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While quantum state tomography is notoriously hard, most states hold little interest to practically
minded tomographers. Given that states and unitaries appearing in nature are of bounded gate complexity,
it is natural to ask if efficient learning becomes possible. In this work, we prove that to learn a state gen-
erated by a quantum circuit with G two-qubit gates to a small trace distance, a sample complexity scaling
linearly in G is necessary and sufficient. We also prove that the optimal query complexity to learn a unitary
generated by G gates to a small average-case error scales linearly in G. While sample-efficient learning
can be achieved, we show that under reasonable cryptographic conjectures, the computational complexity
for learning states and unitaries of gate complexity G must scale exponentially in G. We illustrate how
these results establish fundamental limitations on the expressivity of quantum machine-learning models
and provide new perspectives on no-free-lunch theorems in unitary learning. Together, our results answer
how the complexity of learning quantum states and unitaries relate to the complexity of creating these
states and unitaries.
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I. INTRODUCTION

A central problem in quantum physics is to charac-
terize a quantum system by constructing a full classical
description of its state or its unitary evolution based on
data from experiments. These two tasks, named quantum
state tomography [1–4] and quantum process tomography
[5–9], are (in)famous for being ubiquitous yet highly
expensive. The applications of tomography include quan-
tum metrology [10,11], verification [12,13], benchmarking
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[5–8,14–17], and error mitigation [18–20]. Yet tomogra-
phy provably requires exponentially many (in the system
size n) copies of the unknown state [21,22] or runs of
the unknown process [23]. This intuitively arises from the
exponential scaling of the number of parameters needed to
describe an arbitrary quantum system.

But the situation is less dire than it theoretically
appears. In practice, tools for analyzing many-body sys-
tems often exploit known structures cleverly to predict
their phenomenology or classically simulate them. Notable
examples include the BCS theory for superconductiv-
ity [24], tensor networks [25,26], and neural-network
[27–32] ansatze. Indeed, while most of the states or uni-
taries may have exponential gate complexity [33], such
objects are also unphysical: an exponentially complex state
or unitary cannot be produced in nature within a reason-
able amount of time [34]. In particular, in Ref. [34] it
is shown that quantum states or unitaries with bounded
gate complexity are precisely those that can be pro-
duced by bounded-time evolution of time-dependent local
Hamiltonians.

In this work, we study whether tomography, too, can
benefit from the observation that nature can only produce
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FIG. 1. (a)–(c) A schematic overview of the learning models in this work. (a) Learning quantum states with bounded circuit com-
plexity G. (b) Learning unitaries with bounded circuit complexity G. (c) Learning classical functions from quantum experiments with
bounded circuit complexity G. (d) A conceptual depiction of how the sample complexity of learning states in trace distance and uni-
taries in average-case distance scales linearly with circuit complexity, while that of learning unitaries in worst-case distance scales
exponentially.

states and unitaries with bounded complexity. This gives
rise to the following main question:

Can we efficiently learn states or unitaries of bounded gate
complexity?

In particular, we consider the following two tasks:

(1) Given copies (samples) of a pure quantum state |ψ〉
generated by G two-qubit gates, learn |ψ〉 to within
ε trace distance [see Fig. 1(a)].

(2) Given uses (queries) of a unitary U composed
of G two-qubit gates, learn U to within ε root-
mean-square trace distance between output states
(average-case learning) [see Fig. 1(b)].

Note that the G quantum gates can act on arbitrary pairs
of qubits without any geometric locality constraint. By
allowing general gates beyond discrete gate sets, this set-
ting encompasses continuous time-dependent Hamiltonian
dynamics via Trotterization [34] and thus analog quan-
tum simulation [35]. It also includes states heavily studied
in condensed matter, such as symmetry-protected topo-
logically ordered states [36–38] and tensor-network states
[39–41]. Previously, in Ref. [42] it has been shown that
task (1) can be accomplished with a sample complexity of
Õ(nG2/ε4). In our work, we present algorithms for both
of these tasks that use a number of samples or queries that
are linear in the circuit complexity G up to logarithmic

factors. Moreover, the sample complexity is independent
of system size. Thus, for G scaling polynomially with the
number of qubits, our learning procedures improve upon
previous work [42] and have significantly lower sample or
query complexities than required for general tomography,
answering our central question in the affirmative. We also
prove matching lower bounds (up to logarithmic factors),
showing that our algorithms are effectively optimal. More-
over, we show that the focus on average-case learning is
crucial in the case of unitaries: unitary tomography up to
error ε in the diamond distance (a worst-case metric over
input states) requires a number of queries scaling exponen-
tially in G, establishing an exponential separation between
average and worst case.

While our learning algorithms for bounded-complexity
states and unitaries are efficient in terms of sample or
query complexity, they are not computationally efficient.
We prove that this is unavoidable. Assuming the quan-
tum subexponential hardness of “ring learning with errors”
(RingLWE) [43–48], any quantum algorithm that learns
arbitrary states or unitaries with Õ(G) gates requires com-
putational time scaling exponentially in G. This result
highlights a significant computational-complexity limita-
tion on learning even comparatively simple states and
unitaries. This result also answers an open question
in Ref. [49]. Meanwhile, we show that poly(n)-time
algorithms are possible for G = O(log n). Together, this
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establishes a crossover in computational hardness at G ∼
log n, kicking in far before the sample complexity becomes
exponential (at G = exp(n)). This means that relatively
few samples or queries already contain enough informa-
tion for the learning task but it is hard to retrieve the
information.

Finally, we study two variations of unitary learning that
deepen our insights about the problem. The first varia-
tion utilizes classical (not quantum) descriptions of input
and output pairs and explains why both learning states
and unitaries display a linear-in-G sample complexity: the
underlying source of complexity in learning unitaries is, in
fact, the readout of input and output quantum states, rather
than learning the mapping. We generalize recent quantum
no-free-lunch theorems [50,51] to reach this conclusion.
For the second variation, we study quantum machine-
learning (QML) models. We focus on learning classical
functions that map variables controlling the input states
and the evolution to some experimentally observed prop-
erty of the outputs [Fig. 1(c)]. Surprisingly, we find that
certain well-behaved many-variable functions can in fact
not (even approximately) be implemented by quantum
experiments with bounded complexity. This highlights a
fundamental limitation on the functional expressivity of
both nature and practical QML models.

II. RESULTS

In this section, we discuss our rigorous guarantees for
learning quantum states and unitaries with circuit complex-
ity G. Our sample-complexity results are summarized in
Table I and Fig. 1(d).

We also present computational-complexity results,
where we establish the exponential-in-G growth of com-
putational complexity, implying that log n gate complexity
is a transition point at which learning becomes computa-
tionally inefficient. In particular, we prove that for circuit
complexity Õ(G), any quantum algorithm for learning
states in trace distance or unitaries in average-case dis-
tance must use time exponential in G, under the conjecture
that RingLWE cannot be solved by a quantum computer
in subexponential time. Hence, for a number G of gates
that scales slightly higher than log n, the learning tasks can-
not be solved by any polynomial-time quantum algorithm
under the same conjecture. Meanwhile, for G = O(log n),

both learning tasks can be solved efficiently in polynomial
time.

A. Learning quantum states

We consider the task of learning quantum states of
bounded circuit complexity. Let |ψ〉 = U |0〉⊗n be an n-
qubit pure state generated by a unitary U consisting of G
two-qubit gates acting on the zero state. Throughout this
section, we denote ρ � |ψ〉〈ψ |. Given N identically pre-
pared copies of ρ, the goal is to output a classical circuit
description of a quantum state ρ̂ that is ε-close to ρ in
trace distance: dtr(ρ̂, ρ) = ‖ρ̂ − ρ‖1/2 < ε. We establish
the following theorem, which states that linear-in-G many
samples (up to logarithmic factors) are both necessary and
sufficient to learn the unknown quantum state |ψ〉 within a
small trace distance.

Theorem 1 (State learning). Suppose that we are given
N copies of an n-qubit pure state ρ = |ψ〉〈ψ |, where
|ψ〉 = U |0〉⊗n is generated by a unitary U consisting of
G two-qubit gates. Then, N = �̃

(
G/ε2

)
copies are neces-

sary and sufficient to learn the state within ε trace distance
dtr with high probability.

Previous work [42] has obtained a sample complexity of
Õ(nG2/ε4) for this task, which we show to be suboptimal.
Notably, our result achieves the optimal scaling in both G
and ε up to logarithmic factors and is independent of the
system size n. Thus, we completely characterize the sam-
ple complexity, resolving an open question from Ref. [52].
We prove the upper bound in Appendix B 1, utilizing cov-
ering nets [53] and quantum hypothesis selection [54].
Our proposed algorithm first creates a covering net over
the space of all unitaries consisting of G two-qubit gates.
This can easily be transformed into a covering net over
the space of all quantum states generated by G two-qubit
gates by applying each element of the unitary covering net
to the zero state. Thus, any quantum state generated by G
two-qubit gates is close (in trace distance) to some element
of the covering net. We can then apply quantum hypothe-
sis selection [54] to the covering net, which allows us to
identify the element in the covering net that is close to
the unknown target state |ψ〉 and achieve the optimal ε
dependence. We also note that our algorithm for learning

TABLE I. The sample complexity of learning n-qubit states and unitaries with circuit complexity G. The learning accuracy ε is
measured in trace distance for states, the root-mean-square trace distance for average-case unitary learning, and the diamond distance
for the worst case. Here, C > 0 is some universal constant. Throughout the paper, Õ, �̃, and �̃ denote that we are suppressing
nonleading logarithmic factors.

Sample complexity State Unitary (average case) Unitary (worst case)

Upper bound Õ (G/ε2
) Õ

(
G min

{
1/ε2,

√
2n/ε

})
Õ (2nG/ε)

Lower bound �̃
(
G/ε2

)
�(G/ε) �

(
2min{G/(2C),n/2}/ε

)
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quantum states does not require knowledge of or access to
the unitary U that generates the unknown state |ψ〉. Only
the condition that some unitary U consisting of G gates
generates |ψ〉 is needed. The lower bound is proven in
Appendix B 2 by using an information-theoretic argument
via reduction to distinguishing a packing net over G-gate
states [21].

Our algorithm to learn the unknown quantum state |ψ〉
is computationally inefficient, as it requires a search over
a covering net the cardinality of which is exponential in
G. We show that for circuits of size Õ(G), any quantum
algorithm that can learn |ψ〉 to within a small trace dis-
tance given access to copies of this state must use time
exponential in G, under commonly believed cryptographic
assumptions [43–48]. Meanwhile, the learning task is com-
putationally efficiently solvable for G = O(log n) via junta
learning [55] and standard tomography methods. This
implies a transition point of computational efficiency at
log n circuit complexity. Previous work [56,57] has arrived
at similar hardness results for polynomial circuit com-
plexity but our detailed analysis allows us to sharpen
the computational lower bound and obtain this transition
point. Computational-complexity lower bounds for distri-
bution learning that are similar in spirit are also proved in
Ref. [58].

Theorem 2 (State-learning computational complexity).
Suppose that we are given N copies of an unknown
n-qubit pure state |ψ〉 = U |0〉⊗n generated by an arbi-
trary unknown unitary U consisting of Õ(G) two-qubit
gates. Suppose that RingLWE cannot be solved by a quan-
tum computer in subexponential time. Then, any quantum
algorithm that learns the state to within ε trace distance
dtr must use exp(�(min{G, n})) time. Meanwhile, for G =
O(log n), the learning task can be solved in polynomial
time.

B. Learning quantum unitaries

For learning unitaries, a natural distance metric anal-
ogous to the trace distance for states is the dia-
mond distance d♦(U, V) = maxρ ‖(U ⊗ I)ρ(U ⊗ I)† −
(V ⊗ I)ρ(V ⊗ I)†‖1, where ρ is over any arbitrarily
extended Hilbert space. It characterizes the optimal suc-
cess probability for discriminating between two unitary
channels. Moreover, it can be reinterpreted in terms of the
largest distance between U |ψ〉 and V |ψ〉 over all input
states |ψ〉 and thus represents the error we make in the
worst case over input states. We find that in this worst-
case learning task, a number of queries exponential in G
are necessary to learn the unitary.

Theorem 3 (Worst-case unitary learning). To learn an
n-qubit unitary composed of G two-qubit gates to accuracy
ε in the diamond distance d♦ with high probability, any

quantum algorithm must use at least �(2min{G/(2C),n/2}/ε)
queries to the unknown unitary, where C > 0 is a universal
constant. Meanwhile, there exists such an algorithm using
Õ(2nG/ε) queries.

The complete proof is given in Appendix C 1 and the
proof of the lower bound relies on the adversary method
[59–62]. We construct a set of unitaries that a worst-case
learning algorithm can successfully distinguish but that
only make minor differences when acting on states, so that
a minimal number of queries have to be made in order
to distinguish them. The upper bound is achieved by the
average-case learning algorithm in Theorem 4 below when
applied in the regime of exponentially small error.

Having established this no-go theorem for worst-
case learning, we turn to a more realistic average-
case learning alternative. Here, the accuracy is mea-
sured using the root-mean-square trace distance between
output states over Haar-random inputs, davg(U, V) =√

E|ψ〉[dtr(U |ψ〉 , V |ψ〉)2]. This metric characterizes the
average error when testing the learned unitary on randomly
chosen input states.

We find that, similarly to the state-learning task, linear-
in-G many queries are both necessary and sufficient to
learn a unitary in the average case.

Theorem 4 (Average-case unitary learning). There
exists an algorithm that learns an n-qubit unitary com-
posed of G two-qubit gates to accuracy ε in the root-
mean-square trace distance davg with high probability using
Õ(G min{1/ε2,

√
2n/ε}) queries to the unknown unitary.

Meanwhile, �(G/ε) queries to the unitary or its inverse
or the controlled versions are necessary for any such
algorithm.

We show the upper bound in Appendix C 2 by com-
bining a covering net with quantum hypothesis selec-
tion, similarly to the upper bound in Theorem 1. Our
algorithm achieving the query complexity Õ(G/ε2) uses
maximally entangled states and the Choi-Jamiołkowski
duality [63–65]. With a bootstrap method similar to quan-
tum phase estimation [23], we improve the ε dependence
to the Heisenberg scaling Õ(1/ε), albeit at the cost of a
dimensional factor. It is an open question as to whether
one can improve the ε dependence without incurring this
dimensional factor. Without auxiliary systems, we prove
a query-complexity bound of Õ(G min{1/ε4, (

√
2n)3/ε}).

The lower bound is proven in Appendix C 3 by map-
ping to a fractional-query problem [23,66,67] and making
use of a recent upper bound on the success probabil-
ity in unitary distinguishing tasks [68]. In the case of
learning generic unitaries, our result yields a �(4n/ε)

lower bound, improving upon the �(4n/n2) bound from
the recent work Ref. [56], which studies the hardness of
learning Haar-(pseudo)random unitaries.
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As Haar-random states are hard to generate in practice,
we also discuss other input-state ensembles of physical
interest. Relying on the equivalence of root-mean-square
trace distances over different locally scrambled ensembles
[69,70], recently established in Ref. [71], our algorithm
achieves the same average-case guarantee over any such
ensemble. Notable examples of locally scrambled ensem-
bles include products of Haar-random single-qubit states
or of random single-qubit stabilizer states, 2-designs on
n-qubit states, and output states of random local quantum
circuits with any fixed architecture.

The similar linear-in-G sample or query-complexity
scaling in Theorems 1 and 4 hints at a common under-
lying source of complexity. However, in contrast to state
learning, unitary learning comes with two natural such
sources: (1) to readout input and output states and (2) to
learn the mapping from inputs to outputs. The similarity
between learning states and unitaries in terms of complex-
ities suggests that the former may encapsulate the central
difficulty in unitary learning, whereas the latter may be
easy. This seemingly contradicts recent quantum no-free-
lunch theorems [50,51,72], which state that�(2n) samples
are required to learn a generic unitary even from classi-
cal descriptions of input-output state pairs, highlighting the
difficulty of (2).

To resolve this apparent contradiction, we reformu-
late the quantum no-free-lunch theorem (Theorem 17)
from a unifying information-theoretic perspective in
Appendix C 4. We highlight that enlarging the space for
the classically described data allows us to systematically
reduce the sample complexity until a single sample suffices
to learn a general unitary. Therefore, the difficulty of learn-
ing the mapping, as indicated by quantum no-free-lunch
theorems, vanishes when we allow auxiliary systems and
query access to the unitary. Inspired by this observation,
we give two ways of enlarging the representation space
with auxiliary systems. The first is fundamentally quan-
tum, making use of entangled input states [51]. The other
is purely classical, relying on mixed-state inputs [73].

Theorem 5 (Learning with classical descriptions).
There exists an algorithm that learns a generic n-qubit
unitary with any nontrivial accuracy and with high
success probability using O(2n/r) classically described
input-output pairs with mixed (entangled) input states of
(Schmidt) rank r. Moreover, any such algorithm that is
robust to noise needs at least �(2n/r) samples.

Similarly to the case for state learning, our average-case
unitary-learning algorithm is not computationally efficient.
We show that this cannot be avoided. Under commonly
believed cryptographic assumptions [43–48], any quantum
algorithm that can learn unknown unitaries with circuit
size Õ(G) to a small error in average-case distance from
queries must have a computational time exponential in G.

This implies the same computational hardness for worst-
case unitary learning and a log n transition point of com-
putational efficiency. Note that the hard instances that we
construct are implementable with a similar number of Clif-
ford and T gates [74]. Therefore, together with Theorem
2, this implies that there are no polynomial-time quantum
algorithms for learning Clifford+T circuits with ω̃(log n) T
gates, answering an open question (the fifth question) in
the survey in Ref. [49] negatively.

Theorem 6 (Unitary-learning computational complex-
ity). Suppose that we are given N queries to an arbitrary
unknown n-qubit unitary U consisting of Õ(G) two-qubit
gates. Assume that RingLWE cannot be solved by a quan-
tum computer in subexponential time. Then, any quantum
algorithm that learns the unitary to within ε average-case
distance davg must use exp(�(min{G, n})) time. Mean-
while, for G = O(log n), the learning task can be solved
in polynomial time.

C. Learning with physical functions

Apart from learning quantum states and dynamics them-
selves, a more classically minded learner may care more
about learning classical functions resulting from quan-
tum processes. We define these physical functions in
Appendix D as functions f (x, {Ui}G

i=1, a) mapping x ∈
[0, 1]ν to R resulting from a physical experiment consist-
ing of three steps: (1) a fixed-state-preparation procedure
that can depend on x; (2) a unitary evolution consisting
of G tunable two-qubit gates {Ui}G

i=1 and arbitrary fixed
unitaries that can depend on x, arranged in a circuit archi-
tecture a; and (3) the measurement of a fixed observable,
the expectation of which is the function output. By tuning
the local gates {Ui}G

i=1 and potentially changing archi-
tecture a, we obtain a resulting class of functions that
can be implemented in this general experimental setting.
Despite the generality of this setup, we find that certain
well-behaved functions are actually not physical in this
sense: they cannot be efficiently approximated or learned
via physical functions.

Theorem 7 (Approximating and learning with physical
functions). To approximate and learn arbitrary 1-bounded
and 1-Lipschitz R-valued functions on [0, 1]ν to accuracy
ε in ‖ · ‖∞ with high probability, using physical functions
with G gates and variable circuit structures, we must use
G ≥ �̃(1/εν/2) gates and collect at least�(1/εν) samples.
If the circuit structure is fixed, we require G ≥ �̃(1/εν)
gates.

We prove this in Appendix D by noting that to approx-
imate arbitrary 1-bounded and 1-Lipschitz functions well,
the complexity of experimentally implementable functions
cannot be too small, as measured by the pseudodimen-
sion [75] or the fat-shattering dimension [76]. Then, the
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gate-complexity lower bound follows because the function
class complexity is limited by the circuit complexity [77]
and we can appeal to results in classical learning theory
[78] to obtain our sample-complexity lower bound.

It has been established that a classical neural network
can learn to approximate any 1-bounded and 1-Lipschitz
functions to accuracy ε in ‖ · ‖∞ with �̃(1/εν) parame-
ters, exponential in the number of variables ν, known as
the curse of dimensionality [79]. Our results show that
quantum neural networks can do no better. This result not
only is relevant to the practical implementation of quan-
tum machine learning, complementing existing results on
the universal approximation of quantum neural networks
[80–83], but also has deep implications for the physical-
ity of the function class under consideration. It means that
there are some many-variable 1-bounded and 1-Lipschitz
functions that cannot be implemented in nature efficiently.
On the other hand, certain more restricted function classes
can be approximated using only O(1/ε2) parameters with
both classical [79] and quantum neural networks [80],
independent of the number of variables. This reveals a
fundamental limitation on the functional expressivity of
nature, practical QML models, and quantum signal pro-
cessing algorithms [84,85]. We remark that while we prove
this no-go result, achieving a quantum advantage may still
be possible for other function classes [86].

III. NUMERICAL EXPERIMENTS

To support our theoretical findings, we conduct numer-
ical experiments using our learning algorithm applied to
pure states generated from G two-qubit gates. The results
reflect the linear-in-G scaling of the sample complex-
ity N from Theorem 1. We consider a large system size
n = 10 000 to illustrate that the sample complexity is

independent of n. We study two families of unknown tar-
get states with different gate configurations: (a) the G gates
are concentrated on 4 qubits; and (b) the G gates are ran-
domly placed. We note that case (a) corresponds to the
hard-to-learn states that we construct to prove the �̃(G)
lower bound in Theorem 1, while in case (b) the gates
are expected to spread out over the large system and form
shallow circuits [87]. Due to the exponential-in-G compu-
tation time proved in Theorem 2, we restrict the gate size to
G = 10 in case (a) and G = 6 in case (b). We perform the
simulations by implementing the algorithm from Appendix
B 1 using shallow Clifford classical shadows [88,89]. The
details of the numerical implementation are provided in
Appendix E.

The performance of our learning algorithm is shown in
Fig. 2. Figure 2(a) corresponds to case (a) described in the
previous paragraph and Fig. 2(b) corresponds to case (b).
We provide contour plots of the average fidelity F of the
reconstruction with different gate sizes G and sample sizes
N . The sample complexity N with different gate sizes G is
plotted in solid lines for different average fidelities F and
in dashed lines for the median fidelity Fmed. We see a lin-
ear dependence of sample complexity N on gate size G,
in accordance with our theoretical bound N = �̃(G) from
Theorem 1. Moreover, we note that a relatively small sam-
ple size N ∼ 50 suffices to learn states with G ∼ 10 gates
on very large system size n = 10 000, due to the fact that
our sample complexity is independent of n.

IV. DISCUSSION

Our work provides a new and more fine-grained per-
spective on the fundamental problems of state and pro-
cess tomography by analyzing them for the broad and
physically relevant class of bounded-complexity states and

(a)

med med

(b)

FIG. 2. The sample complexity N of the learning algorithm with different gate numbers G and reconstruction fidelities F . The
unknown target states are pure states on n = 10 000 qubits generated from G gates, either (a) concentrated on the first four qubits or
(b) randomly placed. The contour plot represents the fidelity for different G and N averaged over many random instances. Sample
complexities with average fidelity F and median fidelity Fmed are plotted in solid and dashed lines, respectively.
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unitaries. It complements existing literature on learning
restricted classes of states or unitaries or their properties.
Examples include stabilizer circuits and states [90–93],
Clifford circuits with few non-Clifford T gates and their
output states [74,94–97], matrix product operators [26] and
states [98–100], phase states [91,101–103], permutation-
ally invariant states [104–106], outputs of shallow quan-
tum circuits [107], probably-approximately-correct (PAC)
learning quantum states [108] and circuits [109], shadow
tomography [42], classical shadow formalism [14,110–
112], and property prediction of the outputs of quantum
processes [113–115]. It also raises many interesting ques-
tions for future research.

First, to account for decoherence and imperfections in
realistic experiments, it is natural to generalize our results
to mixed states and channels. As our learning algorithms
based on hypothesis selection and classical shadows rely
on the purity or unitarity of the unknown state or pro-
cess, it seems that different algorithmic approaches would
be needed to go beyond states of constant rank. More-
over, while our results show that learners using only
single-copy measurements and no coherent quantum pro-
cessing can achieve optimal sample or query complexity
(in G) for pure-state or unitary learning [in line with
the state-tomography protocol in Ref. [22], which uses
at most rank(ρ) copies at a time for the tomography of
general state ρ], quantum enhanced learners, using multi-
copy measurements and coherent processing, may have an
advantage in the case of mixed states and channels. Such
a quantum advantage is known for general mixed-state
tomography [116,117] and in certain channel-learning sce-
narios [113,115,118–122]; however, to our knowledge, not
yet under assumptions of bounded complexity.

Second, there are several regimes of interest in which
our results may be further extended. For instance, while
we establish a computational efficiency transition for
state and unitary learning at logarithmic circuit com-
plexity, we leave open the question of computationally
efficient learning with constraints beyond circuit com-
plexity (e.g., constant-depth circuits where the gates are
spread out). Another potential improvement related to the
computational complexity is in regard to average-case
computational hardness. While our computational lower
bounds hold in the worst case, this does not tell us if
most states or unitaries of bounded gate complexity are
computationally hard to learn. Is there a worst-case to
average-case reduction for this problem? Or, perhaps, is
there an average-case notion of pseudorandomness that
one could leverage here? An additional regime in which
our work can be extended is as follows. Our adaptation
of the bootstrap strategy from Ref. [23] to average-case
unitary learning achieves Heisenberg scaling only at the
cost of a dimension-dependent factor. Given recent work
in state shadow tomography [123–125], it may not be
possible to find a learner free from this dimensional factor

while achieving the ε−1 scaling. Finding such a learner or
disproving its existence could serve as an important contri-
bution to recent progress on Heisenberg-limited learning in
different scenarios [126–128].

Third, can we make learning even more efficient if the
circuit structure is fixed and known in advance? Our upper
bound already implies an algorithm with Õ(G) sample
complexity for fixed circuit structure but the lower-bound
proof crucially relies on the ability to place gates freely
in the construction of the packing net. A particular fixed-
circuit structure of physical relevance is the brickwork
circuit [129]. In Appendix F, we give preliminary results
showing that if an n-qubit G-gate brickwork circuit suf-
fices to implement an approximate unitary t-design [130],
then the metric entropy of this unitary class with respect
to davg is lower bounded by �(tn). Considering the known
lower bound of G ≥ �̃(tn) on the size of brickwork circuits
implementing t-designs [130], the tightness of which is still
an open problem [131], this may hint at a similar �̃(G)
sample complexity of learning brickwork circuits.

Lastly, we outline a potential connection to the
Brown-Susskind conjecture [132,133] originating from the
wormhole-growth paradox in holographic duality [134–
137]. Informally, the conjecture states that the complexity
of a generic local quantum circuit grows linearly with the
number of two-qubit gates for an exponentially long time,
dual to the steady growth of the volume of a wormhole
in the bulk theory. With “complexity” understood as “cir-
cuit complexity” [136], this conjecture has recently been
confirmed for exact circuit complexity [138,139], while
the case of approximate circuit complexity is only par-
tially resolved [140,141]. Our work suggests an alternative
approach to the Brown-Susskind conjecture. Namely, we
have demonstrated that the complexity of learning quan-
tum circuits grows linearly with the number of local gates
in the worst case. If our bounds were extended to hold with
high probability over random circuits with G gates, this
would yield a sample-complexity version of the Brown-
Susskind conjecture, suggesting the complexity of learning
as a dual of the wormhole volume.

Via these open questions, tomography problems dat-
ing back to the early days of quantum computation and
information connect closely to different avenues of current
research in the field. Consequently, answering these ques-
tions will shed new light on fundamental quantum physics
as well as on the frontiers of quantum complexity and
quantum learning.

V. METHODS

In this section, we discuss the main ideas behind the
proof of our results on the sample complexity of learning
states (Theorem 1) and unitaries (Theorem 4), along with
the computational complexity (Theorems 2 and 6).

040306-7



HAIMENG ZHAO et al. PRX QUANTUM 5, 040306 (2024)

A. Sample-complexity upper bounds

We prove the upper bounds in Theorems 1 and 4, using
a hypothesis-selection protocol similar to that of Ref. [54]
but now based on classical shadow tomography [110] that
enables a linear-in-G scaling.

1. State learning

For state learning, we first take a minimal covering net
N over the set of states with bounded circuit complexity G
such that for any such state |ψ〉, there exists a state in the
covering net that is ε-close to |ψ〉 in trace distance. This
net then serves as a set of candidate states, from which the
learning algorithm will select one. Importantly, we prove
that the cardinality of N can be upper bounded by |N | ≤
eÕ(G). Here, note that the tilde hides a logarithmic factor
in terms of system size, which we remove using a more
detailed analysis with ideas from junta learning [55].

Next, we use classical shadows created via random Clif-
ford measurements [110] to estimate the trace distance
between the unknown state and each of the candidates in
N . This is achieved by estimating the expectation value of
the Helstrom measurement [142], which is closely related
to the trace distance between two states. As the rank of
Helstrom measurements between pure states is at most 2,
Clifford classical shadows can efficiently estimate all

(|N |
2

)

of them simultaneously to ε error using O(log |N |/ε2) ≤
Õ(G/ε2) copies of |ψ〉. Then, we select the candidate that
has the smallest trace distance from |ψ〉 as the output.

The above strategy leads to a sample-complexity upper
bound that depends logarithmically on the number of
qubits n. This is undesirable when the circuit complexity G
is smaller than n/2 (i.e., when some of the qubits are in fact
never influenced by the circuit). We improve our algorithm
in this small-size regime by first performing a junta learn-
ing step [55] to identify which of the qubits are acted on
nontrivially. After that, we enhance our protocol with a
measure-and-postselect step. This allows us to construct a
covering net only over the qubits acted upon nontrivially,
the cardinality of which no longer depends on n. We then
perform the hypothesis selection as before. In this way, we
are able to achieve a sample complexity independent of
system size.

2. Unitary learning

The algorithm for unitary learning is similar to the
state-learning protocol. When allowing the use of an aux-
iliary system, we utilize the fact that the average-case
distance between unitaries is equivalent to the trace dis-
tance between their Choi states. In this way, we can reduce
the problem to state learning of the Choi states and achieve
the Õ(G/ε2) sample complexity. Without auxiliary sys-
tems, we can sample random input states and perform
one-shot Clifford shadows on the outputs to estimate the

squared average-case distance, resulting in an Õ(G/ε4)

sample complexity with a suboptimal ε dependence.
Furthermore, we improve the ε dependence in unitary

learning to the Heisenberg scaling Õ(1/ε) via a bootstrap
method similar to that of Ref. [23], using the above learn-
ing algorithm as a subroutine. Specifically, we iteratively
refine our learning outcome Û by performing hypothesis
selection over a covering net of (UÛ†)p , with p increasing
exponentially as the iteration proceeds. Although the cir-
cuit complexity of (UÛ†)p grows with p , a covering net
with p-independent cardinality can be constructed based
on the one-to-one correspondence to U. However, unlike
the diamond-distance learner considered in Ref. [23],
which has fine control over every eigenvalue of the uni-
taries, our average-case learner only has control over the
average of the eigenvalues. Thus for the bootstrap to work
(i.e., for the learning error to decrease with increasing p),
the average-case learner has to work in an exponentially
small error regime, which results in a dimensional factor
in the final sample complexity Õ(√2nG/ε).

B. Sample-complexity lower bounds

We prove the sample-complexity lower bounds in The-
orems 1 and 4 by reduction to distinguishing tasks. Specif-
ically, if we can learn the state or unitary to within ε error,
then we can use this learning algorithm to distinguish a set
of states or unitaries that are 3ε far apart from each other.
Hence a lower bound on the sample complexity of distin-
guishing states or unitaries from a packing net implies a
lower bound for the learning task.

1. State learning

For state learning, we construct a packing net M of the
set of (log2 G)-qubit states, which we later tensor product
with zero states on the remaining qubits. These states have
circuit complexity of approximately G because O(2k) two-
qubit gates can implement any pure k-qubit states [143].
We prove that the cardinality of M can be lower bounded
by e�(G). This means that to distinguish the states in M,
one has to gather �(log |M|) ≥ �(G) bits of informa-
tion. Meanwhile, Holevo’s theorem [144] asserts that the
amount of information carried by each sample is upper
bounded by Õ(ε2) [145]. Hence, we need at least �̃(G/ε2)

copies of the unknown state.

2. Unitary learning

Similarly, for unitary learning, we construct a packing
net by stacking all the gates into log4 G qubits, using the
fact that O(4k) two-qubit gates suffice to implement any
k-qubit unitaries [146]. Lacking an analogue of Holevo’s
theorem for unitary queries, we turn to a recently estab-
lished bound on the success probability of unitary discrim-
ination [68] and obtain an �(G) sample-complexity lower
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bound for constant ε. To incorporate the ε dependence, we
follow Ref. [23] and map the problem into a fractional-
query problem. We show that with N queries, we can use
the learning algorithm to simulate [66,67] an O(εN ) query
algorithm that solves the above constant-accuracy distin-
guishing problem. This gives us the desired N ≥ �(G/ε)
lower bound.

