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Abstract

The recent COVID-19 pandemic has thrown the importance of accurately forecasting conta-

gion dynamics and learning infection parameters into sharp focus. At the same time, effec-

tive policy-making requires knowledge of the uncertainty on such predictions, in order, for

instance, to be able to ready hospitals and intensive care units for a worst-case scenario

without needlessly wasting resources. In this work, we apply a novel and powerful computa-

tional method to the problem of learning probability densities on contagion parameters and

providing uncertainty quantification for pandemic projections. Using a neural network, we

calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020, achieving both

a significantly more accurate calibration and prediction than Markov-Chain Monte Carlo

(MCMC)-based sampling schemes. The uncertainties on our predictions provide meaningful

confidence intervals e.g. on infection figures and hospitalisation rates, while training and

running the neural scheme takes minutes where MCMC takes hours. We show conver-

gence of our method to the true posterior on a simplified SIR model of epidemics, and also

demonstrate our method’s learning capabilities on a reduced dataset, where a complex

model is learned from a small number of compartments for which data is available.

Introduction

The COVID-19 pandemic has underscored the need for comprehensive epidemiological mod-

els. In a crisis, an effective government response is predicated on such models (1) being formu-

lated using interpretable infection parameters, (2) being capable of accurately and quickly

forecasting the dynamics of contagion, and (3) meaningfully capturing the uncertainty inher-

ent in their projections [1–3]. It is this last point in particular—the inclusion of uncertainty

quantification—that enables informed and transparent cost-benefit analyses, since it lets

policy-makers assess the probable efficacy of different intervention strategies.

Ordinary differential equations (ODEs) play a key role in the study of mathematical epide-

miology, since they often serve as the foundation for so-called compartmental models. Com-

partmental models capture the dynamics of patients progressing through the various stages of a
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disease—from, e.g., a susceptible and exposed state all the way to being infected, recovering,

becoming immunised, or falling critically ill. The transition rates between these compartments

model the biological and behavioral drivers of disease transmission and recovery. Based on Ber-

noulli’s seminal work in the 1760s [4], the first compartmental models were introduced by Ker-

mack & McKendrick [5]. Since then, compartmental ODE models have played a crucial role in

offering a profound understanding of the transmission dynamics of infectious illnesses. How-

ever, ODE models are inherently deterministic and thus fail to account for stochastic character-

istics of real-world transmission processes. Over the years they have therefore been evolved

into stochastic variants, based e.g. on stochastic differential equations (SDEs) [6, 7], and, more

recently, agent-based micro-models (ABMs), incorporating demographic data with full spatial

resolution [8, 9]. Such models have been vital in assisting public health authorities in predicting

outbreaks and implementing efficient disease control strategies in a variety of instances, includ-

ing influenza, West Nile virus, childhood illnesses, SARS-CoV-1, rabies, sexually transmitted

infections such as AIDS, and—most recently—COVID-19 [10–13]. In this work, we employ a

computational method that combines the traditional ODE approach with a recently developed

neural parameter estimation scheme [14] to recover the model parameters driving the dynam-

ics of a disease from observable data. Neural parameter calibration uses neural networks to

optimally calibrate a given model to available data, thereby capturing both the deterministic

and stochastic components of contagion within a single modelling framework. Here, we adapt

this method to a high-dimensional compartmental model of infectious diseases.

The existing body of research covers a variety of methods for data-based parametrisation of

ODE models quantifying associated uncertainties, including hierarchical models, non-

parametric techniques, ensemble techniques, and Bayesian approaches [15–18]. The ubiqui-

tous Bayesian paradigm again unfolds into a rich tapestry of techniques, including Markov-

Chain Monte Carlo methods (MCMC) [19] such as Hamiltonian Monte Carlo [20], or sam-

plers based on Langevin dynamics, such as the Metropolis-adjusted Langevin algorithm

(MALA) and its preconditioned variants [21–24], to name just a few. In the context of Covid-

