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Abstract

Offloading is an advanced technique to improve the performance of mobile devices. In a

mobile offloading system, richer functional applications are developed by migrating heavy com-

putation from resource constrained thin clients like mobile devices to powerful cloud servers.

Although today heavy computation can also be completed by most clients, it consumes much

time and energy. Therefore, offloading heavy computation can sometimes effectively accelerate

the processing speed and prolong battery lifetime for mobile devices.

To guarantee the completion of such offloading tasks, strong connectivity between client and

the server is essential. Generally, wireless networks are utilized to support the connectivity.

However, a wireless network sometimes is not sufficiently qualified to provide a reliable com-

munication between clients and servers. Task completion can be delayed by congestion or packet

loss in the network, and execution continuity is always interrupted by network failures. In brief,

the intermittent connectivity in wireless network constrains the advantage of offloading applica-

tions. To deal with this problem, restart is an efficient method that can reduce the task completion

when the network quality is bad. In mobile offloading systems, besides retrying the same of-

floading task, jobs can be locally restarted and completed in the client device itself. Adaptively

selecting the right option and automatically restarting at the appropriate moment can balance out

undesired effects. While the mechanism of restart itself is very simple, deciding when to apply

it is not easy at all.

In this thesis, the optimal moment to launch restart is identified according to different metrics.

For reaching a balance between energy consumption and throughput, the best restart time should

be able to acquire a trade-off between the two aspects. Under unstable network qualities, the

optimal moment is derived to minimize the expected task completion time. In addition, in order

to reducing the burden of server, multiple clients should not launch restart at the same time.
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Zusammenfassung

Offloading ist eine fortschrittliche Technik um die Performance mobiler Endgeräte zu verbessern.

In einem mobile offloading System werden funktional umfangreiche Applikationen durch Mi-

gration rechenintensiver Prozesse von ressourcentechnisch eingeschränkten Klienten, wie Mo-

bilgeräten, auf leistungsstarke Server in der Cloud entwickelt. Auch wenn heute auch aufwendige

Berechnungen auf Mobilgerten durchgeführt werden können, kostet dies viel Zeit und Energie.

Deshalb kann das Auslagern dieser Berechnungen manchmal effektiv die Ausführung auf Mo-

bilgeräten beschleunigen und die Batterielebensdauer der Mobilgeräte verlängern.

Um das Beenden von offloading nutzenden Prozessen zu garantieren, ist eine sehr gute Verbindung

zwischen Klient und Server erforderlich. Üblicherweise werden kabellose Netzwerke zur Bere-

itstellung der Verbindung genutzt. Ein kabelloses Netzwerk kann jedoch unter Umständen

nicht dafür geeignet sein, eine zuverlässige Kommunikation zwischen Klient und Server zu

bieten. Die Vollendung der Berechnungen kann durch Überlastung oder Verlust von Paketen

im Netzwerk verzögert werden und die Ausführung wird ständig durch Netzwerkfehler unter-

brochen. Kurz, die instabile Verbindung in kabellosen Netzwerken schränkt die Vorteile von

Applikationen, die mobile offloading nutzen, ein. Das Neustarten der Berechnungen ist eine

effektive Methode um dieses Problem anzugehen und kann die Ausführungszeit bei schlechter

Verbindungsqualität verringern. In mobile offloading Systemen kann neben dem Versuch die

selbe Berechnung erneut auszulagern auch die Berechnung auf dem Mobilgerät selbst neu ges-

tartet und durchgefhrt werden. Adaptiv die passende Option auszuwählen und das automatis-

che Neustarten im richtigen Moment kann unerwünschte Effekte ausbalancieren. Während der

Mechanismus des Neustartens an sich sehr einfach ist, ist die Entscheidung wann er angewandt

werden soll ganz und gar nicht einfach.

In dieser Arbeit wird der optimale Zeitpunkt zum Neustarten bezüglich unterschiedlicher

Metriken identifiziert. Um ein Gleichgewicht zwischen Energieverbrauch und Durchsatz zu

erreichen, sollte die beste Zeit zum Neustart einen Kompromiss zwischen diesen beiden Aspek-

ten bieten. Unter stabiler Netzwerkqualität wird der optimale Zeitpunkt durch die Minimierung

der erwarteten Ausführungszeit abgeleitet. Um die Belastung des Servers zu reduzieren, sollten

zusätzlich nicht mehrere Klienten gleichzeitig ihre Berechnungen neu starten.
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Chapter 1

Basic Concepts and Problems

1.1 Mobile Offloading

In recent years, a large number of applications have been developed for mobile devices. Ob-

viously, many of these colourful applications have added convenience to our lives. For example,

tourists will never worry about getting lost in an unfamiliar city, various navigation applications

can provide the precise route information about any destination a tourist may want to visit. All

powerful functions provided by these intelligent mobile applications originate from a significant

improvement of mobile devices. Both the hardware processing rate and the flexibility of oper-

ating systems are able to undertake some heavier computation which could previously only be

run on desktops or servers.

However, although the invention of more advanced mobile devices has improved their speed,

they are still unable to compete with their desktop and server siblings. The constraints are

obvious. The implementation of compute intensive applications is still limited by the constraint

of the mobile device hardware, for example the long time operation of microchips cannot be

sustained by low capacity batteries. The limited battery capacity prevents a long run time of

some computate intensive applications (like image processing or gaming). At present, reducing

the energy consumption of mobile applications remains a tough challenge. The low capacity

battery is also the bottleneck of developing more attractive applications for mobile devices[108].

Moreover, even though smart mobile devices have undergone a fast development, the con-

straint of limited battery capacity is not merely a temporary technological deficiency but is in-

trinsic to mobility [122]. The trend in development of mobile device architectures and batteries

shows the difficulty to overcome this constraint in the near future. To deal with this problem,

Offloading is one of the popular techniques. It migrates heavy computation to remote servers

through a wireless network.

In recent years, cloud computing has seen a significant development. And it is still one of
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CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

the most important research directions of future computer technologies. At the same time, with

the invention of more advanced wireless networks such as WiFi, 3G and LTE, mobile devices

have become the most widespread terminals to access cloud services. Users can easily reach an

abundance of resources: files, music and videos in the cloud instead of being restricted by the

size of device storage. Therefore, the concept of offloading to the Cloud is employed to handle

performance problems [49].

By migrating heavy computation to resourceful cloud servers, mobile devices can overcome

the limitation of deficient resources. Offloading can not only save energy but also accelerate

the execution and thus provides a better user-experience. Another benefit of connecting mobile

devices with the cloud is providing better reliability. Maintaining the back-up files in cloud

storage avoids data loss due to system collapse or any other disaster. In addition, as the mobile

device is quite portable, ubiquitous computation services can be obtained by using the powerful

computation capability of remote servers through mobile devices.

