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Microplastic diversity increases the
abundance of antibiotic resistance genes
in soil

Yi-Fei Wang1,2, Yan-Jie Liu 3,4, Yan-Mei Fu3, Jia-Yang Xu1,5, Tian-Lun Zhang1,5,
Hui-Ling Cui5,6, Min Qiao 6 , Matthias C. Rillig 7,8, Yong-Guan Zhu 1,2,5,6 &
Dong Zhu 1,2

The impact of microplastics on antibiotic resistance has attracted widespread
attention. However, previous studies primarily focused on the effects of
individual microplastics. In reality, diverse microplastic types accumulate in
soil, and it remains less well studied whether microplastic diversity (i.e., var-
iations in color, shape or polymer type) can be an important driver of
increased antibiotic resistance gene (ARG) abundance. Here, we employed
microcosm studies to investigate the effects of microplastic diversity on soil
ARG dynamics through metagenomic analysis. Additionally, we evaluated the
associated potential health risks by profiling virulence factor genes (VFGs) and
mobile genetic elements (MGEs). Our findings reveal that as microplastic
diversity increases, there is a corresponding rise in the abundance of soil ARGs,
VFGs and MGEs. We further identified microbial adaptive strategies involving
genes (changed genetic diversity), community (increased specific microbes),
and functions (enriched metabolic pathways) that correlate with increased
ARG abundance and may thus contribute to ARG dissemination. Additional
global change factors, including fungicide application and plant diversity
reduction, also contributed to elevated ARG abundance. Our findings suggest
that, in addition to considering contamination levels, it is crucial to monitor
microplastic diversity in ecosystems due to their potential role in driving the
dissemination of antibiotic resistance through multiple pathways.

As a potential hallmark of the Anthropocene, contamination of
microplastics (MPs, <5mm in size) has become a critical challenge
worldwide1. MP pollution has been detected in various environmental
media including water, sediment, soil, air, and food2–5. Among various
environments, soil ecosystems are severely impacted byMP pollution,

and some studies have shown that soil has an estimated 4–23 times as
many MPs as the ocean6. Agricultural land has become a major pollu-
tion sink for MPs in terrestrial environments due to the massive
introduction of production activities (e.g., plastic film, organic fertili-
zers, and reclaimed water) and transport through environmental
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media (e.g., atmospheric deposition), up to 500,000 particles kg−1

soil7–9. Given the universal persistence and the increasing production
of plastics, there is an increasing need to understand the ecological
and health risks of MP contamination in soils.

Antibiotic resistance genes (ARGs) in the soil environment pose
serious threats to human health and food security as they could
transfer from soil to plants, animals and humans10,11. In recent years,
ARGs have been recognized as emerging biological contaminants and
prioritized in the latest One Health operational framework12,13.
Accordingly, the effects of MPs on soil antibiotic resistance dis-
semination have been studied14–16. Different types of MPs, both con-
ventional and biodegradable, significantly increase the abundance of
ARGs17. Different particle sizes, degrees of weathering, and duration
time in soils can also affect the enrichment of ARGs to different
magnitudes18. Moreover, rather than being present as one single type,
MPs in soils accumulate in diverse colors, shapes, and polymer types19.
A single selective pressure often has limited effects on the bacterial
community, while multiple pressures yield far greater impact in terms
of negative and synergistic effects, highlighting the role of thediversity
of pressure types20. Unlike conventional organic pollutants, MPs
almost always occur as a collection of particles ofmanydifferent types.
However, most studies are currently focusing on the effects of specific
types of MPs, and thus the occurrence, fate, and dynamics of ARGs in
soils contaminated with a range of MPs remain largely unexplored.

Risk assessment of ARGs is complex, and in addition to con-
siderations of types and abundance, factors such as “motility” based
horizontal gene transfer and “human pathogenicity”, depending on
whether they are present in pathogenic hosts, are critical21. The eva-
luation of microbial risk is increasingly focusing on virulence factor
genes (VFGs), as these genes could enable bacterial pathogens to
invade and cause infectious diseases22. Pathogens that contain ARGs
are known as pathogenic antibiotic resistant bacteria; these organisms
carry both ARGs and VFGs, and thus can cause illness and withstand
antibiotic treatment23. Zhu et al. suggested thatplastispheres in soil are
habitats in which an increased potential pathogen abundance is spa-
tially co-located with an increased abundance of ARGs under global
change14. Therefore, revealing the coexistence status and patterns of
ARGs and VFGs in the organisms and soil environment is a key task in
evaluating the effects of diverse MPs on ARGs. Additionally, the
motility of ARGs based on horizontal gene transfer, mediated by
mobile gene elements (MGEs), should not be neglected. For instance,
when ARGs, VFGs, and MGEs coexist in the genome (such as on plas-
mids and transposons), the risk to humans and animals would
increase24. Nevertheless, a comprehensive evaluation of the joint
occurrence VFGs and MGEs is missing from the current health risk
assessment of environmental ARGs under MP pressure.

Multiple global change factors are increasingly threatening eco-
systems, a circumstance that is attracting increasing attention
worldwide25. In addition to MP pollution, soils are exposed to a range
of different anthropogenic pressures26,27. In particular, there has been
widespread concern about the consequences of land use change.
Increasing harvest frequency requires increasing fungicide use, lead-
ing to more residues in soil28. For instance, a large amount of mefe-
noxam, which is used to prevent plant diseases, enters the soil
environment, leading to residual contamination29. Effects of mefe-
noxam on microbial activity have been observed29. In addition, inten-
sive land use can render habitats more susceptible to plant invasions,
thereby reducing plant diversity30. This reduction in diversity is critical
as it plays a significant role in maintaining belowground microbial
functioning31. Therefore, more work is needed to decipher the effects
and health risks of MP diversity and global change factors on the soil
microbial resistome.

Based upon our current understanding of the soil microbial
resistome and its responses to MPs, we hypothesize that a higher
diversity of MPs would enrich the diversity and abundance of ARGs in

soil, and thus exhibit high health risks. The microbial responses to
multiple stressors induced by MP diversity might have evolutionary
consequences, which makes it possible to increase the abundance of
antibiotic resistance. We established a gradient of MP diversity, fol-
lowing an experimental design incorporating various global change
factors20,32. While the identity and composition of MPs are known to
influence response variables, including the soil microbiome and
resistome14–18, weminimized this focus by randomly sampling from an
MP pool. This approach allowed us to primarily address the simplified
question regarding the impact ofMPdiversity. Here, we selected 12MP
polymers (powders sieved through a 180μm mesh) commonly found
in the environment and constructed an exposure system with three
levels ofMP diversity of 1, 3, and 6 different types, in combination with
the fungicide application. Furthermore, considering the impact of land
use intensity on the reduction of plant diversity30, we also set upmono-
and multispecies plant community treatments to (1) characterize the
profiles of ARGs, VFGs, and MGEs in the soil, evaluate environmental
health risk of increased diversity of MPs, (2) reveal the host of ARGs
and VFGs, and the elements co-exist patterns, (3) decipher the
potential mechanisms of MP diversity on the soil antibiotic resistome.
Our findings illuminate the effects ofMP diversity on the soil antibiotic
resistome and health risk, and offer theoretical foundations for
understanding the ecological consequences of MPs in soil
environments.