19, ensemble methods and approximate Bayesian computation have been used to model not

only the viral dynamics, but also gauge the uncertainty arising from model misspecification,

parameter uncertainty, or stochasticity by running multiple model instances and calculating

statistics over the ensemble [25–27]. The commonality of all Bayesian parameter estimation

and uncertainty quantification schemes is that they require sampling from a posterior distribu-

tion. However, the sampling paradigm has several major disadvantages: first, since the likeli-

hood of a parameter is represented by its sampling frequency, high-dimensional inference can

quickly become a costly affair. This is particularly true when the likelihood of a sample must

be computed by solving the underlying ODE. Random-walk behaviour may render sampling

in high dimensions computationally infeasible, and it is for this reason that modern MCMC

samplers are often strongly gradient-driven. Second, the complex geometry of high-dimen-

sional distributions may lead to samplers getting caught in local minima, and chains not reach-

ing stationarity. This at times can be remedied by incorporating the topology of the

distribution into a preconditioner, using e.g. the Hessian or Fisher information matrices [22].

However, calculating the Riemannian metric of a high-dimensional space can again become

computationally expensive, especially if such information is only defined locally and thus

needs to be recalculated at each point. Third, almost all sampling strategies require some sam-

ple rejection and burn-in periods, during which samples are discarded to ensure convergence

of the Markov chains. Here again, whenever likelihoods must be obtained through expensive

simulations, having to discard samples means wasting computational resources.

The strategy proposed in this paper falls within the Bayesian paradigm and yet circumvents

these problems. It thus represents a notable improvement over existing techniques, both in
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terms of computational efficiency and accuracy, and has previously been applied to a diverse

set of problems, from estimating low-dimensional ODE parameters of economics models to

entire network adjacency matrices in power grid dynamics and optimal transport [14, 28].

Being purely gradient-driven, no samples are rejected, a burn-in period is unnecessary, and

the method quickly finds the modes of the distribution. The neural network parametrises the

parameter space without the need for calculating Riemannian metrics. The loss function con-

tains knowledge of the model equations, and likelihoods are estimated using simulation. Cru-

cially, by performing multiple (parallelisable) training iterations, our methodology not only

improves the accuracy of individual parameter estimations, but also offers a comprehensive

representation of the likelihood distribution over the parameter space and thereby an under-

standing of the inherent uncertainty—a vital aspect in the formulation of policies in the face of

intrinsic unpredictability, as is usually the case in a rapidly developing pandemic scenario.

The main purpose of this article is to demonstrate that this method, first presented in previ-

ous work, is straightforwardly applicable to applied epidemiological modelling of real-world

data, while going beyond merely enhancing parameter accuracy; instead, we systematically

address the frequently overlooked aspect of uncertainty in disease forecasting. We begin by

presenting the mathematical foundations of our method on a simple model of epidemics,

before revisiting a sophisticated compartmental model and recalibrating it to observation data

of the spread of COVID-19 in Berlin.

Methodology

In this section, we delve into the specifics of our methodology, starting with the underlying

ideas and using a simple epidemic model as an example. The basic concepts have previously

been described in [14], but will be summarised again in the following with a view to applying

it to epidemic modelling.

Consider an Itô stochastic differential model with N compartments of the dynamics of

some contagious disease,

dy

dt
¼ f ðyðtÞ; ΛÞ þ sðyðtÞ; ΛÞξt: ð1Þ

Here, yðtÞ 2 RN
is the N-dimensional state vector describing the model at time t, f and σ are

the drift vector and diffusion matrix, respectively, Λ 2 Rp a vector of scalar parameters, and ξt
an N-dimensional white noise process. Spatial dependence of y, leading to (stochastic) partial

differential equations, is not considered in this work but has been elsewhere [28]. We note that

our method is not dependent on the choice of the stochastic integral used in the model

equations.

