no hit is
allowed, 1 denotes the possibility of an overlapping hit (marked by grey arrows), and ? is a hit
or no hit. The letters a, b, and c label the three different type of hits: Type (a) is a hit on the
same strand, type (b) hits on the complementary strand but not palindromic, and type (c) is
the palindromic hit.

We split up the different types of hits into a, b, and c because they differ with respect to
which hit can follow (see Figure 5.6). Type (a) encodes a hit on the 5′− 3′ strand. The hit
can be followed by a hit on the same strand (a), a hit on the complementary strand (b),
or an exact palindromic hit (c). Type (b) is a hit on the 3′ − 5′ strand excluding an exact
palindromic hit. After it, types (a) and (b) can follow. An exact palindromic hit is not
possible as the hit itself is on the 3′ − 5′ strand. Type (c) stands for the exact palindromic
hit. Everything but another exact palindromic hit can follow.
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Figure 5.6: The figure shows the three different types of hits (a), (b), and (c) in a situation
of two previous hits. Furthermore, for each type of hit the possible subsequent type of hit is
indicated by the corresponding identifier (a, b or c). While (a) and (b) can occur after each
type of hit, (c) can only occur after type (a).

Thus, an additional hit of type (a) can be preceded by a hit of type (a), (b), or (c). For
(b) the same logic applies. In contrast, a palindromic hit (c) can only occur after a hit of
type (a). Without these considerations, we would allow more than two hits at the same
position. This gives us a linear system of recurrences to compute an approximation of θ.

99



Chapter 5 TF Count Statistics

Again, assuming that conditional independence holds, we have θ̂k+1 := θ̂1(ak + bk + ck),
where

a1 := ξ, ak+1 := (ak + bk + ck)ξ, (5.13a)
b1 := ξ′, bk+1 := (ak + bk + ck)ξ′, (5.13b)
c1 := ξ′0, ck+1 := akξ

′
0. (5.13c)

5.4.2 Closed Formula

Although the above formulae suffice to compute an approximation for θ, the reformulation
as a closed formula and its further analysis reveals interesting insights. At the end, we
obtain two characteristic values which describe the self-overlap of the PFM.

We can write the recursive formulae (5.13a) to (5.13c) by matrix notation for k > 0

 ak+1

bk+1

ck+1

 =

 ξ ξ ξ
ξ′ ξ′ ξ′

ξ′0 0 0

 ·

 ak

bk
ck

 =: A ·

 ak

bk
ck

 .

Thus, we get the closed formula for k ≥ 0 with ξ = (ξ, ξ′, ξ′0)
T

 ak+1

bk+1

ck+1

 = Ak ξ.

Furthermore, we obtain θ̂k+1 using the recurrence formula for k > 0

θ̂k+1 = (1, 1, 1) ·Ak · ξ · θ̂1.

We decompose A = B−1 Λ B where B contains the eigenvectors of A and the diagonal
matrix Λ the corresponding eigenvalues λ1, λ2, λ3 given by

λ1,2 =
ξ + ξ′

2
± 1

2
√
w, λ3 = 0,

with w = (ξ + ξ′)2 + 4ξ ξ′0. Hence, we can denote θ̂k+1 in terms of the eigenvalues

θ̂k+1 = (1 1 1) B−1 Λk B ξ θ̂1 =
(
uλk

1 + vλk
2

)
θ̂1 (5.14)

where u and v are computed by solving the linear system

(
1 1
λ1 λ2

)(
u
v

)
θ̂1 =

(
θ̂1
θ̂2

)
,
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whereby θ̂2 = (ξ + ξ′ + ξ′0)θ̂1 using the recursive formula. Finally, we obtain the solution

u, v =
w ± (ξ + ξ′ + 2ξ′0)

√
w

2w
.

In addition to the benefits of a closed formula, the expression in (5.14) shows that the
asymptotics of the clump size only depend on the first two eigenvalues λ1, λ2. Obviously,
the following inequalities hold: λ2 ≤ 0 and λ1 > −λ2. Hence, the series θ̂k converges to
zero, limk→∞ θ̂k = 0, if λ1 < 1. This condition holds if most of the words of length ` do not
exceed the threshold which is in practise always true. In most cases, we can also assume
λ1 < 1 since for λ1 > 1 we can transform the PSM and the threshold to its complement
which yields λ1 < 1 and correspondingly use the complementary statistics.

Two Characteristic Values for PFMs

The eigenvalues can be used as descriptive values for the PFM: We call a PFM a palindrome
if it allows two hits at the same position on both strands. Considering a PFM which is
not a palindrome, we have γ̄′0 > 0, thus, ξ′0 = 0. Hence, matrix A has only rank 1 and
we only obtain one non-zero eigenvalue λ1 and u = 1. Therefore, θ̂k+1 = λk

1 θ̂1 decreases
exponentially. Higher values of λ1 decelerate convergence. Since θ̂1 is the probability of a
clump of size one, which means that no overlap occurs, and λ1 corresponds to the probability
of an overlap, obviously θ̂1 = 1 − λ1 holds. Hence, the clump size has a shifted geometric
distribution. This case is similar to the compound Poisson model for one word considering
only one strand described by Robin (2002). Discarding the complementary strand always
leads to λ2 = 0 and then both models are equivalent.

A palindromic PFM has λ2 < 0 since ξ′0 > 0. If ξ′0 dominates the eigenvalues we obtain λ2 ≈
−λ1. In addition, it follows that v ≈ −u. Thus, θ̂k+1 ≈ u[1+(−1)k]λk

1 θ̂1. This leads to θ̂k ≈
0 for odd k. It indicates that the probability of an odd clump size is approximately equal
to zero. As we assumed a palindromic PFM with a very high probability of a palindromic
hit, one almost always detects a hit on both or neither strands. In summary, λ1 describes
the speed of convergence of θ̂k to zero and −λ2 correlates with the tendency of palindromic
hits.

5.4.3 The p-value for the Number of Hits

Now, we can compute the approximations of the probability vector θ and the rate parameter
ϑ using (5.5). Using the approximations for the parameters, we can compute the distribution
for the number of hits x ≥ 0. Since the number of hits X is distributed as CP(ϑ,θ) we can
apply formulae for the compound Poisson distribution (Kemp, 1967):

Pµ(Nn = 0) = exp(−ϑ),

Pµ(Nn = x+ 1) =
ϑ

x+ 1

x∑
x′=0

(x+ 1− x′)θx+1−x′Pµ(Nn = x′).
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The p-value for the occurrence of x ≥ 0 hits is computed by:

p = Pµ(Nn ≥ x) = 1−
x−1∑
x′=0

Pµ(Nn = x′).

5.4.4 The p-value for the Number of Clumps

The underlying Poisson process for the count statistic is given by Ñn ∼ P(ϑ). Since Ñn is
the number of clumps, one can use P(ϑ) to compute p-values p′ for clumps as the count
entity. In this case, we only need to compute the rate ϑ. Equation (5.5) can be approximated
by

ϑ̂ =
2α (n− `+ 1)∑

k>0 kθ̂k

.

Next, we show how to compute ϑ̃ efficiently by substituting the sum under the assumption
−1 < λ2 ≤ 0 ≤ λ1 < 1. Using the expression in (5.14), we obtain

∑
k>0

kθ̂k =
∑
k>0

k(uλk−1
1 + vλk−1

2 ) · θ̂1

=

(
u

λ1

∑
k>0

kλk
1 +

v

λ2

∑
k>0

kλk
2

)
· θ̂1

=
(

u

(1− λ1)
2 +

v

(1− λ2)
2

)
· θ̂1.

Again, this equation has an interpretation in terms of the self-overlap of the PFM. In case of
a non-palindromic PFM, the second term is equal to zero since λ2 = 0 and, therefore, v = 0.
From λ2 = 0, it also follows that w = (ξ + ξ′)2, hence, u = 1. Since a non self-overlapping
PFM has λ1 near to zero, the above equation is equal to 1. Thus, the expected value of the
clump size is equal to 1 and the rate for clumps is ϑ̂ = 2α(n− `+ 1). Furthermore, θ̂1 = 1
contains all the weights of the probability vector. Then, CP(ϑ̂, (1, 0, . . .)) ∼ P(ϑ̂). Hence,
applying the derived statistic to a non self-overlapping PFM leads to a Poisson process with
rate ϑ̂ for the number of occurrences.

5.5 Generating Function Formalism

An important idea of the previous approach is the summing of word probabilities into TF
occurrence probabilities. Using this idea, we can easily derive generating functions for
the number of TF occurrences. The formalism is based on the introduction to generating
functions given in Chapter 4 following the exposition in Rahmann (2000). The advantage
of such a formalism is that this enables us to use all kind of statistics derived for word
counting based on generating functions (e.g., see Nicodeme et al., 1999; Stefanov et al.,
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2007). However, we have to restrict the sequence model to one strand since two occurrences
at one position are difficult to deal with. Furthermore, we assume that the word occurrence
probabilities are equal.

However, if the assumption of equi-probable nucleotide distribution is not fulfilled the for-
malism still yields a reasonable approximation. For non-uniform background distribution,
the scores in the PSM are strongly influenced by the background distribution since the PSM
contains the likelihood ratios. Hence, positions with low background nucleotide frequencies
only have high scores if they have high support from the PFM. In this case, there is a strong
consensus at this position. Therefore, the set of compatible words usually contains words
with similar occurrence probabilities µ(a) justifying our assumption.

5.5.1 Waiting Time and Stopping Probabilities

We define an occurrence of TF A with length ` and set of compatible words A by the last
position of the hit

Y i(A) :=
∑
a∈A

Y i(a),

where Y i(a) is equal to 1 if i is the last position of an occurrence of a and otherwise 0.
Note that here we use the fact that the events {Y i(a)}a∈A are disjoint. Thus, A is not
allowed to be a multi-set. Therefore, we have to remove the complementary strand from
the analysis.

The waiting time T 1(A) until the first occurrence of A is defined based on the word waiting
times T 1(a)

T 1(A) := min
a∈A

T 1(a),

where T 1(a) is the smallest index i for which Y i(a) = 1. We can compute the correponding
probabilities by introducing stopping probabilities for a ∈ A

w(a)
n := Pµ(T 1(A) = n, Y n(a) = 1) = Pµ(T 1(A) = n, T 1(a) = n).

Again, we use the disjoint property of {Y i(a)}a∈A. For n < `, the stopping probabilities
are 0 since the occurrence cannot start before the sequence. Obviously, one obtains tn :=
Pµ(T 1(A) = n) =

∑
a∈Aw

(a)
n due to the law of total probability. However, we will see

that it is difficult to compute the stopping probabilities without the assumption of an
equi-probable nucleotide distribution.
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Return Probabilities

First, we need to define return probabilities

r(a,a′)
n := Pµ(Y i+n(a′) = 1|T 1(a) = i) = Pµ(Y i+n(a′) = 1|Y i(a) = 1).

They are easy to compute since we know the overlap probabilities

r(a,a′)
n :=


1 if n = 0 and a = a′,
0 if n = 0 and a 6= a′,

εn(a, a′)
∏`

κ=`−n+1 µ(a′κ) if 1 ≤ n < `,
µ(a′) otherwise,

where the overlap bit εn(a, a′) is 1 if an = a′1, . . . , a` = a′`−n+1 and otherwise 0.

Stopping Probabilities for Set of Words

Now, we can express the stopping probabilities in terms of return probabilities. We decom-
pose the event of an occurrence by

{Y n(a) = 1} ≡
n⋃

i=0

{ ⋃
a′∈A

{Y n(a) = 1, T 1(A) = i, T 1(a
′) = i}

}
.

Thus, the event of an occurrence of a at n is a partition of the events that at position i is
the first occurrence of any word in A. Of course, i can also be n which means that a is the
first occurrence. Conditioning on the waiting times directly yields for a ∈ A

Pµ(Y n(a) = 1) =
n∑

i=0

∑
a′∈A

r
(a′,a)
n−i w

(a′)
i . (5.15)

Hence, we obtain an |A| dimensional system of linear equations. In general, one can show
that the system has a unique solution (Rahmann, 2000) if A is a set (in contrast to a
multiset). However, the problem for TF is the large size of A. Therefore, we avoid solving
this linear system by using our assumption.
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Stopping Probabilities under equi-probable Sequence Model

In this case, the stopping probabilities w(a)
n are equal. For all a ∈ A and n ≥ 0, this leads

to

wn := w(a)
n .

Under this assumption, above system of linear equations derived from Eq. (5.15) becomes
after summing over all a ∈ A

∑
a∈A

Pµ(Y n(a) = 1) =
n∑

i=0

wi

∑
a∈A

∑
a′∈A

r
(a′,a)
n−i . (5.16)

The left hand side is obviously the probability of an occurrence of A. The right hand side
sums the return probabilities over all possible word pairs. For the sums over the return
probabilities, one obtains after changing the index n− i to n for convenience

∑
a∈A

∑
a′∈A

r(a
′,a)

n =
∑
a∈A

∑
a′∈A

Pµ(Y i+n(a) = 1|Y i(a
′)) =

∑
a′∈A

∑
a∈A Pµ(Y i+n(a) = 1, Y i(a′))

Pµ(Y i(a′))
.

With above assumption that the word occurrence probabilities are equal (hence, Pµ(Y i(a′)) =
µ(A)/|A|), one obtains

∑
a∈A

∑
a′∈A

r(a
′,a)

n = |A|µ(A)−1
∑
a′∈A

∑
a∈A

Pµ(Y i+n(a) = 1, Y i(a
′)).

The right hand term is the joint occurrence probabilities summed over all word pairs. Hence,
we can substitute this by γn(A) for 0 ≤ n < ` and otherwise by µ(A)2. Hence, the whole
term becomes |A|γ̄n(A) resp. |A|µ(A). Using the definition

rn :=
{
γ̄n(A) if 0 ≤ n < `
µ(A) otherwise

,

and the fact tn =
∑

a∈Awn = |A|w̄n yields for Eq. (5.16)

µ(A) =
n∑

i=0

rn−iti.

Note that this equation neither contains the sum over the compatible words since the
joint/conditional and occurrence probabilities can be computed by the score convolution.
Furthermore, the number of compatible words |A| is cancelled. The equation is similar to
Eq. (4.4) in Chapter 4 for word counting. Hence, with above assumption one can derive
similar fundamental equations to develop further statistics. This equation can be written
as generating function by
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µ(A)z`

1− z
= r(z)t(z),

where r(z) =
∑

n≥0 rnz
n and t(z) =

∑
n≥0 tnz

n. Dividing by r(z) directly yields the
equation for the waiting time.

5.5.2 Number of Counts

With the same assumption, one obtains formulae for the waiting time till the kth occurrence,
as well as for the number of counts. However, nothing changes except that the return
probabilities contain the conditional occurrence probabilities for A under our assumption.
For the probability vn of the inter-arrival time between two successive occurrences, one
obtains the corresponding generating function v(z) = 1− [r(z)]−1. The probability t(k)

n that
the kth occurrence occurs at the nth position, is given by

t(k)(z) :=
∑
n≥0

t(k)
n zn = t(z) [v(z)]k−1 .

Finally, the probability f (k)
n for k occurrences in a sequence of length n can be computed

by

f (k)(z) :=
∑
n≥0

f (k)
n zn = t(k)(z)

1− v(z)
1− z

.

Hence, based on the score convolutions and under above assumption one can compute the
corresponding generating functions as easy as for single words.

5.6 An Efficient Algorithm for Computing Overlap Probabilities

In (5.4), we have to compute the joint event of two scores greater than or equal to the
threshold. Given a position j and a shift d, the two scores induce a two dimensional
distribution. The first component is the score s of the PSM starting at position j. The
second component is the score s′ of the PSM beginning at position j + d. As an example,
consider a PSM which only accepts ’CC’. In the case of a shift d = 1, the score s′ can only
exceed the threshold if s is above the threshold. Thus, both scores are not independent for
0 ≤ d < `. Since scores are the sum of the position specific scores Ψκ,· we can decompose
the score into each pair of positions j + κ and j + d+ κ which point to the same sequence
position, and, thus, to the same nucleotide. Then, pairs of scores are independent. Hence,
we can use a dynamic programming algorithm.

The dynamic programming approach is often used for the computation of the one dimen-
sional score distribution (Staden, 1989; Claverie and Audic, 1996; Wu et al., 2000; Rahmann,
2003; Rahmann et al., 2003; Beckstette et al., 2006; Touzet and Varré, 2007). We extend
this approach to two dimensions similar to Liefooghe et al. (2006). Let Q(d)

i (s, s′) denote
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the probability for a score s at the first i+1 positions of the PSM and a score s′ at the first
i+ 1− d positions of the PSM shifted by d positions. We compute this value by summing
over the probabilities of the last step i− 1 which yield a score s and s′ after observing any
nucleotide with its respective score at step i. With Ψκ,· := 0 for κ < 0 or κ ≥ `, we obtain
for 0 ≤ k < ` and 0 < i ≤ `+ d

Q
(d)
0 (s, s′) :=

{
undefined if s 6= 0 or s′ 6= 0,
1 else,

Q
(d)
i (s, s′) :=

∑
a∈A

Q
(d)
i−1(s−Ψi,a, s

′ −Ψi−d,a) · µ(a).

After the last step, Q(d)
`+d(s, s

′) contains the probability to observe score s starting at position

j and score s′ starting at position j + d. Therefore, Pµ(Sj+d = s′, Sj = s) = Q
(d)
`+d(s, s

′)
and, hence, we can solve (5.4).

5.6.1 Speed Improvement

The practical running time of the algorithm can be improved significantly by some modi-
fications. The last d steps do not modifiy the scores starting at position j since Ψκ,· = 0
for κ ≥ `. Hence, instead of the d two-dimensional convolutions, we can obtain Q

(d)
`+d−1 in

one step by using the one dimensional convolution of the last d positions (see Figure 5.7).
Since (5.4) sums over all scores s starting at position j, we can do the summation before
adding the remaining scores:

s'

j j+d j+ℓ

g
d

g
d

ts'

1G
d
(ts')

Figure 5.7: The left part of the figure shows the sequence with two overlapping hits at position
j and j + d. The score of the overlapping part of the second hit is given by s′. The score
of the non-overlapping part is a random variable whose distribution is the convolution of the
position-specific scores of the remaining positions of the PFM gd. The right part of the figure
visualizes this distribution and the probability of the second hit 1−Gd(t− s′).

R(d)(s′) =
∑
s∈St

Q
(d)
` (s, s′).

Let fκ denote the position specific score distribution at position κ of the PSM and gd

denotes the score distribution for the non-overlapping part for a shift d:
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gd := f`−d+1 ∗ . . . ∗ f`.

Considering the recursion gd+1 = gd ∗ f`−d, we can use a dynamic programming approach
for computing the convolution. Denoting the cumulative distribution for gd with Gd, we
can rewrite (5.4) by:

γd = Pµ(Yj+d = 1, Yj = 1) =
∑
s′∈St

[
1−Gd(t− s′)

]
R(d)(s′).

We can further improve the speed by removing scores in each step of the calculation of
Q which are too small to reach the threshold (see Beckstette et al. (2006) for the one-
dimensional case). Hence, we define intermediate thresholds ti by

ti := t−
`−1∑

κ=i+1

max
a∈A

Ψκ,a. (5.17)

In each step i we can remove scores s < ti and s′ < ti−d. In addition, one can merge scores
which will exceed the threshold t for sure. The corresponding intermediate thresholds t′i are
defined analogously to (5.17) by substituting min with max. Then, in each step i, scores
s ≥ t′i and s′ ≥ t′i−d can be merged.

We can further speed up the algorithm by enhancing the effect of these improvements (see
Beckstette et al. (2006) for a similar idea). Processing positions of the PFM with high
information content first, discards many scores which can’t exceed the threshold at all in
the first steps. In addition, indefinite positions (processed at the end) often do not change
the score significantly such that either the score has already been discarded or the score
surely exceeds the threshold. This reduces the size of Q significantly.

In summary, the algorithm takes advantage from both a high and a low threshold t: On
the one hand, the higher the threshold, the more scores can be removed in the beginning
steps because scores will not be able to exceed the threshold at all. On the other hand, a
low threshold yields many scores which surely exceed the threshold. As those scores can be
merged, the number of different scores (size of Q) stays low.

5.6.2 Extension to Pairs of TFs

It is straight-forward to apply the algorithm to two different PFMs. In the pre-processing,
the PSMs for TF A and B are extended by zeros in the same way. To compute Pµ(Sj(A) ≥
tA, Sj+d(B) ≥ tB)The recursion of Q(d)

i (s, s′) only slightly changes to

Q
(d)
i (s, s′) :=

∑
a∈A

Q
(d)
i−1(s−ΨA

i,a, s
′ −ΨB

i−d,a) · µ(a).

The scores can be computed by Pµ(Sj(A) = s, Sj+d(B) = s′) = Q
(d)
i (s, s′) with i = max(d+

`B, `A). Similar speed improvements can be applied. Furthermore, computation of overlap
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probabilities with occurrences on the complementary strand are retrieved by substitutung
A by its reverse complementary PSM ΨA′

.

5.6.3 Time Complexity

The complexity of the algorithm for the computation of Q depends on the length of the
PFM `, the size of the set S of all scores, and the alphabet size |A|: O(`2|S|2|A|). The length
of the PFM ` and the alphabet size |Σ| are primitives and, therefore, cannot be reduced
any further. In contrast, |S| is a constructed set, hence, we have to analyze its complexity.
It is important to note that the size of S is independent of the threshold and, therefore,
of the number of compatible words. Furthermore, |S| does not grow exponentially with
increasing length of the PFM because the scores of a new column are only added to the
overall scores. This only increases the size of S linearly with increasing PFM length.
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Chapter 6

cis-regulatory modules (CRMs)

6.1 Introduction

Interaction of nearby TFs initiate or inhibit transcription of a gene (Fickett, 1996; Arnone
and Davidson, 1997; Yuh et al., 1998). The set of TFBS upstream of a gene is called a cis
regulatory module (CRM, Berman et al. (2002)). A CRM is a sequence region with dense
clusters of TFBS as demonstrated experimentally (Clyde et al., 2003; Harbison et al., 2004)
and computationally (Wagner, 1999; Lifanov et al., 2003). In general, they can be divided
into CRMs bound by the same TF - homotypic CRMs - and heterotypic CRMs bound by
different TFs (Wagner, 1997; Brown et al., 2002). Homotypic CRMs are often detected
using a scoring function (Wagner, 1999; Papatsenko et al., 2002), e.g. FLYENHANCER
(Markstein et al., 2002), SCORE (Rebeiz et al., 2002), and CLUSTER (Lifanov et al.,
2003). Common programs to find heterotypic CRMs are ClusterDraw (Papatsenko, 2007),
ModuleSearcher (Aerts et al., 2003), MCAST (Bailey and Noble, 2003), eCISANALYST
(Berman et al., 2004), Cister (Frith et al., 2001), Cluster-Buster (Frith et al., 2003), and
TargetExplorer (Sosinsky et al., 2003).

CRMs can be detected using ab initio discovery of TF motifs (e.g. (Zhou and Wong,
2004; Gupta and Liu, 2005)) or based on known TF motifs. We assume that the TF
motifs are known. Many approaches have been proposed integrating data of different kind
for improving CRM prediction (Pilpel et al., 2001; Manke et al., 2005; Yu et al., 2006).
Since the main characteristic of CRMs is their high local density of TFBSs, one essential
data source is always the DNA sequence annotated with TFBSs. Here, we focus on DNA
motifs represented by PFMs. Other approaches compute the co-operative binding energy
of multiple sites of TFs (GuhaThakurta and Stormo, 2001; Frith et al., 2004) using thermo-
dynamical models.

Figure 6.1: Two different approaches to detect CRMs: Upper panel illustrates approaches
which are based on short distances between TFBS. Lower panel visualizes detection of CRM
considering occurrences in windows.

Based on the PFM representation, GuhaThakurta (2006) classifies the approaches to find
CRMs into hidden Markov models (Crowley et al., 1997; Frith et al., 2001) and occurrence-
based approaches, which we also focus on. We further divide them into two approaches
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• relying on small distances between TFBSs, (Wasserman and Fickett, 1998; Klingenhoff
et al., 1999; Wagner, 1999)

• based on co-occurrences of TFBSs in a small window (Berman et al., 2002; Han-
nenhalli and Levy, 2002; Frith et al., 2002; Rateitschak et al., 2004; Bleser et al.,
2007).

The method to compute statistical significance is a difficult problem (Krivan, 2004) and
can be split up into

• assuming position independence (Wasserman and Fickett, 1998; Wagner, 1999; Frith
et al., 2002),

• employing randomizations (Hannenhalli and Levy, 2002; Bleser et al., 2007) or

• exact calculation (Boeva et al., 2007).

The position independence of binding site occurrences is strongly violated for (self-)similar
TFBS (Wagner, 1999; Pape et al., 2008c). The significance calculation based on randomiza-
tion also encouters problems for similar PFMs, hence, they are removed from the analysis
(Hannenhalli and Levy, 2002). In addition, incorporating the complementary strand, in-
troduces further dependencies and worsen the results. The exact calculation (Boeva et al.,
2007) based on a Aho-Corasick automaton (Aho and Corasick, 1975) has high computa-
tional complexity such that solutions for longer PFMs are hard to compute. To be more
precise, the asymptotical complexity is in the simplest case (each PFM occurs at least once,
i.i.d. background model) O(n|A|`|A|) where n denotes the sequence length, |A| is the al-
phabet size, ` the length (of the longest PFM) and |A| the number of compatible words.
As shown in Section 2.4.4, using a standard threshold selection method for the PFMs, the
set of compatible words has exponential size. Furthermore, the approach does not use the
complementary strand.

