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a b s t r a c t

For a given graph G = (V , E), we define its nth subdivision as the graph obtained from G
by replacing every edge by a path of length n. We also define the mth power of G as the
graph on vertex set V where we connect every pair of vertices at distance at most m
in G. In this paper, we study the chromatic number of powers of subdivisions of graphs
and resolve the case m = n asymptotically. In particular, our result confirms a conjecture
of Mozafari-Nia and Iradmusa in the case m = n = 3 in a strong sense.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G = (V , E) be a simple graph. A total colouring of G is an assignment of colours to its vertices and edges so that
no pair of adjacent vertices or edges has the same colour, and no edge has the same colour as either of its endpoints.
We denote by χ ′′(G) (called the total chromatic number of G) the minimum number of colours needed in a total colouring
of G.

The total colouring conjecture, posed independently by Vizing in 1964 [15] and by Behzad [3] in his Ph.D. dissertation
in 1965, states that, for every simple graph G with maximum degree ∆(G), we have χ ′′(G) ≤ ∆(G) + 2. Nowadays, there
re partial advances towards this conjecture. For example, Reed and Molloy proved in [9] that, if ∆(G) is sufficiently large,
hen χ ′′(G) ≤ ∆(G)+C , where C can be taken to be 1026 (however, the authors state that the constant is not optimised and
detailed analysis could yield a much better constant). Hind, Reed, and Molloy proved in [6] that, if ∆(G) is sufficiently

arge, then χ ′′(G) ≤ ∆(G)+ 8(log∆(G))8. We refer the reader to [8,10,17] for some history and further results in this line
f research.
In this paper, we study generalisations of the total colouring conjecture. For a given graph G = (V , E), we define its nth

ubdivision as the graph obtained from G by replacing every edge with a path of length n. We also define the mth power
f G as the graph on vertex set V where we connect every pair of vertices at distance1 at most m in G. We denote by G

1
n

and Gm the nth subdivision and the mth power of G, respectively. Finally, we define G
m
n to be

(
G

1
n

)m
. For instance, G

1
1 = G.

n G
m
n , the vertices that were already in G are called branch vertices, whereas the vertices that were added because of the

ubdivision are called inner vertices.
Note that χ (G

1
n ) ≤ 3 holds for all n > 1 and all graphs G because we can always assign colour 1 to the branch

ertices and then alternatingly colour the inner vertices of the subdivision with the colours 2 and 3. Observe also that
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χ ′′(G) = χ (G
2
2 ); hence, the total colouring conjecture states that χ (G

2
2 ) ≤ ∆(G) + 2. For other powers of subdivisions, it

as shown by Iradmusa [7, Lemma 3], and later also by Hartke, Liu, and Petříčková [5, Lemma 2.6], that χ (G
2
3 ) = ∆(G)+1

henever ∆(G) ≥ 3. More generally, the latter group of authors studied the chromatic number of G
m
n when 1 < m < n

and determined it up to an additive constant of 2 (see [5, Theorems 1 and 2] and [7, Theorem 1]). The case m = n is much
less understood. Wang and Liu proved in [16] that, if ∆(G) ≤ 3, then χ (G

3
3 ) ≤ 7. This was extended by Mozafari-Nia and

radmusa in [11], who showed that, if ∆(G) ≤ 4, then χ (G
3
3 ) ≤ 9, and conjectured that χ (G

3
3 ) ≤ 2∆(G) + 1. In [12–14],

the same authors checked the validity of this conjecture for some classes of graphs such as k-degenerate graphs, cycles,
forests, complete graphs, hypercubes, outerplanar graphs, and regular bipartite graphs.

Our main result proves this conjecture in asymptotic form (when ∆ → ∞), and shows that the multiplicative constant
can in fact be taken to be 1.

Theorem 1.1. There is a constant C > 0 such that, for all graphs G with maximum degree ∆,

χ (G
3
3 ) ≤ ∆ + C log∆.

The constant C in Theorem 1.1 can be taken to be 28 when ∆ is sufficiently large, although in our argument we have
ot attempted to optimise it. The proof uses some ideas from Guiduli [4] as well as Alon, McDiarmid, and Reed [2]. In the
irst paper, the author considers the incidence colouring number ι(G), which can be seen as the colouring number where
ne only has to colour the inner vertices of G

3
3 . We show that the proof can be extended by probabilistic means to colour

he branch vertices as well.
Concerning lower bounds for this problem, Guiduli [4] also notes that, if G is a Paley graph, then ι(G) ≥ ∆+Ω(log∆).