Given a time series T comprising L observations of y, T = (y1, . . ., yL), our goal is to infer

the parameters Λ. To this end we train a neural network uy : RN�B
! Rp

, where the batch size

B� 1 represents the number of time series steps that are passed as input and θ the neural net-

work parameters, to produce a parameter estimate Λ̂ ¼ ðl̂1; . . . ; l̂pÞ that, when inserted into

the model equations (1), reproduces the observations T. The neural network is trained using a

loss function (such as a weighted least squares residual)

J
�

Λ̂
�
�
� T
�
¼ J
�
T̂ðΛ̂Þ j T

�
; ð2Þ

where T̂ðΛ̂Þ is the time series obtained by integrating Eq (1) using the estimated parameters.
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The likelihood of any estimate is then simply proportional to

r
�

Λ̂
�
�
� T
�
/ e� J : ð3Þ

As Λ̂ ¼ Λ̂ðθÞ, we may calculate the gradientrθJ and use it to optimise the internal parameters

of the neural net using a backpropagation method of choice. CalculatingrθJ thus requires dif-

ferentiating the predicted time series T̂, and thereby the system equations, with respect to Λ̂.

In other words: the loss function contains knowledge of the dynamics of the model. Finally,

the true data is once again input to the neural net to produce a new parameter estimate Λ̂, and

the cycle starts afresh. Note that the gradient descent is not applied to the parameter space

directly, but to its reparametrisation as a neural network. The optimal reparametrisation can

be obtained through optimising the hyperparameters of the neural network architecture, that

is, the depth, size, and structure of the layers, the use of biases, and the choice of activation

functions.

As the net trains, it traverses the parameter space, calculating a loss at each point. Unlike in

MCMC, the posterior density in our approach is not constructed by considering the frequency

with which each point is sampled, but rather calculated directly via the loss function at that

point (cf. [14]). This entirely eliminates the need for rejection sampling or a burn-in time: at

each point, the true value of the likelihood is obtained, and sampling a single point multiple

times gives no additional information, leading to a significant improvement in computational

speed. Since the stochastic sampling process is entirely driven by the gradient of J, the regions

of high probability are typically found much more rapidly than with a random sampler, lead-

ing to a high sample density around the modes of the target distribution.

We thus track the neural network’s path through the parameter space and gather the loss

values it calculates along the way. Multiple training runs can be performed in parallel, and

each chain is terminated once it reaches a stable minimum. The likelihood for each parameter

is given by

rðl̂i j TÞ ¼

Z

p
�

Λ̂
�
�
� T
�
dΛ̂ � i; ð4Þ

where the −i subscript indicates omission of the i-th component in Λ̂ in the integration. In

high dimensions, calculating the joint distribution can become computationally infeasible, and

we can approximate the likelihood function by calculating the two-dimensional joint density

of the parameter estimate and the likelihood, p(λi, e−J) and then integrating over the likeli-

hood,

rðl̂i j TÞ �
Z

p
�
l̂i; e

� J
�
dðe� JÞ: ð5Þ

By Bayes’ rule, the posterior marginal is then

pðl̂i j TÞ ¼ rðl̂i j TÞ � p
0ðl̂iÞ

with π0 the prior density [29]. The only prior information available about the values of the

parameters is that they are positive, hence in the following we will always assume uniform pri-

ors on Rþ. Running multiple chains in parallel increases the sampling density on the domain,

ensuring convergence to the posterior distribution in the limit of infinitely many chains, inde-

pendently of the choice of the prior.
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Illustration of a simple epidemic model

We first consider a synthetic example of a simple model of epidemics with three compart-

ments, before turning to the main goal of this paper, which is to present an extensive analysis

on a dataset of the spread of COVID-19 in Berlin. Given observations of susceptible (S),

infected (I), and recovered (R) agents, assume the dynamics of the epidemic are given by

dS ¼ � bSIdt � sIdWS

dI ¼ ðbS � t� 1ÞIdt þ sIdWI

dR ¼ t� 1Idt;

