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A catalogue of neuronal cell types has often been called a ‘parts list’ of the brain’,
and regarded as a prerequisite for understanding brain function*?. In the opticlobe

of Drosophila, rules of connectivity between cell types have already provento be
essential for understanding fly vision*®. Here we analyse the fly connectome to
complete the list of cell types intrinsic to the optic lobe, as well as the rules governing
their connectivity. Most new cell types contain10 to 100 cells, and integrate
information over medium distances in the visual field. Some existing type families
(Tm, Li, and LPi)*'° at least double in number of types. A new serpentine medulla
(Sm) interneuron family contains more types than any other. Three families of cross-
neuropil types are revealed. The consistency of types is demonstrated by analysing
the distancesin high-dimensional feature space, and is further validated by
algorithms that select small subsets of discriminative features. We use connectivity
to hypothesize about the functional roles of cell types in motion, object and colour
vision. Connectivity with ‘boundary types’ that straddle the optic lobe and central
brainis also quantified. We showcase the advantages of connectomic cell typing:
complete and unbiased sampling, arich array of features based on connectivity and
reduction of the connectome to a substantially simpler wiring diagram of cell types,
withimmediate relevance for brain function and development.

Some of the greatest scientific discoveries of the twentieth century
concern the neural basis of sensory perception. Hubel and Wiesel’s
discovery of simple and complex cells in the visual cortex not only
entered neuroscience textbooks, but the hypothetical neuronal
wiring diagrams in their 1962 paper™ also inspired convolutional
nets'>, which eventually ignited the deep-learning revolution
in artificial intelligence™. It may come as a surprise that directly
mapping such wiring diagrams, influential as they may be, has
been highly challenging or even impossible in mammalian brains.
Progress is being made by visual physiologists™, and the recon-
struction of a column of visual cortex from electron microscopy
images is also becoming feasible’®'. These are tiny slivers of visual
systems; scaling up to the full complexity of mammalian vision is still
aspirational.

Toimagine the future of visual neuroscience, it is helpful to extrapo-
late froma brain of amore modest size—that of the fly. Especially over
the past 15 years, visual neural circuits have been intensively investi-
gated in Drosophila* with great progress in understanding the percep-
tion of motion>'°, colour® and objects?, as well as the role of vision in
complex behaviours like courtship®. The release of a neuronal wiring
diagram of a Drosophilabrain® 2 poses an unprecedented opportunity.
The first wiring diagram for a whole brain contains as a corollary the

first wiring diagram for an entire visual system, as well as all the wiring
connecting the visual system with the rest of the brain.

About 38,500 neurons are intrinsic to the right optic lobe of the
reconstructed Drosophilabrain (Extended Data Fig.1a). The full wiring
diagram for these neurons is too complex to comprehend or even visu-
alize. Itis essential to reduce complexity by describing the connectivity
between types of cells. For example, the roughly 800 ommatidia in
the compound eye send photoreceptor axons to roughly 800 L1 cells
in the lamina, which in turn connect with around 800 Mil cells. That
is alot of cells and connections, but they can all be described by the
simple rules that photoreceptors connectto L1, and L1 connects to Mil.
Some such rules are known”*-3°, but this knowledge is fragmentary
and incomplete.

Here we exhaustively enumerate all cell types intrinsic to the optic
lobe, and find all rules of connection between them. We effectively col-
lapse 38,500 intrinsic neurons onto just 227 types, areduction of more
than150x%. The wiring diagramis reduced froma 38,500 x 38,500 matrix
to a 227 x 227 matrix, an even greater compression. We additionally
providerules of connectivity betweenintrinsic types and 500 types of
boundary neurons (defined below), which have also been annotated®.

In our connectomic approach, a cell type is defined as a set of cells
with similar patterns of connectivity’, and such cells are expected to
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share the same function®. By the same logic, cell types with similar pat-
terns of connectivity should have similar functions. This logic will be
used to generate hypotheses about the functions of newly discovered
celltypes, aswell asthe previously known cell types for which functional
information has been lacking.

Class, family and type

Neurons intrinsic to the optic lobe are those with almost all of their
synapses inside the optic lobe (Methods), and are the main topic of this
study (Extended Data Fig. 1a). Moreover, there are boundary neurons
that straddle the optic lobe and the rest of the brain (Extended Data
Fig. 1b). Boundary neurons fall into several classes: visual projection
neurons (VPNs) project from the optic lobe to the central brain, visual
centrifugal neurons (VCNs) do the opposite and heterolateral neurons
extend fromone opticlobe to the other while making few or no synapses
in the central brain. Targets of boundary neurons in the central brain
are generally multimodal and/or sensorimotor?*, mixing information
coming from the eyes and other sense organs, so we regard the optic
lobe proper as the fly’s visual system.

The brain of a single Drosophila adult female was reconstructed by
the FlyWire Consortium?**, We proofread around 38,500 intrinsic
neuronsintheright opticlobe (counts by type are shownin Extended
DataTable1),aswellas3,900 VPNs, 250 VCNs, 150 heterolateral neurons
and 4,700 photoreceptor cells (left optic lobe numbers are shown in
the Methods). Intotal, 77% of the synapses of intrinsic neurons are with
other intrinsic neurons, and 23% are with boundary neurons.

Wedivide opticlobeintrinsic neuronsinto four broad classes: colum-
nar, local interneuron, cross-neuropil tangential and cross-neuropil
amacrine (Fig. 1la-c). Cells of the columnar class (Fig. 1a) have axons
oriented parallel to the main axis of the visual columns (“axon’is defined
inthe Methods). Following a previous study®, the arbour of a columnar
neuron is allowed to be wider than a single column; what matters is
the orientation of the axon, not the aspect ratio of the arbour. Pho-
toreceptor cells are columnar but are not intrinsic to the optic lobe,
strictly speaking, because they enter from the retina. Nevertheless,
they will sometimes be included with intrinsic types in the following
analyses.

The opticlobe (Extended DataFig.1a,b) contains four main neuropils
(lamina, medulla, lobulaand lobula plate) and asmaller fifth neuropil—
the accessory medulla (synapse counts by type family in each neuropil
are shown in Extended Data Table 2 and the number of cells in each
optic lobe is shown in Extended Data Table 3). We further distinguish
betweendistal and proximal medulla, regarding them as two separate
neuropils® (Extended Data Fig. 1c). The border between them is layer
7 of the medulla (M7), which is also known as the serpentine layer®*,

A columnar cell spans multiple neuropils (Fig. 1a). Cells of the local
interneuron class (Fig. 1b) are defined as being confined to a single
neuropil. We also define two classes that cross multiple neuropils but
are not columnar. A cross-neuropil tangential cell (Fig. 1c) has an axon
thatis oriented perpendicular to the main axis of the visual columns as
itrunsinside a neuropil. A cross-neuropil amacrine cell (Fig. 1c) lacks
an axon. Interneurons are typically amacrine, but sometimes have an
axonin the tangential orientation.

Eachclassisdividedinto families. A family is defined as a set of cells
that share the same neuropils (Fig. 1a-c and Methods). For example,
the Tm family projects from the distal medulla to the lobula, while the
TmY family projects from the distal medulla to both the lobula and
lobula plate (Fig. 1a; Tm and TmY pass through the proximal medulla,
and also typically receive inputs there).

Eachfamilyis dividedinto cell types. All 227 intrinsic types as well as
photoreceptor typesare available for 3D interactive viewing at the Fly-
Wire Codex (https://codex.flywire.ai). Supplementary Datalincludes
alist of allintrinsic types and their properties. Supplementary Data 2
contains one ‘card’ for each type, which includes its discriminative

logical predicate (see below), basic statistics, diagram showing strati-
fication and other single-cell anatomy, and 3D renderings of all the
cellsinthe type.

Most neuronsin the opticlobe are columnar (Fig. 1e (right)), and half
of the families are columnar (Fig. 1e (left)). Interneurons constitute
just17% of optic lobe intrinsic neurons, but the majority of cell types
(Fig. 1e (middle)). A columnar family (Tm) contains more cells than
any other family (Fig. 1f (right)). Aninterneuron family (Sm) contains
more types than any other family (Fig. 1f (left)).

The columnar families (Fig.1a) are well known®. The Sminterneuron
family is new (Fig. 1b), and its name is inspired by its stratification in
the serpentine medulla (M7). Some of the cross-neuropil families are
wholly or almost wholly new (Fig. 1c). Over half of the cell types are
new, and many of these are interneuron types.

Connectomic approachto cell types

For each cell, we define an output feature vector by the number of
output synapses onto neurons of cell type ¢, whichrunsfrom1to 7. The
output feature vector is a row of the cell-to-type connectivity matrix
(Methods). For each cell, we similarly define aninput feature vector by
the number of input synapses received fromneurons of cell type ¢. This
isacolumnofthe type-to-cell connectivity matrix (Methods). The input
and output feature vectors are concatenated to forma2T7-dimensional
feature vector (Fig. 2a). The feature dimensions include only intrinsic
types, so Tis 227.

A cell type is defined as a set of cells with similar feature vectors’.
Cells of the same type are near each other in feature space, while cells
of different types are far away (Fig. 2b). This was quantified using the
weighted Jaccard distance (hereafter, Jaccard distance; Methods).

Our definition of feature vectors requires that some cell types should
already exist. Aninitial set of cell types was defined by human analysts
using traditional morphological criteria (Methods). These traditional
celltypes were used to compute feature vectors, and hierarchical clus-
tering was applied. In many cases, this led to further division into cell
types that could not be distinguished by traditional criteria. In other
cases, it led to grouping of morphological variants into a single type.
After splitting or merging types, the feature vectors were recomputed
and the process was continued iteratively.

The final cell types were validated in several ways (Methods). We
show that our clustering is self-consistent, in the sense that almost all
cellsend up inthe original cluster if we attempt to reassign each cell’s
feature vector to the nearest cluster. For more interpretable evalua-
tions, we construct compact connectivity-based discriminators that
can predict cell type membership (Extended Data Fig. 2 and Supple-
mentary Data 3). We show that membership canbe accurately predicted
by alogical conjunction of on average five synaptic partner types. For
eachinterneurontype, we also provide selected pairs of features that
canbe used todiscriminate that type from others in the same neuropil
(Extended Data Fig. 3 and Supplementary Data 4).

Hierarchical clustering of cell types

We defined a connectomic cell type as aset of cells with similar feature
vectors based on connectivity. It follows that cells of the same type
should share the same function, according to the maxim “Nothing
defines the function of a neuron better than its connections”®. The
same maxim also implies that cell types with similar feature vectors
should have similar visual functions. A cell type feature vector canbe
obtained by summing the feature vectors over all cellsin that type, fol-
lowed by normalization (Methods). Computing the Jaccard distance
between all pairs of cell type feature vectors and applying average link-
age hierarchical clustering yields adendrogram of cell types (Methods
and Fig. 2c). Thresholding the dendrogram yields a flat clustering
(Fig. 2c), which will be interpreted later on.
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Fig.1|Class, family, type and cell. a, Familiesin the columnar class.

C, centrifugal; L, lamina monopolar; Lawf, lamina wide-field; Mi, medulla
intrinsic; R, receptor; T1-T5, T neuron; Tm, transmedullary; TmY,
transmedullaryY; Tlp, translobula plate; Y, Y neuron. b, Familiesin the
interneuron class. Serpentine medulla (Sm) is new. Dm, distal medulla; Lai,
laminaintrinsic; Li, lobulaintrinsic, LPi, lobula plate intrinsic; Pm, proximal
medulla. ¢, Familiesin the cross-neuropil tangential and amacrine classes. For
tangential families, axonand dendrite are distinguished graphically. All are
new except for Latand Am1. LLPt, lobula-lobula plate tangential; LMt, lobula-
medullatangential; LMa, lobula medullaamacrine; Lat, lamina tangential;
MLt, medulla-lobula tangential; PDt, proximal to distal medulla tangential.

Type-to-type connectivity

We define a type-to-type connection matrix in which the st element is
the number of synapses from cell type s to cell type t (Methods). The
matrix is visualized in Extended Data Fig. 4, and its numerical values
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the numerous types—those with approximately the same cardinality as the
ommatidia of thecompoundeye.

can be downloaded (see the ‘Data availability’ and ‘Code availability’
sections).

The type-to-type connection matrix can also be visualized as a
directed graph. As showing all connections is visually overwhelm-
ing, it is important to find ways of displaying meaningful subsets of
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Fig. 2| Clustering of cells and cell types based on connectivity. a, Feature
vectors for three example cells. The horizontal axis indicates the synapse
numbersthat the cell receives from presynaptic types (red region of vertical
axis) and sends to postsynaptic types (green region of vertical axis). Cells 1
and 2 (same type) have more similar feature vectors to each other thantocell 3
(differenttype). Thelong numbers are the cell IDsin version 783 of the FlyWire
connectome.b, Cellsland 2 (sametype) are closer to eachother thanto cell 3
(adifferenttype), according to the weighted Jaccard distances between the
cellfeature vectors. Such distances are the main basis for dividing cells into
celltypes (Methods). ¢, Dendrogram of cell types. Cell types that merge closer

connections. One that we have found to be helpfulis to display the top
input and output connections of each type (Figs. 3-7 and Extended
DataFigs.5and 6).Insuchagraph, some nodes can have more thanone
outgoing and/or more than one incoming connection. A few of these
nodes show up as ‘hubs’ with many visible connections. For example,
Milisthetopinputtoalarge number of postsynaptic types (Fig. 3 and
Extended Data Fig. 5).