This implies that, for infinitely many ∆, there are graphs G with maximum degree ∆ such that

χ (G
3
3 ) ≥ ∆ + Ω(log∆).

As a byproduct of the ideas developed to prove Theorem 1.1, we are also able to obtain the following generalisation
for the chromatic number of G

k
k when k ≥ 2:

Theorem 1.2. For every integer k ≥ 2, there exists a constant Ck such that, for every graph G, we have:⌊
k
2

⌋
∆(G) ≤ χ (G

k
k ) ≤

⌊
k
2

⌋
∆(G) + Ck log∆(G).

This short paper is organised as follows. In Section 2, we recall basic notions concerning the directed linear arboricity
f a graph and prove Theorem 1.1. We sketch the proof of Theorem 1.2 and discuss the difficulties arising when trying to
eneralise our method to fractions r

s where r > s in Section 3.

2. The chromatic number of G
2
3 : Proof of Theorem 1.1

The proof of Theorem 1.1 follows the arguments from the proof of Theorem 3.1 in [4]. There, the author considers
the directed star arboricity dst(D) of a directed graph D, defined as the smallest number of directed star forests needed to
cover D, where the edges of the star are directed away from the centre. The directed star arboricity is closely connected to
the incidence colouring number ι(G) of a graph G. This is the smallest number of colours needed to colour the vertex–edge
pairs (v, e), with v ∈ e, of G in such a way that (v, e) and (w, f ) receive different colours if v = w or vw = e or vw = f . By
viewing the pair (v, e) as an orientation of e towards v, we observe the following connection between these two notions:
If S(G) is the directed graph where each edge of G is replaced by both directed edges, then ι(G) = dst(S(G)). In [4], Guiduli
showed that dst(D) ≤ k + 20 log k + 84, where k is the larger of the maximum indegree and the maximum outdegree
of D.

For an edge e = vw in G, we write ev for the neighbour of v in G
1
3 on the subdivision of e. In other words, the edge

= vw in G defines the path v, ev, ew, w in G
1
3 . In G

2
3 , the vertices ev, ew are inner vertices, whereas the vertices v and w

re branch vertices. For a branch vertex v, let Iv := {ev
: e ∈ E(G)} be the set of all inner vertices which are neighbours

f v in G
1
3 . Note that {Iv}v∈V (G) partitions the set of inner vertices.

If we identify the inner vertex ev of G
2
3 with the incidence pair (v, e), we can quickly see that ι(G) is the colouring

umber of G
2
3 when we only have to colour the inner vertices. In particular, χ (G

2
3 ) ≥ ι(G). We can easily complete a

olouring of the inner vertices to a colouring of all of G
2
3 by using χ (G) ≤ ∆(G) + 1 additional colours. Our result shows

hat we can in fact accomplish this task with only logarithmically many (in ∆) additional colours. Hence, Theorem 1.1 is
slight generalisation of Theorem 3.1 in [4].
We will follow the proof of [4] and adjust it in such a way that it becomes apparent that we can also colour the

ranch vertices of G
2
3 . The proof uses a version of the Lovász Local Lemma (Lemma 3.4 in [4]), which we restate here for

ompleteness.
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Lemma 2.1. Let H be a simple graph on vertex set V = [n] with maximum degree ∆(H) ≤ d. A probability event Ai is
ssociated with each vertex i ∈ V such that Pr(Ai) ≤ 1/(4d) and the event Ai is independent of all Aj for which j is not adjacent
o i in H. Then Pr(Āi ∩ · · · ∩ Ān) > 0.

Given a graph G with maximum degree ∆, our general strategy for colouring χ (G
2
3 ) will be the following:

(1) Find a proper colouring c of the branch vertices of G
2
3 using colours in [∆ + 1].

(2) For each branch vertex v of G
2
3 , find a list Lv ⊆ [∆ + C log∆] of colours (C will be defined explicitly later) of size

Θ(log∆). For a branch vertex w and an edge e = wv of G, we will colour the inner vertex ew with a colour from
the list Lv . For that, we will require the family {Lv}v∈V (G) to have the following property: for each branch vertex w,{
Lv \ {c(v), c(w)}

}
v∈NG(w) has a transversal2 Tw .

