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C O M P U T E R  S C I E N C E

Historical insights at scale: A corpus-wide machine 
learning analysis of early modern astronomic tables
Oliver Eberle1,2, Jochen Büttner2,3, Hassan el-Hajj2,4, Grégoire Montavon1,2,5, 
Klaus-Robert Müller1,2,6,7*, Matteo Valleriani2,4,8,9*

Understanding the evolution and dissemination of human knowledge over time faces challenges due to the abun-
dance of historical materials and limited specialist resources. However, the digitization of historical archives presents 
an opportunity for AI-supported analysis. This study advances historical analysis by using an atomization-
recomposition method that relies on unsupervised machine learning and explainable AI techniques. Focusing on the 
“Sacrobosco Collection,” consisting of 359 early modern printed editions of astronomy textbooks from European 
universities (1472–1650), totaling 76,000 pages, our analysis uncovers temporal and geographic patterns in 
knowledge transformation. We highlight the relevant role of astronomy textbooks in shaping a unified mathematical 
culture, driven by competition among educational institutions and market dynamics. This approach deepens our 
understanding by grounding insights in historical context, integrating with traditional methodologies. Case studies 
illustrate how communities embraced scientific advancements, reshaping astronomic and geographical views and 
exploring scientific roots amidst a changing world.

INTRODUCTION
The European early modern period has traditionally been regarded as 
the cradle of modern society, particularly highlighting advancements 
in science and technology. Science itself has often been portrayed as a 
progressive process, culminating in a scientific revolution that pro-
pelled Europe into modernity. The works of alleged heroes of science 
such as Nikolaus Copernicus, Galileo Galilei, and Johannes Kepler 
were given special significance in this process. Their publications were 
frequently and sometimes still are regarded as pivotal moments, 
encapsulating the essence of the astronomical revolution of this era 
(1–9). These views, largely still dominating public reception, are rightly 
being challenged today.

Recent history of science is beginning to overcome its Eurocen-
trism and adopt a more differentiated view on the processes that led 
to the emergence of science. In his influential work, The Structure of 
Scientific Revolutions (1962), Thomas Kuhn had already emphasized 
the role of scientific paradigms, moving away from focusing solely 
on the contributions of a few selected individuals to viewing scien-
tific progress as a collective achievement of the broader scientific 
community (10). Even earlier, scholars like Braudel (11) and Bloch 
(12, 13) aimed to bridge the spatial and temporal gaps between well-
studied singular events by analyzing a broader collection of sources. 
Today, modern approaches, informed by this historiographical legacy, 

delve into a much broader array of historical sources than before to 
gain a more comprehensive understanding of the intellectual context 
within which the celebrated “heroes” of science worked and developed 
their novel insights. The development of science is no longer per-
ceived as a linear progression but as a multifaceted process shaped 
by a variety of factors operating across different temporal scales 
(14–16). However, a substantial practical limitation obstructs these 
new approaches to the history of science and history in general: The 
sheer volume of available sources surpasses our current capacity to 
conduct historical investigation with a comparatively limited pool of 
trained historians.

Machine learning (ML), specifically deep learning (17–20), has 
established itself as a powerful way of making inferences from data at 
scale. A variety of historical studies could take advantage of the recent 
successes of deep learning in vision and language (21–25). Well-
curated image datasets and benchmarks of historical sources (26–30), 
combined with pretrained ML models for computer vision such as 
U-Net (31), YOLO (21), or CLIP (32), enabled to extract relevant
visual elements such as illustrations, drawings, or images and place
them in relation to their accompanying texts on the level of a whole
corpus (29, 33–35). Likewise, recurrent neural networks (RNN)
and, more recently, transformer-based architectures have enabled
significant progress in optical character recognition and hand-
written text recognition of historical content (27, 36–39). Beyond
mere data exploration and extraction, Assael et al. (40) proposed a
sequence-to-sequence RNN to reconstruct ancient Greek inscrip-
tions, which was later followed by a transformer-based architecture not 
only to restore inscriptions but also to generate local insights about
their provenance and dating (41). Other ancient languages also bene-
fited from deep learning approaches, such as Latin (42), Akkadian (43),
and Hieroglyphs (44). Last, Explainable artificial intelligence (XAI)
(45–50) reveals aspects of the internal processing of ML models,
putting visual and textual features in relation to predicted outputs
and thus enabling a novel, insightful exploration of humanities
datasets (51–53).

Despite these advances, the analysis of historical data at large, 
including the numerical tables our work focuses on, presents very 
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unique challenges from a ML perspective. In particular, higher-level 
interpretations by historians that shift from the formal assessment of 
individual units to semantic, corpus-wide assessments cannot rely on 
the availability of labeled datasets. Furthermore, general historical 
data are characterized by extensive heterogeneity and nonstationarity. 
These factors make end-to-end approaches particularly challenging, 
as they require a substantial amount of data that are now not available 
for the great majority of relevant tasks.

In this work, we demonstrate that these challenges can be addressed 
with our proposed “atomization-recomposition” approach. The ap-
proach rests on a data-efficient modeling of task-relevant features, 
where historical sources are decomposed into a collection of elemen-
tary units (the “atoms”) before being recomposed. This allows us to rely 
on intermediate atom-wise predictions, for which labels can be readily 
acquired. Furthermore, our approach integrates XAI for verifi-
ability, transparency, and human interpretability. Overall, it enables 
a dataset-wide and robust processing of the historical content and pro-
vides accurate similarity predictions and groupings of historical data. 
In the following, we demonstrate the practical usefulness of our 
approach for a concrete historical research study.

In particular, we focus on the core astronomical knowledge of the 
early modern period, i.e., the set of widely accepted theories, methods, 
and results in the field of astronomy. A prime source for recon-
structing this extensive core knowledge are university textbooks, 
which informed the broader student population and intelligentia (54). 
Historians have previously shown interest in textbooks (55, 56). 
However, a comprehensive analysis of larger collections of this particu-
lar type of source has remained elusive due to the great amount of 
available material. Our research is uniquely poised in this context, 
as we leverage the “Sacrobosco Collection” (57–61) (section A.1 of 
Supplementay Materials and Methods). This very large and substantial 
thematic collection encompasses textbooks introducing geocentric 
astronomy to students across Europe from the final quarter of the 15th 
century up to 1650. During this period, the pre-Copernican geocentric 
worldview was a highly dynamic scientific field in which innovations 
quickly entered the core knowledge and left repercussions even at the 
level of the textbooks (59–62).