C. Computational hardness

We prove the computational-complexity lower bounds
in Theorems 2 and 6, again by reduction to distinguishing
tasks, the hardness of which relies on cryptographic primi-
tives in this case. In particular, we show that if we can learn
the state or unitary in polynomial time, then we can use
this learning algorithm to efficiently distinguish between
pseudorandom states and functions [147,148] and truly
random states and functions. We note that similar ideas
have been used to establish a cryptographic no-cloning
theorem [147] for pseudorandom quantum states (PRSs)
but without gate-complexity dependence and the unitary
counterpart. The RingLWE hardness assumption here may
also be relaxed to the existence of appropriate quantum
secure PRS-PRF constructions that have the same gate
complexity, as discussed below.

Our proofs rely on the construction of quantum
secure pseudorandom functions (PRFs) that can be imple-
mented using TC0 circuits, subject to the assumption that
RingLWE cannot be solved by a quantum computer in
subexponential time [45]. We show that the circuit con-
struction of Ref. [45] can be implemented quantumly
using G = O(npolylog(n)) gates by converting this TC0

circuit into a quantum circuit that computes the same
function. With this construction, we can prove the com-
putational hardness of learning when G = O(npolylog(n))
as follows.

1. State learning

For state learning, we utilize these quantum secure PRFs
to construct PRSs—in particular, binary-phase states from
Refs. [147,149]—with G = O(npolylog(n)) gates. Given
copies of some unknown quantum state that is promised
to either be a PRS or a Haar-random state, we design a
procedure that can distinguish between these two cases.
The distinguisher uses our algorithm for learning states
along with the SWAP test applied to the learned state
and the given state [150,151]. Thus, we show that if our
learning algorithm was able to computationally efficiently
learn PRSs, then we would have an efficient distinguisher
between PRS and Haar-random states, contradicting the
definition of a PRS [147].

2. Unitary learning

The proof idea in the unitary setting is similar. In
this case, we consider PRFs directly rather than the PRS
construction. Given query access to some unknown unitary

that is promised to be the unitary oracle of either a PRF
or a uniformly random Boolean function, we design a
procedure that can distinguish between these two cases.
The distinguisher uses our algorithm for learning unitaries
along with the SWAP test [150,151]. Here, we query the
given or learned unitaries on a random tensor product of
single-qubit stabilizer states and conduct the SWAP test
between the output states. In this way, we show that if
our learning algorithm was able to computationally effi-
ciently learn a unitary implementing a PRF, then we would
have an efficient distinguisher between PRFs and uni-
formly random functions, which contradicts the definition
of a PRF [148].

We then go one step further and show computational
hardness for circuit size Õ(G). To do this, we rely crit-
ically on the assumption that RingLWE is hard not just
to polynomial-time quantum algorithms but even to quan-
tum algorithms that run for longer (subexponential) time.
This allows us to take a much smaller input size to the
PRS or PRF in our previous constructions (i.e., over O(G)
qubits, which can be implemented with Õ(G) gates).
The subexponential computational hardness of RingLWE
then implies that solving the learning tasks requires time
exponential in G.

Meanwhile, for G = O(log n), the learning tasks can be
solved efficiently by junta learning and standard tomog-
raphy methods. This establishes log n circuit complexity
as a transition point of computational efficiency. This also
implies that the circuit complexity of the PRS-PRF con-
structions in Refs. [45,149] is optimal up to logarithmic
factors; otherwise, it would contradict the efficient tomog-
raphy of O(log n)-complexity states or unitaries. Finally,
we note that the PRS or PRF that we consider can be
implemented with a similar number of Clifford and T gates,
extending our results to Clifford+T circuits.

The code that generates the data presented in the fig-
ures and that supports the other findings of this study is
available at Ref. [152].
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APPENDIX A: PRELIMINARIES

Throughout the appendixes, we use d = 2n to denote the
dimension of the n-qubit Hilbert space unless otherwise
stated.

1. Distance metrics

Here, we review some distance metrics and their proper-
ties used throughout our proofs. In the main text, we have
already introduced the trace distance

dtr(|ψ〉 , |φ〉) = 1
2
‖ |ψ〉〈ψ | − |φ〉〈φ| ‖1, (A1)

which is analogously defined for density matrices as
dtr(ρ, σ) = ‖ρ − σ‖1/2, the diamond distance

d♦(U, V) = max
ρ

‖(U ⊗ I)ρ(U ⊗ I)†

−(V ⊗ I)ρ(V ⊗ I)†‖1, (A2)

and the root-mean-square trace distance

davg(U, V) =
√

E|ψ〉[dtr(U |ψ〉 , V |ψ〉)2] (A3)

where the expectation is taken over the Haar measure
[153].

Apart from these, we also use the following auxiliary
distance metrics. We define the quotient spectral distance

d′
2(U, V) = min

eiφ∈U(1)
‖U − eiφV‖ (A4)

to be the spectral distance d2(U, V) = ‖U − V‖ up to a
global phase. Similarly, we define the quotient-normalized

Frobenius distance

d′
F(U, V) = min

eiφ∈U(1)

1√
d
‖U − eiφV‖F (A5)

as the normalized Frobenius-norm distance dF(U, V) =
1√
d
‖U − V‖F up to a global phase.
The following lemma shows that the (quotient) spectral

distance and the diamond distance are equivalent.

Lemma 1 (Spectral and diamond distance of uni-
taries; variant of Ref. [154, Lemma B.5]). For any two
d-dimensional unitaries U and V, we have

1√
2

d′
2(U, V) ≤ 1

2
d♦(U, V) ≤ d′

2(U, V) ≤ ‖U − V‖. (A6)

Proof. Since stabilization is not necessary for comput-
ing the diamond distance of two unitary channels [155], we
have

1
2

d♦(U, V)

= max
|ψ〉

1
2
‖U |ψ〉〈ψ |U†−V |ψ〉〈ψ |V†‖1

= max
|ψ〉

√
1 − | 〈ψ∣∣U†V|ψ 〉 |2

= max
|ψ〉

√
(1 + | 〈ψ∣∣U†V|ψ 〉 |)(1 − | 〈ψ∣∣U†V|ψ 〉 |)

≥ max
|ψ〉

1√
2

√
2(1 − | 〈ψ∣∣U†V|ψ 〉 |)

= 1√
2

min
eiφ∈U(1)

max
|ψ〉

‖U |ψ〉 − eiφV |ψ〉 ‖2

= 1√
2

min
eiφ∈U(1)

‖U − eiφV‖ = 1√
2

d′
2(U, V), (A7)

where we have used
∣
∣〈ψ
∣
∣U†V|ψ 〉∣∣ ≥ 0 and the standard

conversion between the trace distance and the fidelity. This
proves the first inequality. Similarly, we have

1
2

d♦(U, V)

= max
|ψ〉

1
2
‖U |ψ〉〈ψ |U†−V |ψ〉〈ψ |V†‖1

= max
|ψ〉

√
1 − | 〈ψ∣∣U†V|ψ 〉 |2

= max
|ψ〉

√
(1 + | 〈ψ∣∣U†V|ψ 〉 |)(1 − | 〈ψ∣∣U†V|ψ 〉 |)

≤ max
|ψ〉

√
2(1 − | 〈ψ∣∣U†V|ψ 〉 |)
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= min
eiφ∈U(1)

max
|ψ〉

‖U |ψ〉 − eiφV |ψ〉 ‖2

= min
eiφ∈U(1)

‖U − eiφV‖ = d′
2(U, V), (A8)

where we have used
∣∣〈ψ
∣∣U†V|ψ 〉∣∣ ≤ 1, proving the second

inequality. The third inequality follows immediately from
d′

2(U, V) = mineiφ∈U(1) ‖U − eiφV‖ ≤ ‖U − V‖. �

We will also utilize the subadditivity of the diamond
distance.

Lemma 2 (Subadditivity of diamond distance [156,
Prop. 3.48]). For any d-dimensional unitaries U1, U2,
V1, V2, we have the following inequality:

d♦(U2U1, V2V1) ≤ d♦(U2, V2)+ d♦(U1, V1). (A9)

From the standard relationship between different p-
norms, we have the following relation between d′

2 and
d′

F .

Lemma 3 (Norm conversion between quotient spec-
tral and normalized Frobenius distance). For any two
d-dimensional unitaries U and V, we have

1√
d

d′
2(U, V) ≤ d′

F(U, V) ≤ d′
2(U, V). (A10)

Proof. For any eiφ ∈ U(1), the standard relation
between matrix norms gives us

‖U − Veiφ‖ ≤ ‖U − Veiφ‖F ≤
√

d‖U − Veiφ‖. (A11)

Taking the minimum of ‖U − Veiφ‖F over eiφ in the first
inequality and dividing by

√
d, we obtain

1√
d

d′
2(U, V) ≤ 1√

d
‖U − Veiφ‖ ≤ d′

F(U, V). (A12)

Similarly, taking the minimum of ‖U − Veiφ‖ over eiφ in
the second inequality and dividing by

√
d yields

d′
F(U, V) ≤ 1√

d
‖U − Veiφ‖F ≤ d′

2(U, V). (A13)

Thus we have the desired results. �

The following lemma collects some useful properties of
d′

F and, in particular, shows that d′
F and davg are equivalent.

Lemma 4 (Properties of quotient-normalized Frobenius
distance). For any two d-dimensional unitaries U and V,
we have the following:

(1) 1
2 d′

F(U, V) ≤ davg(U, V) ≤ d′
F(U, V).

(2) For any integer p ≥ 1, d′
F(U

p , Vp) ≤ pd′
F(U, V).

(3) For any integer p ≥ 1, if d′
F(U, I), d′

F(V, I)
≤ (4/(25π)/

√
d), then d′

F(U
1/p , V1/p) ≤ (2/p)

d′
F(U, V).

Item (3) can be viewed as a version of Ref. [23,
Lemma 3.1].

Proof. (1) From properties of the Haar integral (see,
e.g., Ref. [157, Example 50]), we have

davg(U, V)2 = 1 − d + |tr(U†V)|2
d(d + 1)

. (A14)

On the other hand, we have

d′2
F (U, V) = min

eiφ∈U(1)

1
d
‖U − Veiφ‖2

F

= min
eiφ∈U(1)

2 − 2
d

Re[tr(U†Veiφ)]

= 2 − 2
d
|tr(U†V)|. (A15)

Combining them, we obtain

davg(U, V)2 = d
d + 1

d′2
F (U, V)

(
1 − d′2

F (U, V)
4

)

∈
[

1
4

d′2
F (U, V), d′2

F (U, V)
]

, (A16)

because d′2
F (U, V) ∈ [0, 2]. Thus we have established item

(1).
(2) From the triangle inequality, we have

d′
F(U

p , Vp) ≤
p∑

k=1

d′
F(U

p+1−kVk−1, Up−kVk)

=
p∑

k=1

d′
F(U, V) = pd′

F(U, V), (A17)

where we have used the unitary invariance of d′
F . This

proves item (2).
(3) We first prove the following modified ver-

sion without the global phase: “If dF(U, I), dF(V, I) ≤
(4/(5π)/

√
d), then dF(U1/p , V1/p) ≤ (2/p)dF(U, V).” Let

U = eX , V = eY with ‖X ‖, ‖Y‖ ≤ π . We can refine the
bound on ‖X ‖, ‖Y‖ by noting the following:

‖X ‖ ≤ π

2
‖eX − I‖ ≤ π

2
‖U − I‖F

= π
√

d
2

dF(U, I) ≤ 2
5

, (A18)

where the first inequality can be seen from eigenvalue
analysis as follows. Let iθk be the eigenvalues of X with
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|θk| ≤ π . Then, we have

‖X ‖ = max
k

|θk| ≤ π max
k

∣∣∣∣sin
θk

2

∣∣∣∣

= π

2
max

k

∣∣eiθk − 1
∣∣ = π

2
‖eX − I‖. (A19)

Similarly, we have ‖Y‖ ≤ 2/5.
Next, we prove the following inequality when ‖X ‖, ‖Y‖

≤ 2/5 (similar to Ref. [158, Appendix D]):

1
2
‖X − Y‖F ≤ ‖eX − eY‖F ≤ ‖X − Y‖F . (A20)

For the upper bound, we use the triangle inequality and a
telescoping sum representation. For any m ∈ N,

‖eX − eY‖F ≤
m∑

k=1

‖e(k−1)X /m(eX /m − eY/m)e(m−k)Y/m‖F

= m‖eX /m − eY/m‖F , (A21)

and by taking m → ∞ we arrive at the upper bound. For
the lower bound, note that by the triangle inequality, we
have

‖eX − eY‖F =
∥∥∥∥∥

∞∑

k=1

1
k!
(X k − Yk)

∥∥∥∥∥
F

≥ ‖X − Y‖F −
∥∥∥∥∥

∞∑

k=2

1
k!
(X k − Yk)

∥∥∥∥∥
F

.

(A22)

The second term can be upper bounded by
∥∥∥∥∥

∞∑

k=2

1
k!
(X k − Yk)

∥∥∥∥∥
F

=
∥∥∥∥∥

∞∑

k=2

k∑

l=1

1
k!

X l−1(X − Y)Yk−l

∥∥∥∥∥
F

≤
∞∑

k=2

k
k!

(
2
5

)k

‖X − Y‖F

= (e2/5 − 1)‖X − Y‖F , (A23)

where we have used ‖AB‖F ≤ ‖A‖ · ‖B‖F and ‖X ‖, ‖Y‖ ≤
2/5. Plugging this bound back in, we arrive at the lower
bound

‖eX − eY‖F ≥ (2 − e2/5)‖X − Y‖F ≥ 1
2
‖X − Y‖F .

(A24)

Equation (A20) in particular implies

dF(U1/p , V1/p) ≤ 1

p
√

d
‖X − Y‖F ≤ 2

p
dF(U, V), (A25)

and thus the modified version of our claim.

Finally, we deal with the global phase and prove the
d′

F version, where we assume that d′
F(U, I), d′

F(V, I) ≤
(4/(25π)/

√
d). Let eiφU , eiφV , eiφ ∈ U(1) denote the global

phases that minimize dF(U, IeiφU), dF(V, IeiφV) and
dF(Ue−iφU , Ve−iφVeiφ), respectively. Then, dF(U, IeiφU),
dF(V, IeiφV) ≤ (4/(25π)/

√
d) by assumption, and

dF(Ue−iφU , Ve−iφV) ≤ dF(U, IeiφU) + dF(V, IeiφV) ≤ (8/
(25π)/

√
d). Therefore,

dF(eiφ , I) ≤ dF(eiφ , (Ve−iφV)†(Ue−iφU))

+ dF((Ve−iφV)†(Ue−iφU), I)

= dF(Ue−iφU , Ve−iφVeiφ)+ dF(Ue−iφU , Ve−iφV)

≤ 2dF(Ue−iφU , Ve−iφV)

≤ 16/(25π)√
d

. (A26)

This means that dF(Ue−iφUe−iφ , I) ≤ dF(U, IeiφU)

+ dF(eiφ , I)≤ ((4+ 16)/(25π)/
√

d)= (4/(5π)/√d). We
also know that dF(Ve−iφV , I) ≤ (4/(25π)/

√
d) ≤ (4/(5π)/√

d). Thus the two matrices Ue−iφUe−iφ and Ve−iφV satisfy
the condition of the modified version without global phase
and we thus have

d′
F(U

1/p , V1/p) ≤ d′
F(U

1/p , V1/p(e−iφV)1/p(eiφU)1/p(eiφ)1/p)

= dF((Ue−iφUe−iφ)1/p , (Ve−iφV)1/p)

≤ 2
p

dF(Ue−iφUe−iφ , Ve−iφV) = d′
F(U, V).

(A27)

This concludes the proof of item (3). �

Haar-random states are in general hard to generate. One
may want to use other ensembles of input states and the
associated distance metric for average-case learning. A
class of ensembles of physical interest is that of locally
scrambled ensembles [69,70], defined as follows.

Definition 1 (Locally scrambled ensembles up to the
second moment). An ensemble S of (i.e., a distribution
over) n-qubit states is called a locally scrambled ensem-
ble up to the second moment if it is of the form S =
U |0〉⊗n, where U is an ensemble of unitaries that is locally
scrambled up to the second moment. That is, there exists
another unitary ensemble U ′, such that: (1) for any U′ ran-
domly sampled from U ′ and for any tensor product of
single-qubit unitaries ⊗n

i=1Ui, U′ ⊗n
i=1 Ui follows the same

distribution of U ′; and (2) for any 2n-qubit density matrices
ρ, we have EU∼U [U⊗2ρ(U†)⊗2] = EU′∼U ′[U′⊗2ρ(U′†)⊗2].
We use S

(2)
LS to denote the set of all such state ensembles.

Notable examples of these ensembles include n-qubit
Haar-random states, products of Haar-random single-qubit
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states, products of random single-qubit stabilizer states, 2-
designs on n-qubit states, and output states of random local
quantum circuits with any fixed architecture. The follow-
ing lemma from the study of out-of-distribution general-
ization [71] shows that these ensembles lead to mutually
equivalent average-case distance metrics.

Lemma 5 (Equivalence of locally scrambled aver-
age-case distances [71, Theorem 1]). We denote by
dP(U, V) = √E|ψ〉∼P[dtr(U |ψ〉 , V |ψ〉)2] the root-mean-
square trace distance with respect to an ensemble P. For
any P, Q ∈ S

(2)
LS and for any unitaries U, V, we have

1√
2

dQ(U, V) ≤ dP(U, V) ≤
√

2dQ(U, V). (A28)

The following lemma shows that the triangle inequality
holds for dP (and, in particular, davg).

Lemma 6 (Triangle inequality for average-case dis-
tance). Let dP(U, V) = √E|ψ〉∼P[dtr(U |ψ〉 , V |ψ〉)2] be
the root-mean-square trace distance with respect to an
ensemble P. For any three unitaries U, V, and W, we have
the triangle inequality

dP(U, V) ≤ dP(U, W)+ dP(W, V). (A29)

Proof. Note that

d2
P(U, V) = E|ψ〉∼P[dtr(U |ψ〉 , V |ψ〉)2] ≤ E|ψ〉∼P[(dtr(U |ψ〉 , W |ψ〉)+ dtr(W |ψ〉 , V |ψ〉))2]

= d2
P(U, W)+ d2

P(W, V)+ 2E|ψ〉∼P[dtr(U |ψ〉 , W |ψ〉)dtr(W |ψ〉 , V |ψ〉)]

≤ d2
P(U, W)+ d2

P(W, V)+ 2
√

E|ψ〉∼P[dtr(U |ψ〉 , W |ψ〉)2] ·
√

E|ψ〉∼P[dtr(W |ψ〉 , V |ψ〉)2]

= (dP(U, W)+ dP(W, V))2 , (A30)

where we have used the triangle inequality for dtr and the
Cauchy-Schwartz inequality. Taking the square root gives
us the desired result. �

2. Covering and packing nets

Our results in state and unitary learning utilize a tool
from high-dimensional probability theory, namely, cover-
ing and packing nets. We employ covering nets in our
proofs of the sample-complexity upper bounds and pack-
ing nets in our proofs of sample-complexity lower bounds.
Intuitively, covering and packing nets characterize the
complexity of a space by discretizing it with small balls
of a given resolution. We formally define these concepts
below.

Definition 2 (Covering net or number and metric
entropy). Let (X , d) be a metric space. Let K ⊆ X be a
subset and ε > 0. Then, define the following:

(1) N ⊆ K is an ε-covering net of K if for any x ∈ K ,
there exists a y ∈ N such that d(x, y) ≤ ε.

(2) The covering number N (K , d, ε) of K is the small-
est possible cardinality of an ε-covering net of
K .

(3) The metric entropy is logN (K , d, ε).

We can similarly define a packing net.

Definition 3 (Packing net or number). Let (X , d) be a
metric space. Let K ⊆ X be a subset and ε > 0. Then,
define the following:

(1) N ⊆ K is an ε-packing net of K if for any x, y ∈ N ,
d(x, y) > ε.

(2) The packing number M(K , d, ε) of K is the largest
possible cardinality of an ε-packing net of K .

The following equivalence between covering and pack-
ing numbers is often useful.

Lemma 7 (Covering and packing are equivalent [53,
Section 4.2]). Let (X , d) be a metric space. Let K ⊆ X
and ε > 0. We have

N (K , d, ε/2) ≥ M(K , d, ε) ≥ N (K , d, ε). (A31)

Covering numbers also have the following monotonicity
property.

Lemma 8 (Monotonicity of covering number [53,
Section 4.2]). Let (K , d) be a metric space. If L ⊆ K , then
N (L, d, ε) ≤ N (K , d, ε/2).

For our purposes, we need the following upper and
lower bounds on the covering number of the unitary group.
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Since the states that we consider can be generated by uni-
taries applied to a fixed input state, a covering-number
upper bound for unitaries with respect to the diamond
distance implies a corresponding covering-number upper
bound for states with respect to the trace distance.

Lemma 9 (Covering number of the unitary group (Refs.
[159, Proposition 7). , [158, Lemma 1], and [154, Lemma
C.1])]

Let ‖·‖′ be any unitarily invariant norm. There exist uni-
versal constants c1, c2 > 0 such that for any ε ∈ (0, 2], the
covering number of the d-dimensional unitary group U(d)
with respect to the norm ‖·‖′ satisfies

(c1

ε

)d2

≤ N (U(d), ‖·‖′, ‖I‖′ε) ≤
(c2

ε

)d2

. (A32)

In particular, for the spectral norm ‖·‖, we have the upper
bound N (U(d), ‖·‖, ε) ≤ (6/ε)2d2

. For the Frobenius
norm ‖·‖F , we have (c1/ε)

d2 ≤ N (U(d), ‖·‖F ,
√

dε) ≤
(c2/ε)

d2
.

We can use this result to bound the covering number for
n-qubit unitaries consisting of G two-qubit gates.

Theorem 8 (Covering number of G-gate unitaries).
Let UG ⊆ U(2n) be the set of n-qubit unitaries that can
be implemented by G two-qubit gates. Then, for any
ε ∈ (0, 1], there exist universal and positive constants
c1, c2, and C such that for 1 ≤ G/C ≤ 4n+1, the metric
entropy of UG with respect to the normalized Frobenius
distance dF can be bounded as

G
4C

log
(c1

ε

)
≤ logN (UG, dF , ε)

≤ 16G log
(

c2G
ε

)
+ 2G log n. (A33)

Moreover, the metric entropy with respect to the diamond
distance d♦ can be explicitly upper bounded by

logN (UG, d♦, ε) ≤ 32G log
(

12G
ε

)
+ 2G log n. (A34)

Proof. The proof of the upper bounds is similar to the
proof of Theorem C.1 in Ref. [154]. We first prove the
upper bound for the diamond distance.

Let ε ∈ (0, 1], and define ε′ = ε/2G. Then, by Lemma
9, there exists an ε′-covering net Ñε′ of the set of two-qubit
unitaries U(22)with respect to the spectral norm ‖·‖ of size

|Ñε′ | ≤
(

6
ε′

)32

=
(

12G
ε

)32

. (A35)

This bound applies when the two-qubit unitary acts on a
fixed set of two qubits. We can consider two-qubit unitaries

that act on any of the n qubits. Let U2q ⊂ U(2n) denote this
set of two-qubit unitaries that can act on any pair of the n
qubits of the system. Because there are

(n
2

)
pairs of qubits

that the unitary could act on, the size of the covering net
Ñε′,n of U2q is bounded by

|Ñε′,n| ≤
(

n
2

)(
12G
ε

)32

. (A36)

Recall that we want to find a covering net for the set UG

of n-qubit unitaries consisting of G two-qubit gates. Any
unitary U ∈ UG can be written as UGUG−1 · · ·U1 for Ui ∈
U2q, where we suppress the tensor product with identity
for readability. We consider the set of unitaries obtained
by multiplying elements of the covering net Ñε′,n of U2q.
Namely, we define

Nε � {UGUG−1 · · ·U1|Ui ∈ Ñε′,n, 1 ≤ i ≤ G}. (A37)

Let U ∈ UG be any arbitrary unitary that can be imple-
mented by G two-qubit gates, i.e., it can be written as U =
UGUG−1 · · ·U1 for Ui ∈ U2q. As Ñε′,n is an ε′-covering net
of the set U2q of two-qubit unitaries, for each Ui com-
prising the circuit U, we can find a Ũi ∈ Ñε′,n such that
‖Ui − Ũi‖ ≤ ε′ for all 1 ≤ i ≤ G, where ‖·‖ denotes the
spectral norm. Then, the unitary Ũ � ŨGŨG−1 · · · Ũ1 ∈
Nε1 satisfies

d♦(U, Ũ) ≤
G∑

i=1

d♦(Ui, Ũi) ≤ 2
G∑

i=1

‖Ui − Ũi‖

≤ 2Gε′ = ε, (A38)

where we have employed the subadditivity of the diamond
distance (Lemma 2) in the first inequality and then used
the relationship between the diamond norm and the spec-
tral norm in the second inequality (Lemma 1). In the last
inequality, we have used that ‖Ui − Ũi‖ ≤ ε′ and ε′ =
ε/2G.

Thus, Nε is an ε-covering net of the set UG of n-qubit
unitaries that can be implemented by G two-qubit gates
with respect to the diamond distance. By the definition
of Nε , we have |Nε| = |Ñε′,n|G, since each unitary in the
length G strings of unitaries comprising elements of Nε are
chosen from Ñε′,n. Then,

|Nε| ≤
(

n
2

)G (12G
ε

)32G

≤ n2G
(

12G
ε

)32G

. (A39)

Taking the logarithm gives the desired result for the dia-
mond distance.

We can argue similarly for the normalized Frobenius
distance dF . Specifically, we make use of the subadditivity
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of ‖ · ‖F : ∀U1, V1, U2, V2 ∈ U(2n), we have

‖U2U1 − V2V1‖F ≤ ‖U2U1 − U2V1‖F

+ ‖U2V1 − V2V1‖F

= ‖U1 − V1‖F + ‖U2 − V2‖F , (A40)

where we have used the triangle inequality and the fact that
‖ · ‖F is unitary invariant.

Consider any U ∈ UG, U = UG · · ·U1, where Ui, 1 ≤
i ≤ T are two-qubit unitaries acting on some pair of qubits.
Take ε′ = ε/G and let Nε′ be an ε′-covering net of U(22)

with respect to ‖ · ‖F . Then, there exist Vi ∈ N , 1 ≤ i ≤ G
such that ‖Ui − Vi‖ ≤ ε/G when the Vi are placed on the
corresponding qubits. Let V = VG · · ·V1. By subadditivity,
we have

‖U − V‖F ≤
G∑

i=1

√
2n−2‖Ui − Vi‖F

≤
√

2n−2Gε′ =
√

2n−2ε, (A41)

where we have used the facts that the Frobenius norm
is multiplicative with respect to tensor products and that
an (n − 2)-qubit identity has a Frobenius norm equal to√

2n−2. Therefore, the set of V = VG · · ·V1, where Vi ∈
U(22) and acting on all possible pairs of qubits is a (2n−2ε)-
covering net of UG. Since the number of choices for qubits
to act on is

(n
2

)
for each Vi, we have

N (UG, ‖ · ‖F ,
√

2n−2ε) ≤
[(

n
2

)
N (U(22), ‖ · ‖F , ε/G)

]G

≤ n2G

(
c2G

√
22

ε

)16G

, (A42)

where we have used Lemma 9. Redefining ε to be ε/
√

22

and switching to the normalized dF , we obtain

logN (UG, dF , ε) ≤ 16G log
(

c2G
ε

)
+ 2G log n. (A43)

Finally, we prove the lower bound. For this, we consider
a particular set of circuit structures where all the G gates
are placed on the first k ≤ n qubits. The set of unitaries
that can be implemented by such circuits is denoted by
U≤k

G ⊆ UG. From the theory of universal quantum gates
(see Ref. [146]), we know that to implement an arbitrary
k-qubit unitary, we only need Gk = O(4k) two-qubit gates
that can implement single-qubit gates and a controlled-
NOT (CNOT). That is, there exists a universal constant
C > 0, such that C4k ≥ Gk. Therefore, for any integer
k ≤ n satisfying C4k ≤ G, we have G ≥ Gk. Then, all
possible k-qubit unitaries can be implemented with these

G gates: Un(2k) = {U ⊗ I2n−k : U ∈ U(2k)} ⊆ U≤k
G ⊆ UG,

where Un(2k) denotes the set obtained by embedding
the k-qubit unitaries into the n-qubit unitaries via tensor
multiplication with the identity. Thus N (UG, ‖ · ‖F , ε) ≥
N (Un(2k), ‖ · ‖F , 2ε) by monotonicity.

Next, we prove that N (Un(2k), ‖ · ‖F , 2ε) ≥ N (U(2k),
‖ · ‖F , 2ε/

√
2n−k). To do this, we take a minimal

2ε-covering net N of Un(2k) with |N | = N (Un(2k),
‖ · ‖F , 2ε). Hence, ∀U ∈ U(2k), U ⊗ I2n−k ∈ Un(2k), ∃V ⊗
I2n−k ∈ N , such that ‖U − V‖F = ‖U ⊗ I2n−k − V
⊗ I2n−k‖F/

√
2n−k ≤ 2ε/

√
2n−k. Therefore, {V : V ⊗ I2n−k

∈ N } forms a 2ε/
√

2n−k-covering net of U(2k) and we
haveN (Un(2k), ‖ · ‖F , 2ε) ≥ N (U(2k), ‖ · ‖F , 2ε/

√
2n−k).

Combining the above inequalities, we have

logN (UG, ‖ · ‖F , ε) ≥ logN (Un(2k), ‖ · ‖F , 2ε)

≥ logN (U(2k), ‖ · ‖F , 2ε/
√

2n−k)

≥ 22k log
c1
√

2n

2ε
, (A44)

where the last inequalities follow from Lemma 9.
The largest possible k is given by k = ⌊log4(G/C)

⌋ ≥
log4 G/(4C). Thus, by redefining ε to be ε/

√
2n and

switching to dF , we arrive at

logN (UG, dF , ε) ≥ G
4C

log
c1

2ε
. (A45)

This completes the proof of Theorem 8. �

The dF covering-number bounds in Theorem 8 do not
yet properly take into account the global U(1) phase. To
obtain the covering number for the average-case distance
davg, which is equivalent to the quotient-normalized Frobe-
nius distance d′

F [Lemma 4, item (1)], we need to quotient
out the global phase. This is formalized in the following
lemma.

Lemma 10 (Packing number of quotient distance metric;
variant of Ref. [158, Lemma 4]). For any d-dimensional
unitaries U and V, let dF(U, V) = ‖U − V‖F/

√
d be

the normalized Frobenius distance and let d′
F(U, V) =

minW∈U(1) dF(U, VW) be the corresponding quotient dis-
tance. Then, there exists a universal constant c2 > 0 such
that the packing number of any set U ⊆ U(d) with respect
to dF and d′

F satisfies

logM(U , dF , 4ε)− log(c2/ε)

≤ logM(U , d′
F , ε) ≤ logM(U , dF , ε). (A46)

Proof. We focus on the lower bound first. Take a mini-
mal ε-covering N1 of U with respect to d′

F and a minimal
ε-covering N2 of U(1) with respect to the absolute-value
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distance dA(eiφ , e−iφ′) = |eiφ − e−iφ′ |. Then, for any U ∈
U , there exists V ∈ N1 such that d′

F(U, V) ≤ ε. Let eiφ
 =
arg mineiφdF(U, Veiφ). Then, dF(U, Veiφ
) ≤ ε and there
exists eiφ′ ∈ N2 such that dA(eiφ
 , eiφ′) ≤ ε. Therefore,

dF(U, Veiφ′) ≤ dF(U, Veiφ
)+ dF(Veiφ
 , Veiφ′)

= dF(U, Veiφ
)+ dF(Ieiφ
 , Ieiφ′) ≤ 2ε,
(A47)

where we have used the triangle inequality, dF being
unitary invariant, and dF(Ieiφ
 , Ieiφ′) = (1/

√
d)‖Ieiφ
 −

Ieiφ′‖F = (‖I‖F/
√

d)|eiφ
 − eiφ′ | = dA(eiφ
 , eiφ′) ≤ ε.
Hence, the set {Veiφ′ : V ∈ N1, eiφ′ ∈ N2} is a (2ε)-
covering of U with respect to dF . Then,

N (U , dF , 2ε) ≤ N (U , d′
F , ε)N (U(1), dA, ε). (A48)

Therefore, using the equivalence of covering and pack-
ing (Lemma 7) and the covering-number bound for U(1)
(Lemma 9), we arrive at

logM(U , d′
F , ε) ≥ logM(U , d′

F , 4ε)− log(c2/ε).
(A49)

For the upper bound, note that ∀U, V ∈ U , we have

d′
F(U, V) = min

eiφ∈U(1)
dF(U, Veiφ) ≤ dF(U, V). (A50)

Therefore, a maximal ε-packing net with respect to d′
F is

an ε-packing net with respect to dF . Therefore,

M(U , d′
F , ε) ≤ M(U , dF , ε). (A51)

This concludes the proof of Lemma 10. �

With Lemma 10, we can obtain the covering number of
G-gate unitaries with respect to the average-case distance.