The nodes of the graph were positioned in 2D space by a graph
layout algorithm that tends to place strongly connected types close
together (Methods). It turns out that nearby nodes in the 2D graph
layout space tend to belong to the clusters that were extracted from
the high-dimensional connectivity-based feature vectors (compare
the node colourings of Fig. 3 with clusters of Fig. 2¢).

We canalsonormalize the type-to-type connection matrix tobe the
fraction of synapses from cell type s to cell type ¢. Depending on the
normalization, this could be the fraction of input to type t or fraction
of output fromtype s (Methods). Input and output fractions are shown
in Supplementary Data 5, and are equivalent to the cell type feature
vectors defined earlier. The heat maps of Supplementary Data 5 are
important because they show amuch more complete set of connections
than the wiring diagrams, which are highly selective visualizations.

tothe circumference are more similar to each other. Flat clustering (16 colours)
iscreated by thresholding at 0.9. A few clusters containing single types (Lat, L3
and Lawf2) areuncoloured. To obtain the dendrogram, feature vectors of cells
ineachtype weresummed or averaged toyield afeature vector for that cell
type, and then cell type feature vectors were hierarchically clustered using
average linkage.Jaccard distances run from 0.4 (circumference) to1(centre).
Clusters containing more than one cell type (legend with coloured lines) are
numbered startingat ‘3 o’clock’ on the dendrogram and proceeding
counterclockwise.

Perplexity as ameasure of degree of connectivity

The degree of a cell type can be defined as the number of cell types to
whichiitis connected. Weak connections can be excluded from this
definition by thresholding the type-to-type connection matrix before
computing degree. For a threshold-independent measure, we instead
calculate a ‘perplexity™* for each cell type. The outgoing connection
strengths (synapse counts) are normalized as if they were a probability
distribution, and out-perplexity is defined as the exponential of the
entropy of this distribution. Out-perplexity reduces to out-degree in
the special case that the distribution is uniform over the connected
partners. In-perplexity is defined analogously.

If intrinsic cell types are ranked by the product of out- and
in-perplexity (Extended DataFig.7a), then TmY5ais the most connected
hub, and various types in the lamina and distal medulla are the least
hub-like. Motion-related cell types generally do not have high perp-
lexity. Out-perplexity tends to be greater thanin-perplexity (Extended
Data Fig. 7a), although they are positively correlated (Extended Data
Fig.7b).

One might expect that ‘early’ types in visual processing would have
divergent connectivity, to distribute photoreceptor signals to many
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Fig.3 | Wiring diagram of cell types—top input and output connections.
Simplified wiring diagram of all cell types intrinsic to the opticlobe and
photoreceptors, showing only the top input and output connections of each
type. Colours of types (nodes) indicate membership in flat clusters of Fig. 2c.
Thenodesize encodes the number of drawn connections, so that hub types

targets, while ‘late’ types would have convergent connectivity, sum-
marizing the final results of optic lobe computations for use by the
central brain. Thisidea can be tested by ranking types according to the
ratio of out-perplexity toin-perplexity (Extended DataFig. 8). Indeed,
thetop of thelistincludes early types like the inner photoreceptors R7
andR8, L3 and L5, and many Dm and Pm interneuron types, and many
Smtypesare near thebottom of thelist; they canbe interpreted as ‘late’
types given their extensive connectivity with VPNs.

The ‘numerous’ cell types

Photoreceptor axons project retinotopically from the eye to the
lamina (R1-6) and distal medulla (R7-8). The medullais divided into
columns, which are presumed to be in one-to-one correspondence
withommatidia of the compound eye. Cell types containing >720 cells
inour reconstruction (Fig. 1d), as well as photoreceptor types, will be
called ‘numerous’. The top end (800) of this range is probably the true
number of columns inthis opticlobe. For each numerous type, the cells
appear tobedistributed one per column (Supplementary Data 2), and
the true number of cells is expected to approximate 800. The observed
cellnumbers are mostly smaller than 800; some cells are missing from
columns, presumably due to under-recovery of cells by proofreading
(Methods). The connections between numerous types agree well with
a previous reconstruction of seven medulla columns? (Methods and
Extended Data Fig. 9).

The 28 numerous types have long been known®. At the other extreme,
16 types contain only a single cell. Most types (183) lie between the
extremes (Fig. 1g and Extended Data Fig. 1d). It is the less numerous
types of which our knowledge has been incomplete, and arguably
they are where much of the magic of vision happens. As with the
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look larger. The node shape encodes type numerosity (number of cells). The
line colour encodes therelationship (top input versus top output) and the line
widthis proportional to the number of synapses. The line arrowhead shapes
encode excitation (excit.) versus inhibition (inhib.). Further explanationis
providedinthe Methods.

photoreceptors, neural activity in the numerous cell types like L1and
Mil mostly encodes information about the image at or near single
pointsinvisual space. But perceptionrequires the integration of infor-
mation from points that can be quite distant from each other, and this
is done by the larger neurons that belong to the less numerous types.

For most of the numeroustypes, visual responses have been observed
previously*, and willbe used to interpret the dendrogram of Fig. 2c. We
will see that the numerous types that belong to a single cluster have
similar functions, which enablesus toascribe afunctionto each cluster
as awhole. In other words, we extrapolate from the functions of the
numerous typesto yield preliminary clues regarding the functions of
the less-numerous types.

These extrapolations are speculative, and are merely starting points
for hypothesis generation and experimental research, and the clusters
arenotsetinstone. They were obtained by thresholding a hierarchical
clustering (Fig. 2¢), and adjusting this threshold will change the number
of clusters (Extended Data Fig. 10). Rather than use our clusterings,
some readers may prefer to directly consult the weightedJaccard dis-
tances betweentypes (Fig. 2, Source Data), from which the clusterings
were derived. Other cautionary notes about the clusters are given in
the Methods and Discussion. These caveats notwithstanding, we next
proceed to functional interpretation of the clusters in Fig. 2c.

ON, OFF and luminance channels

Cluster 10 and cluster 11 (Fig. 2c) both receive strong input from pho-
toreceptors R1-6 (Extended Data Fig. 11), and we propose that they
areregarded as OFF and ON channels, respectively, carryinginforma-
tion about light decrements (OFF stimuli) and light increments (ON
stimuli). Our concept is similar to the well-known ON and OFF motion



pathways®?¢, but differs because our ON and OFF channels are general
purpose, feeding into the object and colour subsystems as well as the
motion subsystem.

Cluster 10 contains the OFF cells L2, L4, Tm1, Tm2 and Tm4. Clus-
ter 11 contains the ON cells L5, Miland Tm3, and also the OFF cell L1. It
makes sense to assign L1to the ON channel even thoughitisan OFF cell,
because Llis inhibitory/glutamatergic, so its effects on downstream
partners are similar to those of an ON excitatory cell. Note that infor-
mation about whether synapses are excitatory or inhibitory was not
used by our clustering algorithm. Cluster 11 also contains C2 and C3,
which are expected to be ON cells because their top inputs are L1and
L5. A companion paper argues that the various Dminterneuron types
incluster 10 and cluster 11 normalize the activities of numerous types
in the OFF and ON channels™.

The ON and OFF motion pathways were traditionally defined by work-
ing backwards from the T4 and T5 motion detectors, which respec-
tively compute the directions of moving ON and OFF stimuli**. The ON
motion pathway is directly upstream from T4 and includes Mil, Mi4,
Mi9 and Tm3. The OFF motion pathway is directly upstream from T5
and includes Tm1, Tm2, Tm4 and Tm9. Figure 4 shows that these cell
types have other strong targets besides T4/T5, so they do not seem
to be solely or chiefly dedicated to motion (see below concerning the
lone exception Tm9).

L3 connectivity is sufficiently unique that it stands apart from all
of the other cell types as a cluster containing only the single type L3
(Fig. 2c). This is consistent with current thinking that L3 constitutes a
separate luminance channel, distinct from ON and OFF channels®, L3
isthe only L type withasustained rather than transient response®, and
it encodes luminance rather than contrast*.

Cluster 7 includes Dm4, Dm9, Dm12, Dm20 and Mi9, which all have
L3 as their strongest input. Mi9 is also the strongest output of L3 and,
like L3, exhibits a sustained response*'. We therefore propose that
cluster 7should be lumped with L3 in a hypothetical luminance chan-
nel. Mi9 is traditionally grouped in the ON motion pathway, but Mi9
isaninput to the object and colour subsystems, not only the motion
subsystem. It is less obvious whether the remaining types in cluster 7
(Mi15, Dm2, Dm10 and SmO05) should be grouped in the luminance
channel. Indeed, these types break off into a separate clusters when
the threshold is adjusted to refine the flat clustering (Extended Data
Fig.10). These types might alternatively be assigned to the colour sub-
system as Mil5 and Dm2 are known to receive direct input from inner
photoreceptor R8*.

Lawf2isa cluster of its own. By targeting cell types (L5, C2and C3in
Supplementary Data 5) in cluster 11, Lawf2 provides centrifugal feed-
back to the ON channel (Extended Data Fig. 11). However, the strong-
est output of Lawf2 is Lai (Fig. 4), which is thought to mediate lateral
inhibition in the lamina*® through pathways such as R1-6->Lai~>R1-6
and R1-6~Lai~>L3%. Lawf2 may therefore modulate lateral interactions
mediated by Lai. The strongest input to Lawf2 is OA-AL2b2, which could
be octopaminergic or cholinergic***. If it is octopaminergic, this input
could be the source of the previously reported octopaminergic gain
modulation of Lawf2 neurons*. Lawf2 also receives strong input from
cluster 9, whichis hypothesized to be an object subsystem later on.

Lai and Lawfl, the two types in cluster 8, have similar targets (L3,
T1, R1-6 and L2). Cluster 8 provides centrifugal feedback to the OFF
channel (through L2) and to R1-6 (Extended Data Fig. 11). Alternatively,
cluster 8 could beinterpreted as being part of the luminance channel, as
cluster 7isastronginputand L3 astrong output (Extended DataFig.11).

Motion

The motion-detecting T4 and T5 families belong to cluster 15 (Fig. 2c).
Cluster 16 contains CT1and Tm9, which are well known tobeimportant
for motion computation*. It makes sense to regard Tm9 as dedicated
to the motion subsystem rather than part of a general-purpose OFF

channel, as 80% of its output synapses are onto CT1 or T5. Cluster 16
alsoincludesLil4, aninterneurontype with T5a as the strongestinput,
and T5athrough T5d as the strongest outputs. T4/T5 neurons synapse
onto VPNs that exit the optic lobe and enter the central brain (Fig. 5a
and Supplementary Data 5).

Cluster 13 and cluster 14 contain the lobula plate interneuron fam-
ily, LPil through LPi15%%. Over half of these are new (Methods). Some
LPi types consist of one or two cells that cover the entire visual field
(Fig. 5b). Two LPi types may stratify in the same lobula plate layers,
but consist of cells with different sizes (Fig. 5¢). Most LPi types are
amacrine, but some exhibit axo-dendritic polarization (Fig. 5d). Some
types collectively cover only a portion of the visual field (for example,
LPiO1and LPiO3 are ventral only; Supplementary Data 2).

Al LPi types receive input from T4/T5 types, so it is clear that clus-
ter 13 and cluster 14 are related to motion vision. All LPi types receive
inputfromT4/T5 cellswithasingle preferred direction (Fig. 5aand Sup-
plementary Data 5). The only exceptionis LPi07, which receives inputs
from T4/TS5 cells with preferred directions c and d (Supplementary
Data 5). LPi types synapse onto other LPi types and onto VPNs (Fig. 5a
and Supplementary Data5).

Cluster 13 also contains columnar neurons from three Y types and
all Tlp types. All of these are predicted to be glutamatergic, and are
reciprocally connected with T4/T5 of particular preferred directions.
The only exception is TIp5, which receives input only from T4a/T5a.
The Y and Tlp types also connect with LPi and columnar VPN types™.
TmY20 and Amlalso belong to cluster 13, and were previously identi-
fied to be motion related™.

Objects

Cluster 9 includes the numerous types T2 and T3, which have been
implicated in the detection of small objects. Their downstream VPN
partners LC11* and LC18*® (Fig. 6) are also activated by small objects.
On the basis of this information, we propose that cluster 9 is part of
a hypothetical object subsystem (Fig. 6). Cluster 9 (Fig. 2c) includes
many other types from columnar families (Mi, TmY, Y), interneuron
families (Liand Pm) and cross-neuropil tangential and amacrine fami-
lies (LMa, LMt, MLt, PDt). Downstream targets include LC, LPLC and
LT types (Fig. 6).

Miland Tmlare the most prominent inputs to the subsystem (Fig. 6),
and respectively belong to the ON and OFF channels defined above.
Theyare top inputs to T3, explaining why T3is ON-OFF*, T2is ON-OFF
becauseitstopinputsare L5and Tm2, which respectively belongto the
ON and OFF channels. Note that the Tmlinput to T2 and the L5 input
to T2 are second from the top, and therefore do not show up in Fig. 6,
whichis restricted to the top inputs and outputs.