Ideally, offloading does not require a mass data transmission between mobile clients and re-

mote servers. It only needs an overhead of several Megabits to migrate the executing thread

[34] or the application state [39] from mobile terminals to remote servers and then get back the

results. This delay will not impair the application performance.

1.2 Challenges in Task Completion

By migrating heavy computation to powerful cloud servers, mobile offloading systems can

circumvent constraints of the client hardware, e.g. high energy consumption microchips and

low capacity batteries. But the smooth offloading of computation from mobile devices to cloud

servers depends on a fast and stable network connection, which guarantees seamless communi-

cation. The success of offloading computation relies on this stable wireless network to provide

safe and reliable connection support. The network state plays an important role in the offloading

system. To some degree, the performance of offloading computations is directly affected by the

connection quality.

With advanced wireless networks such as WiFi, 3G or LTE, setting up a reliable connection

between mobile terminals and remote servers seems possible in principle. Unfortunately, the

quality of a network is not constant across space and time. Even though wireless networks have

undergone a striking development, the transmission quality still varies. It is impossible to persis-

tently provide a reliable connection, which guarantees the success of offloading. Consequently,

the execution of an offloading task may suffer from long delays or even failures in the network.

In [150] the impact of unreliable network connections on mobile offloading has been experimen-

tally confirmed. In addition, using wireless connectivity demands a lot of energy [28, 31]. The

limited battery capacity often cannot support the mobile device to wait an unpredictable time for
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1.3. PERFORMANCE IMPROVEMENT WITH RESTART

the network to recover, which may take very long.

As the remote cloud servers of large enterprises are supported by better back-up and protec-

tion schemes, comparing with the frequently fluctuated wireless network condition, they have

comparably high-availiability. In that way, the wireless network becomes the major cause of

bringing unstability to offloading systems. However, even though the remote cloud servers of

large enterprises are mostly maintained by better back-up and protection schemes, sometimes

they still experience long downtime [29, 46]. Therefore, these cloud servers cannot be seen as

perfectly reliable systems. This can be another cause of the connection failure.

The above situations indicate that connection failures cannot be avoided completely during

the execution of offloading, which means failure handling schemes are indispensable. Some

efficient schemes are introduced in the next section.

1.3 Performance Improvement with Restart

In computer and network systems, when a task is subject to failures or unpredictable delays,

aborting the previous try and launching a new process can speed up the task completion. This

mechanism is generally called restart and widely used in preventive maintenance [142], software

rejuvenation and fault tolerance [47]. Examples of such tasks include randomised search algo-

rithms, distributed data queries and data transmission through unreliable network connections.

These tasks are also widely spread in Cloud computing and Cyber-physical systems. As intro-

duced in [98], restart allows to express an efficient tradeoff between the average and the variance

in the time a task will take.

Usually, there are two major restart schemes to handle the failure problem in the mobile of-

floading system. The first one is halting in the current execution state and waiting for the network

recovery. After the connection quality satisfies the offloading condition again, the execution of

offloading is resumed. If the wireless network recovers quickly back to the required level, this

scheme performs well.

But when the network is wrapped in failure, a long time is wasted for waiting and accom-

panied with large energy consumption. As currently the function of mobile devices has been

improved remarkably, executing the offloading tasks locally in the mobile device is the other

method to handle failures. Although it costs more time and battery energy, the continuity of

application execution is maintained. To avoid ambiguity, in this thesis, restart and re-execution

are deemed as the same meaning.

The question arises when to launch the local re-execution. Immediately re-executing the pre-

determined offloading task locally as soon as the wireless connection breaks only adapts to the

previous extreme scenario of a very long repair time because the local re-execution is not cost-

effective. Comparing with running in remote servers, more time and energy has to be provided
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by the mobile device to complete the same intensive computation.

In case the wireless network recovers within a moderate time, resuming the execution of

offloading may still require less time and energy than the local re-execution. Therefore, it is

worth to wait such a period for the connection recovery. In order to provide a balanced perfor-

mance in both the scenarios, combining the two schemes with a timeout scheme is a reasonable

method.

In addition, jointly using offloading and local restart also constitutes another kind of hybrid

restart scheme. This scheme works as launching multiple restart at intervals until the offloading

task is completed. First the job attempts to restart with offloading. Then, if the number of restarts

exceeds the threshold, the job is completed locally. The main problem that must be solved is the

optimal limiting threshold on the number of allowed restart tries.

Generally, restart is a simple yet efficient solution, which can be applied if the probability

distribution of a task completion time exhibits high variance. If we use the expected task com-

pletion time as metric to evaluate the performance under different thresholds, utilizing some

stochastic analysis models or heuristic iterative algorithms we can theoretically identify the op-

timal threshold.

1.4 Contributions

The main contributions of this thesis help to address failure handling requirements in the mo-

bile offloading systems. The first part of this thesis provides the background and related work

about the performance improvement of the mobile offloading system. The second part exper-

imentally confirms the impact of network quality on the running of mobile offloading system.

The third part proposes some restart-based schemes to deal with the problem of unstable network

quality. The efficiency of these schemes is confirmed by either experiments or simulations.

In the following we give a short summary of these contributions. The organisation of this

thesis is introduced chapter-by-chapter in section 1.5, below.

Part I: Introduction
As a novel innovation, mobile offloading still has no structure standard or an explicit defini-

tion. It covers a wide range of concept referring to Cloud Computing, Mobile Communication

and Distributed Computation. In order to generalize some common properties of the system

structure, we make a survey about existing mobile offloading platforms. Although several dif-

ferent techniques have been utilized to build the mobile offloading platform, for instances virtual

machine [124], program partitioning [104], code offload [39] and so on, their fundamental work

flows are identical.

A model-based analyse method can provide valuable insights into the system performance.

There is no doubt that a lot of researchers have contributed models in this area. We draw some
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representatives to illustrate the inspiration of the model proposed in this thesis. The merits and

drawbacks of those representatives are also compared.

Part II: Unstable Network Quality
In order to demonstrate the impact of unstable network quality on the mobile offloading sys-

tem, we have to solve several problems: First, the quality of the network must be assessed,

second, the variation of the network quality must be monitored based on which then an estimate

of the optimal restart timeout is computed. We assume that the system performance is positively

correlated with the network quality, and use the task completion time as a metric to evaluate

system performance. Although the energy consumption is also very important to evaluate per-

formance, as introduced in [28, 39, 99], we are not able to easily determine energy usage and

fall back to task completion time. We state that for our purposes there is a sufficiently strong

correlation between energy consumption and task run time. To monitor the variation in network

quality we dynamically build a histogram of the task completion time which provides a good and

timely estimate of its distribution. We propose a method to periodically update the histogram.