Corollary 1 (Covering number with average-case dis-
tance). Let UG ⊆ U(2n) be the set of n-qubit unitaries
that can be implemented by G two-qubit gates. Then, for
any ε ∈ (0, 1], there exist universal and positive constants
c1, c2, and C such that for 1 ≤ G/C ≤ 4n+1, the metric
entropy of UG with respect to the average-case distance
davg(U, V) = √E|ψ〉[dtr(U |ψ〉 , V |ψ〉)2], where the expec-
tation value is over the Haar measure, can be bounded
as

G
4C

log
( c1

8ε

)
− log

( c2

2ε

)
≤ logN (UG, davg, ε)

≤ 16G log
(

c2G
ε

)
+ 2G log n.

(A52)

Proof. The corollary follows directly from Theorem 8,
Lemma 10, and the equivalence of d′

F and davg [Lemma 4,
item (1)]. �

3. Classical shadows and hypothesis selection

Our proofs of the sample-complexity upper bounds cru-
cially rely on a known algorithm for quantum hypothesis
selection [160]. The high-level idea is to find a cover-
ing net over all unitaries consisting of only G two-qubit
gates and to then use quantum hypothesis selection to iden-
tify a candidate in the covering net close to the unknown
target state or unitary. A similar idea has previously
appeared in Ref. [113]. In this section, we discuss the quan-
tum hypothesis-selection algorithm from Ref. [160] and
prove a performance guarantee when basing it on classical
shadow tomography [110].

The quantum hypothesis-selection algorithm takes as
input (classical descriptions of) a set of hypothesis states
σ1, . . . , σm and quantum copies of an unknown state ρ.
Using these copies, the algorithm identifies a hypothesis
state σk that is close to the unknown state ρ in trace dis-
tance. Importantly, the quantum hypothesis-selection black
box reduces to shadow tomography [42], i.e., one can use
the shadow-tomography protocol as a black box to solve
quantum hypothesis selection. To obtain a better sample-
complexity scaling, we instead utilize classical shadow
tomography [110].

Recall that a classical shadow is a succinct classical
description of a quantum state that allows us to predict
many expectation values accurately. One can construct this
classical shadow description by applying a random unitary
to the quantum state and measuring in the computational
basis. The most prevalent examples are random Clifford
measurements, where the random unitary is chosen to be
a random Clifford circuit, or random Pauli measurements,
where the random unitary is chosen to be a tensor product
of random Pauli gates. Moreover, we have the following
rigorous guarantee for using classical shadows to predict
expectation values.

Theorem 9 (Theorem 1 in Ref. [110]). Let O1, . . . , OM
be Hermitian 2n × 2n matrices and let ε, δ ∈ [0, 1]. Then,

N = O
(

log(M/δ)

ε2 max
1≤i≤M

∥∥∥
∥Oi − tr(Oi)

2n I

∥∥∥
∥

2

shadow

)

(A53)

copies of an unknown quantum state ρ suffice to predict ôi
such that

|ôi − tr(Oiρ)| ≤ ε (A54)

for all 1 ≤ i ≤ M , with probability at least 1 − δ.
Here, ‖·‖shadow denotes the shadow norm, which

depends on the ensemble of unitary transformations used
to create the classical shadow. For instance, in the case
of random Cliffords, the shadow norm can be con-
trolled via the (unnormalized) Frobenius norm (cf. [110,
Proposition S1]).
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Now, we can prove a new guarantee for the quantum
hypothesis selection by replacing the shadow tomography
with the classical shadow in the proof in Ref. [160].

Proposition 1 (Proposition 5.3 in Ref. [160]; classi-
cal-shadow version). Let 0 < ε, δ < 1/2. Given access to
unentangled copies of a pure quantum state ρ and classical
descriptions of m fixed pure hypothesis states σ1, . . . , σm,
there exists a quantum algorithm that selects σk such that
dtr(ρ, σk) ≤ 3η + ε with probability at least 1 − δ, where
η = mini dtr(ρ, σi). Moreover, this algorithm uses

N = O
(

log(m/δ)
ε2

)
(A55)

copies of the quantum state ρ.

In Ref. [160], the authors prove the guarantee on the
quantum hypothesis-selection algorithm using Helstrom’s
theorem. We follow a similar proof. Thus, we first state
Helstrom’s theorem and recall a corollary of it, which will
be useful in the proof of Proposition 1.

Theorem 10 (Helstrom’s theorem [142]). Consider two
d-dimensional quantum states ρ and σ . Then, the trace
distance between ρ and σ can be written as

1
2
‖ρ − σ‖1 = max

‖O‖∞≤1
|tr(Oρ)− tr(Oσ)|, (A56)

where the maximum is taken over all observables O ∈
C

d×d.

Corollary 2. Consider two d-dimensional quantum
states, ρ and σ . Then, there exists an observable A achiev-
ing the maximum such that

tr(Aρ)− tr(Aσ) = 1
2
‖ρ − σ‖1. (A57)

Proof of Corollary 2. We will construct an observable
A that maximizes tr(O(ρ − σ)) over all observables O with
‖O‖∞ ≤ 1. Choose a representation of ρ − σ in terms of
eigenstates |v〉. Suppose that the eigenvalues are discrete:

(ρ − σ) |v〉 = λv |v〉 . (A58)

Then, we can write the quantity that we wish to maximize
as

tr(O(ρ − σ)) =
∑

v

λv〈v|O|v〉. (A59)

We can maximize this by choosing A such that

〈v|A|v〉 =
{

1, if λv > 0,
0, if λv ≤ 0.

(A60)

In this way, we can write A as a sum of projectors

A =
∑

v:λv>0

|v〉〈v| . (A61)

This maximizes tr(O(ρ − σ)), so the corollary has been
proven. �

With this, we can now prove Proposition 1.

Proof of Proposition 1. The proof of Proposition 5.3 in
Ref. [160] uses shadow tomography as a black box. We
follow the same strategy but use classical shadow tomog-
raphy [110] instead of shadow tomography. Recall that
in Ref. [160], the authors run the shadow-tomography
algorithm from Ref. [42], with observables given by Hel-
strom’s theorem [142]. This is the key step that uses
samples of the unknown quantum state ρ, so we need to
analyze it when using classical shadow instead of shadow
tomography. In our setting, Corollary 2 states that for any
i �= j , there exists an observable Aij such that

tr(Aij σi)− tr(Aij σj ) = 1
2
‖σi − σj ‖1. (A62)

Thus, the algorithm in Ref. [160] uses M = (m2
) = O(m2)

observables {Aij } to select the hypothesis state, where m
is the size of the hypothesis set. Using classical shadow
instead of shadow tomography requires

N = Õ
(

log(M/δ)

ε2 max
i,j

∥∥∥∥Aij − tr(Aij )

2n I

∥∥∥∥

2

shadow

)

(A63)

copies of ρ by Theorem 9, where M is the number of
observables Aij that we want to predict. Here, M = O(m2),
so that we require

N = Õ
(

log(m/δ)
ε2 max

i,j

∥∥∥
∥Aij − tr(Aij )

2n I

∥∥∥
∥

2

shadow

)

(A64)

copies of ρ. We claim that

max
i,j

∥
∥∥∥Aij − tr(Aij )

2n I

∥
∥∥∥

2

shadow
= O(1). (A65)

The lemma then follows from this claim. We can prove
this bound on the shadow norm using the construction of
the observables Aij from Helstrom’s theorem, as seen in
Corollary 2. In our case, the states σi are pure and hence of
rank 1. Thus, the rank of σi − σj is at most 2, so that Aij is
a projector of rank at most 2. Thus, the Frobenius norm of
every Aij is O(1) and, by Ref. [110, Proposition S1], the
same holds for the shadow norm of the centered version
of Aij . �
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4. Characterizing the complexity of function classes

In the proof of Theorem 7 (in Appendix D), we will need
to characterize the complexity of certain function classes.
The following definitions will be useful. Throughout the
work, we use YX to denote the set of functions from X
to Y .

Definition 4 (Growth function [161]). Let F ⊆ YX be
a class of functions with finite target space Y . For every
subset � ⊆ X , define the restriction of F to � as F |� =
{f ∈ Y� : ∃F ∈ F ,∀x ∈ �, f (x) = F(x)}. We define the
growth function � of F as

�(μ) = max
�⊆X :|�|≤μ

|F |�| (A66)

for any μ ∈ N.

The growth function characterizes the size of F when
restricted to a domain of μ points. With the growth func-
tion, we can define the VC dimension that characterizes the
complexity of binary functions.

Definition 5 (VC dimension [161]). The Vapnik-
Chervonenkis (VC) dimension of a function class F ⊆
{0, 1}X is defined as

VCdim(F) = max{μ ∈ N : �(μ) = 2μ}, (A67)

or ∞ if the maximum does not exist. Here, �(μ) is the
growth function of F . Or, equivalently, VCdim(F) is the
largest D ∈ N ∪ {∞} such that there exists a set of points
{xi}D

i=1 ⊆ X such that for all C ⊆ [D], there is a function
f ∈ F satisfying

f (xi) = 1 ⇐⇒ i ∈ C. (A68)

These points are said to be shattered by F .

To go beyond binary functions, we can use the pseudodi-
mension defined below.

Definition 6 (Pseudodimension [75]). The pseudodi-
mension of a real-valued function class F ⊆ R

X is defined
as

Pdim(F) = VCdim({X × R � (x, y)

→ sgn[f (x)− y] : f ∈ F}). (A69)

Or, equivalently, Pdim(F) is the largest D ∈ N ∪ {∞}
such that there exists a set of points {(xi, yi)}D

i=1 ⊆ X ×
R such that for all C ⊆ [D], there is a function f ∈ F
satisfying

f (xi) ≥ yi ⇐⇒ i ∈ C. (A70)

These points are said to be pseudoshattered by F .

We will also use the fat-shattering dimension, a scale-
sensitive variant of the pseudodimension.

Definition 7 (Fat-shattering dimension [76]). Let α >
0. The α-fat-shattering dimension fat(F ,α) of a real-
valued function class F ⊆ R

X is defined as the largest D ∈
N ∪ {∞} such that there exists a set of points {(xi, yi)}D

i=1 ⊆X × R such that for all C ⊆ [D], there is a function f ∈ F
satisfying

f (xi) ≥ yi + α if i ∈ C,

f (xi) ≤ yi − α if i /∈ C.
(A71)

Such a set of points is said to be α-fat-shattered by F .

5. Cryptography

Our computational-complexity lower bounds rely on
cryptographic primitives such as pseudorandom functions
[148] and pseudorandom quantum states [147,149]. A
family of pseudorandom functions is a set of functions
such that sampling from this family is indistinguishable
from a uniformly random function. We present the formal
definition below, following the presentation in Ref. [45].

Definition 8 (Pseudorandom functions (PRFs) [148]).
Let λ denote the security parameter. Let K = {Kλ}λ∈N

be an efficiently sampleable key space. Let X =
{Xλ}λ∈N, {Yλ}λ∈N be collections of finite sets. Let F =
{fλ}λ∈N be a family of efficiently computable keyed func-
tions fλ : Kλ ×Xλ → Yλ. F is a pseudorandom function
if for every polynomial-time probabilistic algorithm Adv,
there exists a negligible function negl(·) such that for every
security parameter λ ∈ N,
∣∣∣∣ Pr
k←Kλ

[Advfλ(k,·)(·) = 1] − Pr
g∈Uλ

[Advg(·) = 1]
∣∣∣∣ ≤ negl(λ),

(A72)

where the key k is picked uniformly at random from the
key space Kλ and g is picked uniformly at random from
Uλ, the set of all functions from Xλ to Yλ. Here, negl(λ)
denotes a negligible function, i.e., a function that grows
more slowly than any inverse polynomial in λ.

Concretely, it is common to take the input and output
spaces to be Xλ = {0, 1}m and Yλ = {0, 1} for some input
length m = m(λ) that depends on the security parameter λ.
We consider this setting throughout the work.

Definition 9 (Quantum secure PRFs [45]). Let λ denote
the security parameter. A pseudorandom function is quan-
tum secure against t(λ) adversaries if it satisfies Definition
8, where Adv is a t(λ)-time quantum algorithm with quan-
tum query access to fk and g. When t(λ) = poly(λ), we say
that the PRF is quantum secure.

040306-18



LEARNING QUANTUM STATES. . . PRX QUANTUM 5, 040306 (2024)

There are several constructions for implementing PRFs
with low-depth circuits [45,162,163]. We will focus on the
construction of Ref. [45], which relies on the assumption
that the RingLWE problem [43] is hard even for quan-
tum computers. Specifically, we assume that RingLWE
cannot be solved by a quantum computer in subexponen-
tial time, which is a commonly believed cryptographic
assumption [44–48]. Here, RingLWE is a variant of the
more well-known “learning with errors” problem [44] over
polynomial rings. The RingLWE problem is to find a secret
ring element s ∈ Rq � Zq[x]/〈xλ − 1〉 given pairs (a, a ·
s + e mod Rq), where λ denotes the security parameter, e
is some error, and q is a parameter of the problem. We only
state this informally here and refer the reader to Ref. [43]
for a formal definition and discussion. In Ref. [45], assum-
ing that RingLWE cannot be solved by quantum computers
in t(λ) time, the construction in Ref. [45] produces a PRF
secure against O(t(λ)) quantum adversaries that is imple-
mentable by constant-depth polynomial-size circuits. We
state the precise result below.

Theorem 11 (Lemmas 3.15 and 3.16 in Ref. [45]). Let
λ denote the security parameter. Let the input size be
m = m(λ) = ω(log λ) and set the parameter q = λω(1) to
be a power of 2 such that log(q) ≤ O(poly(λ)). Let K =
{Kλ}λ∈N, where Kλ = Rm+1

q . There exists a PRF RF =
{fλ}λ∈N, where fλ : Rm+1

q × {0, 1}m → {0, 1}, satisfying the
following two properties:

(1) Every fλ(k, ·) ∈ RF with k ∈ Kλ can be computed
by a TC0 circuit.

(2) Suppose there exists a distinguisher D for RF , i.e.,
there exists an O(t(λ))-time quantum algorithm D
that satisfies

∣∣∣∣ Pr
k←Kλ

[D|fλ(k,·)〉(·) = 1] − Pr
g∈U

[D|g〉(·) = 1]
∣∣∣∣

> negl(λ), (A73)

where the key k is picked uniformly at random from
the key space Kλ, g is picked uniformly at random
from U , the set of all functions from Xλ to Yλ, and
D|fλ(k,·)〉 indicates that D has quantum oracle access
to the function fλ(k, ·). Then, there exists a t(λ)-time
quantum algorithm that solves RingLWE.

In property (2), this is equivalent to saying that the PRF
is quantum secure against O(t(λ)) adversaries, assuming
that RingLWE cannot be solved by a t(λ)-time quantum
algorithm. Also, note that in property (1), TC0 circuits refer
to constant-depth polynomial-size circuits with unbounded
fan-in AND, OR, NOT, and MAJORITY gates. We claim that
every TC0 circuit has a quantum circuit computing the
same function with polylogarithmic overhead in depth.

Proposition 2 (Quantum circuits for TC0). Let C be a
TC0 circuit on m inputs computing some Boolean function
f : {0, 1}m → {0, 1}. Then, there exists a quantum circuit
C′ on n = O(poly(m)) qubits of size O(nolylog(n)) and
depth O(polylog(n)) that implements f .

Here, when we say that C′ implements the function f ,
we mean that C′ |x〉 |z〉 = C′ |x〉 |z ⊕ f (x)〉.

Proof. Note that the number of qubits is n =
O(poly(m)), because after each gate in the classical circuit
C, we must store the result in an ancilla qubit to main-
tain unitarity. Recall that TC0 circuits are constant-depth
polynomial-size circuits with unbounded fan-in AND, OR,
NOT, and MAJORITY gates. Thus, it suffices to find the depth
of implementing each of these gates quantumly. The size
then follows because a circuit of depth d on n qubits can
have at most nd gates. NOT gates can clearly be imple-
mented in constant depth, since this is just an X gate. An
AND gate with m inputs can be completed in logarithmic
depth by computing AND pairwise with the controlled-NOT
(CNOT). Similarly, we can compute an OR gate with the
same logarithmic depth. It remains to analyze the depth
needed for computing a MAJORITY gate. Recall that the
MAJORITY gate is defined as

MAJORITY(x1, . . . , xm) =
⌊

1
2
+
(∑m

i=1 xi
)− 1/2

m

⌋

=
⌊

1
2
+
∑m

i=1 xi

m
− 1

2m

⌋
. (A74)

Here, addition is done over the integers and xi ∈ {0, 1}.
We first analyze the depth or size required for the addition∑m

i=1 xi. Note that the maximum value of this sum is m,
which can be stored in O(log m) bits. Thus, we can write
each of the xi in binary using log m bits by padding with
zeros and perform addition in this way. We can perform the
addition of the m inputs pairwise, parallelized to O(log m)
depth and requiring O(m) addition operations. Moreover,
one can perform these addition operations using quantum
circuits of size and depth O(log m) [164]. The construction
in Ref. [164] uses Toffoli gates but these can be decom-
posed into two-qubit gates with constant overhead [165].
In total, we have that

∑m
i=1 xi can be implemented by a

quantum circuit of depth O(log2 m).
To divide this sum by m, note that there exist classical

Boolean circuits for integer division of depth O(log log m),
since our inputs can be represented in binary using log m
bits [166]. These Boolean circuits use only standard AND,
OR, and NOT gates. As explained previously, these can
be implemented quantumly and for fan-in-2 AND and OR
gates, this can be done with constant overhead. Thus, this
division step requires depth O(log log m) in total.
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Finally, we need to compute the remaining addition or
subtraction and floor operations. The addition or subtrac-
tion can be ignored since they only occur once, so that the
depth is dominated by the other additions. For the floor,
because the quantity inside can only be less than or equal
to 1, then this is the same as deciding whether or not the
quantity inside is less than 1. This can be done in a constant
number of operations.

Putting everything together, we see that the circuit
depth for implementing a MAJORITY gate is dominated by
O(log2 m).

Recall again that TC0 describes constant-depth
polynomial-size circuits with unbounded fan-in AND, OR,
NOT, and MAJORITY gates. We have just analyzed the depth
for each of these gates individually. In summary, we have
computed that O(log m) quantum depth is sufficient for
AND and OR. Constant O(1) depth is sufficient for NOT.
Finally, O(log2 m) depth is sufficient for MAJORITY. In the
overall circuit, this totals to O(polylog(m)) depth. Because
a circuit of depth d on n qubits can have at most nd gates,
then the size of this circuit is O(npolylog(m)) gates. Then,
because n = O(poly(m)), we obtain the claim. �

Alternatively, we note that one can obtain a similar
result using Ref. [167]. As a simple corollary of this along
with Theorem 11, we can bound the depth or size of a
quantum circuit for computing a PRF.

Corollary 3. Let λ = n denote the security parame-
ter. Assuming that RingLWE cannot be solved in t(n)
time by a quantum computer, there exists a PRF F =
{fλ}λ∈N that is secure against O(t(n)) quantum adversaries
such that for keys k ∈ Kλ (for the same key space as in
Theorem 11), fλ(k, ·) : {0, 1}m → {0, 1} is computable by
an n-qubit quantum circuit of size O(npolylog(n)) and
depth O(polylog(n)).

Note here that by the above analysis, we have m =
ω(log(λ)). Since O(poly(m)) qubits suffice to implement
these PRFs, we can take n = λ, similar to Ref. [149].

Our proofs also require the notion of pseudorandom
quantum states. Informally, pseudorandom quantum states
are ensembles of quantum states that are indistinguish-
able from Haar-random states to any efficient (quantum)
algorithm. Moreover, it is known how to construct these
states using efficient quantum circuits. Recently, pseudo-
random quantum states have been of great interest in quan-
tum cryptography [168–170] and complexity theory [171].
We define them formally below, following the presentation
in Refs. [147,149].

Definition 10 (Pseudorandom quantum states (PRSs)
[147]). Let λ = n denote the security parameter. Let K =
{Kλ}λ∈N be the key space. A keyed family of pure quantum
states {|φk〉}k∈Kλ is pseudorandom against t(n) adversaries
if the following two conditions hold:

(1) (Efficient generation.) There is a polynomial-time
quantum algorithm Gen that generates state |φk〉
on input k. That is, for all λ ∈ N and for all k ∈
Kλ, Gen(1λ, k) = |φk〉.

(2) (Pseudorandomness.) Any polynomially many
copies of |φk〉 with the same random k ∈ Kλ are
computationally indistinguishable from the same
number of copies of a Haar-random state. More pre-
cisely, for any t(n)-time quantum algorithm D and
any N = poly(λ), there exists a negligible function
negl(·) such that for all λ ∈ N,
∣∣∣∣ Pr
k←Kλ

[D (|φk〉⊗N ) = 1
]− Pr

|ψ〉←μ

[D (|ψ〉⊗N ) = 1
]
∣∣∣∣

≤ negl(λ), (A75)

where μ is the Haar measure over pure states on n
qubits.

When t(n) = poly(n), we simply say that the states are
pseudorandom.

There exist efficient procedures to generate pseudo-
random quantum states under standard cryptographic
assumptions. In particular, we consider the construction in
Ref. [149], which assumes the existence of quantum secure
pseudorandom functions.

Proposition 3 (Corollary of Claims 3 and 4 in
Ref. [149]). Let λ = n denote the security parameter and
let t(n) ≥ poly(n). Assuming that RingLWE cannot be
solved by a quantum computer in t(n) time, pseudorandom
quantum states secure against O(t(n)) adversaries with
key space K (for the same key space as in Theorem 11)
can be prepared using n-qubit quantum circuits of depth
O(polylog(n)) and size O(npolylog(n)).

Proof. Note that using the PRF from Ref. [45] and
tracing through the proof of Claim 3 in Ref. [149], one
can clearly see that security holds for O(t(n)) adversaries
rather than only efficient adversaries. We need to prove that
the size and depth are as stated for the construction of pseu-
dorandom quantum states in Ref. [149] using the PRF from
Ref. [45]. To obtain the depth and size bounds, we analyze
the construction in Ref. [149]. In Claim 3 of Ref. [149], the
authors show that their constructed states can be prepared
by applying a single layer of Hadamard gates followed
by applying a quantum secure PRF. First, the layer of
Hadamards has depth 1 and size n. Using the construc-
tion from Corollary 3, applying the PRF can then be
implemented in O(polylog(n)) depth and O(npolylog(n))
size. Thus, overall, the depth and size are dominated by
the cost of evaluating the PRF. Moreover, in Claim 4 of
Ref. [149], the authors prove that this indeed constructs a
pseudorandom quantum state. �

040306-20



LEARNING QUANTUM STATES. . . PRX QUANTUM 5, 040306 (2024)

Note again that the number of qubits n in the quantum
circuit depends on the security parameter λ. In fact, due to
the construction used, the n depends on λ in the same way
as for the PRF construction. Also note that the above PRS-
PRF constructions can be implemented using a number of
Clifford and T gates of the same order. This is because
the TC0 circuits in the PRF constructions are classical cir-
cuits that can be implemented exactly by Toffoli gates,
and Toffoli gates can be constructed using a constant num-
ber of Clifford and T gates. Also in the PRS construction,
the remaining gates are Hadamard gates, which are Clif-
ford gates. Therefore, the computational hardness results
in Appendices B 3 and C 5 also apply to Clifford+T circuits
of the same gate complexity.

APPENDIX B: LEARNING QUANTUM STATES

Recall that, given copies of a pure state of bounded
circuit complexity, we wish to find a classical descrip-
tion for a quantum circuit that approximately implements
this state. It is natural to require the learner to output
a circuit description, since this ensures that the output
of the learner can indeed be used to prepare (approxi-
mate) copies of the unknown state. This model is similar
in spirit to learning an (approximate) generator for an
unknown classical probability distribution [172]. Never-
theless, our sample-complexity results hold for learning
classical descriptions beyond circuit descriptions and our
computational-complexity results immediately extend to
learners that output classical descriptions from which a
circuit description can be derived efficiently (e.g., matrix
product states and/or operators with constant bond dimen-
sion [39,40], stabilizer descriptions, etc.).

Specifically, let |ψ〉 = U |0〉⊗n, where U is a unitary
consisting of G two-qubit gates. Throughout this appendix,
we denote ρ � |ψ〉 〈ψ |. Suppose that we are given N iden-
tically prepared copies of ρ. The goal is to learn a classical
circuit description of a quantum state ρ̂ that is ε-close to ρ
in trace distance, i.e., dtr(ρ̂, ρ) = ‖ρ̂ − ρ‖1/2 ≤ ε.

In this appendix, we provide a proof of Theorem 1,
which characterizes the sample complexity for this task.
We restate the theorem below.

Theorem 12 (State learning; detailed restatement of
Theorem 1). Let ε, δ > 0. Suppose that we are given N
copies of a pure n-qubit state density matrix ρ = |ψ〉 〈ψ |,
where |ψ〉 = U |0〉⊗n is generated by a unitary U consist-
ing of G two-qubit gates. Then, any algorithm that can
output ρ̂ such that dtr(ρ̂, ρ) ≤ ε with probability at least
1 − δ requires at least

N = �

(
min

(
2n

ε2 ,
G(1 − δ)
ε2 log(G/ε)

)
+ log(1/δ)

ε2

)
. (B1)

Meanwhile, there exists such an algorithm using

N = O
(

min
(

2n log(1/δ)
ε2 ,

G log(G/ε)+ log(1/δ)
ε2

))
.

(B2)

Here, the minimum with 2n/ε2 corresponds to the
sample-optimal approaches for full quantum state tomog-
raphy [21,22]. The theorem in the main text corresponds to
δ = O(1), so that the upper and lower bounds are equal up
to logarithmic factors.

In Appendix B 1, we prove the sample-complexity
upper bound and in Appendix B 2, we show the sample-
complexity lower bound. Moreover, in Appendix B 3, we
prove Theorem 2, which gives a lower bound on the
computational complexity required for this task.

1. Sample-complexity upper bound

In this section, we prove the sample-complexity upper
bound for Theorem 12. We provide an algorithm for learn-
ing the unknown quantum state within trace distance ε
by constructing a covering net over the space of all uni-
taries consisting of G two-qubit gates. We can then obtain
a covering net over all pure quantum states generated by
G two-qubit gates by applying each element of the uni-
tary covering net to the zero state. With this covering net,
we can use quantum hypothesis selection [160] based on
classical shadows [110] (discussed in Appendix A 3) to
identify a state in the covering net that is close to the
unknown target state. We note that this strategy may be
adapted to other restricted state or unitary classes as long as
we can construct a covering net with bounded cardinality.

Proposition 4 (State-learning upper bound). Let ε, δ >
0. Suppose that we are given N copies of a pure n-qubit
state density matrix ρ = |ψ〉 〈ψ |, where |ψ〉 = U |0〉⊗n is
generated by a unitary U consisting of G two-qubit gates.
Then, there exists an algorithm that can output ρ̂ such that
dtr(ρ̂, ρ) ≤ ε with probability at least 1 − δ using

N = O
(

min
(

2n log(1/δ)
ε2 ,

G log(G/ε)+ log(1/δ)
ε2

))

(B3)

samples of |ψ〉.

Here, we take the minimum with 2n/ε2, as this is the
upper bound achieved for full quantum state tomography
on an arbitrary n-qubit pure state [21,22]. Thus, we focus
on proving the second term in the minimum. We prove this
upper bound by considering two cases: (1) G ≥ n/2 and
(2) G < n/2. The upper bounds for each case agree and
are given by Eq. (B3). We first prove the proposition for
case (1) and indicate what changes for case (2).
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Proof of case (1). As previously described, this follows
by first creating a covering net over all unitaries consisting
of G two-qubit gates and then using quantum hypothesis
selection [160].

By Theorem 8, we know that there exists an (ε/6)-
covering net Nε/6 of the space of unitaries implemented
by G two-qubit gates with respect to the diamond distance
d♦ with metric entropy bounded by

log
(|Nε/6|

) ≤ 32G log
(

72G
ε

)
+ 2G log(n). (B4)

Applying each unitary V′ ∈ Nε/6 to the zero state, we
obtain a new covering net,

N ′
ε/6 = {V′ |0〉〈0|⊗n V′† : V′ ∈ Nε/6}, (B5)

for the set of pure quantum states generated by G two-
qubit gates with respect to the trace distance. We argue
that this is true as follows. Any pure quantum state gener-
ated by G two-qubit gates can be written as |φ〉 = V |0〉⊗n

for some unitary V implemented by G two-qubit gates and
we let σ = |φ〉〈φ|. Using the definition of the covering net
Nε/6, there exists a unitary V′ ∈ Nε/6 such that d♦(V, V′) <
ε/6. Consider

∣∣φ′
〉 = V′ |0〉⊗n and let σ ′ = ∣∣φ′〉 〈φ′∣∣ ∈ N ′

ε/6.
By the definition of the diamond distance in terms of a
worst case over input states, we also have dtr(σ , σ ′) ≤
d♦(V, V′) ≤ ε/12 < ε/6. Thus, N ′

ε/6 satisfies the definition
of a covering net over the pure quantum states generated
by G two-qubit gates with respect to the trace distance dtr.
Moreover, we clearly see that |N ′

ε/6| ≤ |Nε/6|.
We can consider this covering net N ′

ε/6 as the set of
hypothesis states in Proposition 1. Let ρ = |ψ〉〈ψ | be the
unknown quantum state of which we have copies. By
Proposition 1, there exists an algorithm to learn ρ̃ such that

dtr(ρ, ρ̃) ≤ 3 · ε
6
+ ε

2
= ε (B6)

with probability at least 1 − δ. Here, note that we have
used η = ε/6 in Proposition 1 by the definition of an (ε/6)-
covering net. Furthermore, we may choose ε2 = ε/2 and
δ1 = δ/2. In this way, we obtain ρ̃ such that dtr(ρ, ρ̃) ≤ ε

with probability at least 1 − δ. Moreover, by Proposition
1, this algorithm to find ρ̃ requires at most

N = O
⎛

⎝
log
(
|N ′

ε/6|/δ
)

ε2

⎞

⎠

= O
(

G log(G/ε)+ G log(n)+ log(1/δ)
ε2

)
(B7)

copies of ρ, where the second equality follows from Eq.
(B4). Because we are considering G ≥ n/2 in this case, we
then have

N = O
(

G log(G/ε)+ log(1/δ)
ε2

)
, (B8)

as claimed. �

Note that in the above proof we have used G ≥ n/2
in the last step to remove the extra log(n) factor. How-
ever, in case (2), we can no longer execute this step and
we must consider a more careful strategy to remove the
dependence on system size n. The key observation is that if
G < n/2, some qubits in the system will be left in the zero
state because no gate has acted upon them (for G two-qubit
gates, at most 2G < n qubits are acted upon nontrivially).
Note that we only need to learn the quantum state on these
2G qubits rather than the whole system, since we can sim-
ply tensor product with the zero state for the remaining
qubits. Thus, we require the ability to discern which qubits
have been acted upon by the G two-qubit gates. Once we
find this set of qubits, the idea is to consider a covering
net for the set of pure quantum states generated by G two-
qubit gates on this restricted system. Then, we can follow
a similar argument to the above proof of case (1).

We prove case (2) of Proposition 4 in the following
sections. For the rest of this section, let ρ = |ψ〉〈ψ |. In
Appendix B 1 a, we discuss an algorithm that identifies the
qubits acted on nontrivially by the G two-qubit gates with
high probability and show that restricting to these identi-
fied qubits does not cause much error. In Appendix B 1 b,
we resolve a technical issue for defining the covering net
on the restricted system, which stems from the algorithm
possibly not identifying all qubits. Finally, in Appendix
B 1 c, we combine these pieces to provide the full proof
of case (2).

a. Postselection

First, we present an algorithm to determine which qubits
of the unknown quantum state ρ = |ψ〉〈ψ | have been
acted upon nontrivially by the G two-qubit gates. We then
prove a guarantee about the number of samples of ρ needed
to determine these qubits with high probability. We also
show that considering ρ to be the zero state on the rest of
the qubits does not incur much error.

Suppose that the true set of qubits acted upon by the
G two-qubit gates is denoted as A. To determine which
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ALGORITHM 1. Identify qubits acted upon nontrivially (state version).

qubits are in the set A, consider the procedure given in
Algorithm 1.

The idea behind this algorithm is simple. If we measure
a qubit in the computational basis and receive a nonzero
measurement outcome, then it must have been acted upon
by one of the G two-qubit gates, because the quantum
state is assumed to have been initialized in the zero state.
We prove that O (G + log(1/δ1)/ε1) copies of ρ suffice to
obtain, with high probability 1 − δ1, the desired property
that measuring the qubits in B̂ � [n] \ Â of ρ yields the
all-zero bit string with high probability 1 − ε1.

Lemma 11. Let ε1, δ1 > 0. Suppose that we are given
copies of a pure n-qubit quantum state ρ = |ψ〉 〈ψ |
generated by G two-qubit gates acting on a subset
of the qubits A ⊆ [n]. Then, Algorithm 1 uses N =
O (G + log(1/δ1)/ε1) copies of ρ and outputs with proba-
bility at least 1 − δ1 a list Â ⊂ [n] such that

〈
0B̂

∣∣ ρB̂

∣∣0B̂

〉 ≥ 1 − ε1, (B9)

where ρB̂ denotes the reduced density matrix of ρ when
tracing out all qubits other than those in the set B̂ = [n] \ Â
and

∣∣0B̂

〉
denotes the zero state on all qubits in B̂.