The collection contains approximately 359 editions of different 
textbooks, totaling around 76,000 pages of scientific content. These 
books were published starting in 1472, the year of the first edition 
(and of the first ever printing of a scientific, mathematical text). The 
year 1650, in which the last edition of the corpus was printed, marks 
the end of the slow decline of geocentric astronomy initiated almost a 
100 years earlier by Nikolaus Copernicus, whose De revolutionibus 
orbium coelestium of 1543 introduced a mathematical system based 
on a heliocentric worldview. Assuming an average print-run of 
~1000 copies, the Sacrobosco Collection can be considered as repre-
sentative for about 350,000 textbooks that were circulating and used 
in Europe during the period considered (58, 63, 64) (section A.1.1 of 
Supplementary Materials and Methods).

Our study specifically addresses the mathematical education and 
culture had by students and the educated populace, i.e., the potential 
readers of the textbooks in our corpus. This entails understanding 
where this knowledge originated, the motivations behind its dis-
semination, and the modes of its circulation.

Computational astronomical tables are a central element of the 
mathematical apparatus of early modern astronomy. These tables can 
be understood as the sequential representation of the input and out-
put values of mathematical relations, akin to equations. Before the 

advent of formulaic algebraic language toward the end of the period 
considered, this method was the predominant way to express math-
ematical relations, the meanings of which were described in the texts 
associated with the tables (65, 66).

We investigate the astronomical tables as a proxy for the under-
lying mathematical knowledge, its transformation, and its dissemina-
tion. This investigation focuses on a collection of tables that must first 
be identified within the corpus, with their meanings being entirely 
unknown. Such a collection differs from curated tables, such as those 
containing observational data and chronologically ordered, which are 
compiled from the outset, often within an archive, and have inherent 
semantic attributes. In the type of investigation we undertake, histo-
rians would have to initially ascertain whether each table within 
the corpus represents new information or merely repeats existing 
knowledge. This would involve comparing each table against the 
others in the corpus to see whether they represent the same funda-
mental knowledge or not. Particularly with complex computational 
tables (fig. S7 for an example), only a few experts in early modern 
astronomy can accurately make these comparisons. Moreover, judg-
ments can be complex, as tables may appear similar but be funda-
mentally different or vice versa (section A.1.4 of Supplementay 
Materials and Methods). The sheer volume of required table com-
parisons to track innovations, their spread, and their disappearances 
for a corpus of the size of the Sacrobosco Collection renders such a 
close reading analysis based only on traditional methods of the histo-
rian impossible. Hence, to support such investigations, computation-
al methods can greatly streamline the steps necessary to identify the 
numerical tables in the corpus, group them according to a semanti-
cally meaningful similarity, and analyze the dynamics of their devel-
opment across space and time.

The editions analyzed in this work come from different times and 
from different places and were frequently produced following very 
different standards. The heterogeneity of these printed books and the 
tables they contain is compounded by the intertwining effects of the 
processes of scientific knowledge transformation, the development 
of printing technology, and the mechanisms of the academic book 
market (58, 67–70), each of which contributes differently to the 
diverse sources of data variability (sections A.2 and A.4 of Supple-
mentary Materials and Methods).

Assessing the complex similarity structure of the numerical tables 
contained within the corpus poses challenges for both trained his-
torians and conventional ML approaches, namely, end-to-end train-
ing and the utilization of pretrained models. While end-to-end 
approaches may be feasible for higher-level historical tasks, they rely 
on a substantial amount of data that is typically not available.

The acquisition of a labeled dataset would require a historian to per-
form many detailed analyses or similarity assessments of complex 
tables. This approach does not scale well, especially considering that the 
corpus contains approximately 10,000 pages with numerical tables 
(section A.1.4 of Supplementary Materials and Methods). Further-
more, the application of conventional ML approaches to this task seems 
unfeasible due to the high heterogeneity of these numerical tables 
(sections A.2.2 and A.8 of Supplementary Materials and Methods).

Our proposed atomization-recomposition ML approach effi-
ciently addresses the labeling and heterogeneity challenges described 
above. In the case of numerical tables, we define the “atom” to be 
an individual digit. This allows us to decompose the ML approach 
into two main steps: first, building a ML detector for these digits 
(for which labels can be acquired handily) and then recombining 
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the detected digits into more informative sequences of two digits 
or “bigrams.”

Besides the advantage of requiring only a limited number of single-
digit labels to ensure their robust detection, this approach also allows 
for the detection of features that do not occur in the training data. For 
example, the bigram “25” could be detected on test pages even when 
the training pages contained only the bigrams “12” and “51.” Last, 
these spatially resolved bigrams can be pooled into a “bag-of-bigrams” 
that subsumes the content of an entire numerical page into a hundred-
dimensional vector. Our atomization-recomposition approach is 
related to common practices in other domains, such as the vector 
space model and bag-of-words representations in Natural Language 
Processing (NLP) (71) or “visual words” in image classification 
(72–74). Our instantiation with historical data, however, innovates by 
addressing technical challenges specific to low-resource settings, such 
as the distinction of tabular from nontabular pages, the pixel-level 
detection of individual digits and their classification amidst high 
heterogeneity, the data-efficient recomposition of those digits into 
bigrams, and their page-wide aggregation (section A.3 of Supplemen-
tary Materials and Methods).

We validate our “bag-of-bigram” representation of tables and the 
implied similarities, using both nominal accuracies and XAI tech-
niques such as Layer-Wise Relevance Propagation (LRP) and Second-
Order Layer-Wise Relevance Propagation (BiLRP) (75, 76). The BiLRP 
technique verifies that similarity predictions are grounded in meaning-
ful pixel-level patterns. By leveraging the similarity predicted by our 
model over the entire corpus, our approach reaches its full potential, 
enabling previously impractical or even impossible historical investiga-
tions. Specifically, the examination of the geo-temporal circulation of 
the numerical tables provides insights into the widespread dissemina-
tion of mathematical education and culture in the frame of astronomy 
which otherwise remains obscured by an enormous, previously unan-
alyzable volume of astronomical tables.

Our approach allows not only for a systematic extraction of data-
driven insights in large corpora, it also provides an example for the 
quantification of historical processes at scale. It thus aids in making 
more informed selections of historical source material which can then 
be analyzed using conventional methods of historical inquiry. The his-
torical analysis presented on early modern mathematization serves as 
an example of how historical disciplines can benefit from ML and XAI 
methodologies. These methodologies aid in identifying case studies 
and assist in close-reading analysis of individual sources.

RESULTS
Starting from the Sacrobosco Collection and seeking to achieve a homo-
geneous representation of such a corpus with a focus on the numeri-
cal tables, we proceed with the proposed atomization-recomposition 
approach. Using a ML classifier, we extract tables versus nontable 
pages from a few ground-truth annotations, enabling us to reliably 
extract the ~10,000 pages bearing tables contained in the corpus—
we refer to this selection of pages as the Sacrobosco Tables corpus 
(section A.7.2 of Supplementary Materials and Methods). This first 
step enables us to reduce the heterogeneity arising from nonnumeri-
cal content. A neural network, shown in Fig. 1B, extracts spatially 
resolved individual digits from the numerical table pages. From 
approximately 2500 annotations, a single-digit detection accuracy of 
96% could be reached, thereby achieving at minimal cost a further 
reduction of data heterogeneity, for example, with respect to font size, 

print quality, and nonnumerical elements such as the tables’ vertical 
and horizontal lines.