ð6Þ

where ðb; t; sÞ 2 R3

þ
are the infection, recovery, and noise parameters respectively, and WS,

WI are independent Wiener processes. We generate noisy observations of the time series T(t)
= (S(t), I(t), R(t)) using the parameters β = 0.2, τ = 14, and σ = 0.1 (cf. Fig 1d), and try to

recover the marginal densities on β and τ given the observations, that is ρ(β|T) and ρ(τ|T). The

ground truth marginals we obtain by running a grid search on (β, τ) and calculating the likeli-

hood at each grid point. We train the neural net using the loss function

J ¼ kT̂ � Tk2

2
¼ � log rðΛ j TÞ ð7Þ

Fig 1. (a)–(c) Marginal densities on (β, τ, α) for noisy SIR data, obtained from the neural scheme (blue) and the MALA sampler (pink). The ground

truth (dotted line) was calculated using a simple grid search on (β, τ) 2 [0, 1] × [1, 30] with 10.000 grid points. (d) Predicted average time series hT̂i for

the S (lightgreen), I (red), and R compartments. Shown are the predictions (solid line) and standard deviation (shaded area) generated by drawing

10.000 samples from the predicted joint distribution of (β, τ) using the neural scheme and solving the noiseless ODE model Eq (6) each. Also shown are

the true data for each compartment (dots). The neural network was trained for 100 epochs from 300 different initial conditions, and 50 MALA chains

were run until stationarity was reached, with a thinning factor of 5. Here, stationarity is defined via a Gelman-Rubin statistic of below 1.2, see S2 Fig in

the S1 Appendix. Both the neural and MCMC samplers are parallelised.

https://doi.org/10.1371/journal.pone.0306704.g001
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and compare the predicted marginals to those generated by a preconditioned Metropolis-

adjusted Langevin scheme (MALA) [22, 23]. The preconditioned MALA draws samples Λ̂ i

from the distribution

Λ̂iþ1 �
�i

2

"

GðΛ̂iÞ

�

r log r
�

Λ̂i
�
�
� T
�

þ
L
B

XL

k¼1

r log r Tk

�
�
� Λ̂i

� ��

þ GðΛ̂iÞ

#

þ G1
2ðΛ̂ iÞN ð0; �iIÞ:

ð8Þ

Here, �i is the step size at iteration i, G(Λ) a preconditioning matrix as given in [23], and

GðxÞ ¼
P

j
@Gij
@xi

. The series {�i} is chosen to be a decaying series with coefficient α< 1. The algo-

rithm is given in [23], which uses an approximate Fisher information matrix for the precondi-

tioner, thereby maintaining good computational performance.

A hyperparameter sweep showed a two-layer neural network with 20 nodes per layer to

provide optimal results. We use hyperbolic tangent activation functions on all except the last

layer, where we use the modulus |�|. The net is optimised using Adam [30] and a learning rate

of 0.002. Best results were obtained using a batch size of B = L (batch gradient descent). Results

are shown in Fig 1a and 1b. Both the neural and MCMC approaches are initialised from multi-

ple different values with sampling chains run in parallel. The initial values for β are drawn

from a uniform distribution on [0, 1], and those for τ from uniform distribution on [1, 30]

(see S1 Appendix). The MCMC scheme is run with a burn-in time of 500 steps per chain, and

a thinning factor of 5, meaning only every fifth sample is retained. We see that both the neural

and Langevin schemes find the posterior marginals, though the neural estimates are more

accurate.

To additionally test the neural method’s ability to perform sensitivity analyses, we modify

Eq (6) by adding a small perturbation to each term,

d~S ¼ dSþ
dt

1000þ a

(and similarly I and R), where α 2 [0, 1], meaning that α is essentially irrelevant to the dynam-

ics, and its marginal posterior approximately uniform on [0, 1]. As shown in Fig 1c, both

schemes obtain the expected result.

We more formally compare the distribution accuracy in terms of the Hellinger distance to

the ground truth,

dHðp̂; pÞ ¼
1

2

Z ffiffiffiffiffiffiffiffiffi

p̂ðxÞ
q

�
ffiffiffiffiffiffiffiffiffi
pðxÞ

p
� �2

dx; ð9Þ

where p̂ is the estimated density and p the ground truth. We find the neural marginals for β
and τ to be two orders of magnitude closer to the ground truth than the MCMC estimates, see

Table 1. At the same time, the neural scheme runs about an order of magnitude faster than the

MCMC sampler, a fact that was previously observed in [14, 28]. As mentioned in the introduc-

tion, the MCMC scheme is slowed down by (1) a burn-in period, (2) redundant samples being

discarded in the Metropolis step, and (3) the long sampling time required to reach stationarity.