Several types are nearby T2 and T3 in the cell types dendrogram
(Fig. 2¢). In particular, T2a, Tm21, Tm25, Tm27, TmY3 and Y3 are fairly
numerous and excitatory, sowe regard themas candidate object detec-
tors. Despiteits name, T2ais more similar to T3 in connectivity thanto
T2 (Fig.2c).T2aalsoreceives Miland Tmlinputlike T3, and is predicted
tobe ON-OFF. The top output of T2ais LC17, which is known to be acti-
vated by small objects*’ and also receives input from T3.

Cluster 12 contains Li19 and Li25 (Fig. 2c). Cluster 9 is both a strong
input to cluster 12 (Extended Data Fig. 11) and a strong output of clus-
ter 12 (Extended DataFig.11), largely due to connections between Tm21
and Cluster12. We therefore include cluster 12 aswell as cluster 9inthe
object subsystem.

Colour and polarization

The inner photoreceptors R7 and R8 are important for Drosophila
colour vision because their responses are more narrowly tuned to the
wavelength of light than those of the outer photoreceptors R1-6. R7
prefers ultraviolet light, whereas RS prefers blue or green light®°.
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Fig.4|ON, OFF and luminance channels—top inputs and outputs only.
Simplified wiring diagram of ON (cluster 11, red), OFF (cluster 10, blue) and
luminance (cluster 7, violet and L3) channels and their primary connections

Cluster 4 contains Dm8a, Dm8b, Dm11 and DmDRAZ2, which are all
inner photoreceptor targets*. Cluster 1 contains most of the remain-
ing types so far implicated in colour vision. As originally defined by
morphology®, Tm5is a potential postsynaptic target of the inner pho-
toreceptorsbecauseitstratifiesin the distal medullaat the M7 border
and also in the M3. These are the medulla layers containing the axon
terminals of R7 and R8’. We found that TmS5 consists of six cell types
(Fig. 7a). Three of our connectomic Tm5 types correspond to canoni-
cal Tm5 types that were previously defined by morphology and Ort
expression”®, Tm5aand Tm5b receive R7 input, while Tm5c receives RS
input. Moreover, we found three new types, Tm5d, Tm5e and Tm5f, that
receivelittle or no photoreceptorinput, although their stratifications
are similar to those of the canonical Tm5 types (Fig. 7a).

The correspondences between connectomic and morphological-
molecular TmS5 types were established using morphological criteria
(Methods). However, the reader should be cautioned that there is con-
siderable variability within a type, so reliably typing individual cells
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with other subsystems and VPNs. For clarity, only the top input and output
connections areshown for each type. Further explanationis providedin Fig.3
and the Methods.

based on morphology alone is difficult orimpossible. Connectivity is
essential for reliable discriminations.

Tm5a and TmSb receive R7 and Dm8 input, as expected from previ-
ousreports*>*%’!, TmScreceives R8 input***°, and also strong L3 input
(Fig. 7c and Supplementary Data 5). While some synapses from Dm8
to Tm5c do exist™, this connection seems to be weak.

Tm20 has been implicated in colour vision because it receives R8
input??* Italsoreceives strong L3 input (Fig. 7c). Thus, Tm20 inputs
are similar to Tm5c inputs, consistent with the physiological finding
that these two types are more similar to each other in their chromatic
responses than they are to Tm5a and Tm5b*2,

As Tm5a, Tm5b, Tm5c and Tm20 are known to be related to colour
vision, we propose that therest of cluster 1is also part of ahypothetical
colour subsystem (Fig. 7c). The new Tm5 types (Tm5d, Tm5e and Tm5f)
receive few or no synapses directly from photoreceptors, but Tm5d
receivesindirect R7 input from Tm5b and Dm8a, TmSe receives indirect
R8input from Tm5c (Fig. 7c), and Tm5freceivesindirect R8 input from
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corresponding TS types. TmY14 is the top output of many types. For clarity,
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Tm20 (Supplementary Data 5). Tm5d and TmS5e are predicted to be
glutamatergic and Tm5f s predicted to be cholinergic.

We have defined Dm8a and Dm8b, which synapse onto Tm5a and
TmS5b, respectively (Fig. 7c), and this preference is highly selective
(Supplementary Data 5). As with TmS5, splitting Dm8 is straightfor-
ward with connectivity but difficult or impossible with morphology.
How our two Dm8 types correspond with the two types previously
defined by molecular studies (yDm8 and pDm8)*"** remains specula-
tive (Methods).

Cluster 1also includes Tm7, Tm8a and Tm8b (another novel split),
Tm16 and wholly new types Tm31to Tm37. The latter deviate from the
classical definition of the Tm family, whichis supposed to project from
the distal medulla to the lobula®. These types mainly stratify in serpen-
tine medulla and lobula, with little or no presence in distal medulla
(Fig. 7b). Nevertheless, we decided to lump them into the Tm family.
Tm31to Tm35each containrelatively few (<100) cells, and are predicted

tonotbe cholinergic. This departs from the norm for existing Tmtypes,

explanationis provided in Fig. 3 and the Methods. b, LPil4, also called LPi1-2'°,
isajigsaw pair of full-field cells. ¢, LPi02 stratifies in the same lobula plate layers
asLPil4, butthe cellsare smaller.d, LPiO8is anexample of aninterneuron that
isnotamacrine. Itis polarized, with abouton-bearing axon thatis dorsally
located relative to the dendrite. D, Dorsal.Scale bar, 30 pm.

which are generally more numerous (>100 cells) and predicted to be
cholinergic (exceptions are the three glutamatergic Tm5 types). Tm36
and Tm37 contain more than 100 cells each, and are predicted to be
cholinergic.

Cluster lincludes TmY types, Li, Smand Pminterneuron types, MLt
types and LLPt. Cluster 1 also includes Mi4 and Mi10. Mi4 was tradi-
tionally regarded as part of the ON motion pathway, but T4 cells are
relatively weak outputs. Mi4 has strong partners in the colour and
object subsystems (Fig. 7c (yellow and green)). Its strongest output
is Mi9, which we have assigned to the luminance channel and is one
of the major inputs to the colour subsystem. This diversity of tar-
gets shows that Mi4 is a major hub between multiple subsystems,

although it has been assigned by the clustering to a single subsys-
tem. Mil0 mediates a feedback loop L3->Mi9->Mil0~>Lawfl~>L3, so
it might seem to belong to the luminance channel, but the cluster-
ing has placed it in cluster 1 because it is similar in connectivity

to Mi4.
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Besides L3, Mi9is another prominentinput to the colour subsystem
(Fig. 7c). Both L3 and Mi9 belong to the luminance channel defined
above. It makes sense that luminance information should be necessary
for colour computations®,

Cluster 3 consists mainly of alarge number of Sminterneuron types
(Fig. 2c). It is well-connected with cluster 1 (Extended Data Fig. 11), so
we also include it in the hypothetical colour subsystem (Fig. 7c).

Cluster 5 contains DmDRALI, a cell type at the dorsal rim of the
medullathatis known to be important for behaviours that depend on
skylight polarization®. Cluster 4 is therefore regarded as part of the
polarization subsystem. It contains several Sm types, most of which
areeither situated at the dorsal rim or have some specialization there.

Morphological variation

As mentioned above, connectivity can be essential for distinguishing
betweentypes with similar morphologies. Connectivity canalso enable
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the top input and output connections are shown for each type. Further
explanationis providedin Fig.3 and the Methods.

LPLC1

6los LT1a LT82a (Te2 LT83 LTib LMt2

onetoignore morphological variations between cells of the same type.
For example, TmY14 was originally identified as a cell type intrinsic
to the optic lobe?, but later reclassified as a VPN, because it typically
projects to the central brain®. In another twist, our optic lobe turns out
to contain atypical TmY14 cells that lack the central brain projection
(Fig. 8a,b).Incases like this, we double check the proofreading before
concludingthat thisis true biological variation. Evenin typical TmY14
cells, the axon has few synapses and minimal impact on connectivity,
so TmY14 has reverted to its original status of being intrinsic to the
opticlobe (an explanation of the threshold is provided in the Methods).
TmY14 ends up as a single type in our connectivity-based clustering,
because typical and atypical TmY14 cells have similar connectivity
within the optic lobe.

Another interesting example is TIp4 versus Y11, which have similar
connectivity patterns (Fig. 2c and Supplementary Data 5). A major
differenceis that TIp4 cells, by definition, have no connectivity in the
medulla. However, a few of them do, and look like they do not belong
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Fig.7|Hypothetical colour subsystem.a, Tm5ato Tm5c correspond with
typesthat were previously defined by molecular means. Tm5d to Tm5fhave
similar morphologies, but different connectivity patterns (Supplementary
Data5).b, Tm31to Tm37 are new members of the Tm family that project from

in Tlp4 (Fig. 8c,d). In the first stage of morphology-based classifica-
tion, these errant cells were assigned to Y11. But such pseudo-Y11 cells
were later reassigned to Tlp4 on the basis of connectivity. Their fea-
ture vectors match Tlp4 because their medullary projections make
few synapses, and their connectivity in the lobula and lobula plate
matches Tlp4.

It is worth mentioning an unusual example in which ignoring mor-
phological variationis correctin onesense, but ultimately turns out to
be misleading. Three Lill cells are annotated in the hemibrain recon-
struction’®, and three corresponding cells can be identified in our optic
lobe®. We group two of these cellsin one type (Fig. 8e). The third cell can
be paired with a fourth to form a pseudo-Lill type with a small axonal
projectioninto the central brain (Fig. 8f). Although the axonis visually
striking, it has few synapses and therefore little impact on connectiv-
ity. Thus, it might be tempting to ignore the axon as a developmental

theserpentinelayer (M7) to thelobula.c, Cell typesin the colour subsystem
(clusters 1,3 and 4) and their top connections with other subsystems and VPNs.
For clarity, only the top input and output connections are shown for each type.
Further explanationis provided in Fig.3 and the Methods.

‘accident’and merge Lilland pseudo-Lillinto asingle type. Butit turns
outthatLilland pseudo-Lill are distinct types, owingto their different
connectivity in the lobula. For example, Li25 has strong LT61 output,
while pseudo-Lill has strong LT11input. Pseudo-Lill also exists in the
hemibrain (data not shown), although there it lacks the small projec-
tion.Sothe central brain projection of pseudo-Lill exhibits variability
across individuals, further evidence that it is a developmental acci-
dent. We introduce the new names Li25 and Li19 to replace Lill and
pseudo-Lill,

Afew cells were dismissed as developmental accidents. This could be
done with high confidence when the cells were small and few in number.
However, we had difficulty deciding about Li29 because it was a full-field
cellin thelobulabutit also extended a smaller secondary arbour into
the lobula plate (Supplementary Data 2). Originally, we decided that
this cell was a developmental accident, and did not include itin our
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Fig.8|Morphological variation. a, Typical TmY14 cells (cyan) have axonal
projections to the central brain (left). Atypical cells (red) initially project
toward the central brain, but their axons turnaround and terminatein the
medulla. Asthe axons bear few synapses, typicaland atypical cellsare
approximately thesamein connectivity. b, Representative typical (cyan) and
atypical (red) TmY14 with an axon projectinginto the central brain (cyan arrow)
and medulla (red arrow), respectively. c, Typical TIp4 cellsarborize in the
lobulaplateandlobula. A few cells (pseudo-Y11) have an additional branchin

list of types. Later on, we found that this odd-looking cell is repeated
inthe left optic lobe, and promoted it to a type.

Spatial coverage

All celltyping efforts must decide whether to split types more finely or
merge types more coarsely. We resolved this lumper-splitter dilemma
by using spatial coverage as a criterion®. As a general rule, the cells
of a cell type collectively cover all columns of the optic lobe with a
density that is fairly uniform across the visual field. This makes sense
forimplementing translation-invariant computations, astrategy that
is commonly used in convolutional networks and other computer
vision algorithms. Uniform spatial coverage is sometimes called
‘tiling’, although cell type arbours often overlap so much that the ana-
logy to floor tiles is misleading. Spatial coverage is also a property of
many cell types in mammalian retina®*®.

In some types consisting of just one or a few cells, we identified an
unconventional jigsaw-style spatial coverage. For example, LPil4,
also known as LPi1-2', is a pair of full-field cells (Fig. 5b). We refer
to them as ajigsaw pair because they jointly cover the visual field in
anirregular manner, as if they were cut by a jigsaw. Jigsaw types can
also be found in other interneuron families and include Pm14, Li27
andLi28.

Our feature vector (Fig. 2a) includes no explicit information about
the spatial coordinates of a cell. Thus, if clustering feature vectors
resultsin cell types with good spatial coverage, thatisanindependent
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Tip4 Pseudo-Y11
M

themedulla (right), and resemble Y11 cellsin morphology but have the same
connectivity as TIp4.d, Relative toatypical TIp4 cell (red), a pseudo-Y11cell
(blue) has an additional branchin the medulla. e, Lill does not projectinto the
central brain.f, Pseudo-Lill has an additional arbour projectioninto the central
brain. This arbour makes a few synapses, and might lead to the conclusion that
pseudo-Lillshould be categorized as Lill. However, the connectivity between
Lilland pseudo-Lillis fundamentally different, making them distinct types.
Scalebar,30 um.

validation of the clustering. Coverage also solves the lumper-splitter
dilemma. Suppose that we attempt to split one type into two candidate
types, based on hierarchical clustering. Ifboth candidate types exhibit
good coverage, then we accept them as valid. If the cells of both can-
didate types seem randomly scattered, that means our splitisinvalid,
becauseitis presumably discriminating between cells based on noise.
Chromatic types like Tm5 and Dm8 might seem to be an exception to
thisrule, but their apparently random locations may turnout to depend
systematically on pale and yellow columns (Methods).