Part III: Failure Handling with Restart
If we only consider local execution after a restart. The key problem behind restart is when to

launch it. There clearly exists a tradeoff between the cost of local or remote retry and waiting

for the offloading to succeed. We mathematically derive conditions for applying local restart

and the optimal timeout based on a greedy method and we propose a dynamic online scheme to

determine whether and when to launch a local restart. Then, we adapt the optimal restart time

at run time in order to account for the variation of the network quality. An automated adaptive

restart scheme by jointly using offloading and local restart is proposed.

In addition, a static method is also proposed to find the optimal timeout when to restart lo-

cally by analysing the system performance using stochastic models. We used SAN(Stochastic

Activity Network)[121] models to simulate the execution of offloading systems and computed

three metrics: Instability, Energy Consumption and Throughput to evaluate the performance of

the offloading system. It has been shown through simulation that the optimal timeout changes

when the quality of the network deteriorates. We confirm those previous simulation results

by analysing experimental data and use an integrated method by combining the experimental

test-bed and a simulation model to find out the optimal waiting time for launching the local

re-execution.

1.5 Organisation of the Thesis

In the first part of the thesis we generally introduce the background of this thesis and some

related work. Part I has the following structure:
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In Chapter 1, I describe some elements of our story: where it happens, who is involved and

how it develops. Mobile offloading system is the research filed of this thesis. It provides the

stage for the two main characters: network quality and restart schemes. The story originates

from that the unreliable network brings a risk to the smooth execution of offloading task. The

process of this story mainly focuses on how to adapt the restart scheme to the mobile offloading

system and reduce the risk by optimization.

In Chapter 2, a survey on some typical structures of mobile offloading systems is presented.

Then, the related stochastic models of performance analysis for the computer system and net-

work are reviewed. After that, several popular methods used in automatic adaptive control are

briefly introduced.

The second part of the thesis concerns the impact of varying network quality on the mobile

offloading system and is structured as follows:

In Chapter 3, an experiment is introduced to study the impact of packet loss and delay on

the task completion time. The distribution of task completion time under an unreliable network

exhibits a heavy-tailed profile. The experimental results confirm the need for local restart.

The third part of the thesis illustrates the implementation of the restart scheme and the evalu-

ation of its efficiency. Part III is structured as follows:

In Chapter 4, we describe the mathematical derivation of a condition which is used to deter-

mine whether and when to launch a restart. The condition is further extended to adapt for the

mobile offloading system. The criteria of whether and when to launch a local restart is derived.

In Chapter 5, we introduce the structure of our program engine implemented with some of-

floading applications. Optical Character Recognition (OCR) is exploited as the main sample

application in the experiments to verify the unreliable network and evaluate the restart perfor-

mance.

In Chapter 6, a description of the proposed SAN models is presented. We use the models to

simulate the execution of the offloading system. Three metrics, instability, energy consumption

and throughput are introduced. They are defined to evaluate the performance of various local

re-execution start moments. After normalization, the three metrics are synthesized to compare

the overall performance.

In Chapter 7, a modular based system model is proposed to analyse the impact of multiple

users on the cloud server in the mobile offloading system. The congestion occurs in the server

side when the task arrival rate in the client side increases. To deal with this problem, we proposed

a congestion avoidance scheme by using local execution to complete parts of the offloading

tasks.

In Chapter 8, the dynamic restart scheme is introduced. A dynamic histogram is designed

and exploited to estimate the theoretic criteria of launching local restart. The efficiency of single
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local restart and optimal adaptive restart is illustrated using experiments.

In Chapter 9, the main part of the thesis is concluded with a summary. The contribution of

restart to reduce the impact of unreliable network in mobile offloading system is emphasized. In

the end, we provide the outline of our future research directions.
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Chapter 2

Related Work

Although, a lot of surveys about mobile offloading and cloud computing exist such as, [83, 52,

30, 44, 10, 78, 63, 109, 5], they are either too general as including a wide range of related works,

or too specific as forwarding to a direction which is not concerned in this thesis. Therefore, in

this chapter we introduce some representative work on mobile offloading system. We provide a

view of the cloud computing from the perspective of mobile offloading. After that, we refer to

some popular models which are used to analyse the performance of mobile offloading system

and cloud computing. Through these models, readers can easily understand the inspiration and

origination of the research approach utilized in this thesis. Then, we summarise the features of

data transmission in the public Internet. Since the communication between clients and servers

is the key element which decides the success of completing the offloading tasks, understanding

the features of data transmission can give an impression of the importance of applying methods

to deal with the unstable network quality.

2.1 Typical Mobile Offloading System

2.1.1 Historic Background

Powerful distributed systems as in Cloud computing aim at turning computing as utility into

reality [35]. Recently, as mobile devices have become the most popular clients to access Cloud

services, the concept of pervasive computation services was proposed to integrate mobile de-

vices with Cloud Computing. As soon as the concept of cloud computing was proposed, it has

attracted attentions to integrate mobile devices within the cloud.

Thin clients using a remote infrastructure for compute-intensive tasks have already been seen

as a method for addressing the challenges of distribution and mobility as in pervasive comput-

ing [123]. To reach this destination, mobile offloading has been developed as to merge Cloud

computing and mobile computing. Offloading the computation from smart phones to remote
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resourceful cloud servers has also been rediscovered as a technique to enhance the performance

of mobile applications, while reducing the energy consumption [88, 152, 113, 111].

In general, it makes sense to not always offload, instead, it should be performed optionally

considering some conditions. For example, if there is no internet connection, it should be pos-

sible to execute the whole application locally in the mobile device. Based on some parameters,

such as the access time to the server, the internet bandwidth, the amount of data to transmit,

the remaining battery lifetime or the estimated execution cost of a potentially offloadable com-

putation, the offloading component has to decide whether to migrate the movable part of code.

Offloading has to decide, based on different parameters (e.g. wireless network quality, device

compute capability and remaining battery capacity), which parts of the movable components

should be migrated to execute in remote servers.

In order to identify the movable components in mobile applications, Partitioning is one of the

important and fundamental step to implement mobile offloading. Partitioning tries to reasonably

separate the mobile application into several components and classify them into two categories:

movable and local. Some of them can be executed in remote servers are marked as movable,

and the others can only be run locally in mobile devices are marked as local. A large number of

contributions exist in this area[87, 61, 104, 89, 147, 55, 54, 60, 112].