We propose a fast and accurate approximation for the significance calculation of CRMs cir-
cumventing the position independence assumption, incorporating similarity between PFMs,
and including the complementary strand. We define a CRM to be a sequence region (win-
dow) of defined length where all TFs of a given set have at least one occurrence. This
is called the co-occurrence event. To get statistically significant CRMs, the length of the
window has to be small such that the co-occurrence event is unlikely to happen by chance.
Firstly, we compute the probability of a CRM which is the probability of the co-occurrence
event in a random sequence given a window length. Considering the overlap probabilities
between the occurrences of the TFs, we capture the (self-)similarities of the PFMs and
most of the dependencies introduced by the complementary strand. We call this a first-
order approximation since we ignore dependencies between three or more positions. Based
on this calculation, we show how to compute the length of the window for a specific set of
TFs by defining the probability of the co-occurrence event as parameter. Intuitively, the
results show that for similar PFMs the length of the window is smaller than for dissimilar
PFMs given the same probability. Equally, the probability for the co-occurrence event is
higher for similar PFMs and smaller for dissimilar events. Hence, we can split sequences
into small (non-overlapping) parts and for each part determine whether it is a CRM with
a given false positive probability.

112



6.2 Number of Hits

1.

2.  4 of 7 windows with cooccurrences

3.    
0.3
0.2
0.1
0.0

1 2 3 4 5 6 70

Number of CoOccurrences

P
ro

ba
bi

lit
y

Figure 6.2: Proposed algorithm to compute co-operativity of a pair of TFs: First, divide
sequence into windows. Second, count windows containing at least one hit of each TF. Compute
corresponding count distribution under random sequence model to retrieve p-values for co-
operativity.

Furthermore, one is interested in whether specific TFs are generally involved in the same
CRMs. We call this co-operativity of TFs. Here, we also show how to compute the signifi-
cance of co-operativity of TFs. The sequence is divided into equal-sized windows covering
the whole sequence. We compute a p-value for the number of observed CRMs (windows
with the co-occurrence event) since we can derive the count distribution of CRMs. We
differentiate between non-overlapping and overlapping windows. In case of non-overlapping
windows the count distribution is exact besides the approximations in the calculation of
the co-occurrence event. In contrast, overlapping windows introduce further dependencies.
Hence, we compute error bounds using the Chen-Stein method. The accuracy of the results
is shown in Chapter 8.

In the remaining part of this chapter, we derive the formulae for CRMs and co-operativity.
In the first part, we restrict our view to pairs of TFs. Hence, we define a CRM to be
a window of given length with at least one occurrence for each of the two TFs (the co-
occurrence event). After introducing preliminary notation, we compute the probability of
the co-occurrence event on a random sequence of the size of the window. Based on this
result, we can also compute the size of the window such that the co-occurrence probability
is given as a parameter. Instead of considering theoretical occurrence frequencies for the
TFs, we incorporate empirical occurrence frequencies in the next step. Then, we extend
the statistic from detecting single CRMs to compute the co-operativity of a pair of TFs.
Statistically, we can translate this question and ask whether one observes more CRMs of a
given pair of TFs than one would do by chance. We assume that the sequence is divided
into equal-sized windows covering the whole sequence. Hence, one can employ a Binomial or
Poisson distribution for non-overlapping CRMs to compute the distribution of the number
of CRMs. If the CRMs are allowed to overlap, dependencies between the windows are
introduced. This leads to an approximation error for the count distribution. Therefore, we
explicitly state the Chen-Stein error bounds for using a Poisson distribution.

6.2 Number of Hits

We assume that each TF is given by a PFM. For each position j of a sequence, we have
an indicator random variable Yj(A) which is 1 if the summed score at this position reaches
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the threshold. We denote the random variables for the complementary strand by a prime,
e.g. Y ′

j (A). The threshold can be controlled by the type I error

αA := Pµ(Yj(A) = 1),

where µ is the null model corresponding to a random sequence. The model for the random
sequence is assumed to be an i.i.d. sequence defined by the GC content. We assume this
simple background model, since we require the distribution of hits on both strands to be
equal.

As stated before, a CRM is a window of given length w with at least one hit for TF A and
one hit of TF B. We split up the calculation of this co-occurrence event into three parts:
Let N∗

w(A) =
∑w

j=1(Yj(A) + Y ′
j (A)) denote the random variable for the number of hits of

TF A in a random sequence of length w where we allow hits overlapping the boundary of
the window. Now, we can state the probability p(w) of a CRM in a given window of length
w by

p(w) := Pµ(N∗
w(A) > 0, N∗

w(B) > 0). (6.1)

Direct calculation using the inclusion-exclusion formula yields

p(w) = 1− Pµ(N∗
w(A) = 0)− Pµ(N∗

w(B) = 0) + Pµ(N∗
w(A) = 0, N∗

w(B) = 0). (6.2)

In the remaining part of this section, we show how to compute these three probabilities.

6.2.1 Counts for one TF

One strand only

We start with the calculation of Pµ(N∗
w(A) = 0). We can rewrite the event {N∗

w(A) = 0}
using the hit indicator random variables. For the beginning, we ignore the complementary
strand. In this case, we obtain:

Pµ(N∗
w(A) = 0) = Pµ

 w∑
j=1

Yj(A) = 0

 . (6.3)

This means we have to compute the joint event that all Yj(A) = 0 for 0 < j ≤ w. In a
second step, we can conditionalize the last random variable at the end of the sequence on
the remaining random variables

Pµ

 w∑
j=1

Yj(A) = 0

 = Pµ

Yw(A) = 0

∣∣∣∣∣∣
w−1∑
j=1

Yj(A) = 0

 · Pµ

w−1∑
j=1

Yj(A) = 0

 . (6.4)
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Denoting the length of TF A by `A, we can state the dependencies between Yw(A) and the
remaining random variables. Since Yw(A) has the highest index w, all remaining variables
are to the left. Thus, Yw(A) only depends on random variables where the corresponding
motif overlaps with Yw(A). These are the random variables within a distance of `A − 1:
{Yw−j(A)}`A−1

j=1 . Hence, we can remove all other random variables from the conditional
part. We obtain for the conditional probability of Eq. (6.4) after shifting the indices by
w − `A positions and applying the definition of conditional probability

Pµ

Yw(A) = 0

∣∣∣∣∣∣
w−1∑
j=1

Yj(A) = 0

 =
Pµ

(∑`A
j=1 Yj(A) = 0

)
Pµ

(∑`A−1
j=1 Yj(A) = 0

) . (6.5)

The numerator can be computed after some basic transformations: First, we condition-
alize Y`A

(A) on the remaining random variables, again. Then, we consider the comple-
mentary event. Next, we use Bayes theorem to exchange the conditional part with the
non-conditional part. Finally, we use a first-order approximation by decomposing the joint
event into the product of the single conditional events

Pµ

 `A∑
j=1

Yj(A) = 0


= Pµ

`A−1∑
j=1

Yj(A) = 0

1− Pµ

Y`A
(A) = 1

∣∣∣∣∣∣
`A−1∑
j=1

Yj(A) = 0


= Pµ

`A−1∑
j=1

Yj(A) = 0

− Pµ

`A−1∑
j=1

Yj(A) = 0 |Y`A
(A) = 1

 · Pµ(Y`A
(A) = 1)

= Pµ

`A−1∑
j=1

Yj(A) = 0

− Pµ(Y`A
(A) = 1) ·

`A−1∏
j=1

[1− Pµ(Yj(A) = 1|Y`A
(A) = 1)] .

For convenience, we define variables for the conditional probabilities for any d

γ̄−d(A) := Pµ(Yj−d(A) = 1|Yj(A) = 1).

In Section 5.6, we show how to compute these conditional probabilities efficiently. For later
use, we set γ̄0(A) := 0 and correspondingly for B. Since Pµ(Y`A

(A) = 1) = αA, we can
substitute these terms in above equation and obtain

Pµ

 `A∑
j=1

Yj(A) = 0

 = Pµ

`A−1∑
j=1

Yj(A) = 0

− αA ·
`A−1∏
d=0

[1− γ̄−d(A)] .

For extension to the complementary strand, we start the product with d = 0 which does
not affect the product since 1 − γ̄0(A) = 1. Obviously, we can apply the same steps
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to Pµ(
∑`A−1

j=1 Yj(A) = 0) which yields following recursive formulae (see figure 6.3 for an
illustration)

fA(1) := Pµ(Y1(A) = 0) = 1− αA,

fA(k) := Pµ

 k∑
j=1

Yj(A) = 0

 = fA(k − 1)− αA ·
k−1∏
d=0

(1− γ̄−d(A)). (6.6)

j 1 . . . k − 1 k
Yj(A) x x x *

j 1 . . . k − 1 k
Yj(A) x x x

Figure 6.3: The two figures illustrate the terms of fA(k) in Eq. (6.6): The left panel

contains the right term of Eq. (6.6): αA ·
∏k−1

d=0(1 − γ̄−d(A)). We can write symbolically
P (∗ = 1) · P ({x = 0}|∗ = 1). The right panel contains fA(k − 1)=̂P ({x = 0}) . In this way,
fA computes the joint probability recursively.

The closed formula is given by

fA(k) = (1− αA)− αA ·
k−1∑
j=1

j∏
d=0

(1− γ̄d(A)) = 1− αA ·
k−1∑
j=0

j∏
d=0

(1− γ̄−d(A)) .

For convencience, we define

Pµ

 w∑
j=w−`A+1

Yj(A) = 0

 = fA(`A) =: Z∗A,

Pµ

 w−1∑
j=w−`A+1

Yj(A) = 0

 = fA(`A − 1) =: ZA.

Hence, we get for Eq. (6.5)

Pµ

Yw(A) = 0

∣∣∣∣∣∣
w−1∑

j=w−`A+1

Yj(A) = 0

 = Z∗A · Z−1
A .

Substituting into Eq. (6.3) yields

Pµ

 w∑
j=1

Yj(A) = 0

 = Z∗A · Z−1
A · Pµ

w−1∑
j=1

Yj(A) = 0

 .

This recursive formula yields
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Pµ

 w∑
j=1

Yj(A) = 0

 =
(
Z∗A · Z−1

A

)w−`A · Z∗A. (6.7)

Substituting A by B in all variables and functions, yields the corresponding probability for
TF B:

Pµ

 w∑
j=1

Yj(B) = 0

 =
(
Z∗B · Z−1

B

)w−`B · Z∗B. (6.8)

Both strands

Incorporation of the complementary strand only doubles the number of random variables
under consideration. In the first step, one also has to consider the palindromic hit (denoted
by γ̄′0(A)). This means that we have to extend the product by this term. Then, an additional
step follows for solving with respect to γ̄′0(A). Thus, we have to add the product (without
the palindromic hit) one more time to the sum. In fact, we use the symmetrie of the
background model which yields for 0 ≤ d < `A and any j:

γ̄−d(A) = Pµ(Yj−d(A) = 1|Yj(A) = 1) = Pµ(Y ′
j−d(A) = 1|Y ′

j (A) = 1),
γ̄′−d(A) = Pµ(Y ′

j−d(A) = 1|Yj(A) = 1) = Pµ(Yj−d(A) = 1|Y ′
j (A) = 1).

Now, we have to extend the definition of f since in each step we consider A and A′:

fA(0) := Pµ(Y1(A) + Y ′
1(A) = 0) = (1− αA)− αA

[
1− γ̄′0(A)

]
,

fA(k) := Pµ

 k∑
j=1

(Yj(A) + Y ′
j (A) = 0

 (6.9)

= fA(k − 1)− αA ·
k−1∏
j=0

[1− γ̄−j(A)][1− γ̄′−j(A)]

− αA

1− γ̄′0(A)
·

k−1∏
j=0

[1− γ̄−j(A)][1− γ̄′−j(A)]. (6.10)

In figure 6.4, fA(k) is graphically illustrated starting with the last term. The first equation
is straight-forward to derive: In this step, we only consider the two random variables Y1(A)
and Y ′

0(A). We shift the event Y ′
1(A) into the conditional part of the joint probability and

perform the same transformation as above. The formula for f(k) is derived by the same
strategy. The first term following f(k−1) contains the first-order approximated probability
for Yk(A) +

∑k−1
j=1(Yj(A) +Y ′

j (A)) = 0|Y ′
k(A) = 1. Since we defined γ̄0(A) = 0, we start the

product with index d = 0. The next term considers
∑k−1

j=1(Yj(A) + Y ′
j (A)) = 0|Yk(A) = 1.
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j 1 . . . k − 1 k
Yj(A) x x x x
Y ′

j (A) x x x *

j 1 . . . k − 1 k
Yj(A) x x x *
Y ′

j (A) x x x

j 1 . . . k − 1 k
Yj(A) x x x
Y ′

j (A) x x x

Figure 6.4: The three figures illustrate the terms of fA(k) in Eq. (6.9): The left panel contains

the right term of Eq. (6.9): αA

1−γ̄′
0(A) ·

∏k−1
d=0 [1−γ̄−d(A)][1−γ̄′−d(A)]. More symbolically written,

this is equal to P (∗ = 1) · P ({x = 0}|∗ = 1). The middle panel contains αA ·
∏k−1

d=0 [1 −
γ̄−d(A)][1− γ̄′−d(A)]=̂P (∗ = 1) ·P ({x = 0}|∗ = 1) and the right panel is fA(k− 1)=̂P ({x =
0}) . In this way, fA computes the joint probability recursively.

As we still start the product with index d = 0, we have to cancel the probability 1− γ̄′0(A)
of the product. In fact, the event Y ′

k(A) = 0 has already been removed from the joint event
in the term before. The closed formula is given by

fA(k) = 1− αA

(
1 +

1
1− γ̄′0(A)

)
·

k−1∑
j=0

j∏
d=0

[1− γ̄−d(A)]
[
1− γ̄′−d(A)

]
.

Using the corresponding definitions for ZA and Z∗A, we obtain Eq. (6.7) for both strands.
Again, computation for TF B is along the same line.

6.2.2 Joint Counts for two TFs

One strand only

The next task is to combine the statistic for both TFs which means to compute the proba-
bility to observe neither a hit of A nor a hit of B. For illustration purposes, we ignore the
complementary strand for the beginning. The extension to include the random indicator
variables of B is not as straight forward as to include the complementary strand because
there are no corresponding symmetries between A and B. Furthermore, A and B might
have different lengths. Therefore, we set `AB = max(`A, `B). We define the conditional
overlap probabilities between A and B for 0 ≤ k < `AB by

γ̄−d(A|B) = Pµ(Yj−d(A) = 1|Yj(B) = 1),
γ̄−d(B|A) = Pµ(Yj−d(B) = 1|Yj(A) = 1).

To simplify notation, we introduce two auxiliary functions. gA corresponds to the proba-
bility for the joint event of neither a hit for A nor for B given the hit of A at the most right
position. Correspondingly we define gB where the given hit is a hit of B:
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gA(k) := Pµ

k−1∑
j=1

(Yj(A) + Yj(B)) + Yk(A) = 0


=

αA

1− γ̄0(B|A)
·

k−1∑
j=0

j∏
d=0

[1− γ̄−d(A)] · [1− γ̄−d(B|A)] ,

gB(k) := Pµ

 k∑
j=1

(Yj(A) + Yj(B)) = 0

 = αB ·
k−1∑
j=0

j∏
d=0

[1− γ̄−d(B)] · [1− γ̄−d(A|B)] .

Here, we arbitrarily defined to remove Yj(B) from the joint event before removing Yj(A).
Due to the symmetry of αA[1− γ̄0(B|A)] = αB[1− γ̄0(A|B)] this choice has no impact on
the result. We obtain for fAB(k) for A and B

fAB(k) = 1− gA(k)− gB(k).

Again, using the corresponding definitions for Z∗AB := fAB(lAB − 1) and Z∗AB := fAB(lAB),
we can compute the probability to observe neither a hit of TF A nor of TF B:

Pµ

 w∑
j=1

[Yj(A) + Yj(B)] = 0

 =
(
Z∗AB · Z−1

AB

)1−lAB · Z∗AB. (6.11)

Both strands

Now, we can incorporate the complementary strand, again. For this purpose, we introduce
more functions h which are similar to g. The formulae are derived in the same way as the
functions g except that each step k corresponds to four random variables (both TFs and
both strands). Again, we have to choose an order of removal from the joint. We proceed
by starting with B′, then B, next A′, and finally A.

hA(k) :=
αA ·

∑k−1
j=0

∏j
d=0 [1− γ̄−d(A)] ·

[
1− γ̄′−d(A)

]
· [1− γ̄d(B|A)] · [1− γ̄d(B′|A)]

[1− γ̄′0(A)] · [1− γ̄0(B|A)] · [1− γ̄0(B′|A)]
,

hA′(k) :=
αA
∑k−1

j=0

∏j
d=0 [1− γ̄−d(A)] ·

[
1− γ̄′−d(A)

]
· [1− γ̄d(B|A′)] · [1− γ̄d(B′|A′)]

[1− γ̄0(B|A′)] · [1− γ̄0(B′|A′)]
,

hB(k) :=
αB ·

∑k−1
j=0

∏j
d=0 [1− γ̄−d(B)] ·

[
1− γ̄′−d(B)

]
· [1− γ̄d(A|B)] · [1− γ̄d(A′|B)]

1− γ̄′0(B)
,

hB′(k) := αB ·
k−1∑
j=0

j∏
d=0

[1− γ̄−d(B)] ·
[
1− γ̄′−d(B)

]
·
[
1− γ̄d(A|B′)

]
·
[
1− γ̄d(A′|B′)

]
.

Hence, we get following definition of fAB:
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fAB(k) = 1− hA(k)− hA′(k)− hB(k)− hB′(k).

Finally, substituting the corresponding variables ZAB and Z∗AB into Eq. (6.11), we obtain
the first order approximation for p(w).

6.3 Probability for Co-Occurrence

In this subsection, we explicitly state the formula for the probability p(w) of a co-occurrence
event and subsequently simplify it by using certain approximations. Afterwards, we invert
the formula to be able to compute the window size w(p) given the co-occurrence probability
p.

Using the derived expressions (Eq. (6.7), (6.8), and (6.11)), we can state the co-occurrence
probability in a first order approximation regarding the dependencies:

p(w) = 1−
(
Z∗A · Z−1

A

)w−`A · Z∗A −
(
Z∗B · Z−1

B

)w−`B · Z∗B +
(
Z∗AB · Z−1

AB

)w−lAB · Z∗AB.

We can simplify this expression by using some approximations. In fact, one chooses the
thresholds for the PSMs such that αA � 1 and αB � 1 holds. Hence, Z∗A, Z

∗
B, Z

∗
AB ≈ 1

since the probability to find no hit on a sequence of the length of the PFM is very high.
The same is true for ZA, ZB, ZAB which are even greater than the corresponding Z∗s.
Furthermore, the window size is much larger than the PFM lengths: w � `A, `B, lAB.
Hence, we can remove `A, `B, lAB from the exponents. Using these approximations, and
applying the limit of the exponential series three times, we obtain:

p(w) ≈ 1−
(
Z∗A · Z−1

A

)w − (Z∗B · Z−1
B

)w +
(
Z∗AB · Z−1

AB

)w
≈ 1− e(1−Z∗

A·Z
−1
A )·w − e(1−Z∗

B ·Z
−1
B )·w + e(1−Z∗

AB ·Z
−1
AB)·w.

In a final step, we substitute the exponents without w by new variables and obtain

rA = 1− Z∗A · Z−1
A , rB = 1− Z∗B · Z−1

B , rAB = 1− Z∗AB · Z−1
AB,

p(w) ≈ 1− e−rA·w − e−rB ·w + e−rAB ·w. (6.12)

In fact, we have approximated the three random variablesN∗(A), N∗(B), N∗(A)+N∗(B) by
three Poisson distributions P(rA),P(rB),P(rAB) and substituted into Eq. (6.2). Note that
Na +NB is computed by considering first-order dependencies between both TFs. Since we
only evaluate this random varibale at NA +NB = 0, the Poisson approximation is valid.
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6.3.1 Calculate Window Size

In Eq. (6.12), we present the formula to compute the co-occurrence probability in a window
of size w. In practise, the probability for the co-occurrence event is given as parameter and
the window size has to be computed. In this case, we have to find the roots of

1− exp(−rA · w)− exp(−rB · w) + exp(−rAB · w)− p.

Using the Newton approach, we obtain following recursion starting from a chosen initial
value w0:

wi+1 = wi −
1− exp(−rA · wi)− exp(−rB · wi) + exp(−rAB · wi)− p

rA exp(−rA · wi) + rB exp(−rB · wi)− rAB exp(−rAB · wi)
.

In case one requires a closed formula, one can apply a Taylor expansion to Eq. (6.12):

p(w) = 1 +
∞∑

k=0

(
rk
AB − rk

A − rk
B

)
· (−w)k

k!

E.g., the formula for a 2nd order expansion which already gives accurate results for small
p is given by

w(p) =
rAB − rA − rA
r2AB − r2A − r2A

+

√(
rAB − rA − rA
r2AB − r2A − r2A

)2

+
2p

r2AB − r2A − r2A
.

6.3.2 Empirical Frequencies for Hits

The probability for a false positive (α) can be derived from the PSMs and the background
model as shown at the beginning of this section. For simulated sequences, this probability
fits well to the observed frequency of hits. In contrast, biological sequences might contain
an enriched number of hits. In this case, the higher number of hits would bias the number
of windows with co-occuring binding sites. Thus, the enrichment should be incorporated
into the background model.

We suggest to estimate αA resp. αB by counting the number of hits and dividing by twice
the sequence length because of the complementary strand. The estimates α̂A and α̂B should
then be substituted in all formulae of this section.
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6.4 CRMs for a Set of TFs

So far, we derived formulae to compute the co-occurrence probability for pairs of TFs. Here,
we briefly extend the approach to deal with a set T of TFs with size |T |. Eq. (6.2) reduces
the calculation of the co-occurrence probability to compute the (joint) events of zero counts
of the TFs. For a set of TFs, we simply have to apply the inclusion-exclusion formula on
the count variables of all TFs:

Pµ(min
T∈T

N∗
w(T ) > 0) = 1−

∑
T∈T

Pµ(N∗
w(T ) = 0)+

∑
T∈T

∑
U∈T \T

Pµ(N∗
w(T ) = 0, N∗

w(U) = 0)−. . .

Hence, we only have to show how to compute the probability for no hits for all subsets
U ∈ P(T ) of the power set of T . This means, we have to compute Z and Z∗ for all U . Let
lT denote the maximum length of the TFs ` = maxT∈T `T . Then, we obtain

Z∗U = fU (`T ), ZU = fU (`T − 1)

where f is defined by

fU = 1−
|U|∑
t=1

(
ht,U + h′t,U

)
.

Note that the functions h also depend on the subset of TFs under consideration. Denoting
the elements of U by {U1, . . . , U|U|}, we obtain for h:

ht,U (k) =

αUt ·
∑k

j=0

∏j
d=0 [1− γ̄−d(Ut)]

[
1− γ̄′−d(Ut)

]∏|U|
τ=1,τ 6=t [1− γ̄−d(Uτ |Ut)] [1− γ̄−d(U ′

τ |Ut)]

[1− γ̄′0(Ut)]
∏|U|

τ=t+1 [1− γ̄0(Uτ |Ut)] [1− γ̄0(U ′
τ |Ut)]

,

h′t,U (k) =

αUt ·
∑k

j=0

∏j
d=0 [1− γ̄−d(Ut)]

[
1− γ̄′−d(Ut)

]∏|U|
τ=1,τ 6=t [1− γ̄−d(Uτ |U ′

t)] [1− γ̄−d(U ′
τ |U ′

t)]∏|U|
τ=t+1 [1− γ̄0(Uτ |U ′

t)] [1− γ̄0(U ′
τ |U ′

t)]
.

6.5 p-value for Co-operativity

Previously, we showed how to compute the co-occurrence probability p(w) in a given win-
dow, see Eq. (6.12). To compute co-operativity, we suggest to decompose the sequence into
non-overlapping windows of equal size and count the number x of CRMs (windows with the
co-occurrence event). Next, we can compute a p-value for the observed number of CRMs
by using the Binomial distribution B(x; p(w), n/w) where n is the sequence length and w
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the window size. Denoting the Bernoulli random variable of the ith window by Wi, and
the number of windows by m = n/w, we directly obtain

W :=
m∑

i=1

Wi ∼ B(x; p(w),m) (6.13)

since we assumed that non-overlapping windows are independent. Since the probability for
co-occurrence event is rather small while the number of windows is high, this distribution
is asymptotically a Poisson distribution P(ϑ) with ϑ = p(w) ·m if p(w) → 0 and m→∞.
In this thesis, we focus on the Poisson distribution.