The above are easy cases, but there are also edge cases. Suppose that
splitting resultsin two candidate types that neatly cover the dorsalfield
andtheventralfield, respectively, without overlap. We thenreject the
split, preferring to lump the two candidate types in a single type that
exhibits dorsoventral spatial variation in connectivity. On the other
hand, if one candidate type covers the dorsal field and the other covers
the full field, this is an acceptable split.

With these heuristics, some of our cell types end up with only
partial coverage of the visual field (Fig. 9). This is especially com-
mon for boundary types. Smis the intrinsic type family containing
the most types with partial coverage. This makes sense, given that
Sm cells interact closely with many boundary types arborizing in
the serpentine layer. Cell types with partial coverage make sense
in the later stages of vision. After the early stages of vision, com-
puter vision also often discards translation invariance and may
perform different visual computations in different regions of the
visual field.



Fig.9|Different kinds of spatial coverage. a, Dm4 has full spatial coverage,
andtiles perfectly withno overlap.b, Dmdorsalrimarea2 (DmDRA2) covers
the dorsal rim. ¢, SmOS covers the dorsal hemifield. d, SmO1 covers the ventral

Discussion

The connectomic approach to cell typing has three powers. First, it
is not subject to the incomplete and biased sampling that can affect
other methods. Second, connectivity turns out to provide arich set
of features for distinguishing between cell types. Third, connectomic
celltyping not only yields cell types, but also, importantly, tells us how
they are wired to each other.

Implications for visual function

We clustered cell types with similar connectivity patterns (Fig. 2c),
and proposed tentative interpretations of the clusters in terms of
visual functions. These interpretations are speculations, but should
be useful for generating hypotheses that suggest interesting experi-
ments. Our hypothetical subsystems are devoted to motion, object
and colour vision (Figs. 5-7), and are fed by ON, OFF and luminance
channels (Fig. 4).

The motion subsystem (clusters 13-16) contains not only the T4
and T5 families but also many interneuron types. Most interneuron
types belong to the LPi family, which has been proposed to mediate
opponent interactions between cells that are activated by different
directions of motion®. Such opponency was demonstrated between
LPi09 and LPill, also known as LPi3-4 and LPi4-3". It is likely that LPi
types can also mediate spatial normalization, as described in a com-
panion paper¥.

hemifield. e, Sm33 are H-shaped cells that cover the anterior and posterior rim.
f,Sm39isasingle cellwith mixed coverage: dorsal dendriticarbourin M7 and
full-field axonal arbourin M1.V, ventral. Scale bar, 50 pm.

Of the 51 types in the hypothetical object subsystem (clus-
ters 9 and 12), T2 and T3 have been characterized by physiologists
as object detectors*. Above we hypothesized that anumber of other
types (T2a, Tm21, Tm25, Tm27, TmY3 and Y3) are object detectors, and
these candidates can be tested by future experiments.

The hypothetical colour subsystem (clusters 1,3 and 4) contains 91
types. One canonly speculate about the reason for thisnumeric prepon-
derance. Some insects are known to have sophisticated colour vision
capabilities such as colour constancy*®. The computations required for
colour constancy are quite complex, requiring the integration ofimage
information over long ranges*. This could potentially be implemented
bythelarge number of Smand Liinterneurontypesinthe hypothetical
colour subsystem, assuming that Drosophila turns out to exhibit colour
constancy. Alternatively, itis possible that cluster 1and cluster 3 have
additional functions other than colour vision, and should be subdivided
more finely (Extended Data Fig.10). Future experiments will be needed
totest these hypotheses.

A companion paper predicts that the six types in cluster 2 (Fig. 2¢c)
should exhibit orientation selectivity®®, and hypothesizes that clus-
ter 2 is a subsystem for form vision. Cluster 2 connects to cluster 1
(Extended Data Fig. 11), suggesting an interaction between form and
colour computations.

Although we have carved the opticlobeinto distinct subsystems, we
areaware thatitis simplistic to assign every cell type to just one func-
tional subsystem. This is the result of the ‘hard’ clustering algorithm
that we have used, which always assigns a cell type to a single cluster.
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Inreality, a cell type could have more than one function, or a cell type
might mediate interactions between more than one subsystem. The
wiring diagrams show many connections between cell types in differ-
ent subsystems (Figs.3-7 and Supplementary Data5). Assigning such
acelltype toasingle subsystem s inherently ambiguous.

Implications for visual development

The detailed wiring diagram for an adult visual system precisely speci-
fies the end goal of visual system development. Single-cell transcrip-
tomics is providing detailed information about the molecules in fly
visual neurons®®3, Comparison of transcriptomic and connectomic
information is already uncovering molecules that are important for
the development of the fly visual system®, and this trend is bound
to increase in momentum. Such research could be aided by our
low-dimensional discriminators of cell types (Supplementary Data 4
and Extended Data Fig. 3).

Complete and unbiased

Early studies®*? relied on Golgi staining to sample neurons from mul-
tiple individuals, a technique that is best suited for identifying the
most numerous types. Most of our new types are not as numerous
(10 t0 100 cells), which may be why they were missed. Furthermore,
Golgi studies® may have mistaken morphological variants for types,
which could explain why many of their types cannot be identified in
our opticlobe.

Contemporary light-microscopy anatomy leverages genetic lines,
butstill does not evade the limitations of incomplete and biased sam-
pling. The story of TmS5 serves as a case in point. A breakthrough in
colour vision started by genetically labelling neurons that express
the histamine receptor Ort’. Researchers reasoned that Ort would be
expressed by cells postsynaptic to the chromatic photoreceptors R7
and R8, which are histaminergic. Then, light-microscopy anatomy
was used to make fine distinctions between three TmS5 types labelled
in the transgenic line’. The present connectomic work has revealed
six Tm5 types, a finding that was only foreshadowed by previous work
on the same EM dataset*. The three new TmS5 types were presumably
missed by previous studies because they receive little or no direct
photoreceptor input (Fig. 7c), and do not express Ort. Nevertheless,
they are similar to the old Tm5 types in morphology (Fig. 7a) and con-
nectivity (Fig. 2c), and have been grouped in the hypothetical colour
subsystem (Fig. 7c).

The Tm5 example demonstrates that connectomics can find fresh
patches in well-trodden ground. More telling is that connectomics
canguideusto entirely new landscapes, such as the 43 Sm typesinan
entirely new type family.

Distinguishing cell types using connectivity
Features based on connectivity (Fig. 2a) enabled us to discriminate
between cell types that stratify in very similar neuropil layers. Stratifi-
cation constrains connectivity, because neurons cannot connect with
each other unless they overlap in the same layers'. However, stratifica-
tion does not completely determine connectivity, because neurons
in the same layer may or may not connect with each other. Classical
neuroanatomy, whether based on Golgi or genetic staining, relied on
stratification because it could be seenwith alight microscope. Now that
we have electron microscopy data, we canrely on connectivity for cell
typing, rather than settle for stratification as a proxy?>

That being said, the present study used only connectivity at the
final stage of cell typing, which was seeded by the morphological
types identified during the first and second stages (Methods). It was
possible to demonstrate self consistency of the final cell types using
connectivity-based features only. We expect that it should be possible
to eliminate all dependence on morphological typing, and base the
approach on connectivity from start to finish. This challenge is left
for future work.
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Spatial organization of connectivity

According to our wiring diagrams (Figs. 3-7 and Extended Data
Figs. 4-6), whether two neurons are connected depends on their cell
types. Connectivity also depends onthelocations of the neuronsin the
retinotopic maps of the opticlobe. Asatrivial example, itisimpossible
for cells with small arbours to be connected if they are at distant loca-
tions. Less trivial dependences of connectivity on location also exist.
We expect them to be important for understanding vision, although
they turned out to be unnecessary for classifying cell types. To facilitate
spatial analyses of connectivity, the FlyWire Codex maps a number of
celltypesto locations in the hexagonal lattice of columns and omma-
tidia. Insuch analyses, it may be helpful to regard cell types and spatial
locations as discrete and continuous latent variables®. A companion
paper demonstrates how to predict visual function by characterizing
how connectivity depends on both cell type and spatial location. The
cell types of cluster 2 are predicted to exhibit orientation selectivity
and related phenomena reminiscent of the primary visual cortex®.

Artificial intelligence

This paper began by recounting the story®® of how wiring diagrams for
visual cortex drawn in the 1960s inspired convolutional nets, which
eventually sparked the deep learning revolution in artificial intel-
ligence. Convolutional nets have now been applied to reconstruct
the fly brain from electron microscopy images®, making the current
study possible. Coming full circle, the fly optic lobe turns out to be
as literal an implementation of a convolutional net as one could ever
expect from a biological system. The columns of the optic lobe form
a hexagonal lattice, rather than the square lattice used in computer
vision, but it is a highly regular lattice nonetheless, and the activities
of the neurons in each cell type are analogous to a feature map ina
convolutional net®. Although the connectional architecture of the
optic lobe conforms closely to the definition of a convolutional net,
the connections do not appear to be learned in the sense of artificial
intelligence. No changes in VPN structure®® and function®, and only
subtle changesin visual behaviour’ have been detected after rearing
flies in darkness, suggesting that visual experience may have little
role in Drosophila visual development. However, mechanisms based
onspontaneous activity in the pupal brain (before visual experience)
might have arole”.

Implications for mammalian cell types
In the central brain of Drosophila, cell types usually consist of just a
pair of mirror symmetric neurons®? (Extended Data Fig. 1e), as is also
the case for C. elegans™. By contrast, most optic lobe cell types are
represented by many neurons (Fig. 1d and Extended Data Fig.1d), a
situation thatis more reminiscent of mammalian brains®>”>. Could our
connectomic approach generalize to mammalianbrain structures such
asretina and cortex, which are laminated like the optic lobe?
Single-cell transcriptomics, often hailed as the solution to classify-
ing cortical cell types™, has also been applied to the Drosophila optic
lobe. One study reported 172 transcriptomic cell types, a figure that
includes VPNs as well as intrinsic neurons®. Our connectomic study
has revealed the existence of amuch larger set of types (700+ includ-
ingboundary types). Encouragingly, many connectomic types can be
conclusively matched with transcriptomic types®. Failures to match
are interesting because they illustrate potential pitfalls of the tran-
scriptomic approach. For example, all eight T4/T5 types look like a
single transcriptomic typeinadult flies®?, and are only transcriptionally
distinct at earlier stages of development. This could be analogous to
the fact thatadult cortical neurons of the same transcriptomictype can
have highly variable morphological properties™?. It willbe important
toscaleup the connectomic approach, and make it as definitive for the
cortex as it is now for the fly visual system. A first attempt has already
been made in visual cortex®.
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Methods

Reconstruction accuracy and completeness

The overall quality of our Drosophila brain reconstruction has been
evaluated elsewhere*?' (a summary of the current status is shown in
Extended Data Table 3). Here we describe a few additional checks that
are specific to the optic lobe. A small percentage of cells have eluded
proofreading efforts. The worst cases are some types with visible ‘bald
spots’inthe mid posterior side of the right optic lobe (Supplementary
Data 2). In this region, we observed a narrowing and discontinuation
of neuronal tracks. Many of these tracks appear to terminate within
glial cells, suggesting a potential engulfment of neurons by glia. For
most types, under-recovery is hardly visible (Supplementary Data 2).

For a quantitative estimate of under-recovery, we can rely on the
‘modular’ types”, defined as cell types that are in one-to-one corre-
spondence with columns. A previous reconstruction of seven medulla
columns identified 20 modular types?. These largely correspond to
the cell types that contain from 720 to 800 cellsin our reconstruction
(Fig.1d). The top end (800) of this range is probably the true number
of columns in this optic lobe. The lower end of this range is 720, sug-
gesting that under-recovery is10% at most, and typically less than that.

The inner photoreceptors R7 and R8 are about 650 cells each, and
the outer photoreceptors R1-6 total about 3,400 in version 783 of the
FlyWire connectome. These numbers are notinconsistent with modu-
larity because photoreceptors are especially challenging to proofread
in this dataset and under-recovery is higher than typical.

In the left optic lobe, we have proofread around 38,500 intrinsic
neurons, as well as 3,700 VPNs, 250 VCNs, 150 heterolateral neurons
and 5,000 photoreceptor cells. Tables comparing precise left/right
counts by superclass as well as by type are available for download (see
the ‘Data availability’ section).

Tm21 (also known as Tmé6), Dm2, TmY5a, Tm27 and Mil5 are sub-
stantially less numerous than 800, so we agree with the seven column
reconstruction®® that they are not modular. On the other hand, some
of our types (T2a, Tm3, T4c and T3) contain more than 800 proofread
cells (Fig.1d), which violates the definition of modularity. This partially
agrees with the seven column reconstruction®, whichregarded T3 and
T2aas modular,and T4 and Tm3 as not modular. T4 is an unusual case,
as T4cis above 800 while the other T4 types are below 800. It should
be noted that all of the above cell numbers could still creep upward
with further proofreading.