Results
Effects of MP diversity on soil ARG composition and abundance
A profile of ARGs across all soil samples comprised 29 types and
780 subtypes, of which the most diverse ARG type was identified as
beta-lactam resistance genes containing 261 subtypes, followed by
aminoglycoside, multidrug, macrolide-lincosamide-streptogramin
(MLS), tetracycline, vancomycin and trimethoprim resistance genes
(Fig. 1a). Notably, significant enrichment in the total abundance of
ARGs occurred alongside the increased diversity of introducedMPs in
soils (D3 vs. D1: P =0.003; D6 vs. D1: P =0.00012, Kruskal-Wallis test,
Fig. 1b). Conversely, the fungicide application (P =0.567, t test) and
plant community (P =0.336, t test) had no significant effects on the
total abundance of ARGs (Fig. 1b). The linear mixed-effects model
revealed significant impacts of MP diversity on the total relative
abundance of ARGs (standard regression coefficient = 0.32,
χ² = 5.5007, P = 0.019, Type II Wald chi-square test, Table 1). However,
no significant interaction effects were observed among MP diversity,
fungicide application, and plant community (all P >0.05, Table 1).
Furthermore, the introduction of six diverse MPs (P =0.001, LSD-test)
and mono-species community cultivation (P =0.018, t test) strikingly
increased the richness of soil ARGs (Fig. 1c). Among 29 types, the
increasing diversity of MPs significantly increased the abundance of
ARGs encoding resistance to bacitracin, multidrug, polymyxin, ami-
noglycoside, sulfonamide, and trimethoprim (all P < 0.05, Kruskal-
Wallis test, Supplementary Fig. 1). With the application of fungicide,
rifamycin, vancomycin, novobiocin, quinolone, and mupirocin resis-
tance genes were substantially enriched in soils compared to soils not
treated with fungicide (all P < 0.05, Kruskal-Wallis test, Supplementary
Fig. 1). In soils cultivated with mono-species community, the relative
abundance of mupirocin resistance was higher compared to soils with
multi-species cultivation (P =0.016, Kruskal-Wallis test, Supplemen-
tary Fig. 1). For the subtypes of ARGs, 58 Rank-1 high risk ARGs were
identified (Supplementary Fig. 2). Compared to the low diversity of
MPs, the increasing diversity ofMPs tended to enhance the abundance
of risk ARGs in soils. Similarly, fungicide application showed a con-
tribution to risk ARG abundance. The increasing diversity of MPs sig-
nificantly increased three risk aminoglycoside resistance genes,
including APH(6)-Id, AAC(3)-IIg and ANT(2”)-Ia, an MLS resistance gene
(lun(B)), a florfenicol resistance gene (floR), and a tetracycline resis-
tance gene (tet(M)) (all P < 0.05, Kruskal-Wallis test, Supplementary
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Fig. 3). Aminoglycoside resistance APH(6)-Ic and AAC(6’)-Isa were
greatly enriched in soils through the application of fungicide (all
P <0.05, Kruskal-Wallis test, Supplementary Fig. 3). Two aminoglyco-
side resistance genes (AAC(6’)-Ib, AAC(6’)-Ib10) were significantly more
abundant in soils cultivated with mono-species community compared
to the soils planted with multi-species (all P < 0.05, Kruskal-Wallis test,
Supplementary Fig. 3).

The composition of ARG subtypes in different treatments was
visualized using principal coordinates analysis (PCoA), and three dis-
tinct groups dominated by MP diversity were clustered for ARGs
(Supplementary Fig. 4a), as confirmed by the PERMANOVA test
(P = 0.001, SupplementaryTable 1). Furthermore, PCoAcombinedwith
the PERMANOVA test demonstrated significant influences of MP
diversity (P =0.001) and fungicide application (P =0.021) on the
composition of high-risk ARGs (P < 0.05, Supplementary Fig. 4b).

Effects of theMPdiversity on the composition and abundanceof
soil VFGs and MGEs
We identified 14 VFG types and 2635 subtypes that render the patho-
gen invasive. The total abundance of VFGs was notably enriched in
soils with increasing diversity of MPs (D3 vs. D1: P = 0.009; D6 vs. D1:
P =0.021, LSD-test, Fig. 1d), soil without fungicide application
(P = 0.002, t test, Supplementary Fig. 5a) and in soils cropped with
mono-species community (P =0.013, t test, Supplementary Fig. 5b).

Consistent results were observed in the linear mixed-effects model,
though the effect of MP diversity on the total relative abundance of
VFGs was minor and insignificant (standard regression coefficient =
0.17, χ² = 3.1398, P =0.076, Type II Wald chi-square test, Table 1).
Additionally, no significant interactions were found between MP
diversity, fungicide application, and plant community (all P >0.05,
Table 1). For the types of VFGs, the diversity level six of MPs sig-
nificantly increased the antimicrobial activity/competitive advantage,
biofilm, immune modulation and motility related VFGs (LEfSe test,
P <0.05, LDA > 2, Fig. 1e). The application of fungicide greatly enriched
the regulation and nutritional/metabolic factor associated VFGs (LEfSe
test, P <0.05, LDA > 2, Supplementary Fig. 5c). For the VFG composi-
tion, MP diversity, fungicide application and plant community both
exerted substantial effects (PERMANOVA test, P < 0.05, Supplemen-
tary Fig. 6). Additionally, the abundance of ARGs was correlated with
antimicrobial activity/competitive advantage (R2 = 0.624, P <0.0001),
biofilm (R2 = 0.125, P <0.0001), motility (R2 = 0.481, P <0.0001), and
immune modulation VFG (R2 = 0.761, P <0.0001) (Supplemen-
tary Fig. 7).