6.5.1 Bounds for Overlapping Windows

Considering overlapping windows necessiates the step size s as an additional parameter.
The number m of windows becomes m = n/s− w + 1. We assume that n, s, w are chosen
such that m,n, s, w ∈ N+ and s < w < 1

2n. Obviously, overlapping windows are dependent
on each other. In this case, we can still use a Binomial or Poisson distribution but the
dependencies lead to an error in the approximation. Using the Chen-Stein method (Chen,
1975), the error can be quantified. The quantification is done in terms of the total variation
distance. Let U and V be any two random processes with values in the same space E, then
the total variation distance between their distributions (denoted by L(·)) is

dTV (L(U),L(V )) = sup
D⊂E

|P(U ∈ D)− P(V ∈ D)|

where D is assumed to be measurable. Here, we focus on the Poisson Approximation since
it yields slightly better error bounds. Thus, we calculate the bound for dTV(L(W ),P(ϑ)).
Let denote I := {i : 0 < i ≤ m} the index set of the Bernoulli variables. The main
idea is to define for each Bernoulli variable Wi a set Bi ⊆ I of variables which have
strong dependencies with Wi. We also require i ∈ Bi. In our case, there are only local
dependencies since only overlapping windows are dependent on each other. Therefore, we
capture all dependencies in the sets Bi which means that for each window i the set Bi

contains the index i and the indices of overlapping windows to the left and to the right.
Hence, we obtain the bound derived from Theorem 1 in Arratia et al. (1990) using an
improved bound (Barbour et al., 1992):

dTV (L(W ),P(ϑ)) ≤ 1− e−ϑ

ϑ
· (b1 + b2)

with

b1 :=
∑
i∈I

∑
j∈Bi

E[Wi] · E[Wj ], b2 :=
∑
i∈I

∑
j∈Bi,j 6=i

E[Wi ·Wj ].

The bound b1 is straight forward to compute as it only contains the first moments. We have
to consider the fact that the Bis for the first and last few windows contain less dependent
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Figure 6.5: The four disjoint events for two windows where the dark grey area indicates
the overlap. Regions containing an A or B must necessarily contain at least one hit of the
corresponding TF while Ā and B̄ label regions where the respective TF must not occur. In
blank regions, any TF and combinations of TFs might be present.

variables than windows in the middle of the sequence. Let r = w/s, then for example,
the first window has r − 1 overlapping windows, thus, |B1| = r since we also include
index 1 in the set. The second window additionally overlaps with the first window, thus,
|B2| = |B1|+ 1. The set size is incremented by 1 until the r + 1th window as this window
has equal number of overlaps to the left and to the right. At the end of the sequence, the
set size is decremented in the same way. Hence, we obtain

b1 = 2 ·
r∑

i=1

(r + i− 1) p(w)2 +
m−2r∑
i=1

(2r − 1) p(w)2 = p(w)2 (r (1− r + 2m)−m) .

The second bound b2 is more complicated to calculate because it contains the second mo-
ments. Since we consider Bernoulli variables, the second moment is the probability that
both variables are equal to one: E[WiWi+k] = Pµ(Wi = 1,Wi+k = 1). Considering only
two TFs A and B, we can write this probability in terms of the count random variables by
decomposing it into four disjoint events (see Fig. 6.5):

1. There is at least one hit of A and one hit of B in the overlapping part of the two
windows.

2. We observe at least one hit for A in each of the non-overlapping parts, and at least
one hit for B and no hit for A in the overlapping part.

3. We observe at least one hit for B in each of the non-overlapping parts, and at least
one hit for A and no hit for B in the overlapping part.

4. The overlapping part contains neither a hit of A nor of B while both non-overlapping
parts contain at least one hit of A and at least one hit of B.

The decomposition can be extended for three TFs A, B, and C by splitting each event into
two: First, where C has to occur in the overlapping part. Second, where C has to occur in
both non-overlapping parts but not in the overlapping part. Adding more TFs splits each
event further. Thus, we get for a set of TFs T
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6.5 p-value for Co-operativity

E[WiWi+k] = Pµ(Wi = 1,Wi+k = 1)

=
∑

U∈P(T )

Pµ

(
min
U∈U

N∗
d (U) > 0

)2

Pµ

(
max
U∈U

N∗
w−d(U) = 0, min

U∈T \U
N∗

w−d(U) > 0
)

where the size of each non-overlapping part is d = k · s while the overlapping part has
a length of w − d. This equation can easily be computed since the joint events can be
transformed into events we have computed before. E.g. considering only a pair of TFs, we
get the following second moment:

E[WiWi+k] = Pµ(Wi = 1,Wi+k = 1)
= Pµ(N∗

w−d(A) > 0, N∗
w−d(B) > 0)

+ Pµ(N∗
d (A) > 0)2 · Pµ(N∗

w−d(A) = 0, N∗
w−d(B) > 0)

+ Pµ(N∗
d (B) > 0)2 · Pµ(N∗

w−d(A) > 0, N∗
w−d(B) = 0)

+ Pµ(N∗
d (A) > 0, N∗

d (B) > 0)2 · Pµ(N∗
w−d(A) = 0, N∗

w−d(B) = 0)

= p(w − d) +
(
1− e−drA

)2
·
[
1− e−(w−d)rB − p(w − d)

]
+
(
1− e−drB

)2
·
[
1− e−(w−d)rA − p(w − d)

]
+ p(d)2 · e−(w−d)rAB .

To compute the bound, we observe that E[WiWi+k] is independent of i since all Wi are
identically distributed and have the same pairwise dependencies. Therefore, we clarify
notation by defining ζk := E[WiWi+k]. For the same reason, we also obtain ζk = E[WiWi−k].
Using the further definition of ζ =

∑r−1
k=1 ζk, we obtain for bound b2 applying the same logic

as above:

b2 = 2 ·
r∑

i=1

[
ζ +

i−1∑
k=1

ζk

]
+ 2(m− 2r)ζ = 2

(
mζ − rζ +

r∑
i=1

i−1∑
k=1

ζk

)
.

Here, we assume that the empty sum (
∑i−1

k=1 ζk for i = 1) is equal to 0.
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Chapter 7

Count Statistics

In Chapter 5, a new approximation for the count statistic of TFBS is derived. Here, we
compare the results of the approximation to competing approaches, as well as to results
based on a simulation. Therefore, we create a small set of artificial PFMs incorporating
typical difficulties for count statistics like self-overlap and palindromicity. After describ-
ing the simulation, we present the results. Finally, we compare the running time of our
approximation to the running time of the exact approach (Zhang et al., 2007).

7.1 Simulation

7.1.1 Sequences

To compare the new statistic with previous approaches, we use a simulation study. We
simulate 100,000 sequences of length 10,000 with an arbitrarily selected GC content of 40%
using an i.i.d. model. These sequences are annotated by binding sites of artificially con-
structed and real PFMs (see next paragraph). Counting the number of hits/clumps per
sequence and computing the frequency for each count, one retrieves a simulated count dis-
tribution for each PFM. Comparing the simulated count distribution with the theoretically
approximated distributions, we can easily assess the accuracy of the approximations, as
well, as comparing the approximations between themselves.

7.1.2 PFMs

We artificially construct four PFMs, each of them carrying a certain characteristic regarding
self-overlap, see Figure 7.1 for sequence logos (Crooks et al., 2004):

• ’nothing’: a PFM without any self-overlaps

• ’palindrome’: a PFM with a likely hit on the complementary strand

• ’repeat’: a PFM where the suffix matches the prefix such that one expects overlapping
hits in a chain.

• ’repeatpalindrome’: a combination of the ’palindrome’ and the ’repeat’.

129



Chapter 7 Count Statistics

Furthermore, we arbitrarily pick one real PFM from TransFac (Matys et al., 2003) with
a self-overlapping structure to show that the gain in accuracy is relevant in practise. We
select the palindromic PFM M00950 corresponding to the binding site of the MADS domain
protein AGAMOUS-like 15 (AGL15) (Tang and Perry, 2003).

Figure 7.1: Sequence Logos from left to right and top to bottom: ’nothing’, ’palindrome’,
’repeat’, ’repeatpalindrome’, and ’M00950’.

In a pre-processing step, we regularize the PFMs to ensure strictly positive frequencies.
Thus, we add pseudocounts to the position specific distributions according to the infor-
mation content of the position (Rahmann, 2003). In fact, positions with low information
content are shifted towards the background distribution. For positions with high informa-
tion content, the difference to the background distributions is enforced. Then, we compute
PSSMs from the regularized PFMs by taking the log-likelihood ratio of the nucleotide fre-
quencies of the binding site and the background model.

We set the threshold for each PFM according to Pape et al. (2006) ensuring that the
probability α500 for at least one false positive in a sequence of length 500 for any higher
threshold is 10% at maximum. Thus, in the case that one cannot balance α500 and β, we
obtain α500 ≈ 0.1. Furthermore, in case of a balanced threshold, α500 and β will not be
exactly equal due to the discrete nature of the score and, thus, of α500 and β. Applying this
procedure, the number of compatible words for PFM ’nothing’ using a threshold t = 136
with α500 = 0.013 and β = 0.01 is 1,142 only containing unique words. PFM ’palindrome’
(t = 99, α500 = 0.129 and β = 0.325) encodes 48 words based on 24 unique words while PFM
’repeat’ (t = 128, α500 = 0.118 and β = 0.553) has 702 words without any non-unique words
and, finally, ’repeatpalindrome’ (t = 125, α500 = 0.157 and β = 0.649) yields 50 words from
which 25 are unique. Thus, the compatible set of both PFMs with a palindromic structure
contain each word twice (for each strand once). The Transfac PFM ’M00950’ (t = 118,
α500 = 0.0785 and β = 0.0747) has 846,976 words with 429,812 unique words.
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7.2 Standard Count Statistics

7.2 Standard Count Statistics

In this section, we introduce the competing count statistics that we compare our approach
with. They are applied on the set of compatible words after removing redundant words
such that the assumptions are met.

• Binomial and Poisson Approximation without considering the self-overlap (see Section
3.4.2 for counts and Section 3.5.1 for clumps),

• Compound Poisson approach (Reinert and Schbath, 1999) considering homogeneous
clumps (see Section 3.3.3),

• Compound Poisson approach (Roquain and Schbath, 2007) modelling heterogeneous
clumps (see Section 3.5.1),

• and normal approximation (Waterman, 2000) for occurrences (see Section 3.5.1).

Note that enumeration of compatible words requires exponential time assuming a thresh-
old selection method based on the type-I or type-II error probabilities (see Section 2.4.3).
Furthermore, the self-overlaps introduce approximation errors. In more detail, the bino-
mial/Poisson approximation cannot deal with self-overlaps.

The classical compound Poisson approach (Reinert and Schbath, 1999) has two big prob-
lems: First, the number of compatible words might be fairly high which leads to large
bounds on the total variation distance. Second, incorporation of the complementary strand
can only be achieved by extending the set of compatible words by all reverse complementary
words. This almost always breaks the necessary assumption for the approximation that no
word is a substring of any overlap of any two other words. Therefore, we only use the
approximation for the clump statistics because there only the weaker assumption that no
word is a substring of any other word has to be fulfilled. This is indeed the case except for
a palindrome.

The improved compound Poisson approximation (Roquain and Schbath, 2007) only requires
that no word is a substring of any other word for both the clump and the hit distribution.
Hence, one would only expect problems with palindromes which lead to multi-sets of com-
patible words. So far, they cannot be handled by word counting approaches. Still, the
main drawback to enumerate all the compatible words remains. Furthermore, the approach
involves multiple matrix multiplications where the two dimensions of the matrices are equal
to the number of compatible words. This leads to numerical instabilities for large sets of
compatible words.

The main drawback of the normal approximation (Waterman, 2000) besides enumeration of
all compatible words is its assumption that occurrences are required to have high probability.
Obviously, this is not true for TFBS.
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7.3 Comparison of the Different Approaches Using Simulated
Data

We compare the approaches based on the p-values since the statistic will mainly be used
to retrieve p-values for observed number of hits/clumps. We present them after taking the
logarithm to base ten. Therefore, the p-p plots show log-p-values. The x-axis always refers
to the simulated distribution while the y-axis corresponds to the approximated distribution.
The more points are located on the diagonal, the better the approximation. Furthermore,
points below the diagonal correspond to underestimation of the p-values while points above
the diagonal are conservative approximations.

7.3.1 Artificial PFMs

Figure 7.2A shows the p-p plots of the ’nothing’ PFM. Most of the points lie on the diagonal.
Furthermore, there is no big difference between the binomial and Poisson approximations,
as well, as the the approach from Roquain & Schbath and the new approach. Only for
very small p-values, there is a subtle difference between the approximations: The binomial
and Poisson approaches seem to slightly outperform the others. However, the very small
p-values are based on very few sequences because such high numbers of hits/clumps do not
occur very often. Therefore, we ignore these points for interpretation. Only the normal
approximation underestimates the p-values systematically. As the Poisson approximation
works better, obviously, the rare word assumption is fullfilled instead of the normal approx-
imation assuming often-occurring words. The results for clumps do not differ. As there are
no overlaps, both the hit and the clump statistics are similar. Obviously, the new approach
captures this non-self-overlap.

Figure 7.2B contains the results for the PFM ’palindrome’. The single distribution lying on
the diagonal corresponds to our new approach. The binomial, Poisson, the normal and the
Roquain & Schbath approach substantially underestimate the p-values. For the binomial
and Poisson approximation, this is due to the fact that the number of hits is higher since
the PFM tends to hit on both strands the same time. Furthermore, there are always pairs
of points very close to each other. This is due to the hit on the complementary sequence
which always occurs with a hit on the 5′ − 3′ strand: Having one hit on one strand implies
a second hit on the other strand. Obviously, only the new approach can deal with this. In
contrast, the Roquain & Schbath approach does not lead to a reasonable approximation.
Since the set of compatible words contains each word twice but the approach can only deal
with a set of unique words, the weak approximation is not surprising. For statistics of
clumps, the Roquain & Schbath and the new approach lie fairly on the diagonal, as well, as
the Chen-Stein approximation. Here, the approximations for the Roquain & Schbath and
the Chen-Stein approach work because for clumps redundant words in the set of compatible
words have no influence.

Figure 7.2C compares the approximations for the ’repeat’ PFM. Binomial, Poisson, and
normal approximations look very similar. Neither these nor the other two approaches lie
on the diagonal. Though, the Roquain & Schbath and the new approach are more similar
to the diagonal. In general, the Roquain & Schbath estimates are lower than the ones
from the new approach and fit better to the diagonal. In addition, both approaches are

132



7.3 Comparison of the Different Approaches Using Simulated Data
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Figure 7.2: Comparison of the simulated p-values (x-axis) with the approximated p-values
(y-axis) in a log-scale p-p plot.

conservative in contrast to the others which significantly underestimate the p-values. The
approximations for the clump statistic are similar except that the new approach slightly
underestimates the p-values for small number of clumps and overestimates them for higher
number of clumps. In general, while the Roquain & Schbath approach yields higher esti-
mates leading to a more accurate approximation for small number of clumps but a slightly
weaker approximation for higher number of clumps. The other approaches overestimate
the p-values significantly. Here, the Chen-Stein approximation performs as bad as the bi-
nomial/Poisson approximation since the assumption that no word is a substring of the
concatenation of any other two words is extensively violated.

In Figure 7.2D the comparisons for the ’repeatpalindrome’ PFM is shown. In general, the
approximations are similar to the ones of the ’palindrome’ PFM with some influence of the
’repeat’ PFM. This shows that the new approach can deal with both types of similarity
at the same time in contrast to all other approaches. Only the new approach leads to a
reasonable approximation of p-values for the number of hits.

7.3.2 PFM M00950

The results for the Transfac PFM M00950 are shown in Figure 7.2E. Using the balanced
threshold to obtain a probability of a false positive in a region of 500bp equal to 7.6%,
the number of unique compatible words is equal to 429, 812. Therefore, comparison with
the Chen-Stein approximation, the normal approximation, and the Roquain & Schbath ap-
proach is not possible because these statistics could not be computed in a feasible amount
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Chapter 7 Count Statistics

λ1 λ2 Comment
nothing 0.0123 0.0000 λ1 small, λ2 = 0
palindrome 0.0016 -0.0016 λ1 small, λ2 = −λ1

repeat 0.2599 0.0000 λ1 large, λ2 = 0
repeatpalindrome 0.1792 -0.1526 λ1 large, λ2 ≈ −λ1

M00950 0.0455 -0.0435 λ2 ≈ −λ1

Table 7.1: The two characteristic values given by the Eigenvalues of matrix A for each PFM.

of time. The comparison with the simulated p-values shows that the new approach fits very
well. In contrast, the binomial/Poisson approximations show the typical significant devia-
tion we have already seen for the artificial PFMs. Hence, in such a realistic framework, the
new approach is the only possiblity to compute the count statistic without simulations.

7.4 Characteristic Values

Table 7.1 shows the characteristic values for each PFM. The ’nothing’ PFM has a low first
eigenvalue while the second eigenvalue is equal to zero. Since the PFM has no self-overlap,
these two characteristic values confirm the analysis given in the method section. For the
’palindrome’ PFM the equation λ1 ≈ −λ2 holds because the only self-overlap is given by the
the palindromic property of the PFM. The ’repeat’ PFM has a much higher first eigenvalue
than the ’nothing’ PFM since it has a strong repeat-structure. Since there is no palindromic
feature within the PFM, we obtain λ2 = 0. In constrast, the ’repeatpalindrome’ PFM
contains both self-overlaps, thus, λ2 < 0 but λ1 6= −λ2. Finally, the PFM ’M00950’ has also
a clear palindromic self-overlap. All these observations are confirmed by the sequence logos
(see Figure 7.1) and the resulting count statistics (see Figure 7.2). Thus, the characteristic
values describe the self-overlapping features well. In the given cases, the self-overlap is clear
for illustration purposes but in more difficult cases they shed light on the self-overlapping
structure.

7.5 Running Time Comparison

Here, we compare the running time of the exact approach (Zhang et al., 2007) described
in Section 3.2.1 and Section 3.4.1 with the running time of the approximation of our ap-
proach. The implementation of the exact approach MotifRankMatrix (http://bio.dlg.
cn/MotifRankIntro.html) offered by Zhang et al. (2007) is used for the exact calculation
while the code for the approximation is based on our own code (http://mosta.molgen.mpg.de).
We only slightly changed the MotifRankMatrix to implement time measure ability and to
pass parameters from the command line (threshold, number of hits).
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7.5 Running Time Comparison

7.5.1 Simulation

We only measure the time of the calculations for each algorithm. Reading of the input
and motif detection (for MotifRankMatrix) are discarded. Both programs use the same
threshold which is controlled by the type I error rate α for a 500 bp region. The count
distribution is computed until the approximated probabilities are smaller than 10−9.

The simulation is performed for different sequence lengths (500bp to 10,000bp in 500bp
steps), for different PFM lenghts (5 to 15 positions), and two tresholds (α = .01 and
α = .1). In each simulation, we generate 10 PFMs: For each PFM, we randomly draw from
a Dirichlet distribution with parameters (1, 1, 1, 1) for each column a probability vector.
This probability vector is multiplied by 30 and rounded to be an integer. This means, that
the PFMs are based on 30 sequences. We ensure that the information content for each
PFM is at least 2 bits.

7.5.2 Results

Figure 7.3A shows the comparison of the algorithms for different PFM lenghts on a sequence
of length 5000bp. The exact approach has a exponential increase of the running time for
increasing PFM length. E.g., a PFM of length 12 takes around 20 minutes for α = .1 and
1 minute for α = .01. Obviously, the threshold has a strong influence on the running time.
The generated PFMs longer than 13bp cannot be computed for α = .1 at all. PFM of length
15 with α = .01 takes around 1.5h. In contrast, the running time of the approximation is
always less than or equal to 1s. For smaller PFMs, the running time differs for α = .01 and
α = .1 but for longer PFMs, the difference diminishes.

Figure 7.3: Running time comparison in s for randomly generated PFMs. Upper panels
contains different PFMs length while the lower panel varies sequence length.
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The influence of the sequence length for a PFM of length 11 is shown in figure 7.3B. The
running time for the exact approach increases with sequence length. Again, we observe a
strong difference for the choice of α for the exact approach. For a sequence length of 10,000
the running time is around 40s for α = .01 and around 10 minutes for α = .1. In contrast,
the approaximations takes less than 1/2 s. Furthermore, the running time is independent
of the sequence length for the approximation.

The results show that the running time of the exact approach is much higher than for the
approximation. There are three parameters influencing the running time: threshold, PFM
length, and sequence length.

Threshold The threshold defines the number of compatible word (words with a score
higher than the threshold). The exact approach enumerates all compatible words. Since
the number of compatible words grows exponentially with increasing PFM length, the
influence on the running time is strong. In contrast, the approximation only enumerates
the compatible scores. As mentioned in the corresponding manuscript, the bounds for the
scores which have to be considered take advantage of a high and low thresholds. Therefore,
the influence is very small.

PFM Length Here, we can draw a similar conclusion: The longer the PFM, the more
compatible words. Thus, the influence for the exact approach is very strong and for the
approximation very small.

Sequence Length The exact approach runs over the sequence similar to an automaton.
Therefore, the running time depends on the sequence length. Furthermore, the number
of hits depend on the sequence length. Since also the p-values for the number of hits are
computed iteratively by running over the sequence, the running time strongly depends on
the sequence length. In contrast, the approximation uses the compound Poisson distribution
without a dependence on the sequence length.

7.6 Discussion

The results clearly indicate that the new approximation for the count statistic of PFMs
retrieves very accurate results. In contrast to all previous works, we incorporate the com-
plementary strand, which introduces further dependencies of overlapping hits. Due to
explicit modelling of these dependencies, as well as dependencies between overlapping hits
on the same strand, we are able to compute precise p-values for any PFM. Furthermore, we
have shown how to compute two characteristic values describing the tendency of overlaps
and palindromic hits of a given PFM with the same algorithm. The time complexity neither
depends on the sequence length nor on the number of compatible words. Therefore, the
algorithm is very efficient as the comparison with the running time of the exact approach
shows. It might be further improved using the Fourier transform with the convolution
theorem (Press et al., 1992; Keich, 2005).
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7.6 Discussion

Comparison with other approaches shows that our approach has highest accuracy. Further-
more, most of the competing approaches enumerate all compatible words W. Since |W|
grows exponentially with the length of the PFM the overall-running time is exponential.
Hence, the normal approximation (Waterman, 2000), the Chen-Stein approach (Reinert and
Schbath, 1999), as well as the Roquain & Schbath approach (Roquain and Schbath, 2007),
and the exact approach (Zhang et al., 2007) cannot generally be applied in practice.

The exact approach seems to work in practical time for small PFMs on small sequences with
a high threshold. If any of these parameters change, the running time grows significantly
such that results cannot be obtained in reasonable time. Then, it is more appropriate to
use the approximation which also has been shown to be very accurate.

We also want to mention that the memory requirements differ significantly: While the new
approach has to keep all compatible words in memory, space requirement quickly exceed
1GB. In contrast, the two dimensional score distribution only needs a few MBs because
only the quantiles are kept which reach the threshold.

A major drawback of the new approach is the restricted background model. So far, we
only use a symmetric i.i.d. model defined by the GC content. Therefore, the statistics
are symmetric between both strands. However, extension to symmetric Markov models is
possible but increases computional complexity of the score convolution.
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Chapter 8

Co-Occurrences and Co-Operativity

In Chapter 6, a new statistics for computing the significance of CRMs was developed.
Here, a comparison for CRM probabilities for TF pairs is performed and analyzed based
on simulations. In a second step, empirical frequencies are considered in the simulation by
artificially implanting motifs. Lastly, co-operativity with non-overlapping and overlapping
windows including error bounds are shown. Eventually, we discuss the impact of the new
approach and its results.

8.1 Simulation

8.1.1 Alternative Approach ignoring Dependencies

For comparison, we compute the statistics for the probability of at least one occurrence
of each TF by a simple approach ignoring dependencies between the positions. We obtain
with similar notation as in Chapter 6 and incorporating the complementary strand

Pµ(N∗
w(A) = 0) ≈ (1− αA)2w ,

Pµ(N∗
w(B) = 0) ≈ (1− αB)2w ,

Pµ(N∗
w(A) = 0, Nw(B) = 0) ≈ [(1− αA) · (1− αB)]2w ,

whereN∗
w(A) denotes the number of occurrences of TF A in a sequence of length w including

hits overlapping the boundary of the sequence. Furthermore, µ describes the symmetric
i.i.d. sequence model. αA is the probability of an occurrence of A at one position. For the
rates, we obtain

r∗A ≈ 2αA−α2
A, r∗B ≈ 2αB−α2

B, r∗AB ≈ 2[1−(1−αA)·(1−αB)]−[1−(1−αA)·(1−αB)]2.

Hence, we obtain for the probability p(w) of at least one occurrence of each TF A and B
in a sequence of length w

p∗(w) = 1− e−r∗A·w − e−r∗B ·w + e−r∗AB ·w.

Obviously, the approach does not incorporate similarities between the TFs A and B.
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8.1.2 Sequences

The approximations of the new and the alternative approach are compared with results
from a simulation. The co-occurence probability for a pair of TFs is the probability that
both TFs have at least one hit in a random sequence of given length. Thus, we generate
random sequences and count the number of co-occurence events. The frequency of these
events should match with the approximations. We generated 100 sequences each of length
1,000,000 using an i.i.d. background model with a GC content of 50%. After dividing each
sequence into the given window length, we use the total observed frequency of co-occurence
events for comparison. We similarily proceed for the p-values for co-operativity using the
number of counts of co-occurence events for each sequence.