A genuine analysis of modularity requires going beyond simple cell
counts, and analysing locations to check the idea of one-to-one cor-
respondence. Such ananalysis is left for future work. Here we apply the
term ‘numerous’ to those types containing 720 or more cells, as well
as photoreceptor types, and do not commit to whether these types
are truly modular.

The seven columnreconstruction® provided amatrix of connections
between their modular types. This shows good agreement with our data
(Methods and Extended Data Fig. 9), providing a check on the accuracy
of our reconstruction in the optic lobe. This validation complements
the estimates of reconstruction accuracy in the central brain that are
provided in the flagship paper®.

Themajor limitation of our reconstructionin the opticlobe concerns
the automatically detected synapses”. Although accuracy is high over-
all, outgoing photoreceptor synapses are markedly underdetected. This
may be because dark cytoplasm (characteristic of photoreceptors) is
notwellrepresented in the example synapse images that were used to
train the automated synapse detector. Example images of photorecep-
tor synapses have been included in the training set of an improved
automated synapse detector, but the results were not ready in time
for this publication, and willbe made available inafuture release. The
classification of inner photoreceptors as yellow and pale is postponed
until the future release. In the present paper, the connectivity from
photoreceptors to other cell types in this paper is only qualitative

and not quantitative. Furthermore, underdetection of photorecep-
tor synapses could affect the input fractions of other connections due
to normalization.

Another cautionary note is that weaker connectionsin the type-type
connectivity matrix (Extended Data Fig. 4) could be artifactual, due
to false positives of automated synapse detection. There are some
heuristics for guessing whether a connection is artifactual, short of
manually inspecting the original EM images. For example, one might
distrust weak connections between cells, that is, those with less than
some threshold number of synapses. The choice of the threshold value
depends on the context®. For example, the flagship paper? discarded
connections with less than five synapses, aconvention followed by the
FlyWire Codex. The predicates of the present work apply a threshold
oftwo synapsesrather thanfive. The different thresholds were chosen
because the central brain and optic lobes are very different contexts,
as we now explain.

In the central brain, most cell types have cardinality 2 (cell and its
mirror twin in the opposite hemisphere; Extended Data Fig. 1e). In
the hemibrain, the cardinality is typically reduced to one. Therefore,
whether thereisaconnection between cell type A and cell type B must
bedecided based on only two or three examples of the ordered pair (A,
B) in all the connectomic data that is so far available. Given the small
sample size, it makes sense to set the threshold to a relatively high
value, if false positives are to be avoided.

Ontheotherhand, in the opticlobe, there are often many examples of
the ordered pair (A, B), because so many cell types have high cardinality.
Therefore, if a connectionis consistently found fromtype AtotypeB,
one can have reasonable confidence evenifthe average number of syn-
apsesinthe connectionis notso high. Thatis why we set the threshold
to arelatively low value in the optic lobe predicates. In particular, we
have found that certain inhibitory types consistently make connections
thatinvolve relatively few synapses, and these connections seemreal.

Another heuristic is to look for extreme asymmetry in the matrix.
If the number of synapses from A to Bis much larger thanfromBto A,
the latter connection might be spurious. The reasonis that the strong
connectionfromAto Bmeansthe contactareabetween AandBislarge,
which means more opportunity for false-positive synapses fromBto A.
False-positive rates for synapses are estimated in the flagship paper®.

Finally, it may be known from other studies that a connection does
notexist. For example, T1cells lack output synapses®’®. Therefore, in
our analyses, we typically regarded the few outgoing T1 synapses in
our data as false positives and discarded them.

Morphological cell typing

Our connectomic cellapproach to typingis initially seeded with some
setof types, to define the feature vectors for cells (Fig. 2a), after which
thetypes arerefined by computational methods. For the initial seeding,
we relied on the time-honoured approach of morphological cell typing,
sometimes assisted by computational tools that analysed connectivity.
Itisworth noting that ‘morphology’isamisnomer, because it refers to
shape only, strictly speaking. Orientationand positionare actually more
fundamental properties because of their influence onstratificationin
neuropil layers. Thus, ‘single-cell anatomy’ would be more accurate
than morphology, although the latter is the standard term.

Stage 1: crowdsourced annotation of known types. Annotations
of optic lobe neurons were initially crowdsourced. The first annota-
tors were volunteers from Drosophila laboratories. They were later
joined by citizen scientists. At this stage, the annotation effort was
mainly devoted to labelling cells of known types, especially the most
numerous types.

Drosophilalab annotators. E.K. and D.G. proofread and annotated
medulla neurons that were upstream of the anterior visual pathway.
These included many of the medulla and lamina neurons discussed
in this study. The annotated neurons were primarily Dm2, Mil5, R7,
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and R8, butalso comprised various L, Dm, Mi, Tm, Cand Sm cells. Previ-
ously known neuron types were identified primarily by morphology
and partially by connectivity. Annotators additionally found all Mil
neurons in both hemispheres to find every medulla column. These
Mil neurons were used to create amap of medullalayers based on Mil
stratification®, which later aided citizen scientists to identify medulla
celltypes.

Citizen scientists. The top 100 players from Eyewire’ had been invited
to proofread in FlyWire?. After 3 months of proofreading in the right
opticlobe, they were encouraged to also label neurons when they felt
confident. Most citizen scientists did amixture of annotation and proof-
reading. Sometimes they annotated cells after proofreading, and other
times searched for cells of a particular type to proofread.

Citizenscientists were provided with a visual guide to opticlobe cells
sourced from theliterature®*®. FlyWire made available a3D mesh over-
lay indicating the four main optic lobe neuropils. Visual identification
was primarily based on single-cell anatomy. Initially, labelling of type
families (thatis, Dm, Tm, Miand so on) was encouraged, especially for
novices. Annotation of specific types (such as Dm3, Tm2) developed
over time. The use of canonical names was further enforced by a soft-
ware tool that enabled easy selection and submission of preformatted
type names.

Additional community resources (discussion board/forum, blog,
shared Google drive, chat, dedicated email and Twitch livestream)
fostered an environment for sharing ideas and information between
community members (citizen scientists, community managers and
researchers). Community managers answered questions, provided
resources such as the visual guide, shared updates, performed trou-
bleshooting and general organization of community activity. Daily
statsincluding number of annotations submitted per individual were
shared onthe discussion board/forumto provide project progress. Live
interaction, demonstrations and communal problem solving occurred
during weekly Twitch video livestreams led by acommunity manager.
Theenvironment created by these resources allowed citizen scientists
toself-organizein several ways: community driven informationsharing,
programmatic tools and ‘farms’.

Community-driven information sharing. Citizen scientists created
a comprehensive guide with text and screenshots that expanded on
the visual guide. They also found and studied any publicly available
scientificliterature or resources regarding the opticlobe. They shared
findings at discuss.flywire.ai, which as of 10 October 2023 had over
2,500 posts. Community managers interacted with citizen scientists
by sharing findings from the scientific literature, consulting Drosophila
specialists on FlyWire and providing feedback.

Programmatic Tools. Programmatic tools were created to help with
searching for cells of the same type. One important script traced
partners-of-partners, thatis, source cell>downstream partners->their
upstream partners, or source cell>upstream partners->their down-
stream partners. This was based on the assumption that cells of the same
type will probably synapse with the same target cells, which often turned
outtobetrue. Thetool could either look for partners-of-all-partners or
partners-of-any-partners. The resulting lists of cells could be very long,
and were filtered by excluding cells that had already been identified,
or excluding segments with small sizes or low ID numbers (which had
probably not yet been proofread). Another tool created from lobula
platetangential cells (for example, HS, VS, H1) aided definition of layers
inthelobula plate. This facilitated identification of various cell types,
especially T4and T5.

Cellfarms. Citizen scientists created farms in FlyWire or Neuroglancer
with all the found cells of a given type visible. Farms showed visually
where cells still remained to be found. If they found abald spot, apopu-
lar method to find missing cells was to move the 2D plane in that place
and add segments to the farm one after another in search of cells of the
correct type. Farmsalso helped withidentifying cells near to the edges
of neuropils, where neurons are usually deformed. Having a view of all

other cells of the same type made it possible to extrapolate to how a
cell at the edge should look.

Stage 2: centralized annotation and discovery of new types. Ateam
of image analysts at Princeton finished the annotation of the remain-
ing cells in known types, and also discovered new types. Community
annotations wereinitially compared with existing literature to confirm
accuracy. Once validated, these cells were used to query various Codex
search tools that returned previously unannotated cells exhibiting
connectivity similar to that of the cell in the query. The hits from the
search query were evaluated by morphology and stratification to con-
firm match with the target cell type. In some cases in which cell type
distinctions were uncertain, predicted neurotransmitters* were used
foradditional guidance. This process enabled us to create a preliminary
clustering of all previously known and new types.

Connectomic cell typing

Eventually morphology became insufficient for further progress.
Expert annotators, for example, struggled to classify TmS5 cells into
the three known types, not knowing that there would turn out to be six
TmS5 types. At this point, we were forced to transition to connectomic
cell typing. In retrospect, this transition could have been made much
earlier. As mentioned above, connectomic cell typing must be seeded
withaninitial set of types, but the seeding did not have tobe as thorough
asitended up. Weleave for future work the challenge of extending the
connectomic approach so it can be used from start to finish.

Stage 3: connectivity-based splitting and merging of types and
auto-correction. We used computational methods to split types that
could not be properly split in stage 2. Some candidates for splitting
(suchas Tm5) were suggested by the image analysts. Some candidates
were suspicious because they contained so many cells. Finally, some
candidates were scrutinized because their type radii were large. We
applied hierarchical clustering with average linkage, and accepted
the splitsif they did not violate the tiling principle as described in the
‘Spatial coverage’ section.

We also applied computational methods to merge types that had
beenimproperly splitin stage 2. Here the candidates were types with
low spatial coverage of the visual field, or types that were suspiciously
close in the dendrogram of cell types (Fig. 2c). Merge decisions were
made by hierarchical clustering of cells from types that were candidates
for merging, and validated if they improved spatial coverage.

Oncewearrived at the final list of types, we estimated the ‘centre’ of
eachtype using the element-wise trimmed mean. Then, for every cell,
we computed the nearest type centre by Jaccard distance. For 98% of
the cells, the nearest type centre coincided with the assigned type.
We sampled some disagreements and reviewed them manually. Inthe
majority of cases, the algorithm was correct, and the human annota-
tors had made errors, usually of inattention. The remaining cases were
mostly attributable to proofreading errors. There were also cases in
which type centres had been contaminated by human-misassigned
cells (see the ‘Morphological variation’ section), whichin turnled to
more misassignment by the algorithm. After addressing these issues,
we applied the automatic corrections to all but 0.1% of cells, which were
rejected using distance thresholds.

Validation

On the basis of the auto-correction procedure, we estimate that our
celltype assignments are between 98% and 99.9% accurate. For another
measure of the quality of our cell typing, we computed the ‘radius’ of
each type, defined as the average distance fromiits cells to its centre.
Here we computed the centre by approximately minimizing the sum
of Jaccard distances from each cell in the type to the centre (see the
‘Computational concepts’ section). A large type radius can be a sign
that the type contains dissimilar cells, and should be split. For our final



types, the radii vary, but almost all lie below 0.6 (Extended Data Fig. 3a).
Lat has an exceptionally high type radius, and deserves to be split (see
the ‘Cross-neuropil tangential and amacrine’ section). The type radii
are essentially the same, whether or not boundary types are included
inthe feature vector (data not shown).

Discrimination with logical predicates. Because the feature vector
israther high dimensional, it would be helpful to have simpler insights
into what makes a type. One approachis to find a set of simple logical
predicates based on connectivity that predict type membership with
high accuracy. For a given cell, we define the attribute ‘is connected
to input type ¢ as meaning that the cell receives at least one connec-
tion from some cell of type t. Similarly, the attribute ‘is connected to
output type ¢ means that the cell makes at least one connection onto

some cell of type .

An optimal predicate is constructed for each type that consists of

2 tuples: input types and output types. Both tuples are limited to size

Satmost,and they are optimal with respect to the F-score of their pre-

diction of the subject type, defined as follows:

« Recallof apredicate for type Tis theratio of true positive predictions
(cells matching the predicate) to the total number of true positives
(cellsof type T). It measures the predicate’s ability to identify all posi-
tive instances of a given type.

« Precisionistheratio of true positive predictions (predictions that are
indeed of type T) to the total number of positive predictions made
by the logical predicate.

« F-scoreis the harmonic mean of precision and recall—a single metric
that combines both precision and recall into one value.

On a high level, the process for computing the predicates is
exhaustive—for each type, we look for all possible combinations of
inputtype tuples and output type tuples and compute their precision,
recall and F-score. A few optimization techniques are used to speed
up this computation, by calculating minimum precision and recall
thresholds from the current best candidate predicate and pruning
many tuples early.