Proof. Let A′ be any possible set that could be output by
Algorithm 1. Let B′ � [n] \ A′. We first define some ran-
dom variables to state our claim more precisely. Let Ei,A′
be the event that round i of measurement of the qubits in
B′ = [n] \ A′ in Algorithm 1 yields the all-zero bit string.
Let Xi,A′ be the indicator random variable corresponding to
the event Ei,A′ . Then, we have that X̄A′ � 1/N

∑N
i=1 Xi,A′ is

the number of times the qubits in B′ are all measured to
be zero divided by the total number of measurements. In
other words, X̄A′ is an empirical estimate for the overlap
that the state ρB′ on qubits in B′ has with the all-zero state.
Moreover, we have

E[XA′] � E[Xi,A′] = 〈0B′ | ρB′ |0B′ 〉 , (B10)

for all A′. Note that the first definition makes sense
because, for any i, the Xi,A′ are identically distributed. This
says that the true expectation of our random variables is
the true overlap of the state ρB′ with the all-zero state.

We claim that for any A′, if the true overlap is less than
1 − ε1, then the estimated overlap is less than 1 − ε1/2
with high probability. Formally, in terms of our random
variables, this is the following statement.

Claim 1. For any set A′ that could be output by
Algorithm 1, if E[XA′] < 1 − ε1, then X̄A′ < 1 − ε1/2 with
probability at least 1 − δ1.

Thus, we have reduced our task to a concentration prob-
lem. Note that it suffices to prove this because the set Â
actually identified by Algorithm 1 has X̄Â = 1. This is true
because a qubit is only added to the set Â in the algorithm
if it has measured and observed a nonzero outcome. Thus,
all qubits in B̂ = [n] \ Â must have given zero when mea-
sured throughout all rounds of measurement. By definition,
this gives us that X̄Â = 1. Then, by the contrapositive of
Claim 1, we see that E[XÂ] = 〈0B̂

∣∣ ρB̂

∣∣0B̂

〉 ≥ 1 − ε1 with
probability at least 1 − δ1. We now prove this claim using
classical concentration inequalities. �

Proof of Claim 1. First, we fix some set A′ that could be
output by Algorithm 1. Suppose that

E[XA′] � 1 − a < 1 − ε1, (B11)

where a > ε1. Recall the Bhatia-Davis inequality, which
states that, for X ∈ [b, d],

Var(X ) ≤ (d − E[X ])(E[X ] − b). (B12)

In our case, we have XA′ ∈ [0, 1], since they are indicator
random variables, so that the inequality gives us

Var(XA′) ≤ (1 − E[X ])E[X ] ≤ 1 − E[X ] = a. (B13)

Now, recall Bernstein’s inequality, which states that
for independent random variables Xi with |Xi| ≤ c and
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σ 2 = 1/N
∑N

i=1 Var(Xi), we have, for any t > 0,

Pr

(
1
N

N∑

i=1

Xi − E[X ] > t

)

≤ exp
(
− Nt2

2σ 2 + 2ct/3

)
.

(B14)

In our case, c = 1, σ 2 ≤ a, and t = a/2. Then, Bernstein’s
inequality results in

Pr
(

X̄A′ − E[X ] >
a
2

)
≤ exp

(
− Na2/4

2a + a/3

)
. (B15)

Plugging in E[X ] = 1 − a and simplifying, we have

Pr
(

X̄A′ > 1 − a
2

)
≤ exp

(
−3Na

28

)
≤ exp

(
−3Nε1

28

)
.

(B16)

Since a > ε1, then 1 − a/2 < 1 − ε1/2, so that we have

Pr
(

X̄A′ > 1 − ε1

2

)
≤ exp

(
−3Nε1

28

)
. (B17)

Plugging in N = 28 log
(
22G/δ1

)
/3ε1, we have

Pr
(

X̄A′ > 1 − ε1

2

)
≤ δ1

22G . (B18)

Recall that this inequality was for a single fixed set A′ but
we want our claim to hold for any set A′. Thus, we need to
apply the union bound over all possible sets A′ output by
Algorithm 1.

We claim that the number of such sets is at most 22G.
This is clear because if A′ is output by the algorithm,
then A′ ⊆ A, where A is the true set of qubits on which
the G gates act nontrivially. This is true by construction
because in order for a qubit to be added to the set output
by Algorithm 1, its result upon measurement must have
yielded a nonzero outcome, so that a gate must have acted
upon this qubit. Hence A′ ⊆ A, and because |A| ≤ 2G, the
number of possible subsets A′ of A is at most 22G.

Thus, applying a union bound to Eq. (B18), we see that
the probability that, for any A′, X̄A′ is greater than 1 − ε1/2
is at most δ1. In other words, X̄A′ is less than 1 − ε1/2 with
probability at least 1 − δ1. Moreover, here we have used

N = 28 log
(
22G/δ1

)

3ε1
= O

(
G + log(1/δ1)

ε1

)
. (B19)

This concludes the proof of the claim, which gives the
result in Lemma 11 as explained previously. �

With this, we know that measuring qubits in B̂ = [n] \ Â
of ρ yields the all-zero bit string with high probability. We

want to show that, in fact, we can consider ρB̂ as being the
zero state without incurring much error. In particular, we
want to show the following lemma.

Lemma 12. Let ε, δ1 > 0. Suppose that we are given
N = O (G + log(1/δ1)/ε

2
)

copies of an n-qubit quan-
tum state ρ generated by G gates. Let Â ⊂ [n] be as in
Algorithm 1 and let B̂ = [n] \ Â. Then, for� = ∣∣0B̂

〉 〈
0B̂

∣∣⊗
IÂ (where

∣∣0B̂

〉
denotes the zero state on all qubits in B̂) and

for the postmeasurement state

ρ ′ �
√
�ρ

√
�

Tr(�ρ)
, (B20)

we have

dtr(ρ, ρ ′) ≤ ε

24
(B21)

with probability at least 1 − δ1.

In other words, we want to show that our original state
ρ is not far in trace distance from the new state ρ ′, where
ρ ′ is the state ρ with the qubits in B̂ projected to the zero
state. In this way, we can effectively only consider the sys-
tem on qubits in Â when defining the covering net and
using hypothesis selection. This turns out to be a bit more
nuanced, but this is the general idea. To show this, we
will use the “gentle measurement lemma,” following the
presentation in Ref. [155].

Lemma 13 (Lemma 9.4.1 in Ref. [155]). Consider a den-
sity operator ρ and a measurement operator �, where 0 ≤
� ≤ I . The measurement operator could be an element
of a positive operator-valued measure (POVM). Suppose
that the measurement operator � has a high probability of
detecting the state ρ:

Tr(�ρ) ≥ 1 − ε, (B22)

where ε ∈ [0, 1] (the probability of detection is high if ε is
close to zero). Then, the postmeasurement state

ρ ′ �
√
�ρ

√
�

Tr(�ρ)
(B23)

is
√
ε-close to the original state ρ in trace distance:

dtr(ρ, ρ ′) ≤ √
ε. (B24)

Thus, the measurement does not disturb the state ρ by
much if ε is small.

With this, we can now prove Lemma 12.
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Proof of Lemma 12. As stated above, let Â ⊂ [n] be as
in Algorithm 1 and let A ⊂ [n] be the true set of qubits
acted nontrivially on by the G gates. Let B̂ � [n] \ Â and
let B � [n] \ A.

In order to apply the gentle measurement lemma, we
need to show that

Tr(�ρ) ≥ 1 −
( ε

24

)2
. (B25)

Since� = ∣∣0B̂

〉 〈
0B̂

∣∣⊗ IÂ, where
∣∣0B̂

〉
denotes the zero state

on all qubits in B̂, we have

Tr(�ρ) = Tr((
∣∣0B̂

〉 〈
0B̂

∣∣⊗ IÂ)ρ)

= Tr(
∣∣0B̂

〉 〈
0B̂

∣∣ ρB̂) =
〈
0B̂

∣∣ ρB̂

∣∣0B̂

〉
, (B26)

where ρB̂ denotes the reduced density matrix obtained by
tracing out all qubits in [n] \ B̂. Thus, it suffices to show
that

〈
0B̂

∣∣ ρB̂

∣∣0B̂

〉 ≥ 1 −
( ε

24

)2
. (B27)

Intuitively, this makes sense because in Algorithm 1, we
have identified the qubits in B̂ as those being close to the
zero state. Indeed, this holds by Lemma 11 when choosing
ε1 = (ε/24)2. Thus, the result follows. �

b. Permutation

Before we can prove Proposition 4, we must resolve
a technical issue. Namely, we would ideally like to con-
sider a covering net on the subsystem of qubits in the
set A (the true set of qubits on which the G gates gener-
ating the unknown state ρ act nontrivially). In this way,
because Â ⊆ A, where Â is the set of qubits identified by
Algorithm 1, then our postselected state ρ ′ from Lemma
12 should be close to some state in this covering net on
the subsystem. This nearby state in the covering net can
then be identified via quantum hypothesis selection [54].
By Lemma 12, this state from hypothesis selection is also
close to the original unknown state ρ.

However, the problem with the above is that we do not
know the true set of qubits A; we only know the identi-
fied set of qubits Â. Moreover, it is possible that Â � A,
i.e., Algorithm 1 may not have been able to detect cer-
tain qubits as having been acted upon nontrivially by the
G gates. For example, suppose that when preparing the
unknown state ρ, certain qubits are used as workspace
ancillas and are reset to the zero state at the end of the
computation.

In order to define a covering net on a system on which
the G gates act (the setting of Lemma 9), we need to some-
how identify the qubits in A \ Â that are undetected by the
algorithm. To do so, we argue that we can permute the

qubits outside of the set Â and not deviate much from the
original state ρ. In this way, without loss of generality, we
can permute the qubits such that those in A \ Â are grouped
together in some fixed set of qubits. Then, we can define a
covering net on the system of qubits defined by this fixed
set containing the qubits in A \ Â and our identified set Â.
By construction, we know that the G gates act on this sub-
set of qubits, so this is the correct setting of Lemma 9. We
note that the permutations used in the proof are a mathe-
matical tool for the analysis but the learner has to neither
know nor perform these permutations.

To formalize this, we first define a permutation and
claim that permuting the qubits outside of the set Â does
not change the postselected state ρ ′.

Definition 11 (Permutation). A unitary W ∈ U(2n) is a
permutation unitary if it satisfies the following property:
W corresponds to a permutation σW ∈ Sn of order 2, where
Sn is the symmetric group of size n, and W acts as

W |x1 . . . xn〉 =
∣∣xσW(1) · · · xσW(n)

〉
, (B28)

where x = x1 · · · xn ∈ {0, 1}n. Moreover, we use WS for a
set S ⊆ {1, . . . , n} to denote a permutation unitary where
the corresponding permutation σWS is such that σWS |S = id,
where S = [n] \ S. In other words, σWS only permutes the
elements in S.

It is easy to see here that because the corresponding per-
mutation is of order 2, W is Hermitian. Our next lemma
shows that such permutations, when acting only on B̂, do
not change our postselected state.

Lemma 14. Let ρ ′ be as in Lemma 12. Explicitly, let
Â ⊂ [n] be as in Algorithm 1 and let B̂ = [n] \ Â. Then,
for � = ∣∣0B̂

〉 〈
0B̂

∣∣⊗ IÂ (where
∣∣0B̂

〉
denotes the zero state

on all qubits in B̂), define

ρ ′ =
√
�ρ

√
�

Tr(�ρ)
. (B29)

Then, we have

ρ ′′ � WB̂ρ
′WB̂ = ρ ′, (B30)

where WB̂ is any permutation unitary that only permutes
qubits in B̂.

Proof. To see the claim, we can simply expand the
expression for ρ ′′:

ρ ′′ = WB̂ρ
′WB̂ (B31)

= WB̂

√
�ρ

√
�

Tr(�ρ)
WB̂ (B32)

= WB̂
�ρ�

Tr(�ρ)
WB̂ (B33)
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= WB̂(
∣∣0B̂

〉 〈
0B̂

∣∣⊗ I)ρ(
∣∣0B̂

〉 〈
0B̂

∣∣⊗ I)WB̂

Tr(�ρ)
(B34)

= (
∣∣0B̂

〉 〈
0B̂

∣∣⊗ I)ρ(
∣∣0B̂

〉 〈
0B̂

∣∣⊗ I)
Tr(�ρ)

(B35)

= ρ ′, (B36)

where in the third line we have used that � is a projector,
so that

√
� = �, and in the fifth line, we have used that

WB̂ only permutes the qubits in B̂, which does not have any
effect because, here, all qubits in B̂ are in the zero state. �

Lemma 15. Let ε, δ2 > 0. The trace distance between
ρ and the permuted state ρ̃ = WB̂ρWB̂, where WB̂ is any
permutation unitary that only permutes qubits in B̂, is less
than ε/24:

dtr(ρ, ρ̃) ≤ ε

12
(B37)

with probability at least 1 − δ2.

Proof. This proof combines Lemmas 14 and 12. The
idea is the following. We know from Lemma 12 that ρ and
the postselected state ρ ′ are close in trace distance. More-
over, by Lemma 14, we know that the postselected state ρ ′
and the permuted postselected state ρ ′′ are equal (without
error). We can also show, similarly to Lemma 12, that the
permuted state ρ̃ is close to the postselected state ρ̃ ′, where
this postselection is done in the same way as Lemma 12 by
replacing ρ with ρ̃. Moreover, we can see that ρ ′′ = ρ̃ ′, so
the claim then follows by the triangle inequality.

Now, let us formalize this. By Lemma 12, we have

dtr(ρ, ρ ′) ≤ ε

24
(B38)

with probability at least 1 − δ2/2 (choosing δ1 = δ2/2),
where

ρ ′ =
√
�ρ

√
�

Tr(�ρ)
(B39)

for � = ∣∣0B̂

〉 〈
0B̂

∣∣⊗ IÂ. By Lemma 14, we know that

ρ ′′ � WB̂ρ
′WB̂ = ρ ′, (B40)

where WB̂ is a permutation that only affects qubits in B̂.
Now, consider the permuted state ρ̃ = WB̂ρWB̂. Recall that
in the proof of Lemma 12, to obtain Eq. (B38), it sufficed
to show that Tr(�ρ) ≥ 1 − (ε/24)2 and the result followed
by the gentle measurement lemma (Lemma 13). Thus, by

the same proof, as long as Tr(�ρ̃) ≥ 1 − (ε/24)2, then we
also have

dtr(ρ̃, ρ̃ ′) ≤ ε

24
(B41)

with probability at least 1 − δ2/2, where

ρ̃ ′ �
√
�ρ̃

√
�

Tr(�ρ̃)
. (B42)

We can clearly see that this condition holds:

Tr(�ρ̃) = Tr((
∣∣0B̂

〉 〈
0B̂

∣∣⊗ IÂ)WB̂ρWB̂)

= Tr((
∣∣0B̂

〉 〈
0B̂

∣∣⊗ IÂ)ρ) = Tr(�ρ) ≥ 1 − (ε/24)2,
(B43)

where the second equality follows because WB̂ only per-
mutes qubits in B̂, which (rearranging with the trace) does
not have any effect on

∣∣0B̂

〉 〈
0B̂

∣∣ because all qubits in B̂ are
in the zero state. Thus, Eq. (B41) holds.

We also claim that ρ ′′ = ρ̃ ′. This follows by effectively
the same proof as Lemma 14.

Putting everything together, we have that ρ ′ = ρ ′′ = ρ̃ ′.
Thus, by Eq. (B38),

dtr(ρ, ρ̃ ′) ≤ ε

24
(B44)

with probability at least 1 − δ2/2. By the triangle inequal-
ity with Eq. (B41), we then obtain the claim:

dtr(ρ, ρ̃) ≤ ε

12
(B45)

with probability at least 1 − δ2. �

c. Proof of case (2) of Proposition 4

With this, we can prove case (2) of Proposition 4. Recall
that in case (2), we require that G < n/2. We have pro-
vided a sketch of the argument throughout the previous
sections, so we put everything together here.

Proof of case (2) of Proposition 4. Let ε, δ > 0. Con-
sider G < n/2. Because G is small compared to n, there
exist some qubits that have not been acted upon by the G
gates used to generate the state ρ = |ψ〉〈ψ |. Thus, since
we assume that the unknown quantum state ρ is con-
structed by applying a unitary to the all-zero state, then
these qubits not acted upon by the G gates remain in the
zero state. Using the techniques in Appendix B 1 a, we can
find the qubits that are acted on nontrivially by the G gates.
Then, we want to consider the covering net on only this
set of qubits. However, because our algorithm does not
necessarily find all qubits acted on nontrivially by the G
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gates, we argue in Appendix B 1 b that we can permute
the qubits in the system without significantly affecting the
original state ρ. In this way, we can consider a permuta-
tion that gathers those qubits acted upon nontrivially that
our algorithm did not find into some fixed set. We can then
define the covering net on the subsystem consisting of this
fixed set along with the identified set of qubits.

Let us now formalize these ideas. Let Â be the set of
qubits identified by Algorithm 1 and let A be the true set
of qubits acted on nontrivially by the G gates. Let WB̂
be a permutation only affecting the qubits in B̂ � [n] \ A
(Definition 11), which gathers the qubits in A \ Â into some
fixed set of qubits C. Since |C| + |Â| = |A \ Â| + |Â| =
|A| ≤ 2G, then C ∪ Â has at most 2G qubits and these
qubits are acted upon by G gates.

By Theorem 8, we know that there exists an (ε/12)-
covering net Nε/12 of the space of unitaries implemented
by G two-qubit gates on the permuted system consisting of
only qubits in C ∪ Â with respect to the diamond distance
d♦ = maxρ ‖(U ⊗ I)ρ(U ⊗ I)† − (V ⊗ I)ρ(V ⊗ I)†‖1.
Moreover, this covering net has metric entropy bounded
by

log
(|Nε/12|

) ≤ 32G log
(

144G
ε

)
+ 2G log(2G)

= O (G log(G/ε)) . (B46)

We can instead consider

N ′
ε/12 = {V′ ∣∣0C∪Â

〉 〈
0C∪Â

∣∣V′† : V′ ∈ Nε/12}, (B47)

where
∣∣0C∪Â

〉
denotes the zero state on all qubits in our sub-

system C ∪ Â. By the same argument as in case (1), N ′
ε/12

defines a covering net over the set of pure quantum states
on the subsystem C ∪ Â generated by G two-qubit gates
with respect to the trace distance. Moreover, |N ′

ε/12| ≤|Nε/12|.
Since this covering net N ′

ε/12 is only for states on at most
2G qubits, let N ′′

ε/12 be the set of states where each state in
N ′
ε/12 is tensored with the zero state for qubits in [n] \ (C ∪

Â). Let ρ̃ = WB̂ρWB̂ be the original state on this permuted
system. By the definition of a covering net, we know that
there exists some σi ∈ N ′′

ε/12 such that

dtr(ρ̃, σi) ≤ ε

12
. (B48)

We justify this further in the following. By definition,
the only qubits in the state ρ̃ that are acted on nontriv-
ially by the G gates are those in C ∪ Â. Since no gates
act on qubits outside of C ∪ Â, then the other qubits in
ρ̃ must be in the zero state. Hence, we can write ρ̃ =
ρ̃C∪Â ⊗ |0〉〈0|⊗(n−|C∪Â|), where ρ̃C∪Â denotes the state of

the qubits in C ∪ Â that are acted upon by the G gates.
Moreover, by the definition of a covering net, then there
exists some σi,C∪Â ∈ N ′

ε/12 such that

dtr(ρ̃C∪Â, σi,C∪Â) ≤
ε

12
, (B49)

where, similarly, σi,C∪Â is a state on the qubits in C ∪ Â
that are acted upon by G gates. Taking the tensor prod-
uct with the zero state on the remaining qubits does not
affect the trace distance. Thus, we can write σi = σi,C∪Â ⊗
|0〉 〈0|⊗(n−|C∪Â|) ∈ N ′′

ε/12, where this satisfies

dtr(ρ̃, σi) = dtr(ρ̃C∪Â, σi,C∪Â) ≤
ε

12
, (B50)

as claimed. Moreover, by Lemma 15, choosing δ2 = δ/2,
we know that

dtr(ρ, ρ̃) ≤ ε

12
(B51)

with probability at least 1 − δ/2. Recall that this approxi-
mation requires only

N1 = O
(

G + log(1/δ)
ε2

)
(B52)

copies of ρ (from Lemma 12) for identifying the set Â.
By the triangle inequality, we have that there exists some
σi ∈ N ′′

ε/12 such that

dtr(ρ, σi) ≤ ε

6
(B53)

with probability at least 1 − δ/2.
Using hypothesis selection on the covering net N ′′

ε/12
and the unknown state ρ, by Proposition 1, there exists an
algorithm to learn σ such that

dtr(ρ, σ) ≤ ε (B54)

with probability at least 1 − δ, where we have chosen
η = ε/6 and ε/2, δ/2 for the parameters in Proposition 1.
Moreover, by Proposition 1 and Eq. (B46), this algorithm
requires only

N2 = O
(

G log(G/ε)+ log(1/δ)
ε2

)
(B55)

copies of ρ. Putting everything together, we have that

dtr(ρ, σ) ≤ ε (B56)
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with probability at least 1 − δ, where our algorithm to find
σ requires only

N = N1 + N2 = O
(

G log(G/ε)+ log(1/δ)
ε2

)
. (B57)

This matches our upper bound for case (1) and thus
concludes the proof of Proposition 4. �

2. Sample-complexity lower bound

In this section, we prove the sample-complexity lower
bound for Theorem 12.

Proposition 5 (State-learning lower bound). Let ε, δ >
0. Suppose that we are given N copies of an n-qubit pure-
state density matrix ρ = |ψ〉 〈ψ |, where |ψ〉 = U |0〉⊗n is
generated by a unitary U consisting of G two-qubit gates.
Then, any algorithm that can output ρ̂ such that dtr(ρ̂, ρ) ≤
ε with probability at least 1 − δ requires at least

N = �

(
min

(
2n

ε2 ,
G(1 − δ)
ε2 log(G/ε)

)
+ log(1/δ)

ε2

)
(B58)

samples of |ψ〉.

Here, similarly to the upper bound, we take the mini-
mum with �(2n/ε2), as this is the lower bound achieved
for full quantum state tomography [21,22]. We thus focus
on the second term in the minimum. We first consider the
number of samples required to learn n-qubit pure quan-
tum states generated by G gates applied only to the first⌊

log2(G/C)
⌋

qubits (for some constant C specified later)
of the n ≥ ⌊log2(G/C)

⌋
qubits in total. Denote this set

of states as S1. Note that if n ≤ ⌊log2(G/C)
⌋

, then we
can simply import the lower bound for full quantum state
tomography [21,22]. We later reduce the general case, in
which the G gates can be applied on any of the qubits, to
this case. Namely, we prove the following proposition.

Proposition 6. Let ε, δ > 0. Suppose that we are given
N copies of an n-qubit pure-state density matrix ρ =
|ψ〉 〈ψ |, where |ψ〉 = (U ⊗ I) |0〉⊗n ∈ S1 is generated by
a unitary U consisting of G two-qubit gates applied only to
the first

⌊
log2(G/C)

⌋
qubits for some constant C. Then,

any algorithm that can output ρ̂ such that dtr(ρ̂, ρ) ≤ ε

with probability at least 1 − δ requires at least

N = �

(
min

(
2n

ε2 ,
G(1 − δ)
ε2 log(G/ε)

)
+ log(1/δ)

ε2

)
(B59)

samples of |ψ〉.

We note that for constant error ε, the�(G/ log G) lower
bound can be improved to �(G) using Refs. [173,174].

We prove Proposition 6 by combining results from Refs.
[21,143]. Namely, the lower bound in Ref. [21] works by
lower bounding the sample complexity of learning any
rank r d-dimensional quantum state in terms of the pack-
ing number of this space of states. We apply the authors’
results to our setting, where the space of states that the
packing net is defined over is S1 instead. We first recall
important results from Refs. [21,143] that we use through-
out the proof. In Ref. [21], the sample complexity of
learning a d-dimensional pure state is lower bounded as
follows.

Theorem 13 (In proof of Theorem 3 in Ref. [21]).
Let ε ∈ (0, 1) and δ ∈ (0, 1). Suppose that there exists a
POVM {Mσdσ } on (Cd)⊗N such that for a pure quantum
state ρ ∈ C

d×d,
∫

dtr(σ ,ρ)≤ε
dσTr[Mσ ρ

⊗N ] ≥ 1 − δ. (B60)

Then,

N ≥ (1 − δ) ln m − ln 2
χ0

, (B61)

where m is the size of an (2ε)-packing net of the space of
d-dimensional pure-state density matrices and

χ0 � S(EU[UρxU])− S(ρx) (B62)

is the Holevo information, where ρx is any element of the
(2ε)-packing net, S is the von Neumann entropy, and the
expectation is taken over the Haar measure.

This states that any measurement procedure that can
identify a state ρ up to ε trace distance requires at least
N copies of ρ, where N is given by Eq. (B61) and
depends on the size of an (2ε)-packing net of the space
of d-dimensional pure-state density matrices. Moreover, in
Ref. [21], the size of such a packing net has been bounded.

Lemma 16 (Lemma 5 in Ref. [21]). There exists an ε-
packing net {ρ1, . . . , ρm} of the space of d-dimensional
pure-state density matrices satisfying

c ln m ≥ d, (B63)

for c a sufficiently large constant and d > 3. This packing
net also satisfies

χ0

c
≤ ε2 ln

(
d
ε

)
(B64)

for a sufficiently large constant c > 0, where χ0 is given
by Eq. (B62).
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Finally, the last result we will need gives a bound on the
number of gates needed to generate an arbitrary n-qubit
pure state.

Lemma 17 (Section 4 of Ref. [143]). Any n-qubit pure
quantum state can be recursively defined as the result of
a quantum circuit implemented by O(2n) two-qubit gates
applied to the |0〉⊗n state. Explicitly, this quantum circuit
has at most C · 2n two-qubit gates for some constant C.

With these results, we can prove Proposition 6. The
idea is that, using Lemma 17, any pure state on the first
k ∼ log2 G qubits can be generated by G gates. Then, we
can use the same packing-net construction as Ref. [21]
from Lemma 16. Plugging into Theorem 13 then gives our
lower bound. We also add an additional term to account for
expected asymptotic δ behavior.

Proof of Proposition 6. We wish to construct a (2ε)-
packing net over the space S1 of n-qubit pure quantum
states generated by applying G gates to the first k =⌊

log2(G/C)
⌋

qubits, where C is taken to be the same con-
stant as in Lemma 17. First, consider only the subsystem
consisting of the first k qubits. Note that by Lemma 17,
any k-qubit pure state can be generated by at most G gates.
Thus, the space of k-qubit pure states is the same as the
space of k-qubit pure states generated by at most G gates.
In this way, we can construct a packing net for our sub-
system of only the first k qubits by constructing a packing
net for all k-qubit pure states. By Theorem 13, there exists
an (2ε)-packing net M2ε = {σ1, . . . , σm} of the space of
k-qubit pure-state density matrices satisfying

ln m ≥ 2k

c
, χ0 ≤ 4cε2 ln

(
2k−1

ε

)
. (B65)

From this, we can construct a packing net for our entire
n-qubit system as follows:

M′
2ε � {σi ⊗ |0〉〈0|⊗(n−k) : σi ∈ M2ε}. (B66)

We claim that this is indeed a (2ε)-packing net of S1. Let
|ψ〉 = (U ⊗ I) |0〉⊗n ∈ S1 and let ρ = |ψ〉 〈ψ |. Because U
only acts on the first k qubits, then we can write ρ = ρk ⊗
|0〉 〈0|⊗(n−k), where ρk = U |0〉 〈0|⊗k U. Thus, we can see
that M′

2ε ⊆ S1. Importantly, all elements of M′
2ε are n-

qubit pure states generated by G gates on the first k qubits.
Moreover, for any σ ′

i , σ ′
j ∈ M′

2ε , we have

dtr(σ
′
i , σ ′

j ) = dtr(σi ⊗ |0〉 〈0|⊗(n−k) , σj ⊗ |0〉 〈0|⊗(n−k))

= dtr(σi, σj ) > 2ε, (B67)

where the first equality follows by the definition of M′
2ε

and the last inequality follows because σi, σj ∈ M2ε .

Hence, M′
2ε is indeed a (2ε)-packing net of S1, which

is the set of states we wish to learn. Moreover, it is of the
same size as M2ε , which had cardinality m satisfying Eq.
(B65). Plugging Eq. (B65) into Theorem 13, we have that
in order to learn ρ up to ε trace distance, we require

N1 ≥
(1 − δ) 2k

c − ln 2

4cε2 ln
(
2k−1/ε

) ≥ C1
(1 − δ)G − C2

ε2 ln(G/(2ε))

= �

(
G(1 − δ)
ε2 log(G/ε)

)
, (B68)

where in the second inequality, C1 and C2 are constants,
with C1 depending on c.

This concludes the proof for the second term in the min-
imum in Proposition 6. Again, for n <

⌊
log2(G/C)

⌋
, we

can appeal to the full quantum state-tomography lower
bound of Refs. [21,22]. Thus, we obtain the lower bound

N1 = �

(
min

(
2n

ε2 ,
G(1 − δ)
ε2 log(G/ε)

))
. (B69)

Note, however, that in the limit as δ → 0 one should find
N → ∞. This behavior is not captured in Theorem 13 due
to the use of the classical Fano inequality, which treats
the measurement procedure as a classical random variable.
This behavior is also not present in the lower bounds from
Refs. [21,22], where the authors assume that δ = �(1).
In order to recover the dependence on δ, we prove the
following lemma.

Lemma 18. Let |ψ0〉 , |ψ1〉 be any two n-qubit pure
quantum states. Suppose that |ψ0〉 and |ψ1〉 satisfy
dtr(|ψ0〉 , |ψ1〉) ≥ ε. Then, for δ ∈ (0, 1],

N2 = �

(
log(1/δ)
ε2

)
(B70)

copies of |ψ〉 ∈ {|ψ0〉 , |ψ1〉} are needed to distinguish
whether |ψ〉 = |ψ0〉 or |ψ〉 = |ψ1〉 with probability at least
1 − δ.

Proof. For pure states, we know that the relationship
between the fidelity and the trace distance is given by

dtr(|α〉 , |β〉) =
√

1 − | 〈α|β〉 |2. (B71)

In our case, because dtr(|ψ0〉 , |ψ1〉) ≥ ε, then we have

| 〈ψ0|ψ1〉 |2 ≤ 1 − ε2. (B72)

Using the Holevo-Helstrom theorem [142,175], in order
to distinguish |ψ0〉 from |ψ1〉 with probability at least
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1 − δ, one requires at least N2 copies of |ψ〉 ∈ {|ψ0〉 , |ψ1〉}
satisfying

1 − δ ≤ 1
2
+ 1

2

√
1 − |〈ψ0|ψ1〉|2N2 . (B73)

Rearranging this inequality, we have

N2 ≥ log(4δ(1 − δ))
log
(|〈ψ0|ψ1〉|2

) =
log
(

1
4δ(1−δ)

)

log
(

1
|〈ψ0|ψ1〉|2

) . (B74)

By Eq. (B72), this in particular requires

N2 ≥
log
(

1
4δ(1−δ)

)

log
(

1
1−ε2

) = �

(
log(1/δ)
ε2

)
. (B75)

�

In our case, note that the conditions of Lemma 18 hold
by the existence of the packing net in Eq. (B66), where
|ψ0〉 and |ψ1〉 can be any two states in the packing net.
Moreover, because approximating the unknown |ψ〉 to
(ε/3) trace distance suffices to solve the distinguishing task
in Lemma 18, then this lower bound also applies for the
task of learning a state |ψ〉. Thus, combining Lemma 18
with Eq. (B69), we have

N = �

(
max

(
N1,

log(1/δ)
ε2

))

= �

(
min

(
2n

ε2 ,
G(1 − δ)
ε2 log(G/ε)

)
+ log(1/δ)

ε2

)
, (B76)

as claimed. �

This concludes the proof of Proposition 6. Recall that
we are seeking a sample-complexity lower bound for states
for which we allow our G gates to act on any pair of the
n qubits rather than only the first

⌊
log2(G/C)

⌋
qubits. We

complete the proof of Proposition 5 by reducing to the case
of Proposition 6.

Proof of Proposition 5. As before, denote the set of n-
qubit quantum states generated by G gates applied to only
the first

⌊
log2(G/C)

⌋
qubits as S1. Similarly, denote the set

of n-qubit quantum states generated by G gates (applied
to any of the qubits) as S2. Our claim is that the sample
complexity of learning states in S2 is at least the sample
complexity of learning states in S1.

By Proposition 6, we know that the sample complexity
of learning states in S1 is

N = �

(
min

(
2n

ε2 ,
G(1 − δ)
ε2 log(G/ε)

)
+ log(1/δ)

ε2

)
. (B77)

By the definition of sample complexity, this means that
there exists some state ρ ∈ S1 requiring N copies to learn

within ε trace distance. Then, because S1 ⊆ S2, then ρ ∈ S2
as well. Thus, there exists a state ρ ∈ S2 that requires N
copies to learn, so the sample complexity of learning states
within S2 is at least N as well. �

3. Computational complexity

Theorem 12 states that the sample complexity for learn-
ing a description of an unknown n-qubit pure quantum
state is linear (up to logarithmic factors) in the num-
ber of gates G used to generate the state. Nevertheless,
the algorithm described in Appendix B 1 is not compu-
tationally efficient, as it constructs and searches over an
exponentially large (in G) covering net for all pure states
generated by G two-qubit gates. This raises the follow-
ing question: Does there exist a computationally efficient
algorithm?