Building on this atomized representation of the Sacrobosco Col-
lection, we proceed with recomposition, specifically, the meaningful 
aggregation of atoms into representations of numerical tables that are 
interpretable and have predictive abilities. Our first recomposition 
step consists of augmenting the detected individual digits with digit 
bigrams, which we achieve technically by juxtaposing pairs of activa-
tion maps, applying a slight horizontal shift, and looking for the inter-
sections of the activation peaks. This processing step is illustrated in 
Fig. 1B, and the details of the procedure are given in section A.3 of 
Supplementary Materials and Methods. The result is a “bigram map” 
that can be rendered as a color map (an example is shown in Fig. 1). 
We observe that the latter is particularly interpretable for the user: 
Increasing numerical series appear as color gradients, and numerical 
anomalies easily stand out.

A second stage of recomposition then converts, via spatial pooling, 
this human-readable map representation into a lower-dimensional bag-
of-bigrams, which takes the form of a histogram that is invariant to the 
exact table layout. We validate the resulting histograms on a diverse 
subset of fully annotated table pages (section A.4.1 of Supplementary 
Materials and Methods) and achieve average Pearson correlations to 
the ground-truth histograms ranging from 0.84 for tables of low digit 
density to 0.93 for high density tables, as shown in Fig. 2B. The com-
pactness of the bag-of-bigrams representation effectively addresses the 
curse of dimensionality in downstream applications while remaining 
highly predictive. We assess the performance of different table page rep-
resentations in identifying clusters of identical table pages, with an ex-
emplary visualization of the different page representations shown in fig. 
S20. We find that our proposed bag-of-bigrams representation is most 
effective for retrieving correct cluster members, reaching 90% purity, 
compared to 81% for a direct pooling of bigram activations (pooled), 
78% for single-digit summaries (unigram), or 64% for a pretrained 
deep neural network representation from Visual Geometry Group 16 
(VGG-16) (see also Fig. 2B). In addition, using XAI, specifically the 
BiLRP technique (76), we can verify that the similarity predictions built 
on our bag-of-bigrams representation are stably grounded in the nu-
merical content (Fig. 1C), whereas unspecific methods based on pre-
trained models produce much less interpretable results (section A.5 
of Supplementary Materials and Methods). While we evaluate our 
atomization-recomposition on numerical tables, which are important 
information carriers for our subsequent historical analyses, we empha-
size that our approach could in principle be extended to other aspects of 
historical documents, such as structured mathematical diagrams (sec-
tion A.8 of Supplementary Materials and Methods), by choosing ap-
propriate atomization and recomposition steps.

Corpus-level historical insights and case studies
Our approach allows (i) for historical investigations on a general, 
corpus level as it makes it possible to trace and analyze the geotem-
poral circulation of the numerical tables in the entire corpus and (ii) 
for the identification of particularly interesting clusters of similar 
tables which guide an informed selection of specific case studies to 
be ultimately analyzed through standard close-reading. The results 
of the corpus-level analysis are described below, along with the iden-
tification and investigation of two relevant, mutually interconnected 
case studies.

On a corpus level, we demonstrate that the process of astronomy’s 
mathematization, codified in textbooks and taught at the European 
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universities, occurred alongside a process of accelerating dissemina-
tion of mathematical knowledge that took place during the last de-
cades of the 16th century. This acceleration was ignited and fueled 
mainly by the competition between two key entities: the French Royal 
Chair of Mathematics and the Collegio Romano, the principal math-
ematical division within the Jesuit order (77) (section B.1.1 of Supple-
mentary Text). Spreading mathematical knowledge was among the 
main goals of both institutions.

This process exhibits a dynamics that, on closer inspection, turns 
out to be caused to a large extent by the necessity to adhere to early 
modern marketing rules for academic prints. These rules required the 
rapid introduction of scientific works in various formats to the market, 
with multiple editions of each work released in close temporal proxim-
ity to one another (78–80), resulting in a high variability in printed 
pages with numerical content over time (Fig. 2A). The most relevant 
episodes of such high-frequency publication and republication of 
mathematical content occurred within a 5-year timeframe around 
1550 and involved Oronce Finé, who was then the French Royal math-
ematician (Fig. 2D) (81). This publishing pattern may be attributed to 
market mechanisms that incentivized publishers to release multiple 

new editions within short timeframes (see section B.1.1.1 of Supple-
mentary Text).

The accelerated circulation of mathematical knowledge represented 
in the corpus of textbooks was accompanied by a process of homogeni-
zation, where scientific works increasingly offered the same mathemat-
ical approaches (sections A.1 and A.1.2 of Supplementary Materials and 
Methods and section B.1.1 of Supplementary Text). By measuring the 
entropy of cluster membership vectors that represent the number of 
table pages in each cluster as presented in Fig. 2D, we show which 
places of print production contributed to this phenomenon most and 
which did so to a lesser extent. Low entropy scores indicate high redun-
dancy, characterizing a printing process that repeatedly prints the same 
material, while higher scores signify a more diverse range of printed 
contents. The resulting entropy scores indicate that the mathemati-
cal knowledge presented in treatises produced, for instance, in post–
Reformation Wittenberg is particularly homogeneous, presumably due 
to the political control exerted over scientific education in the city dur-
ing this period (82–84). Similarly, the low entropy score for Frankfurt 
am Main suggests a high degree of content homogeneity. A closer look 
at the sources shows that this is because out of the 17 editions produced 

A

B C

Fig. 1. Atomization-recomposition framework for model learning under sparse annotation settings. (A) Overall computational workflow starting with an unstruc-
tured collection of books (Sacrobosco Collection), which are atomized into tables and single digits that a ML model can detect, recomposed into user-interpretable big-
rams, and lastly into histograms that enable dataset-wide unsupervised ML-based analyses. (B) Details of the bigram extraction in the atomization-recomposition 
workflow. A neural network digit recognition model activates where digits are found in the input image, and the resulting digit activation maps are recomposed through 
specific operations into more task-specific numerical bigrams (section A.3 of Supplementary Materials and Methods). (C) The similarity scores on which ML-based analyses 
operate are verified via XAI, specifically the BiLRP technique (76), which highlights how the similarity scores arise from the pixel representation (section A.5 of Supplemen-
tary Materials and Methods).
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in the city, 13 are reprints of only two distinct editions (section B.1.1.2 
of Supplementary Text).