For example, the logical predicate ‘is connected to input type Tm9
and output type Amland output type LPil5’ predicts T5b cells with 99%
precision and 99% recall. For all but three of the identified types, we
found alogical predicate with 5 or fewer input/output attributes that
predicts type membership with an average F-score of 0.93, weighted by
the number of cells in type (Extended Data Fig. 4 and Supplementary
Datal). Some of the attributesin a predicate are the top most connected
partner types, but this is not necessarily the case. The attributes are
distinctive partners, which are not always the most connected part-
ners. The predicate for each type is shown on its card in Supplemen-
tary Data 2. For each family, the predicates for all types can be shown
together in a single graph containing all of the relevant attributes
(Supplementary Data 3).

We experimented with searching for predicates after randomly
shuffling a small fraction of types (namely, swapping types for 5%
of randomly picked pairs of neurons). We found that precision and
recall of the best predicates dropped substantially, suggesting that
we are not overfitting. This was expected because the predicates are
short.

We also measured the drop in the quality of predicates if excluding
boundary types (where the predicates are allowed to contain intrinsic
types only). As is the case with the clustering metrics, the impact
on predicates is marginal (weighted mean F-score drops from 0.93
t00.92).

Discrimination with two-dimensional projections. Another
approachtointerpretability is to look at low-dimensional projections of
the 2T-dimensional feature vector. For each cell type, we select asmall
subset of dimensions that suffice to accurately discriminate that type

from other types (Extended Data Fig. 3c). Here we normalize the feature
vector so that its elements represent the ‘fraction of input synapses
received from type ¢’ or ‘fraction of output synapses sent to type .
Inthese normalized quantities, the denominator is the total number of
allinput or output synapses, notjust the synapses with other neurons
intrinsic to the opticlobe.

For example, we can visualize all cells in the Pm family in the two-
dimensional space of C3 input fraction and TmY3 output fraction
(Extended Data Fig. 3c). In this space, PmO04 cells are well-separated
fromother Pm cells, and can be discriminated with 100% accuracy by ‘C3
input fraction greater than 0.01and TmY3 output fraction greater than
0.01. This conjunction of two features is amore accurate discriminator
than either feature by itself.

More generally, a cell type discriminator is based on thresholding
aset of input and output fractions, and taking the conjunction of the
result. The search for a discriminator finds a set of dimensions, along
with threshold values for the dimensions. To simplify the search, we
require that the cell type be discriminated only from other types in
the same neuropil family, rather thanfrom all other types. Under these
conditions, italmost always suffices to use just two dimensions of the
normalized feature vector.

Discriminators for alltypes inall families containing more than one
type are provided in Supplementary Data 4. Many although not all
discriminations are highly accurate. Bothintrinsic and boundary types
areincluded as discriminative features.

Computational concepts

Connectivity: cell-to-cell, type-to-cell, cell-to-type and type-to-
type. Define a (weighted) cell-to-cell connectivity matrix wy, as the
number of synapses from neuronito neuronj. The weighted out-degree
and in-degree of neuroniare:

di+=zwij di_zz.wji
J Jj

Thesumsareover allneuronsinthe brain. If neuroniisacellintrinsic
to one optic lobe, the only nonvanishing terms in the sums are due to
theintrinsic and boundary neurons for that optic lobe.

Let A, be the 0-1matrix that assigns neuronito type t. The column
and row sums of the assignment matrix satisfy

n.= ;Air 1= ;Ait 2)

where n,is the number of cells assigned to type .
The cell-to-type connectivity matrix O, is the number of output syn-
apses from neuron i to neurons of type¢,

Oy = % wijAjt 3)

Forfixedi, O,isknownasthe output feature vector of cell i. Similarly,
the type-to-cell connectivity matrix /;is the number of input synapses
from neurons of type ¢ onto neuronj,

lj= % A Wy 4)

For fixed}, I;is known as the input feature vector of cell j. The ith
row and ith column of these matrices are concatenated to form the
full feature vector for cell i (Fig. 2a).

The input and output feature vectors can be normalized by degree
toyield inputand output fractions of celli, 0,/d;" and /,;/d; . Elements of
these matrices are used for the discriminating 2D projections (Extended
DataFig. 3c).
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The type-to-type connectivity matrix is the number of synapses from
neurons of type sto neurons of typet,

Wee = Z A wiAje 5)
ij

The weighted degree of type ¢ is the sum of the weighted degrees
ofthecellsintypet,

D;= Z.Aitd;r D; = ZAitd; (6)

The sums are over all neurons in the brain, similar to equation (1).
Normalizing by degree yields the output fractions of type s, W,,/D,",
where trunsfrom1to 7. Theinput fractions of type t are similarly given
by W,/D,",wheresrunsfrom1to T.Selected outputand input fractions
of types are shown in Supplementary Data 5.

Alternatively, the feature vectors can be based on connection number
rather than synapse number, where a connection is defined as two or
more synapses fromone neuronto another. Then, weighted degreeis
replaced by unweighted degree in the above definitions. The threshold
of two synapsesisintended to suppress noise due to false positivesin
the automated synapse detection. Synapse number and connection
number give similar results, and we use both in our analyses.

We found that it was sufficient for feature dimensions to include
onlyintrinsictypes (7= 227). Alternatively, feature dimensions canbe
defined asincluding bothintrinsic and boundary types (7> 700), and
this yields similar results (data not shown).

Forthe hierarchical clustering of cell types (Fig. 2c), the feature vec-
tor for each celltypeis obtained by concatenating the vectors of input
and output fractions for that cell type.

Similarity and distance measures. The weighted Jaccard similarity
between feature vectors x and y is defined by

>, min(x,y,)

¥, max(e.,y,) %)

Jx,y) =

and the weighted Jaccard distance d(x,y) is defined as one minus the
weighted]Jaccard similarity. These quantities are bounded between zero
and one since our feature vectors are nonnegative. In our cell typing
efforts, we have found empirically thatJaccard similarity works better
than cosine similarity when feature vectors are sparse.

Type centres. Given a set of feature vectors x?, the centre ¢ can be
defined as the vector minimizing

2 d6c,0) ®

This cost function is convex, as d is a metric satisfying the triangle
inequality. Therefore, the cost function has a unique minimum. We
used various approximate methods to minimize the cost function.

For auto-correction of type assignments, we used the element-wise
trimmed mean. We found empirically that this gave good robust-
ness to noise from false synapse detections. For the type radii, we
used a coordinate descent approach, minimizing the cost function
with respect to each ¢;in turn. The loop included every i for which
some x; was non-zero. This converged within a few iterations of
theloop.

Hierarchical clustering of cell types

The type-to-type connectivity matrix of equation (5) was the starting
point for clustering the cell types. For each celltype, the corresponding
row and column of the matrix were normalized to become input and
output fractions, as described in the text following equation (6), and
then concatenated (thisis yet another way of computing type centres).
Feature vectorsincluded only dimensions correspondingto cell types

intrinsic to the optic lobe. Then, average linkage hierarchical cluster-
ing was applied to yield a dendrogram (Fig. 2c). The dendrogram was
thresholded to produce a flat clustering (Fig. 2c).

The precise membershipsinthe clusters warrant cautious interpreta-
tion, as the clusters are the outcome of just one clustering algorithm
(average linkage), and differ if another clustering algorithm is used.
Each cluster contains core groups of types that are highly similar to
eachother, thatis, types that merge early during agglomeration (closer
to the circumference of the dendrogram). These are more certain to
have similar visual functions, and tend to be grouped together by any
clustering algorithm. Types that are merged late (closer to the origin
of the dendrogram) are less similar, and their cluster membership is
more arbitrary. Some degree of arbitrariness is inevitable when one
dividesthe visual systeminto separate subsystems, because subsystems
interact witheach other, and types that mediate suchinteractions are
borderline cases.

Each cluster is generally a mixture of types from multiple neuropil
families. Sceptics might regard such mixing as arising from the ‘noisi-
ness’inthe clustering noted above at the largest distances. Indeed, the
nearest types, those that merge in the dendrogram farther from the
centre (Fig. 2c), tend to be from the same neuropil family. But plenty
of dendrogram merges between types of different families happen at
intermediate distances rather than the largest distances. Thus, some
of the mixing of types from different neuropil families seems genuinely
rooted in biology.

Wiring diagrams

Reduction. To make the wiring diagrams readable, we display only the
top type-to-type connections, which are defined as follows. For every
cell type, the top input cell type and top output cell type are selected
by ranking connected partners by the total number of synapsesin the
connection. If celltypes are nearly tied, any runner up within 5% of the
winnerisalso displayed. Figure 3 shows the top connections between
all optic lobe intrinsic types. Figures 4-7 each focus on one or a few
subsystems, but also include the top input/output connections they
participate in with the rest of the network as well as top output con-
nections to boundary types (for example, in Fig. 4, Dm2 is selected
becauseitbelongsto cluster 5, luminance channel, but thenalso other
typesoutside of ON, OFF, and luminance channels areincluded because
either Dm2 is their top input/output type or the other way around).
Extended DataFigs. 5and 6 show the top input and top output connec-
tions separately, forimproved readability. For the top output connec-
tions we alsoinclude boundary types (VPNs).

Colours and shapes. Nodes, representing cell types, are coloured by
clusters. Node size encodes the number of drawn connections, so that
typesthatare top input/output of many other typeslook larger.Node
shapes encode type numerosities (number of cells of that type), from
most numerous (hexagon) to least (ellipse) (see the figure legends). The
linesindicate connections between cell types. The line colour encodes
therelationship (top input or top output) and the line width is propor-
tional to the number of synapses connecting the respective types. The
line arrowheads encode neurotransmitter predictions (excitatory/
cholinergic or inhibitory/GABAergic/glutamatergic).

Layout. We used Cytoscape® to draw the wiring diagrams. Organic
layout was used for Figs. 3 and 7c, and hierarchical layout was used for
the others. The hierarchical layout tries to make arrows point down-
wards. After Cytoscape automatically generated adiagram, nodes were
manually shifted by small displacements to minimize the number of
obstructions.

Intrinsic versus boundary
The opticlobesare divided into five regions (neuropils): lamina of the
compound eye (LA); medulla (ME); accessory medulla (AME); lobula



(LO); lobula plate (LOP). Allnon-photoreceptor cells with synapses in
these regions are split into two groups: optic lobe intrinsic neurons
and boundary neurons.

Optic lobe intrinsic neurons are almost entirely contained in one
of the optic lobes (left or right), more precisely, 95% or more of their
synapses are assigned to the five optic lobe regions listed above.

Boundary neurons are those with at least 5% (and less than 95%) of
synapses in the optic lobe regions, and are either visual projection,
visual centrifugal or heterolateral neurons.

Axonversus dendrite
In the main text (in the ‘Class, family and type’ section), we used the
term ‘axon’. An axon is defined as some portion of the neuron with a
high ratio of presynapses to postsynapses. This ratio mightbe highinan
absolute sense. Or the ratio in the axon might only be high relative to the
ratio elsewhere in the neuron (the dendrite). In either case, the axon is
typically notapure output element, but has some postsynapses as well
as presynapses. For many typesitis obvious whether thereisanaxon,
but for afewtypes we have made judgement calls. Even without examin-
ing synapses, the axon can often be recognized from the presence of
varicosities, which are presynaptic boutons. The opposite of an axon
is a dendrite, which has a high ratio of postsynapses to presynapses.
Anamacrine cell is defined as one for which the axon-dendrite dis-
tinction does not hold, and presynapses and postsynapses are inter-
mingled in roughly the same ratio throughout. The branches of an
amacrine cell are often called dendrites, but the neutral term ‘neurite’
is perhaps better for avoiding confusion.

Columnar neurons

Fischbach and Dittrich® defined 13 columnar families based on neu-
ropils (Fig. 1a). Families consisting exclusively of ‘numerous’ (~800
cells) types include L (lamina to medulla), C (medullato lamina), T1
(distal medullatolamina), T2 (distal and proximal medullato lobula),
T3 (proximal medullatolobula), T4 (proximal medullato lobula plate)
and TS5 (lobula to lobula plate). We follow the convention of grouping
theless numerous Lawfl (distal medulla to lamina) and Lawf2 (proximal
and distal medullato lamina) types in the same family, despite the dif-
ferences between their neuropils and connectivity. Although T1shares
the same neuropils with Lawfl, T1lacks output synapses®*”®, so it is
an outlier and deserves to be a separate family. Distal and proximal
medulla are regarded as two separate neuropils®.

Mi. Fischbach and Dittrich® defined Mi as projecting from distal to
proximal medulla. Mi contains both numerous and less numerous
types. Weidentified five (Mil, 2,4, 9,10) of the dozen Mi types originally
defined®, and three (Mi13, 14, 15) types uncovered by EM reconstruc-
tion”. Mil, Mi4, and Mi9 are consistent with the classical definition,
but Mil3 projects from proximal to distal medulla. Other Mi types are
less polarized, and the term “narrow-field amacrine” might be more
accurate than “columnar”. Nevertheless we will adhere to the conven-
tionthat they are columnar. Narrow-field amacrine cells are also found
in the Sm family, and exist in the mammalian retina®.