(3) Colour the inner vertices of G
2
3 around w according to the transversal Tw obtained in Step (2).

At this point of the colouring process, the only monochromatic edges that can occur are of the form ev f w , where
e = vw and we allow f = e. But this can only happen if Lw contains the colour of f w (note that the colour of ev

comes from Lw). Thus, for each branch vertex v, there are at most Θ(log∆) many inner vertices of the form ev that
have to be recoloured. As a final step, we use a small number of additional colours to resolve the conflicts:

(4) Use Θ(log∆) new colours to recolour every ev for which there exists a monochromatic edge of the form ev f w

without creating new monochromatic edges.

Step (1) is implemented by invoking the Greedy Colouring Algorithm. Therefore, we only need to justify the
existence of transversals in Step (2), as well as the fact that Θ(log∆) of new colours suffice for the recolouring in Step
(4).

Before going into the proof of Step (2) (which is based on the Lovász Local Lemma) we need to prove Lemma 2.2,
stated below. A version of Lemma 2.2 where r is taken to be at least 5 log k + 20 and all F1, . . . , Fk equal the empty set
as proven in [2] (see Lemma 2.5 therein). The two proofs are very similar and are based on verifying Hall’s condition.

emma 2.2. There exists an integer k0 such that, for all k ≥ k0 and every integer r satisfying 7 log k ≤ r ≤ k, the following
olds: Let S1, . . . , Sk be independent random subsets of [k+ r], each of which is generated by sampling r elements from [k+ r]

uniformly and independently at random with replacement. Furthermore, let F1, . . . , Fk be arbitrary fixed subsets of [k + r] of
size two. Then the probability that the family of sets {S1 \ F1, . . . , Sk \ Fk} does not have a transversal is at most k1−

r
5 .

Note that the number 5 in the exponent is not optimal. A more careful analysis can lead to a better constant.

Proof. Our goal is to show that the family {S1 \ F1, . . . , Sk \ Fk} violates Hall’s condition, and therefore has no transversal,
ith probability at most k1−

r
5 . For j ∈ [k], let Pj be the probability that there is a set J ⊆ [k] of size j with

⏐⏐⋃
i∈J Si \ Fi

⏐⏐ < |J|.
Our aim is to show that Pj ≤ k−

r
5 for each j, which implies that Hall’s Theorem is violated with probability at most∑k

j=1 Pj ≤ k1−
r
5 . We have

Pj ≤

(
k
j

)(
k + r

j

)(
j + 2
k + r

)rj

≤

(
k + r

j

)2( j + 2
k + r

)rj

,

since there are
(k
j

)
ways to choose J ⊆ [k] with |J| = j,

(k+r
j

)
ways to pick a subset S ⊆ [k + r] of size j, and

( j+2
k+r

)rj
is

n upper bound for the probability that
⋃

i∈J Si \ Fi ⊆ S (this implies that
⏐⏐⋃

i∈J Si \ Fi
⏐⏐ ≤ |J|, which contains the event⋃

i∈J Si \ Fi
⏐⏐ < |J|).

In order to study this quantity we need to distinguish three cases. In all cases, k will be sufficiently large.

Case 1: k+r
2 ≤ j ≤ k. Then,

Pj ≤

(
k + r

k + r − j

)2 (
1 −

k + r − j − 2
k + r

)rj

≤ (k + r)2(k+r−j) exp
(

−
rj(k + r − j − 2)

k + r

)
= exp

(
(k + r − j)

(
2 log(k + r) −

k + r − j − 2
k + r − j

·
rj

k + r

))
≤ exp

(
(k + r − j)

(
2 log(k + k) −

2
3

·
r
2

))
≤ exp

(
(k + r − j)

(
2 log k + 2 −

r
3

))
.

2 A transversal of a family S , . . . , S of sets consists of m distinct elements x , . . . , x such that x ∈ S .
1 m 1 m i i
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For the second inequality we used the inequalities
(a
b

)
≤ ab and 1−x ≤ e−x. Furthermore, we used the assumptions

that k+r
2 ≤ j ≤ k and k ≥ k0 is sufficiently large to deduce that j

k+r ≥
1
2 and k+r−j−2

k+r−j ≥
2
3 , used in the fourth

inequality. Since r ≥ 7 log k and k ≥ k0 is sufficiently large, the above quantity is bounded above by

exp
(

−(k + r − j)
(
1
4
log k − 2

))
≤ exp

(
−

r
5
log k

)
.