8.1.3 PFMs

We create five PFMs manually, see Figure 8.1 for sequence logos (Crooks et al., 2004). Since
one can anticipate that overlapping structure between PFMs has an influence on the result
of the approximation, we include PFMs with/without self- and inter-repetive elements:

• ’nothing’: A PFM with consensus ’AAACAAACCCCC’.

• ’repeat’: A PFM with strong self-repetitive elements with consensus ’ACACACA-
CAC’.

• ’palindrome’: A PFM which always yields a hit on the complementary strand if there
is a hit on the leading strand with consensus ’AA[CG][CG][CG][CG]TT’.

• ’repeatpalindrome’: A PFM which always yields a hit on both strands and has a
repetitive structure with consensus ’ACGTACGT’.

• ’overlap’: A PFM which overlaps with PFM ’repeat’ and with PFM ’repeatpalin-
drome’ with consensus ’ACACGT’.
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Figure 8.1: Sequence Logos from left to right and top to bottom: ’nothing’, ’palindrome’,
’repeat’, ’repeatpalindrome’, and ’overlap’.
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8.2 Results

Before we can annotate the sequences, one has to compute PSSMs from the PFMs by taking
the log-likelihood ratio of the nucleotide frequencies of the binding site and the background
model. We regularize the PSSMs to avoid zero entries in the PFMs by adding pseudocounts
to the position specific distributions according to the information content of the position
(Rahmann, 2003). Next, one has to determine a threshold for each PFM. The threshold
controls the probabilities of the type I error α and the type II error β. Probabilities α and
β can be computed by the convolution of the position-specific scores and the respective
nucleotide probabilities as weights (Rahmann, 2003). We set the threshold using the type-I
extended error with parameter 10% (see Section 2.4.3 for details).

8.1.4 Implanted Motifs

For the analysis of the impact of higher motif frequencies, we modified the random sequences
by implanting additional motifs for some PFMs:

• ’palindrome’: At each position of the sequence, we implanted the consensus of the
palindrome with a probability of .0004. We choose this number since it is not a
multiple of α. Otherwise, artifacts are generated especially for the palindrome motif
since one always detects two hits at the same time.

• ’overlap’: Using the same procedure we implanted the corresponding consensus with
a probability of .0008.

8.2 Results

In this section, we compare the co-occurence probability p of the approximation with the
results from the simulation. First, we show results for simulated sequences with the the-
oretically obtained rate α. Subsequently, we consider simulated sequences with implanted
motifs. Thus, the theoretically computed α is too small. To capture the influence, we com-
pare the approaches based on the theoretically computed and the empirically computed
α.

8.2.1 Co-Occurence Probability

Figure 8.2 shows the comparison for all pairs of the five PFMs and for different win-
dow sizes: The size of the window increases from 100bp up to 5000bp in 100bp steps.
On the one hand, one can clearly state that the result of the simulation fits well with
the new approach which considers dependencies between positions. On the other hand,
the alternative approach which assumes position independence performs well for the pairs
’nothing’-’repeat’, ’nothing’-overlap’, and little worse for ’repeat-overlap’. In cases includ-
ing at least one PFM containing a palindrome, the alternative approach over-estimates the
co-occurence probabilty. The worst result for the alternative approach is obtained by the
pair ’palindrome’-’repeatpalindrome’ where both PFMs contain the palindrome.

The alternative approach over-estimates the value for p because the probability of hit is
higher than the probability of a hit given no hits at the surrounding positions (under the
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Figure 8.2: Pairs of TFBS and their probability (y-axis) for co-occurences in a window for
different window lengths (x-axis). Blue circles are the probabilities yielded by simulation, red
’x’ marks the new approach results and green ’+’ corresponds to the approach with assumed
independencies.

assumption that the probability of a hit is very small). Since the palindromes and (less) the
repetitive elements in the PFMs increase the strength of the position dependencies, it is not
surprising that the alternative approach performs worse in these situations. Furthermore,
the impact of palindromes is higher than for repetitive structures which is due to the fact
that in case of our palindromic PFMs all positions are covered by both PFMs while the
overlap probabilities for repeats are smaller as non-overlapping positions contain further
randomness.
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Figure 8.3: Pairs of TFBS and their co-occurence probability (y-axis) in a window for different
window lengths (x-axis) where motifs for palindrome and overlap are implanted in the sequences.
Blue circles are the co-occurence probabiities retrieved by simulation, red ’x’ marks the new
approach results based on theoretically computed αs, brown ’x’ is for the new approach based
on empirically retrieved αs, green ’+’ corresponds to the approach with assumed independencies
with theoretically computed αs, and yellow ’+’ based on empirically retrieved αs.

Next, we present the results regarding random sequences with implanted motifs. Figure 8.3
contains all pair-wise co-occurence probabilities. In contrast to Fig. 8.2, the new approach
based on theoretically computed α does not fit for the simulated probabilities if at least one
of the two TFs is either palindrome or overlap. Hence, adjustment of α is necessary. The
adjusted new approach accurately approximates the simulated probabilities in all cases.
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8.2 Results

Interestingly, the approach with independence assumption based on the theoretically com-
puted α performs better than before if the palindrome is involved except for the pair with
the overlap. Without implanted palindromes, this approach overestimated the probabili-
ties. Here, we increase the frequency and, thus, obtain higher probability for co-occurences
which match to the probability of the independence approach. Therefore, it seems that the
error based on the self-overlap in the approximation for sequences without implanted motifs
is eliminated by the error of the wrong frequency of the motif. Hence, this is likely to be
an artifact. This is confirmed by the fact that the approximation for the pair ’palindrome’
and ’overlap’ yields a high error. Furthermore, the pair ’nothing’ and ’overlap’ which do
not have and do not share similarities achieves the same error for the new approach and the
independence approach with theoretically computed α in contrast to the two approaches
based on empirically retrieved α. In general, also the independence approach with empiri-
cally retrieved α does not perform well in cases of similarities.

8.2.2 p-value for Co-operativity

In this subsection, we consider the p-value for co-operativity. In contrast to the last sub-
section where we considered the co-occurence probability for a window, here, we use the
Poisson approximation to compute a p-value for the number of CRMs. First, we describe
the results using a non-overlapping window of size 100bp. Subsequently, we show the ap-
proximation using an overlapping window of size 100bp slided by 50bp steps and the derived
error bounds.
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Figure 8.4: The figure shows the comparison of the log-transformed simulated p-values (x-
axis) and the log-transformed approximated p-values (y-axis) for co-operativity of pairs of TFs.
The left plot considers the two TFs ’palindrome’ and ’nothing’, the right part contains ’repeat’
and ’overlap’. The upper row considers non-overlapping windows of size 100bp. The lower
row shows overlapping windows of size 100bp slided by 50bp. The yellow area indicates the
Chen-Stein bounds.

Figure 8.4 shows in the upper row a comparison of the log-transformed co-operativity
p-values retrieved by the simulation and the new approach. The window size of 100bp
yields a window probability of p = 0.0002. Although, the comparison for ’palindrome’ and
’nothing’ only contains co-operativity probabilities for observing 0,1, and 2 windows with
at least one hit for A and B, the approximation works well since all points are almost
on the diagonal. Using the same window size for the two TFs ’repeat’ and ’overlap’, the
co-occurence probability becomes p = 0.0025. This is due to the similarity of ’repeat’
and ’overlap’. It is not surprising that the simulation yields higher numbers of observed
windows. Still, the approximation fits well to the simulated p-values. Furthermore, the
p-value for at least two observed windows with co-occurences for TFs ’palindrome’ and
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Chapter 8 Co-Occurrences and Co-Operativity

’nothing’ is about 2.5 · 10−4 while for TFs ’repeat’ and ’overlap’ one needs to observe at
least four CRMs for an equally low p-value. The results for the other pairs of TFs are
shown in the Supplementary Material.

Overlapping Windows

Figure 8.4 shows in the lower row the log-transformed co-operativity p-values for two pairs of
PFMs by using a sliding window approach with window size 100bp and step size 50bp. The
figure also shows the error bounds from the Chen-Stein approximation as yellow background.
If the computed p-value becomes orders of magnitude smaller than the bound, the upper
bounds looks constant. If the p-values become smaller than the bound, the lower bound is
equal to 0 which corresponds to −∞ in log scale.

In the left part of the lower row of Fig. 8.4, the considered pair of TF contains the
’palindrome’ and the ’nothing’ motif. The approximated co-operativity p-values are smaller
than the simulated p-values. Still, all of them are within the bounds given by the Chen-
Stein approximation. Since we ignore the window dependencies in the approximation, the
error is not surprising. The upper bound for high number of observed windows is 0.027.
The approximated co-operativity p-values for the pair ’repeat’ and ’overlap’ in the right
part of the lower row of Fig. 8.4 also underestimate the real p-value. Here, the upper
bound is equal to 0.27. The reason for the higher bounds is the similarity between both
TFs. Due to the similarity, the dependencies between the windows are stronger. Obviously,
the Chen-Stein error bounds capture these dependencies. The results for the other pairs of
TFs are shown in the Supplementary Material.

8.3 Discussion

We show that the co-occurence probability (at least one binding site for each of two TFs
in a given window) is influenced by position dependencies. We derive a first-order approxi-
mation to consider the strongest dependencies. We can conclude from the comparison with
simulations that the approximation is sufficient to obtain accurate results. Furthermore, in
case of motifs with a higher background frequency of occurences, we show that it is nec-
essary to incorporate this frequency into the background model. Results show that simple
substitution of the theoretically computed frequency by the empirically retrieved frequency
adjusts the approximation well. We also give results for the co-operativity p-value cal-
culation for a pair of TFs. They show that we can accurately compute this p-value for
non-overlapping windows. In the case of overlapping windows, the similarity between the
TFs strongly influences the precision of the approximation. Using Chen-Stein error bounds,
we can compute the precision of the approximation.

Using these results, one can conduct an analysis for co-occurences of TFs. In a first step,
one would adjust the window size and the co-occurence probability for each pair of TFs.
Using the described statistics, one can set the window size such that the probability for co-
occurence within this window is reasonable small. If one decides to use overlapping windows,
one can also compute the error bounds for the p-value approximation of co-occurences before
running the analysis. After setting the window size such that the probability and the error
are reasonable small, one runs the analysis and retrieves accurate p-value approximations
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8.3 Discussion

for the co-operativity of TFs. In fact, the choice of the co-occurence probability or the
window size is rather robust since the Poisson approximation for the number of windows
considers both as parameters to compute the p-value.

145



146



Chapter 9

Similarity of DNA Motifs

9.1 Introduction

Many computational tools deal with ab initio discovery of new PFMs on a set of related
sequences (Tompa et al., 2005). Since there is no best method, several programs are usually
applied resulting in a redundant set of PFMs. Furthermore, the methods might discover
PFMs similar to known PFMs. Therefore, either similar PFMs should be removed or
merged in to a new PFM. Thus, an appropriate similarity measure for PFMs is required.

Most similarity measures consider PFMs as probability distibutions. Hence, the distance
between the distributions is used as dissimilarity measure. Due to the position indepen-
dence of PFMs, the comparison is done column-by-column which has been shown to work
well (Liu et al., 1990). The Pearson correlation coefficient which has been shown to be more
effective than other methods (Pietrokovski, 1996) is widely used. Wang and Stormo (2003)
describe the average log-likelihood ratio method. Schones et al. (2005) and Kielbasa et al.
(2005) calculate the independence of the columns of two PFMs using the χ2 statistic (Fleiss
et al., 2003). The Kullback-Leibler distance is also often used (Roepcke et al., 2005; Aerts
et al., 2003). The Tomtom algorithm (Gupta et al., 2007) can use any of these measures to
compute a null distribution of similarity scores to obtain p-values. An additional measure
described by Kielbasa et al. (2005) does not compute the distance between the PFM distri-
butions but the correlation between the scores of the PFMs on a given sequence. The idea
to correlate scores on random sequences is proposed in Liefooghe et al. (2006). However,
they do not propose a method to summarize the correlations for different overlaps.

In spite of the wealth of literature on this topic, to date there is neither a ’natural’ nor
a general (model independent) definition of the similarity of two DNA motifs. Here we
propose what we think is a natural similarity measure: Two PFMs should be regarded as
similar when they describe similar binding sites. In this case, they obtain a high number
of overlapping hits on a random sequence. Hence, the number of hits on the sequence is
correlated between both PFMs. Considering the number of hits for a PFM on a random
sequence as a random variable, the correlation is captured in the covariance between the
random variables of two PFMs. We normalize the covariance by the sequence length and
compute the asymptotic covariance for the sequence length approaching infinity. This
measure does not depend on the PFM model. As long as a DNA motif model allows the
calculation of the count distribution, one can also compute the asymptotic covariance -
also with an instance of another DNA motif model. And, thus, compute the similarity.
Furthermore, we introduce a related measure based on log-odd scores for the maximum
overlap probability for the clustering, which is presented in Chapter 10.
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The covariance approach is related to the score correlation methods (Kielbasa et al., 2005;
Liefooghe et al., 2006): The covariance capturing the tendency of overlapping hits is derived
using the two-dimensional joint score distributions for each possible overlap between both
PFMs. The two dimensions of the joint distributions correspond to the score distributions
of the two PFMs. On the one hand, the probability of an overlapping hit is the quantile
of the joint score distribution with both scores greater or equal than the corresponding
thresholds. On the other hand, the empirical score correlation method (Kielbasa et al.,
2005) approximates the correlation between both score distributions. A higher correlation
of the scores is related to a higher joint probability of scores greater or equal than the
thresholds. Therefore, all three approaches are based on similar ideas. However, the new
approach presented here does not use an approximation for the score correlation as and it
naturally summarizes the possible overlap positions by computing the covariance.

As mentioned above, Gupta et al. (2007) developed the Tomtom algorithm to compute
the null distribution of similarity scores. Although we use a similar algorithm, we do
not compute the null distribution of similarity scores but of motif scores based on the
PFMs. Hence, we circumvent the arbitrary choice of a column-by-column similarity measure
and, instead, we can use the covariance for summarization instead of a minimum p-value
statistic.

We show the performance of the new approach by a simulation. We use the ratio of
overlapping and non-overlapping hits in simulated sequences to obtain a similarity between
pairs of PFMs. A generated PFM family is used for comparison with the χ2 test which
performed best in Schones et al. (2005), the Kullback-Leibler distance (Roepcke et al., 2005;
Aerts et al., 2003), and the best Tomtom approach (Gupta et al., 2007) using the euclidean
distance. Since the exact Fisher-Irwin test (Bailey, 1977) is as good as the χ2 test, we
focussed on the latter one. Furthermore, we omit the score correlation (Kielbasa et al.,
2005) because its performance is similar to the χ2 test (Kielbasa et al., 2005). We also
use a subset of Transfac (Matys et al., 2003) PFMs and correlate the simulated similarities
with our approaches.

The computation of the asymptotic covariance is described in Section 5.3.2. Hence, we skip
its detailled presentation here, and shortly review alternative methods. We also describe
the generation of the PFM family for the simulation. Finally, we present a comparison
of the approaches and the performance on Transfac PFMs and discuss the impact of the
results.

9.2 Methods

We define similarity between two PFMs by its asymptotic covariance. Hence, we obtain

S(A,B) := lim
n→∞

n−1 Cov
[
Nn(A) +Nn(A′), Nn(B) +Nn(B′)

]
. (9.1)

Its computation is described in detail in Section 5.3.2.

We also derive a second similarity measure based on the maximum overlap probability to
perform clustering (see Chapter 10). For each possible shift d, we consider the ratio of the
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overlap probability and the probability of two independent hits of A and B. Obviously,
the denominator corresponds to the probability of two hits under a null model where A
and B are independent. In contrast, the numerator contains the probability of two hits
considering the dependencies between A and B. Applying the logarithm to the ratio yields
log-odds scores:

S′d(A,B) := log
(
γd(A,B)
αA · αB

)
,

where γd(A,B) denotes the joint probability of an occurrence of A and d positions later an
occurrence of B. Taking the maximum over all shifts d and all pairs of A,A′ and B,B′, we
can define the similarity measure Smax(A,B):

Smax(A,B) := max
(

max
d
S′d(A,B),max

d
S′d(A

′, B), max
d
S′d(B,A),max

d
S′d(B

′, A)
)
.

Again, we are using certain equalities derived from the symmetric background model, in
detail: S′d(A,B) = S′d(A

′, B′), S′d(A
′, B) = S′d(A,B

′) and correspondingly for B followed by
A.

Since we compare the new approaches with existing alternative approaches, we give a brief
review of those in this subsection. The alternative approaches presented here are based on
a column-by-column comparison. The course of action is the same for all approaches: In
the first step, a score or p-value is obtained for each position for each possible shift/gapless
alignment. In a second step, the scores/p-values for each position are summarized yielding
a score/p-value for each shift. Finally, the score/p-value for all shifts are summarized to
one final value.

As introduced in Schones et al. (2005), the χ2 statistic is used to compute the probability
whether two columns are drawn from the same multinomial distribution. Let mXa be the
number of bases a ∈ A for PFM X where A denotes the alphabet. The marginal for PFM
X is mX =

∑
a∈AmXa. The nucleotide marginals for two PFMs X and Y are denoted by

ma = mXa +mY a. The overall number of counts is m∗. Denoting the observed number of
counts with an upper index o and the expected number of counts by me

Xa = mX ·ma/m
∗,

we obtain a p-value using a χ2 statistic with three degrees of freedom:

∑
a∈A

(
(mo

Xa −me
Xa)

2

me
Xa

+
(mo

Y a −me
Y a)

2

me
Y a

)
∼ χ2

3

The p-values for all columns are summarized using the geometric mean. The final p-value
is the minimum of the p-values for each shift.

The Kullback-Leibler distance (Kullback, 1959) is often used as a similarity measure in this
context (Roepcke et al., 2005; Aerts et al., 2003). Using above notation the symmetric form
is defined by:
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1
2

[∑
a∈A

(
mo

Xa

mo
X

log
mo

Xa ·mo
Y

mo
X ·mo

Y a

+
mo

Y a

mo
Y

log
mo

Y a ·mo
X

mo
Y ·mo

Xa

)]

The distances for the positions are summarized using the mean. The overall distance is
computed by taking the maximum over all shifts.

The Tomtom algorithm (Gupta et al., 2007) can use any column-by-column similarity mea-
sure. The authors show that the euclidean distance introduced in this area by Choi et al.
(2004) performs best. The distance is defined by

−

√√√√∑
a∈A

(
mo

Xa

mo
X

−
mo

Y a

mo
Y

)2

.

The sum of the distances for all position are the so-called raw scores. The Tomtom algorithm
approximates a null distribution of these raw scores to obtain a p-value. The p-values for
all d shifts are summarized by computing the p-value for the smallest observed p-value p∗

by 1− (1− p∗)d.

9.2.1 Data

In this section, we describe the simulation, the Transfac and Jaspar set of PFMs and their
preprocessing. In a first step, we compute PSSMs from the PFMs by taking the log-
likelihood ratio of the nucleotide frequencies of the binding site and the background model.
To ensure strictly positive ratios one adds pseudocounts in a step called regularization. We
add pseudocounts to the position specific distributions according to the information content
of the position (Rahmann, 2003), for details see Section 2.4.1. We set the threshold by the
type-I extended method (see Section 2.4.3).

Simulation

We compare the new similarity measures to existing approaches by using a simulation as
reference: 10,000 sequences of length 10,000 are generated with an arbitrarily selected GC-
content of 50%. After detecting all binding sites for a set of PFMs each with a threshold as
defined earlier, we compute the number of overlapping hits NAB between all pairs of TFs A
and B. Based on these counts, we compute the simulated similarity as Ŝ(A,B) = NAB/NA

where NA denotes the number of hits of TF A. We get a symmetrical measure by using
the average: Ŝsym(A,B) = (Ŝ(A,B) + Ŝ(B,A))/2. In addition, we compare Smax with
Ŝmax(A,B) = max{Ŝ(A,B), Ŝ(B,A)}/2.

The comparison is visualized by scatter plots for all pair-wise similarities. One dimension
corresponds to the simulated similarity while the other dimension shows the computed
similarity. We quantify the agreement between both measures using the Pearson correlation
coefficient.
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nr. -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 factor
1 A C G T A C G T 1
2 A C G T A C G T 10
3 A C G T A C G T .1
4 A C G T A C G T .01
5 * * * * A C G T 1
6 A C G T * * * * 1
7 * * A C G T A C 1
8 G T A C G T * * 1
9 A C G T A C 1
10 G T A C G T 1

Table 9.1: Dirichlet parameters for the generated PFMs. ’A’ denotes (30, 10, 10, 10),
(10, 30, 10, 10) for ’C’, and correspondingly for ’G’ and ’T’. (1, 1, 1, 1) is labelled by ’*’.

Sampling PFMs

We generate a family of PFMs where the members are gradually more similar to each other.
We sample the PFM column by column using a Dirichlet distribution with different param-
eter sets (Schones et al., 2005). The blueprint is the consensus sequence ’ACGTACGT’.
We choose this sequence because it contains palindromic as well as repeat features. Such
features are crucial for a realistic test setting since they determine the overlap probabili-
ties. The count matrix is based on 60 sequences where 30 sequences have the consensus
letter at each position and 10 sequences for each of the other nucleotides. The counts for
each position serve as parameters for the Dirichlet distribution to sample the multinomial
frequency distribution per position. Thus, we have one parameter set for consensus letter
’A’: (30, 10, 10, 10), one for ’C’ (10, 30, 10, 10), and so on for ’G’ and ’T’. To modify the
sharpness of the Dirichlet distribution (see Table 9.1). Furthermore, we shift the PFM rel-
ative to the consensus. In combination, we also reduced the length or added positions with
samples from a Dirichlet distribution with non-informative parameters (1, 1, 1, 1) denoted
as ’*’ in the Table. In this manner, we sampled 10 PFMs. Table 9.1 shows the Dirichlet
parameters for the 10 PFMs. Due to the palindromic structures, there are some matrices
with the same Dirichlet parameter set. Still, the resulting PFMs are different because of
the randomness in sampling. The resulting 10 PFMs are shown in Fig. 9.1 for sequence
logos (Crooks et al., 2004).

Transfac PFMs

As a further test set, we used a vertebrate subset of Transfac (Matys et al., 2003) PFMs
of version 11.1. We selected 279 of the 588 vertebrate PFMs due to the following filtering:
The position specific nucleotide distributions for some PFMs are similar to the background
distribution. In these cases, they cannot be used for binding site detection since the score
for a binding site is not significantly higher than a score for a random sequence. Such PFMs
can be selected by assessing the average information content per position and the power of
a PFM (Rahmann et al., 2003). Thus, PFMs are discarded if either they have an average
information content less than 50% or a type II error β based on the balanced threshold
greater than 15%. Instead of using the balanced threshold for sequence annotation, we
always set α to 10%. Otherwise, very powerful PFMs have such a small α that hits occur
rarely and, therefore, the simulation yields too few overlapping hits leading to bad estimates
for the simulated similarity values.
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Figure 9.1: Sequence logos of generated PFMs used to compute similarities.

Sequences

The similarity for the Transfac PFMs is computed for two sets of sequences: random
sequences and human promoter sequences. The random sequences are generated as above
but with an average GC content equal to the human promoter sequences (44.86%). The
human promoter sequences are based on Ensembl v46 (Hubbard et al., 2005). For each
Ensembl ID, we take the sequence region -10,000 to +200 relative to the transcription start
site. If this sequence overlaps with another Ensembl gene entry, we cut the sequence at
that position.

9.3 Results

9.3.1 Comparison with alternative approaches

In this article, we propose two new measures for similarity between PFMs. The first measure
S is the asymptotic covariance between the number of hits of two TFs. For the purpose
of clustering, we introduced the related measure Smax which computes the maximum log-
odds score for the overlap probabilities. Figure 9.2 compares the new and three alternative
measures with the measure computed by simulations. In Fig. 9.2A the χ2 test is compared
with simulation. One observes a rough correlation although the highest simulated pair-
wise similarity has a χ2 similarity of 0. The Kullback-Leibler distance is shown in Fig.
9.2B. Of course, the pairs with high Kullback-Leibler distance correspond to low simulated
similarities. The measure can be used to separate similar and dissimilar pairs of TFs without
too many false positives, e.g. with a low cut-off of 0.5. In addition, visualization of the
rank transformed values shows that a rough ordering of similar pairs is possible (see Fig.
9.3). The Tomtom approach based on the euclidean distance (see Fig. 9.2C) shows a similar
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Figure 9.2: Scatter Plot of all pair-wise similarities for the simulation (x-axis) and the calcu-
lated similarity (y-axis). (A) contains χ2, (B) the Kullback-Leibler distance, (C) the Tomtom
result using the euclidean distance, and (D) consists of the asymptotic covariance S (blue
circles, left axis) and Smax (red crosses, right axis).

behaviour. In general, more pairs with high simulated similarity have a very small computed
similarity. In contrast, the asymptotic covariance in Fig. 9.2D denoted by S shows a strong
linear correlation. There are no crucial disagreements between the simulation and the
computation. The measure Smax which only captures the highest similarity grows with
the simulated values but flattens for high values. Since we only consider the maximum
overlap probability, differentiation between highly similar PFMs becomes more difficult.
Still, an ordering is possible also for these values as shown in the rank transformed plots in
Fig. 9.3.