2.1.2 Existing Offloading Systems

Under the strong motivation of making mobile devices fast and energy-efficient, mobile of-

floading as a concept has been around for more than a decade. Several methods (CloneCloud,

MAUI, Cloudlets, among others) have been proposed to support the seamless use of augmented

computation to a mobile device. Most of them are architectures that want to provide a com-

fortable development environment for the programmers, who want to implement their mobile

applications with offloading.

Research in offloading methods can be divided into three main directions [49]: client-server

communication, virtual machine migration and mobile agents.

We will now discuss related work in all three areas.

1. Client-server communication:
Communication can be supported by pre-installation of the application in both the mobile

client and the server. In this case one can benefit from existing stable protocols for process

communication between mobile and surrogate devices. This is the basis for the systems

in [50, 13, 94, 67, 43, 77].

2. Virtual machine migration:
Offloading can be implemented as the migration of the complete virtual maching exe-

cuting the application. The most fascinating property of this method is that no code is

changed for offloading of a program. The memory image of a mobile client is copied and
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transferred to the destination server without interrupting or stopping any execution on the

client. Although this method has clear advantages as it avoids having two versions of a

program, it requires a high volume of transferred data [34, 39, 66, 124, 110].

3. Mobile agents:
Scavenger [84] introduced a framework that partitions and distributes heavy jobs to mobile

surrogates in the vicinity rather than to cloud servers. Offloading to more than one surro-

gate is the merit of this framework. In [153], the authors proposed a seamless offloading

service for the client-surrogate structure. The effectiveness and efficiency of the novel ser-

vice are validated by both the experiment in a real-life mobile Internet application scenario

and the simulation in large-scale and more dynamic mobile network environments.

Few of the above approaches tackle the problem of when to offload and which communication

partner to choose. In [8] the authors designed a Markov decision process to find the optimal

aging control policies, which decide when to connect to the server and which network link to

use.

2.1.3 Prototypes

Among the three categories, the virtual machine migration is the most popular one and rep-

resents the future development trend. The great advantage of virtual machine is the high con-

sistency of the two version applications in the mobile side and the server side. Since nearly

no modification is required to move the application from the mobile device to the server, the

burden on the programmer is reduced. Although the client-server communication supports a

more robust link between both sides, the application has to be pre-installed. The main drawback

of mobile agents is the expensive cost of agent management and application synchronization.

For understanding the detailed properties of each category, we make a deep exploration into the

specific structures. As the virtual machine has attracted most attention, we first list four sample

structures belonging to this category below:

CloneCloud boosts unmodified mobile applications by offloading the right portion of their

execution onto device clones operating in a computational cloud [34]. It proposes a very inter-

esting idea: to continuously have a synchronized copy of the mobile device contents in the cloud

in order to offload operations like file searches or virus scans.

MAUI achieves the two benefits of maximizing the potential for energy savings through fine-

grained code offload, while minimizing the changes required to applications [39]. It applies

the managed code environments to dynamically partition programs according to the methods

profiling and serialization of an application.

VM-Based Cloudlets exploit virtual machine (VM) technology to rapidly instantiate cus-

tomized service software on a nearby cloudlet and use that service over a wireless LAN [124].

Due to the physical proximity between cloudlets and mobile clients, the one-hop network la-
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tency brings the advantage of transient connections at the cost of a large-scale implementation

with high price.

Mobicloud treats mobile devices as service nodes and organises them in an ad-hoc network.

Each node is mirrored in the cloud and used as a virtual component to provide computation

service [66]. In addition to providing traditional computation services, Mobicloud enhances

communication by addressing trust management, secure routing, and risk management issues in

the network.

Although the client-server communication is less elastic than the virtual machine, the well

supported Application Programing Interfaces (APIs) reduce the complexity of system imple-

mentation. Some representative system structures based on the mode of client-server communi-

cation are listed here.

Cuckoo is a complete framework for computation offloading for Android, including a runtime

system, a resource manager application for smart phone users and a programming model for

developers [77]. The Ibis High Performance Programming System [143] is used as the basis for

Cuckoo’s communication component.

Chroma is a tactics-based remote execution system, which makes perfect partitioning deci-

sions at runtime [13]. Tactics is a compact declarative form which captures the knowledge about

an application relevant to remote execution. Chroma improves application performance by au-

tomatically utilizing extra resources in an over-provisioned environment.

Hyrax allows client applications to conveniently utilize data and execute computing jobs on

networks of smart phones and heterogeneous networks of phones and servers by porting Hadoop

[129] and MapReduce [42] to run on Android smart phones [94]. Hyrax explores the possibility

of using a cluster of mobile phones as resource providers and shows the feasibility of such a

mobile cloud.

These platforms can be considered as the prototypes of a general and standard mobile of-

floading structure. We believe that the mobile offloading system is still in early stage. With the

invention of more intelligent mobile devices, the mobile offloading structure will naturally adapt

itself to the development. There is no doubt, more novel structures will also be proposed. In

fact, if some uniform standards can be formulated to define either the offloading work flow or the

basic elements of the system structure, the development of mobile offloading will be facilitated.

2.1.4 Model-based Analysis Techniques

All offloading systems mentioned so far may suffer from poor network conditions and the

application of well-designed fault-tolerance methods is necessary. Restart is suitable since it is

a simple and popular recovery scheme to mitigate network failures. Markov chain models and

Laplace transforms have been developed to analyse the performance of restart for improving
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the expected task completion time [11, 85, 126, 86, 17]. The above analytical work strongly

supports the efficiency of restart if the best restart timeout is known. A fast method based on

iteration theory to identify the optimal restart time has been presented in [98]. The algorithm has

been improved in [141, 140, 142]. It has been tailored for Internet applications in [117]. Based

on the assumption that successive runs are independent, [91] has described a provably optimal

policy to minimise the expected completion time. In [76] prior results on fixed restart policies

have been extended to more efficient dynamic restarts by using predictive models to provide

solvers with a real-time ability to update beliefs about run time.

In addition, for improving the performance of a mobile offloading system, the impact of net-

work deterioration can also be mitigated by either optimizing the network configuration or devel-

oping new management schemes for the client. For instance, Bulut and Szymanski introduced

an efficient algorithm to increase the offloading ratio based on the density of user data request

frequency [27]. They measure how much offloading can be achieved with different number of

Wifi access points (APs), and formulate the optimal APs deployment as an Integer Linear Pro-

gramming problem. The simulation results indicate that their greedy heuristic based algorithms

can closely approach the optimal solution. On the server side, the authors of [81] proposed new

design techniques for a storage system which can minimize the effect of run-time server failures

on the availability of intermediate data. The authors define intermediated data as the enormous

amount of distributed data generated by parallel dataflow programs. Although these data are

short-lived, they are critical for completion of the job and for performance improvement of the

run-time server.