In this section, we first show that there is no polynomial-
time algorithm for learning states generated by G =
O(npolylog(n)) gates, assuming that RingLWE cannot be
solved efficiently on a quantum computer. This result also
holds for states generated by a depth d = O(polylog(n))
circuit. Then, we invoke a stronger assumption that
RingLWE cannot be solved by any subexponential-time
quantum algorithm and show that any quantum algorithm
for learning states generated by Õ(G) gates must use
exp(�(G)) time. This means that the computational hard-
ness already kicks in at G = ω̃(log n). Finally, we explic-
itly construct an efficient learning algorithm for G =
O(log n), thus establishing log n gate complexity as a tran-
sition point of computational efficiency. Previous work
[56,57] has arrived at similar hardness results for polyno-
mial circuit complexity but our detailed analysis allows us
to sharpen the computational lower bound and obtain this
transition point.

Theorem 14 (State-learning computational-complexity
lower bound assuming polynomial hardness of RingLWE).
Let λ = n be the security parameter and let K be the key
space parametrized by λ. Let U be a unitary consisting of
G = O(npolylog(n)) gates (or a depth d = O(polylog(n))
circuit) that prepares a pseudorandom quantum state |φk〉
for some randomly chosen key k ∈ K. Such a unitary U
exists by Theorem 3, assuming that RingLWE cannot be
solved by polynomial-time quantum algorithms. Suppose
that we are given N = poly(λ) copies of |φk〉 = U |0〉⊗n.
There does not exist a polynomial-time algorithm for
learning a circuit description of |φk〉 to within ε ≤ 1/8
trace distance with success probability at least 2/3.

Proof. Suppose, for the sake of contradiction, that there
is an efficient algorithm A0 that can learn a description of
|φk〉 to within ε trace distance. Then, by standard boost-
ing of success probability (see, e.g., Ref. [23, Proposition
2.4]), there is an efficient algorithm A that can learn |φk〉 to
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ALGORITHM 2. Distinguisher D for PRS.

the same accuracy with probability at least p = 1 − 1/128
with only a constant-factor overhead in time complexity.
Note that this boosting requires the distance metric to be
efficiently computable, which is guaranteed by the SWAP
test elaborated below. We will construct a polynomial-time
quantum distinguisher D that invokes A to distinguish
between |φk〉 and a Haar-random state |φ〉. This contradicts
Definition 10.

The distinguisher D operates according to Algorithm 2.
Recall that the SWAP test [150,151] takes two quantum

states σ1, σ2 as input and outputs 1 with probability (1 +
tr(σ1σ2))/2. We denote this algorithm as SWAP(σ1, σ2).
Note that here we have switched the labels of 0 and 1
compared to the canonical SWAP test presented in Refs.
[150,151].

Note that the hypothetical efficient learner A always
produces the circuit description of the output state ρ̂ in
polynomial time. This means that the circuit description
and thus the state ρ̂ must also be efficiently implementable.
As the SWAP test is also efficient, step 3 of Algorithm 2
can thus indeed be performed efficiently on a quantum
computer. Hence, the distinguisher is indeed an efficient
quantum algorithm.

Throughout this section, we denote ρ = |ψ〉 〈ψ |. We
analyze the probability that the distinguisher D outputs
1 when given the pseudorandom state |φk〉 versus the
Haar-random state |φ〉.

Case 1: |ψ〉 = |φk〉, for a randomly chosen k ∈ K. We
have ρ = |ψ〉 〈ψ | = |φk〉 〈φk|. By the guarantees of A,
with probability at least p , we have dtr(ρ̂, ρ) ≤ ε, where
ρ̂ is the (potentially mixed) quantum state learned by
algorithm A. We can rewrite this as

〈ψ | ρ̂ |ψ〉 ≥ 1 − ε, (B78)

where we have used the relationship between the fidelity
and the trace distance (when one state is pure)

dtr(ρ, ρ̂) ≥ 1 − 〈ψ | ρ̂ |ψ〉 . (B79)

Then, it immediately follows from Eq. (B78) that

Pr
k←K

A, SWAP

[D (|φk〉⊗N ) = 1
]

= Pr
k←K

A, SWAP

[
SWAP

(|φk〉 〈φk| , ρ̂
) = 1

]

= Ek←K

[
Pr

A, SWAP

[
SWAP(|φk〉 〈φk| , ρ̂) = 1| |φk〉

]]

≥ pEk←K

[
1
2
+ 1

2
(1 − ε)

]
= p

(
1 − ε

2

)
, (B80)

where the probability is taken over the random choice of
the key k ∈ K, the randomness in the learning algorithm
A when run on samples |φk〉⊗N , and the randomness in the
SWAP test. In the inequality, we have split the probability
into two terms conditioned on the success and failure of A
and we lower bound the term conditioned on the failure of
A by zero.

Case 2: |ψ〉 = |φ〉 ∼ μ, where μ is the Haar measure
over pure quantum states. We have ρ = |ψ〉 〈ψ | = |φ〉 〈φ|.
We want to upper bound the probability that the dis-
tinguisher D outputs 1 when given copies of |φ〉. The
intuition is that a Haar-random state is likely to be far from
any state generated by a circuit with a polynomial-sized
description, the space in which the output of A lies. Let
SA(|φ〉) be the set of quantum states corresponding to all
possible outputs of the algorithm A when run on N copies
of |φ〉. We follow a similar reasoning as in Eq. (B80) and
obtain

Pr
|φ〉∼μ

A, SWAP

[D (|φ〉⊗N ) = 1
]

≤ E
|φ〉∼μ

[
max

ρ̂∈SA(|φ〉)

(
1
2
+ 1

2
〈φ| ρ̂ |φ〉

)]
+ (1 − p)

(B81)

= 1
2
+ 1

2 E
|φ〉∼μ

[
max

ρ̂∈SA(|φ〉)
〈φ| ρ̂ |φ〉

]
+ (1 − p) (B82)

� 1
2
+ 1

2 E
|φ〉∼μ

[Oφ] + (1 − p), (B83)

where in the first line we split the probability according
to whether A succeeds or fails, and we upper bound the
failing term by (1 − p), and in the last line we define the
random variable

Oφ � max
ρ̂∈SA(|φ〉)

〈φ| ρ̂ |φ〉 . (B84)
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Furthermore, we can split E|φ〉∼μ[Oφ] into two parts by
introducing a cutoff θ :

E
|φ〉∼μ

[Oφ] ≤ Pr
[

Oφ ≤ 1 − θ

2

]
·
(

1 − θ

2

)

+ Pr
[

Oφ > 1 − θ

2

]
· 1

≤ 1 − θ

2
+ Pr

[
Oφ > 1 − θ

2

]
, (B85)

where in the first inequality, we have used that Oφ ≤ 1.
Plugging this into our previous expression, we have

Pr
|φ〉∼μ

A, SWAP

[D (|φ〉⊗N ) = 1
]

≤ 1 − θ

4
+ 1

2
Pr
[

Oφ > 1. − θ

2

]
+ (1 − p) (B86)

We aim to upper bound the probability Pr
[
Oφ > 1 − θ/2].

Note that we have

Pr
[

Oφ > 1 − θ

2

]
≤

∑

ρ̂∈N√
θ/2

Pr
|φ〉∼μ

[
〈φ| ρ̂ |φ〉 > 1 − θ

2

]
,

(B87)

where N√
θ/2 is a minimal (

√
θ/2)-covering net with

respect to the trace distance of the set SA(|φ〉) of quan-
tum states corresponding to all possible outputs of the
algorithm A when run on N copies of |φ〉. We can bound
this probability using concentration results. Let d = 2n:

Pr
|φ〉∼μ

[
〈φ| ρ̂ |φ〉 > 1 − θ

2

]

≤ Pr
|φ〉∼μ

[
exp

(
d
2
〈φ| ρ̂ |φ〉

)
≥ exp

(
d
2

(
1 − θ

2

))]

(B88)

≤ exp
(
−d

2

(
1 − θ

2

))
E|φ〉∼μ

[
exp

(
d
2
〈φ| ρ̂ |φ〉

)]

(B89)

= exp
(
−d

2

(
1 − θ

2

)) ∞∑

k=0

1
k!

dk

2k E|φ〉∼μ[〈φ| ρ̂ |φ〉k]

(B90)

= exp
(
−d

2

(
1 − θ

2

)) ∞∑

k=0

1
k!

dk

2k

1
(k+d−1

k

) tr(ρ̂⊗kP(d,k)
sym )

(B91)

≤ exp
(
−d

2

(
1 − θ

2

)) ∞∑

k=0

1
2k tr(ρ̂⊗kP(d,k)

sym ) (B92)

≤ 2 exp
(
−d

2

(
1 − θ

2

))
. (B93)

Here, the first two inequalities follow from the following
inequality, which holds for α > 0 and a random variable
X :

Pr[X ≥ ε] ≤ Pr[exp(αX ) ≥ exp(αε)]

≤ exp(−αX )E[exp(αX )]. (B94)

The third line follows from the Taylor expansion of exp(x).
The fourth line follows from the identity

E|φ〉∼μ 〈φ|O |φ〉k = 1
(k+d−1

k

) tr(O⊗kP(d,k)
sym ), (B95)

where we have chosen O = ρ̂ and P(d,k)
sym is the orthogo-

nal projector onto the symmetric subspace of (Cd)⊗k (for a
proof of this identity, see, e.g., Ref. [157, Example 50]).
The fifth line follows from the inequality 1/

(k+d−1
k

) ≤
k!/dk. Finally, the last line is true by the following inequal-
ities:

tr(ρ̂⊗kP(d,k)
sym ) ≤

∣∣∣tr(ρ̂⊗kP(d,k)
sym )

∣∣∣ (B96)

≤ ‖ρ̂⊗kP(d,k)
sym ‖1 (B97)

≤ ‖P(d,k)
sym ‖∞‖ρ̂‖k

1 (B98)

≤ 1, (B99)

which follow via properties of the trace norm and because
P(d,k)

sym is a projector. Plugging this back into Eq. (B87), we
have

Pr
[

Oφ > 1 − θ

2

]

≤
∑

ρ̂∈N√
θ/2

Pr
|φ〉∼μ

[
〈φ| ρ̂ |φ〉 > 1 − θ

2

]
(B100)

≤ 2N (SA(|φ〉), dtr,
√
θ/2) exp

(
−2n

2

(
1 − θ

2

))
.

(B101)

Moreover, since SA(|φ〉) is the set of quantum states cor-
responding to all possible outputs of the algorithm A
when run on |φ〉⊗N , then all states in SA(|φ〉) must have
a poly(n)-size circuit description (because A is assumed
to be efficient). Thus our covering-number upper bound
(setting G = poly(n) in Appendix B 1) implies that

N (SA(|φ〉), dtr,
√
θ/2) = O ((1/θ)poly(n)) . (B102)
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Thus the above bounds, along with Eq. (B101), give us

Pr
[

Oφ > 1 − θ

2

]
= negl(n), (B103)

where negl(n) denotes a negligible function in n. Putting
everything together with Eq. (B86), we have

Pr
|φ〉∼μ

A, SWAP

[D (|φ〉⊗N ) = 1
] ≤ 1 − θ

4
+ negl(n)+ (1 − p).

(B104)

Combining with Eq. (B80), we conclude that
∣∣∣∣∣∣

Pr
k←K

A, SWAP

[D (|φk〉⊗N ) = 1
]− Pr

|φ〉∼μ
A, SWAP

[D (|φ〉⊗N ) = 1
]
∣∣∣∣∣∣

≥ p
(

1 − ε

2

)
− 2 + θ

4
+ p − negl(n) (B105)

≥ 1
16

− negl(n) (B106)

≥ 1
32

, (B107)

where we have taken θ = 1/2, ε ≤ 1/8, and p = 1 −
1/128, and the last inequality follows by taking n large
enough. This contradicts the assumption that {|φk〉}k←K are
pseudorandom quantum states under the assumption that
RingLWE cannot be solved by polynomial-time quantum
algorithms. �

Next, we invoke the stronger assumption that RingLWE
cannot be solved by any subexponential-time quantum
algorithm and show that learning states generated by Õ(G)
gates require exponential-in-G time.

Theorem 15 (State-learning computational-complex-
ity lower bound assuming subexponential hardness of
RingLWE; restatement of lower bound in Theorem 2).
Let λ = l = �(G), with l ≤ n, be the security parame-
ter and let K be the key space parametrized by λ. Let
U be an l-qubit unitary consisting of O(lpolylog(l)) =
O(Gpolylog(G)) gates (or a depth d = O(polylog(G)) cir-
cuit) that prepares an l-qubit pseudorandom quantum state
|φk〉 against subexponential adversaries for some randomly
chosen key k ∈ K. Such a unitary U exists by Theorem
3 assuming that RingLWE cannot be solved by subexpo-
nential quantum algorithms. Suppose that we are given
N = poly(λ) copies of |ψk〉 = |φk〉 ⊗ |0〉⊗(n−l) = U |0〉⊗n.
Any quantum algorithm for learning a circuit descrip-
tion of |ψk〉 to within ε ≤ 1/8 trace distance with success
probability at least 2/3 must use exp(�(min{G, n})) time.

Proof. With the polynomial hardness of RingLWE
replaced by subexponential hardness, Theorem 14 asserts

that there are no subexponential (in l) quantum algorithms
that can learn the l-qubit pseudorandom state |φk〉 to within
trace distance ε < 1/8 with success probability at least
2/3. That is, any such learning algorithms must use at least
exp(�(l)) = exp(�(min{G, n})) time, since l ≤ n. Mean-
while, a learning algorithm for the n-qubit state |ψk〉 can
be used to learn the l-qubit state |φk〉 in the same run
time by postselecting on the last (n − l) qubits being |0〉,
because the trace distance does not increase under such an
operation. This implies the exp(�(min{G, n}))-time lower
bound for the n-qubit learning algorithm. �

Finally, we briefly show that learning becomes efficient
when G = O(log n). The idea is that with O(log n) gates,
there can only be at most O(log n) qubits affected. Thus we
can focus on these qubits and learning the states amounts
to manipulating vectors of size at most 2O(log n) = poly(n),
which is efficient. Specifically, we have the following
statement.

Proposition 7 (Learning states with logarithmic cir-
cuit complexity efficiently; restatement of upper bound in
Theorem 2). Let ε > 0. Suppose that we are given N
copies of a pure n-qubit state ρ = |ψ〉 〈ψ |, where |ψ〉 =
U |0〉⊗n is generated by a unitary U consisting of G =
O(log n) two-qubit gates. There exists a learning algorithm
that outputs a ρ̂ such that dtr(ρ, ρ̂) ≤ ε with probability at
least 2/3 using poly(n, 1/ε) copies and time.

Proof. We prove this by explicitly constructing a learn-
ing algorithm based on junta learning (Appendix B 1) and
standard tomography methods as follows.

First, we execute Algorithm 1 on copies of ρ and posts-
elect on the trivial qubits being zero as in Appendix B 1.
This step uses poly(n, 1/ε) copies and time and gives
us postselected states ρ ′ = ρ ′′ ⊗ (|0〉〈0|)⊗(n−2G) that sat-
isfy dtr(ρ, ρ ′) ≤ ε/4 by an appropriate choice of accuracy.
Here, ρ ′′ is a state on 2G = O(log n) qubits.

Next, we carry out the most straightforward tomography
method of measuring all the Pauli coefficients. Concretely,
we can represent ρ ′′ =∑P αPP as a linear combination
of all Pauli strings over the 2G qubits. Using this repre-
sentation, we estimate all the coefficients αP by measuring
tr(ρ ′P) and obtain ρ̂ = ρ̂ ′′ ⊗ (|0〉〈0|)⊗(n−2G). By measur-
ing all Pauli-string expectation values tr(ρ ′P) to accuracy
O(ε/42G), we have dtr(ρ

′, ρ̂) ≤ ε/4 and thus dtr(ρ, ρ̂) ≤
ε/2. From standard Chernoff-Hoeffding concentration
inequalities, this can be achieved with O(42G/(ε/42G)2) =
poly(n, 1/ε) copies. Finally, we diagonalize ρ̂ ′′ and calcu-
late its eigenvector ˆ|ψ ′′〉 with the largest eigenvalue, such
that ˆ|ψ ′′〉 is the pure state closest to ρ̂ ′′ in trace distance. Let
ˆ|ψ〉 = ˆ|ψ ′′〉 ⊗ |0〉⊗(n−2G). Recall that dtr(ρ, ρ̂) ≤ ε/2 and
ρ is a pure state. Therefore, dtr( ˆ|ψ〉 ˆ〈ψ |, ρ̂) ≤ dtr(ρ, ρ̂) ≤
ε/2 and thus dtr( ˆ|ψ〉 ˆ〈ψ |, ρ) ≤ ε. We output ˆ|ψ〉 as the
learning outcome the circuit description of which can
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be found by finding a unitary with ˆ|ψ ′′〉 as its first col-
umn using orthogonalization. Since we are manipulat-
ing matrices of size O(22G) = poly(n), the computational
complexity is also O(n, 1/ε). �

APPENDIX C: LEARNING QUANTUM UNITARIES

In this appendix, we give detailed proofs of Theorem 3
for worst-case unitary learning, of Theorem 4 for average-
case unitary learning, and of Theorem 5 for learning with
classically described data.

1. Worst-case learning

We begin with the worst-case unitary-learning prob-
lem, which measures reconstruction error in terms of the
diamond distance d♦(U, V) = maxρ ‖(U ⊗ I)ρ(U ⊗ I)† −
(V ⊗ I)ρ(V ⊗ I)†‖1. In particular, we consider the task of
using queries to an unknown unitary U with bounded cir-
cuit complexity G to output a classical circuit description
Û such that d♦(Û, U) ≤ ε with probability at least 2/3. The
diamond distance has a similar operational meaning as the
trace distance in state learning. It characterizes the ability
to distinguish two processes with arbitrary input states and
measurements. If we can learn the unitary with small error
in the diamond distance, then we will only make small
errors even if we test Û against U on the worst choice of
input states. However, we find the following result stat-
ing that this task necessarily requires a number of queries
exponential in G, indicating the hardness of worst-case
unitary learning.

Theorem 16 (Worst-case unitary learning; restatement
of Theorem 3). Given query access to an n-qubit uni-
tary U composed of G two-qubit gates, any algorithm
that can output a unitary Û such that d♦(Û, U) ≤ ε ∈
(0, 1/4] with probability at least 2/3 must query U at least
�
(
2min{G/(2C),n/2}/ε

)
times, where C > 0 is a universal

constant. Meanwhile, there exists such an algorithm using
O(2nG log

(√
2nG/ε

)
/ε) queries.

Proof. The upper bound follows from the average-
case learning algorithm (Theorem 4, proved below)
when working in the exponentially small error regime.
Specifically, Theorem 4 gives us an algorithm that uses
O(G√

d log
(
G/ε′

)
/ε′) queries to output a Û that satis-

fies davg(Û, U) ≤ ε′. Meanwhile, from Lemmas 1, 3, and
4, we know that d♦(Û, U) ≤ 2d′

2(Û, U) ≤ 2
√

dd′
F(Û, U) ≤

4
√

ddavg ≤ 4
√

dε′. Setting ε = 4
√

dε′, we arrive at the
desired worst-case learning query complexity. �

The proof of the lower bound is inspired by the adver-
sary method [59, Chapter 6] and the optimality of Grover’s
algorithm [176]. The idea is to construct a set of uni-
taries that can be distinguished by the worst-case learning

algorithm but that only make a minor difference when act-
ing on states, so that a minimal number of queries have to
be made in order to distinguish them.

Specifically, we consider all the length-2k bit strings x
that have Hamming weight 1, i.e., xi = 1 for some i ∈ [2k]
and all the other bits are 0. We focus on the task of dis-
tinguishing this set of strings, denoted by X , from the
all-zero string Y = {0 . . . 0}. We access any such bit strings
x through a phase oracle, which is defined as a k-qubit
unitary Ux that obeys Ux |j 〉 = eiε′xj |j 〉 for all j ∈ [2k]. In
other words, Ux is diagonal and each diagonal element is
eiε′ if the corresponding bit is 1 and is 1 if the bit is 0. The
unitary for the all-zero string is the identity.

To implement such unitaries with two-qubit gates, we
note that since the strings have Hamming weight at most 1,
each of the unitaries is equivalent to a (k − 1)-controlled-
phase gate with a proper control rule. The control rule can
be realized by O(k) pairs of one-qubit gates acting on each
qubit and the (k − 1)-controlled-phase gate can be decom-
posed into O(k) two-qubit gates [177]. Therefore, with
O(k) gates, one can implement Ux for any 2k-bit string x
with Hamming weight at most 1.

Suppose that Ck gates suffice to implement these Ux. Set
k = min{�G/C� , n}. Then, for any x ∈ X ∪ Y, Ux ⊗ In−k is
an n-qubit gate composed of at most G gates. Meanwhile,
the unitaries for X are far apart from that for Y, because for
any x ∈ X —say with xj = 1—we can take another x′ �= x
from X with x′j ′ = 1 and let

∣∣ψjj ′
〉 = (|j 〉 + ∣∣j ′〉)/√2. Then,

we have

d♦(Ux, U0...0)

≥ ‖Ux
∣∣ψjj ′

〉 〈
ψjj ′
∣∣U†

x−U0...0
∣∣ψjj ′

〉 〈
ψjj ′
∣∣U†

0...0‖1

=
∥∥∥∥∥

eiε′ − 1
2

|j 〉 〈j ′∣∣+ e−iε′ − 1
2

∣∣j ′
〉 〈j |
∥∥∥∥∥

1

= 2 sin
ε′

2
≥ ε′

2
, (C1)

for ε′ ∈ (0, 1]. Therefore, if we have a learning algorithm
that can learn Un

T using m queries with accuracy ε =
ε′/4 ∈ (0, 1/4] in the diamond norm with probability 2/3,
it can also distinguish X from Y with the same probabil-
ity. Note that this also works if the learning algorithm is
for (quotient) spectral distance, but not for davg because
davg(Ux, U0...0) is exponentially small for every x with
Hamming weight 1.

In addition, we have the following query-complexity
lower bound from the adversary method.

Lemma 19 (Phase-adversary method [59, Lemma 6.4].).
Let D be a finite set of functions from a finite set Q to R.
To each function x ∈ D, assign an oracle Ux of the form
Ux |q〉 = eix(q) |q〉. Let X and Y be two disjoint subsets of
D. Let R ⊆ X × Y be a binary relation on X × Y. For x ∈
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X , we write R(x) = {y ∈ Y : (x, y) ∈ R} and similarly R(y)
for y ∈ Y. Define

m = min
x∈X

|R(x)|, m′ = min
y∈Y

|R(y)|,

lq,x =
∑

y∈R(x)

|x(q)− y(q)|, lq,y =
∑

x∈R(y)

|x(q)− y(q)|,

and let lmax = maxq∈Q,x∈X ,y∈Y lq,xlq,y . Then, to distinguish
X and Y with success probability at least 2/3, any
algorithm needs at least

�

(√
mm′

lmax

)

(C2)

queries to the oracle.

For our problem, let R = X × Y. For all bit strings
x, define x(q) = εxq. Then, we have m = |Y| = 1, m′ =
|X | = 2k, lq,x = εxq, lq,y = ε because for a specific q, only
one x ∈ R(y) = X has xq = 1. Thus lmax = ε2. Plugging
these into the above lemma, we obtain a query-complexity
lower bound of �(

√
2k/ε). Since k = min{�G/C� , n},

we arrive at the final query-complexity lower bound
�
(
2min{G/(2C),n/2}/ε

)
.

2. Average-case query-complexity upper bounds

Having seen that worst-case unitary learning is hard,
we move on to the setting of average-case learning. In
particular, we consider the task of using queries to an
unknown unitary U with bounded circuit complexity G
to output the classical circuit description of a unitary

Û such that davg(Û, U) =
√

E|ψ〉[dtr(Û |ψ〉 , U |ψ〉)2] ≤ ε

with probability at least 2/3. In the following, we give
explicit algorithms that solve this learning task with linear-
in-G queries, using similar hypothesis-selection techniques
as in the state-learning task (Appendix B 1).

Proposition 8 (Average-case unitary-learning upper
bounds; upper bounds in Theorem 4). There exists an
algorithm that, given query access to an n-qubit unitary
U composed of G two-qubit gates, can output a unitary Û
such that davg(Û, U) ≤ ε with probability at least 2/3 using

O
(

min

{
4n

ε
,

G log(G/ε)
ε2 ,

√
2nG log(G/ε)

ε

})

(C3)

queries to the unknown unitary U. Moreover, there
is another such algorithm that uses O(G log(G/ε)/ε4)

queries without employing auxiliary quantum systems.

The O(4n/ε) scaling comes from the diamond-norm
learning algorithm in Ref. [23, Theorem 1.1], which

directly implies an average-case learning algorithm,
because davg(U, V) ≤ d′

F(U, V) ≤ d′
2(U, V) ≤ 1√

2
d♦(U, V),

from Lemmas 4, 3, and 1. Note that this part of the bound
does not make use of the promise that the unknown uni-
tary can be implemented with G two-qubit gates. In the
following, we prove the G-dependent parts of the upper
bound.

a. Unitary learning without ancillary systems

We begin by describing the learning algorithm with-
out ancillary systems. The algorithm works similarly to
the state-learning procedure. It constructs a covering net
over G-gate unitaries with respect to davg and regards them
as candidates for the unknown unitary. In contrast to our
state-learning procedure, where the algorithm estimates the
trace distance between states, here the algorithm estimates
the overlap between unitaries by inputting random states
and applying single-shot Clifford classical shadow, which
translates into davg. Then, we select the candidate closest
to the unknown unitary as the learning outcome.

Specifically, we consider a
√
ε′-covering net N of the

set of n-qubit unitaries implemented by G two-qubit gates
with respect to davg, as in Corollary 1, and regard the ele-
ments Ui ∈ N as potential candidates for the unknown
unitary U. Our strategy is to use classical shadow to esti-
mate the distances davg(Ui, U) for every Ui in the covering
net. Then, we can find the one with minimal distance as the
output of our learning algorithm.

To achieve this, consider a randomly sampled tensor
product of one-qubit stabilizer states,

|x〉 = Ux |0〉⊗n ∼ Q

= Uniform[{|0〉 , |1〉 , |x+〉 , |x−〉 , |y+〉 , |y−〉}⊗n],
(C4)

where Ux = ⊗n
i=1Uxi is the state-preparation unitary and

x ∈ Z
n
6 labels the state. We apply the unknown unitary U

to it and obtain U |x〉. Then, we invoke a single use of
the Clifford classical shadow protocol [110]: we randomly
sample an n-qubit Clifford gate C and apply it to U |x〉 and
then measure in the computational basis to obtain an out-
come |b〉 , b ∈ {0, 1}n, with probability | 〈b|CU|x〉 |2. Let
ρ̂ = (2n + 1)C† |b〉 〈b|C − I . From Ref. [110], we know
that EC,b[ρ̂] = U |x〉 〈x|U†. Now, we consider the observ-
able Oi = Ui |x〉 〈x|U†

i and the estimator ôi = tr(Oiρ̂).
Then, we have the expectation value

E
|x〉,C,b

[ôi] = E
|x〉

[
tr(Oi E

C,b
[ρ̂])

]

= E
|x〉

[
|〈x|U†

i U|x〉|2
]
= 1 − d2

Q(Ui, U) , (C5)

where dQ(Ui, U) = √E|ψ〉∼Q[dtr(Ui |ψ〉 , U |ψ〉)2] is the
root-mean-square trace distance with respect to Q as
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defined in Lemma 5. Next, we show that ôi has bounded
variance. Note that

Var[ôi] = E
|x〉,C,b

[ô2
i ] −

(
E

|x〉,C,b
[ôi]
)2

≤ E
|x〉

[
E
C,b

[ô2
i ]
]
≤ E

|x〉
[3tr(O2

i )] = 3, (C6)

where we have used the variance bound for Clifford shad-
ows [110, Lemma S1 and Proposition S1] and the fact that
tr(O2

i ) = tr(Oi) = 1.
To estimate the expectation values of ôi, we can draw m

independent identically distributed (IID) samples of such
input states {∣∣xj

〉}m
j=1 from Q, construct the observables

Oij = Ui
∣∣xj
〉 〈

xj
∣∣U†

i , and carry out the above protocol to
obtain the estimators ôij for 1 ≤ i ≤ |N |, 1 ≤ j ≤ m. Sup-
pose that we take m = NK and construct a median-of-mean
estimator

ôi(N , K) = median{ô(1)i , . . . , ô(K)i }, where

ô(k)i = 1
N

Nk∑

j=N (k−1)+1

ôij , 1 ≤ k ≤ K . (C7)

Then, with the same reasoning as in Ref. [110, Theorem
S1], we have the following concentration guarantee: for
any 0 < ε′, δ < 1, if K = 2 log(2|N |/δ) and N = 102/ε′2,
then

|ôi(N , K)− (1 − d2
Q(Ui, U))| ≤ ε′ for all 1 ≤ i ≤ |N |

(C8)

with probability at least 1 − δ.
With ôi in hand, we can select i
 ∈ argmaxiôi, and output

Ui
 . Then, we have

davg(Ui
 , U) ≤
√

2dQ(Ui
 , U) ≤
√

2(1 − ôi
 + ε′)
=
√

2(ε′ + min
i
(1 − ôi))

≤
√

2(ε′ + min
i
(d2

Q(Ui, U)+ ε′))

≤
√

8ε′ (C9)

with probability at least 1 − δ, where we have used the
concentration guarantee in Lemma 5, and mini d2

Q(Ui, U)
≤ mini 2davg(Ui, U)2 ≤ 2ε′ because N is a

√
ε′-covering

net with respect to davg. Setting ε′ = ε2/8, we arrive at a
learning algorithm that uses

m = NK = O(log(|N |/δ)/ε4) (C10)

samples to learn the unknown unitary with accuracy ε and
success probability at least 1 − δ.

If we plug in the covering-number upper bound logN ≤
O(G log(G/ε)+ T log n) from Corollary 1, we have sam-
ple complexity

O
(

G log(G/ε)+ log(1/δ)
ε4

)
(C11)

for large G, say G ≥ n/10, as desired.
For G < n/10, a direct application of the above strat-

egy will give us a suboptimal sample complexity of
O(G log(n/ε)/ε4). To overcome this issue, we can carry
out a junta learning step similar to Algorithm 1 and
Ref. [55] to identify the subset of qubits A ⊂ [n] on which
U acts nontrivially. Since U only has G two-qubit gates,
we must have |A| ≤ 2G. The specific procedure is listed in
Algorithm 3.

Similarly to Appendix B 1 a, we use Algorithm 3 to
identify the nontrivial qubits with high probability. Impor-
tantly, from Lemma 11, we have the following guarantee
that shows that the expected state on the estimated trivial
qubits is close to zero.

Lemma 20. Let ε, δ > 0. Suppose that we are given
query access to an n-qubit unitary U composed of G two-
qubit gates acting on a subset of the qubits A ⊆ [n]. Let
|x〉 = Ux |0〉⊗n be a random tensor product of one-qubit
stabilizer states. Let ρx = U†

xUUx |0〉〈0|U†
xU†Ux. Then,

Algorithm 3 uses N = O (G + log(1/δ)/ε2
)

queries to U

ALGORITHM 3. Identify qubits acted upon nontrivially (unitary version).
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and outputs, with probability at least 1 − δ, a list Â ⊂ [n]
such that

〈
0B̂

∣∣Ex[ρx
B̂
]
∣∣0B̂

〉 ≥ 1 − ε2, (C12)

where ρB̂ denotes the reduced density matrix of ρ when
tracing out all qubits other than those in the set B̂ = [n] \ Â
and

∣∣0B̂

〉
denotes the zero state on all qubits in B̂.

Proof. This follows directly from the proof of Lemma
11, because Algorithm 3 is the same as executing
Algorithm 1 on the mixed state Ex[ρx], and for the triv-
ial qubits, the U†

x following Ux and U restores the state to
|0〉. So the proof goes verbatim as in Lemma 11. �

With this, we can show that ignoring the rest of the
qubits B̂ = [n] \ Â does not make much of a difference.
Let B = [n] \ A. We again consider a randomly sampled
one-qubit stabilizer state and apply U to obtain |ψx〉 =
UUx |0〉⊗n. Let ρx = |ψx〉 〈ψx| be the associated density
matrix and let UB̂

x = ⊗j∈B̂Uxj be the part of Ux that acts on

B̂. Now, we measure the qubits in B̂ in the basis UB̂
x |b〉B̂,

where b ∈ {0, 1}|B̂|. Note that for qubits in B̂, the reduced
density matrix in the basis UB̂

x |b〉B̂ is the same as the ρx
B̂

from Lemma 20 in the junta learning step. So we have〈
0B̂

∣∣Ex[ρx
B̂
]
∣∣0B̂

〉 ≥ 1 − ε2. After the measurement of the
qubits in B̂, we do a postselection on the observed measure-
ment outcomes being UB̂

x |0〉B̂. This postselection is repre-

sented by � = IA ⊗ (UB̂
x |0〉B̂ 〈0|UB̂†

x ), with �2 = �. Let
ρ ′x =

√
�ρx

√
�/tr(�ρx) be the postselected state. Now,

we want to show ρ ′x is close to ρx on average. We invoke
the following gentle measurement lemma for normalized
ensembles.