A quantitive comparison value is given by the Pearson coefficient for the correlation between
the simulated measure and the computed similarity measure. We obtain a Pearson coeffi-
cient of 0.509 (0.786 after rank transformation) for the χ2 measure. The Kullback-Leibler
distance, which is a distance instead of a similarity, has a negative correlation coefficient of
-0.402 (-0.803). Although in this case, the Pearson correlation is a bad measure since the re-
gression line is perpendicular to the x-axis (see Fig. 9.2B). The distance from the Euclidean
Tomtom approach has a small correlation coefficient of -0.292 (-0.674). The asymptotic co-
variance shows a strong linear correlation with a Pearson correlation coefficient of 0.997
(0.993). The measure Smax yields a correlation coefficient of 0.76 (0.986).

9.3.2 Transfac Set

Figure 9.4A shows the analysis on simulated sequences for the pairs of 279 Transfac PFMs.
The asymptotic covariance has a strong linear correlation while, again, Smax flattens for
higher similarity values. The analysis for human promoter sequences (Fig. 9.4) is similar
but in general more scattered. The Pearson coefficient for S on simulated sequences is
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Figure 9.3: Scatter Plot of all ranked pair-wise similarities for the simulation (x-axis) and
the calculated similarity (y-axis). (A) contains χ2, (B) the Kullback-Leibler distance, (C) the
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Figure 9.4: Scatter Plot of each pair-wise similarity of Transfac PFMs between S (blue circles)
and Smax (red crosses) based on (A) simulated sequences and (B) human promoter sequences.

0.952. The maximum measure yields a Pearson coefficient of 0.615. The Pearson coefficient
for the human promoter sequences for S is smaller (0.886) than for simulated sequences.
In constrast, the Pearson coefficient increases for the maximum measure to 0.665. This is
mainly due to the fact that the correlation is non-linear and the correlation coefficient is
supported by the higher variance for low similarity values.

9.4 Discussion

We have introduced two new measures of similarity for PFMs. One main difference is
that these new similarity measures depend on the regularization method, the parameter
which represents the threshold to detect a hit, and on the background model. To remove
redundancies in a set of PFMs, we consider this an advantage because the detected binding
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9.4 Discussion

sites in a sequence also depend on these parameters. In fact, the similarity measure is
able to capture the differences between the results of two different parameter sets. As
an extreme example consider two different PFMs with the same length and both with a
threshold such that all words are accepted. Due to their co-occurring hits, these PFMs
have the highest similarity. Increasing the threshold decreases the number of words with
scores higher than the threshold. Therefore, similarity should decrease as it does in the
new approaches. The background model also can have a high influence on the results. For
example, two overlapping PFMs without CpG dinucleotides are very similar within a CpG
island because both differ from the background. In a CpG poor background model, both
PFMs are hidden within the background, thus, neither they achieve a high similarity nor
are their hits correlated. Again, this is advantageous for removing redundant PFMs in a set.
Furthermore, extending the similarity measure for higher order Markov models is possible
although calculation of the 2-dimensional score distribution will become time consuming.

In contrast to the advantageous effect on the removal of redundancies, the dependence of
the result on the parameter choices is unwanted for clustering. Although the clustering is
robust against small changes, of course, big differences in the parameters do change the
result. For example, changing the GC content to 40% changes the composition of four
clusters by 1-2 insertions/deletions per cluster and adds a new small cluster of size two.
Instead, substituting the regularization method by a simple addition of pseudocounts (0.01)
only has a minor effect by changing the composition of one cluster slightly.

The analysis considering 279 Transfac PFMs shows that the similarity measure is not only
applicable to artificial PFMs but also to real binding sites. The comparison between simu-
lated sequences and human promoter sequences shows that for no pair of TFs the simulated
similarity significantly differs from the theoretical similarity. Large differences, e.g. high
simulated similarity and low theoretical similarity, might give evidence for competitive bind-
ing due to more overlapping binding sites than expected by chance. Since we do not observe
such deviations, either signal to noise ratio is too low or competitive binding sites evolve to
be similar regarding their sequence.

In this chapter, we have introduced two new measures of similarity. In contrast to existing
measures, we give a natural and general interpretation of the similarity, which is especially
useful in practice. We use a statistical framework to derive the measure, resulting in the
asymptotic covariance. Of course, the measures can also be applied to arbitrary set of
words, i.e. experimentally verified binding sites, although computation becomes inefficient
for large sets. In Chapter 11, we apply this measure to compute the quality of representation
of PFMs.
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Chapter 10

Clustering of PFMs

10.1 Introduction

Suzuki and Yagi (1994) show that TFs of the same family share similarity in the binding
profile. The Familial Binding Profile (FBP) is a generalized binding profile capturing this
core motif of a family of TFs (Sandelin and Wasserman, 2004). Several approaches per-
form clustering of TFs into families based on a Bayesian learning algorithm (Narlikar and
Hartemink, 2006) and unsupervised neural network (Mahony et al., 2005). Others use as
a metrics ungapped local motif alignments (Sandelin and Wasserman, 2004) and similar-
ity measures (Kielbasa et al., 2005). A comparison of DNA sequence based approaches is
presented by Mahony et al. (2007).

In Chapter 9, we introduced a second similarity measure based on the maximum overlap
probability. Since this measure automatically returns the position with the highest overlap
probability, we obtain a gapless alignment of the two PFMs. Hence, we can merge the
PFMs. Therefore, we develop a clustering algorithm for PFMs, apply it on a set of class
labelled Jaspar (Sandelin et al., 2004b) PFMs and compare the class of the members for
each cluster. We also automatically obtain familial binding profiles for each cluster. The
results are compared with the ones from Mahony et al. (2007).

10.2 Algorithm

In this section, we present a clustering approach which yields an FBP for each cluster and
which discards TFs which do not have any sufficient similarity. The clustering consists of
three main steps:

1. Selection: Select the pair with maximum similarity.

2. Merging: Create the new FBP for the cluster.

3. Verification: Discard the new cluster if not all members share sufficient similarity.

In the following, we describe each step in more detail. Let T = {Ti} be the set of TFs. The
goal is to compute a set C of disjoint classes Cj ⊆ T . The FBP/representative of class j
is given by r(Cj) while r(C) yields the set of all FBPs. Furthermore, c(·) returns the class
index of a (meta) TF. We initialize the set of classes C = T to one class for each TF such
that c(Ti) = i and r(Ci) = Ti.
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Chapter 10 Clustering of PFMs

Selection

This step selects pairs X,Y ∈ r(C) which have highest similarity. Here, we use the derived
maximum similarity measure Smax(X,Y ) (see Section 9.2). This measure also returns the
position d∗ with the maximum overlap. We select X∗, Y ∗ such that

(X∗, Y ∗) = argmax(X,Y )∈r(C)×r(C),X 6=Y S
max(X,Y ).

Furthermore, we introduce a threshold q to stop clustering if the similarity is not sufficiently
high. We set the parameter q equal to the 95% quantile of all pairwise Smax values from
the initial set T .

Merging

After selecting one pair of TFs, we create the new FBP W : Let d∗ denote the position
of maximum overlap probability. The new FBP consists of the sum of the position count
matrices of X and Y shifted by d∗ positions. Thus, the length of W is `W = `A + `B − d∗.
If the maximum similarity occurs for X ′ or Y ′, we transform the respective position count
matrices accordingly before summation. Before summation, we enlarge both position count
matrices such that they overlap for each position of the FBP. The enlarged positions are
filled with the background model. It is based on the background frequencies µ(a) with a ∈ A.
Since we sum the position count matrices, we have to obtain counts. Therefore, we multiply
µ(a) by the average number of sequences of the corresponding position count matrix. This
automatically corrects the information content of positions which do not overlap with all
members of a cluster by adding the corresponding fraction of the background distribution.
In other words, we take into account the number of motifs without specific signal at these
positions.

Verification

Due to the naive merging of TFs, the FBP might get less and less related to its original
members after successive mergings. Hence, the clusters are no longer homogeneous but
become more and more heterogeneous over the number of clustering steps. To prevent this,
we ensure that the new FBP always has a high similarity to each of its members. The
merge of the pair X and Y is discarded if any of the following inequalities does not hold:

∀V ∈Cc(X),W∈Cc(Y )
: Smax(V,W ) > q

In case all inequalities hold, we update C by removing X and Y and adding the new cluster
with its FBP W and members Cc(X) and Cc(Y ). If at least one inequality does not hold,
we skip the merging and mark the pair X and Y such that they cannot be merged. Then,
the procedure starts with the selection step, again. The three steps are iterated until no
non-marked pair of TFs has a similarity greater than q.
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10.3 Data

10.3 Data

The clustering is based on Jaspar (Sandelin et al., 2004b) PFMs using the data set analyzed
by Mahony et al. (2007). The set consists of 13 classes each with closely related members.
The classes are bZIP cEBP (4 members), bZIP CREB (4), bHLH (10), ETS (7), Forkhead
(8), high mobility group (HMG: 6), HOMEO (8), MADS (5), NUCLEAR (8), REL (6),
TRP (5), zinc finger DOF (4), and zinc finger GATA (4).

We assess the consistency of the clusters using the leave-one-out-cross-validation (LOOCV)
approach following Sandelin et al. (2004b) and Mahony et al. (2007): For each PFM except
the singletons, we remove its contribution to the corresponding FBP. Then, we compute the
similarity between the PFM and all FBPs and singletons. If the similarity between the PFM
and its corresponding (modified) FBP is maximal, we call it a correct classification. A high
percentage of correct classifications suggests a consistent clustering. In contrast to Mahony
et al. (2007), we do not count singletons as misclassifications. Otherwise, more singletons in
the clustering automatically lead to a lower consistency although more homogeneous clusters
might have been retrieved. This occurs as soon as some PFMs only share weak similarity
with all other PFMs. Hence, we include singletons as FBPs for classifying although we do
not classify the singletons. Accordingly, we decrease the total number of classifications to
compute the success rate.

10.4 Results

The Jaspar set contains classes of closely related TFs. The clustering of the 13 classes
with a total of 79 PFMs yields 14 clusters. Three of four bZIP EBP PFMs are contained
in the clustering, forming one homogeneous cluster. All four bZIP CREBs also form one
homogeneous cluster. Eight of eleven bHLH are clustered forming two homogeneous clusters
(size three and five). All seven ETS factors belong to one homogeneous cluster. All six
Forkhead PFMs belong to one cluster which also contains four HMGs in a separate branch.
One of the remaining two HMGs is clustered in a small cluster with one HOMEO. Five of
the remaining seven HOMEOs are in one homogeneous cluster, as well, as all five MADS
PFMs. Seven of eight NUCLEAR receptors are contained in one homogeneous cluster.
All six RELs belong to one homogeneous cluster. Two of the five TRPs are contained in
a heterogeneous cluster with all four zinc finger DOFs, two of the remaining three TRPs
are also clustered together homogeneously. Finally, two of the four zinc finger GATAs are
forming one homogeneous cluster. Altogether, eleven of the 14 clusters are homogeneous,
containing 49 of 67 PFMs while twelve PFMs are not clustered at all.

We compare our clusters (including the eight zinc fingers) with the corresponding results
from the clustering in Mahony et al. (2007) based on an ungapped Smith-Waterman align-
ment with the Pearson correlation coefficient as scoring function. This clustering from Ma-
hony et al. (2007) including the eight zinc fingers is very similar to the clustering without the
zinc fingers in Figure 8 (Mahony et al., 2007) but yields 16 clusters and two singletons (per-
sonal communication). The subtle differences are considered below. We yield seven times
the same clusters: ETS, Nuclear Receptor, bZIP CREB Subgroup, bZIP cEBP Subgroup,
MADS, HOMEO Subgroup, and the TRP-cluster/IRF Subgroup with zinc finger DOFs.
Another five clusters are modified: The REL-like group becomes a homogeneous cluster
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Figure 10.1: FBP of the bZIP CREB cluster with the multiple alignment containing the four
TFs TCF11-MafG, bZIP910, bZIP911, and CREB1.

since En1 from the HOMEO group and Chop-cEBP from the bZIP group are removed. The
bHLH-ZIP cluster does not contain the correct member Arnt-Ahr any more. The TRP-
cluster/Myb Subgroup lacks the correct member MYB-ph3. The HMG/Forkhead Group 1
does not contain the wrong member Pbx from the HOMEO group. Our HMG/HOMEO
mix contains different TFs from the same classes HMG and HOMEO, specifically HMG-1
and En1. We also obtain a cluster for the zinc finger GATA PFMs but only containing
two in comparison to three in Mahony et al. (2007). Instead of the mixed cluster including
the zinc finger GATA1, the bHLH TAL1-TCF3 and the Forkhead FOXL1, we obtain an
extended bHLH Subgroup cluster with TAL1-TCF3 and the two other bHLHs NHLH1 and
MYF. The two latter ones are clustered by Mahony et al. (2007) into a single cluster. In
fact, all three members share the consensus CA*CTG justifying the extension of the cluster.
The heterogeneous cluster HMG/Forkhead Group 2 with two members does not appear in
our analysis.

Furthermore, we performed the LOOCV test on our clustering. All 67 PFMs are classified
correctly while excluding the twelve singletons. The high number of correct classifications is
not surprising since the clustering algorithm intrinsically computes a consistent clustering
by testing in each step the similarity between all members and their respective FBP. In
comparison, Mahony et al. (2007) obtain 72 of 77 correct classifications likewise without
counting the two singletons as wrong classifications. Hence, Mahony et al. (2007) assign
more PFMs to clusters while increasing the number of heterogeneous clusters and decreasing
the consistency of the clustering. Instead, we obtain more singletons leading to a more
stringent and more consistent clustering.

The clustering automatically generates an FBP for each cluster. All FBPs are given in the
Supplementary Material. As an example, the FBP for the bZIP CREBs is printed here in
Figure 10.1. In comparison to the FBP of the same cluster in Mahony et al. (2007), we
obtain the reverse complementary sequence logo. Removing the flanking non-informative
sites, we are left with a strong consensus ’TGAC’ followed by a weaker consensus of ’GT’.
This matches with the FBP in Figure 1 of Mahony et al. (2007). However, there the last
two letters have a higher information content than in our clustering approach. Since we au-
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tomatically consider the number of supporting PFMs per position by using the background
model for non-overlapping positions in each merging step, the corresponding positions do
not have high information content. Thus, it is the more adequate representation.

10.5 Discussion

The clustering of the Jaspar set yields a high number of homogeneous clusters. In addition,
only a minor fraction of PFMs are not clustered at all. Hence, it seems that, indeed,
the similarity between PFMs is captured appropriately. Furthermore, the clustering yields
a FBP/representative for each cluster containing the characteristic properties of its class
members.
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Chapter 11

Quality of Representation

11.1 Introduction

A PFM is constructed from a multiple sequence alignment of verified binding sites. Their
sequences are discovered by wet-lab experiments (for a review, see Elnitski et al., 2006;
Maston et al., 2006). The PFM model represents the binding sites in a compact way,
retaining only the frequency of each nucleotide at each position; this statistical independence
of positions (loss of dependencies between positions) is the basic assumption of the PFM
model.

Unfortunately, not all TF binding site motifs fulfill the position independence assumption
(Benos et al., 2001; Bulyk et al., 2002); such motifs cannot be well represented by PFMs.
More complex models have been developed; they range from PFMs with multi-nucleotides
per position (Brendel and Trifonov, 1984; Stormo et al., 1986; Zhang and Marr, 1993) over
mixture models (Barash et al., 2003; Hannenhalli and Wang, 2005; Georgi and Schliep, 2006)
to variable length permuted Markov models (Zhao et al., 2005) and Bayesian Networks
(Barash et al., 2003). Although some of these models implicitly estimate the required
complexity (Barash et al., 2003; Georgi and Schliep, 2006), they only compare the more
complex model with the simpler (PFM) model, but do not assess the representation quality
of either model in absolute terms.

To our knowledge, there is no standard method that assesses how well a binding site model
represents the verified binding sites. Here, we derive a general representation quality mea-
sure that can be efficiently computed for PFMs, and discuss its properties.

Apparently, a reasonable idea is to directly compare the set of words compatible with the
model (for a PFM, the words that reach the score threshold) to the set of verified binding
site sequences. Since all of these are assumed to be of the same length `, we can classify
each length-` DNA word as true positive (TP), false positive (FP; compatible with the
model, but not a verified binding site), true negative (TN), or false negative (FN; a verified
binding site, but not compatible with the model). This leads to three problems:

1. Even for a model as simple as PFMs, the calculation of the set of compatible words
is NP-hard in general (Touzet and Varré, 2007; Zhang et al., 2007).

2. Listing the frequency of FPs or FNs does not take multiplicities in the set of verified
binding sites into account.
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3. Although one can summarize FP and FN frequencies into quantities such as sensitiv-
ity, specificity and precision, one would still obtain three different quality indicators
instead of one.

We solve these problems by proposing a different measure that directly describes what
binding site models are used for: their ability to recognize the sequences identical to the
verified binding sites in long genomic sequences. Therefore we measure representation
quality by the correlation between two random variables:

1. Nn(A), the number of occurrences of words compatible with the model A in a random
i.i.d. sequence X of length n,

2. Nn(W), the number of occurrences of verified binding site sequences W in the same
sequence X.

To obtain a quantity that is independent of the sequence length n, we use the asymptotic
correlation with n → ∞. If the set of compatible words equals the set of verified binding
sites, the correlation attains its maximum value 1.

The main computational issue is the calculation of the asymptotic covariance between
Nn(A) and Nn(W) without enumerating the compatible words of A. For PFMs, this prob-
lem can be efficiently solved by extending the similarity measure for PFMs (see Chapter
9).

As an example, consider the four hypothetical ’experimentally verified’ binding site se-
quences ’AAAC’, ’ACAC’, ’AACC’ and ’ACCC’. The two center positions can vary be-
tween ’A’ and ’C’, while the first and last positions are fixed. One would obtain a PSM
qualitatively similar to

’A’
’C’
’G’
’T’


2 1 1 0
0 1 1 2
0 0 0 0
0 0 0 0

 .

Setting the threshold to 6 leads to four compatible words, namely the given binding sites.
Thus, the PFM/PSM is able to represent the given sequences perfectly, without any false
positives and false negatives. Unfortunately, this is an exception.

If we consider four different ’verified’ binding site sequences, twice ’AACC’ and twice
’ACAC’, we obtain the same PSM as above. However, there is no threshold such that
the set of compatible words exactly equals the given binding sites. The reason is the po-
sition dependency between the second and the third position. If one of positions 2 or 3
contains an ’A’, the other one must be a ’C’. The PFM model is not capable of representing
such dependencies; in such a case we expect a low (representation) quality value.

In the Methods section, we first introduce the representation quality in a general manner,
comparing it to other quality measures (sensitivity, specificity, precision). In the case of
PFMs, we derive the formulae to compute the asymptotic correlation and briefly explain
how it can be computed efficiently.
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In the Results section, we argue that the PFM score threshold should be chosen to maximize
representation quality. We apply the approach to 101 Transfac PFMs (Matys et al., 2003)
and 123 Jaspar PFMs (Sandelin et al., 2004b). To illustrate that PFM representation
quality indeed captures position dependencies, we compare the quality value of binding
site models that have been previously classified as one- or two-component mixture models
(Georgi and Schliep, 2006), and find that the two groups are well separated.

A concluding Discussion summarizes the key features.

11.2 Methods

11.2.1 Sensitivity, Specificity and Precision

For the moment, we assume that we are given a set W of experimentally verified binding
sites (below we show how to extend this to a multi-set, where the same sequence may
occur multiple times), and a binding site model A (e.g., a PFM) that implicitly defines a
set of compatible words, which may depend on one or several parameters (e.g., the score
threshold).

Consider the typical situation that model A is used to scan a long genomic sequence for
occurrences of binding sites. The model A assigns a score to every position of the given
DNA sequence. There is a hit of A at position i if the word that starts at the i-th position
of the DNA sequence is compatible with A.

We define the indicator random variable Yi(a) as Yi(a) := 1 if the word a starts at position
i, and Yi(a) := 0 otherwise. Denoting the set of compatible words for A by A, we define
an indicator random variable for a hit at position i by Yi(A) := Yi(A) :=

∑
a∈A Yi(a).

Similarly, we define Yi(W) to indicate a hit of the set W at position i.

Then the events TP, FP, TN, FN (at position i) can be formally written as

TP := {(Yi(A) = 1, Yi(W) = 1)},
FP := {(Yi(A) = 1, Yi(W) = 0)},
TN := {(Yi(A) = 0, Yi(W) = 0)},
FN := {(Yi(A) = 0, Yi(W) = 1)}.

The probabilities of these events in a random i.i.d. sequence obviously do not depend on
the position i.

Now the sensitivity of A is defined by PH0(TP)/(PH0(TP) + PH0(FN)), the specificity by
PH0(TN)/(PH0(FP)+PH0(TN)), and the precision by PH0(TP)/(PH0(TP)+PH0(FP)). We
can derive following equations:
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Sensitivity =
PH0(Yi(A) = 1, Yi(W) = 1)

PH0(Yi(W) = 1)

=
∑

w∈W PH0(Yi(A) = 1, Yi(w) = 1)∑
w∈W PH0(Yi(w) = 1)

,

Specificity =
PH0(Yi(A) = 0, Yi(W) = 0)
1−

∑
w∈W PH0(Yi(w) = 1)

,

Precision =
PH0(Yi(A) = 1, Yi(W) = 1)

PH0(Yi(A) = 1)
.

These probabilities can be computed efficiently using a two dimensional score convolution
of PSMs (see Section 5.6) after transforming W to a set of PSMs (see Algorithm section).

Note that in contrast to Rahmann (2003), we define the sensitivity and specificity in terms
of a given verified set W, while Rahmann (2003) defines them in terms of the power of the
model, i.e., its ability to distinguish between the nucleotide distribution of the model and
the background distribution. The approach taken here appears more relevant in practice,
since a model not supported by any experimental evidence is not useful in practice.

11.2.2 Representation Quality

We compute how well a model A with compatible word set A represents a set of experi-
mentally verified binding sites W of size m := |W|. Instead of directly comparing W with
A (enumeration of the words in A is NP-hard for PFMs, see Section 2.4.4), we compare the
number of occurrences of words from A and W in random texts following a specified i.i.d.
null model µ.

Using the position-wise indicator random variables Yi, the number of hits for model A and
set W in a sequence with n potential starting positions can be expressed as the random
variables Nn(A) :=

∑n−`+1
i=1 Yi(A), and Nn(W) defined similarly. The correlation between

these two random variables is

Cor(Nn(A), Nn(W)) =
Cov(Nn(A), Nn(W))√
V(Nn(A)) · V(Nn(W))

,

where Cov(·, ·) denotes covariance. To obtain a measure independent of the sequence length
n, we define representation quality Q(A | W) as the asymptotic value of the correlation as
n→∞:

Q(A | W) := lim
n→∞

Cor(Nn(A), Nn(W)). (11.1)

The representation quality has a value in [−1, 1]. The maximum is achieved if and only if
W = A. The minimum usually does not occur since the construction of the model ensures
that at least a subset of the compatible words is recognized by the model.
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11.2.3 Multiplicities in the Set of Verified Binding Sites

So far, we have assumed that each words in the set W of experimentally verified sequences
appears only once in the set. In general, binding sites with the same sequence can be
observed multiple times during experiments. For example, consider a DNA motif with 100
verified binding sites, where 99 sites consist of the same sequence.

Under the assumption that a higher number of observed instances reflects higher binding
affinity, the representation quality should also be higher if a multiple observed word belongs
to the set of compatible words. We can therefore more generally assume that each word
in W = {W1, . . . ,Wj , . . . ,Wm} has a weight φj associated to it. Incorporating weights
into the correlation is straight-forward, since the correlation is bilinear and Nn(W) can be
written as the sum of the contributions of each (weighted) word:

Nn(W) =
m∑

j=1

φj Nn(Wj);

Cor(Nn(A), Nn(W)) :=

∑m
j=1 φj Cov(Nn(A), Nn(Wj))√

V(Nn(A)) · φ2
j

∑m
j=1 V(Nn(Wj))

.

The correlation remains in the interval [−1, 1]. In contrast, it is not straight-forward to
apply multiplicities to sensitivity, specificity, or the precision, since these are directly defined
via probabilities of events.

11.2.4 Algorithm for PFMs

So far, we have defined representation quality for general binding site models A with respect
to a given set W but have not mentioned how to efficiently compute Q(A | W). The
complexity of this task depends on the model. Here we focus on PFMs where an efficient
computation is possible. Let us specify all steps, starting with PFM construction.

A PFM represents a DNA motif by specifying the probability (relative frequency) of each
nucleotide at every position. To ensure nonzero probabilities (nothing should be impossible,
merely very improbable), one adds pseudo-counts in a step called regularization. We add
pseudo-counts to the position specific distributions according to the information content of
the position (Rahmann, 2003): Positions with low information content are shifted towards
the background (null) distribution µ (overall nucleotide frequencies in the genome). For
positions with high information content, the difference to the background distributions is
emphasized.