Each of these drawbacks the neural scheme manages to avoid.

PLOS ONE Neural parameter calibration and uncertainty quantification for epidemic forecasting

PLOS ONE | https://doi.org/10.1371/journal.pone.0306704 October 17, 2024 6 / 16

https://doi.org/10.1371/journal.pone.0306704


Using the resulting posteriors p, we can now generate a predicted time series with uncer-

tainty quantification by randomly selecting n samples Λ̂ i, i = 1, . . ., n gathered during the

training process, running the noiseless ODE model Eq (6) with each sample (i.e. using a noise

strength of σ = 0), and calculating the mean densities

hT̂i ¼
XN

i¼1

pðΛ̂iÞT̂ðΛ̂iÞ; ð10Þ

and analogously a standard deviation. The predicted densities are shown in Fig 1d: we see the

predicted parameters capture the observed dynamics well, with all data points lying within a

single standard deviation from the mean.

Modelling the spread of COVID-19 in Berlin

We now turn to a sophisticated model of the spread of COVID-19 in Berlin, previously studied

in [13]. The authors presented an extended version of the compartmental SEIRD model,

modelling—among others—those infected, symptomatic, sick (i.e. requiring medical attention

or hospitalisation), and critically sick (requiring ICU or otherwise urgent treatment), as well as

a contact-tracing mechanism responsible for notifying those previously in contact with an

infected person, and consigning them to quarantine. A model overview is presented in Fig 2,

and the ODE system is similar in structure to the SIR model previously studied; see the S1

Appendix or [13] for the equations. This model was calibrated to data from an agent-based

model of Berlin [31], comprising over 3 million agents, the transport system, the geography and

urban structure, as well as workflow routines and travel patterns. The compartments obtained

from the ABM data are exclusive, meaning that e.g. a critical agent is not also classified as symp-

tomatic or hospitalised. The ABM was calibrated to match the case numbers of COVID-19

from February 16 to October 27 2020, and provides estimates of the hidden infection cases

which were not officially recorded but nevertheless driving hospitalisation and mortality rates.

Crucially, it assumes that the official infection figures recorded by the Robert-Koch Institute are

the sum of the SY, H, and C compartments, and do not contain the I compartment, since in the

early stages of the pandemic asymptomatic cases were not usually detected (cf. Fig 3).

Public health measures naturally had an impact on the virus dynamics: on March 12, facto-

ries, theatres, and concert halls started closing, and the German Bundesliga suspended all foot-

ball games. Ten days later, the federal government prohibited all gatherings of more than two

people, exempting single households. These measures lasted through April 2020, after which

retail, schools, and kindergartens gradually started reopening, the federal government giving

states broad autonomy to set their own policies on May 6. [33, 34]. Starting in mid-June,

Table 1. Hellinger distances (Eq (9)) between the estimated and true marginals.

Neural MALA

Hellinger distance β 5e–4 2e–2

Hellinger distance τ 5e–4 2e–2

Hellinger distance α 9e–3 1e–2

Time (2D) 3 min 57 sec 29 min 45 sec

Time (3D) 4 min 13 sec 43 min 31 sec

Generating the ground truth distributions on (β, τ) via a grid search took 60 minutes. Also shown are the CPU run

times for the neural and MALA schemes, both for estimating the marginals in the two-dimensional (β, τ) and three-

dimensional case (β, τ, α).

https://doi.org/10.1371/journal.pone.0306704.t001
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restrictions on social gatherings were further relaxed across the country. These measures will

primarily have affected the population’s exposure to the virus, and we thus assume that the

exposure parameter λE is piecewise linear on the intervals [Feb 16, Mar 12, Mar 22, May 6,

June 15, Oct 27]. This is not taking into account virus mutations changing its infectivity or

lethality. The vector of parameters Λ we wish to estimate is thus 13-dimensional, comprising

the 9 parameters shown in Fig 2, one of which is time-dependent.