MGEs that would facilitate the prevalence and persistence of soil
ARGs and VFGs through horizontal gene transfer were identified in
106 subtypes and37 types. The significantly highest total abundanceof
MGEs was detected in soils exposed to the diversity level six of MPs
(P = 0.002, Kruskal-Wallis test, Fig. 1f). Significant effects of MP
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Fig. 1 | Antibiotic resistance gene (ARG), virulence factor gene (VFG), and
mobile genetic elements (MGE)profiles. aARGcomposition colored byARG type
(n = 144). The outer and inner circles represent ARG types and subtypes, respec-
tively. Genes encoding resistance to macrolide-lincosamide-streptogramin are
labeled as MLS. b, c Total normalized abundance and richness of ARGs across
different treatments with three experimental factors. D1 (n = 48), diversity level one
of microplastic (MP); D3 (n = 48), diversity level three of MPs; D6 (n = 48), diversity
levels six of MPs; Non-fungicide (n = 72), non-fungicide application; Fungicide
(n = 72), fungicide application; Mono-species (n = 72), one species planted alone;
Multispecies (n = 72), five species planted in one pot. The tops of the boxes
represent the 75th percentile, the bottoms indicate the 25th percentile, and the
center lines denote the median. The whiskers extend to the maximum and mini-
mum non-outlier values. d Total normalized abundance of VFGs in three MP
diversity treatments (n = 48 per group). e Responders of the VFG types to different

MP diversity treatments (n = 48 per group). Yellow nodes represent types with no
significant difference. Biomarkers were identified using the LDA effect size at
LDA > 2, P <0.05. P values for the biomarkers were calculated using the two-sided
Wilcoxon rank sum test. f Total normalized abundance of MGEs in three MP
diversity treatments (n = 48 per group). g Normalized abundance of MGE types in
three MP diversity treatments (n = 48 per group). h, i Correlations between copies
of MGEs per cell and copies of ARGs/VFGs per cell across all samples (n = 144). The
lines indicate the line of best fit, while the shaded areas represent the 95% con-
fidence interval. A linear regression model with a two-sided test was used for sta-
tistical analysis. P values were calculated using Kruskal-Wallis test, one-way ANOVA
with LSD-test and two-tailed unpaired Student’s t test. Significance among treat-
ments is denoted as * P <0.05, ** P <0.01, *** P <0.001. The unit of genes is copies
per cell. Source data are provided as a Source Data file.
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diversity on the total relative abundance of MGEs were also detected
from the linearmixed-effects model (standard regression coefficient =
0.29, χ² = 3.8474, P =0.049, Type II Wald chi-square test, Table 1).
Similar to the patterns observed for ARGs and VFGs, significant inter-
action effects between factors on total MGE relative abundance were
not detected (all P > 0.05, Table 1). For all types of MGEs, increasing
diversity of MPs substantially increased their abundance (P <0.05,
Kruskal-Wallis test, Fig. 1g). Additionally, MGE abundance was sig-
nificantly positively correlated with ARG (R2 = 0.532, P < 0.0001,
Fig. 1h) and VFG abundance (R2 = 0.118, P <0.0001, Fig. 1i). Specifically,
the compositional structure of ARGs was significantly correlated with
all MGE types, particularly with transposase, IS91, and integrase
(Supplementary Fig. 8). Transposase and IS91 were also found to be
significantly correlated with VFG community (Supplementary Fig. 9).

We also characterized the coexistence of ARGs, VFGs, and MGEs
of the assembled contigs based on metagenomic analysis (Supple-
mentary Fig. 10). The multidrug related ARGs co-located with MGEs
were observed in Azonexus, Pseudomonas, and Azospirillum. Besides,
Rank IV high-risk sul1 frequently coexistedwithMGEs. InPseudomonas,
ARG-VFG-MGE was detected to be co-located on contigs.

Potential mechanisms of ARG enrichment in the increasing
diversity of MP-exposed soils
SEM analysis was conducted to assess the direct and indirect effects of
MP diversity, plant biomass, soil properties, bacterial community and
MGE abundance on ARG profiles in all soil samples (Fig. 2a). The SEM
explained 64% of the variance of soil ARGs abundance. MGE abun-
dance (β =0.272, P =0.002) and bacterial community (β =0.616,
P <0.001) showed significant direct effects on ARG abundance. MP
diversity demonstrated enhancement of ARG abundance through
significant direct effects on bacterial community (β =0.089,
P =0.050). Besides, plant biomass (β = −0.797, P <0.001) and soil
properties (β = −0.199, P <0.001) constituted a strong direct effect on
bacterial community. MGE abundance was also significantly and
directly affected by the bacterial community (β =0.895, P <0.001).
Furthermore, the bacterial community (standardized total effects =
0.859, Fig. 2b) had the highest total effect on the relative abundance of
ARGs in soils, followed by the plant biomass (−0.657), MP diversity
(0.336) and MGE abundance (0.272). Procrustes tests also revealed a
significant correlation between ARG profiles and bacterial community
(P < 0.001, Fig. 2c).

Contribution of the genetics and function of the soil microbial
community to the enrichment of soil ARGs
Nucleotide diversity and GC content were used to characterize the
genetic evolution of the soil microbiome exposed to MPs. Compared
with the single type of MPs, MP diversity levels three (P =0.004,
Kruskal-Wallis test) and six (P < 0.0001, Kruskal-Wallis test) sig-
nificantly decreased themicrobial nucleotide diversity (Fig. 3a), while a
significant reduction in GC content was only shown in the three
diversity MPs treatment (P =0.043, LSD-test, Fig. 3b). In addition, a
pronounced negative correlation between GC content and ARGs or
MGEs abundancewas noted, and this relationshipwasmoreobvious in
MGEs (Fig. 3c, d, P < 0.05).

Based on the Shannon index of the KEGG pathway (D6 vs. D1:
P = 0.002, LSD-test) as well as CAZyme genes (D3 vs. D1: P = 0.004;
D6 vs. D1: P < 0.0001, Kruskal-Wallis test), we found a significant
increase in the functional diversity of the soil microbiome in
response to the increasing diversity of MPs (P < 0.05, Fig. 3e, f).
Functional diversity was significantly positively correlated with the
abundance of ARGs across all samples (P < 0.01, Fig. 3g, h). Certain
microbial features associated with the proliferation of antibiotic
resistance were significantly influenced by MP diversity, suggesting
potential mechanisms by which increasing diversity of MPs pro-
motes the enrichment of ARGs in soil (Fig. 3i). For the formation of
biofilm, the biochemical pathways including biofilm formation of
Escherichia coli (D3 vs. D1: P = 0.003; D6 vs. D1: P < 0.0001, Kruskal-
Wallis test), Pseudomonas aeruginosa (D3 vs. D1: P = 0.015; D6 vs. D1:
P < 0.0001, Kruskal-Wallis test), and Vibrio cholerae (D3 vs. D1:
P = 0.027; D6 vs. D1: P < 0.0001, Kruskal-Wallis test) were more
abundant in soils with the three and six diversity levels of MPs
compared to the single MP type exposure. Features that encode for
membrane structure and transport, involving lipopolysaccharide
biosynthesis (D3 vs. D1: P = 0.018; D6 vs. D1: P < 0.0001, Kruskal-
Wallis test), flagellar assembly (D3 vs. D1: P = 0.026; D6 vs. D1:
P = 0.012, Kruskal-Wallis test), bacterial secretion system, and ABC
transporters were also found to have a high abundance in the
treatments with an increasing diversity of MP. Furthermore, SOS
response pathways such as folate biosynthesis were significantly
enriched under the three and six diversity levels of MP exposure
(D3 vs. D1: P = 0.006; D6 vs. D1: P < 0.0001, Kruskal-Wallis test).
Procrustes tests revealed a significant correlation between ARG
profiles and microbial features predicted by KEGG (P = 0.001,