For a PFM A, the position specific scoring matrix (PSM) is the log-likelihood ratio (here
discretized with a granularity of 0.05) of the nucleotide distribution of the PFM and the
background probability µa for every position and nucleotide a ∈ A. The background model
µ is an i.i.d. model defined by the genomic or local GC content to make the computation
invariant with respect to the choice of the leading strand. A word is compatible with A if
its score, summed over all positions, reaches a given threshold tA, which is a parameter of
the model A.
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Although the definition of the hit indicator Yi(A) is based on the set of compatible words,
for PFMs it is sufficient to compute the score at each position: Yi(A) = 1 if and only
if the word starting at position i reaches the score threshold tA. This allows an efficient
computation of the covariance and hence correlation.

We adapt the idea of Section 5.3.2 where we show how to efficiently compute the asymptotic
covariance between the number of occurrences of two PFMs/PSMs to quantify their simi-
larity. The only technical difference is that we compare a PFM with an arbitrary given set
W. Since for weighting purposes (see above), we need to decomposeW into m singleton sets
anyway, we interpret these singletons as compatible sets of particular PFMs constructed as
follows.

To obtain a PSM with compatible set {w}, we define the score for the nucleotide wκ

occurring at position κ in w = w1w2 . . . w` to be 1, and for all other nucleotides to be 0.
We can also give a definition incorporating ambiguous letters (IUPAC code) in w:

Score(w)
κ,a :=

{
1 if a ∈ f(wκ),
0 otherwise.

Here f(a) describes the set of nucleotides associated to the possibly ambiguous letter a,
e.g., f(A) = {A}, f(Y ) = {C, T}. The threshold tw is defined by tw := ` since the score is
increased at every position by 1.

The transformation of the words w to PSMs is not conceptually necessary but technically
convenient, allows easy incorporation of weights, and directly permits using the implemen-
tation from Section 5.6.

11.2.5 Threshold and Regularization Optimization

Obviously, the sensitivity, specificity, precision, and representation quality all depend on
the parameters of the model A. For PFMs, it is primarily the threshold tA that defines the
(size of) the set of compatible words. A low threshold leads to a set with many compatible
words that probably contains many false positives. A high threshold leads to few compatible
words, and some of the verified binding sites may not be included (false negatives).

Commonly, the threshold is chosen such that the probability for a type-I error (a hit under
the null model) is bounded by or equal to a pre-determined value (Rahmann et al., 2003;
Liefooghe et al., 2006). Here, we consider the type-I error on a random i.i.d. sequence of
length 500. A more sophisticated method sets the threshold such that the type-I and the
type-II (no hit under the binding site model) errors are balanced (Rahmann et al., 2003).
However, a choice based on purely statistical considerations without considering the verified
set W is generally unable to represent W well. Instead, one can optimize the threshold tA
such that the sensitivity, specificity, precision, or representation quality is maximized. In
Section 11.3.1, we argue that maximizing the quality is the most natural choice.

Additionally, note that the PFM model depends on the chosen regularization method.
Thus, one could also assess different regularization methods by their gain of representation
quality. Here, we do not explore this possibility further.
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Figure 11.1: Sensitivity (light grey / orange solid circles) and specificity (black / blue solid
circles), both upper panel. Quality (black ’X’), unweighted quality (light grey / orange solid
circles), and precision (dark grey / red solid circles), all lower panel, for different thresholds
(x-axis). The dashed (dotted) line corresponds to the balanced threshold (Rahmann, 2003); the
dotted line to a type-I error probabilty of 0.1, and the solid line indicates the quality-optimized
threshold.

11.2.6 Example

In the Introduction, we state that the PFM A1 based on the four verified binding sites
’AAAC’, ’ACAC’, ’AACC’ and ’ACCC’ has the maximum quality while the PFM A2 based
on the four verified binding sites with duplicates ’AACC’ and ’ACAC’ has lower quality.
Indeed, the quality for A1 is 1.0 and for A2 0.779. Hence, the quality measure does cap-
ture these subtle position dependencies. The reported quality values are maximized by
optimizing the threshold as we do throughout the remaining article.

11.3 Results

11.3.1 Threshold Optimization

In the following, we illustrate the threshold optimization for a PFM selected from the
Transfac database v11.1 (Matys et al., 2003): it is the matrix M00051 for NFκB50 (Kunsch
et al., 1992). Figure 11.1 shows the sensitivity, specificity, precision, quality and unweighted
quality for NFκB50.

In the upper panel, the specificity smoothly increases with increasing threshold reaching
0.99 at t = −104 while the sensitivity decreases in a few steps for very high thresholds
and remains 1.0 for thresholds t ∈ [−1022, 103]. The lower panel contains the precision,
quality and unweighted quality. For low thresholds, the precision increases with increasing
threshold. Around t = 180, the precision drops but increases again for higher thresholds.
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Figure 11.2: Histogram of the optimized quality measures for (A) all vertebrate Transfac
PFMs and (B) all core Jaspar PFMs.

The quality also increases with increasing threshold but drops from time to time for higher
thresholds. The quality reaches a maximum at t = 222 and remains there till t = 246 but
drops afterwards. The unweighted quality has a similar shape but the maximum occurs for
a slightly lower threshold t = 213.

The smooth increase of the specificity is due to the huge size of the complement set of
experimentally verified binding sites (around one million sequences). Thus, for each incre-
ment of the threshold some further words are excluded from the set of compatible words.
In contrast, the set of verified binding sites is much smaller (18 sequences). Therefore,
the sensitivity can only attain a limited number of values. Since the verified binding sites
are already included in the set of compatible words for a high threshold (t = 103), the
sensitivity remains 1.0 for lower thresholds. The precision equals 1.0 for the highest thresh-
olds, since all compatible words are also in the set of verified binding sites. However, the
precision does not reflect how many of the verified binding sites are considered in the set
of compatible words. This behavior is typical, and neither sensitivity nor specificity nor
precision alone can be used to determine an optimal threshold.

In contrast, the proposed quality measure summarizes all three notions in a reasonable way.
The quality does not yield a unique maximum. However, within the threshold interval
for maximum quality, the set of compatible words does not change since all trajectories
(for sensitivity, specificity, and precision) are constant there. The maximum unweighted
quality occurs for a slightly lower threshold than the maximum weighted quality. Hence,
the further increase of the threshold removes infrequently observed verified binding sites
from the compatible set of words (otherwise, also the weighted quality measure would
decrease.)

11.3.2 Transfac and Jaspar PFMs

We apply the quality measure to PFMs taken from the two well known databases Transfac
(Matys et al., 2003) and Jaspar (Sandelin et al., 2004b). From Transfac version 11.1, we
select the vertebrate PFMs; from Jaspar version 3.0, we take the ’core’ set.

Figure 11.2 shows quality histograms for the vertebrate Transfac PFMs (A) and the Jaspar
PFMs (B) after threshold optimization for quality. In Fig. 11.2A, the quality values tend
to be extreme. About two thirds of the PFMs yield a lower quality than 0.5. For a higher
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Figure 11.3: Sequence Logos (Crooks et al., 2004) of (A) the three top quality PFMs and
(B) the three lowest quality PFMs of the Transfac set.
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Figure 11.4: Box-plot for quality values based on three different threshold selection methods
’type-I’ error bounded to 0.1, ’balanced’ type-I and type-II error, and ’quality’ optimized for
(A) all vertebrate Transfac PFMs and (B) all Jaspar PFMs.

quality than 0.8, the number of PFMs increases until the maximum quality of 1.0. Figure
11.2B for the Jaspar PFMs is more balanced between high- and low-quality PFMs. Still,
the numbers of PFMs slightly increase towards extreme quality values.

We have depicted the three highest quality PFMs and the three lowest quality PFMs of the
Transfac set in Fig. 11.3. The three top ranking PFMs have a length between 8 and 13.
Almost all positions have one strong consensus letter leading to a high information content.
In contrast, the three least quality PFMs are of length 18 and have many positions with
high variability and, therefore, low information content. The three top ranking PFMs are
based on verified binding sites with high multiplicities. In contrast, the sets of verified
sequences for the least ranking PFMs are small (between 5 and 27 sequences) without
multiple observed sequences.

In general, representation quality correlates with the average per-position information con-
tent of the PFM, as might be guessed from the examples in Fig. 11.3. On the Transfac set,
the Pearson correlation coefficient is 0.90, on the Jaspar set it is 0.82 (details not shown).

The differences of the quality for the chosen threshold selection method are shown in
Fig. 11.4. The three left box-plots correspond to the Transfac PFMs. For the first em-
pirical distribution, the type-I error is bounded by 0.1. The mean of the distribution is
0.09. The second distribution with a mean of 0.11 is based on the balanced threshold while
the values of the third distribution with mean 0.43 are the optimized qualities. The quality
values of the type-I and balanced method are statistically worse than the values of the op-
timized quality (p-values of a Kolmogorov-Smirnov test (Birnbaum and Tingey, 1951) are
3.3 · 10−16 for comparison with the type-I method and 2.4 · 10−12 for comparison with the
balanced method). The last three box-plots show the corresponding distributions for the
Jaspar PFMs. The means of the quality values for the ’type-I’ and the ’balanced’ threshold
methods are both 0.30. Again, both distributions have a similar shape. The distribution
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Figure 11.5: Box-plot for the comparison of the quality distributions for PFMs with one
mixture component, two components, and two components supported by high conservation
scores.

for the optimized quality values has a mean of 0.50. Also for the Jaspar PFMs the quality
values significantly improve by maximizing the quality (p-values 1.5 · 10−5 for comparison
with the type-I method and 4.3 · 10−6 for comparison with the balanced method). Hence,
choosing the threshold by maximizing the quality instead of defining the threshold based
on the type-I or type-II probabilities significantly increases the quality.

11.3.3 Quality for Mixture Models

We hypothesize that lower quality reflects dependencies between positions. Hence, the
representation quality for DNA motifs with position dependencies should be significantly
lower than for DNA motifs with independent positions. We test our hypothesis on 64 Jaspar
PFMs, divided into three sets, according to the mixture model from Georgi and Schliep
(2006), which allows to represent a binding site model by a mixture of PFMs instead of a
single PFM.

The first set contains PFMs which only have one mixture component (and hence correspond
to a standard PFM). The second set contains PFMs with two mixture components. The
third set is a subset of the second and only contains PFMs which additionally reach a
high conservation score (for details, see Georgi and Schliep, 2006), indicating that the both
components may represent biologically meaningful motifs. Since the number of mixture
components is estimated based on the verified binding sequences, we assume that two
mixture components reflect position dependencies. Figure 11.5 shows a box-plot of quality
values for each set.

The left box-plot corresponds to the empirical distribution of the optimized quality values
of the 23 one-component PFMs. The distribution has a mean of 0.72 and a median of
0.88.

The center box-plot corresponds to the 41 two-component PFMs with a mean of 0.36 and
a median of 0.34. Based on a Kolmogorov-Smirnov test (Birnbaum and Tingey, 1951),
we reject the null hypothesis that the quality values for the one-component PFMs are
statistically worse than or equal to those of the two-component PFMs (p-value: 0.00021).

The rightmost box-plot in Fig. 11.5 belongs to the 9 two-component PFMs with high
conservation scores. The distribution has a mean of 0.20 and a median of 0.15. Performing
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a Kolmogorov-Smirnov test yields no significant difference between the quality distributions
of all two-component PFMs and those with high conservation scores (p-value of 0.32).
However, there is a significant difference to the one-component PFMs (p-value: 0.00059).

Hence, the representation quality indeed attains significantly higher values for one-component
PFMs. Under the assumption that the mixture modelling captures position dependencies,
the representation quality can be used to assess the strength of position dependencies of
PFMs.

11.4 Discussion

We have proposed a new quality measure to assess the degree of representation of a binding
site model regarding the experimentally verified binding sites. The quality measure is based
on the asymptotic correlation of the number of occurrences of the model-compatible words
and of the verified binding sequences on an infinite random sequence. We emphasize that
the quality measure is general and does not depend on the PFM model. Thus, extension to
other models like mixture models is possible. However, the computational effort to calculate
the two-dimensional score convolution for complex models might become infeasible. For
PFM models, the representation quality can be efficiently computed.

Different objective functions can be used to optimize the threshold of a PFM. Here, we
use the maximum representation quality which is shown to significantly improve the qual-
ity. Some (non-multiple) verified binding sites may not be contained in the set of com-
patible words. Due to experimental error and erroneous binding detection especially in
high-throughput methods like SELEX (Oliphant et al., 1989) and CASTing (Wright et al.,
1991), this can be advantageous if stronger support for a binding site is reflected by multiple
detection. However, if the experimental evidence for all given binding sites is very strong,
one may want to additionally consider the sensitivity value.

The histogram of the optimized quality values for the Transfac and Jaspar PFMs reveals
a large fraction of PFMs with poor quality (Fig. 11.2). Analysis of the sequence logos
(Fig. 11.3) reveals that these PFMs are long and have a low information content per position
since they are based on few verified binding sites. The problem is that many positions exist
which are variable but not completely flexible. The more such positions occur, the more
combinations of variations exist. If only a few of these combinations are reflected in the
set of verified binding sites, position dependencies are automatically introduced. Consider
the following set of verified binding sites {’CAAAG,’ACAAG’,’AACAT’,’AAACT’}. This
leads to a PSM qualitatively like

’A’
’C’
’G’
’T’


10 10 10 10 0
1 1 1 1 0
0 0 0 0 5
0 0 0 0 5

 .

Setting the threshold to t = 45 yields two compatible words ’AAAAG’ and ’AAAAT’, which
are both not in the set of verified sequences, leading to a low quality value. Decreasing the
threshold to t = 40 gives two further compatible words ’AAAAC’ and ’AAAAA’, again not
contained in the set of verified binding sites. The next lower threshold of t = 36 is the first
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where the set of compatible words overlaps with the set of verified binding sites. In fact,
all verified binding sites are compatible words but also the words ’CAAAA’, ’CAAAC’,
’CAAAT’, ’ACAAA’, ’ACAAC’, ’ACAAT’, and so on. Hence, the best quality can be
achieved by having all four verified binding sites as compatible words plus 16 non-verified
sequences. Of course, this is an extreme example but the combinatorial effect increases
with the length of the motif. Thus, it is not surprising that we obtain low quality values
for long PFMs based on small verified sets.

We can deal with long motifs and few verified binding sites (that may furthermore be
inconsistent – low multiplicities) in two ways. One way is to use more complex models,
such as mixtures. The other way is to gather further experimental evidence for the DNA
motif. The decision should be made based on the size of the verified set. Without further
experiments, the PFM model may still be a reasonable choice due to its ability to generalize
the verified sequences. Therefore, a bad quality does not necessarily contradict the use of
the PFM model. It just points to the fact that the PFM model does not tightly correspond
to the verified binding sites.

Another application of the representation quality measure could be in the discovery of new
DNA motifs (for a review, see Wasserman and Sandelin, 2004; Das and Dai, 2007). Strong
position dependencies in the DNA motif decrease the quality measure. If the PFM is based
on many verified binding sites, this indicates that a more complex model or a set of PFMs
might be preferable as model for the DNA motif. Hence, given a set of upstream sequences
of putatively co-regulated genes, one can learn new DNA motifs while using our measure
to assess the quality of the PFM. If the quality decreases, the PFM might represent two
different DNA motifs such that two PFMs might be the better choice.
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Conclusion

The thesis solves many mainly statistical problems in context of DNA motifs. Supplemen-
tary to the thesis, a C++ program suite as well as a website http://mosta.molgen.mpg.de
can be used to apply the statistics (see Appendix A for a description of the software pack-
age and its multi-processor and parallel computing abilities). Mainly, we consider the PFM
model for representation of TFBS. However, some - namely the similarity and quality mea-
sures - can be directly applied to other DNA motif models. Besides being new solutions
to existing problems, all our developments have two innovative properties in comparison to
other existing methods:

• We explicitly consider overlap probabilities. However, the set of compatible words is
only used implicitly by the two-dimensional score convolution, thus, our algorithms
do not need to enumerate them and, therefore, are very fast.

• The complementary strand of DNA is incorporated, thus, we correctly consider mul-
tiple occurrences of palindromes by explicit modelling of the position dependency
structure.

In this chapter, we first summarize our results. Then, we mention existing problems and
roadmaps to their possible solutions.

12.1 Summary

A PFM with a given threshold can be represented by its set of compatible words. The main
problem is enumeration of all compatible words. Depending on the threshold selection
method (see Section 2.4.3), this takes exponential time (see Section 2.4.4). To be more
precise, this is the case if the threshold is selected based on type-I error (false positive)
probabilities. So the false positive probability is approximately independent of the length
of the PFM. This desirable statistical criterion is important in obtaining comparable results
for PFMs of different lengths. Therefore, in practise, this is the favorite threshold selection
method. Hence, practical computational tools are required to avoid the costly enumeration
of compatible words (see Section 7.5). Since we derive such tools from word counting
approaches and, furthermore, word counting approaches can be restrictively applied to
small PFMs, this thesis also reviews word counting approaches.
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12.1.1 Word Counting

Word counting approaches deal with the difficulty of (self-)overlaps of words (see Chapter 3).
Exact solutions are usually computed either by recursive formulae (Gentleman, 1994; Robin
et al., 2005), generating functions (first publications are Goulden and Jackson, 1983; Fudos
et al., 1996; Koutras, 1997), language decomposition approaches (Régnier, 2000; Régnier
and Denise, 2004) or by automatons slided over the sequence (Kleffe and Langbecker, 1990).
Surprisingly, exact formulae for homogeneous clumps have only recently be published based
on generating functions (Stefanov et al., 2007). However, there are no recursive formulae
available. To close this gap, we have newly derived such formulae (see Section 3.3.1), which
are straight-forward to apply. Furthermore, we show how to compute the exact expected
value and the (limiting) variance.

In practise, exact approaches can only be computed for small sequences since they are
computationally very demanding. Approximations can solve this problem. There are two
approximation scenarios: First, words occur frequently; second, words occur rarely. For fre-
quent words, one can use a normal approximation based on the asymptotic expected value
and the asymptotic/limiting variance (Waterman, 2000). Here, we have contributed a new
normal approximation for homogeneous clumps (see Section 3.3.4 and Section 3.5.1). How-
ever, PFM occurrences only occur rarely. In this case, a (compound) Poisson distribution
is more appropriate (Reinert and Schbath, 1999; Roquain and Schbath, 2007).

Compound Poisson Distribution The compound Poisson distribution can be used in two
equivalent ways to model occurrences (Johnson et al., 1995):

• Clumps are distributed like Poisson; the size of each clump follows another (e.g.
geometric) distribution independently and identically.

• For each k ≥ 1, the occurrences of k-clumps are modeled by a Poisson distribution.

Compound Poisson Distribution for Homogeneous Clumps Considering only homoge-
neous clumps (Reinert and Schbath, 1999), self-overlaps of words are considered in the
rate of clumps. Therefore, Chen-Stein error bounds converge to 0 for words which might
have self-overlaps but cannot overlap with any other word in the set. However, homoge-
neous clumps of different words can overlap. Since this overlap cannot be incorporated
into the Poisson distribution, the Chen-Stein error bounds do not converge to 0 for sets of
overlapping words.

Compound Poisson Distribution for Heterogeneous Clumps The recent approach from
Roquain and Schbath (2007) allows heterogeneous clumps. Hence, overlaps - self-overlaps
as well as overlaps between different words - are incorporated into the Poisson rate for
clumps. Therefore, the Chen-Stein approximation error converges to 0 independent of the
overlapping structure between words.
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12.1.2 TF Count Statistics

Chapter 5 contains our main contribution. Among this are the exact formula for the
variance and an approximation for the count distribution of PFM occurrences without
explicitly enumerating the set of compatible words. Furthermore, the complementary strand
is incorporated which is important for palindromes. The variance of the number of counts is
complicated by computation of second moments. Hence, the essence is the computation of
the joint probability of two occurrences shifted by d positions. Since these two occurrences
require a score reaching the threshold at both positions, one can use the 2-dimensional score
convolution to compute the corresponding probability. This leads to an exact formula for
the variance and the limiting variance which can be applied as similarity (see Section 9)
and quality measures (see Section 11). Furthermore, we newly derive generating functions
for a simplified background model.

Based on the joint occurrence probabilities, we also contributed the first efficient1 compound
Poisson distribution for PFMs. To incorporate the complementary strand, we developed
recursive formulae, which explicitly model the extended dependency structure between po-
sitions. Other approaches usually ignore the complementary strand due to the complicated
dependency structure. Thus, the incorporation of the complentary strand is another im-
portant contribution. Furthermore, we derive two characteristic values, which describe the
palindromicity and the self-overlap of PFMs. This is the first known quantitative method
to assess these two characteristics. Results in Chapter 7 clearly indicate that our approxi-
mation is very accurate and that this approach is the only one which considers palindromes
correctly. Furthermore, Section 7.5 proves that the exact approach (Zhang et al., 2007)
cannot generally be applied to PFMs with threshold selection based on error probabiltities
due to computational issues. Hence, our contributed approximation is the only efficient and
accurate statistics for count distributions of PFMs.

12.1.3 cis-regulatory modules (CRMs)

Statistical assessment of CRMs is one of the main problems in sequence analysis. Besides
the exact approach (Boeva et al., 2007), which is computationally very demanding since
exponential in the number of compatible words, no stringent statistics were available. Based
on the overlap probabilities retrieved by the 2-dimensional score convolution, we derive
the first efficient and accurate approximation for the probability to observe at least one
occurrence of each TF in a given set in a window of a sequence (see Chapter 6). If the
window is small, the occurrence of each TF determines a CRM. Since TFs are co-operative if
they tend to co-occur, we propose to count the number of windows with such co-occurrences
and derive formulae to compute the significance. Furthermore, we give Chen-Stein error
bounds for the approximation of the significance such that one can also use overlapping
windows after quantifying the error. Hence, using our framework, the following questions
can be quantitatively answered:

• What is the probability of observing co-occurrences (at least one occurrence of each
TF in a given set) in a random sequence window of given length?

1This means without enumerating all compatible words.
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• How small/large should the window be such that the probability of co-occurrence is
still significant?

• How significant is the co-operativity within a set of TFs?

• What is the bound of the co-operativity approximation using overlapping windows?

The results show that similar PFMs - PFMs which can overlap - need smaller windows
such that the probability for co-occurrence is significant. The reason is that similar PFMs
have a much higher chance of co-occuring in random sequences. In fact, our framework
incorporates the similarity between PFMs in the null model. Furthermore, significance of
co-operativity yields large bounds for highly overlapping windows. Hence, the best choice
are windows, which only overlap at their boundaries. Finally, similar PFMs always yield
larger bounds than non-similar PFMs since the approximation error depends on the overlap
probabilities.

In comparison to an approach not considering the similarity of PFMs, simulations show
that the new approach yields very accurate results. Since the empirical frequency can be
incorporated into the approach, empirically more frequent - than theoretically assumed
- motifs do not have a bias towards better significance values. Hence, we give the first
accurate and statistically sound assessment of co-occurrences and co-operativity of sets of
TFs, which is not based on the set of compatible words.

12.1.4 Similarity

Similarity between DNA motifs is important in detecting database redundancies and to
remove bias in sequence annotation. So far, only PFM-specific similarity measures are
proposed, which mainly rely on the distance between the position-specific distributions (for
example, see Schones et al., 2005; Gupta et al., 2007). DNA motifs can be shifted towards
each other. Thus, one obtains distances for each possible shift. Until now there has been
no stringent way to summarize these distances for all possible shifts/overlaps.

In Chapter 9, we contribute a general and natural similarity measure for DNA motifs. It
is general because it is not restricted to PFMs but can be computed for any DNA motif
model as long as the second moments of its count distribution are known. Furthermore, it
is natural since we use the tendency for overlapping occurrences captured in the limiting
covariance. In addition, one directly obtains a measure for each pair of DNA motifs instead
of one measure for each possible shift for each pair of DNA motifs. Based on the exact
variance of PFM counts we derived earlier (see Chapter 5), we give explicit formulae for
PFMs which can be efficiently computed.

Our new measure is compared to simulated data annotated by artificially generated PFMs
and Transfac PFMs (Matys et al., 2003). The results show that the new measure accu-
rately captures the tendency of overlaps. Furthermore, none of the competitive approaches
(Schones et al., 2005; Roepcke et al., 2005; Gupta et al., 2007) is able to reflect this ten-
dency. Hence, we give the first general and natural similarity measure of DNA motifs which
has is readily interpretable.
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12.1.5 Clustering

The similarity of PFMs can also be used to cluster PFMs (Mahony et al., 2007). This is
useful to obtain representative PFMs for sets of similar PFMs, as well as deciphering classes
of TFs (Sandelin and Wasserman, 2004). We propose to compute an ungapped alignment
based on a similarity measure between two PFMs. As a similarity measure we derive the
maximal overlap probability which is related to the similiarty described above (see Chapter
9). In this context, its advantage is that one directly obtains the ungapped alignment.
In Chapter 10, we develop a clustering algorithm which ensures if the cluster is extended
that all members still share sufficient similarity to one another. Furthermore, we show how
to compute a cluster representative (FBP), which reflects all shared characteristics of the
cluster members.