Generally, mobile offloading systems rely on an always-on connectivity to provide a scalable

and high quality mobile access. Intelligent Radio Network Access (IRNA) provides another

solution for this critical challenge. In [80], Klein, etc. proposed a heterogeneous access man-

agement framework by exploiting the IRNA-based contest information of mobile clients.

In this section, we have provided a introduction of the development of the mobile offloading

system. First, the origination of the offloading concept is reviewed. Second, some representative

system architectures are depicted and compared. Last, we present advanced techniques utilized

to handle failures caused by unstable network connections between clients and servers.

2.2 Models for Performance Analysis

For analysing the performance of communication or computation systems, one of the popular

ways is to use stochastic models. These models have also been proved as an efficient method

to emulate the system operation and estimate the system performance for the mobile offloading

system. In this section, we first review some previous works which are related to the model-
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based performance analysis in mobile offloading system. Then, we introduce a specific model

named Stochastic Activity Network(SAN) and its representative applications. For its flexibility

and powerful functionality, SAN is used in this thesis. At last, we review some representative

models which are popular in the performance analysis of Cloud Computing.

2.2.1 Models for Offloading

In previous research, models from the Markov family have been widely used. Gabner, etc.

introduced an analytical Markov model to investigate component migration performance [55].

The proposed model can be used to determine the optimal policy for component configuration

and to quantify the gain that is obtained via reconfiguration. In[105, 103], a semi-Markov chain

model was used to express the performance of a fault-tolerant offloading system. The factor of

time is analysed in these models, and it considers only waiting for resuming the offloading task

until network recovery. A monitoring technique based on a Markov chain model was proposed

in [106] to predict resource states. In general, the resource states at different moments are

considered independent and identically distributed. The next state of a given resource is hardly

related to previous states. So to some degree, the accuracy of monitoring based prediction is

difficult to be verified.

However, these models can only analyze the execution time, and merely consider the influ-

ence of wireless network factors like Mean Time to Failure(MTTF). For making an intelligent

offloading decision under different runtime environments, the authors of [104] utilised a dy-

namic multi-cost graph to model the costs of an application in terms of its component classes,

including CPU cost, memory cost and communication cost. The program is adaptively parti-

tioned based on a Heavy-Edge and Light-Vertex Matching (HELVM) algorithm, which is used

to coarsen the multi-cost graph. In [61], the Fuzzy Control model was employed for making

offloading decisions. The Fuzzy Control model includes a generic fuzzy inference engine based

on fuzzy logic theory, and decision-making rule specifications provided by system or applica-

tion developers. When the current system and network conditions match any specified rule, an

offloading action is triggered.

Partitioning the application reasonably into two parts, local and offload, is another important

factor to make the offloading decision. The authors of [147] showed how to use parametric

program analysis to deal with the program partitioning problem of computation offloading. The

optimal partitioning problem is modeled as a min-cut network flow problem with run-time pa-

rameters. The cost analysis obtains program computation workload and communication cost

expressed as functions of run-time parameters, and the parametric partitioning algorithm finds

the optimal program partitioning corresponding to different ranges of run-time parameters. In

[59], Giurgiu pursued a flexible architectural to model the impact of the application distribution

scheme, the workload size and intensity, and the resource variations of the mobile-cloud config-
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uration on the interaction response time of the application. The correlation between these factors

are also analysed.

2.2.2 Stochastic Activity Network

Markov chains are the foundation of various evolved models which have been widely used in

the performance analysis [82]. Nearly no corner of the research area where time variability is

concerned has not been covered by Markov chain models. Petri-net [127, 93] is a popular evolu-

tion of Markov chain models. In order to represent the timeliness and parallelism of the system

in a stochastic setting, several extensions have been proposed like GSPNs (General Stochastic

Petri Nets) and SRNs[102, 139]. SAN was a further extension to Petri-nets which have been

extensively used for performance modeling to analyze computer and communication systems

[121].

In order to obtain realistic composite performance and availability measures, Stochastic Re-

ward Nets (SRN), as well as continuous time Markov chains were used in [92] to construct

models for the performance evaluation. The authors analyse the performance changes that are

associated with failure recovery behaviour. As the modelling techniques in [92] yield accurate

results of prediction, SRN has been demonstrated as a powerful modelling tool for performance,

availability and reliability analysis. SRN has also been widely used in computer and network

systems, for example wireless communication system [137, 138], clustered system [148] and

system rejuvenation policies [120].

SAN was defined with the purpose of facilitating unified performance or dependability evalua-

tion [121]. The essential elements of SANs are timed and instantaneous activities. The execution

process of the modelled system can be easily represented by them. A gate in a SAN model, sup-

ports a more flexible definition of the enabling and completion rules. It is conveniently used to

represent the selection among various operation options. In brief, SAN is a general modelling

technique that can be easily used to analyse the performance of computer systems [41]. Many

researchers have provided contributions about how to use SRN in different parts of the computer

system, such as mobile software system [22] and system security evaluation [51].

2.2.3 Specific Models for Cloud Computing

Although handling diverse client demand and managing unexpected failures without degrad-

ing performance are two key advantages of cloud service, the expanded scale and complexity of a

cloud system increases the difficulty to evaluate a cloud service quality. If many configurations,

workload scenarios, and management methods are included into analysis, the measurement-

based evaluation of cloud service quality is expensive. In [57, 56], a general model-based ap-

proach was proposed to analyse an end-to-end performance of a cloud service. This approach
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divides the overall model into sub-models and obtains the overall solution by iteration over in-

dividual sub-model solutions. Assembling these sub-models yields a high fidelity model which

is tractable and scalable.

Horvitz, etc. introduced a Bayesian based model to predict the run time of problem solvers

[65]. From the perspective of theoretic analysis, the authors concluded when the expected time

remaining of the current instance is greater than the expected time of the next instance, as defined

by the background marginal model, it is better to cease activity and perform a restart. Chickering,

etc. investigated a Bayesian network based approach to represent the conditional probability

distributions with a decision-graph, which can provide a better solution for a greedy search on

the distribution [33].

In cloud computing networks, edges and nodes have various capacities due to failure, partial

failure or maintenance. In [90], an algorithm was introduced to estimate the performance of a

cloud computing network under maintenance budget with nodes failure. The authors constructed

a network model to describe the flows and capacities in terms of minimal paths. The quantity of

data sent from the cloud to the client under the maintenance budget and time constraints is used

as a metric to evaluate the maintenance reliability.