Table 1 | Effects of microplastic diversity (D), fungicide application (F) and plant community (P) and their interactions on the
total normalized abundance of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and virulence factor
genes (VFGs)

Terms Total ARG abundance Total MGE abundance Total VFG abundance

Std. Coef. χ2 P Std. Coef. χ2 P Std. Coef. χ2 P

(Intercept) <0.001*** <0.001*** <0.001***

Fixed terms

MP Diversity 0.320 5.501 0.019* 0.290 3.847 0.049* 0.170 3.140 0.076

Fungicide application 0.050 0.933 0.334 –0.070 3.494 0.062 0.250 12.125 <0.001***

Plant community 0.080 2.633 0.105 –0.020 0.179 0.672 0.210 8.186 0.004**

D × F –0.010 0.058 0.810 0.010 0.038 0.845 0.010 0.023 0.880

D × P –0.060 1.569 0.210 –0.060 2.045 0.153 –0.010 0.043 0.836

F × P 0.010 0.069 0.793 0.070 2.831 0.092 –0.040 0.331 0.565

D × F × P 0.060 1.362 0.243 0.040 0.992 0.319 0.030 0.230 0.632

Random terms SD SD SD

Mixture 0.022 0.352 0.123

R2 of the model Marginal R2 Conditional R2 Marginal R2 Conditional R2 Marginal R2 Conditional R2

0.113 0.661 0.095 0.790 0.134 0.287

Significant effects (P <0.05, Type II Wald chi-square tests with Kenward-Roger degree of freedom) are highlighted in bold and denoted as * P < 0.05, ** P <0.01, *** P <0.001.
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Supplementary Fig. 11). The abundance of all features was sig-
nificantly associated with the copies of ARGs per cell (P < 0.0001).

Identification of key driving bacterial taxa
A total of 1440 metagenome-assembled genomes (MAGs) were iden-
tified in the soil, 255 of which carried ARGs (Fig. 4a). The ARG-carrying
MAGs were assigned to eight phyla among which Proteobacteria,
Actinobacteriota, and Firmicutes were dominant. The 255 MAGs
mainly carried 11 ARG types, among which multidrug, bacitracin, tri-
methoprim, MLS, and vancomycin were most frequently detected.
Moreover, 232 ARG-carrying MAGs could be pathogenic ARG hosts
due to the presence of diverse VFGs (214 subtypes). Of theseARG-VFG-
containing bacteria, 99.57% (231 MAGs) contained a diverse array of
MGEs (358 subtypes), and 95.26% (221 MAGs) carried CAZyme genes.
Simultaneously, a significant positive correlation was observed
between the number of CAZyme genes and ARGs in these bacteria
(P = 0.005, Supplementary Fig. 12). The increasing diversity of MPs
substantially shifts the community of ARG-VFG-containing bacteria
(P = 0.001, Supplementary Fig. 13), mainly related to the changed soil

physicochemical properties including TC, OM and DOC (P <0.001,
Supplementary Fig. 13). The linear mixed-effects model revealed sig-
nificant impacts of MP diversity on the ARG-VFG-containing bacterial
community (standard regression coefficient = 0.43, χ² = 8.4339,
P =0.004, Type II Wald chi-square test, Supplementary Table 2).
Moreover, the diversity of ARG-VFG-containing bacteria indicated by
the Shannon (D3 vs. D1: P =0.001; D6 vs. D1: P <0.0001, Kruskal-Wallis
test, Fig. 4b) and Simpson (D3 vs. D1: P =0.004; D6 vs. D1: P < 0.0001,
Kruskal-Wallis test, Fig. 4b) index was significantly enhanced by
increasing diversity of MPs. The correlation among ARG-VFG-
containing bacteria was also altered by MP diversity, manifesting as a
decrease in negatively correlated linkages and a decline in the stability
of the co-occurrence network (Fig. 4c, d, e).

Among all MGE-carrying bacteria that containing ARG-VFG,
Proteobacteria and Firmicutes phyla were significantly enriched in
the highest MP diversity treatment (LEfSe test, P < 0.05, LDA > 2,
Supplementary Fig. 14). In terms of genera, the abundance of
Phaeospirillum, Aquabacterium, Giesbergeria, Rhizobacter, SYFN01,
Azonexus, Azospira, Methyloversatilis, unclassified_ Burkholderiaceae,
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Fig. 2 | Potential mechanisms of microbial antibiotic resistance enrichment.
a Structural equation model (SEM) evaluating the direct and indirect effects of MP
diversity, plant biomass, soil properties, bacterial community, andMGE abundance
on ARG abundance in all soil samples (n = 144). Blue and orange arrows indicate
positive and negative effects, respectively. Solid and dotted lines show significant
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Significance levels of regression weight are calculated using two-sided t test and

denoted as * P <0.05, ** P <0.01, *** P <0.001. b Standardized total effect size of
ARGs abundance based on SEM. c Procrustes test demonstrating the significant
correlation between ARG profiles and bacterial community (n = 144). The length of
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indicates the sumof squared distances betweenmatched sample pairs. Source data
are provided as a Source Data file.
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and unclassified_Peptostreptococcales was strikingly increased by MP
diversity level six (LEfSe test, P < 0.05, LDA > 2). MP diversity level
three significantly increased the abundance of Xanthobacter, Pauci-
monas, CAJAWW01, UBA2250, and Pseudoxanthomonas (LEfSe test,
P < 0.05, LDA > 2). Through random forest analysis, 16 indicator
genera associated with increased diversity of MPs were identified, 14
of which belonged to the phylum Proteobacteria (Fig. 5a). Among
these, the relative abundance of Aquabacterium and Xanthobacter

was strongly positively associated with soil ARG abundance
(P < 0.001, Fig. 5b). Besides, these were significantly enriched by the
increasing diversity of MPs (P < 0.05, Fig. 5c). We then gathered the
distribution and genomic data on these two bacteria from
NCBI, revealing that strains from global isolates generally carry a
high abundance of ARGs (Supplementary Fig. 15). Resistance gene
abundance was significantly higher in Aquabacterium (P = 0.025,
LSD-test) and Xanthobacter (P < 0.0001, LSD-test) compared to
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Source data are provided as a Source Data file.
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Actinophytocola (D1 vs. D3/D6: P < 0.05, Fig. 5c) that enriched in the
single MP exposure treatment (Fig. 5d). For the ARG types, the
abundance of genes encoding resistance to bacitracin, MLS, and
multidrug was significantly higher in Aquabacterium and Xantho-
bacter (all P < 0.05, Fig. 5e).