The corpus-level analysis reveals instances where the pattern of 
spread of mathematical knowledge, embodied in the tables, deviates 
from broader established trends in interesting ways, diachronically, 
synchronically, or even semantically. This enable us to make informed 
decisions about specific case studies (section B.1.2 of Supplementary 
Text). To facilitate such studies, which allow an in-depth exploration 
of a particular phenomenon across its entire temporal and spatial tra-
jectory of transformation, we provide a tool to identify clusters of ta-
bles identical and similar to one table selected by a domain expert 
(section B.1.2 of Supplementary Text).

In Figs. 3 and 4, we present two case studies selected through an in-
tegrated approach that combines data-driven cluster identification with 
expert domain knowledge (section B.1.1.3 of Supplementary Text). The 
first, which corresponds to the spatially and temporally most extended 
cluster, is dedicated to the method for geometrically subdividing the 
Earth’s surface from the equator to the poles based on the length of 
the solar day. The second is concerned with the calculation workflow 

necessary to retroactively predict the position of the Sun on the Zodiac 
during classical antiquity (sections B.1.2.1 and B.1.2.2 of Supplementa-
ry Text, with individual examples).

Since antiquity, the known world was considered as divided into 
habitable and inhabitable parts. The inhabitable parts were not con-
sidered to be entirely devoid of people but generally held to be in-
habitable because of the hard conditions they presented for life. The 
habitable parts, covering roughly the longitudinal area of Europe 
and extending from North Africa northward to include Paris, were 
further traditionally divided into seven “climate zones.” A climate 
zone (land strips bordered by parallels to the equator) was defined 
on the basis of the length of the solar day on the summer solstice in 
those areas. This conception was fundamental for a variety of scien-
tific disciplines, such as medicine, and continued to be taught until 
at least the mid-17th century (85). However, the early modern jour-
neys of explorations had revealed that the ancient conception of the 
habitable part of the world was too limited (86). This situation is 
reflected in the sources under consideration, which display different 
types of climate zone tables: one for seven zones shown in Fig. 3B 

A

D

B C

Fig. 2. Extracting historical insights from bigram histograms. (A) Visualization of the Sacrobosco Tables corpus using t-SNE. A set of hand labeled, semantically identi-
cal tables providing the position of the Sun against the Zodiac over the course of the year is shown in red. The temporal distribution of printed table pages is shown below. 
(B) Validation of different table representations and Pearson correlation scores for different digit densities (number of digits per table page). (C) By providing query histo-
grams or reference pages, our approach is able to generate a set of key candidates of tables that are identical or very similar to a given query table. (D) Left and middle: 
Transformation of knowledge over time as measured via the entropy of the cluster membership distributions (counts of tables within each cluster). Gray to black lines 
represent a random bigram embedding baseline, while the colored lines represent data from the Sacrobosco Collection. Different colors indicate filtering thresholds that 
are based on digit density per page, such as pages with at least 100 digit features. Resulting clusters are visualized for three distinct time intervals using the same t-SNE 
coordinates used for the full corpus. The disk diameter of each cluster is scaled according to its number of members. Notably, we detect an entropy drop for tables with 
dense numerical content between 1540 and 1560. This drop vanishes upon excluding the Fine-5 group, a subset of tables found in editions authored by Oronce Finé, that 
we have identified as the primary driver of the change in entropy. Right: Examining the geographic distribution of knowledge across print locations, sorted alphabeti-
cally, using entropy. Low-output cities that have printed less than 100 tables are colored in light gray, and t-SNE visualizations for three selected cities are shown.
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and another that encompasses the entire planetary surface from the 
equator up to the polar circle and thus conceptualizes 24 zones. In 
addition, a third transitional type of climate zone table, listing nine 
zones, could be identified (see Fig. 3C). Full maps are shown in figs. 
S44 and S45 in Supplementary Text.

By identifying and comparing a large number of relevant tables, 
we were first of all able to track the dissemination of the pertinent 
knowledge in detail over the 178 years under consideration as pre-
sented in Fig. 3A for the different variants of climate zone tables. We 
could establish that, contrary to what one might expect, the spread 
of the modern conception of 24 zones was unexpectedly not detri-
mental to the ancient one (section B.1.2.1 of Supplementary Text). 
The opposite is the case: The success of the innovation was largely 

dependent on its link to the traditional, ancient, and authoritative 
concept and associated worldview. The peak in the dissemination of 
the table representing the new conception of 24 zones can primarily 
be attributed to editions that also included the old table listing the 
traditional seven zones, as shown in Fig. 3A, where the publication 
frequency per decade is plotted for the editions containing 7, 9, and 
24 climate zone tables and for those editions concurrently contain-
ing both 7 and 24 climate zone tables.

Second, by accurately assessing the similarity within the cluster of 
the climate zone tables, our approach enabled the identification of a 
third variant of climate zone tables. This variant initially expanded 
the old view but only so far as to incorporate European regions at 
higher northern latitudes, specifically to include Wittenberg by 

A

B C

Fig. 3. Historical case study 1. (A) Early modern illustration of climate zones depicting the original 7 climate zones and adapted to show the later addition of 9 and 24 
climate zones. The temporal distribution of the number of editions containing these tables is shown in histogram bins of 10 years. From (101) (sign. F-5v). Hochschul- und 
Landesbibliothek Fulda. (B) World map, as conceived in the Hellenistic era by Ptolemy, and whose oldest known exemplar was drawn during the 15th century by following 
Ptolemy’s list of coordinates and metric. The seventh climate zone clearly excludes all regions north of Paris, including present-day Great Britain (the northern border of 
the seventh climate zone is delineated by a superimposed red line. The superimposed fuchsia line underlines the text “Septumm climatum”). From (102). (C) Robert Walton’s 
world map drawn in 1626. It includes all recently discovered territories on Earth but considers only nine climate zones as worth explicit mention. The ninth climate zone 
does include England but was originally introduced to include Wittenberg. Further zones toward North are only generically named. (The superimposed fuchsia line un-
derlines the text “8 Cli./9. Cl./Northerne Climats”). From (103). Courtesy of Stanford University Libraries.
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adding two zones as highlighted in Fig. 3C (visualizations that dis-
plays the spread of the climate zone are available in the Supplemen-
tary Materials). Although the dissemination of this conception of 
nine zones remained limited in both time and space, it represented a 
notable break from the traditional view. Historians of the early mod-
ern period have previously shown some interest in the use of the cli-
mate zone concept in fields like medicine. The concept itself, however, 
they have regarded mostly as a stable and inert knowledge structure 
inherited from antiquity. Against this view, we have been able to dem-
onstrate that the Age of Discovery’s far-reaching transformations did 
not dismiss the concept of climate zones. On the contrary, the author-
ity of the older conception was even used as a vehicle for innovation. 
The latter, however, only expanded the number and geographic valid-
ity of climate zones. This transformation may have been perceived by 
historical European actors as a validation of their scientific endeavors 
during the Age of Exploration, contributing to the context in which 
science later became a central element of Europe’s cultural identity 
(section B.1.3 of Supplementary Text).