Case 2: log k ≤ j ≤
k+r
2 . In this case we have

Pj ≤

(
k + r

j

)2 ( j + 2
k + r

)rj

≤

(
e(k + r)

j

)2j (1.1 · j
k + r

)rj

=

(
e2 · 1.1r

( j
k + r

)r−2
)j

≤

(
e2 · 1.1r

(1
2

) r
2
)log k

≤ exp
(
−

r
5
log k

)
.

For the second inequality, we used that
(n
x

)
≤
( en

x

)x for every integer 1 ≤ x ≤ n. We used the assumptions that
log k ≤ j ≤

k+r
2 and k ≥ k0 is sufficiently large to deduce that j + 2 ≤ 1.1j and j

k+r ≤
1
2 in the second and third

inequalities respectively. For the last inequality, we used that 1.1r
( 1
2

) r
2 ≤ exp

(
−

r
4

)
holds for all positive r .

Case 3: 1 ≤ j ≤ log k. Then

3j
k + r

≤
3 log k

k
≤

1
√
k
.

Hence,

Pj ≤

(
k + r

j

)2 ( j + 2
k + r

)rj

≤

(
e(k + r)

j

)2j ( 3 · j
k + r

)rj

=

(
e232

(
3j

k + r

)r−2
)j

≤

(
100

(
1

√
k

)r−2
)j

≤

(
1

√
k

)r−3

= exp
(

−
1
2
(r − 3) log k

)
≤ exp

(
−

r
5
log k

)
.

In the second inequality, we again used that
(n
x

)
≤
( en

x

)x.
his shows that, for each j ∈ [k], we have Pj ≤ k−

r
5 , as needed. □

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ∆ be large enough. We will start by defining a (not necessarily proper) colouring of G
2
3 using

t most ∆+ 7 log∆ colours. Let V := V (G) be the set of branch vertices of G
2
3 . We start by taking a proper colouring of G

with ∆ + 1 colours, c : V (G) → [∆ + 1], which exists by the Greedy Colouring Algorithm. Such a colouring defines a
colouring on the branch vertices of G

2
3 in which two incident branch vertices have different colours.

We continue with Step (2), which is the content of the following claim:

Claim 2.3. There exists an assignment of a list Lv ⊆ [∆ + 7 log∆] of size 7 log∆ to each vertex v ∈ V such that, for
each w ∈ V , the set family {Lv \ {c(v), c(w)} : v ∈ NG(w)} has a transversal Tw .

Proof of Claim 2.3. For each v ∈ V , generate Lv randomly by performing 7 log∆ independent uniform samplings
rom [∆ + 7 log∆]. Let Bw be the bad event that the family {Lv \ {c(v), c(w)} : v ∈ NG(w)} does not have a transversal. By
emma 2.2, we have Pr(Bw) ≤ ∆1− 7 log∆

5 . Furthermore, Bw is independent of all but at most ∆2 other Bv ’s, namely those
orresponding to vertices at distance at most two from w in G. Hence, the dependency graph has degree at most ∆2 and
r(Bw) ≤ 1/(4∆2) for ∆ large enough. Hence, applying the Lovász Local Lemma (Lemma 2.1) gives that the probability
hat no bad event happens is positive. In particular, the required list assignment exists. □

Let {Lv}v∈V be a collection of lists such that all the transversals Tw exist, guaranteed by Claim 2.3. Now we extend
he colouring c to the inner vertices: For each edge e = vw, let c(ev) be the transversal element of Tv corresponding to
he set Lw \ {c(v), c(w)}. This colouring is not necessarily proper, but note that there cannot be a monochromatic edge
etween a branch vertex and an inner vertex because we excluded {c(v), c(w)} from Lw in Tv . Furthermore, an edge of
he form ev

1e
v
2 can also not be monochromatic since these two colours come from the same transversal Tv .

The only conflicts that remain are those between two inner vertices of the form ev and f w with v ̸= w. Since they
re connected in G

2
3 , they must be of distance at most three in G

1
3 . Unless f = e = vw, this shortest path must pass
509
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through either v or w. We call this branch vertex the corresponding branch vertex for the conflict (ev, f w). If f = e = vw,
we choose v or w arbitrarily and call it the corresponding branch vertex.