Lemma 21 (Gentle measurement lemma for normal-
ized ensembles; variant of Ref. [155, Lemma 9.4.3]).
Let {x, ρx} be an ensemble of states. If � is a positive-
semidefinite operator with � ≤ I and tr(�Ex[ρx]) ≥ 1 −
ε, where ε ∈ [0, 1], then

Ex

∥∥∥∥∥
ρx −

√
�ρx

√
�

tr(�ρx)

∥∥
∥∥∥

1

≤ 3
√
ε. (C13)

Proof. Let ρ ′x =
√
�ρx

√
�/tr(�ρx). From Ref. [155,

Lemma 9.4.3], we know that Ex

∥∥∥ρx −
√
�ρx

√
�

∥
∥∥

1
≤

2
√
ε. Note that the left-hand side can be lower bounded

by

Ex

∥∥∥ρx −
√
�ρx

√
�

∥∥∥
1

= Ex

∥∥∥ρx − ρ ′x + ρ ′x −
√
�ρx

√
�

∥∥∥
1

≥ Ex‖ρx − ρ ′x‖1 − Ex‖ρ ′x −
√
�ρx

√
�‖1

= Ex‖ρx − ρ ′x‖1 − Ex(1 − tr(�ρx))‖ρ ′x‖1

≥ Ex‖ρx − ρ ′x‖1 − ε, (C14)

where we have used the triangle inequality, ‖ρ ′x‖1 = 1, and
tr(�Ex[ρx]) ≥ 1 − ε. Therefore, we arrive at

Ex‖ρx − ρ ′x‖1 ≤ 2
√
ε + ε ≤ 3

√
ε, (C15)

because ε ∈ [0, 1], concluding the proof of Lemma 21. �

Using Lemma 21 for our scenario, we have Ex‖ρx −
ρ ′x‖1 ≤ 3ε with probability at least 1 − δ. After the post-
selection, we apply the same Clifford-shadow strategy as
in the T ≥ n/10 case, with two differences. First, note that
after postselection, the action on every qubit in B̂ is iden-
tity. So we can, without loss of generality, pick an arbitrary
subset A′ of those qubits in B̂ as A \ Â and consider an

√
ε-

covering net N of G gate unitaries on qubits Â ∪ A′ with
respect to davg, with |Â ∪ A′| = |A| ≤ 2G. Then, we have
minUi∈N davg(Ui, U) ≤ ε, and log |N | ≤ O(G log(G/ε)+
G log

(|A ∪ A′|)) ≤ O(G log(G/ε)). Second, for each ele-
ment Ui in the covering net, we can construct an observable
Oi = Ui |x〉 〈x|U†

i similar to before but now the estima-
tor will concentrate around a slightly different expectation
value. Specifically, if we use a median-of-means estimator
ôi(N , K) with K = 2 log(2|N |/δ) and N = 102/ε2, then
we have

|ôi(N , K)− Ex[tr(ρ ′xOi)]| ≤ ε for all 1 ≤ i ≤ |N |
(C16)

with probability at least 1 − δ. Nevertheless, since ρ ′x and
ρx are close on average, we have

|ôi(N , K)− (1 − d2
Q(Ui ⊗ I , U))|

= |ôi(N , K)− Ex[tr(ρ ′xOi)]

+ Ex[tr(ρ ′xOi)] − Ex[tr(ρxOi)]|
≤ |ôi(N , K)− Ex[tr(ρ ′xOi)]|
+ Ex[|tr(ρ ′xOi)− tr(ρxOi)|]

≤ ε + Ex[‖ρ ′x − ρx‖1‖Oi‖]

≤ ε + 3ε = 4ε, for all 1 ≤ i ≤ |N | (C17)

with probability at least 1 − 2δ, where we have used the tri-
angle inequality, ‖Oi‖ = 1, and Ex‖ρx − ρ ′x‖1 ≤ 3ε. With
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this concentration guarantee, we can select the candidate
with the largest ôi: i
 ∈ argmaxiôi and output Ui
 ⊗ I . As
before, we have, with probability at least 1 − 2δ,

davg(Ui
 ⊗ I , U) ≤
√

2dQ(Ui
 ⊗ I , U)

≤
√

2(4ε + 2ε + 4ε) =
√

20ε. (C18)

Redefining 20ε to be ε2 and 2δ to be δ, we arrive at a
learning algorithm that uses

m = O
(

G + log(1/δ)
ε4

)
+ NK

= O
(

G log(G/ε)+ log(1/δ)
ε4

)
(C19)

queries to the unitary to learn it with accuracy ε in davg
and success probability at least 1 − δ when G < n/10.
Combined with the case of G ≥ n/10, this concludes the
learning algorithm without an ancillary system in Proposi-
tion 8.

b. Unitary learning with ancillary systems

The above O(1/ε4) scaling is suboptimal. It arises from
the fact that in the classical shadow estimation, the esti-
mated quantity is the square of davg rather than davg itself.
To improve the ε dependence, we make use of ancil-
lary systems via the Choi-Jamiołkowski duality [63–65].
Specifically, we consider the maximally entangled state
over a pair of n-qubit systems |�〉 = 1/

√
d
∑2n

i=1 |i〉 ⊗ |i〉
and define the Choi state |U〉〉 corresponding to a unitary
U as |U〉〉 = (U ⊗ I) |�〉. That is, the Choi state |U〉〉 of an
n-qubit unitary U is a pure (2n)-qubit state constructed by
applying U on half of the qubits in n EPR pairs. For any
subset A ⊆ [n] of the qubits that are acted upon by U, we
refer to the corresponding |A| qubits in the EPR pairs as
the entangled qubits corresponding to A. We note the fol-
lowing fact, which relates the trace distance between Choi
states to the average-case distance between the unitaries.

Lemma 22 (Equivalence of trace distance between
Choi states and average-case distance). Let U, V ∈ U(2n)

be two n-qubit unitaries, let |�〉 = 1/
√

d
∑2n

i=1 |i〉 ⊗ |i〉
be a maximally entangled state, and let |U〉〉 = (U ⊗
I) |�〉 , |V〉〉 = (V ⊗ I) |�〉 be the corresponding Choi
states. Then, we have

1√
2

dtr(|U〉〉, |V〉〉) ≤ davg(U, V) ≤ dtr(|U〉〉, |V〉〉). (C20)

Proof. By the standard conversion between the fidelity
and the trace distance between pure states, we have

dtr(|U〉〉, |V〉〉) =
√

1 − |〈〈U|V〉〉|2 =
√

1 − 1
d2 |tr(U†V)|2,

(C21)

where the last step uses that 〈�|A ⊗ B |�〉 = 1
d tr[ATB]

(cf., e.g., Ref. [178, Example 1.2]). On the other hand, from
Eq. (A14), we have

davg(U, V) =
√

1 − d + |tr(U†V)|2
d2 + d

. (C22)

Combining these two equations, we obtain

davg(U, V) =
√

d
d + 1

dtr(|U〉〉, |V〉〉)

∈
[

1√
2

dtr(|U〉〉, |V〉〉), dtr(|U〉〉, |V〉〉)
]

. (C23)

�

With Lemma 22, we construct a covering net over
Choi states corresponding to G-gate unitaries as follows.
From Corollary 1, we take an ε′-covering net N of
G-gate unitaries with respect to davg that has cardinal-
ity |N | ≤ O(G log(G/ε)+ G log n). Then, for any G-gate
unitary U, there exists a Ui ∈ N such that davg(U, Ui) ≤ ε′.
Hence dtr(|U〉〉, |Ui〉〉) ≤

√
2davg(U, Ui) ≤

√
2ε′ by Lemma

22. Therefore, the Choi states of the unitaries in N form a
(
√

2ε)-covering net of the Choi states of G-gate unitaries.
Now, we can use these pure Choi states as candi-

dates for hypothesis selection. By Proposition 1, the
hypothesis-selection algorithm based on classical shadow
uses O(log(|N |/δ)/ε′2) samples of the Choi state |U〉〉 to
output a candidate |Û〉〉, Û ∈ N , such that dtr(|U〉〉, |Û〉〉) ≤
3
√

2ε′ + ε′ with probability at least 1 − δ. Setting
(3
√

2 + 1)ε′ = ε, we find a Û such that davg(Û, U) ≤
dtr(|U〉〉, |Û〉〉) ≤ ε with probability at least 1 − δ using

O
(

G log(G/ε)+ G log n + log(1/δ)
ε2

)
(C24)

queries to the unknown unitary U. When G ≥ n/10, this
gives the desired O((G log(G/ε)+ log(1/δ))/ε2) query
complexity.

For G < n/10, we again need a junta learning step to
identify the set of qubits A ⊆ [n] that are acted on nontriv-
ially. To do this, we follow the idea of Algorithms 1 and 3
and Ref. [55, Algorithm 8] and consider Algorithm 4 that
makes use of Choi states of Pauli matrices σ0 = I , σ1 =
X , σ2 = Y, σ3 = Z.
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ALGORITHM 4. Identify qubits acted upon nontrivially (Choi version).

Similarly to Lemmas 11 and 20, we have the following
guarantee that the Choi state on the estimated trivial qubits
is close to the Choi state of the identity.

Lemma 23. Let ε, δ > 0. Suppose that we are given
query access to an n-qubit unitary U composed of G two-
qubit gates acting on a subset of the qubits A ⊆ [n]. Let
ρ = |U〉〉〈〈U| be the Choi state of U. Then, Algorithm 4
uses N = O ((G + log(1/δ))/ε2

)
queries to U and out-

puts, with probability at least 1 − δ, a list Â ⊂ [n] such
that

〈〈IB̂|ρB̂|IB̂〉〉 ≥ 1 − ε2, (C25)

where ρB̂ denotes the reduced density matrix for ρ by trac-
ing out all qubits other than those in the set B̂ = [n] \ Â
and the corresponding entangled qubits and |IB̂〉〉 denotes
the Choi state of the identity on qubits in B̂.

Proof. The proof goes similarly to that of Lemma 11,
except that |0〉 is replaced by |I〉〉. The measurement
over Pauli Choi states in Algorithm 4 can be under-
stood as measuring each entangled pair of qubits in
the basis {|I〉〉, |X 〉〉, |Y〉〉, |Z〉〉} and gives an element from
{0, 1, 2, 3} = Z4. Specifically, let A′ be any set that could
be output by Algorithm 4. We want to identify A′ with
the actual identified set Â. Let B′ � [n] \ A′. Let Ei,A′ be
the event that round i of measurement of the qubits in
B′ = [n] \ A′ in Algorithm 4 yields the all-zero Z4 string.
Let Xi,A′ be the indicator random variable corresponding to
the event Ei,A′ . Then, we have that X̄A′ � 1/N

∑N
i=1 Xi,A′ is

the number of times that the entangled pairs in B′ are all
measured to be zero divided by the total number of mea-
surements. In other words, X̄A′ is the estimated overlap that
the state ρB′ on qubits in B′ has with the identity Choi state
on B′. Moreover, we have

E[XA′] � E[Xi,A′] = 〈〈IB′ |ρB′ |IB′ 〉〉, (C26)

for all A′. This says that the true expectation of our random
variables is the true overlap of the state ρB′ with the identity
Choi state on B′. Then, we have the same Claim 1 as in
Lemma 11 and so Lemma 23 follows. �

With this, we can again show that ignoring the rest of the
qubits B̂ = [n] \ Â does not make much difference. Let B =
[n] \ A. We prepare the Choi state ρ = |U〉〉〈〈U|, |U〉〉 =
(U ⊗ I) |�〉 and measure in the basis of Pauli Choi states
over the qubits in B̂: {|σx〉〉B̂ : x ∈ Z

|B̂|
4 }. After the measure-

ment, we do a postselection on the observed measurement
outcomes being |IB̂〉〉. This postselection is represented by
� = I ⊗ |IB̂〉〉〈〈IB̂|, with�2 = �, and the first identity over
the entangled pairs outside B̂. Let ρ ′ = √

�ρ
√
�/tr(�ρ)

be the postselected state. Now, we want to show that ρ ′
is close to ρ. From Lemma 23, we know that tr(�ρ) ≥
1 − ε2 with probability at least 1 − δ. Then, by the gentle
measurement lemma (Lemma 13), we have dtr(ρ

′, ρ) ≤ ε

with the same probability.
Now, we can apply the hypothesis-selection protocol

to ρ ′ as in the G > n/10 case but with a different cov-
ering net. Specifically, note that after postselection, the
action on every entangled pair in B̂ is identity. So we
can, with loss of generality, pick an arbitrary subset A′

of those qubits in B̂ as A \ Â and consider an ε-covering
net N of G gate unitaries on qubits Â ∪ A′ with respect
to davg, with |Â ∪ A′| = |A| ≤ 2G, with each element ten-
sor product with identity over the rest of the qubits.
Then, we have minUi∈N dtr(|Ui〉〉, |U〉〉) ≤ √

2davg(Ui, U) ≤√
2ε, and log |N | ≤ O(G log(G/ε)+ G log

(|A ∪ A′|)) ≤
O(G log(G/ε)). Since dtr(ρ

′, ρ) ≤ ε, we also have
minUi∈N dtr(|Ui〉〉〈〈Ui|, ρ ′) ≤ ε +√

2ε = (
√

2 + 1)ε.
With this covering net, we apply the hypothesis selec-

tion based on classical shadow (Proposition 1) to ρ ′. This
procedure uses O(log(|N |/δ)/ε2) copies of ρ ′ (each pre-
pared using one query to U) and outputs a |Ui
〉〉 such that
dtr(|Ui
〉〉〈〈Ui
 |, ρ ′) ≤ 3(

√
2 + 1)ε + ε = (3

√
2 + 4)ε with

probability at least 1 − δ. This means that

davg(Ui
 , U) ≤ dtr(|Ui
〉〉, |U〉〉)
≤ dtr(|Ui
〉〉〈〈Ui
 |, ρ ′)+ dtr(ρ

′, ρ)

≤ (3
√

2 + 4)ε + ε = 4(
√

2 + 1)ε, (C27)

with a total probability at least 1 − 2δ (considering both
the junta learning and hypothesis selection).

Therefore, by redefining 4(
√

2 + 1)ε to be ε and 2δ to
be δ, we arrive at a desired algorithm for G ≤ n/10 that
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uses, in total,

O
(

G + log(1/δ)
ε2

)
+O

(
G log(G/ε)+ log(1/δ)

ε2

)

= O
(

G log(G/ε)+ log(1/δ)
ε2

)
(C28)

queries to the unknown unitary U. Combined with the
G ≥ n/10 case, we conclude the learning algorithm with
ancillary systems that achieves the O((G log(G/ε)+
log(1/δ)/ε2) query complexity in Proposition 8.

c. Bootstrap to improve ε dependence

To further improve the ε dependence, we modify the
bootstrap method in Ref. [23] and achieve a Heisenberg
scaling Õ(1/ε). However, with our average-case distance,
which can only control the average behavior of the eigen-
values of the unitaries, we are unable to perform the
bootstrap for general ε. Instead, the bootstrap works only
when the error is exponentially small, ε = O(1/

√
d), and

achieves the Heisenberg scaling at the cost of a dimen-
sional factor, leading to a query complexity of

O
(√

2n(G log(G/ε)+ log(1/δ))
ε

)

. (C29)

Whether a general Heisenberg scaling without dimension-
dependent scaling is achievable remains open.

Now, we state the bootstrap method in Algorithm 5,
which uses the unitary-learning algorithm with ancillary
systems (Appendix C 2 b) as a subroutine. We need to
prove two things about Algorithm 5: (1) that it out-
puts a Û that satisfies davg(Û, U) ≤ ε with probability
at least 1 − δ; and (2) that the query complexity is
O
(√

d(G log(G/ε)+ log(1/δ))/ε
)

.
We first prove (1) by induction. Before doing so, we

need to show that the learning algorithm A can indeed

learn (UV†
j )

pj well for all j . Let c = 10−5. Note that with
the definition of N , we know that for any G-gate unitary
U, ∃Ui ∈ N such that davg(U, Ui) ≤ cε, and therefore

davg((UiV
†
j )

pj , (UV†
j )

pj ) ≤ d′
F((UiV

†
j )

pj , (UV†
j )

pj )

≤ pj d′
F(Ui, U) ≤ 2pj davg(Ui, U)

≤ 4c/
√

d, (C30)

where we have used items (1) and (2) in Lemma 4,
unitary invariance of d′

F , and pj = 2j ≤ 2t ≤ 2/(ε
√

d).
Thus {(UiV

†
j )

pj , Ui ∈ N } forms a 4c/
√

d-covering net of
{(UV†

j )
pj |U is a G-gate unitary}, which can be used by

the hypothesis-selection algorithm A as a set of candi-
dates. The output Rj of A satisfies d′

F(Rj , (UV†
j )

pj ) ≤
2davg(Rj , (UV†

j )
pj ) ≤ 4(

√
2 + 1) · 4c/

√
d < 40c/

√
d (see

Eq. (C27)). The number of queries to U that this procedure
uses is O

(
pj (G log(G/cε)+ log

(
1/ηj

)
)/(4c/

√
d)2
)
=

O (pj d(G log(G/ε)+ log
(
1/ηj

)
)
)
.

Now, we proceed to prove (1) by induction. Let us
assume that the learning algorithm succeeds for all j =
1, . . . , t. Let δj = d′

F(U, Vj ) = d′
F(UV†

j , I) be the error after
iteration j − 1. We will prove that δk ≤ 2−k−5/

√
d. For

iteration 0, we have p0 = 1 and by the accuracy of A, we
know that δ1 = d′

F(U, V1) < 40c/
√

d < 2−6/
√

d. Now,
we assume that δk ≤ 2−k−5/

√
d and prove that δk+1 ≤

2−k−6/
√

d. Note that (UV†
k)

pk and Rk are sufficiently close
to identity in the sense that

d′
F((UV†

k)
pk , I) ≤ pkd′

F(UV†
k , I) = pkδk

≤ 2−5

√
d
<

4/(25π)√
d

(C31)

ALGORITHM 5. Bootstrapping to Heisenberg scaling.
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and

d′
F(Rk, I) ≤ d′

F(Rk, (UV†
k)

pk )+ d′
F((UV†

k)
pk , I)

≤ 40c√
d
+ 2−5

√
d
<

4/(25π)√
d

. (C32)

Thus, we can invoke item (3) of Lemma 4 and obtain

δk+1 = d′
F(U, Vk+1) = d′

F(UV†
k , R1/pk

k )

≤ 2
pk

d′
F((UV†

k)
pk , Rk) ≤ 80c

pk
√

d
<

2−k−6

√
d

. (C33)

Therefore, by induction, we have shown that δk ≤
2−k−5/

√
d. At the end of the iteration, when k = t =

⌈
log2(1/(

√
dε))

⌉
, we have

δt+1 = d′
F(U, Vt+1) ≤ 2−t−6

√
d
< ε. (C34)

The above accuracy is conditioned on the success of all
executions of the learning algorithm. By the union bound,
the failure probability is upper bounded by

t∑

j=0

ηj = δ

t∑

j=0

8−(t−j )−1 = δ

t∑

j=0

8−j−1 < δ. (C35)

This concludes the proof of (1).
Next, we move on to (2) and count the overall num-

ber of queries to the unknown unitary. Summing over all
iterations, the number of queries is

O
⎛

⎝
t∑

j=0

pj d(G log(G/ε)+ log
(
1/ηj

)
)

⎞

⎠ = O
⎛

⎝dG log(G/ε)
t∑

j=0

2j + d log(1/δ)
t∑

j=0

2j (t − j + 1)

⎞

⎠

= O (d(G log(G/ε)+ log(1/δ))2t) = O
(√

d(G log(G/ε)+ log(1/δ))
ε

)

.

(C36)

This concludes the proof of the O(1/ε) scaling algorithm
in Proposition 8.

Finally, we note that an analogous bootstrap method
can also be applied to improve the ε dependence for
our unitary-learning procedure without auxiliary systems,
albeit again incurring a dimension factor. Namely, a vari-
ant of Algorithm 5 relying on the algorithm of Appendix
C 2 a as a subroutine succeeds at outputting a Û that
satisfies davg(Û, U) ≤ ε with probability at least 1 − δ
using O (d3/2(G log(G/ε)+ log(1/δ))/ε

)
queries to the

unknown unitary U, assuming that ε < 1/d3/2.

3. Average-case query-complexity lower bounds

For the lower bound, we construct a packing net con-
sisting of G-gate unitaries that are pairwise sufficiently far
apart that an average-case learning algorithm can discrim-
inate them. Meanwhile, the success probability of distin-
guishing a set of unitaries is upper bounded by the number
of queries made [68]. This gives us an �(G) query-
complexity lower bound. To incorporate ε dependence, we
follow [23] and map the problem into a fractional-query
problem [66,67]. In this way, we arrive at the following
result.

Proposition 9 (Average-case unitary-learning lower
bound; lower bound in Theorem 4). Let U be an n-qubit
unitary composed of G two-qubit gates. Any algorithm
that, given query access to U, U†, cU = |0〉 〈0| ⊗ I +
|1〉 〈1| ⊗ U and cU† = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U†, can out-
put a unitary Û such that davg(Û, U) ≤ ε ∈ (0, 1/32) with
probability at least 2/3, must use at least �(G/ε) queries.

Note that the lower bound holds even for learning algo-
rithms that have a stronger form of access to U than
considered for our upper bounds. There, we have only
assumed query access to U. In contrast, the lower bound
holds even assuming query access to U and U† as well as
controlled versions thereof.

Proof of Proposition 9. The proof builds on the follow-
ing lemma that maps the problem into a fractional-query
one [23].

Lemma 24 (Reduction to fractional-query algorithms
[23, Lemma 4.5 and proof of Theorem 1.2]). Let R ∈
U(d) be a Hermitian unitary (i.e., R2 = I ). Define Rα =
(I + R)/2 + e−iπα(I − R)/2 for some α ∈ (0, 1]. Suppose
that there exists an algorithm A that uses Q queries to
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Rα or Rα† and produces some output with probability at
least 2/3. Then there exists another algorithm A′ that
uses 50 + 100αQ queries to controlled-R and produces the
same output with probability at least exp(−απQ)/2.

To use this lemma, we need to construct a packing net of
Hermitian unitaries and give an upper bound on the maxi-
mum probability of successfully distinguishing them. Thus
we need the following two lemmas.

Lemma 25 (Packing net of Hermitian unitaries; variant
of Ref. [23, Proposition 4.1]). There exists a set of Her-
mitian unitaries P = {Ri}i ⊂ U(d) with log |P| ≥ �(d2)

and R2
i = I for Ri ∈ P , such that for any Ri �= Rj ∈ P ,

d′
F(Ri, Rj ) ≥ 1/8.

Proof. Let d = 2r + 1 if d is odd, or d = 2r + 2 if d is
even. In Ref. [145, Lemma 7] (or Ref. [21, Lemma 8]), it is
asserted that there exists a set of rank-r density matrices in
dimension 2r with cardinality at least exp

(
r2/8

)
, such that

all the nonzero eigenvalues are equal to 1/r and any two
different density matrices have trace distance at least 1/4.
We can write this set as {(I2r + Vi)/(2r), i = 1, . . . , N },
where Vi ∈ U(2r) is a Hermitian unitary of trace zero.
Then, N ≥ exp

(
r2/8

)
, and ∀i �= j ,

1
4
≤ 1

2

∥∥∥∥
I2r + Vi

2r
− I2r + Vj

2r

∥∥∥∥
1
= 1

4r
‖Vi − Vj ‖1

≤ 1√
2r
‖Vi − Vj ‖F , (C37)

where we have used ‖Vi‖1 ≤
√

2r‖Vi‖F . Then, we embed
Vi → Ri = Vi ⊕ Ib ∈ U(d), where b = 1 or 2, depending
on whether d is odd or even. We have

dF(Ri, Rj ) = 1√
d
‖Ri − Rj ‖F ≥ 1

4

√
2r

2r + b
≥ 1

8
. (C38)

Now, we would like to translate dF into d′
F . From Lemma

10, we know that changing to the quotient metric for any
set of unitaries only decreases log N by an additive con-
stant (since here we consider constant ε). Therefore, we
still have log |P| ≥ �(d2) for d′

F(Ri, Rj ) ≥ 1
8 . �

Lemma 26 (Upper bound on success probability of dis-
tinguishing unitaries [68, Theorem 5]). Let P ⊆ U(d) be
a set of unitaries. Let A be any algorithm that uses Q
queries to an input unitary Ux and output a guess x̂. Sup-
pose that the input unitary is randomly picked from P
with uniform probability. Then, the maximal probabil-
ity that the output satisfies x̂ = x is upper bounded by
(1/|P|)(Q+d2−1

Q

)
.

Now, we can proceed to prove the lower bound in Propo-
sition 9. Suppose that we have a learning algorithm A that

uses Q queries and outputs a Û that has accuracy ε in
davg with success probability at least 2/3. From the the-
ory of universal gates [146], we know that G = O(4k)

gates suffice to implement an arbitrary k-qubit unitary, i.e.,
there exists a constant C such that G gates can imple-
ment an arbitrary unitary on k = ⌊log4(G/C)

⌋
qubits. Let

d = min{2n, 2k}, and focus on the first min{n, k} qubits.
The algorithm A is thus able to learn any unitary on these
qubits.

Consider the packing net P = {Ri} from Lemma 25 for
this choice of d. We want to identify R ∈ P but using
only access to Rα for 1/α = �1/32ε� > 1. If we apply
A to Rα , then with probability at least 2/3, the output
U satisfies davg(U, Rα) ≤ ε. From the equivalence of davg
and d′

F (Lemma 4), and the triangle inequality and unitary
invariance of d′

F , we have

d′
F(U

1/α , R) ≤
1/α∑

p=1

d′
F(U

pR1−αp , Up−1R1−αp+α)

= 2
α

davg(U, Rα) ≤ 2ε
α

≤ 1
16

. (C39)

Since R ∈ P have pairwise distance at least 1/8, the
algorithm can identify R with success probability at least
2/3 by finding the closest element of P to U1/α .

Now, via Lemma 24, we know that there is a learn-
ing algorithm A′ that can use 50 + 100αQ queries to
controlled-R to identify R with success probability at
least exp(−απQ)/2. On the other hand, we know that
the success probability cannot exceed the upper bound
(Q+d2−1

Q

)
/|P| set by Lemma 26 with log |P| ≥ �(d2).

Combined with a technical lemma [23, Lemma 4.3], this
means that the number of queries must be at least �(d2),
i.e.,

50 + 100αQ ≥ �(d2) =⇒ Q ≥ �

(
d2

α

)
= �

(
d2

ε

)

= �

(
min{4n, G}

ε

)
. (C40)

This concludes the proof of Proposition 9. �

We comment on the connection of our results to the
recent work [56] on the hardness of learning Haar-
random unitaries, where the authors have proved a sample-
complexity lower bound �

(
d2/log2 d

)
for learning

d-dimensional Haar-random unitaries to constant accu-
racy with respect to d′

F . The direct consequence of our
lower bound when applied to learning the whole unitary
group U(d), without assumptions of limited complexity, is
a lower bound of �

(
d2
)
, which is stronger than that of

Ref. [56, Theorem 1] by a factor of log2 d. We note that

040306-42



LEARNING QUANTUM STATES. . . PRX QUANTUM 5, 040306 (2024)

this difference is a consequence of proof techniques that
comes about in two ways. One log d factor comes from
the authors’ analysis of the differential entropy, which only
calculates the contribution of �(d/log d) columns of the
matrix elements, instead of all d columns. This issue does
not arise for us, because we focus on the discrete entropy
with the use of a packing net. The other log d comes from
the mutual information upper bound, where the authors
use the straightforward Holevo bound: each d-dimensional
quantum state can carry at most O(log d) bits of informa-
tion. We manage to get rid of this factor by making use
of a more refined bound on the success probability, as in
Lemma 26.

Lastly, we remark on the proof technique used here
compared to the Holevo information bound in the state-
learning case (Appendix B 2). The Holevo bound is par-
ticularly useful in proving these lower bounds because,
combined with the data-processing inequality, it gives an
upper bound on the amount of information that can be
extracted from quantum states. In particular, it asserts
that, given an ensemble of d-dimensional states {ρX } with
random classical labels X ∈ [M ], the maximal mutual
information with the underlying random label when using
k copies of the state is upper bounded by χ(X ; ρ⊗k

X ) �
S(EX [ρ⊗k

X ])− EX [S(ρ⊗k
X )]. Meanwhile, the information

needed to distinguishing a packing net of d-dimensional
states is lower bounded by �(d). Thus, upper bounding
the Holevo χ via the number of samples k can give us
sample-complexity lower bounds. A naive upper bound
is χ ≤ S(EX [ρ⊗k

X ]) ≤ k log d, because EX [ρ⊗k
X ] is a dk-

dimensional mixed state and thus has entropy at most
k log d. This gives us a �(d/ log d) sample-complexity
lower bound with a suboptimal logarithmic factor. To get
rid of the log d factor, in Ref. [179] it has been noted that
k copies of a d-dimensional pure state live in the symmet-
ric subspace of the k-fold tensor power of d-dimensional
Hilbert space. Therefore, the first term S(EX [ρX ]), along
with the Holevo χ , can be more tightly upper bounded by
log
(k+d−1

k

)
, where the binomial coefficient is the dimen-

sion of the symmetric subspace. This can then be used to
prove a �(d) lower bound, which is optimal in d.

However, an analogous result for unitary (or, more
generally, channel) queries is still lacking. Consider an
ensemble of channels {CX } labeled by a classical ran-
dom variable X ∈ [M ]. In general, one can sequentially
query the channel k times interleaved with process-
ing operations to prepare a state carrying the infor-
mation extracted from the queries. This then has the
form ρk

X = CkCX Ck−1CX · · · C1CX (ρ
0), where the Ci are

fixed channels independent of X and ρ0 is some fixed
state. Then, the amount of information that one can
extract is given by the Holevo information χ(X ; ρk

X ) =
S(EX [ρk

X ])− EX S([ρk
X ]). Upper bounding this quantity is

in general difficult. In Ref. [180], the authors have used
induction and obtained χ ≤ k log

(
d2
)
, which corresponds

to the naive upper bound in the state case. Using this, how-
ever, can only give us a suboptimal �(d2/ log d) query-
complexity lower bound. We suspect that an improved
method, similar in spirit to Ref. [179], making use of the
fact that all k queries are to the same channel CX should be
possible and should give a

χ(X ; ρk
X ) ≤ log

(
k + d2 − 1

k

)
(C41)

upper bound. This would then also give an information-
theoretic perspective on the binomial coefficient appearing
in the unitary discrimination result of Lemma 26, origi-
nally proved by positive-semidefinite programming. We
leave the proof of this Holevo information bound as an
open problem for future work.

4. Learning from classically described data

As we have seen in Theorems 1 and 4, the sample com-
plexities of learning G-gate states and unitaries are both
�̃(G). This suggests that they have similar sources of com-
plexity. However, differently from state learning, we can
identify two sources of difficulty in unitary learning: (1)
reading out the input and output quantum states, and (2)
learning the mapping from inputs to outputs. The similar
complexity �̃(G) of both state and unitary learning sug-
gests that learning the mapping is actually easy and may
only need a constant number of queries to the unknown
unitary.

To formalize this idea, we consider a different access
model for the unitary-learning task: we focus on learn-
ing the mapping by assuming training data that contains
classical descriptions of input and output states. Specifi-
cally, we consider a learning algorithm H that selects N
input n-qubit states {|xi〉}N

i=1 and queries the unknown uni-
tary to obtain {U |xi〉}N

i=1, where we have (repeated) access
to the classical descriptions of all these input and output
states. Based on these classically described data, we want
to use the learning algorithm H to output a Û that satisfies
davg(Û, U) ≤ ε.

A recent line of research on the quantum no-free-lunch
theorem [50,51] implies that the above task of learning the
mapping from classically described data in the average-
case distance requires at least �(2n) samples. This seems
to contradict our idea that learning the mapping should be
easy. However, in Ref. [51], how to circumvent the quan-
tum no-free-lunch theorem has also been demonstrated. In
particular, the authors have shown that by entangling our
input states with an ancillary system, applying the unitary
on the original system, and collecting the output entangled
states, we can reduce the sample requirement by a factor
equal to the Schimidt rank r of the entangled states. In the
limit of the maximally entangled state, where r = 2n, the
output state is in fact the Choi-Jamiołkowski state of the
unitary, which already contains all the matrix elements of
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the unitary. Therefore, in Ref. [51] it has been concluded
that the use of entangled data can reduce the data require-
ments and eventually make the unitary-learning task easy,
requiring only one sample with a maximally entangled
input state.

Here, we aim to go beyond this result and provide a
unified information-theoretic reformulation of the quantum
no-free-lunch theorem (Theorem 17), which is not lim-
ited to entangled data. We find that the key ingredient to
reduce the sample complexity of learning with classical
description is to enlarge the representation space (i.e., the
space in which the output states live). While entanglement
is one way to achieve such an enlargement, it is not the
only one. In fact, we find an alternative method that only
uses classically mixed states and achieves the same reduc-
tion in sample complexity. Specifically, we establish the
following theorem.