The second case study presented in Fig. 4 (A and B) focuses on a 
scientific specialization, no longer extant, that closely connected 
mathematical astronomy and history. Starting from the 13th century, 
when Europeans created the epochal subdivision between antiquity, 
the Middle Ages, and the new epoch in which they were living, fran-
tic activity began that aimed to reconstruct an exact chronology of 
ancient events (87, 88). This was because, from the perspective of the 
day, antiquity represented the epoch during which the pinnacle of 
civilization and knowledge had been reached. In antiquity, the con-
nection between the calendar and the Sun’s position within the signs 
of the Zodiac was already well-established. As a result, by providing 
the positional values for the Sun, it was possible to calculate the day 
of the year and vice versa. Consequently, in ancient Greek and Latin 
works, descriptions of events are often accompanied by specific as-
tronomical observations that can be linked to the position of the Sun 
in the Zodiac.

After Philipp Melanchthon, one of the founding fathers of the 
Protestant Reformation, had urged young students to study astrono-
my in 1531 and 1538, warning that without it the history of human-
ity would be mere chaos (89, 90), a particular scientific specialization 
emerged. Aimed at providing precise dates for ancient events, this 
field of study persisted into the 19th century, especially within 
German universities. Mathematically, the required calculations 
were challenging both because of the historical changes of the calen-
dar systems and the precession of the equinoxes, which itself was not 
yet fully understood in the 16th century (91). Focused on this his-
torical case, our approach provided us with the necessary means to 
identify and select relevant historical material which allowed us to 
investigate one of the first steps of a broad phenomenon of dissemi-
nation of mathematical culture in the framework of astronomy in-
struction at the universities.

First of all, we have been able to show that the values of the posi-
tion of the Sun against the ecliptic were transposed into a handy table 
for the students for the first time in 1543 and have established that 
this table was printed and used only in Northern Germany and 
France (visualizations that display the spread of the nostro tempori 
tables are available in the Supplementary Materials). Second, and 
more relevantly, we were able to identify another table, which essen-
tially provides the same information but pertaining to the position of 
the Sun over the course of the year for ancient times, called the vet-
erum poetarum temporibus accommodata table. To communicate 
this information, a new table is required, since the position of the Sun 
relative to the zodiacal signs for a given date of the year changes over 
time. While the annual change is minimal, the change accumulates to 
a noticeable difference if longer time periods are considered. This 
new table is similar, but not identical, to the original handy table and 
therefore serves to display directly the position of the Sun as it was 
observed by the ancient writers. The new type of table was first con-
ceived in Wittenberg and was apparently created to simplify the cal-
culations otherwise required to convert the current (16th century) 

A B

Fig. 4. Historical case study 2. (A) Illustration displaying the orbit of the Sun (ecliptic) on the Zodiac subdivided into the twelve signs. From (104) (sign. b-IIII-4). Augsburg, 
Staats- und Stadtbibliothek. Uniform Resource Name: urn:nbn:de:bvb:12-bsb11218245-6. (B) Examples for two types of Sun-Zodiac tables: the ancient (veterum) and the 
16th century (nostro) variations. The prediction of the similarity model is made explainable by highlighting the most relevant feature interactions, here using the bigram 
“30” as an example. It is clearly visible that the position columns are shifted by a fixed number of days.
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position of the Sun at a given day into its position on that day in an-
tiquity, which was necessary to establish a connection to the calendar. 
A dynamic visualization of the spread of the Sun-Zodiac table for the 
ancient authors can be accessed via section B.1.2.2 of Supplementary 
Text. The focus on an astronomy-based reconstruction of ancient 
chronicles shows the early modern European interest not only in es-
tablishing own intellectual roots but also a specific chronicle that, be-
cause of the mathematical workflow to calculate it, could gain a high 
level of consensus and leave less space to interpretation. At the same 
time, the process of homogenization of the content of astronomy in-
structional textbooks was ongoing, driven largely by the imitation of 
textbooks conceived and produced in Wittenberg (section A.1.2 of 
Supplementary Materials and Methods). Through this process, this 
specific type of mathematization of astronomy, a project driven by the 
Reformers in particular Philipp Melanchthon, eventually turned into 
a knowledge of the ancient past that was shared all over Europe 
whereby it was not so much the chronicle that was shared but the 
knowledge to calculate it. As astronomy was becoming an element of 
a European cultural identity during the age of the journeys of explo-
ration (section B.1.3 of Supplementary Text), then sharing the same 
calculation workflow to generate chronicles of the ancient events on a 
continental level likely reinforced the role of science as an identity-
shaping factor.

DISCUSSION
The present study has illuminated both qualitatively and quantita-
tively how mathematical knowledge as taught in the early modern 
universities in Europe has evolved in a context of institutional compe-
tition. This competition seems to have fostered a scientific knowledge 
sharing process in Europe even while, as is well known, the region 
was being fragmented by religious and political currents.

The pattern along which the conception of historical climate zones 
changed (from 7 to 7 + 2 and eventually to 24 climate zones) allows 
us to hypothesize that the emergence of a shared science in continental 
Europe, at least as the generally educated populace is concerned, was 
coupled to the increasing perception of an expanding world, albeit of 
one pivoting around Europe.

The computation of the position of the Sun with respect to the 
Zodiac for dates in antiquity, moreover, reflects the emergence and 
spread of a shared desire of a society to establish its own intellectual 
roots. Given the relevance acquired by the Wittenberg textbooks in 
astronomy all over Europe (section A.1.2 of Supplementary Materials 
and Methods), the concerted effort of the Wittenberg Reformers to 
accurately reconstruct the chronology of historical events of classical 
antiquity turned into chronicles of the ancient epoch. These chronicles 
could achieve wide consensus all over Europe exactly because they 
were based on a shared computational workflow, leaving little room 
for interpretation and thus being prone to creating agreement.

The development of a global cultural perspective in Europe, 
coupled with the emerging need to establish one’s own historical 
roots, contributed to the creation of a shared intellectual background 
against which the European scientific and cultural identity later 
evolved. Considering the high mobility of university students dur-
ing the early modern period in Europe (92), and given the rate of 
dissemination of basic astronomical knowledge into vernacular com-
munities, such as those involved in navigation (93), it is suggested 
that astronomical core knowledge became one of the fundamental 
cornerstones of what Benedict Anderson defined as Latin Elite 

community, a trans-regional community built on the basis of book 
printing and knowledge circulation (37–46, 94) (section A.1.2 of 
Supplementary Materials and Methods and section B.1.3 of Supple-
mentary Text).