Results of Microcosm Experiment 2
Tominimize bias fromMP composition, we selected a clustered group
of MPs, as identified in the PCoA plot (Supplementary Fig. 13, where
the most red dots aggregate), for the validation Microcosm Experi-
ment 2 (Fig. 6a). In alignment with the results from Microcosm
Experiment 1, treatments with higher MP diversity led to a significant
increase in the total abundance of ARGs (D5 vs. CK:P =0.001; D5 vs.D1:
P =0.011, Kruskal-Wallis test, Fig.6b) and heightened risk levels asso-
ciated with VFG abundance (D5 vs. CK: P =0.014; D5 vs. D1: P =0.025,
Kruskal-Wallis test, Supplementary Fig. 16) in the soil, compared to
both the control and single MP type treatments. We also observed a
trend where ARG richness (Fig.6b) and MGE abundance increased in
correlation with higher levels of MP diversity (Supplementary Fig. 16).
The composition of ARG subtypes was strikingly changed by increas-
ing MP diversity (P = 0.043, PERMANOVA test, Supplementary Fig. 16).
For bacterial community, the richness (D5 vs. CK: P = 0.009, Kruskal-
Wallis test) and patterns (P =0.019, PERMANOVA test) were influenced
by the increasing diversity of MPs (Supplementary Fig. 17). The strong
association between bacterial community and ARG profiles persists as
well (P = 0.002, Supplementary Fig. 17).

The results of genetic (Fig. 6c) and functional traits (Fig. 6d)
showed significant negative (P =0.023) and positive (P <0.001 for
Shannon index of KOs; P =0.018 for Shannon index of CAZyme genes)

correlations with the copies of ARGs per cell (Fig. 6e), consistent with
the findings fromMicrocosm Experiment 1. The heatmap showed that
KEGGpathways related tobiofilm formation,membrane structure, and
the SOS response, which are key factors in the proliferation of anti-
biotic resistance, were expanded with increasingMP diversity (Fig. 6f).
Furthermore, the key bacterial strains identified in Microcosm
Experiment 1 remained significantly positively correlated with the
copies of ARGs per cell in the Microcosm Experiment 2 (P = 0.044,
Fig. 6h). The Aquabacterium likely played a crucial role in driving the
enrichment of bacitracin and multidrug resistance genes (all
P <0.05, Fig. 6g).

Discussion
Our results showed that with an increasing diversity of MPs, the rich-
ness and abundance of ARGs in the soil environment were significantly
increased. Notably, high-risk ARGs encoding resistance to aminogly-
coside, tetracycline, and florfenicol were substantially elevated. The
abundance of MGEs reflecting ARG motility and VFGs representing
human pathogenicity were significantly increased along with increas-
ing levels of MP diversity, posing a health risk. These changes are
driven by gene changes, community compositional shifts and func-
tional trait alterations in the soil microbiome (Fig. 7). This study
uncovers the critical role of MP diversity in the dissemination of ARGs,
expanding our knowledge of soil environmental MP contamination. In
addition to examining differentMP types, further research is crucial to
explore other dimensions of their diversity, including aging, size,
shape, and the impacts of their coexistence1. For example, the natural
weathering of MPs might increase surface roughness, providing more
niches for microbial attachment and potentially enhancing the
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establishment of biofilms. Comprehensive investigations into these
dimensions will be crucial for developing effective strategies to miti-
gate the ecological impacts associated with MP contamination.

In this study, we attempt to decipher the increased ARG abun-
dance from the perspective of microbial genome evolution. Nucleo-
tide diversity and genomic GC content served as gene change
indicators to assess microbial adaptation to the increasing MP diver-
sity. Consistent with our study, Escherichia coli and Enterococcus fae-
cium respond with a sharp decrease in nucleotide diversity under
exogenous stress33. At the genome level, environmental adaptation
may promote homologous recombination in a large number of soil
bacteria34, leading to reduced nucleotide diversity. This decrease may
reflect the potential selection of specific microbial genotypes under
the pressure of increasing MP diversity33. The soil microbiome may
experience unique evolutionary pressures exerted by different diver-
sities of MPs (including the large number of additives contained in
theseplastic particles), drivingmicrobial adaptation throughmutation
emergence and selection. Additionally, increasing diversity of MPs

significantly reduced GC content. Compared to the core genomes,
genomic islands typically have lower GC content35,36. This implied that
ARGs may undergo extensive horizontal gene transfer among micro-
biome in soil contaminatedwith highMPdiversity, as evidenced by the
significant association linking GC content to the relative abundance of
MGEs and ARGs.

With increasing MP diversity, we found a significant tendency for
the metabolic diversity of the microbial community to increase.
Changes in microbial metabolism, especially degradation, were
observed with MP exposure in soil and animal intestines37,38. Carbo-
hydrate digestion and absorption functions were enriched as MP
diversity increased. Besides, carbohydrate metabolism related
enzymes, suchaspolysaccharide lyases andglycosidehydrolases,were
enhanced by high diversity of MPs (Supplementary Fig. 18). As the
number of MP species rises, the emergence of various types, including
degradable plastics, becomes more prevalent. Unlike non-degradable
plastics, biodegradable plastics can serve as a potential carbon source
for soil bacteria, inducing a stronger priming effect in scenarios of
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increasing MP diversity17. The exposure to MPs would cause intense
metabolic activity, whichwould impact the propagation of ARGs39,40. In
this study, we found that bacteria with a higher number of CAZyme
genes also tend to carry more ARGs. Regarding microbial community
interactions, theobserved increase inpositive interactions indicates an
overall enhancement in metabolic efficiency. We further investigated
KEGG categories contributing to antibiotic resistance41, including the
biofilm formation, membrane structure and transport, and SOS
response. These pathways are the crucial in the enrichment of ARGs
caused by MPs1,14,42. The increasing diversity of MPs promoted the
biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and
Vibrio cholerae. Biofilms, surface-attachedmicrobial communities, can
develop antibiotic resistance up to 1000-fold greater than planktonic
cells43. Different MPs possess varying specific surface areas1,44. As MP
diversity increases, it may alter the total surface area, influencing
microbial biofilm formation. Flagellar assembly was also observed to
be strengthened by the high diversity ofMPs. The flagellummotility of
bacteria has been reported to promote the effect of three disinfectants
on transformation, probably benefiting from an accelerated uptake of
external plasmids45. Furthermore, the increasing diversity of MPs
enhanced folate biosynthesis, which is known to regulate oxidative
stress41. SOS response reveals reactive oxygen species (ROS) over-
production, which could facilitate horizontal gene transfer through
the increases of the cell membrane permeability42. Overgeneration of
ROS within the microbiome likely drivers the increase in ARGs caused
by MPs42. Varying MP types induce different levels of oxidative stress,
andhigherMPdiversitymayamplify this stress, playing a critical role in
the increased abundance of ARGs in the soil.