Tm transmedaullary. As classically defined®, Tm cells project from
the distal medulla to the lobula. Tm1 through Tm26 and Tm28 were
defined®, and Tm27/Tm27Y was reported later®®>. We were able to iden-
tifyTml,2,3,4,7,9,16,20, 21,25 and 27. We split Tm5 into six types, and
Tm8into two types. We merged Tm6 and Tm21into asingle type Tm21.
We prefer the latter name because the cells more closely match the Tm21
stratification as drawn by Fischbach and Dittrich®. Tmlaand Tm4awere
defined as morphological variants®, but we have found that they do not
differ in connectivity and are not common, so we have merged them
into Tmland Tm4, respectively. We merged Tm27Y into Tm27%, TmY5
was merged into TmY5a®®, the name that has appeared more often
in the literature. These morphological distinctions originally arose

because the projectioninto the lobula plate, the differentiator between
Tmand TmyY, canvary across cellsin atype. We added new types Tm31
to Tm37, which project from the serpentine medulla to the lobula. We
moved Tm23 and Tm24 to the Li family. They were originally classified
as Tmbecause their cellbodies are in the distal rind of the medulla, and
they send a neurite along the columnar axis of the medulla to reach
thelobula®. However, they do not form synapses in the medulla, so we
regard them as Lineurons despite their somalocations. Overall, around
half of the 26 typesin the Tm family are new.

TmY. TmY cells project from the distal medullato the lobulaand lobula
plate. The Y refers tothe divergence of branches to the lobulaand lobula
plate. Previous definitionsinclude TmY1to TmY13%; TmY5a®®*; TmY14%;
TmY15%;and TmY16, TmY18 and TmY20*°. We identified TmY3, TmY4,
TmY5a, TmY10, TmY1l, TmY14, TmY15, TmY16 and TmY20. We divided
TmY?9 into two types, as discussed in a companion paper®®. We added
anewtype, TmY31.

Y.Y cells project from the proximal medulla to the lobula and lobula
plate. They are similar to TmY cells, but the latter traverse both the
distal and proximal medulla®. Previous definitions were Y1 and Y3 to
Y6°%; and Y11and Y12'°. We have identified Y1,Y3,Y4, Y11and Y12 in our
reconstruction, and have not found any new Y types. Y1, Y11 and Y12
have the majority of their synapsesinthelobula plate, and are assigned
to the motion subsystem. Y3 and Y4 have few synapses in the lobula
plate, and are assigned to the object subsystem (Fig. 2). Y3 is more
numerous (~300 cells) than Y4, and is the only Y type that is predicted
cholinergic.

Tlp. A Tlp neuron projects from the lobula plate to the lobula. TIp1 to
TIpSwere defined first®, and Tlp11 to TIp14 were defined later on'®. We
haveidentified Tlp1, Tlp4, TIp5 and TIp14. We propose that the names
Tlp11, TIp12 and TIp13 should be retired", as these types can now be
unambiguously identified with TIp5, TIpl and Tlp4, respectively.

Interneurons

Alocalinterneuron is defined as being completely confined to a sin-
gle neuropil (Fig. 1b). Interneurons make up the majority of types,
but a minority of cells (Fig. 1e). Lai is the only lamina interneuron.
Dm and Pm interneurons® stratify in the distal or proximal medulla,
respectively. We have more than doubled the number of Pm types,
and slightly increased the number of Dm types. We introduce the
Sm family, which is almost completely new and contains more types
than any other family (Fig. 1f). Li and LPi interneurons stratify in the
lobulaorlobulaplate, respectively. Interneurons are usually amacrine
and presumed inhibitory (GABA or glutamate), but some are tangen-
tial or cholinergic. Interneurons are often wide field but some are
narrow field.

Dm. Dm1to Dm8% Dm9 and10%; and Dm11to Dm20% were previously
defined. We do not observe DmS5 and Dm7, consistent with a previous
study®. Most types are predicted to secrete glutamate or GABA, but
therearealso afew cholinergic types (Supplementary Datal). To Dm3p
and Dm3q®%**, we added a third type, Dm3v (Supplementary Data2).
We split Dm8 into Dm8a and Dm8b (see the ‘Correspondences with
molecular-morphological types’ section).

DmDRA. The DRA differs fromthe rest of the retinainits organization
ofinner photoreceptors. Photoreceptorsinnon-DRA and DRA differin
their axonal target layers and output cell types**®. Specifically, DRA-R7
connects with DmDRAI, whereas DRA-R8 connects to DmMDRA23*%,
These distinctive connectivity patterns resultinDmDRAland DmDRA2
types exhibiting an arched coverage primarily in the M6 layer of the
dorsal medulla (Fig. 9b). R7-DRA and R8-DRA are incompletely anno-
tated at present, and this will be rectified in a future release. DMDRA1
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receives R7 input, but sits squarely in M7. This could be regarded as
an Smtype, but we have chosen not to change the name for historical
reasons.

Pm.Pml,1aand 2°were each splitinto two types. Pm3 and 4 remain as
previously defined®. We additionally identified six new Pm types, for
atotal of 14 Pmtypes, numbered PmO1to Pml4 in order of increasing
average cell volume. The new names can be distinguished from the old
ones by the presence of leading zeros. All are predicted GABAergic.
Pm1lwas splitinto Pm06 and Pm04, Pmlainto Pm02 and PmO1, and
Pm2into PmO03 and PmOS8.

Sm. Dm and Pm interneurons are defined® to stratify on the distal or
proximalside, respectively, of the serpentine layer (M7) of the medulla.
Many interneuron types turnout to have significant stratificationin the
serpentine layer, and these borderline cases constitute a large new Sm
family of interneurons, almost all new. They have been named Sm01
to Sm43, mostly in order of increasing average cell volume. The Sm
family includes types recently named medulla tangential intrinsic*2.
We avoid using this termindiscriminately because some Smtypes are
tangential while others are amacrine. Some Sm types spill over from M7
into the distal or proximal medulla, and a few reach from M7 to more
distant medulla layers.

Sm stratification in M7 has functional implications. First, Sm types
are positioned to communicate with the medulla tangential (Mt) cells
and other boundary types that areimportant conduits ofinformation
inand out of the opticlobe (Supplementary Data5). Second, Smtypes
are positioned tocommunicate with theinner photoreceptor terminals,
which are in M6 or at the edge of M7. Consequently many Sm types
areinvolved in the processing of chromatic stimuli, and end up being
assigned to the colour subsystem.

The Sm family more than doubles the number of medullainterneuron
types, relative to the old scheme with only Pm and Dm. The Sm family
might be related to the M6-LN class of neuron previously defined®s.
The correspondence is unclear because M6-LN neurons are defined
to stratify in M6, while Sm mainly stratifies in M7. But some Sm types
stratify attheborder between M6 and M7, and therefore could be com-
patible with the M6-LN description.

Li. After two lobulaintrinsic types (Lil and Li2) were initially defined®,
12 more (Lill to 20 and mALC1 and mALC2) were identified by the
hemibrain reconstruction®. Of these, we have confirmed Li2, Li12,
Lil6, mALC1and mALC2. Weidentified 21 additional Litypes, but have
not been able to make conclusive correspondences with previously
identified types. As mentioned earlier, we transfer Tm23 and Tm24°¢
from the Tm to the Li family. This amounts to a total of 33 Li types,
which havebeennamedLiO1toLi33inorderofincreasing average cell
volume.

Collisions with Lil and Li2° are avoided by the presence of leading
zerosin our new names. The hemibrain namesLill to Li20 and mALC1
and mALC2° have been used by few or no publications, so there is
little cost associated with name changes. In any case, we were only
able to establish conclusive correspondences for a minority of the
hemibrain Lill to Li20 types, which are detailed in Supplementary
Data 1. Hemibrain Li12 is now Li27 (jigsaw pair), and hemibrain Lil6
is now Li28 (pair of full-field cells). Hemibrain Lill was split into Li25
and Li19 (see the ‘Morphological variation’ section). Hemibrain
Li18 was splitinto three types: (1) LiO8 covers the whole visual field.
(2) Li04 covers adorsal region except for the dorsal rim. It is tangen-
tially polarized, with the axon more dorsal than the dendrites. Both
axon and dendrite point in the posterior direction, perpendicular to
the direction of polarization. The dendrites are more thickly strati-
fied than the axon. (3) LiO7 has ventral coverage only. The axons are
in one layer, and extend over a larger area than the dendrites, which
hook around into another layer and are mostly near the ventral rim.

We considered merging LiO4 and LiO7, but their connectivity is quite
different. Furthermore, in a hierarchical agglomerative clustering,
LiO7 would merge with LiO8 before Li04.

LPi. LPi names were originally based on stratification inlayers1to 4
of the lobula plate, including LPi1-2 and 2-1'°; LPi3-4 and 4-3%; and
LPi2b and LPi34-12'° (we are not counting fragments for which corre-
spondences are not easy to establish). We have added nine new types,
for atotal of 15LPitypes.

Now that LPi types have multiplied, stratification is no longer suf-
ficient for naming. The naming system could be salvaged by adding
lettersto distinguish between cells of different sizes. For example, LPi15
and LPiO5 could be called LPi2-1f and LPi2-1s, where ‘f” means full-field
and ‘s’ means small. For simplicity and brevity, we instead chose the
namesLPiO1toLPil5,inorder of increasing average cell volume. Corre-
spondences with old stratification-based names are detailed in Codex.

Cross-neuropil tangential and amacrine

Most types that span multiple neuropils are columnar. One tangential
type that spans multiple neuropilsinside the optic lobe was previously
described: Lat has a tangential axon that projects from the medulla
to the lamina®. There is some heterogeneity in the Lat population,
asreflected in the large type radius (Extended Data Fig. 3a). We have
decided to leave splitting for future work, as Lat has many dense core
vesicles that are presently unannotated.

Here we introduce two new families of cross-neuropil types that
aretangential (MLt1-8 and LMt1-4), and one that isamacrine (LMal-5).
Along with two new tangential families (PDt, LLPt) that contain
only single types, and the known CT1 and Aml types, that is a total
of 21 cross-neuropil types that are non-columnar (Fig. 1c). Each
of the new types (except PDt with 6 cells) contains between 10 and
100 cells.

The tangential types connect neuropils within one optic lobe and
donotleave the opticlobe. Our usage of the term ‘tangential’ focuses
on axonal orientation only. It should not be misunderstood toimply a
wide-field neuron that projects out of the opticlobe, whichis the case
for the well-known lobula plate tangential cells or lobula tangential
cells. The term ‘tangential’ presupposes that we canidentify an axonal
arbour for the cell (see the ‘Axon versus dendrite’ section).

PDt. We found one tangential type that projects from proximal to distal
medulla (Supplementary Data 2).

MLt. ML1 was previously identified* as a tangential neuron project-
ing from the medulla to lobula. We will refer to this type as MLt1, and
have discovered more types of the same family, MLt2 to MLt8. Mitl
and MIt2 dendrites span both distal and proximal medulla, and MIt3
dendritesarein the distal medulla, so MLt1to MLt3 receive Linput (Sup-
plementary Data 2 and 5). MIt4 dendrites are in the proximal medulla
(Supplementary Data 2). MIt5 to MIt8 have substantial arbour overlap
withtheserpentine layer M7 (Supplementary Data2), and are therefore
connected withmany Smtypes tobe discussed later on (Supplementary
Data5). Interaction between MLt types is fairly weak, with the exception
of MLt7 to MLt5 (Supplementary Data5). MLt7 and MLt8 are restricted
tothe dorsaland dorsal rim areas.

LMt. We identified four tangential types (LMt1 to LMt4) that project
fromthelobulato medulla. Their axonal arbours are all in the proximal
medulla (Supplementary Data2), thinly stratified near layer M7, so they
have many Pm targets (Supplementary Data 5). Only LMt4 exhibits
partial coverage.

LLPt. We discovered one tangential type that projected from the lobula
tolobulaplate, and called it LLPt. Thisis just a single type, rather than
afamily.



LMa. We discovered four amacrine types that extend over the lobulaand
medulla. LMalto LMa4 are coupled with T2, T2aand T3, and LMa4 and
LMa3 synapse onto T4 and T5 (Supplementary Data5). The LMa family
could be said to include CT1, a known amacrine cell that also extends
over boththelobulaand medulla. However, the new LMa types consist
of smaller cells that each cover a fraction of the visual field, whereas
CTlisawide-field cell.

MLLPa. Am1 was defined™ as a wide-field amacrine cell that extends
over the medulla, lobulaand lobula plate. We found no other amacrine
types like Am1with such an extended reach.

Correspondences with molecular-morphological types

Tmb5. Tm5a, Tm5b and Tm5c were originally defined by single-cell
anatomy and Ort expression”™°, Tm5a s cholinergic, the majority of
the cells extend one dendrite from M6 to M3, and often has a ‘hook’ at
the end of its lobula axon. Tm5bis cholinergic, and most (-80%) cells
extend several dendrites from M6 to M3. Tm5c is glutamatergic and
extends its dendrites up to the surface of the distal medulla. Three
of our types are consistent with these morphological descriptions
(Fig.7a), and receive directinput frominner photoreceptors R7 or R8.