We split the data into a training period of 200 days, spanning the period up to September 3

(‘calibration period’), and a test period, spanning the remaining eight weeks until October 27

(‘projection period’). We employ a deep neural network with 3 layers, 20 neurons per layer,

and the sigmoid as an activation function on all but the last layer, where we again use the mod-

ulus. The batch size B is again equal to the length of the time series (B = L). The number of

agents in each compartment span several orders of magnitude, from millions of susceptible

agents down to hundreds of hospitalised or critical agents. Using the simple loss function from

the previous example, Eq (7), would result in only the largest compartments being fitted accu-

rately, since their residuals dominate the loss. We therefore scale each compartment’s contri-

bution to the total loss,

J ¼
X

i

aikT̂ i � Tik
2

2
; ð11Þ

Fig 2. Schematic illustration of the SEIRD+ model, as originally presented in [13]. Each parameter λi indicates the transition rate

between the respective compartments. S, E, and I are the susceptible, exposed, and infected agents. Upon contact with an infected agent,

each may be contacted by the contact tracing agency (CT) and ordered to quarantine (QS, QE, QI compartments). λQ models the rate of

compliance with the contact tracing agency’s instructions. SY, H, and C are the symptomatic, sick, and critically sick agents. Agents from

these as well as the I and QI compartments can recover and transition to the R compartment, where they are assumed to stay, at least for

the period under consideration (< 9 months). Finally, critically ill patients may die of the disease (D), though this compartment is not

included in the loss function. We assume the exposure rate λE varies as public health measures change. The parameter λQ is further

assumed to be a function of λCT and CT, and is thus not learned; see S1 Appendix. Figure adapted from [13].

https://doi.org/10.1371/journal.pone.0306704.g002
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by choosing coefficients αi that ensure all summands are roughly of equal magnitude:

a� 1
i ¼

Z L

0

TiðtÞdt; ð12Þ

where L denotes the length of the time series. Note that, due to inconsistencies in the official

mortality statistics for the early period of the pandemic (arising from the difficulty of discern-

ing ‘death by COVID’ from ‘death with COVID’) we do not fit the D compartment.

Assuming uniform priors on all parameters λi, we show the marginal posteriors alongside

the MCMC estimates in Fig 4. The means and modes of the distributions are indicated in

the plot. In general, the neural posteriors are more sharply peaked and unimodal than the

MCMC estimates, though the expectation values and modes tend to roughly match. A low

sensitivity to λS is unsurprising given the large pool of susceptible agents during the early

stages of the pandemic in a city of 3.6 million. One notable exception is λSY, where the neural

network predicts a much lower rate than MCMC. The marginals on λS and λCT are fairly

broad, indicating low sensitivity to these transition rates. Also observe that the neural mar-

ginals for the exposure parameter are unimodal, with the means and modes obeying

l̂E;0 � l̂E;1 > l̂E;4 > l̂E;3 > l̂E;2. This is consistent with the level of government restrictions

imposed, and it is interesting to note that the measures taken between March 12 and March

22 already reduced the exposure rate by two-thirds. This pattern does not hold for the

MCMC estimates.

Fig 3. Evolution of COVID-19 in Berlin for the period from February 16 to October 27 2020. Shown are the ABM

data [31] for the symptomatic, hospitalised, and critical compartments (orange, red, purple), the sum of all three (light

brown, solid line), as well as the official infection figures (light brown, dots) [32]. The red period is the calibration

period, with the shades representing varying levels of government restrictions and correspondingly different exposure

levels λE: from mid-March, businesses and factories started closing; in late March, the German government imposed

broad contact restrictions; in early May, schools and kindergartens started reopening across the country, followed by

further loosening of restrictions in mid-June, before the start of the summer holidays. The blue period is the projection

data on which we evaluate the prediction. The ABM data only contains a single Q compartment and no CT

compartment. It also does not produce a D compartment, for the reasons given in the text. See S1 Appendix for details.