Now consider a conflicting pair (ev, f w) of inner vertices and assume, without loss of generality, that v is the
corresponding branch vertex. It follows that f = vw and c(ev) = c(f w) ∈ Lv . Therefore, if for each v ∈ V we properly
recolour all ev with c(ev) ∈ Lv with new colours, then we have found a proper colouring of G

2
3 . Let Iv be the set of all

inner vertices ev satisfying c(ev) ∈ Lv . Observe that, as there are no conflicts of the form (ev, f w) with v = w, all the
colours c(ev) for ev

∈ Iv are distinct and contained in Lv . Thus |Iv| ≤ |Lv|.

Claim 2.4. There is a proper colouring of
⋃

v∈V Iv using at most 21 log∆ new colours.

In the proof of Claim 2.4 we use the following auxiliary lemma, taken from [4].

Lemma 2.5 (Lemma 3.2 in [4]). Let D be a directed graph (with possible multiple edges) such that every vertex has indegree
at most c. Then dst(D) ≤ 3c.

Proof of Claim 2.4. Let S =
⋃

x∈V (G) Ix be the set of vertices in G
2
3 to be recoloured with new colours. Consider the

irected graph D with V (D) = V (G) and E(D) = {(w, v) : e = vw, ev
∈ S}. Now each vertex in ev

∈ S corresponds
to a directed edge in D. Observe also that, for each w ∈ V (D), the set of edges directed away from w corresponds to a
subset of S that is an independent set in G

2
3 . Similarly, a directed star forest where the edges of each star are directed

way from its centre in D corresponds to an independent set in G
2
3 . Furthermore, the maximum indegree in D is at most

axv∈V |Iv| ≤ maxv∈V |Lv| ≤ 7 log∆. By Lemma 2.5 , this implies that D can be partitioned into at most 21 log∆ directed
tar forests where the edges of each star are directed away from its centre. By using a different new colour for each of
he corresponding independent sets in G

2
3 , we obtain the required colouring. □

After introducing these 21 log∆ new colours, we are using ∆ + 28 log∆ colours in total to properly colourG
2
3 , as

laimed. □

. Proof of Theorem 1.2 and further comments

In this paper, we obtained asymptotically tight bounds for χ (G
2
3 ) as the maximum degree of G grows. The method used

to obtain upper bounds for χ (G
2
3 ) can be extended to yield upper bounds for χ (G

k
k ). Specifically, for every integer k ≥ 2

there exists a constant Ck such that for every graph G the following holds:⌊
k
2

⌋
∆(G) ≤ χ (G

k
k ) ≤

⌊
k
2

⌋
∆(G) + Ck log∆(G).

The lower bound of ⌊k/2⌋∆(G) comes from the cliques that are ‘centred’ around branch vertices of maximum degree.
or the upper bound on χ (G

k
k ), we follow the same four-step strategy as for χ (G

2
3 ), which slightly differs depending on

he parity of k in the first two steps. If k is even, then in Step (1) we use a proper colouring with ∆(G) + 1 colours to
olour the branch vertices of G

k
k . Otherwise, if k is odd, then in Step (1), we use a total colouring of G with ∆(G) + O(1)

colours, which is known to exist by [9], to colour the branch vertices along with the middle vertices on the subdivided
edges.

In Step (2), we assign a list Lv ⊆ [⌊
k
2⌋∆(G) + C ′

k log∆(G)] of size Θ(log∆(G)) to every vertex v. For a branch vertex w
nd an edge e = wv of G, we will colour the inner vertices of e that are strictly closer to w than to v with a colour from
he list Lv . For that, we will require the family {Lv}v∈V (G) to have the following property: for each branch vertex w, there
xist (simple) subsets Lv,w ⊆ Lv \ Fv,w of size ⌊k/2⌋ for each v ∈ NG(w) such that no element appears in two different
ets Lv,w and Lv′,w . Here Fv,w has size at most three and contains c(v), c(w), and, when k is odd, the colour of the middle
ertex of the subdivided edge vw. To study the likelihood of the existence of these subsets of {Lv}v∈V (G) we appeal to the
eneralised Hall’s condition in place of Hall’s condition, that is, |N(S)| ≥ ⌊k/2⌋|S| (see [1, Corollary 1.2]), for every set S.

Steps (3) and (4) are identical.
A more complicated problem arises when dealing with fractions r

s when r is greater than s. In this situation, we must
use more colours than the ones used by Brooks’ Theorem, as the colouring of a specific branch vertex may influence not
only their neighbours in G, but vertices at a higher distance.
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