The algorithm can be applied to databases like Transfac (Matys et al., 2003) or Jaspar
(Sandelin et al., 2004a) to merge redundancies into new cluster representatives, which could
then be used to annotate sequences. However, to evaluate the performance of the cluster-
ing, we apply it on selected class-labeled Jaspar PFMs and compare our result with the
best result of a clustering study by Mahony et al. (2007). The new clustering yields as
good results as the best - and, furthermore, optimized - method from the clustering study.
Furthermore, the clusters are more consistent. Hence, the new clustering algorithm can be
used to solve problems of redundancies in databases and finding classes of TFs.

12.1.6 Quality

Models for DNA motifs serve as a unifying framework for analysis of TFBS. A model
represents the experimentally verified binding sites. Depending on the model, certain sim-
plifications are done. For example, the PFM model assumes position independence. Thus,
DNA motifs with position dependencies cannot be correctly represented by PFMs. There-
fore, it is important to measure the quality of representation for DNA motifs and a chosen
model. Up to now, this problem has not been tackled generally. There are only specific
approaches, which measure the gain of representation by using a specific more complex
model usually based on an information criterion like BIC (Bayesian Information Criterion,
see Schwarz, 1978) or AIC (Akaike Information Criterion, see Akaike, 1974).

We propose a very intuitive approach: We compare the set of experimentally verified sites
with the set of words reflecting an occurrence for the DNA motif (for PFMs: the set
of compatible words) based on its similarity. Despite the fact that enumeration of all
compatible words is inefficient for PFMs, the main problem is how to compare the sets.

Instead of using sensitivity, specificity or precision, we propose to compute the similar-
ity/limiting covariance between the set of experimentally verified binding sites and the
DNA motif model. We give explicit formulae to efficiently compute such a quality measure
for PFMs. Since the quality measure depends on the threshold, one can also choose the
threshold by optimizing the quality. For Transfac (Matys et al., 2003) and Jaspar (Sandelin
et al., 2004a) PFMs, we show that such an optimization significantly changes the the qual-
ity of the PFMs. In addition, we prove that the quality measure is able to detect DNA
motifs with position dependencies by comparing the quality values to PFMs which have
been shown to be better represented by more complex models (Georgi and Schliep, 2006).
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Thus, we derive the first general quality of representation measure to assess how well a set
of experimentally verified sequences is represented by a DNA motif model.

12.2 Outlook

Although this thesis mainly deals with DNA motifs, our first contribution is an exact
formula for the number of clumps for word count statistics. For DNA motifs represented as
PFMs, we contribute the first exact variance which is - similar to all following contributions
- not based on the enumeration of compatible words. We also derive the first generating
functions for the number of counts of PFMs using a simple background model. The core of
the thesis regards the count and co-occurrence statistics both incorporating most relevant
dependencies - the overlap probabilities and the complementary strand. Based on these
formulations, we derive a new general similarity and quality measure as well as a clustering
algorithm. Eventually, we suggest to use the quality measure to optimize model parameters
such as the threshold. We show the better performance of all contributions by comparison to
existing methods. Furthermore, we supply a website to perform these calculations as well as
a sophisticated software package which additionally support parallel processing. Although
PFMs are already used since more than a decade, we provide the first comprehensive
theoretical and practical package of statistics solving relevant statistical issues for DNA
motifs represented as PFMs.

Since the single parts of the thesis have already been discussed in the corresopnding chap-
ters, here, we only give some general remarks. Throughout the whole thesis, the sequence
model is restricted to the Bernoulli (i.i.d.) sequence model. Although this model suffices
to shed some light on biology, an extension to a more sophisticated Markov model would
improve the applicability of our derived statistics. In fact, the main problem is computa-
tion of the 2-dimensional score convolution. However, there are no principal problems to
extend the convolution to deal with higher order Markov models. For a Markov model of
first order, one has to assign to each score the last nucleotide. This enlarges the required
memory and also the computational time linearly by the alphabet size. Furthermore, one
has to ensure that the sequence model is symmetric otherwise it is not obvious how to
incorporate the complementary strand.

The similarity as well as the quality are more general measures than the PFM model. In
fact, one can apply them to any DNA motif model as long as one can compute the covariance
of the number of occurrences. Therefore, deriving explicit formulae for more sophisticated
DNA motif models (e.g. Georgi and Schliep, 2006) would increase the applicability of both
measures. Furthermore, one could compare DNA motif representations between different
models.

So far, the accuracy of the statistics are only shown based on simulations as a proof-of-
principle. The simulations use the same sequence model as our statistics. Of course, real
data is more complex. Hence, the next step is to apply the statistics to real biological
examples and to analyze the correspondence of the results to known biological facts. This
might make certain extensions regarding the sequence model necessary. However, after the
statistics are confirmed by such analyses, the statistics can be used to gather new biological
insights. Hence, one would apply the approaches to new data to generate hypotheses, which
can be verified by wet-lab experiments.
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Liefooghe, A., Touzet, H., and Varré, J.-S., 2006. Large scale matching for position weight
matrices. In Lecture Notes in Computer Science - Combinatorial Pattern Matching, 401–
412.

Lifanov, A., Makeev, V., Nazina, A., and Papatsenko, D., 2003. Uniform clusters in
drosophila. Genome Res 13, 579–588.

Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel,
D. P., Linsley, P. S., and Johnson, J. M., 2005. Microarray analysis shows that some
microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

Liu, J. S., Lawrence, C. E., and Neuwald, A. F., 1990. Bayesian Models for Multiple Local
Sequence Alignment and Gibbs Sampling Strategies. J. Am. Stat. Assoc. 95.

Liu, X., Brutlag, D., and Liu, J., 2001. BioProspector: discovering conserved DNA motifs
in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 127–38.

Lonardi, S., 2001. Global detectors of unusual words design, implementation and application
to pattern discovery in biosequences. Ph.D. thesis, Purdue University, West Lafayette,
Indiana.

Lothaire, M., 1983. Combinatorics on Words. Addison-Wesley.

Lundstrom, R., 1990. Stochastic models and statistical methods for DNA sequence data.
Ph.D. thesis, University of Utah.

Ma, B., Tromp, J., and Li, M., 2002. Patternhunter: faster and more sensitive homology
search. Bioinformatics 18, 440–445.

MacIsaac, K. D. and Fraenkel, E., 2006. Practical Strategies for Discovering Regulatory
DNA Sequence Motifs. PLoS Computational Biology 2, e36.

MacKay, D. J. C., 2003. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press.

191



Bibliography

Mahony, S., Auron, P. E., and Benos, P. V., 2007. DNA familial binding profiles made easy:
comparison of various motif alignment and clustering strategies. PLoS Comput Biol 3,
e61.

Mahony, S., Golden, A., Smith, T. J., and Benos, P. V., 2005. Improved detection of DNA
motifs using a self-organized clustering of familial binding profiles. Bioinformatics 21,
i283–291.

Manke, T., Dieterich, C., and Vingron, M., 2005. Detecting Functional Modules of Tran-
scription Factor Binding Sites in the Human Genome. In Lecture Notes in Computer
Science. Springer Berlin/Heidelberg.

Markstein, M., Markstein, P., Markstein, V., and Levine, M., 2002. Genome-wide analysis
of clustered dorsal binding sites identifies putative target genes in the drosophila embryo.
PNAS 99, 763–768.

Marschall, T. and Rahmann, S., 2008. Probabilistic Arithmetic Automata and Their Ap-
plication to Pattern Matching Statistics. In Ferragina, P. and Landau, G. M., eds., CPM,
95–106.

Maston, G. A., Evans, S. K., and Green, M. R., 2006. Transcriptional Regulatory Elements
in the Human Genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59.

Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K.,
Karas, D., Kel, A. E., Kel-Margoulis, O. V., Kloos, D.-U., Land, S., Lewicki-Potapov,
B., Michael, H., Munch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S.,
and Wingender, E., 2003. TRANSFAC(R): transcriptional regulation, from patterns to
profiles. Nucleic Acids Res. 31, 374–378.

Maxam, A. M. and Gilbert, W., 1977. A new method for sequencing dna. Proc Natl Acad
Sci U S A 74, 560–564.

McArthur, M., Gerum, S., and Stamatoyannopoulos, G., 2001. Quantification of DNaseI-
sensitivity by real-time PCR: quantitative analysis of DNaseI-hypersensitivity of the
mouse beta-globin LCR. J Mol Biol 313, 27–34.

McGuire, A., Hughes, J., and Church, G., 2000. Conservation of DNA regulatory motifs
and discovery of new motifs in microbial genomes. Genome Res 10, 744–57.

Mengeritsky, G. and Smith, T., 1987. Recognition of characteristic patterns in sets of
functionally equivalent DNA sequences. Comput. Appl. Biosci. 3, 223–227.

Mirny, L. A. and Gelfand, M. S., 2002. Structural analysis of conserved base pairs in
protein-dna complexes. Nucleic Acids Res 30, 1704–1711.

Morgenstern, B., 2004. DIALIGN: multiple DNA and protein sequence alignment at BiBiS-
erv. Nucleic Acids Res 32, W33–6.

Müller, F., Williams, D., Kobolák, J., Gauvry, L., Goldspink, G., Orbán, L., and Maclean,
N., 1997. Activator effect of coinjected enhancers on the muscle-specific expression of
promoters in zebrafish embryos. Mol Reprod Dev 47, 404–12.

Myers, L. and Kronberg, R., 2000. Mediator of transcriptional regulation. Annu. Rev.
Biochem. 69, 729–749.

192



Bibliography

Nagarajan, N., Jones, N., and Keich, U., 2005. Computing the p-value of the information
content from an alignment of multiple sequences. Bioinformatics 21, i311–318.

Narlikar, L. and Hartemink, A. J., 2006. Sequence features of DNA binding sites reveal
structural class of associated transcription factor. Bioinformatics 22, 157–163.

Neuwald, A., Liu, J., and Lawrence, C., 1995. Gibbs motif sampling: detection of bacterial
outer membrane protein repeats. Protein Sci 4, 1618–32.

Nicodeme, P., Salvy, B., and Flajolet, P., 1999. Motif statistics. In ESA’99 volume 1643 of
Lecture Notes in Computer Science, 194–211. Springer-Verlag.

Niven, I., 1969. Formal power series. American Mathematical Monthly 76, 871–889.

Noonan, J. and Zeilberger, D., 1999. The Goulden-Jackson Method: Extensions, Applica-
tions and Implementations. J. of Difference Equations and Applications 5 4-5, 355–377.

Notredame, C., 2002. Recent progress in multiple sequence alignment: a survey. Pharma-
cogenomics 3, 131–144.

Notredame, C., Higgins, D. G., and Heringa, J., 2000. T-coffee: a novel method for fast
and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217.

Oliphant, A., Brandl, C., and Struhl, K., 1989. Defining the sequence specificity of DNA-
binding proteins by selecting binding sites from random-sequence oligonucleotides: anal-
ysis of yeast GCN4 protein. Mol Cell Biol 9, 2944–9.

Orlando, V., 2000. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-
chromatin immunoprecipitation. Trends in Biochemical Sciences 25, 99–104.

Osawa, S., Jukes, T. H., Watanabe, K., and Muto, A., 1992. Recent evidence for evolution
of the genetic code. Microbiol Rev 56, 229–264.

Pabo, C. and Sauer, R., 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53, 293–321.

Papatsenko, D., 2007. Clusterdraw web server: a tool to identify and visualize clusters of
binding motifs for transcription factors. Bioinformatics 23, 1032–1034.

Papatsenko, D., Makeev, V., Lifanov, A., Regnier, M., Nazina, A., and Desplan, C., 2002.
Extraction of functional binding sites from unique regulatory regions: The drosophila
early developmental enhancers. Genome Research 12, 470–481. [Preliminary version in
Drosophila Workshop, Washington 2001].

Pape, U. J., Grossmann, S., Hammer, S., Sperling, S., and Vingron, M., 2006. A new
statistical model to select target sequences bound by transcription factors. Genome
Informatics 17, 134–140.

Pape, U. J., Klein, H., and Vingron, M., 2008a. Statistical detection of co-operative tran-
scription factors with similarity adjustment. Accepted by GCB 2008.

Pape, U. J., Rahmann, S., Richard, H., and Vingron, M., 2008b. Quality of Binding Site
Representation by Position Frequency Matrices and Threshold Optimization. Submitted
to Bioinformatics.

193



Bibliography

Pape, U. J., Rahmann, S., Sun, F., and Vingron, M., 2008c. Compound Poisson approxi-
mation of number of occurrences of a Position Frequency Matrix (PFM) on both strands.
J. Comput. Biol. 15, 547–564.

Pape, U. J., Rahmann, S., and Vingron, M., 2008d. Natural Similarity Measures between
Position Frequency Matrices with an Application to Clustering. Bioinformatics 24, 350–
357.

Pape, U. J. and Vingron, M., 2008. Statistics for Co-Occurrence of DNA Motifs. In Chi-
quet, J., Glaz, J., Limnios, N., and Moyal, P., eds., Proceedings of the 4th International
Workshop on Applied Probability.

Pavesi, G., Mauri, G., and Pesole, G., 2004. In silico representation and discovery of
transcription factor binding sites. Brief Bioinform 5, 217–236.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo, Ca.

Pevzner, P. A., Borodovsky, M., and Mironov, A. A., 1989. Linguistics of nucleotide se-
quences. i: The significance of deviations from mean statistical characteristics and pre-
diction of the frequencies of occurrence of words. J Biomol Struct Dyn 6, 1013–1026.

Pietrokovski, S., 1996. Searching databases of conserved sequence regions by aligning
protein multiple-alignments [published erratum appears in nucleic acids res 1996 nov
1;24(21):4372]. Nucleic Acids Res. 24, 3836–3845.

Pilpel, Y., Sudarsanam, P., and Church, G., 2001. Identifying regulatory networks by
combinatorial analysis of promoter elements. Nat Genet 29, 153–9.
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Tavaré, S. and Song, B., 1989. Codon preference and primary sequence structure in protein-
coding regions. Bull Math Biol 51, 95–115.

Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P., and Moreau, Y.,
2001. A higher-order background model improves the detection of promoter regulatory
elements by gibbs sampling. Bioinformatics 17, 1113–1122.

Thompson, J., Higgins, D., and Gibson, T., 1994. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–80.

Thompson, W., Rouchka, E. C., and Lawrence, C. E., 2003. Gibbs Recursive Sampler:
finding transcription factor binding sites. Nucleic Acids Res 31, 3580–5.

Tompa, M., Li, N., Bailey, T. L., Church, G. M., Moor, B. D., Eskin, E., Favorov, A. V.,
Frith, M. C., Fu, Y., Kent, W. J., Makeev, V. J., Mironov, A. A., Noble, W. S., Pavesi, G.,
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Notation and Abbreviations

Notation

d= equality in distribution

[zn]g(z) nth coefficient of generating function g(z), page 73

1[·] equals to 1 if expression is true and otherwise 0

≈ approximately

| · | size of a set and absolute value of a scalar

∼ distributed as(
n
k

)
binomial coefficient

Cov[·, ·] covariance of two random variables, page 34

CP compound Poisson distribution, page 56

E[·] expected value of a random variable

P(·) power set

V[·] variance of a random variable, page 34

A alphabet, page 14

A+ all possible words from alphabet with at least one letter

A set of compatible words, page 28

B(·, ·) binomial distribution

Cor(·, ·) correlation between two random variables

C set of disjoint classes/groups of TFs, page 157

L(·) distribution of a random variable

M(·, ·) multinomial distribution, page 14

N (·, ·) normal distribution with expected value and variance as parameters
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N natural numbers 1, 2, 3, . . .

P(·) probability of an event

P(·) Poisson distribution with given rate

Pµ(·) probability of an event under the sequence model

PΠ(·) probability of an event under the motif model Π, page 23

S(·) set of discretized scores of a given PFM, see equation (5.3), page 90

W set of words with equal lengths, page 57

X set of sequences, page 18

α probability of a type-I error, page 24

αn probability of at least one false positive in a sequence of length n, page 25

β probability of a type-II error, page 24

εd(·) overlap bit for a shift of d, see equation (3.6), page 34

εd(·, ·) overlap bit between two words, see equation (3.31), page 58

η period of a word, page 44

γ̄d conditional probability of an overlapping occurrence after d positions
given the preceding occurrence, see equation (5.10), page 98

γd(·) joint probability for two occurrences shifted by d positions, see equa-
tion (3.7), page 34

γd(·, ·) joint probability of overlapping occurrences of two words, page 59

κ position in the motif, page 14

` length of motif, page 14

Λ diagonal matrix containing eigenvalues, page 100

λi ith eigenvalue, page 100

µ(·) background probability for letter/word

µ vector of expected values of number of occurrences of a set of words, see
equation (3.34), page 63

µ̃ vector of expected values of number of clumps of a set of words, see
equation (3.40), page 69
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µ̆(·) probability for a heterogeneous clump of a given set of words, page 70

µ̆k(·) probability of a heterogeneous clump of size k of a set of gievn words,
see equation (3.43), page 71

µ sequence model and vector of nucleotide frequencies, page 20

µ̃(·) probability of a clump, page 45

µ̃k(·) probability of a clump of size k, see equation (3.27), page 55

Ω matrix containing all overlap probabilities of a set of words, page 70

ω(·) probability that an occurrence is no clump (thus, there is an overlapping
occurrence to the left), see equation (3.18), page 45

ωd(·) probability that an occurrence is no clump given a preceding clump with
a distance of d, see equation (3.23), page 47

ω·,· overlap probability between two words, see equation (3.42), page 70

$d(·) covariance between clumps with distance d divided by the probability of
a clump, page 48

φ weight to reflect multiplicity of binding sites, page 166

Π PFM, see equation (2.1), page 15

πκ multinomial probability vector characterizing one position of the motif,
page 14

Ψ PSM, page 16

ψ·,· score for given position and nucleotide, page 16

Ψ∗ re-ordered PSM, page 27

ψ∗κ,r term re-ordered PSM at position κ and rank r, page 27

St(·) set of discretized scores, which reach a threshold t, of a given PFM,
page 90

0(·) σ-algebra generated by a given set, page 33

Σ covariance matrix for the number of occurrences of a set of words, see
equation (3.35), page 63

σ2 variance

σ2
·,· covariance of number of occurrences between two words, page 62
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σ̃2 variance of number of clumps, page 56

T set of TFs, page 121

θ probability vector of clump size distribution, page 96

ϑ rate of Poisson distribution

ϑk Poisson rate for a k-clump, page 55

Υ′(·) set of principal periods for a given word, page 44

Υ′
W(·, ·) set of principal periods between to words with respect to a set of words,

see equation (3.41), page 70

Υ(·) set of all periods for a given word, see equation (3.17), page 44

Υ(·, ·) set of periods between two words, see equation (3.39), page 68

ξ vector of summed extension factors, page 100

ξ summed extension factors: ’update-probability’ of an additional over-
lapping occurrence, see equation (5.12), page 99

ξd extension factors: ’update-probability’ of an additional occurrence shifted
by d positions, page 98

ζ sum of second moments for all overlapping CRM windows, page 125

ζk second moments of CRM indicator variables with a distance of k, page 125

a(z) generating function of absence probabilities, see equation (4.6), page 78

Bi neighborhood set for Chen-Stein bounds, page 32

B·,· neighborhood for Chen-Stein bounds for double indexed random vari-
ables

Ci set of TFs, page 157

dTV(·, ·) total variation distance, see equation (3.2), page 32

d usually, shift between two occurrences, page 34

d(z) generating function of return probabilities of the first ` positions, page 76

f̃ (k)(z) generating function of k clumps in a sequence, see equation (4.17),
page 83

f (k)(z) generating function of k counts in a sequence, see equation (4.10), page 80
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f
(k)
i,v (·) conditional probability to observe at least k occurrences in a sequence of

length n−i+1 given that the sequence starts with v, see equation (3.15),
page 39

Fi(·) probability to observe at least one occurrence in a sequence of length
n− i+ 1, see equation (3.12), page 38

F
(k)
i (·) probability to observe at least k occurrences in a sequence of length

n− i+ 1, see equation (3.14), page 38

fi,v(·) conditional probability to observe at least one occurrence in a sequence of
length n−i+1 given that the sequence starts with v, see equation (3.13),
page 38

G(·, ·) sum of overlap probabilities of two words, page 62

G(w) sum over overlap probabilities, page 41

I index set for Chen-Stein bounds, page 32

i usually, a position in a sequence, page 32

m number of windows, page 122

Ñn vector of random variables for number of clumps of a set of words,
page 69

Nn vector of random variables for number of occurrences for a set of words,
page 62

Ñn(·) random variable for number of clumps in a sequence of length n, page 44

n length of the sequence, page 20

N∗
n(·) number of occurrences in a sequence of length n ignoring sequence

boundaries, page 114

Nn(·) random variable for the number of words in a sequence of length n,
page 32

NX(a) number of letters a in sequence X, page 18

Nobs(a) number of observed letters a, page 18

O(·) f(x) is O(g(x)) as x → ∞ if there is a constant c such that | f(x) |≤
cg(x)

p(·) probability of a CRM in a window of given length, see equation (6.1),
page 114
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Pκ multinomial random variable characterizing one position of the motif,
page 14

q similarity threshold/quantile, page 158

Q(· | ·) quality of a PFM with respect to a given set of words, see equation (11.1),
page 166

r rank or rate

r(z) generating function of return probabilities, see equation (4.3), page 76

S random variable of the score, page 23

s given score, page 23

s(·) score for a letter/word, page 23

S(·, ·) similarity between two objects based on the covariance, see equation (9.1),
page 148

S(·) random variable of the nucleotide-score at a given position, page 23

Smax(·, ·) similarity between two objects based on maximum overlap probability,
page 149

Sj(·) random variable of the score for a given PFM at position j, page 86

t̃(k)(z) generating function of waiting times till kth clump, see equation (4.16),
page 83

T̃m random variable for the waiting time till the occurrence of the mth
clump, page 49

T k waiting time till the kth occurrence by considering the end of an occur-
rence, page 76

t threshold for the score, page 22

t(z) generating function of waiting times, see equation (4.5), page 77

t(k)(z) generating function of waiting times till the kth occurrence, see equa-
tion (4.9), page 80

Tm(·) waiting time until the mth occurrence, page 35

tbal balanced threshold, page 26

v́(z) generating function of the non-overlapping inter-arrival times, see equa-
tion (4.14), page 83
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V́k random variable for k non-overlapping inter-arrival times, see equa-
tion (4.12), page 82

v̀(z) generating function of the overlapping inter-arrival times, page 83

V̀k random variable for k overlapping inter-arrival times, see equation (4.12),
page 82

Ṽ random variable of inter-arrival times of clumps, see equation (4.13),
page 82

ṽ(z) generating function of the clump inter-arrival times, see equation (4.15),
page 83

v(z) generating function of inter-occurrence times, see equation (4.8), page 80

Vk random variable of inter-occurrence times, see equation (4.7), page 79

W random variable of the number of CRMs, see equation (6.13), page 122

w a word from A+ or window size

Wi random indicator variable for a CRM of window i, page 122

X sequence of letters, page 18

x̃ number of clumps

x number of occurrences

Xi random variable for nucleotide distribution of a sequence at position i,
page 20

Y̆i(·) random indicator variable for the start of a heterogeneous clump with
no overlapping occurrences of any word of the set of words, see equa-
tion (3.36), page 64

Ỹ i random indicator for the end of the first occurrence of a clump, see
equation (4.11), page 81

Ỹi(·) random indicator variable for a clump starting at position i, see equa-
tion (3.16), page 44

Y i random indicator variable for the end position of a word, see equa-
tion (4.1), page 75

Yi(·) random indicator variable for the occurrence of a word, see equation (3.1),
page 32

Z̆k(·) number of heterogeneous k-clumps of a given set of words, page 71

207



Bibliography

Z̃k(·) number of clumps of size k for a given word, page 54

z dummy variable for generating functions, page 73

Z(·) random variable for the clump size of a given word, page 53

Zi random variable for the size of the ith clump, page 53

Abbreviations

’A’ adenine, page 1

’C’ cytosine, page 1

CASTing cyclic amplification and selection of targets, page 11

cDNA complementary DNA, page 12

ChIP chromatin-immunoprecipitation, page 11

CRM cis regulatory module, page 2

DNA desoxyribonucleic acid, page 1

EM expectation maximization, page 17

EMSA electrophoretic mobility shift assay, page 11

FN false negatives, page 163

FP false positives, page 163

’G’ guanine, page 1

GFP green fluorescent protein, page 10

i.i.d. independently and identically distributed, page 33

IUPAC International Union of Pure and Applied Chemistry, page 13

LOOCV leave-one-out cross-validation, page 159

PCM position count matrix: contains nucleotide counts from multiple se-
quence alignment, page 15

PCR polymerase chain reaction, page 10

PFM Position Frequency Matrix, page 3

PSM position score matrix: contains log-likelihood scores, page 16

PWM position weight matrix: contains regularized frequencies, page 15
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SELEX systematic evolution of ligands by exponential enrichment, page 11

’T’ thymine, page 1

TF transcription factor, page 2

TFBS transcription factor binding site, page 2

TN true negatives, page 163

TP true positives, page 163

TSS transcription start site, page 2
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Index