Proposition 10 (Upper bounds in learning with classi-
cal descriptions; restatement of upper bounds in Theorem
5). There exists a learning algorithm Hentangle that, for
any n-qubit unitary U ∈ U(2n), uses N = �2n/r� classi-
cally described data {(|xi〉 , (U ⊗ I) |xi〉)}N

i=1, where the |xi〉
are bipartite entangled states over two n-qubit systems
with Schmidt rank at most r, to output a Û such that
davg(Û, U) ≤ ε for any ε > 0.

Similarly, there exists a learning algorithm Hmixed that,
for any n-qubit unitary U ∈ U(2n), uses N = �2n/r� clas-
sically described data {(ρi, (U ⊗ I)ρi(U ⊗ I)†)}N

i=1, where
the ρi are classically mixed states over two n-qubit systems
with rank at most r, of the form

ρi =
r∑

j=1

pij
∣∣φij
〉 〈
φij
∣∣⊗ ∣∣ψij

〉 〈
ψij
∣∣ , (C42)

to output a Û such that davg(Û, U) ≤ ε for any ε > 0.

Note that, since the number N of training data points
in Proposition 10 is independent of the desired accuracy
ε > 0, we can also learn with respect to d♦. In fact, we can
even learn the unknown unitary exactly.

We prove Proposition 10 by explicitly constructing
the learning algorithms. We remark that the r = 2n case
for entangled data has previously appeared in Ref. [51]
and that a different strategy using mixed states has been
proposed in Ref. [73].

Proof. Let d = 2n. We begin by describing the
algorithm for entangled data. We consider the following
set of input states:

∣
∣xj
〉 = 1

√Zj

min{jr,d}∑

i=(j−1)r+1

|i〉 ⊗ |i〉 , j = 1, . . . , �d/r� ,

(C43)

where the normalization Zj = r for 1 ≤ j ≤ �d/r� − 1
and Zj = d − (�d/r� − 1)r for j = �d/r�. They all have
Schmidt rank at most r. If we apply U ⊗ I on

∣∣xj
〉
, the

output state reads

(U ⊗ I)
∣∣xj
〉 = 1

√Zj

min{jr,d}∑

i=(j−1)r+1

d∑

k=1

〈k|U|i〉 |k〉 ⊗ |i〉 .

(C44)

Since we have the classical description, we can directly
read off the matrix elements 〈k|U|i〉 with 1 ≤ k ≤ d and
(j − 1)r + 1 ≤ i ≤ min{jr, d}. Combining different j , we
can gather all the matrix elements that we need to learn U.

Next, we describe the algorithm for mixed-state data.
We consider the input states to be

ρj =
min{jr,d}∑

i=(j−1)r+1

pj |ii〉 〈ii| , j = 1, . . . , �d/r� . (C45)

where the uniform mixing probability pj = 1/r for 1 ≤
j ≤ �d/r� − 1 and pj = 1/(d − (�d/r� − 1)r) for j =
�d/r�. Then, all ρj have rank at most r. If we apply U ⊗ I
on
∣∣xj
〉
, the output state becomes

ρj =
min{jr,d}∑

i=(j−1)r+1

pj (U ⊗ I) |ii〉 〈ii| (U ⊗ I)†,

j = 1, . . . , �d/r� . (C46)

We can interpret this output mixed state as randomly
choosing a basis state in the ancillary system and applying
the unitary to the same state in the original system. Since
we have the classical description, we can use the ancillary
system as a label for the state that we have inputted (e.g,
|i〉) and read off all the amplitudes of U |i〉 on the original
system, i.e., a column of the U matrix. Then, by combining
all the different basis elements |i〉, 1 ≤ i ≤ d, we obtain all
the matrix elements of U. �

Now, we move on to the lower bound, which states that
any noise-robust unitary-learning algorithm needs at least
�(2n/r) samples to learn an arbitrary unknown unitary
from classically described data. The noise-robust require-
ment here is in accordance with realistic learning scenarios
in which the tomography of input and output states nec-
essarily involves reconstruction imperfection and noise.
Specifically, we have the following proposition.

Proposition 11 (Lower bounds in learning with classi-
cal descriptions; restatement of lower bounds in Theorem
5). Let ε ∈ (0, 1), η = �(ε). Let Hentangle be any learning
algorithm that, for any n-qubit unitary U ∈ U(2n), uses
classically described data {(|xi〉 , |yi〉)}N

i=1, where the |xi〉
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are bipartite entangled states over two n-qubit systems with
Schmidt rank at most r and the |yi〉 are η-noisy versions of
(U ⊗ I) |xi〉 satisfying dtr(|yi〉 , (U ⊗ I) |xi〉) ≤ η, to output
a Û such that davg(Û, U) ≤ ε. Then, Hentangle needs at least
N ≥ �(2n/r) samples.

Similarly, let Hmixed be any learning algorithm that, for
any n-qubit unitary U ∈ U(2n), uses classically described
data {(ρi, σi)}N

i=1, where the ρi are classically mixed states
over two n-qubit systems with rank at most r of the form

ρi =
r∑

j=1

pij
∣∣φij
〉 〈
φij
∣∣⊗ ∣∣ψij

〉 〈
ψij
∣∣ (C47)

and the σi are η-noisy versions of (U ⊗ I)ρi(U ⊗ I)†

satisfying dtr(σi, (U ⊗ I)ρi(U ⊗ I)†)) ≤ η, to output a Û
such that davg(Û, U) ≤ ε. Then, Hmixed needs at least N ≥
�(2n/r) samples.

Proposition 11 is a consequence of the following
information-theoretic reformulation of the quantum no-
free-lunch theorem. The intuition behind this theorem is
simple. On the one hand, to learn a unitary, we have
to gather enough information to specify it. This required
amount of information is quantified by the metric entropy
of the unitary class. On the other hand, the information pro-
vided by each sample is limited and can be characterized
by the metric entropy of the output state space. Therefore,
the number of samples needed to learn the unitary is given
by the former divided by the latter. In particular, we can see
that the data requirement can be reduced if we increase the
amount of information carried by each sample, represented
by the metric entropy in the denominator.

Theorem 17 (Information-theoretic reformulation of
quantum no-free-lunch theorem). Let η, ε ∈ (0, 1). Let S
be a set of input states (possibly with ancillas) and let
P be a distribution over S. Let {ρi}N

i=1 ⊂ SN be N clas-
sically described input states. Suppose that after apply-
ing the unknown n-qubit unitary U from a class U ⊆
U(2n) of unitaries, they are transformed into the output
states {σi}N

i=1 through the map fU : ρi �→ σi = fU(ρi). Let
σ̃i be an η-noisy version of σi satisfying dtr(σ̃i, σi) ≤ η.
Let Nη = supρ∈S N ({fV(ρ) : V ∈ U}, dtr, η) be the maxi-
mal covering number of the set of all possible output
states with different unitaries acting on the input states. Let
FU = {fV : V ∈ U} be the set of maps and let dP(fV, fW) =√

Eρ∼P[dtr(fV(ρ), fW(ρ))2] be the root-mean-square trace
distance. Then, any learning algorithm H that uses the η-
noisy classically described data {ρi, σ̃i}N

i=1 and outputs a Û
such that dP(fÛ, fU) ≤ ε with probability at least 2/3 needs
at least

N ≥ �

(
logM(FU , dP, 2ε + 6η)

logNη

)
(C48)

samples.

In particular, if η = �(ε), U = U(2n), P is a locally
scrambled ensemble up to the second moment over n-qubit
pure states (e.g., an n-qubit Haar measure), S is the support
of P, and fU(ρ) = UρU†, then at least �(2n) samples are
needed.

We remark that η = �(ε) is a convenient choice of
noise level for stating the results, but in fact a weaker
assumption, log(1/η) = �(log(1/ε)), suffices.

In the following, we will first show that Theorem 17
implies Proposition 11 (the lower bounds in Theorem 5).
Then, we will turn to the proof of Theorem 17.

Proof of Proposition 11. In both cases (entangled or
mixed), we prove the �(2n/r) lower bound in two
steps via Theorem 17: (1) we show that the numera-
tor logM(FU , dP, 2ε + 6η) in Theorem 17 is at least
�(4n log(1/ε)); and (2) we show that the denominator Nε

is at most O(2nr log(1/ε)) when the input states are either
entangled pure states of Schmidt rank at most r or mixed
states of rank at most r. Then, the desired results follow.

For step (1), we begin by defining the distribution P with
respect to which the performance in Theorem 17 is mea-
sured. For both entangled and mixed cases, we define P
to be the distribution of |ψ〉 ⊗ |0〉⊗n, where |ψ〉 is a Haar-
random state on the original system and |0〉⊗n is a fixed
state on the ancillary system. Note that this state is indeed
both a bipartite entangled state with Schmidt rank at most
r and of the form given in Eq. (C47), with rank at most r.
Moreover, since, in both cases, the map fU is given by act-
ing the unitary U on the original system and the identity on
the ancillary system, the distance metric dP(fV, fW) is the
same as davg. Therefore, the packing number satisfies

M(FU(2n), dP, 2ε + 6η) = M(U(2n), davg, 2ε + 6η).
(C49)

To find the packing number M(U(2n), davg, 2ε + 6η), we
invoke the covering-number bound for U(2n) with respect
to the normalized Frobenius norm dF (Lemma 9), the fact
that quotienting out the global phase only changes the met-
ric entropy by a constant (Lemma 10) and the equivalence
of d′

F and davg [Lemma 4, item (1)]. We have

logM(FU(2n), dP, 2ε + 6η)

= logM(U(2n), davg, 2ε + 6η) ≥ �

(
4n log

1
ε

)
,

(C50)

where we have used η = �(ε).
Next, for step (2), we compute Nη. For entangled data,

note that applying unitaries on only the first n qubits does
not change the bipartite Schmidt rank r, so the output
states are pure states of the form |χ〉 =∑2n

i,j=1 Aij |i〉 ⊗ |j 〉,
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where ‖A‖F = 1 because of normalization, and the rank
of A corresponds to the Schmidt rank, which is at most
r. Furthermore, the Euclidean distance between the output
states is equal to the Frobenius distance between the cor-
responding A-matrices. With this correspondence, we can
explicitly construct a covering net over the output states as
follows. We take a minimal η-covering net N ′ over the set
of complex matrices A with bounded rank r and ‖A‖F = 1
with respect to the Frobenius distance. Since they are con-
tained in the unit ball (‖A‖F ≤ 1) in a real linear space of
dimension 2 · 2n · r [181, Theorem 1], by the monotonicity
of the covering number and the standard covering-number
bound for Euclidean balls via a volume argument [53,
Corollary 4.2.13], we have log |N ′| ≤ O(2nr log(1/η)).
Meanwhile, similarly to the proof in Lemma 1, the trace
distance between any two pure states |ψ〉 , |φ〉 is bounded
by the Euclidean distance and thus the Frobenius distance
between the corresponding A matrices is as follows:

dtr(|ψ〉 , |φ〉) =
√

1 − | 〈ψ |φ〉 |2 ≤
√

2(1 − | 〈ψ |φ〉 |)
≤
√

2(1 − Re[〈ψ |φ〉]) = ‖|ψ〉 − |φ〉‖2.
(C51)

Therefore, N ′ gives an η-covering net over the out-
put states with respect to the trace distance dtr. Hence,
logNη ≤ log |N ′| ≤ O(2nr log(1/η)) = O(2nr log(1/ε)),
since η = �(ε), and from Theorem 17 we have the desired
lower bound,

N ≥ �

(
4n log(1/ε)
2nr log(1/ε)

)
= �

(
2n

r

)
. (C52)

The case of mixed states is similar. For a given input state
ρ =∑r

i=1 pi |φi〉〈φi| ⊗ |ψi〉〈ψi|, the output state reads

σ =
r∑

i=1

piU |φi〉〈φi|U†⊗ |ψi〉〈ψi| . (C53)

Now, we take a minimal η-covering net N ′′ over all
pure n-qubit states with respect to the Euclidean dis-
tance, which is a unit ball in a (2 · 2n)-dimensional
real linear space. By the standard covering-number
bound for Euclidean balls, we know that log |N ′′| ≤
O(2n log(1/η)) = O(2n log(1/ε)). Then, for any U |φi〉,
there exists a |ηi〉 ∈ N ′′ such that ‖U |φ1〉 − |η1〉‖2 ≤ η.
Let σ ′ =∑r

i=1 pi |ηi〉〈ηi| ⊗ |ψi〉〈ψi|. Then, the trace dis-
tance is bounded by

1
2
‖σ − σ ′‖1 ≤ 1

2

r∑

i=1

pi‖U |φi〉〈φi|U†⊗ |ψi〉〈ψi| − |ηi〉〈ηi| ⊗ |ψi〉〈ψi|‖1

≤ 1
2

r∑

i=1

pi‖U |φi〉 ⊗ |ψi〉 − |ηi〉 ⊗ |ψi〉‖2

= 1
2

r∑

i=1

pi‖U |φi〉 − |ηi〉‖2 ≤ η

2

r∑

i=1

pi = η

2
, (C54)

where we have used the subadditivity of the trace norm,
the fact that the trace distance is upper bounded by the
Euclidean norm for pure states, and

∑r
i=1 pi = 1. Hence

the set

{
r∑

i=1

pi |ηi〉 〈ηi| ⊗ |ψi〉 〈ψi| : |ηi〉 ∈ N ′′, 1 ≤ i ≤ r

}

(C55)

forms an η/2-covering net of set of the output states
and has cardinality |N ′′|r. Therefore, we have logNη =
r log |N ′′| = O(2nr log(1/ε)). From Theorem 17, we

again arrive at the desired result,

N ≥ �

(
4n log(1/ε)
2nr log(1/ε)

)
= �

(
2n

r

)
. (C56)

This concludes the proof of Proposition 11 and together
with Proposition 10, we have proved Theorem 5. �

Now, we move on to prove our quantum no-free-lunch
theorem (Theorem 17). We first establish the following
information-theoretic lower bound on the sample complex-
ity of learning discrete functions. We remark that a version
for binary-valued functions has been proved in a different
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fashion in Ref. [182, Proposition 8] and Ref. [183, Lemma
4.8].

Proposition 12 (Information-theoretic lower bound for
learning discrete functions). Let ε > 0, k ∈ N, and F be
a class of functions mapping X to Y = {1, . . . , k} with a
distance metric d. Any learning algorithm H that uses N
samples {xi ∈ X , yi = f (xi)}N

i=1 and outputs an f̂ such that
d(f̂ , f ) ≤ ε with probability at least 2/3 for any f ∈ F
must use at least

N ≥ �

(
logM(F , d, 2ε)

log k

)
(C57)

samples.

Proof of Proposition 12. We begin by taking a max-
imal 2ε-packing P of F , i.e., |P| = M(F , d, 2ε) and
for any fi �= fj ∈ P , d(fi, fj ) > 2ε. Now, we design a
communication protocol between two parties, Alice and
Bob, as follows. The packing P is shared by both par-
ties. Alice takes a random variable W uniformly sampled
from {1, . . . ,M(F , d, 2ε)} and picks the corresponding
function fW from the packing P . She then feeds the
inputs x = (x1, . . . , xN ) into fW, generating a data set Z =
((x1, fW(x1)), . . . , (xN , fW(xN ))), and sends the data set to
Bob. Bob’s task is to use this data set to determine which
function Alice has used. Suppose that Bob is given a
learning algorithm described as in the proposition. The
algorithm will learn from the data set and output a hypoth-
esis function f̂ that satisfies

P[d(f̂ , fW) ≤ ε] ≥ 2/3 , (C58)

no matter which W was chosen by Alice. With f̂ in hand,
Bob can make the guess

Ŵ = argminfw∈Pd(f̂ , fw). (C59)

Note that as long as d(f̂ , fW) ≤ ε, then, for any fi �= fW ∈
P ,

d(f̂ , fi) ≥ d(fW, fi)− d(f̂ , fW) > 2ε − ε = ε ≥ d(f̂ , fW).
(C60)

Therefore, the error probability of Bob’s guess is bounded
by

P[Ŵ �= W] = P[∃i �= W : d(f̂ , fi) ≤ d(f̂ , fW)]

≤ P[d(f̂ , fW) > ε] ≤ 1/3. (C61)

By the Fano inequality [184, Theorem 2.10.1], the con-
ditional entropy S(W|Ŵ) ≤ s2(1/3)+ 1

3 logM(F , d, 2ε),

where s2(δ) = −δ log δ − (1 − δ) log(1 − δ) is the binary
entropy function. Then, the mutual information is at least

I(W; Ŵ) = S(W)− S(W|Ŵ)
≥ (2/3) logM(F , d, 2ε)− s2(1/3). (C62)

On the other hand, the sample size N controls the amount
of information to which Bob has access. Since Bob’s guess
is produced by the data set Z, by the data-processing
inequality [184, Theorem 2.8.1], we have

I(W; Ŵ) ≤ I(W; Z) = S(Z)− S(Z|W)
= S(fW(x1), . . . , fW(xN )) ≤ N log k, (C63)

where we have used S(Z|W) = 0, since Z is determined
by W, and the fact that (fW(x1), . . . , fW(xN )) can take no
more than kN different values. Combining the above two
inequalities, we arrive at

N ≥ �

(M(F , d, 2ε)
log k

)
. (C64)

�

With Proposition 12, we can prove Theorem 17 by quan-
tizing the output states to the nearest elements in covering
nets, similar to an idea employed in Ref. [185].

Proof of Theorem 17. Let k = Nη. Since Nη ≥
N ({fV(ρ), V ∈ U}, dtr, η) for every ρ ∈ S, we can find an
η-covering net Nρ of size k for each ρ ∈ S. We label the
elements of Nρ using {1, . . . , k} and define Lρ(σ ) ∈ [k] as
the label of a covering-net element σ ∈ Nρ .

Now, we define the quantized function QfU that maps
an input state ρ to an element of the covering net Nρ .
Specifically, for any ρ ∈ S and any σ ∈ {fV(ρ), V ∈ U},
there exists a σ ′ ∈ Nρ , such that dtr(σ , σ ′) ≤ η. For any
unitary U ∈ U , we define

QfU(ρ) = argminσ∈Nρ
dtr(fU(ρ)σ ) (C65)

and let LQfU(ρ) = Lρ[QfU(ρ)] be the corresponding label.
(Ties are broken arbitrarily.) Then, LQfU is a discrete-
output function mapping input states S to labels [k] and
it is in one-to-one correspondence with QfU. We use FQ

to denote all these labeled quantized functions, FQ =
{LQfU, U ∈ U}, and define the distance metric on labeled
functions as dL(LQfV, LQfW) = dP(QfV, QfW). A useful
property is that for any unitary U ∈ U , we have

dP(fU, QfU) =
√

Eρ∼P[dtr(fU(ρ), QfU(ρ))2]

≤
√

Eρ∼P[η2] = η. (C66)

Now, we claim that if there exists a noise-robust learning
algorithm H for U to accuracy ε in dP with probability
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at least 2/3, then we can use it to construct a learning
algorithm H Q for FQ to accuracy ε + 2η in dL with suc-
cess probability at least 2/3. Hence, the sample complexity
for U must satisfy

N ≥ �

(
logM(FQ, dL, 2ε + 4η)

log k

)
, (C67)

by Proposition 12.
To show this claim, we construct H Q as follows. For any

LQfU ∈ FQ, let the data set be

Z = (ρ1, QfU(ρ1)), . . . , (ρN , QfU(ρN )). (C68)

From the definition of quantized functions, we know that
the QfU(ρi) are the η-noisy version of fU(ρi) because
dtr(QfU(ρi), fU(ρi)) ≤ η. Now, we define H Q as

H Q[Z] = LQfH [Z]. (C69)

Since the learning algorithm H is η-noise-robust, we have
dP(fH [Z], fU) ≤ ε and thus dP(fH [Z], QfU) ≤ dP(fH [Z], fU)+
dP(fU, QfU) ≤ ε + η with probability at least 2/3. Then, by
the triangle inequality (proved similarly as in Lemma 6),
we have

dL(H Q[Z], LQfU) = dP(QfH [Z], QfU) ≤ dP(QfH [Z], fH [Z])

+ dP(fH [Z], QfU) ≤ ε + 2η (C70)

with probability at least 2/3. Thus the claim is proved.
At this point, it remains to prove that

M(FQ, dL, 2ε + 4η) ≥ M(FU , dP, 2ε + 6η). (C71)

To prove this, we can take a maximal (2ε + 6η)-packing P
of FU with respect to dP, with |P| = M(FU , dP, 2ε + 6η).
Then, ∀fU1 �= fU2 ∈ P , we have

2ε + 6η < dP(fU1 , fU2) ≤ dP(fU1 , QfU1)+ dP(QfU1 , QfU2)

+ dP(QfU2 , U2) ≤ 2η + dP(QfU1 , QfU2).
(C72)

Therefore, dL(LQfU1 , LQfU2) = dP(QfU1 , QfU2) > 2ε + 4η.
Hence,

M(FQ, dL, 2ε + 4η) ≥ |{LQfU, U ∈ P}| = |P|
= M(FU , dP, 2ε + 6η). (C73)

This concludes the proof of the main part of Theorem 17.
Finally, we illustrate the special case in which η =

�(ε), U = U(2n) is the whole unitary group, P is a locally
scrambled ensemble up to the second moment over n-qubit
pure states (e.g., an n-qubit Haar measure; see Definition
1), S is the support of P, and fU(ρ) = UρU†. We show
that at least �(2n) samples are needed, thus reproducing
the quantum no-free-lunch theorem in the usual sense and
generalizing it to locally scrambled ensembles.

To see this, we first compute logM(FU(2n), dP, 2ε +
6η). From the covering-number bound for U(2n) with
respect to the normalized Frobeinus norm dF (Lemma 9),
the fact that quotienting out the global phase only changes
the metric entropy by an additive O(log(1/(2ε + 6η)))
term (Lemma 10), and by the equivalence of d′

F , davg,
and dP [Lemma 4, item (1) and Lemma 5], we know that
logM(FU(2n), dP, 2ε + 6η) ≥ �(4n log(1/ε)), where we
have used η = �(ε).

Next, we move on to Nη. Since the output states are
still n-qubit pure states, Nη is the covering number of
the set of pure states with respect to dtr. Considering that
1
2‖|ψ〉 〈ψ |‖1 is less than one for any pure state |ψ〉, the
covering number is upper bounded by the covering num-
ber of a unit Euclidean ball in a �(2n)-dimensional lin-
ear space. Therefore, we have logNη ≤ O(2n log(1/η)) =
O(2n log(1/ε)) since η = �(ε). Hence we arrive at

N ≥ �

(
4n log(1/ε)
2n log(1/ε)

)
= �(2n). (C74)

This concludes the proof of Theorem 17. �

The information-theoretic version of the quantum no-
free-lunch theorem (Theorem 17) also gives us a way
to generalize the quantum no-free-lunch to a restricted
unitary class. For example, for unitaries with bounded
circuit complexity G, the packing number in the enu-
merator is lower bounded by �(G), while the cover-
ing number in the denominator is upper bounded by
O(min{G log G + G log n, 2n}). This gives us a quantum
no-free-lunch theorem for G-gate unitaries, where the sam-
ple complexity is lower bounded by �(1) for G ≤ O(2n),
by �(G/2n) for �(2n) < G ≤ O(4n) and �(2n) for G ≥
�(4n).

5. Computational complexity

Similarly to the state-learning case, our algorithm for
average-case unitary learning described in Appendix C 2
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is not computationally efficient. In this section, we follow
Appendix B 3 and first show that there is no polynomial-
time algorithm for learning unitaries composed of G =
O(npolylog(n)) two-qubit gates, assuming that RingLWE
cannot be solved efficiently on a quantum computer.
This result also holds for unitaries with circuit depth
O(polylog(n)). Then, we invoke a stronger assumption,
that RingLWE cannot be solved by any subexponential-
time quantum algorithm, and show that any quantum
algorithm for learning unitaries composed of Õ(G) gates
must use exp(�(G)) time. Finally, we explicitly con-
struct an efficient learning algorithm for G = O(log n),
thus establishing log n gate complexity as a transition point
of computational efficiency.

Theorem 18 (Unitary-learning computational-complex-
ity lower bound assuming polynomial hardness of
RingLWE). Let λ = n be the security parameter. Let U
be a unitary consisting of G = O(npolylog(n)) gates (or a
depth d = O(polylog(n)) circuit) that implements a pseu-
dorandom function in RF . Such a unitary U exists by
Corollary 3. There exists no polynomial-time quantum
algorithm for learning a circuit description of U to within
ε ≤ 1/64 average-case distance davg with probability at
least 2/3 from N = poly(λ) queries, if quantum computers
cannot solve RingLWE in polynomial time.

Proof. Suppose, for the sake of contradiction, that there
is an efficient algorithm A0 that can learn a description
of U to within ε average-case distance with probabil-
ity at least 2/3. Then, by standard boosting of success
probability (see, e.g., Ref. [23, Proposition 2.4]), there is
an efficient algorithm A that can learn U to the same
accuracy with probability at least p = 1 − 1/8192 with
only a constant-factor overhead in time complexity. Note
that this boosting requires the distance metric to be effi-
ciently computable, which is guaranteed by the SWAP test

elaborated below. We will construct a polynomial-time
quantum distinguisher D that invokes A to distinguish
between U and the unitary V ∈ U corresponding to a
random classical function. This contradicts Theorem 11,
item (2).

The distinguisher D operates according to Algorithm 6.
Recall that the SWAP test [150,151] takes two quan-

tum states |α〉 , |β〉 as input and outputs one with prob-
ability (1 + | 〈α|β〉 |2)/2. We denote this algorithm as
SWAP(|α〉 , |β〉).

Note that step 2 in Algorithm 6, the preparation of ten-
sor product of one-qubit stabilizer states |x〉 , x ∈ Z

n
6, is

computationally efficient, because it can be achieved by
random one-qubit gates acting on each of the n qubits.
Moreover, step 4 can be implemented efficiently on a quan-
tum computer because Û is given in terms of efficient
circuit description and because the SWAP test is efficiently
implementable. Thus, assuming the hypothetical learner A
to be efficient, the distinguisher D is efficient as well.

We analyze the probability that the distinguisher D out-
puts 1 when given the pseudorandom function U versus
the random classical Boolean function V. We denote the
distribution of |x〉 by Q. From Lemma 5, we have

dQ(U, Û) =
√

E|x〉∼Q[dtr(U |x〉 , Û |x〉)2] ≤
√

2davg(U, Û).
(C75)

Case 1: U ∈ RF . By the guarantees of A, with probability
at least p , we have davg(Û, U) ≤ ε ≤ 1/64, where Û is the
unitary learned by algorithm A. This implies that

E|x〉∼Q| 〈x| Û†U |x〉 |2 = 1 − d2
Q(U, Û) ≥ 1 − 2ε2, (C76)

where we have used the relationship between the fidelity
and the trace distance. Then, it immediately follows from
Eq. (C76) that

Pr
U∈RF ,D

[D|U〉(·) = 1
] = Pr

U∈RF ,|x〉∼Q
A, SWAP

[
SWAP

(
U |x〉 , Û |x〉

)
= 1
]

= EU∈RF ,|x〉∼Q

[
Pr

A, SWAP

[
SWAP

(
U |x〉 , Û |x〉

)
= 1
∣
∣∣U, |x〉

]]

≥ pEU∈RF

[
1
2
+ 1

2
EÛ,|x〉∼Q

[
| 〈x| Û†U |x〉 |2

]]

≥ pEU∈RF

[
1
2
+ 1

2
(1 − 2ε2)

]
= p(1 − ε2) >

8189
8192

, (C77)

where in the first inequality we split the probability into two terms conditioned on the success and failure of A and we
lower bound the failure term by zero, and in the last inequality we have used the fact that p(1 − ε2) ≥ (1 − 1/8192)(1 −
1/4096) > 8189/8192.
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Case 2: U = V ∈ U , where V is the n-qubit unitary
implementing a randomly chosen classical function. We
want to upper bound the probability that the distinguisher

D outputs 1 when given queries to V. Let C be the set
of all possible output unitaries of A. We follow the same
reasoning as in Eq. (C77) and note that

Pr
V∈U ,D

[D|V〉(·) = 1
] ≤ EV∈U

[
max
W∈C

E|x〉∼Q

[
1
2
+ 1

2
| 〈x|V†W |x〉 |2

]]
+ (1 − p)

≤ EV∈U

[
max
W∈C

[
1 − 1

4
davg(V, W)2

]]
+ (1 − p)

� EV∈U [OV] + (1 − p), (C78)

where we define OV = maxW∈C
[
1 − 1

4 davg(V, W)2
]
. Fur-

thermore, we can split the right-hand side into two parts
by introducing a constant θ :

EV∈U [OV] ≤ Pr
[

OV ≤ 1 − θ2

4

]
·
(

1 − θ2

4

)

+ Pr
[

OV > 1 − θ2

4

]
· 1 ≤ 1 − θ2

4

+ Pr
[

OV > 1 − θ2

4

]
, (C79)

where we have used the fact that OV ≤ 1. Note that

Pr
[

OV > 1 − θ2

4

]
≤ Pr

V∈U
[∃W ∈ C : davg(V, W) < θ

]

≤
∑

W∈N
Pr

V∈U
[
davg(V, W) < θ

]

=
∑

W∈N

1
|U |

∑

V∈U
1
{
davg(V, W) < θ

}

≤ |N |maxW∈N NW,θ

|U | . (C80)

In the second line, we define N be a minimal θ -covering
net over C with respect to davg. Also, in the last line, we
define NW,θ �∑

V∈U 1{davg(V, W) < θ} to be the number
of V ∈ U that are θ -close to W in davg.

Now, we aim to upper bound NW,θ by counting. We first
note that NW,θ ≤ maxV∈U NV,4θ + 1. This is because, by
the definition of NW,θ , there exist V1, . . . , VNW,θ ∈ U such
that davg(Vi, W) < θ , 1 ≤ i ≤ NW,θ . Then, for V1 and any
Vi, 2 ≤ i ≤ NW,θ , we have

davg(V1, Vi) ≤ d′
F(V1, Vi) ≤ d′

F(V1, W)+ d′
F(Vi, W)

≤ 2davg(V1, W)+ 2davg(Vi, W) < 4θ . (C81)

This means that there are at least NW,θ − 1 elements of U
that are (4θ)-close to V1. Therefore, NV1,4θ ≥ NW,θ − 1 and
hence NW,θ ≤ maxV∈U NV,4θ + 1.

Next, we upper bound NV,4θ for any V ∈ U . Recall that
each V ∈ U is an oracle unitary of a Boolean function on
{0, 1}n. We can represent it by fV(i) ∈ {0, 1}, 1 ≤ i ≤ 2n.
Consider a different V′ ∈ U corresponding to the Boolean
function fV′ . If fV and fV′ differ on at least

⌈
64θ2 · 2n

⌉
of the

2n possible inputs i ∈ [2n], then the corresponding columns
of the unitaries V and V′ must also differ. In particular, in
each of these columns, there will be a matrix element that
is 1 for V but 0 for V′. This means that V and V′ are 4θ apart
from each other with respect to davg:

davg(V, V′) ≥ 1
2

min
eiφ∈U(1)

‖V − V′eiφ‖F

≥ 1

2
√

d
min

eiφ∈U(1)

√
64θ2 · 2n|1 − 0 · eiφ|2 = 4θ .

(C82)

Therefore, all functions fV′ corresponding to the V′ ∈ U
counted in NV,4θ must differ from fV on strictly less than⌈

64θ2 · 2n
⌉

of the 2n inputs. This gives us

NV,4θ ≤

⌈
64θ2·2n

⌉

∑

k=0

(
2n

k

)
, (C83)

where each term represents choosing k inputs where the
output is different from fV. The right-hand side can be
further bounded as

⌈
64θ2·2n

⌉

∑

k=0

(
2n

k

)
≤
(

e2n
⌈

64θ2 · 2n
⌉

)⌈64θ2·2n
⌉

≤ 2(64θ2·2n+1) log2(e/64θ2). (C84)
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Note that when θ = 1/16, we have 64θ2 = 1/4 and
64θ2 log2(e/64θ2) = log2(4e)/4 < 0.87. Therefore, recall-
ing that the set of all n-bit classical Boolean functions has
size |U | = 22n

, we obtain

Pr
[

OV > 1 − θ2

4

]
≤ |N |2−0.13·2n+log2(4e)+1, (C85)

where the extra one in the exponent takes the one in NW,θ ≤
maxV∈U NV,4θ + 1 into account.

Finally, we move on to bound |N |. Similarly to Eq.
(B102) in the state-learning case, since our learning
algorithm is a polynomial-time algorithm that can only
output circuit descriptions with size poly(n), we must have

|N | ≤ O ((1/θ)poly(n)) = O (2poly(n)) . (C86)

Thus we arrive at

Pr
[

OV > 1 − θ2

4

]
≤ O

(
2poly(n)−0.13·2n

)
= negl(n)

(C87)

and therefore

Pr
[D|V〉(·) = 1

] ≤ 1 − θ2

4
+ negl(n)+ (1 − p)

= 8185
8192

+ negl(n), (C88)

where we have used θ = 1/16 and p = 1 − 1/8192.
Combining Eqs. (C77) and (C87), we have

∣∣∣∣ Pr
U∈RF

[D|U〉(·) = 1] − Pr
V∈U

[D|V〉(·) = 1]
∣∣∣∣

≥ 4
8192

− negl(n) ≥ 1
4096

, (C89)

for large n. This contradicts the defining property of pseu-
dorandom functions RF [Theorem 11, item (2)] under the
assumption that RingLWE is hard. �

Next, we invoke the stronger assumption that RingLWE
cannot be solved by any subexponential-time quantum
algorithms and show that learning unitaries composed of
G = O(log n · polyloglogn) gates is computationally hard.