The current investigation could be further extended by including, 
in addition to textbooks, works that were associated with the re-
search frontiers of the time (54). In this way, the relation between the 
dissemination of a broad mathematical culture and those disruptive 
works usually associated with the idea of an astronomical revolution 
during the early modern era could be studied in more detail.

Moreover, by broadening the timeframe, for instance by includ-
ing more recent sources, the transformation of mathematical knowl-
edge could be investigated as it transits from the early modern 
tabular expression of mathematical functional relations to the more 
modern, formula-based one. By broadening the geographic scope, 
the same phenomenon could be investigated in a global perspective, 
potentially allowing for a quantitative assessment of the process of 
European intellectual colonization. Such spatial and/or temporal ex-
tensions of the source base would first require well-curated datasets 
of the relevant sources.

However, it is crucial to acknowledge the general limitations 
posed by data-driven approaches, including methodological aspects 
related to data quality and quantity, as well as model interpretability 
(section A.8 of Supplementary Materials and Methods), and chal-
lenges of generating ML-assisted historical insights (section B.1.1.3 of 
Supplementary Text). These factors need to be addressed to effective-
ly generate research hypotheses. In our atomization-recomposition 
approach, we have demonstrated how these challenges can be miti-
gated through efficient modeling embedded within a process of 
scrutiny, independent testing, and thorough model evaluation. This 
evaluation incorporates XAI to make the underlying ML inference 
processes transparent and verifiable (see section A.8 of Supplemen-
tary Materials and Methods).

The scarcity of data and labels presents a central challenge, limit-
ing the ability of ML approaches to capture the full richness of their 
sources by focusing on specific aspects of the data. In our historical 
use case, we have found that bag-of-bigrams offer a sufficiently com-
plex representation to aid historians in corpus-wide examinations.

Only after carefully addressing these methodological challenges 
can emerging hypotheses be further pursued based on established 
methods in writing history: hypothesis-driven research. This is pre-
cisely the path that we have followed.

While this ambitious vision presents numerous challenges, we 
would emphasize that computational astronomical tables from the 
early modern period are exceptionally intricate sources that de-
mand profound expertise for analysis. We have demonstrated that 
such analysis can be substantially augmented by ML methods. 
Therefore, we would like to express optimism that our general ap-
proach can be adapted and applied to other historical questions 
and sources.

The integration of humanities and ML technology needs to be 
problem specific and highly interwoven between the disciplines. 
Through close interaction between these two fields, a virtuous cycle 
of scholarly dialogue can be achieved, one that fosters innovation, 
insight, and meaningful advancement. In our study, the challenge of 
the sparseness and heterogeneity of historical data was solved by ap-
plying a general atomization-recomposition approach, highlighting 
how specific domain challenges can inform the development of ML 
methods. However, traditional humanities approaches continue to 
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play an important role and can be effectively applied alongside new 
techniques, as this work effectively demonstrates.

The ultimate goal of which this work is a part is to develop an AI-
based assistant capable of facilitating an accelerated science lab for 
in-depth historical research, interpretation, and reconstruction. This 
lab would streamline the research process by using ML to generate 
genealogies between historical sources, thus aiding in the selection of 
relevant sources from the vast pool of unexplored material before his-
torians conduct close reading analyses. These selections would be 
guided by trend analyses, similar to those conducted in this study. 
The overarching mission of the lab is to promote a deeper and more 
comprehensive understanding of our historical origins.

MATERIALS AND METHODS
Data
The Sacrobosco Collection (95) represents the complex edition his-
tory of the astronomy textbook De sphaera of Johannes de Sacrobosco 
and consists of a corpus of 359 early modern printed editions, amount-
ing to roughly 76,000 pages of material (62). These books were used 
at European universities for the introduction to the study of astron-
omy and geocentric cosmology, a mandatory component of the first 
curricular year. The dates of the editions of the corpus range from 
1472 to 1650. This corpus enables the study of important historical 
questions, such as of the evolution and homogenization process of 
knowledge on cosmology.
Table pages
From all the pages of the Sacrobosco Collection, we select 9793 pag-
es bearing one or more numerical tables, which we submit to the 
table similarity workflow as the Sacrobosco Tables dataset. By nu-
merical table we mean any tabular arrangement of data in our cor-
pus which has at least one column with (predominantly) numerical 
content. We specifically exclude tables of content and book indices. 
The preselection was supported by an off-the-shelf Convolutional 
Neural Network (CNN) (VGG-16 (96) trained to classify pages as 
bearing such numerical tables or not. The output of this CNN was 
checked down to a low probability of the assignment of a page as 
bearing a numerical table. Because of the human postprocessing, 
the list of of pages with numerical tables should have close to perfect 
precision and a very high recall. A list of all pages with numerical 
tables is provided as sphaera_tables_9793.csv (see folder data/corpus 
in code.zip), and the trained model instrumental in establishing 
this list is provided as sphaera_tables_classifier.h5 in folder data/
trained_model via https://doi.org/10.5281/zenodo.10933231. The 
digital images of the pages that we refer to as the Sphaera Tables 
dataset can be obtained at sacrobosco_tables.zip via https://doi.
org/10.5281/zenodo.10933231.
Preparation and acquisition of ground-truth
We have prepared four different ground-truth datasets to train and 
test our model at different processing stages: single digits and non-
digit content to train the recognition model, fully annotated num-
bers to test the digit recognition and the bigram expansion, and 
Sun-Zodiac pages to evaluate the table similarity model. These sets 
are provided as numerical_patches.csv, contrast_patches.csv, dig-
it_page_annotations.csv, and sun_zodiac.csv in the code and data 
repository (see folder data/training_data in code.zip accessible via 
https://doi.org/10.5281/zenodo.10933231).

Single digits. To capture the nonstandardized print types that occur 
in historical corpora, we have selected a subset of important printers 

and for each have annotated five individual number patches from five 
different pages that contain numerical content, resulting in a dataset 
of 2494 annotated numbers. From this, a dataset containing a diverse 
set of 5208 single digits is created. We also have added contrastive 
nondigit patches that contain text, illustrations, or geometry from 
nontable pages.

Fully annotated numbers. We have selected 11 pages and anno-
tated each single digit contained on the pages with a bounding box. 
In addition, we have marked whether the individual digit is the first 
and/or the last digit of a number. This information makes recon-
structing all numbers and thus also all bigrams contained on these 
pages straightforward. The annotated pages have been selected to 
cover a wide spectrum of different manifestation of numerical con-
tent in terms of writing direction, fonts, font sizes, the density of 
digit placement on the page, etc.