A
absence probability, see generating functions

C
CASTing, 11
characteristic values, see PFMs
Chen-Stein, 32–33
ChIP amplification, 12
ChIP assays, 11
ChIP-chip, 12
clumps

definition, 43
heterogeneous, 70–71
homogeneous, 64–69

clustering
algorithm, 157–158

merging, 158
selection, 158
verification, 158

co-occurrences, see CRMs
co-operativity, see CRMs
compatible words, see PFMs
complementary strand

biology, 1
compound Poisson approximation

clumps
heterogeneous, 71

compound Poisson approximation
clumps

heterogeneous, 71
homogeneous, 53–56, 67–69

compound Poisson distribution, 53
conditional approach

running time, 134–136
set of words, 60
single words, 37–39

CRMs, 111
co-occurrences, 119–121

Chen-Stein, 122–125
co-operativity, 122
empirical frequencies, 121
set of TFs, 121
window size, 120

counts, 113–119

D
Dirichlet distribution, 151
DNA, 1
DNA motifs

biology, 2
pattern-based, 13–14

detection, 13
discovery, 14

profile-based, 14–17
adjacent dependencies, 17
detection, 16
discovery, 17
general dependencies, 17
independence, 14
mixture models, 17
PFMs, 14

DNaseI
hypersensitivity, 10
protection, 11

F
footprinting, 11

G
gel shift assay, 11
gene regulation, 2
generating functions, 73–75

absence probability
single word, 75

clumps
homogeneous, 81–84

counts
PFMs, 106
single words, 79–81

inter-arrival time, 82
inter-occurrence time, 79
PFMs, 102–106
return probability

PFMs, 104
single word, 76

stopping probability, 104
waiting time

PFMs, 103
single word, 77
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Index

genetic code, 1

I
implanted motifs, 141
inter-arrival time, see generating functions
inter-occurrence time, see generating

functions

J
Jaspar, 159

K
Kullback-Leibler distance, 149

L
LOOCV, 159

M
mixture models, see quality
mobility shift assays, 11

N
normal approximation

clumps, 69
homogeneous, 56–57

set of words, 62–63
single words, 41–42

O
overlap probabilities, see PFMs

P
PFMs

characteristic values, 101
example, 134

compatible words, 27
count distribution, 95–102
covariance, 88–94
definition, 14
error probabilities, 24
examples

M00950, 130
nothing, 130
palindrome, 130
repeat, 130
repeatpalindrome, 130

generating functions, see generating
functions

mixture models, see quality
overlap probabilities, 89

algorithm, 106–109
complexity, 109
illustration, 91
improvements, 107–108
pairs of TFs, 108

quality, see quality
rank algorithm, 27–28
regularization, 21–22
score distribution, 22–24
sequence logo, 29–30
similarity, see similarity
threshold optimization, 168
threshold selection, 24–27

balanced error, 25
compatible words, 26
type-I error, 25
type-I extended error, 26
type-II error, 25

Poisson approximation
clumps, 66–67

homogeneous, 50–52
compound, see compound Poisson

approximation
set of words, 60–61
single words, 39–41

precision, 165
principal periods, 44
promoter analyses, 10

Q
quality, 166

mixture models, 171–172
multiplicities, 166–167
PFMs, 167–168

R
rank algorithm, see PFMs
representation quality, see quality
return probability, see generating functions

S
SELEX, 11
sensitivity, 165
sequence models

permutation model, 19
sequence logo, see PFMs
sequence models, 18–21

bernoulli model, 20
Markov model, 20
permutation model, 18

similarity, 147–155
χ2 test, 149
covariance, 148
euclidean distance, 150
Kullback-Leibler distance, 149

specificity, 165
stopping probability, see generating functions

T
Transfac
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similarity, 151

W
waiting time, see generating functions
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Appendix A: Software availability

The program suite MOtifSTAtistics contains several programs to compute statistics de-
veloped in this thesis and is available as web-front end and stand-alone programs at
http://mosta.molgen.mpg.de. After describing the compilation of the programs, each pro-
gram and its parameters are presented. Since the computation of clustering of large set
of PFMs demands lot of computational time, the corresponding programs support parallel
computing (Sun, 2002) and multi-processor machines (Dagum and Menon, 1998). The im-
plementation details to adapt to different parallel computing platforms are given next. For
license issues, see last section.

Compilation

Compilation is done by standard GNU C++ compiler. To use multi-processors, Open MP
(Dagum and Menon, 1998) has to be installed and the flag -openmp passed to the compiler.
Compilation is started by

>make all

and to clean

>make clean
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Software

cstat

Returns the count statistics (see Chapter 5 and Chapter 7).

Call

$ ./cstat <gc> <[list:]transfac-file> <threshold-method> <threshold-parameter>
. <[regularize]> <[output]> <[sequence length]>

where the parameters have to be as followed:

• <gc>: gc content, e.g. ’.4’, for the background model

• <[file:]transfac-file>: file describing the position count matrices (PCM) in transfac
format, e.g. ’data/A1.mat’. See data/A1.mat as an example. The program assumes
the line tag ID to occur first. Next, it searches for P0, 01, 02 and so on until the
next line does not contain the next number. Different PCMs in the file have to be
separated by a line only containing ’//’. If filename is preceded by list: one can
pass a file containing a list of transfac filenames as parameter. Each file of the list is
supposed to contain exactly one PCM.

• <threshold-method>: the treshold method (see Section 2.4.3)

– typeI: set threshold such that typeI error is equal to threshold-parameter.

– typeII: set threshold such that typeII error is equal to threshold-parameter.

– balanced: set threshold such that typeI error equals typeII, threshold-parameter
can be any number (is not used but has to be passed as parameter)

– typeIext: set threshold to balanced threshold if it’s possible such that the prob-
ability of a false positive on a sequence length of 500 is less or equal to the
threshold-parameter. Otherwise, set typeI error equal to threshold-parameter.

– threshold: threshold-parameter contains the threshold.

– nrwords: define the number of words higher than the threshold (is only accurate
if gc content is 50%.)

• <[regularize]>: if not set or set to a true value (1), the regularization method from
Rahmann (2003). Otherwise, we just add pseudocounts (see Section 2.4.1 for details).

• <output>: if this parameter exist, the running time of the statistical calculation
(without reading input/preparing PSSM, and so on) is printed. Depending on the
choice of this parameter, following output is printed:

– parameter: only xi, xi’, xi’0, alpha, theta1

– lambda: in addition: lambda1, lambda2

– theta: in addition, all thetas until ¡ precision

– rate: in addition, rate r (give sequence length in next parameter) without theta
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– cpd: in addition, all P(X ≥ x) until < precision (give sequence length)

• <[sequence-length]>: length of the sequence

The typeI error is measured as the probability of at least one false positive in a region of
length 500 (Pape et al., 2006, α500).

Examples

• Assumes gc-content of 40%, uses matrix given in data/matrixA.mat and sets the
threshold to 30.

./cstat .4 data/matrixA.mat threshold 30

• Iterates over the transfac files given in data/matrix.list and sets for each matrix the
threshold such that typeI error is equal to typeII error or (it not possible) the typeI
error to .1.

./cstat .3 list:data/matrix.list typeIext .1

• Returns hit statistic for a sequence of length 10000 with gc-content 40% after setting
the threshold for the non-regularized (only pseudo-counts added) such that the type
I error is equal to 10%.

./cstat .4 data/matrixA.mat typeI .1 0 cpd 10000
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Software

sstat

Returns the similarity between PFMs (see Chapter 9).

Call

$ ./sstat <gc> <[list:]transfac-file> <threshold-method> <threshold-parameter>
. [<partial-execution>] [<return diagonal>] [<bregularize>]

Most parameters are the same as for cstat. The new parameters are:

• <partial-execution>: integer i: if not given, whole similarity matrix is computed.
if given, only the ith and the n-i th line of the similarity matrix are computed and
return in special format (to be read by scluster). if -1 then simstat uses SGE cluster
itself.

• <return diagonal>: default: 0 (false). If set to 1, we also return the similarity of
each matrix and itself. (Useful for computing the variance for the univariate count
distributions.)

Output

Matrix with following columns:

• matrixA: first matrix

• matrixB: second matrix

• Smax: Similarities summarized by using the maximum

• Ssum: Similarity measured by covariance

• imax: Position with the highest similarity (B is shifted against fixed A!)

• bimaxp: maximum similarity is a reverse complementary hit (1) otherwise (0)

• alphaA: probability of a false positive for matrixA

• alphaB: probability of a false positive for matrixB

Examples

Compute similarities between all pairs of matrices from data/matrix.list using a balanced
threshold:

./sstat .4 list:data/matrix.list balanced .1
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scluster

Returns a clustering of PFMs (see Chapter 10).

Call

$ ./scluster <gc> <[list:]transfac-file> <threshold-method> <threshold-parameter>
. [<use-sge>] [<p=.95>] [<LOOCV>] [<regularize>]

where most parameters are the same as for cstat. New parameters:

• <use-sge>: 0/1 (standard: 0) uses sge engine to build similarity matrix

• <p>: Two PFMs are considered for merging only if their Smax value is higher than
the maximum of the quantile p of all pairwise Smax values and 0.

• <LOOCV>: Performs a Leave-One-Out-Cross-Validation.

Output

Matrix with following columns:

• matrixA: first matrix

• matrixB: second matrix

• QA: power of matrix A

• QB: power of matrix B

• icA: information content of matrix A

• icB: information content of matrix B

• Smax: Similarities summarized by using the maximum

• imax: Position with the highest similarity (B is shifted against fixed A!)

• bimaxp: maximum similarity is a reverse complementary hit (1) otherwise (0)

• Q: power of new matrix

• ic: information content of new matrix

Furthermore, following files are written (in the same directory where the input files are):

• <transfac-file>.matrices: contains all familial binding profiles (cluster representa-
tives) for each cluster including intermediate representatives.

• <transfac-file>.cluster: contains the final familial binding profiles for each cluster and
all remaining singletons.
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Software

Example

Computes clustering of all pairs of matrices from data/matrix.list using a balanced thresh-
old.

$ ./scluster .4 list:data/matrix.list balanced .1
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costat for co-occurences

This program returns the probability (or the rates you need to compute this probability)
to have at least one hit of TF A and at least one hit of TF B in a window (see Chapter 6).
The calculation is performed for all pairs of the given set of TFs.

Call

$ ./costat <gc> <[list:]transfac-file> <threshold-method> <threshold-parameter>
. [<window size>] [<bregularize>] [<file with empirical alphas>]

where most parameters are the same as for cstat. New parameters:

• <window size>: if the parameter is not given, the program only outputs the rates.
In case of a given window size, it returns the probability to have at least one hit for
A and one hit of B.

• <file with empirical alphas>: instead of using the theoretically derived alphas (prob-
ability for a false positive - at one position!), you can supply the empirical probability
(count the number of hits and divide by twice of the sequence length due to the com-
plementary strand). This corrects against a bias occuring for unexpected frequent
motifs. The file should contain one probability per line in the same order as the
matrices in the transfac file.

Output

Output if window length was not given Matrix with following columns:

• matrixA: first matrix

• matrixB: second matrix

• rA: rate for the occurence of matrix A

• rB: rate for the occurence of matrix B

• rAB: rate for the occurence of matrix A and B

• alphaA: typeI error for matrixA

• alphaB: typeI error for matrixB

Output for given window length Matrix with following columns:

• matrixA: first matrix

• matrixB: second matrix

• p: probability to observe at least one hit of matrixA and one hit of matrixB in a
window of given length.
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Software

Example

For rare rate output:

$ ./costat .4 list:data/matrix.list typeIext .1

and for probability output with a window size of 500

$ ./costat .4 list:data/matrix.list typeIext .1 500
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bsanno for clustering

Annotates sequences with binding sites.

Call

$ ./bsanno <sequence-file> <[list:]transfac-file> <threshold-method>
. <threshold-parameter> [<bregularize>] [<statistics>]
. [<gc content for global option>]

where most parameters are the same as for cstat. New parameters:

• <sequence-file>: a FASTA file containing sequences for annotation, e.g. data/seq.fasta

• <statistics>: default: false; if true then pvalue per sequence per PFM are reported,
otherwise position of binding sites are reported.

• <gc-content for global option>: if this parameter is not set, we use for each se-
quence annotation for the background model (for PSSM generation and threshold
determiniation) the gc content given by the selected sequence (default option!). If a
gc content (like .3) is given, we define the background model (for PSSM generation
and thresholding) by this given gc content (here .3) for all sequences.

Output

Matrix with following columns:

• matrix: matrix for binding site

• gene: name of gene

• strand: 1 for binding site on given sequences, -1 for reverse complementary strand

• pos.start: starting position of the binding site (ignoring its orientation) counted for
upstream sequences (this means we assume the TSS at the end of the given sequences,
therefore, the last sequence position is 0, the second last 1, and the first position is
the sequence length-1), in fact, we enumerate the sequence positions from right to
left.

• pos.end: corresponding ending position of binding site, pos.end¡pos.start always holds.

• seq.start: starting position of the binding site while enumerating the positions from
right to left. Thus, first position of the sequence corresponds to 0 and the last position
is sequence length-1. Again, we ignore the orientation of the binding site.

• seq.end: ending position of the binding site. seq.end > seq.start.
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Software

Example

Annotates sequences in seq.fasta by the binding sites contained in matrix.list using a bal-
anced threshold.

./bsanno data/seq.fasta list:data/matrix.list balanced .1
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pfmqual to compute quality of PFMs

Computes the correlation between set of binding sites (given in Transfac file in lines starting
with BS <sequence>) and the PFM (see Chapter 11). Make sure that BS is followed either
by a tab and the sequence or by two spaces.

Call

$ ./pfmqual <gc> <[list:]transfac-file> <threshold-method> <threshold-parameter>
. [<bregularize>] [<bnr>]

where all parameters except <threshold-method> are the same as before.

• <threshold-method>: ’optimize’ to optimize the threshold such that quality is max-
imixed. bnr: if 1 then binding sites are transformed to unique sequences, if 0 (default)
we use the binding sites as given in the transfac file.

Output

Matrix with following columns:

• matrix: name of matrix

• quality: quality of PFM

• quality.nr: non-redundant (unweighted) quality

• sens: sensitivity

• spec: specificity

• prec: precision

• threshold: the chosen threshold (important for ’optimize’)

• alpha: alpha error

• beta: beta error

Example

./pfmqual .4 list:data/matrix.list balanced .1
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Software

Parallel Computing

Some of the programs support parallel computing. Since we support OMP (one memory,
multiple processors) (Dagum and Menon, 1998) and the Sun Grid Engine (Sun, 2002) -
multiple memory, multiple processors - we divide this section correspondingly.

OMP

If you have an OMP ready compiler, you just have to uncomment the two lines in the
Makefile:

compileoption += -fopenmp
linkoption = -lgomp -o

And, perhaps, change the parameter for using openmp fitting to the compiler you use. We
are using C++ compiler v. 4.2.0 for 64bit machines. If you have compiled the program
with OMP enabled, the clustering will perform much faster in recomputing the similarities
of each new representatives with all other nodes.

The Sun Grid Engine

As the parameters suggested (above), the programs support the Sun Grid Engine - although
we have to admit that the implementation is rather proprietary. Anyways, some inspection
of the sge.h and sge.cpp should clarify the implementation and give the possibility to extend
it. In fact, all classes which can use the SGE engine (CSimilarityMatrix and CClusterMatrix
since it is inherited from CSimilarityMatrix but does not need any further adjustment.) are
derived from the interface ISGEClient. Two adjustment might be needed:

1. In the client class CSimilarityMatrix you might want to modify the path of sstat. We
assume that it is contained in the path - then - you don’t need any modifications.

2. In sge.cpp, three main task are done - and might need some adjustments:

a) Initialization: The constructor of CSGEMaster needs a temporary directory (de-
fault: sgetemp). Be aware that each construction might delete files within this
directory.

b) Job Submission: Implemented in the method submit. Here, you have to change
the format/directives and the program to submit the job (default:submit2sge)
as well as the queue and other parameters such that they fit you environment.

c) Waiting: After the jobs are submitted, the class waits until all jobs are done
(method finish()). Here, we use the program qstat to see which jobs are done
(using the job id caught at submission) and also perform some basic error han-
dling. Depending on your output of qstat, your error logs and so on, you might
want to change some code there, as well. (By the way, if we see that a job was
finished successfully, we call the callback function sge merge (for which we in
fact use the interface ISGEClient) to read the output).
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License

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram; if not, see http://www.gnu.org/licenses/.
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Appendix B: Summary (German)

Zusammenfassung

Transkriptionsfaktoren (TF) spielen eine entscheidende Rolle in der Regulation von Genen.
Sie interagieren mit spezifischen Bindestellen oder Motifen auf der DNA Sequenz. Da-
her ist eine wichtige Aufgabe der Bioinformatik, potentielle Bindestellen von TF in silico
vorherzusagen. Nimmt man einen statistischen Standpunkt ein, dann ist die DNA Sequenz
ein langer Text bestehend aus vier verschiedenen Buchstaben ’A’, ’C’, ’G’ und ’T’ für die
vier verschiedenen Basen. Bindet ein TF an eine Bindestelle, so ist dies gleichbedeutend
damit, dass das Wort, welches die Bindestelle beschreibt, in dem Text vorkommt. Daher
kann man für verschiedene Statistiken auf schon bekannte zurückgreifen und somit Fragen
nach der Wahrscheinlichkeit eine bestimmte Anzahl von Wörtern zu beobachten oder der
Distanz zwischen zwei Vorkommen beantworten. Jedoch tritt bei der Herleitung solcher
Statistiken immer wieder das gleiche Problem auf: Die Wörter können überlappen. Daher
entstehen Abhängigkeiten zwischen den zugrunde liegenden Zufallsvariablen. Dadurch gibts
es z.B. bisher noch keine exakte Formel - die nicht auf erzeugenden Funktionen beruht - zum
Berechnen der Wahrscheinlichkeit eine bestimmte Anzahl von nicht-überlappenden Wörtern
zu sehen. Wir leiten diese Formel her und erhalten dadurch auch eine Normalverteilungs-
Approximation.

Leider bindet ein TF aber nicht nur ein an einzelnes Wort, sondern normalerweise gibt es
innerhalb des Wortes Position, die Variationen zu lassen. Daher werden TF meist in dem
statistischen Modell PFM dargestellt. Dieses Modell weist jedem Buchstaben auf jeder
Position ein Gewicht zu. Wenn die Summe aller Gewichte für eine gegebene Sequenz der
Länge des Motifs einen Schwellenwert übersteigt, so ist diese Sequenz eine Bindestelle.
Daher kann man auch alle derartigen Wörter aufzählen und erhält so eine Menge von
Wörtern, die ein Motif beschreibt. Allerding kann diese Menge sehr gross werden. Z.B. für
ein Motif der Länge 15 ist die Anzahl normalerweise um die 500.000. Abgesehen davon,
dass das Aufzählen der Wörter exponentielle Laufzeit hat, kommen auch die bekannten
Statistiken bei einer so grossen Anzahl von Wörtern an ihre Grenzen. Das heisst, sie sind
nur sehr aufwändig zu berechnen und die Näherungsergebnisse sind nicht sehr genau.

Daher werden neue Statistiken und effiziente Algorithmen benötigt. Wir haben solche
Statistiken entwickelt. Dabei nutzen wir aus, dass wir die Wahrscheinlichkeit für überlap-
pende Bindestellen ausrechnen können ohne die Wörter aufzuzählen. Genauer gesagt,
benutzen wir das PFM Modell um eine zwei-dimensionale Gewichtsverteilung zu berech-
nen. Von dieser können wir besagte Wahrscheinlichkeit ablesen. Von diesem Ergebnis
ausgehend, leiten wir die exakte Varianz der Anzahl von Vorkommen her. Ausserdem
können wir die Verteilung der Vorkommen durch eine zusammengesetzte Poisson Verteilung
beschreiben. Simulationen zeigen, dass dies die beste bekannte Approximation ist. Auch
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Zusammenfassung

können wir für nicht überlappende Vorkommen entsprechende Statistiken auf Basis einer
Poisson Verteilung berechnen. Erweiterung auf mehrere verschiedene DNA Motife führt
zur Berechnung der Signifikanz von gemeinsamen Vorkommen und der Kooperation von
TF. Zusätzlich führen wir die Kovarianz als Maß für die Ähnlichkeit von DNA Motifen ein.
Dadurch erhalten wir ein natürliches und vor allem generelles Ähnlichkeitsmaß, das nicht
von einem speziellen Modell ausgeht. Explizite Formeln leiten wir für das PFM Modell her
und Vergleich mit Simulationen und anderen Maßen zeigt, dass unser Maß tatsächlich die
von uns definierte Ähnlichkeit am Besten wiedergibt. Ein verwandtes Maß verwenden wir
zum Gruppieren von Klassen von TF. Auch hier zeigt ein Vergleich mit optimierten Grup-
pierungsalgorithmen, dass wir vergleichbar gute Ergebnisse erhalten. Schließlich nutzen
wir die Ähnlichkeit, um herauszufinden, wie gut ein DNA Motif mit einem bestimmten
Modell dargestellt werden kann. Hierfür berechnen wir die Kovarianz zwischen den ex-
perimentell verifizierten Sequenzen und dem Modell. Dies entspricht der Representations-
Qualität von DNA Motif Modellen. Wiederum leiten wir für PFMs explizite Formeln her.
Darauf basierend zeigen wir, dass die Qualität auch dafür genutzt werden kann, Modell-
parameter (in unserem Fall der Schwellenwert) zu optimieren. Außerdem zeigen wir, dass
die Qualität für Motife, die den Annahmen des PFM Modells nicht entsprechen, auch sig-
nifikant niedriger ist.
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angegebenen Hilfsmittel und Quellen verwendet habe.

Berlin, August 2008 Utz J. Pape


	Abstract
	Preface
	Introduction
	Molecular Biology
	Thesis Overview
	Theory
	Applications


	Count Statistics
	DNA Motifs
	Experimental Detection of Transcription Factor Binding Sites
	Unknown Transcription Factor
	Known Transcription Factor

	Models for DNA Motifs
	Pattern-Based Models
	Profile-Based Models

	Sequence Models
	Permutation Model
	Bernoulli/Multinomial Model
	Markov Model
	Conclusion

	The Position Frequency Matrix (PFM) Model
	Regularization
	Score Distribution
	Threshold Selection
	Enumerating Compatible Words
	Sequence Logo


	Word Count Statistics
	Introduction
	Single Word Occurrences
	Exact Count Distribution
	Position Independence
	Normal Approximation

	Clumps for Single Words
	Exact Distribution
	Position Independence
	Compound Poisson Approximation
	Normal Approximation

	Multiple Words
	Exact Count Distribution
	Position Independence
	Normal Approximation

	Clumps for Sets of Words
	Homogeneous Clumps
	Heterogeneous Clumps


	Generating Functions
	Preliminaries
	Single Word Count Distribution
	Absence Probability
	Number of Occurrences

	Number of Homogeneous Clumps
	Inter-arrival Time
	Number of Counts


	TF Count Statistics
	Introduction
	Statistical Framework
	Relation to Word Count Approaches

	First Two Moments
	Expected Value
	Variance

	Count Distribution
	Computing Probabilities of Clumps
	Closed Formula
	The p-value for the Number of Hits
	The p-value for the Number of Clumps

	Generating Function Formalism
	Waiting Time and Stopping Probabilities
	Number of Counts

	An Efficient Algorithm for Computing Overlap Probabilities
	Speed Improvement
	Extension to Pairs of TFs
	Time Complexity


	cis-regulatory modules (CRMs)
	Introduction
	Number of Hits
	Counts for one TF
	Joint Counts for two TFs

	Probability for Co-Occurrence
	Calculate Window Size
	Empirical Frequencies for Hits

	CRMs for a Set of TFs
	p-value for Co-operativity
	Bounds for Overlapping Windows



	Applications
	Count Statistics
	Simulation
	Sequences
	PFMs

	Standard Count Statistics
	Comparison of the Different Approaches Using Simulated Data
	Artificial PFMs
	PFM M00950

	Characteristic Values
	Running Time Comparison
	Simulation
	Results

	Discussion

	Co-Occurrences and Co-Operativity
	Simulation
	Alternative Approach ignoring Dependencies
	Sequences
	PFMs
	Implanted Motifs

	Results
	Co-Occurence Probability
	p-value for Co-operativity

	Discussion

	Similarity of DNA Motifs
	Introduction
	Methods
	Data

	Results
	Comparison with alternative approaches
	Transfac Set

	Discussion

	Clustering of PFMs
	Introduction
	Algorithm
	Data
	Results
	Discussion

	Quality of Representation
	Introduction
	Methods
	Sensitivity, Specificity and Precision
	Representation Quality
	Multiplicities in the Set of Verified Binding Sites
	Algorithm for PFMs
	Threshold and Regularization Optimization
	Example

	Results
	Threshold Optimization
	Transfac and Jaspar PFMs
	Quality for Mixture Models

	Discussion

	Conclusion
	Summary
	Word Counting
	TF Count Statistics
	cis-regulatory modules (CRMs)
	Similarity
	Clustering
	Quality

	Outlook


	Appendix
	Bibliography
	Notation and Abbreviations
	Index
	Appendix A: Software availability
	Appendix B: Summary (German)
	Appendix C: Curriculum vitae