https://doi.org/10.1371/journal.pone.0306704.g003
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As before, we now draw n samples from the joint densities to produce a mean time series

hT̂i for each compartment. We compare the quality of the fit on each compartment, both on

the training period and the projection period, using the L2 residual

r2
i ¼ hT̂iðtÞ � TiðtÞi

2

t ; i 2 fS; . . . ;Qg; ð13Þ

with the expectation value h�it taken over time. In order to circumvent having to calculate the

full 13-dimensional joint distribution pðΛ̂Þ, we simply select n = 1000 random samples

Fig 4. Marginals on the parameters Λ = (λS, . . ., λCT). Shown are the neural marginals (blue, left side) and MCMC estimates (pink, right side), which

in both cases were smoothed using a Gaussian kernel. Also shown are the means (green dots) and modes (yellow dots) of the marginals. We employ a

three-layer neural network with 20 neurons per layer and sigmoid activation functions on all but the last layer, where we again use the absolute value

function.

https://doi.org/10.1371/journal.pone.0306704.g004
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previously collected during training. Shown in Fig 5 is the true data (red), the mean prediction

hT̂i (green), and one standard deviation (shaded area). The neural approach visibly calibrates

the training data to a higher accuracy than MCMC, consequently also achieving a better fit on

the projection period (blue shaded area). The residuals ri are given in Table 2. The neural

scheme achieves an average calibration error of 25%, representing a 50% improvement over

MCMC, and a projection error of 18%, a fourfold improvement over MCMC. At the same

time, the neural network runs an order of magnitude faster.

Until now we have assumed full knowledge of all compartments in the model, but this is

only due to a sophisticated and computationally expensive ABM running in the background,

laboriously calibrated to official data. Without this machinery, the available data only covers

the symptomatic, hospitalised, and critical compartments [32, 35, 36]. We thus re-train the

model on these compartments only, and assess the calibration quality. Results are shown in

Fig 6. The neural network still calibrates each compartment with an average error of 0.33, an

18% reduction compared to the full model. However, the prediction error is 0.98, an almost

five-fold decrease compared to the full model. Simultaneously, the model’s confidence in its

predictions decreases visibly: the full model is thus required to make accurate predictions with

high confidence.

Fig 5. Comparison of the neural calibration results (left) and the MCMC calibration results (right) for the symptomatic, hospitalized, and critical

compartments. Red lines are the true data, green lines the prediction using the estimated mean of the joint density, calculated by drawing 1000 samples

from the joint distribution. The green shaded areas represent one standard deviation. The blue shaded area is the test period for which projections are

generated. Calibration results for the remaining compartments are shown in S3 Fig in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0306704.g005
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Fig 6. Results on a reduced training dataset, consisting only of the symptomatic, hospitalized, and critical

compartments.

https://doi.org/10.1371/journal.pone.0306704.g006

Table 2. Calibration and projection error of the neural and MALA schemes on the different compartments.

Neural error MALA error

Calibration Projection Calibration Projection

S 0.0004 0.002 0.003 0.02

E 0.36 0.17 0.32 0.67

I 0.23 0.11 0.31 0.67

R 0.22 0.04 0.49 0.67

SY 0.25 0.12 0.35 0.97

H 0.32 0.28 0.52 0.85

C 0.28 0.24 0.64 0.52

Q 0.34 0.11 0.43 1.33

Avg. 0.25 0.18 0.38 0.71

Time 8 mins 45 secs 88 mins 1 sec

The calibration period refers to the test period from Feburary 16 to September 3, while the projection period is the remaining two months until October 27. The error is

given in terms of the L2 residual ri (Eq (13)). Also shown: CPU run time.

https://doi.org/10.1371/journal.pone.0306704.t002
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Discussion

In this article we presented a method to optimally fit compartmental infection models to

observations of infection spreading. We applied a novel and powerful computational method

to the problem of learning probability densities on contagion parameters and providing uncer-

tainty quantification for epidemic projections. This new methodology can be utilized based on

simulation data coming from finer scale models (as demonstrated herein) or directly on obser-

vational data. In the former case, it allows finding optimal surrogate models to fine-scale infec-

tion models in order to use them in optimal control or multi-objective optimization

approaches as in [13].