Sun-Zodiac pages. To evaluate to what extent our approach can 
reproduce the salient relations between the tables in our corpus, we 
have chosen the Sun-Zodiac tables, which give the positions of the 
Sun relative to the signs of the Zodiac in degrees for each day of the 
year. This table is well-suited for evaluating our approach. The table’s 
layout varies across its appearances in our corpus, with each layout 
partitioning the full table differently. In some cases, the entire table is 
contained on one page; in other books, it is distributed over as many 
as nine pages. The table only comprises numbers from 1 to 31 per its 
Zodiac content (a maximum number of 31 days per month and 30° 
per sign of the Zodiac). The table thus populates only a subspace of 
the feature space that we exploit for our similarity assessments. Since 
this subspace is more densely populated than would be expected 
with a uniform distribution of the data over the entire feature space, 
this table is particularly difficult to discriminate with our approach, 
making it a good test case.

In our corpus, we find two variants of the Sun-Zodiac table: ta-
bles for the times of the ancient poets (writers) (veterum poetarum 
temporibus accommodata) where the Sun is 16° into Capricorn on 
the first of January and tables for “contemporary” times (nostro 
tempori) where, on the first day of the year, the Sun has advanced 3° 
and is located 21° into Capricorn. This difference essentially amounts 
to a shift of the columns listing the days of the year with respect to 
columns giving the angular locations, and thus, from the perspec-
tive of our similarity model, these two variations represent the same 
(more abstract) table.

We have identified 68 instances of the Sun-Zodiac table which 
cover a total of 250 pages in the corpus. A list of the pages contain-
ing the different versions of the Sun-Zodiac tables is provided as 
sun_zodiac_pages.csv along with a ground-truth histogram for the 
digit-features distribution of a prototypical, i.e., noise-free and com-
plete, Sun-Zodiac table that is provided as sun_zodiac_hist.csv (see 
folder data/corpus in code.zip accessible via https://doi.org/10.5281/
zenodo.10933231).

Climate zone table pages. We have also collected a subset of materi-
al that is concerned with climate zone tables, which divide the surface 
of the “inhabited” world into zones that can be defined by the length 
of the solar day. The tables served as an indication of the overall me-
teorological conditions, which were in turn determinant information 
in the framework of Medieval and early modern medicine. We find 
three different principle variants of climate zone tables that use either 
7, 9, or 24 zones. The 225 pages containing these tables are provided 
as clime_tables.csv (see folder data/corpus in code.zip accessible via 
https://doi.org/10.5281/zenodo.10933231). In each row, the csv file 

https://doi.org/10.5281/zenodo.10933231
https://doi.org/10.5281/zenodo.10933231
https://doi.org/10.5281/zenodo.10933231
https://doi.org/10.5281/zenodo.10933231
https://doi.org/10.5281/zenodo.10933231
https://doi.org/10.5281/zenodo.10933231
https://doi.org/10.5281/zenodo.10933231
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lists the occurrence of an individual climate zone table, specifying 
the type and providing metadata for the edition containing this table.

The atomization-recomposition model in detail
Digit recognition model
As a first step, our goal is to train a single-digit recognition model for 
which we provide optimization and architecture details in the fol-
lowing. We built a seven-layer convolutional neural network using 
the Equivariant Steerable Pyramids framework (97), starting with an 
initial four-layer equivariant convolutional block with filter sizes 
{3×3, 3×3, 5×5, 5×5} and eight-rotational groups invariant to trans-
lations and rotations on the ℝ2 plane. Low-level features required to 
detect digits (lines, arches, and circles) thus generalize over spatial 
input transformations resulting in increased data efficiency.

Subsequently, a pooling layer selects the map with the maximum 
activation from the equivariant group. A series of three standard con-
volution layers with kernel sizes 5×5, 1×1, and 1×1 outputs 10 activa-
tion maps aj(x)

9

j=0
 corresponding to the digits 0 through 9. Last, we 

capture variations in scan orientation and page size by determining 
the scaling factor and rotation that result in the maximum activation 
of single-digit activation maps.

We optimized the model using equal amounts of single-digit 
and nondigit patches, resulting in around 8000 data points for 
training. These data were further augmented with small rotations 
(±10∘), translations (0.025 × img_width/img_height in x and y di-
rection), scaling (0.8−1.2×), and shearing (±5∘) transformations.

Since numbers can occur in various contexts beyond a table, 
e.g., as a page number, we model the local page context and con-
sider a border of 10 pixels around the digit’s bounding box. We used 
the Adam optimizer to minimize the mean square error between
true activation maps and model outputs using the loss term ℓ =
ℓbbox + 0.3 ⋅ ℓcontext and selected the model that performed best on
the test set.
Bigram expansion
In the subsequent recomposition step, we combined these single-
digit activation maps to detect digit task-relevant bigram features 
using a hard-coded sequence of processing layers. We compute 
the composed feature representations by applying an element-
wise “min” operation

which signals the presence of bigrams jk ∈ {00, … , 99} at image scale 
s and rotation θ and can be seen as a continuous “AND” (98) opera-
tion. We also included additional feature maps that detect isolated 
single digits j ∈ {_0_, … , _9_} with “_” indicating that no digit is 
detected at the given location and that the translation operation τ 
shifting activation maps by a fixed number of pixels δ in the hori-
zontal direction. To account for variations in spacing between char-
acters, we generate bigram maps with multiple shifts δ and select at 
each spatial location the best shift via the max-pooling operation

The “max” can be understood as a continuous “OR” operation, 
checking at each location whether a bigram has been detected in any 
of the candidate alignments. Furthermore, isolated single digits 
can be detected by computing neighborhood maps using shifts ±δ. 

These neighborhood maps are computed from the single digit maps 
shifted in left and right horizontal directions and the further com-
puting of a binary map that signals the absence of digits. Then, a 
“min” operation over digit map aj and both neighborhood maps will 
indicate the presence of isolated single digits. This results in a total 
of 110 feature maps.

In our experiments, we use a reference page height/width of 
1200 pixels, s ∈ {0.5, 0.65, 0.8, 0.95, 1.0}, θ ∈ {−90, 0, 90}∘, and δ
∈ {8, 10} pixels. Last, we select bigram maps from the sets of scalings, 
rotations, and shifts for which the feature map activity is maximized.
Pooling
As a final step, we apply spatial pooling to implement invariance 
with respect to the table layout and to reduce dimensionality, giving 
us a bag-of-bigrams representation for each page. We experimented 
with different pooling strategies and found that a standard peak de-
tection algorithm resulted in the best task performance while allow-
ing for a directly interpretable decoding of numerical features.