Dm8. Molecular studies previously divided Dm8 cells into two types
(yDm8and pDm8), depending on whether or not they express DIPy**2,
Physiological studies demonstrated that yDm8 and pDm8 have dif-
fering spectral sensitivities®. The main dendrites of yDm8 and pDm$8
were found to connect with R7 in yellow and pale columns, respec-
tively. On the basis of its strong coupling with Tm5a, our Dm8a prob-
ably has some correspondence with yDm8, which is likewise selec-
tively connected with Tm5a>*, It is not yet clear whether thereis a
true one-to-one correspondence of yDm8 and pDm8 with Dm8a and
Dm8b. It is the case that Dm8a and Dm8b strongly prefer to synapse
onto Tm5a and TmS5b, respectively. However, Tm5a and Tm5b are
not in one-to-one correspondence with yellow and pale columns.
Rather, the main dendritic branch of Tm5a is specific to yellow col-
umns, while the main dendritic branches of Tm5b are found in both
yellow and pale columns®. Furthermore, Dm8a and Dm8b cells are
roughly equal in number, while the yDm8:pDmS8 ratio is expected to
be substantially greater than one®"%, like the ratio of yellow to pale
columns. Thus, the correspondence of Dm8a and Dm8b with yDm8
and pDm8 is still speculative. The yellow/pale issue should be revis-
ited in the future when accurate photoreceptor synapses become
available (see the ‘Reconstruction accuracy and completeness’
section).

Additional validation. HHMI Janelia has released a preprint detailing
cell types in the right optic lobe of an adult male Drosophila brain®.
The list of intrinsic cell types is almost identical to ours, apart from
naming differences in new types. Since our original submission, we
have completed typing of the left optic lobe of our female fly brain
reconstruction, and the results match the right optic lobe analysed
inthe present paper. Thesereplicationsinanother hemisphere of the
samebrain andinthe brain of another individual fly provide additional
validation of our findings.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The present work is based on version 783 of the FlyWire connec-
tome, which incorporates proofreading up to 30 September 2023
(stats are shown in Extended Data Table 3). A static snapshot of the
dataused in this work is available in a dedicated repository at GitHub

(https://github.com/murthylab/visual-system-parts-list). This reposi-
tory contains the proofread cell IDs, their types, connectivity (broken
up by regions), aswell as aggregate information such as type summary
table, type connectivity table and raw data used to make the figures,
including CSV files for each of the wiring diagrams. Most up to date
information canbe browsed, searched and downloaded at the FlyWire
Codex (https://codex.flywire.ai). Codex will also provide access to
future releases of the FlyWire connectome, incorporating updated
proofreading and annotations. Pre-release annotations can be down-
loaded directly from the Codex download portal (https://codex.flywire.
ai/api/download). Pre-release proofread cells are available through
CAVEclient**",

Code availability

Code for making the figures along with additional data analysis tools
are also included/linked in GitHub repositories (https://github.com/
murthylab/visual-system-parts-list and https://github.com/hsseung/
OpticLobe.jl). Most up to date information can be browsed, searched
and downloaded at the FlyWire Codex (https://codex.flywire.ai).
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Extended DataFig. 5| Wiring diagram of cell types (top input connections).

connections, highlighting “hub” inputs. Node colour indicates membershipin

the subsystems defined in the text. See legend and additional explanationin
Fig.3and Methods.

Wiring diagram depicting top inputs for all cell types intrinsic to the optic
lobe, aswellas photoreceptors. Node size encodes the number of drawn
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Extended DataFig. 9| Comparison withseven-columnreconstruction.

We compared the synapse counts between type pairs to the corresponding
synapse counts in the seven-columnreconstruction?. The typesincluded
inthereconstructionare:C2,C3,L1,L2,L3,L4,L5, Mil, Mi4, Mi9,R7,R8,T1, T2,
T2a,T3, Tml, Tm2, Tm20 and Tm9. For this comparison we used the centre
column andits surrounding 6 columns from our dataset (green dots) as well as

theaverage of 100 columns and their surrounding ones (red dots). Each point
represents anordered pair of types, and the number of synapses between them
inthe FlyWire connectome (X) and the seven-column reconstruction (Y).
Correlation coefficients are 0.952 for the centre + 6 columns and 0.954 for the
average.
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Extended DataFig.10 | Carving the dendrogram toyield finer clusters. (b) Lowering the threshold further to 0.86 yields 36 clusters. Clusters
The hierarchical clustering was coloured in Fig. 2c toindicate 19 flat clusters containing asingle celltype are uncoloured (black).R1-6 and L3 are separate
atathreshold of 0.9. (a) Lowering the threshold to 0.885yields 26 clusters clustersinboth panels.
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Extended Data Table 1| Type families and their properties

Family Affinity Linkage Types Cells Trans Neuropils

Centrifugal Cross Neuropil Axon Bearing / Columnar 2 1511 GABA ME - ME, LA

Distal Medulla Neuropil Intrinsic ~ Non-columnar 21 3284 GLUT ME - ME

Distal Medulla Dorsal Rim Area Neuropil Intrinsic ~ Non-columnar 2 35 GLUT ME - ME

Lamina Intrinsic Neuropil Intrinsic ~ Non-columnar 1 231 LA - LA

Lamina Monopolar Cross Neuropil Axon Bearing / Columnar 5 3831 ACH ME, LA - ME

Lamina Tangential Neuropil Intrinsic ~ Axon Bearing / Tangential 1 6 ME, LO, AME, PLP - LO
Lamina Wide Field Cross Neuropil Axon Bearing / Columnar 2 320 ACH ME - LA

Lobula Intrinsic Neuropil Intrinsic ~ Non-columnar 33 761 GABA LO - LO

Lobula Lobula Plate Tangential Cross Neuropil Axon Bearing / Tangential 1 36 GABA LO,LOP - LO,LOP

Lobula Medulla Amacrine Cross Neuropil Amacrine 6 134 GABA ME,LO - ME,LO

Lobula Medulla Tangential Cross Neuropil Axon Bearing / Tangential 4 88 GLUT LO,ME - LO,ME

Lobula Plate Intrinsic Neuropil Intrinsic ~ Non-columnar 15 363 GLUT LOP - LOP

Medulla Intrinsic Neuropil Intrinsic ~ Axon Bearing / Columnar 8 3922 ACH ME - ME

Medulla Lobula Lobula Plate Amacrine Cross Neuropil Amacrine 1 1 GABA  LOP,ME,LO - LOP, LO, ME
Medulla Lobula Tangential Cross Neuropil Axon Bearing / Tangential 8 295 ACH ME,LO - ME,LO

Photo Receptors Neuropil Intrinsic ~ Axon Bearing / Columnar 3 4751 ME, LA —» LA, ME

Proximal Distal Medulla Tangential Neuropil Intrinsic ~ Axon Bearing / Tangential 1 6 DA ME - ME

Proximal Medulla Neuropil Intrinsic ~ Non-columnar 14 599 GABA ME - ME

Serpentine Medulla Neuropil Intrinsic ~ Non-columnar 43 1488 GABA ME - ME

T Neuron Cross Neuropil Axon Bearing / Columnar 12 9252 ACH ME, LO, LOP - LOP, LO, ME
Translobula Plate Cross Neuropil Axon Bearing / Columnar 4 172 GLUT  LOP - LOP,LO
Transmedullary Cross Neuropil Axon Bearing / Columnar 26 8855 ACH ME,LO - ME,LO
Transmedullary Y Cross Neuropil Axon Bearing / Columnar 12 2598 ACH ME, LOP, LO - LO, ME, LOP
Y Neuron Cross Neuropil Axon Bearing / Columnar 5 631 GLUT  LOP,ME,LO - LO,LOP, ME

Families of optic-lobe intrinsic types. Number of types/cells in each family, predicted neurotransmitter type and primary synapse regions.



Extended Data Table 2 | Distribution of synapses over neuropils for each type family

Family Affinity Linkage Types Cells Trans Neuropils

Centrifugal Cross Neuropil Axon Bearing / Columnar 2 1511 GABA ME - ME, LA

Distal Medulla Neuropil Intrinsic ~ Non-columnar 21 3284 GLUT ME - ME

Distal Medulla Dorsal Rim Area Neuropil Intrinsic ~ Non-columnar 2 35 GLUT ME - ME

Lamina Intrinsic Neuropil Intrinsic ~ Non-columnar 1 231 LA - LA

Lamina Monopolar Cross Neuropil Axon Bearing / Columnar 5 3831 ACH ME, LA - ME

Lamina Tangential Neuropil Intrinsic Axon Bearing / Tangential 1 6 ME, LO, AME, PLP - LO
Lamina Wide Field Cross Neuropil Axon Bearing / Columnar 2 320 ACH ME - LA

Lobula Intrinsic Neuropil Intrinsic Non-columnar 33 761  GABA LO - LO

Lobula Lobula Plate Tangential Cross Neuropil Axon Bearing / Tangential 1 36 GABA LO,LOP - LO, LOP

Lobula Medulla Amacrine Cross Neuropil Amacrine 6 134 GABA ME,LO - ME,LO

Lobula Medulla Tangential Cross Neuropil Axon Bearing / Tangential 4 88  GLUT LO, ME - LO, ME

Lobula Plate Intrinsic Neuropil Intrinsic Non-columnar 15 363 GLUT LOP - LOP

Medulla Intrinsic Neuropil Intrinsic ~ Axon Bearing / Columnar 8 3922 ACH ME - ME

Medulla Lobula Lobula Plate Amacrine Cross Neuropil Amacrine 1 1 GABA LOP, ME, LO - LOP, LO, ME
Medulla Lobula Tangential Cross Neuropil Axon Bearing / Tangential 8 295 ACH ME, LO - ME, LO

Photo Receptors Neuropil Intrinsic ~ Axon Bearing / Columnar 3 4751 ME, LA - LA ME

Proximal Distal Medulla Tangential Neuropil Intrinsic ~ Axon Bearing / Tangential 1 6 DA ME - ME

Proximal Medulla Neuropil Intrinsic ~ Non-columnar 14 599 GABA ME - ME

Serpentine Medulla Neuropil Intrinsic ~ Non-columnar 43 1488 GABA ME - ME

T1 Neuron Cross Neuropil Axon Bearing / Columnar 1 738 ME, LA - ME, LA

T2 Neuron Cross Neuropil Axon Bearing / Columnar 2 1591 ACH ME, LO - LO, ME

T3 Neuron Cross Neuropil Axon Bearing / Columnar 1 823 ACH ME, LO - LO, ME

T4 Neuron Cross Neuropil Axon Bearing / Columnar 4 3104 ACH ME, LOP - LOP, ME

T5 Neuron Cross Neuropil Axon Bearing / Columnar 4 2996 ACH LO,LOP - LOP, LO
Translobula Plate Cross Neuropil Axon Bearing / Columnar 4 172  GLUT LOP - LOP, LO
Transmedullary Cross Neuropil Axon Bearing / Columnar 26 8855 ACH ME, LO - ME, LO
Transmedullary Y Cross Neuropil Axon Bearing / Columnar 12 2598 ACH ME, LOP,LO - LO, ME, LOP
Y Neuron Cross Neuropil Axon Bearing / Columnar 5 631 GLUT LOP, ME, LO - LO, LOP, ME

Families of optic-lobe intrinsic types and the number of their input / output synapses in each of the optic lobe regions.
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Extended Data Table 3 | Cells and cell types by super class

Family Abbrev. inLA inME inLO inLOP outLA outME outLO outLOP
Centrifugal o] 2361 110557 0 5 25499 192287 0 6

Distal Medulla Dm 109 493242 29 0 3 461042 66 0
Distal Medulla Dorsal Rim Area DmDRA 0 5510 O 0 0 6164 0 0
Lamina Intrinsic Lai 53890 14 0 0 4729 0 0 0
Lamina Monopolar L 118627 335509 0 0 4644 1018207 O 0
Lamina Tangential Lat 0 168 138 0 0 0 " 0
Lamina Wide Field Lawf 212 76784 0 0 39998 583 0 0
Lobula Intrinsic Li 0 165 465695 242 0 5 311758 25
Lobula Lobula Plate Tangential LLPt 0 0 18515 1542 0 0 13572 6752
Lobula Medulla Amacrine LMa 0 222413 118357 2571 0O 139822 115942 585
Lobula Medulla Tangential LMt 0 6226 42542 72 0 22192 26123 25
Lobula Plate Intrinsic LPi 0 1 3 320696 0 36 13 222563
Medulla Intrinsic Mi 318 530040 2 0 1 1075969 16 0
Medulla Lobula Lobula Plate Amacrine ~ Am 0 3201 2183 27387 O 3449 3762 12089
Medulla Lobula Tangential MLt 0 33346 2088 10 0 28384 10823 1

Photo Receptors R 1356 21647 0 0 108499 27109 0 0
Proximal Distal Medulla Tangential PDt 0 2978 O 0 0 1186 0 0
Proximal Medulla Pm 0 966964 3 350 0 444691 1 265
Serpentine Medulla Sm 0 240804 10 0 0 239769 25 0

T1 Neuron T 6513 100560 O 0 127 2629 0 0

T2 Neuron T2 0 207836 14421 229 0 46074 176480 85

T3 Neuron T3 0 117157 7188 18 0 24435 81576 O

T4 Neuron T4 0 210989 32 28749 0 26568 19 240567
T5 Neuron T5 0 7 216802 20094 0 0 22862 257408
Translobula Plate Tip 0 46 2767 92321 0 176 16095 51725
Transmedullary Tm 0 939034 92457 920 0 1025728 583491 1679
Transmedullary Y TmY 0 363265 111320 151107 O 147000 202629 65437
Y Neuron Y 0 82196 23732 84795 0 55853 78668 56706

Proofread cell and type stats broken up by super class in the FlyWire connectome dataset as of October 2023.
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