Theorem 19 (Unitary-learning computational-complex-
ity lower bound assuming subexponential hardness of
RingLWE; restatement of lower bound in Theorem 6). Let
λ = l = �(G), with l ≤ n being the security parameter.
Let V be an l-qubit unitary consisting of O(lpolylog(l)) =
O(Gpolylog(G)) gates (or a depth d = O(polylog(G)) cir-
cuit) that implements a pseudorandom function in RF .
Such a unitary V exists by Corollary 3. Let U = V ⊗ I ,
where the identity I is over the last (n − l) qubits. Any
quantum algorithm for learning a circuit description of the
n-qubit unitary U to within ε ≤ 1/64 average-case dis-
tance davg with probability at least 2/3 from N = poly(λ)
queries to U must use exp(�(min{G, n})) time, if quantum
computers cannot solve RingLWE in subexponential time.

Proof. With polynomial hardness of RingLWE replaced
by subexponential hardness, Theorem 18 asserts that there
are no subexponential (in l) quantum algorithms that can
learn the l-qubit unitary V to within average-case dis-
tance ε < 1/64 with success probability at least 2/3. That
is, any such learning algorithms must use time at least
exp(�(l)) = exp(�(min{G, n})), since l ≤ n. Meanwhile,
a polynomial learning algorithm for the n-qubit unitary
U = V ⊗ I can be used to learn the l-qubit unitary V in
the same run time by discarding the last (n − l) qubits,
because the trace distance does not increase under such
an operation and thus neither does davg. This implies
the exp(�(min{G, n})) time lower bound for the n-qubit
learning algorithm. �

ALGORITHM 6. Distinguisher D for PRF.
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Finally, we briefly show that learning becomes effi-
cient when G = O(log n). The idea is that with O(log n)
gates, there can only be at most O(log n) qubits affected.
Thus we can focus on these qubits and learning the uni-
tary amounts to manipulating at most 2O(log n) = poly(n)
size matrices, which is efficient. Specifically, we have the
following statement.

Proposition 13 (Learning unitaries with logarithmic cir-
cuit complexity efficiently; restatement of upper bound in
Theorem 6). Let ε > 0. Suppose that we are given N
queries to an n-qubit unitary U consisting of G = O(log n)
two-qubit gates. There exists a learning algorithm that out-
puts a Û such that davg(U, Û) ≤ ε with probability at least
2/3 using poly(n, 1/ε) queries and time.

Proof. We prove this by a learning algorithm similar
to Proposition 7 via junta learning based on Choi states
(Appendix C 2 b) as follows.

First, we prepare the Choi state of U by applying it
to a maximally entangled state over 2n qubits, execute
Algorithm 4, and postselect on the trivial qubits being
in the state |I〉〉, as in Appendix C 2 b. This step uses
poly(n, 1/ε) queries and time and gives us the postse-
lected Choi state that is nontrivial on only 4G = O(log n)
qubits. Then, we use the Pauli-tomography method as in
Proposition 7 to learn a trace-distance approximation to
the 4G-qubit Choi state |V̂〉〉 using poly(n, 1/ε) queries and
time. We can enforce this approximation to be a valid
Choi state by projecting it to the subspace spanned by
(A ⊗ I) |�〉 and normalizing the projected state, where A
is an arbitrary matrix and |�〉 is the maximally entangled
state. This can be done via a projector that is a 24G =
poly(n) dimensional matrix. Finally, we calculate the cor-
responding unitary V̂ and set Û = V̂ ⊗ I . Note that this step
is efficient as it only involves manipulating matrices of
size 24G = poly(n). Since the trace distance between Choi
states is equivalent to the average-case distance between
the corresponding unitaries, this gives us a poly(n, 1/ε)
learning algorithm for average-case unitary learning. �

APPENDIX D: LEARNING PHYSICAL
FUNCTIONS

As stated in the main text, learning classical functions
that map variables controlling the input states and evolu-
tion to some property of the outputs is an alternative way
of learning about nature. Learning such functions has long
been a central task of statistics and, more recently, classi-
cal and quantum machine learning. However, the physical
mechanism that gives rise to these functions has largely
been overlooked for the convenience of mathematical
abstraction.

In fact, we can formulate the physical mechanism
underlying a classical function as an experimental proce-
dure involving a unitary with bounded circuit complexity.

Specifically, we consider the following general experimen-
tal setting:

(1) Given a set of ν variables x ∈ [0, 1]ν , we prepare a
pure state that can depend on x in a fixed way.

(2) We evolve the state using a unitary U(x; {Ui}G
i=1, a)

that contains at most G two-qubit gates {Ui}G
i=1,

which can be tuned arbitrarily, and any number of
fixed unitaries, which can depend on x, according to
a circuit architecture a in an architecture class A.

(3) We measure the output state with a fixed observable
O and read out the expectation value as the function
output.

We can, without loss of generality, absorb the state prepa-
ration into the unitary. Then, the experiment gives rise to
the function

f (·; {Ui}, a) : [0, 1]ν � x �→ f (x; {Ui}, a)

= 〈0n
∣∣U(x; {Ui}, a)†OU(x; {Ui}, a)|0n〉 . (D1)

We define

F ν
G,A = {f (·, {Ui}, a) : a ∈ A, Ui ∈ U(22), i = 1, . . . , G}

⊆ R
[0,1]ν (D2)

to be the function class given by a class of architectures A
for G-gate unitaries. We call such functions physical func-
tions and F ν

G,A the class of ν-variable physical functions
with G gates and architectures A.

This experiment can also be understood as a QML prob-
lem, where we want to collect training data {x, f (x)} to
learn to approximate certain functions in a function class
using the ansatz described above. Then, the tunable gates
{Ui} can be understood as variational or trainable param-
eters of our quantum neural network. We note that the
data-encoding unitaries may simply use x as the angles
for rotation, or it can also be arbitrarily complex (e.g.,
complex enough to implement a quantum random access
memory [186] that prepares the amplitude encoding of the
data) as long as it is not trainable. This encompasses the
case in which the input data are classical descriptions of
the input pure state. Also, the order of the data-encoding
unitaries and the trainable unitaries can be arbitrary, thus
accommodating data-reuploading strategies [187,188].

We will show that to approximate a certain class of func-
tions well, we need a minimal number of samples to learn
and a minimal number of gates G (Theorem 7). In partic-
ular, we consider the class of 1-bounded and 1-Lipschitz
functions on [0, 1]ν , which can (up to equivalence classes)
be represented by the unit ball B1,∞ in the Sobolev space
W1,∞

[0,1]ν . We establish the following theorem, where the
learning criterion is the standard one for learning real
functions [78, Definition 16.1].
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Theorem 20 (Sample and gate-complexity lower bounds
on functions given by G-gate unitaries to approximate
bounded Lipschitz functions; restatement of Theorem 7).
Let F ν

G,A ⊆ R
[0,1]ν be the function class given by an archi-

tecture class A of G two-qubit unitaries. Let ε ∈ (0, 1) and
let l(|h(x)− y|) be a loss function, where l is a strictly

increasing function with derivative larger than some posi-
tive constant on [1,∞). Suppose, for any 1-bounded and
1-Lipschitz function f ∈ B1,∞, that there exists an h ∈
F ν

G,A such that ‖f − h‖∞ < ε. Then, the smallest train-
ing data size N such that there exists a learning algorithm
H : ([0, 1]ν , [0, 1])N → F ν

G,A that satisfies

PS∼PN

{

E(X ,Y)∼Pl(|H [S](X )− Y|)− inf
f ∈FνG,A

E(X ,Y)∼Pl(|f (X )− Y|) ≤ ε

}

≥ 0.99, (D3)

for any probability distribution P over [0, 1]ν × [0, 1] must
be at least

N ≥ �

(
1
εν

)
. (D4)

Moreover, we need at least

G ≥ �̃

(
1
εν/2

)
(D5)

two-qubit unitaries if A contains variable circuit structures
or G ≥ �̃(1/εν) if the circuit structure is fixed. The �̃ for
variable circuit structures hides logarithmic factors in ε as
well as in the number of qubits n, while the �̃ for fixed
structure only hides logarithmic factors in ε.

This means that to approximate 1-bounded and 1-
Lipschitz functions in ν-variables well to O(1/nD) accu-
racy, we need at least �̃(nνD/2) two-qubit unitaries and
�(nνD) samples on which to train. Furthermore, 1/ exp(n)
accuracy can only be achieved with exponential-size quan-
tum circuits and exponentially many samples. This result
establishes a limitation on the maximal efficiency of using
parametrized quantum circuits to approximate functions,
complementary to existing works on universal approxima-
tion theorems for parametrized quantum circuits [80–83].

The exponential dependence of the training data size
N on the number of variables ν suggests that if one has
an extensively large input vector (the length of which
scales with n), then the number of samples and gates
needed to approximate such functions is exponentially
large. Moreover, if the variables are encoded using ampli-
tude encoding [e.g., via quantum random access mem-
ory (QRAM)], which accommodates exponentially many
variables (approximately 2n), then the gate and sample
requirement would grow double exponentially in 1/ε. This
phenomenon, termed the curse of dimensionality, has also
been established in the theory of classical neural networks

[79, Chapter 3]. We show that it still exists in quantum
machine learning.

This curse can be circumvented by introducing more
structure or constraints on the function class. For exam-
ple, if we constrain to Fourier-integrable functions, a
ν-independent number of O(1/ε2) parameters suffices
for both classical [79, Theorem 3.9] and quantum [80]
machine learning. However, the curse of dimensional-
ity shows that many-variable 1-bounded and 1-Lipschitz
functions are not physical [50,158] because nature cannot
efficiently implement them.

In order to prove Theorem 20, we proceed in three steps.
First, we show that the complexity of the function class
F ν

G,A is limited by the number of gates G. Then, we prove
that to approximate certain functions (1-bounded and 1-
Lipschitz functions) well enough, the complexity must not
be too small. Finally, we show that to learn a function class
from data, the number of samples that we need is lower
bounded by the complexity of the function class.

1. Circuit complexity and function complexity

The complexity of the function class F ν
G,A, measured

by the pseudodimension or fat-shattering dimension [189,
190], is limited by the number of trainable gates G and the
size of the architecture class A. This is because, from the
linearity of quantum mechanics, the function f (x; {Ui}, a)
is a polynomial in the matrix elements of the trainable uni-
taries {Ui} and the degree of this polynomial is limited by
G. Following the idea of Ref. [77], we formalize this idea
into the following lemma.

Lemma 27 (Functions given by G-gate unitaries are
bounded-degree polynomials). Let F ν

G,A be the function
class given by an architecture class A of G two-qubit uni-
taries. Then, there exists a set of functions PνG,A in 32G + ν
real variables with size |PνG,A| = |A| such that the following
two properties hold:
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(1) ∀f ∈ F ν
G,A, there exist a p ∈ PνG,A and an assign-

ment of the first 32G variables such that p under this
assignment is the same as f in the last ν variables.

(2) Each p ∈ PνG,A depends polynomially on the first
32G variables with degree at most 2G.

Proof. We begin by noting that for any fixed archi-
tecture a ∈ A, the function f (x, {Ui}, a) is a function of
32G + ν real variables, where the first 32G = 2 · 22 · 22 ·
G variables are the real and imaginary parts of the matrix
elements of {Ui ∈ U(22)} and the last ν variables are the
input data x ∈ [0, 1]ν .

Next, we aim to prove that f is a bounded-degree
polynomial in the unitary matrix elements. We follow
the idea of Ref. [77, Lemma 1] and analyze the func-
tion f (x, {Ui}, a) gate by gate. We note the following
fact from linear algebra: for any state |ψ〉 and matrix
U, the product U |ψ〉 is a state the amplitudes of which
are linear combinations of the amplitudes of |ψ〉 and of
matrix elements of U. Therefore, by applying {Ui}G

i=1 and
other unitaries that do not depend on {Ui} sequentially
according to the architecture a, we obtain a state the ampli-
tude of which is a polynomial of the matrix elements
of {Ui} with degree at most G. Hence, the output scalar〈
0n
∣∣U(x; {Ui}, a)†OU(x; {Ui}, a)|0n

〉
is a polynomial of the

matrix elements of {Ui} with degree at most 2G. Fix-
ing those 32G variables corresponds to fixing {Ui} and
thus specifying any particular function in F ν

G,A with this
architecture a. Taking into account the dependence on
x and gathering the function for each architecture a ∈
A, we arrive at the desired set of functions PνG,A with
|PνG,A| = |A|. �

The fact that these functions are of bounded degree in
the variables specifying the trainable unitaries implies an
upper bound on the pseudodimension. We prove this with
a reasoning analogous to Ref. [191] and Ref. [77, Theorem
2].

Proposition 14 (Pseudodimension upper bound for func-
tions given by G-gate unitaries). Let F ν

G,A be the function
class given by an architecture class A of G two-qubit
unitaries. Then, the pseudodimension of F ν

G,A is at most
128G log2(16eG|A|).

Proof. Let {(xi, yi)}m
i=1 ⊆ [0, 1]ν × R be a set of data

points satisfying that for any C ⊆ {1, . . . , m}, there exists
fC ∈ F ν

G,A such that f (xi)− yi ≥ 0 if and only if i ∈ C.
That is, {(xi, yi)}m

i=1 is pseudoshattered by F ν
G,A. From

Lemma 27, we know that there exists a set of functions
P in 32G + ν real variables with size |P| = |A| such that
for every C, there is a pC ∈ P and an assignment �C to
the first 32G variable that satisfies pC(�C, xi)− yi ≥ 0 if
and only if i ∈ C. This means that the set of functions
{p(·, xi)− yi : i = 1, . . . , m, p ∈ P} is a set of m|A| poly-
nomials of degree at most 2G in 32G real variables that

has at least 2m different consistent sign assignments [192].
Now, we invoke the following technical lemma.

Lemma 28 (Bounded-degree polynomials have a
bounded number of consistent sign assignments [77,191,
193]). Let P be a set of real polynomials in v variables
with |P| ≥ v, each of degree at most D ≥ 1. Then, the
number of consistent sign assignments to P is at most
(8De|P|/v)v .

Thus we have

2m ≤
(

8 · 2G · em|A|
32G

)32G

. (D6)

Taking the logarithm yields

m ≤ 32G(log2(16eG|A|)+ log2(m/(32G))). (D7)

Let us first assume that m ≥ 32G. If log2(16eG|A|) ≥
log2(m/(32G)), then we have m ≤ 64G log2(16eG|A|).
Otherwise, log2(16eG|A|) < log2(m/(32G)) and we have
m ≤ 64G log2(m/(32G)), which translates into
(log2(m/(32G))/m/(32G)) ≥ 1

2 . Thus m/(32G) ≤ 4 and
m ≤ 128G. In both cases, we have m ≤ 128G log2
(16eG|A|). If m < 32G, this is also true. Therefore, we
have pseudodimension (by definition in Definition 6) at
most 128G log2(16eG|A|). �

A special case is for fixed circuit architecture
|A| = 1, where we have pseudodimension at most
128G log2(16eG). On the other hand, if we allow variable
structure of the trainable unitaries, then |A| ≤ (n2

)G ≤ n2G,
and we have pseudodimension at most 128G log2(16eG)+
256G2 log2(16eGn).

2. Function complexity and approximation power

Now that we know that the pseudodimension of such
function class is upper bounded via the number of gates
G, we can derive the minimal number of gates needed to
obtain certain function-approximation power. Consider the
class of 1-bounded and 1-Lipschitz functions on [0, 1]ν ,
which can be represented by the unit ball B1,∞ in the
Sobolev space W1,∞

[0,1]ν . In order to approximate these
functions well, the pseudodimension (and also the fat-
shattering dimension) of our function class cannot be too
small.

Lemma 29 (Pseudo- or fat-shattering dimension and
approximat ion power; variant of Ref. [190, Theorem 2.10]
and Ref. [194, Theorem 4]). Let ε > 0 and F ⊆ R

[0,1]ν be
a class of functions such that for any f ∈ B1,∞, there is an
h ∈ F such that ‖f − h‖∞ < ε. Then, the pseudodimen-
sion of F must be at least 1/(4ε)ν . The ε-fat-shattering
dimension of F must be at least 1/(8ε)ν .
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Proof. Let m ∈ N, to be chosen later. Let x1, . . . , xM ∈
[0, 1]d be M = (m + 1)ν points on a cubic lattice such that
‖xi − xj ‖ ≥ 1/m for all i �= j . Let y ∈ R

M and we will now
construct a smooth function that takes the y values at these
lattice points. Specifically, we define

f (x) =
M∑

i=1

yiφ(m(x − xi)), (D8)

where φ(z) =∏ν
j=1 ϕ(zj ) and ϕ is a smoothed version of

the triangular function that takes value 0 at |z| ≥ 1/2 and
value 1 at z = 0 and |∂jφ(z)| ≤ C for any C > 2. In this
way, we have f (xi) = yi for all 1 ≤ i ≤ M .

Next, for any α ∈ {0, 1}M , set yi = αi/(Cm). This means
that |yi| ≤ 1/(Cm) and thus f ∈ B1,∞. Then, by assump-
tion, there must be an h ∈ F such that ‖f − h‖∞ < ε. In
particular, we have |f (xi)− h(xi)| = |yi − h(xi)| < ε for
all i.

Now, for the pseudodimension, we can choose m large
enough (say, m = ⌊1/(C2ε)

⌋
) such that ε < 1/(2Cm).

Then,

h(xi) ≥ 1
2Cm

⇐⇒ αi = 1, yi = 1
Cm

. (D9)

Therefore, by definition in Definition 6, {x1, . . . , xM } is
pseudoshattered by F and thus the pseudodimension of
F is at least M = (m + 1)ν ≥ 1/(C2ε)ν . Taking the limit
C → 2 yields the desired result.

For fat-shattering dimension, we can choose m large
enough (say, m = ⌊1/(C3ε)

⌋
) such that ε < 1/(4Cm).

Then,

αi = 1 =⇒ h(xi) ≥ 1
Cm

− ε ≥ 1
2Cm

+ ε (D10)

and

αi = 0 =⇒ h(xi) ≤ ε ≤ 1
2Cm

− ε. (D11)

Therefore, by definition in Definition 7, {x1, . . . , xM } is
ε-fat-shattered by F , and thus the ε-fat-shattering dimen-
sion of F is at least M = (m + 1)ν ≥ 1/(C3ε)ν . Taking the
limit C → 2 yields the desired result. �

3. Function complexity and sample complexity

Now, we aim to show that in order to learn a func-
tion class, the number of samples that we need is lower
bounded by its complexity. In particular, we achieve this
through the fat-shattering dimension.

Proposition 15 (Sample-complexity lower bound for
real-valued functions by fat-shattering dimension; vari-
ant of Ref. [78, Theorem 19.5]). Let F ⊆ [0, 1]X with
loss function lh(x, y) = l(|h(x)− y|). Suppose that l is
an increasing (almost everywhere) differentiable func-
tion, i.e., C = inft≥1 l′(t) > 0. For 0 < ε < 1, 0 < δ ≤
0.01, the smallest training data size N such that there
exists a learning algorithm H : (X , [0, 1])N → F that
satisfies

PS∼PN

{
E(X ,Y)∼Pl(|H [S](X )− Y|)− inf

f ∈F
E(X ,Y)∼Pl(|f (X )− Y|) ≤ ε

}
≥ 1 − δ (D12)

for any probability distribution P over X × [0, 1] must be
at least

N ≥ C
fat(F , ε/α)− 1

32α
, ∀α ∈ (0, 1/4). (D13)

Note that this contains Lp loss functions as a special case,
where lh(x, y) = |h(x)− y|p , and l′(t) = ptp−1 ≥ p = C.

Proof. Similarly to the proof of Theorem 19.5 in
Ref. [78], the idea is to reduce the problem to a dis-
crete classification problem. Consider the class Hd of all
functions mapping from a finite set {x1, . . . , xd} ⊂ X to
{0, 1}. It is known that any learning algorithm for Hd has
sample complexity at least (d − 1)/(32ε) for small ε, δ

([78, Theorem 5.3]). Here, we show that, for any fixed
α between 0 and 1/4, any learning algorithm for F to
accuracy ε can be used to construct a learning algorithm
for Hd to accuracy α/C, where d = fat(F , ε/α). Then the
proposition follows.

To see this, suppose that {x1, . . . , xd} is ε/α-shattered
by F , witnessed by r1, . . . , rd. Suppose that L is a learn-
ing algorithm for F . Then, we can construct a learning
algorithm for Hd as follows. For each labeled example
(xi, yi), assuming that yi is deterministic given xi, the
algorithm passes to L the labeled example (xi, ỹi), where
ỹi = 2 if yi = 1 and ỹi = −1 if yi = 0. Let P be the original
distribution on X × {0, 1} and let P̃ be the induced dis-
tribution on X × {−1, 2}. Then, suppose that L produces
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a function f : X → [0, 1]; the learning algorithm for Hd
then outputs h : X → {0, 1}, where h(xi) = 1 if and only
if f (xi) > ri. Thus we only need to prove that if EP̃lf −
infg∈F EP̃lg < ε, then EP1(h(x) �= y) ≤ α/C.

To show this, we claim that

inf
g∈F

EP̃lg = inf
g∈F

EP̃l(|g(x)− ỹ|)

≤ EP̃ min{l(|ŷ − ỹ|), ŷ ∈ {r(x)± ε/α}}, (D14)

where r(xi) = ri. This is because P̃ is concentrated on
the shattered set. Then, for any assignment {ŷi ∈ {ri ±
ε/α}, i = 1, . . . , d}, there exists a g ∈ F such that g(xi) ≥
ŷi if ŷi = ri + ε/α and g(xi) ≤ ŷi if ŷi = ri − ε/α. In
particular, we consider the assignment of ŷi such that
l(|ŷi − ỹi|) is minimized. Then, there exists a function
g∗ satisfying the following property. If ỹi = −1, then
the minimizer is ŷi = ri − ε/α and we have l(|g∗(xi)−
ỹi|) ≤ l(|ŷ − ỹi|) since ỹi < g∗(xi) ≤ ŷi. Similarly, if ỹi =
2, then the minimizer is ŷi = ri + ε/α and we still
have l(|g∗(xi)− ỹi|) ≤ l(|ŷ − ỹi|) since ŷi ≤ g∗(xi) ≤ ỹi.
Therefore, since ỹi and yi is deterministic given xi, we
have found a single g∗ such that EP̃l(|g∗(x)− ỹ|) ≤
EP̃ min{l(|ŷ − ỹ|), ŷ ∈ {r(x)± ε/α}}. Hence, the infimum

over g ∈ F infg∈F EP̃l(|g(x)− ỹ|) ≤ EP̃l(|g∗(x)− ỹ|) ≤
EP̃ min{l(|ŷ − ỹ|), ŷ ∈ {r(x)± ε/α}}. Therefore,

EP̃lf − inf
g∈F

EP̃lg ≥ E[l(|f (x)− ỹ|)

− min{l(|ŷ − ỹ|), ŷ ∈ {r(x)± ε/α}}].
(D15)

Consider the quantity inside the expectation, for x = xi
with y = 0, ỹ = −1, let a = f (xi)+ 1, b = ri − ε/α + 1.
Then, by Lagrange’s mean-value theorem, there exists a c
between a and b, such that this quantity can be written as

l(a)− l(b) = l′(c)(a − b) = l′(c)(f (xi)− ri + ε/α).
(D16)

If l(|f (x)− ỹ|)− min{l(|ŷ − ỹ|), ŷ ∈ {r(x)± ε/α}} <
Cε/α, then

f (xi)− ri <
ε

α

C − l′(c)
l′(c)

< 0 (D17)

and we have f (xi) < ri and h(xi) = 0 = yi. Similar argu-
ments apply for y = 1. Thus,

EP1(h(x) �= y) ≤ P̃[|f (x)− ỹ|p − min{|ŷ − ỹ|p , ŷ ∈ {r(x)± ε/α}} ≥ Cε/α] (D18)

≤ α

Cε
EP̃[|f (x)− ỹ|p − min{|ŷ − ỹ|p , ŷ ∈ {r(x)± ε/α}}] (D19)

≤ α

Cε
(EP̃lf − inf

g∈F
EP̃lg) ≤ α

C
. (D20)

This completes the proof of Proposition 15. �

With Proposition 14, Lemma 29, and Proposition 15, we
can finally proceed to prove Theorem 20.

Proof of Theorem 20. To show the gate-number lower
bound, note that from Proposition 14, Pdim(F ν

G,A) is upper
bounded by 128G log2(16eG)+ 256G2 log2(16eGn) for
variable circuit structures and by 128G log2(16eG) for
fixed circuit structure. Meanwhile, from Lemma 29, we
know that to approximate any ν-variable 1-bounded and
1-Lipschitz functions to ε error in ‖·‖∞, we must have
Pdim(F ν

G,A) ≥ 1/(4ε)ν and fat(F ν
G,A, ε) ≥ 1/(8ε)ν . There-

fore, for variable circuit structures, we have

1/(4ε)ν ≤ Pdim(F ν
G,A) ≤ 128G log2(16eG)

+ 256G2 log2(16eGn) (D21)

and thus G ≥ �̃(1/(ε)ν/2). Similarly, for fixed circuit
structure, we have G ≥ �̃(1/εν).

To show the sample-complexity lower bound, note that
from Proposition 15, we have the sample complexity N ≥
C(fat(F ν

G,A, ε/α)− 1)/32α. Setting α = 1/8 and using the
fat-shattering bound from Lemma 29, we arrive at N ≥
�(1/εν). �

APPENDIX E: DETAILS OF THE NUMERICAL
EXPERIMENTS

In this appendix, we provide the implementation details
of the numerical experiments presented in Sec. III. All sim-
ulations are conducted using JAX [195] and TensorCircuit
[196], with the matrix product state back end.

We consider a large system size n = 10 000 to illustrate
the independence of the sample complexity from n. For

040306-56



LEARNING QUANTUM STATES. . . PRX QUANTUM 5, 040306 (2024)

simplicity, we consider the setting in which the G gates
used to generate the unknown target states are sampled
from a discrete gate set of size 2. Here, we sample two
Haar-random two-qubit gates to form this gate set. We also
assume that the n = 10 000 qubits form a one-dimensional
line and that each gate only acts on neighboring qubits.
The gate configurations are randomly sampled over the
first four qubits [case (a)] or over all qubits [case (b)].
We further assume that the gate positions are known to the
learning algorithm to accelerate the simulation. Of course,
this assumption can be removed by enumerating over all
(n′

2

)G
possible configurations (with n′ = 4 or ≤ 2G the

number of qubits acted upon nontrivially by the G gates) or
by performing Algorithm 1. However, this will introduce
an additional overhead to the implementation, which we
want to avoid for the sake of these numerics.

For each G and sampled target state, we perform the
learning algorithm detailed in Appendix B 1 and calculate
the fidelity F between the output state and the target state.
To accelerate the learning algorithm for different sample
sizes, we first sample the Clifford classical shadows with
the maximal sample size and then subsample the results for
smaller sample sizes. In case (b), where the effective sys-
tem size n′ is larger (up to 2G = 12), we adopt the shallow
shadow modification of Clifford classical shadows [88,89].
Specifically, we replace the global Clifford rotation with
a brickwork Clifford circuit of depth 10. We also replace
Clifford gates with Haar random gates to reduce statistical
fluctuations.

The procedure described above constitutes a single
sweep over the entire G-N plane. We repeat this proce-
dure independently 100 000 times for case (a) and 25 000
times for case (b). We record the resulting fidelity and cal-
culate the average and median values for each G and N .
The results are presented in Fig. 2.

We note that for each G, when the sample size is
above the sample complexity, the reconstruction fidelity of
most trials is exactly one up to machine precision. This
is because we are using a discrete gate set, so the target
states can be found unambiguously. Therefore, the sample-
complexity lines for Fmed = 0.999, 0.9999, 0.99999 coin-
cide and we only plot the one for Fmed = 0.999. Mean-
while, the line for averaged fidelity F changes with the
value of F , because the average fidelity F takes into
account those failing cases in which the fidelity can be
close to zero.

APPENDIX F: PRELIMINARY RESULTS ON
LEARNING BRICKWORK CIRCUITS

As stated in Sec. IV, an interesting circuit structure is
the brickwork circuit, which is generated by repeatedly
applying the following two layers of gates (suppose that
n is even): (1) U1,2 ⊗ U3,4 ⊗ · · · ⊗ Un−1,n and (2) U2,3 ⊗
U4,5 ⊗ · · · ⊗ Un−2,n−1, where Ui,j denotes a two-qubit

unitary acting on the ith and j th qubits. Here, we utilize
the tools from unitary t-designs [130] to prove that the met-
ric entropy of G-gate brickwork circuits is lower bounded
by �(tn), if they can implement (approximate) unitary
t-designs. Specifically, we have the following result.

Proposition 16 (Metric entropy lower bound of brick-
work circuits). Let Un,brick

G ⊆ U(2n) be the set of n-qubit
unitaries that can be implemented with G-gate brickwork
circuits. Suppose that the uniform distribution over Un,brick

G
forms an ε-approximate t-design of U(2n) for some ε ∈
(0, 1/2). Then, we have

logM(Un,brick
G , davg, ε) ≥ �(tn). (F1)

Proof. Suppose that Un,brick
G with the uniform distribu-

tion forms an ε-approximate t-design E of U(2n). We begin
by recalling a moment bound for approximate unitary
designs. �

Lemma 30 (Moment bound of approximate unitary
designs [33, proof of Lemma 1]). Suppose that E is an
ε-approximate unitary t-design of U(d). Then, for any
unitary V ∈ U(d), we have

EU∼E
[|tr(U†V)|2t] ≤ (1 + ε)t!. (F2)

Consequently, by Markov’s inequality, we have the fol-
lowing lemma saying that a random element of a design is
far apart from a fixed unitary with high probability.

Lemma 31 (Design elements are far away from any
fixed unitary). Suppose that E is an ε-approximate unitary
t-design of U(d). Then, for any unitary V ∈ U(d), we have

PU∼E
[‖U − V‖2

F ≤ 2d(1 −�)]

≤ PU∼E
[|tr(U†V)| ≥ d�

] ≤ 1 + ε
�2t

t!
d2t . (F3)

Proof. To prove this, we use the above moment bound
and Markov’s inequality:

PU∼E
[|tr(U†V)| ≥ d�

] = PU∼E
[|tr(U†V)|2t ≥ d2t�2t]

≤ EU∼E
[|tr(U†V)|2t

]

d2t�2t

≤ 1 + ε
�2t

t!
d2t . (F4)

Furthermore, since ‖U − V‖2
F = 2d − 2Re[tr(U†V)]

≤ 2d(1 −�) implies |tr(U†V)| ≥ Re[tr(U†V)] ≥ d�,
Lemma 31 follows. �

Now, we apply a probabilistic argument by randomly
choosing M IID unitaries U1, . . . , UM from E . The proba-
bility that any two of them are far away from each other is
given by
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PU1,...,UM∼E [∀1 ≤ i �= j ≤ M , ‖Ui − Uj ‖2
F ≥ 2d(1 −�)] (F5)

= 1 − PU1,...,UM∼E [∃1 ≤ i �= j ≤ M , ‖Ui − Uj ‖2
F ≤ 2d(1 −�)] (F6)

≥ 1 −
∑

1≤i�=j≤M

PU1,...,UM∼E [‖Ui − Uj ‖2
F ≤ 2d(1 −�)] (F7)

≥ 1 − M (M − 1)
2

1 + ε
�2t

t!
d2t (F8)

≥ 1 − M 2 1 + ε
�2t

t!
d2t , (F9)

where we have used the union bound in the first inequality
and Lemma 31 in the last. Therefore, as long as we take

M <

√⌊
(�2t/(1 + ε))(d2t/t!

⌋
), we have

PU1,...,UM∼E [∀1 ≤ i �= j ≤ M , ‖Ui − Uj ‖2
F ≥ 2d(1 −�)]

> 0. (F10)

Hence there must be at least one instance V1, . . . , VM ∈
E such that ‖Vi − Vj ‖2

F ≥ 2d(1 −�) for any pair Vi, Vj .
These unitaries form a

√
2d(1 −�)-packing net of Un,brick

G
with respect to ‖ · ‖F . Thus we have

logM(Un,brick
G , ‖ · ‖F ,

√
2d(1 −�))

≥ �

(
1
2

log
⌊
�2t

1 + ε
d2t

t!

⌋)
. (F11)

If we set
√

2d(1 −�) = √
dε (i.e., � = 1 − ε2/2), we

arrive at

logM(Un,brick
G , dF , ε) ≥ �(tn). (F12)

From the fact that quotienting out a global phase only
changes the metric entropy by an additive �(log(1/ε))
terms (Lemma 10) and the equivalence of d′

F and davg
[Lemma 4, item (1)], we arrive at the desired result.
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