In this section, we enumerated some representative stochastic models used for analysing the

mobile offloading system and the cloud computing system. These Markov based models have

been confirmed as an efficient method to study the impact of the changing runtime environment

on the system operation. Inspired by the previous modelling work, we design our own stochastic

models for analysing the mobile offloading system under the unstable network.

2.3 Features of Date Transmission

In the last decade, there is no doubt that the Internet was dominated by the TCP/IP protocol.

As an important protocol suite, it provides a reliable data transfer service to support colourful

Internet applications. Although the TCP/IP protocol guarantees the successful of data commu-

nication between end hosts, the frequently changing throughput of packets transmitted brings a

big challenge to network design and management. Sometimes, bursts of traffic lead to severe

congestions in the network nodes. In this case, the user experience is badly impaired by the

long response delay. Therefore, closely monitoring the network state at run time is significant

for the network management. Measuring the round trip time (RTT) of packet transmission and

comprehensively analysing the RTT statistics are important to identify some unexpected state

changes in the network.
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2.3.1 Round Trip Time

The round trip time of a TCP packet is defined as the elapsed time between the instant a packet

is released by the source to the instant the corresponding ACK packet is received by the source.

This interval includes propagation, queuing, processing and other delays at routers and end

hosts. It is well known that the performance of a TCP flow is affected by its RTT. As described

in [68], a TCP flow’s throughput is inversely proportional to its RTT. The understanding of the

phenomenon which causes the delay in RTT is essential for balancing the traffic in the network.

Both the data rates realized by individual flows sharing a link and the utilization of Internet

links are dramatically affected by the distribution of RTTs. Thus, the RTT distribution plays an

important role in buffer provisioning, configuration of active queue management and detection

of congestion unresponsive traffic.

Previous studies have shown that the RTT distribution is very environment dependent [26,

114, 24, 100]. Routing changes or queueing delay variations in some nodes on the path are the

two main factors which vary the RTT that a connection experiences. As the data backward path

may differ from the forward path, the traffic in only one direction (either source-to-destination

or destination-to-source) should be looked at to infer the RTT distribution. In addition, the

RTT distribution at a link depends on the geographical location of each connection end-points.

Therefore, it is expected that different links can have significantly different RTT distributions.

By analysing the packet delay, [9, 19] have found high variability of the RTT distribution with

strong short and long term correlations [135]. Another interesting property of RTT is the Self-

similarity, which was observed in [20].

2.3.2 Variability of RTT Distribution

A large number of researches have contributed to profiling the characteristic of RTT and to

emulate its distribution [101, 95, 21, 75, 25, 155]. We reviewed some representatives of the work

here to help the reader understand the importance of RTT and how to estimate its properties.

A comprehensive analysis method was proposed in [48] to identify the changes of network

states. The authors carry out measurements of TCP traffic round-trip delay in the Ericsson

Corporate Network. They find the round-trip delay can be well approximated by a truncated

normal distribution. Between these network state changes, the period has been confirmed to be

stationary with the same round-trip delay distribution. In [7], the authors studied the degree of

variability in TCP RTT by passively analysing traces of over 1 million TCP connections between

sources at a large campus and more than 250,000 remote destinations. Their results indicate that

variability of RTT values within a single TCP connection is much wider than reported in previous

studies [53, 71, 75, 95, 156]. Their observations also exhibit that the range of RTTs experienced

by TCP segments is extremely large. In addition, the authors conclude that connections with
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smaller min RTTs see a greater variability in RTTs.

Biaz and Vaidya confirmed the coefficients of correlation between the variations of RTT and

the variations of congestion window size is often weak [15]. Because RTT measured by TCP is

imprecise and bears a high random component independent of the actions (increasing or decreas-

ing the load) of the sender. When a TCP sender increases its load, the RTT may either increase

or also decrease due to several factors. The most important factor is that RTT observed by a

given TCP connection is dependent on other traffic carried by the network, not just on the ac-

tions of this TCP connection, especially when this TCP connection consumes a small fraction of

the available bandwidth. The results in [15] argued that the Congestion Avoidance Techniques,

proposed in [23, 151, 69], cannot be very useful to draw conclusions about the cause of packet

loss.

2.3.3 Measurement Methodology

A large number of measurement methodologies have been proposed to estimate the distribu-

tion of RTT, we only introduce some of them which have been widely cited. In [75], a passive

method was proposed. Verification experiment shows that about 90% of the passive measure-

ments are within 10% or 5ms, whichever is larger, of the RTT that PING would measure. The

authors also investigate the RTT variations in the granularity of hourly timescale. By analysing a

large number of TCP trace data in the USA and Europe, they conclude that the RTT distribution

at the day time is larger than in the night. The authors of [125] investigated the performance of

TCP as a delayed feedback system. The authors use three methods (Syn based, Flight and Rate

Change) to estimate RTT and showed that all three methods provide a consistent description of

the RTT distribution. The validity of using fluid models in TCP analysis is confirmed.

In [18], the authors proposed a diffusion model based on Markov processes to reproduce the

distribution of RTT. The transition probabilities and the stationary distributions of the model

parameters are approximated with a mixture of Laplace distributions and Normal distributions

respectively. As the RTT data fabricated by the diffusion model has a high degree of similarity

compared with the data collected through practical experiments, [18] contradicted some pre-

vious opinions that the Internet is unable to be modelled. Another similar methodology was

introduced in [6], a Discrete Approximation model is proposed for RTT (DA-RTT) emulation.

Using the measurement data from a large university campus as input, a synthetic TCP traffic is

generated from the model. By performing experiments on real test-bed with the synthetic traf-

fic, the experiment results demonstrate that the simple DA-RTT model can closely represent the

per-connection RTTs in the original traffic.

A distributed, adaptive and light-weight algorithm, Vivaldi, was introduced in [40] to predict

the communication latency between the Internet hosts. Vivaldi assigns synthetic coordinates

to hosts and measures the distance between the hosts. The authors propose a model, height
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vectors, to represent the Internet in simple geometric spaces. From their experiment results, they

conclude that the cause of the access link latency may attribute to three aspects: 1) queuing delay,

as in the case of an overload cable line, 2) low bandwidth, as in the case of Digital Subscriber

Line (DSL), cable modems, or telephone modems, 3) the sheer length of the link, as in the case

of long-distance fiber-optic cables. In [62], a new method, King, was introduced to estimate the

latency between arbitrary end hosts by using recursive Domain Name System (DNS). Compared

to previous approaches, three advantages of King are: 1) no additional infrastructure deployment

is required, 2) end hosts do not have to agree upon a set of reference points, 3) the estimates are

based on direct online measurements rather than offline extrapolation. In the experiments, the

authors find that even small errors in estimates translate to large relative errors. One possible

source of error is application-level latency introduced by the name servers themselves, while

processing the queries of clients.