For the activity peak detection of bigrams, we started from a set 
of 100 bigram maps ajk with jk = {00, … , 99} which are added to 
10 maps for isolated digits âi with i = {_0_, … ,  _9_}, resulting in 
a =

(

ai, ajk

)

. Since the max-pooling used for the bigrams reduces the 
overall activity levels in comparison to the isolated digit maps, we 
introduced a scaling parameter α to the latter ai = âi ∕α.

Next, we subtracted a bias term calculated as the product of a 
relative scaling parameter β and the maximum pixel value across all 
maps max(x,y)a(x,y). The resulting maps were rectified to filter out 
weak background activity. For each of the 110 feature maps, we 
computed occurring peaks using the center of activity mass and fur-
ther determine the linkage matrix using the distances between cen-
ters to perform a hierarchical clustering, assigning close-by activated 
pixels into groups of pixels that belong to one bigram. To limit the 
size of clustered regions, we define a maximum distance parameter 
d and select parameters using histogram Pearson correlation scores 
on the training patches and set α = 3, β = 0.12, and d = 15. The re-
sulting center of mass coordinates lastly give the digit location to-
gether with the digit label.
Explaining similarity models
To better understand the features that drive the similarity predic-
tions, we apply XAI (47–50), specifically the purposely designed 
BiLRP method (76). This method assumes a similarity model of the 
type y = 〈ϕ(x), ϕ(x′)〉 where ϕ is a neural network based feature 
extractor, and y measures the similarity between x and x′. The
method explains the produced similarity score y in terms of contri-
butions of feature pairs 

(

x
i
, x′

i′

)

. Conceptually, the method com-
putes these contributions by performing a backpropagation pass 
from the top layer to the input layer. Each step of the backpropaga-
tion redistributes contribution scores from a given layer to the 
layer below. The method stops once the input features are reached. 
In practice, the explanation is computed more efficiently by com-
puting multiple standard LRP explanations (75) (one for each ele-
ment of the dot-product) and then recombining them at the input 
via a matrix product. To compute each LRP pass, we apply the 
LRP-0 rule (99) and pool resulting explanations over pixel regions 
of 15 × 15.

Evaluation
The evaluation of the different representations used in our approach 
using ground-truth data annotations is described in the following.

a
(τ)

jk
(x; s, θ)=min

{

aj(x; s, θ), τ
[

ak(x; s, θ)
]}

ajk(x; s, θ) =max
τ

{

a
(τ)

jk
(x; s, θ)

}
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Single-digit accuracy
The trained digit encoder is used to predict digit maps on the held-out 
test set. For each patch, the resulting activation map is computed, mul-
tiplied by a bounding box region mask, and lastly sum-pooled, result-
ing in a vector of size 1 × 10. The maximally activating vector index 
gives the predicted digit used to compute the single-digit accuracy.
Full-page bigram histograms
We use the digit model to compute 110 single-digit and bigram 
activation maps from which we extract histogram summaries by 
applying peak detection or spatial sum-pooling. Ground-truth his-
tograms are computed by identifying and counting all bigram and 
isolated single-digit occurrences. Each bigram count, hjk is option-
ally mapped to its square root to better handle the difference of 
scale between frequently occurring and rare digits and bigrams, 
respectively. Last, the Pearson correlation between ground-truth 
and computed histograms is computed for each page.
Cluster classification
To validate the resulting clusters, we use a subset of the full corpus 
that contains one- and two-page instances of the Sun-Zodiac tables. 
The corresponding 71 table pages containing more than 45,000 sin-
gle digits are split into train-test (50/50) sets, and a nearest-neighbor 
distance model is fitted on the training set. For all remaining data 
points, we assign the class label according to different distance mod-
els and compute the cluster purity of the test split over 10 random 
seeds. We have compared different ways of extracting page repre-
sentations: (i) Bigram: Bigram histogram counts were obtained us-
ing the bigram model with peak detection and square root mapping. 
(ii) Pooled: Activity maps were obtained as in (i), but instead of peak 
detection, we directly applied spatial sum-pooling to the bigram
maps. (iii) Unigram: Instead of computing bigram maps, we built a
10-dimensional unigram count histogram using peak detection. (iv) 
VGG-16: We used the pretrained encoder of the deep image classifi-
cation network VGG-16 (96) and extracted spatially pooled output
feature maps after the last of five convolutional blocks.
Visualization
For visualization of the table representations, we performed a 
t-distributed Stochastic Neighbor Embedding (t-SNE) projection
and use the same t-SNE projection coordinates throughout the pa-
per. After ensuring that resulting projections are robust across a
range of values, the perplexity parameter is set to 500. Depending
on the analysis, we filter the rendered data points, for example,
based on a specific time interval or geographical location as shown
in Fig. 2. This two-dimensional visualization of the table represen-
tation is used primarily for illustration purposes. Given the limita-
tions of such projections, we do not rely on it to infer any insights
directly but instead use it as heuristic to guide data exploration by
domain experts.

Historical Corpus-level analyses
Temporal analysis
The first edition of the Sacrobosco Collection (1472–1650) with at 
least one page of tables was produced in 1494 and the last in 1647. 
During these 153 years, the publication rate varied considerably. We 
thus implement a sampling-based temporal analysis. At each time 
step ti, we determine sampling probabilities for each table page us-
ing a truncated normal distribution 

(

t
i
, σ2

)

, assigning probabili-
ties to data points falling within the interval (ti − σ, ti + σ) and setting 
probabilities for data points outside this range to zero. We sample 

N = 80 data points at each iteration, assign cluster membership 
labels to them, generate a cluster count histogram with dimensions 
of 1 × k with k representing the number of clusters, and subsequently 
compute the entropy for each histogram vector. Clusters are com-
puted using k-means clustering (100) with k = 1500 clusters. We 
have further studied the robustness of our results to the choice of 
hyperparameter in the Supplementary Materials. The temporal evo-
lution of entropy scores is computed for digit density thresholds 
of {0, 100, 200, 250, 300}, which refer to the maximum number of 
digits detected on a page and average entropy curves over 20 runs 
for each threshold.
Geographical analysis
To study the varying knowledge production expressed by the tables 
printed across 32 different printing centers, we compute entropy as 
the difference in entropy between the k-means cluster distributions 
and an uninformed uniformly distributed production process H(p) − 
H(pmax), where pk represents the probability of assigning a table to 
cluster k with k = 1500. The term H(pmax) = log (Nc) with Nc the 
number of tables printed in city c captures the maximum entropy 
that a cluster distribution for each print location can achieve. These 
differences in entropy scores are by definition below or equal to 
zero. They are minimized for cities that output low entropy distribu-
tions, i.e., by repeatedly printing the same material.

Supplementary Materials
The PDF file includes:
Supplementary Materials and Methods
Supplementary Text
Figs. S1 to S48
Tables S1 to S3
Legends for movies S1 to S5
References

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S5
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