Microbial community compositional shifts occurred in response
to the increasing diversity of MPs. The community of ARG-VFG-
containing bacteria was strikingly altered by the high diversity of MP

exposure, correlating with soil TC, DOC, and OM. We previously
found that MP pollution significantly increased the concentration of
DOC46,47. This indicated that the high diversity of MP addition facili-
tated the release of soil nutrients into the soil solution and the
accumulation of DOC46. The microbial metabolism response to MP
addition may enhance soil carbon cycling and bioavailability. As
hypothesized, the diversity of ARG-VFG-containing bacteria drama-
tically increased with a high diversity of MPs, exhibiting high ecolo-
gical risk. Numerous studies in terrestrial and aquatic ecosystems
have revealed that contamination selectively enriches antibiotic-
resistant bacterial assemblages in the plastisphere1,14,48,49. The
pathogen load in the plastisphere may result in an enhanced
pathogen-carrying capacity of ecosystems50. Random forest analysis
indicated that the overwhelming majority of microbes contributing
to soil resistance gene abundance changes due to increasing diver-
sity of MPs belong to the phylum Proteobacteria. Significant
enrichment of Proteobacteria was also observed in soils with the
addition of six diversity levels of MPs. It appears that Proteobacteria
are often enriched in the soil plastisphere14,51,52, playing an essential
role in the presence of a wide range of contaminants53,54. Among
Proteobacteria, changes in Aquabacterium and Xanthobacter abun-
dance were significantly and positively correlated with increased
ARG abundance. Data collected globally fromdifferent habitats show
that these genera inherently carry higher ARG abundances than
Actinophytocola, which is enriched in soils with low MP diversity.
Interestingly, genes encoding resistance to bacitracin, multidrug,
and sulfonamide, which were notably abundant in these two genera,
were also detected in high abundance in soil with a high diversity of
MPs. This strongly suggests that the enrichment of specific bacteria
with adaptive advantage under high MP diversity stress accelerated
the development and spread of soil ARGs. In a previous study,
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polyvinyl chloride MPs enriched pathogenic bacteria including
Aquabacterium from surrounding sewage55. This genus is a common
strain of pathogenic bacteria that carry ARGs (i.e., efflux pump-
coding genes and quinolone resistance genes) and is widely found in
soil and wastewater effluent56,57. Furthermore, Aquabacterium is
shown to be a widespread host for class 1 integrons58, adding more
insight into the ecological risks of high diversity of MP contamina-
tion. Xanthobacter is identified as a bacterial genus harboring various
ARGs, primarily those associated with conferring aminoglycoside
and multidrug resistance59. Notably, strains of these genera have
been found to have the ability to degrade MPs60,61. These two genera
belong to Proteobacteria, which have been reported to be the main
carriers of MP degradation genes62. This implies that the enrichment
of ARG-carrying pathogens may be associated with microbial meta-
bolic activity in response to multiple MP contaminants. Further iso-
lation and cultures are needed to robustly verify the ARG-promoting
effects of bacteria under MP diversification stress.

The increasing diversity ofMPs not only elevated ARG abundance
but also increased health risks, as indicated by the enhanced abun-
dance of VFGs. A study of Rhodococcus equi revealed that contact with
plastics significantly increased VFG expression, with various plastic
types regulating the same genes63. Taken together with our results,
these findings demonstrate that environmental MP contamination
could elevate health risks. Additionally, significantly positive relation-
ships between ARGs and increased VFG categories (immune modula-
tion, biofilm, motility and antimicrobial activity) were observed.
Studies have shown that ARGs and VFGs were found to have a strong
correlation and an intimate genetic linkage in human/animal
habitats64. These elements are co-selected under selective pressure to
adapt to harsh environments with the increasing diversity of MPs.
Simultaneously, ARGs and VFGs could co-spread through MGEs-
mediated horizontal transfer, as confirmed by discernible co-
occurrence patterns among these elements.

Moreover, global change factors frequently co-occurring with
MPs in terrestrial ecosystems have a significant impact on ARG chan-
ges. Fungicide applications tend to increase the abundanceof high risk
ARGs, including resistance to aminoglycoside. Studies have shown that
fungicide mancozeb exposure could exert oxidative and osmotic
stress on microbes, further facilitating plasmid-mediated ARG
transfer65. Mono-species community significantly enhanced the rich-
ness of ARGs and expanded ARG risks as a consequence of the
increased VFG abundance compared the soils cultivated with multi-
species. While studies directly investigating the effects of plant diver-
sity on resistance genes are limited, research has observed that
monoculturesmay increase the abundanceof plant pathogens in soil66.
These findings indicated that soils are amid an anthropogenic multi-
factorial crisis20,32, with implications for the propagation and hazard of
the antibiotic resistome.

In summary, our study highlights the importance of incorporating
the diversity of MPs into risk assessment. We find that the increasing
diversity of MPs significantly enriched the ARG richness and abun-
dance, elevating health risks as a consequence of increased VFGs and
MGEs compared to the low diversity level of MPs. Gene changes, shifts
in community composition and alterations in functional traits likely
contribute to the microbial response when exposed to multiple types
of MPs, thus inducing higher abundance and diversity of ARGs. In
addition, global change factors (fungicide application and plant
diversity reduction) in the presence of MPs could also increase ARG
abundance and health risks according to VFGs. Our study highlights
the importance of diversity in the ecological risk assessment of MPs,
especially under conditions of global change, providing novel per-
spectives to understand the risk of ubiquitous ARGs in terrestrial
ecosystems. Considering that multiple MPs are increasingly threaten-
ing ecosystemsworldwide and that the concentration ofmicroplastics
is commonly relatively low in soil environments, there is an urgent

need to evaluate the diversity of MP types rather than just their total
abundance.

Methods
Soils, plants, and microplastics
Soilswere collected fromthe EcologicalResearchStation forGrassland
Farming (ERSGF), Changling, Chinese Academy of Sciences (44°33′N,
123°31′E, altitude 145m). The collected soils were immediately sieved
through 2mm mesh and then transported to the laboratory. The soil
was Meadow solonchaks from grassland, with a pH of 7.78, an EC of
84.56μs cm−1, an organic matter of 1.15% and total nitrogen, phos-
phorus, potassium content of 0.10%, 0.02%, 1.40% respectively (Sup-
plementary Table 3).

In this study, five herbaceous plant species from three families
were chosen asmembers for the plant community: Bidens pilosa L. and
Artemisia stechmanniana Bess. (Compositae), Gypsophila licentiana
Hand.-Mazz. (Caryophyllaceae), and Poa annua L. and Leymus chi-
nensis (Trin.) Tzvel. (Poaceae) (Supplementary Table 4). All of the
species are frequently co-occurring together in the grasslands of
China. Seeds of each species were collected from a minimum of four
distinct natural grassland populations (separated by at least 1 km) and
combined into a single bulk sample for each species.

Microplastics were selected from 12 types commonly found in
soil environments, and purchased from Suzhou Xin Su Yu Co.
(Suzhou, China). The 12 MP pool are polycaprolactone (PCL), poly-
hydroxybutyrate (PHB), polybutylene succinate (PBS), poly-
hydroxyalkanoate (PHA), polylactic acid (PLA), polybutylene
adipatecoterephthalate (PBAT), ethylene-vinyl acetate (EVA), polyvinyl
chloride (PVC), polyethylene terephthalate (PET), polyoxymethylene
(POM), polyamide 66 (PA66), and polypropylene (PP). Manufacturer
and biodegradability of each MP type are shown in Supplementary
Table 5. The MPs were milled and sieved to obtain powders, sieving
through 180μm mesh. Prior to the incubation, each MP was micro-
waved for 20min at 500W to eliminate microbial contaminants67,
ensuring the temperature remained below the melting point. This
process also facilitated the aging of the MPs, as microwave treatment
induces hydrolysis, thermal degradation, and UV irradiation effects
simultaneously68.