In this section, we reviewed work related to the analysis of data transmission in the Internet.

The definition of RTT and its usage are introduced. We also refer to some efficient methods

used for measuring the data of RTT. From the large number of measurement data, the changing

network state over time is confirmed. The unstable network quality is reflected by the variability

of RTT distribution.

2.4 Summary

In this chapter, we provide the background introduction for this thesis. First, we reviewed

mobile offloading systems. By tracing back the origination of the offloading concept, readers

can understand the intention of utilizing mobile offloading. Some popular existing offloading

platforms and techniques are also listed, and their advantage and drawbacks are compared. Sec-

ond, we introduced some related work on stochastic models. The applications of these models

in analysing the mobile offloading system and Cloud computing are also presented. The reason

of using Markov based models in this thesis is explained by showing the merits and efficiency of

these models. Last, we presented the variable delay in data transmission. Many researchers have

proved that an unstable network state leads to an unpredictable change of the RTT distribution,

and the quality of end-to-end communication is badly impaired. To deal with this problem, some

efficient methods are required. As shown in the next chapter, restart is one of them.
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Chapter 3

Experimental Analysis of Response
Time

In order to observe and analyse the impact of unstable network on the mobile offloading

system, we design an experiment. Using the experiment we show the variability of the system

performance in the presence of an unstable network. Given that the task completion time consists

of the remote execution time and the data transmission time, generally, the remote execution

time is assumed constant for a given task and device and delays are added by data transfer. In

particular, we assume that the task completion time on the mobile device and on the cloud server

can be different, but both will be more or less constant for identical tasks at different times. The

offloading completion time varies greatly because data transmission times are not the same. The

impact of heavy load on the server is not considered here.

In the remainder of this chapter, we first introduce the sample application, Optical Character

Recognition(OCR) which is implemented in our mobile offloading engine. The details of the

mobile offloading engine is introduced in Chapter 5. We use OCR here for demonstration pur-

poses. Then we experimentally demonstrate how system performance varies over the day due

to changing load in our wireless network. The task completion time is described by fitting a

distribution to selected subsets of the data. This shows that the variance in the task completion

time distribution increases significantly for certain subsets of the data. At last, in order to ex-

plore the impact of unreliable network on the public Internet, we conduct another experiment

to demonstrate the varying delay of data transmission between a normal Linux desktop to the

servers of some IT magnates.
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Figure 3.1: The image to be recognised

3.1 Experiment Configuration

Offloading can be beneficial if two conditions hold. First, the task must consist of heavy

computation requirement and, second, a small amount of data must be transmitted between the

mobile device and the server. An application which meets both requirements is Optical Character

Recognition (OCR), but there are many more. OCR is a method to recognise the characters on a

binary image with optional polygonal text regions. Generally, the recognition algorithm consists

of three steps: 1) The layout of the image is analysed to find some baselines of the text region.

2) The text region is chopped into components based on the gaps in the baselines. 3) Each

component is recognised as several characters by comparing its shape with a trained database.

For details of OCR the interested reader is referred to [130].

All three steps of OCR require heavy computation. A series of complicated edits to the image

like rotation, segmentation and comparison has to be done. Performing those tasks on the mobile

device consumes a lot of energy. For the powerful remote server, energy-usage is not a critical

metric. In addition, most text images can be stored in small files of at most a few kilobytes. So

the amount of data to transmit from the mobile device to the remote server is small. But still the

time needed for the transmission depends on the quality of the network connection.

For the experiments a mobile phone (Samsung GT-S7568, Android 4.0) and a server (4 cores:

Intel Xeon CPU E5649 2.53GHz) have been used. The mobile phone is placed in a dormitory

room and connects to the Internet through Wifi (54Mbps provided by a local Telecom operator).

The server is in the lab of the university campus and connects to the Internet through a LAN port

of 100Mps. We have used the Linux command ”traceroute” to track the route from the mobile

phone to the server. Normally, the route passes 12 hops to reach the destination, and the total

round-trip time is around 82ms. The offloading engine as introduced in Section 5.2 includes

an Android Application (App) for the mobile client and a website project for the server. In our

experiment, the Tesseract OCR Engine [3] has been implemented in both parts of the offloading

engine. An image (1160×391px, 8.1 KiB) with a rectangle text region, as shown in Fig. 3.1, is

used for image recognition. Only 100 Bytes are used to represent the decyphered words.

Completion of an offloaded OCR task can be divided into three phases: 1) the Android ap-

26
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Figure 3.2: Scatter plot of all OCT samples

plication transmits the image from the mobile device to the server, 2) the words on the image

are recognised using the OCR engine in the server, and 3) the mobile device receives and dis-

plays the result from the server. The Offloading Completion Time (OCT) is the time needed to

complete the three steps. The same offloading task has been repeated more than 58 000 times

in approximately 24 hours in order to observe OCT under the different network conditions. The

results are stored in a text file in the mobile device. The memory of the mobile phone used for

caching is cleared after the task completion and reused again in the next new task.

In addition, we conducted a different experiment where the image recognition is performed in

the mobile device. We call it local execution, as all the processing steps (e.g. analysis, chopping

and recognition) are completed by the mobile device itself. The completion time is called Local

Completion Time (LCT). The same image Fig. 3.1 is repeatedly recognised 8 400 times by the

local execution. In the next subsection, we will show that although local execution is slower

than offloading, it is more stable than the latter.

3.2 Experimental Results

Fig. 3.2 shows a scatter plot of all data of the entire 58 000 samples over a 24-hour period

starting at 8am on 14th January 2014. Under the assumption of a constant processing time,

a large total completion time can be attributed to a long transmission time, i.e. poor network

performance. The majority of the samples fall into the range between 980ms and 1380ms,

corresponding to the 0.05 and 0.75 quantile of all the samples. Obviously the distribution of the

sample values is not identical at different times. While we do not know the reason for systematic

changes in network transmission times, there are clearly several types of typical behaviour that

should be distinguished.

We have selected three subsets of our observations as indicated by the shaded areas in Fig. 3.2,
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Figure 3.3: Scatter plot of all LCT samples

each containing 2000 samples, which corresponds to a time window of 40 minutes each. The

number of samples is enough to decently fit a distribution and capture one type of network

behaviour, the normal, the deteriorated and the bad state.