The strategy proposed in this paper represents a notable improvement over conventional

MCMC or Langevin sampling methods due to its superior computational accuracy and effi-

ciency in estimating the parameters of the model and their uncertainty. The comprehensive

understanding of uncertainty it provides is vital to developing effective policy responses when

faced with intrinsic unpredictability. We mention, in particular, that the exploration of a rela-

tively high-dimensional parameter space using MCMC can be extremely expensive, especially

when—as is the case here—the likelihood must be obtained via simulation. Furthermore, the

marginals Fig 4 strongly indicate that the parameter space is highly non-convex with many dif-

ferent local minima trapping the MCMC sampler and significantly increasing the mixing

times. In our analysis, we also noted the slow convergence of the Gelman-Rubin statistic for

the Langevin sampler—see S4 Fig in the S1 Appendix. Overall, in our experiments our method

delivered a 10-fold decrease in compute times, while calibrating and predicting the spread of

COVID-19 significantly more accurately. In our numerical experiments, even state-of-the-art

MCMC schemes fail to fully explore the parameter space, in particular if the model contains

redundant parameters. Our proposed method, by contrast, does not suffer from this

drawback.

Recently, new alternative sampling methods for Bayesian uncertainty quantification and

inversion have been proposed; one example is the Affine Invariant Langevin Dynamics

(ALDI) [37, 38], a modification of the Ensemble Kalman Sampler [39] with significant theoret-

ical advantages over preconditioned MALA (such as affine invariance and convergence in

total variation to the posterior, at least for convex problems). Further schemes include Hamil-

tonian Monte Carlo [20] and the bouncy particle sampler [40]. A comprehensive comparison

of the various sampling schemes and their relative benefits for calibrating epidemiological

models will be the subject of future work. Lastly, one current deficit of the neural parameter

calibration scheme proposed in [14] is that, so far, it lacks a rigorous convergence analysis, and

its theoretical properties remain unclear. This will be the subject of future work by the authors.

Data, materials, and software availability

Code data can be found under https://github.com/ThGaskin/NeuralABM. It is easily adaptable

to new models and ideas. The code uses the utopya package (https://utopia-project.org)

[41, 42] to handle simulation configuration and efficiently read, write, analyse, and evaluate

data. This means that the model can be run by modifying simple and intuitive configuration

files, without touching code. Multiple training runs and parameter sweeps are automatically

parallelised. The neural core is implemented using pytorch (https://pytorch.org).

Supporting information

S1 Appendix.

(PDF)
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40. Bouchard-Côté A, Vollmer SJ, Doucet A. The Bouncy Particle Sampler: A Nonreversible Rejection-

Free Markov Chain Monte Carlo Method. Journal of the American Statistical Association. 2018; 113

(522):855–867. https://doi.org/10.1080/01621459.2017.1294075

41. Riedel L, Herdeanu B, Mack H, Sevinchan Y, Weninger J. Utopia: A Comprehensive and Collaborative

Modeling Framework for Complex and Evolving Systems. Journal of Open Source Software. 2020; 5

(53):2165. https://doi.org/10.21105/joss.02165

42. Sevinchan Y, Herdeanu B, Traub J. dantro: a Python package for handling, transforming, and visualiz-

ing hierarchically structured data. Journal of Open Source Software. 2020; 5(52):2316. https://doi.org/

10.21105/joss.02316

PLOS ONE Neural parameter calibration and uncertainty quantification for epidemic forecasting

PLOS ONE | https://doi.org/10.1371/journal.pone.0306704 October 17, 2024 16 / 16

https://doi.org/10.1137/19M1251655
https://doi.org/10.1137/19M1251655
https://doi.org/10.1137/19M1303162
https://doi.org/10.1137/19M1303162
https://doi.org/10.1080/01621459.2017.1294075
https://doi.org/10.21105/joss.02165
https://doi.org/10.21105/joss.02316
https://doi.org/10.21105/joss.02316
https://doi.org/10.1371/journal.pone.0306704