Microcosm Experiment 1: impacts of MP diversity on the soil
microbiome and resistome
The experiment was conducted in 1-L circular plastic pots (13.5 cm
diameter × 12 cmheight), each containing0.8 L of substrate, whichwas
a 3:1 (v/v) mixture of soil and gravel. The sieved MP powders (180μm)
were mixed at a concentration of 3% (v/v, 24mL, corresponding to
0.5–1.0% w/w), and three levels of MP diversity were established 1, 3,
and 6 different types. There were 12 replicates of each level of the
treatment (Supplementary Fig. 19). For the pollution level with one
type of MP, we utilized each of the 12 MPs (i.e., PCL, PHB, PBS, PHA,
PLA, PBAT, EVA, PVC, PET, POM, PA66, and PP). For the pollution level
involving three MP types, we created 12 distinct combinations of MPs,
ensuring that each MP type appeared in three different combinations.
Similarly, for the pollution level with sixMP types,we also generated 12
distinct combinations, with each MP type included in six different
combinations. The total volume of MPs was kept constant at 24mL
across all diversity levels, with 24mL (24/1) for one type, 8mL (24/3)
for three types, and4mL (24/6) for six types. TheMPswere thoroughly
mixed with the soil substrate in pots, and 48 pots were made for each
level of diversity. The mixing was in the high-density polyethylene
boxes (30 cm× 30 cm× 20 cm) with smooth inner surfaces, one for
each MP treatment. Each mixture was stirred five times. Once the
substrate and MPs were thoroughly mixed and showed no clumping,
the pots were filled. Here, we assigned the 48 pots of eachMP diversity
to four treatments of two levels of a fungicide application treatment
(fungicide vs. non-fungicide) fully crossed with two levels of a plant
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community treatment (multi-species vs. mono-species). For each pot
of fungicide application treatment, environmentally relevant con-
centrations of 1.65 gmefenoxamL−1 soil (Syngenta Crop Protection,
Inc.)were sprayedon the surfaceof potted soil29. For themono-species
community, we used Bidens pilosa L. for planting, while the multi-
species community comprised all five species (Supplementary
Table 4). For each plant species, only one individual was planted per
pot, positioned into the center of 1-L circular plastic pots. To ensure
uniform seedling size for the experiments, we sowed seeds of each
species in separate trays (20 cm× 20 cm× 4.5 cm, filled with commer-
cial potting soil) on different dates for nursery cultivation.

On 12 July 2022, individual similar-sized seedlings (~3 cm) of every
plant species were transplanted into the 1-L pots. The pots were ran-
domly placed on four benches in a greenhouse with a temperature
range of 22–28 °C and a 14:10 light cycle. After 7 days, we started the
soil fungicide application treatment. In the fungicide-applied treat-
ments, we sprayed a mefenoxam solution into each pot to achieve a
final concentration of 1.65 g per liter of soil. For the non-fungicide
treatment, we added an equivalent amount of water to the pots. To
ensure nowater limitation for plant growth during the experiment, the
pots were watered three times a week with 100mL of water at a time
during the first five weeks of growth. As the plants grew up, the pots
were watered four times a week with 100mL of water at a time during
the second 4 weeks of growth. After 5 weeks, the pots were redis-
tributed randomly. The incubation lasted 60 days (starting from 12
July) and bulk soil samples were collected after plant harvest. The
harvested plants were directly dried at 65 °C for 72 h and weighed to
obtain biomass. The collected soil was randomly divided into two
parts, one was placed at room temperature to air dry and another at
−80 °C for subsequent DNA extraction.

Microcosm Experiment 2: impacts of MP diversity on the soil
microbiome and resistome under identical composition
The study emphasized the impact of MP diversity on soil microbiome
and resistome, acknowledging that the identity and composition of
MPs can exert significant influences. Therefore, we selected types of
conventional non-degradable MPs commonly found in soil for the
validation experiment of the diversity gradient. TheMPpool consisted
of six types of conventional non-degradable MPs (EVA, PET, POM,
PA66, PP, and PVC), establishing three levels of MP diversity with one,
three, and five different types. Therewere six replicates of each level of
the treatment. For the pollution level with one type of MP, we utilized
each of the six MPs (i.e., EVA, PET, POM, PA66, PP, and PVC). For the
pollution level involving three MP types, we created six distinct com-
binations of MPs, ensuring that each MP type appeared in three dif-
ferent combinations (Fig. 6). Similarly, for the pollution level with five
MP types, we also generated six distinct combinations, but with each
MP type being included in five different combinations. The specific
experimental details, including substrate composition and MP con-
tent, was consistent with Microcosm Experiment 1. Meanwhile, we
established a control groupwithoutMPpollution for six replicates. For
the plant community, all five species were cultivated by planting one
similarly-sized seedling of each species in the center of a 1-L circular
plastic pot. No fungicide applications were made in this experiment.

Soil physicochemical properties analyses. Soil physicochemical
properties were determined according to a previous study69. Specifi-
cally, soil pH, total carbon (TC), total nitrogen (TN), total phosphorus
(TP), available phosphorus (AP), organic matter (OM), and dissolved
organic carbon (DOC) were determined in each soil sample.

DNA extraction, metagenome sequencing, and quality filtration
Soil DNA was extracted by applying FastDNA Spin Kit (MP Bio, USA)
following the manufacturer’s instructions. Around 0.5 g of soil was
weighed, lysed, purified, and eluted to obtain total genomic DNA. The

purity of the extracted DNA was assessed using 1.0% agarose gel
electrophoresis and Nanodrop spectrophotometry (Nanodrop ND-
1000, Thermo Scientific,USA). Subsequently, theDNAwas kept frozen
at −20 °C until analysis. The extracted DNA was transported to
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) for
metagenomic analysis. Approximately 5μg of each DNA sample was
utilized for library construction with the NEBNext Ultra DNA Library
Prep Kit for Illumina (NEB, USA). Metagenomic sequencing was con-
ducted on the Illumina HiSeq4000 platform, employing the
PE150 strategy. The average raw reads obtained for each DNA sample
were ~10Gb. Finally, adapter sequences, trimming, and low-quality
reads (including reads with >10% ambiguous nucleotides (“N”), and
>50% nucleotides with a quality value lower than 10) were filtered.

Metagenomic assembly and bioinformatics analysis
After qualityfiltering, high-qualitymetagenomic readswere assembled
to contigs using MEGAHIT (v.1.2.9) with default parameters70. Assem-
bled contigs with length > 800bp were subsequently used for pre-
dicting open reading frames (ORFs) through Prodigal (v.2.6.3) with the
-p meta option71, and non-redundant gene catalog was acquired using
CD-HIT (v.4.8.12) with a 95% identity and 90% coverage threshold72.
Quality-controlled reads after were mapped to the non-redundant
gene catalog at 95% identity using Bowtie 2 (v.2.4.2)73, and gene
abundance in each sample was evaluated by SAMtools74. The repre-
sentative sequences from the gene catalog were annotated with
BLASTp against the NCBI NR database, usingDIAMOND (v.2.0.14) at an
e-value cutoff of 1e−5. KEGG annotations were conducted with DIA-
MOND (v.2.0.14) against the Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) database75 with an e-value cutoff of 1e−5. Carbohydrate-
active enzyme (CAZyme) annotation followed the same approach
using the CAZy database76. For each sequence, the highest-scoring hit
(HSP > 60 bits) was chosen for further analysis.

To characterize ARGs, predicted geneswere identified as ARG-like
genes by searching nucleotide sequences against the Structured ARG
(SARG) database77 using BLASTX with an e-value ≤1e−10 and ≥ 80%
identity. The abundance of ARG-like genes in each sample was calcu-
lated as copies per cell by ARGs-OAP (v.3.2)78. We furthermore identi-
fied high-risk ARGs based on the list of high-risk ARGs constructed by
Zhang et al.79. Similarly, VFGs were determined using the Virulence
Factor Database (VFDB)22, and the bacteria harboring VFGs were
regarded as potential pathogens. To further classify MGEs, a database
of bacterial MGE hallmark genes, mobileOG-db80, was used to assign
element class labels of transposable elements (defined as sequences
derived from ISfinder), integrative elements (such as integrases,
transposases, which are not in ISfinder, and which do not encode
conjugation machinery), or conjugative element (reads with hits to
conjugation machinery). Reads were also annotated at 80% identity
and e-value <1e−10. The co-occurrence of ARGs, VFGs, and MGEs was
further explored to identify if thesegeneswere simultaneously located
on the same contig.

MAGs were recovered using the Vamb (v.4.1.1)81. The qualities of
derived MAGs were examined using CheckM (v.1.0.12)82, and only
those with ≥50% completeness and ≤10% contamination were retained
for further analysis. GTDB-Tk (v.2.1.1) was used to predict MAG tax-
onomy and build the phylogenetic tree83. ORFs from MAGs were
annotated against SARG, VFDB,MGE, andCAZydatabaseswith a cutoff
of ≥80% identity and e-value ≤10−10. GC content was calculated based
on all assembled contigs, and nucleotide diversity analyses were car-
ried out with InStrain84. We used GC content and nucleotide diversity
to reflect the gene adaptation of microbes to changes in stress85,86.

Statistical analysis
The alpha diversity (measured as richness, Shannon, and Simpson
index) was calculated to characterize the species diversity of ARGs,
ARG-VFG-containing microbes, and microbial function in all samples
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employing the “vegan” package (v.2.6-4) in R (v.4.2.1). Based on Bray-
Curtis distances, Principal Coordinates Analysis (PCoA) in the “vegan”
R package (v.2.6-4) was used to visualize the dissimilarity of ARG, high-
risk ARG and VFG composition, and ARG-VFG-containing microbial
community. PERMANOVA was conducted to analyze the explanatory
power of different treatments on the sample variance using the
“vegan” package (v.2.6-4). With IBM SPSS (v.22.0), the nonparametric
Kruskal-Wallis test, one-way analysis of variance (one-way ANOVA)
with LSD-test, and two-tailed unpaired Student’s t test were used to
test the differences between treatments at a significance level of 0.05.
The changes in the VFGs and ARG-VFG-containingmicrobes generated
among treatmentswere examinedwith the linear discriminant analysis
effect size (LEfSe, LDA score (Log10) = 2 as the cutoff value) approach.
Partial Least Squares Discriminant Analysis (PLS-DA) in the “ropls”
package (v.1.20.0) was conducted to reveal differences in functions
between high MP diversity and single MP exposure treatments.
The linear fit between data was used to construct correlations by the
“ggplot2” package (v.3.5.0). Mantel tests were used to examine the
correlation between MGE abundance and ARG/VFG distance matrices
with 999 permutations in the “vegan” package (v.2.6-4). The correla-
tions between the community of ARG and bacterial community/func-
tional features were determined in the “vegan” package (v.2.6-4) by
Procrustes analysis.

To explore the effects of three experimental factors (includingMP
diversity, fungicide application, and plant community) and their
interactions on the soil resistome and ARG-VFG-containing microbial
community, a full linear mixed-effects model as y ~ MP Diversity ×
Fungicide × Plant + (1|Mixture). In the model, the fixed effects of “MP
Diversity (D)”, “Fungicide (F)” and “Plant (P)” represent the introduced
types of MPs (as numeric values: 1, 3, and 6 for number of MP species
introduced), whether the fungicide was application to soil (as numeric
values: 1 for nonfungicide application and 2 for fungicide application),
and mono- or multispecies plant community (as numeric values: 1 for
monospecies and 2 for multispecies) respectively. A random factor
“Mixture” represents the combination of different types of MPs (as a
character, such as A and ABC for groups that contained PCL or both
PCL, PHA, and POM, respectively). Conditional R square and marginal
R square were calculated using “MuMIn” package (v.1.47.5), and sta-
tistical significance is based onWald type II chi-square tests using “car”
package (v.3.1-2).

To characterize the effect of soil properties on the ARG-VFG-
containing microbial community, LM in the “stats” package (v.4.3.3)
was conducted. A co-occurrence network of ARG-VFG-containing
microbes was constructed using the “ggClusterNet” package (v.0.1.0)
(Spearman’s r > 0.6, Padj < 0.05), and the network topological index
was calculated. Random forest analysis in the “randomForest” package
(v.4.7-1.1) (ntree = 1000) was performed to identify the biomarkers to
indicate treatments with different MP diversity exposure levels. The
worldmap of ARG abundance inAquabacterium and Xanthobacterwas
generated using the “ggplot2” package (v.3.5.0). A structural equation
model (SEM) was developed to evaluate the direct and indirect effects
of MP diversity, plant biomass, soil properties, bacterial community,
and MGE abundance on the soil ARG abundance using AMOS 21 (SPSS
Inc., Chicago, USA). The value of principal coordinate axis 1 from the
PCoA results was applied to represent soil properties and bacterial
community. The overall model fit was assessed by the Chi-square test,
goodness-of-fit index, and root means square error of approximation.

Reporting summary
Further information on research design is available in Nature Portfolio
Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the National Center for Biotechnology Information (NCBI) SRA

database (https://www.ncbi.nlm.nih.gov/sra) under accession code
PRJNA1066406. Source data are provided in this paper.

Code availability
The R script is available in a publicly accessible database (https://
github.com/YifeiWangang/MP-diversity.git).
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