Table 3.1 shows the mean, the quantiles and the variance of the three subsets. In the normal

subset the mean completion time has a low variability, as the 0.9 quantile is only 15% higher

than the mean. It is also worth mentioning, that for the given application and setup offloading

normally takes in total only half as long as local computation, because remote servers are much

faster than mobile devices.

Table 3.1: Statistics of completion times (msec)

Normal Deteriorated Bad LCT

mean 1191 1618 2183 2377

0.6-quantile 1171 1466 2075 2382

0.9-quantile 1358 2595 3027 2411

0.99-quantile 1575 5495 7514 2480

variance 14496 80 5861 1680265 1249

The completion time measurement of the local computation (LCT) are shown in Fig. 3.3.

Local computation is usually stable, with very few outliers. Most samples fall into a narrow

range between 2338ms and 2411ms, corresponding to the 0.05 and 0.9 quantile.

In summary, in the best case offloading can provide a solution in approximately half the

time needed for local processing. On the other hand, local execution times are very stable,

albeit longer than processing using offloading, which suffers from high variability and, hence,
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Figure 3.4: Scatter plot of all RET samples

sometimes takes very long.

The task completion time consists of two parts: data transmission time and remote execution

time (RET). Before analysing the impact of network quality, we first observe the stability of the

remote server. Fig. 3.4 shows a scatter plot of remote execution time TRET of the same 58000

samples.

It seems that the outliers in Fig. 3.4 appear periodically. However, directly calculating the

autocorrelation function of the TRET samples cannot find the period, because the samples are not

a time series. Since the task completion is not only controlled by the server but also affected by

the network, the server throughput is reflected by TOCT not TRET. In order to evaluate the service

rate of the remote server, we use the mean remote execution time of all tasks completed in one

minute, TRET, as metric. Actually, TRET is a time series which reflects the variation of server

performance with time.

TRET =

∑N
i=1 T

i
RET

N
(3.1)

N is the number of tasks completed in one minute, and T iRET is the remote execution time of

each task.

Fig. 3.5 shows the autocorrelation function plotted against lag (in minutes) for TRET. Obvi-

ously, the plot shows significant autocorrelation at the lag which corresponds to an hour (lag 60

= 60 minutes). As the autocorrelation persists over all lags, it is a clear indication that TRET has a

periodicity of one hour. The period of performance degradation rightly corresponds to that of the

server regular rejuvenation. Although the rejuvenation process impairs the system performance

temporarily, the long-haul stability of the server is guaranteed. In addition, comparing the value

of outliers in Fig. 3.2 and Fig. 3.4, the long remote execution time has a limited impact on the

offloading task completion, because the 0.99 quantile of TRET is 727ms, which is much smaller

than that of TOCT, i.e. 4264ms.
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Fig. 3.6 shows the box-plot of data transmission time TTran in each hour. Very roughly

speaking, it seems like the network degrades most in the early afternoon and in the evening.

We do not try to explain this, as finding the cause for network delays is not the scope of this

thesis. Rather we argue that offloading, as well as a local restart make sense for certain network

conditions and since we rightfully assume that network conditions change over time a sliding

window (three shaded areas in Fig. 3.2) estimate is needed and appropriate.

It should be noted that on the average, even in poor network condition the offloaded task

completes faster than the one that is computed locally. However, for the bad network period,

Figure 3.5: Autocorrelation function for TRET

time

Figure 3.6: Box-plot of the data transmission time over unreliable network
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Figure 3.7: Log-log complementary distribution of the completion time

since enough outliers skew the distribution and increase the sample variance, the variability in

the data is high enough to justify the use of restart.

3.2.1 Heavy-tail Distribution of Task Completion Time

It can be shown [142] that restart is beneficial if the task completion time follows a distribution

with sufficiently high variance or heavy-tail. Therefore, in this section the sampled data will be

analysed to determine whether the theoretical conditions for benefiting from restart are met.

the distribution of the experimental data and its variability will be determined. The log-log

complementary distribution plot is used to illustrate the weight of the tail of the distribution

[38].

Fig. 3.7 shows the completion time of the three subsets and the local completion time versus

their complementary cumulative distributions on a log scale. Clearly, for the subset of the bad

network state the curve has an approximately constant slope of − 2, indicating a heavy tail

[38]. For the subset in deteriorated condition the tail has an exponential decay for long task

completion times. Therefore in this case we cannot clearly diagnose a heavy-tailed distribution.

For the normal subset the decrease is steep, for local computation completion times it is almost

infinite. This indicates certainly no heavy tail in the latter two subsets.

Completion times using the local computation are almost constant. There is very little vari-

ation in the measurements. This means that once local computation has started restart will

certainly not be beneficial. However, during a phase of poor network quality, a local restart may

speed up the solution. This does not yet answer the question what a good choice of the timeout

for restart could be.

Fig. 3.8-3.10 show the histograms of the three subsets and the density of the fitted distribu-
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Figure 3.8: Histogram and PH distribution of the normal subset

tion. For convenient fitting of phase-type distributions the histograms have been shifted to the

origin by subtracting the minimum value from all observations. The distribution fitting will be

discussed in the next section.

3.2.2 Distribution Fitting

In this section we will describe the fitting process for the offloading completion time (OCT)

as shown in the histograms and densities in Figs. 3.8-3.10. Let the random variable To represent

OCT of an offloading task without restart. The distribution of To is fitted with the Cluster-based

fitting algorithm [115] that fits a phase-type (PH) distribution to the data. The fitting procedure

uses clustering and fits an Erlang distribution to each cluster. The full distribution is then a mix

of those Erlang distributions, a hyper-Erlang distribution.

The hyper-Erlang distribution is suitable for situations where restarts succeed [119]. This dis-

tribution takes values from different random variables with different probabilities, for instance,

with probability αi a value from an Erlang distribution with mi phases and parameter λi > 0,

i = 1, 2, ...,M . M is the number of clusters. In general, the mixed-Erlang distribution is repre-

sented by a vector-matrix tuple (α, Q).

Q =


Q1 0

. . . . . .

0

QM

 ,Qi =


−λi λi

. . . . . .

−λi λi
−λi

 (3.2)
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Figure 3.9: Histogram and PH distribution of the deteriorated subset

Figure 3.10: Histogram and PH distribution of the bad subset

α = (α1, 0, ..., 0︸ ︷︷ ︸
m1

, α2, 0, ..., αM , 0, ..., 0︸ ︷︷ ︸
mM

, )
M∑
i=1

αi = 1 (3.3)

Qi ∈ Rmi×mi , i = 1, ...,M is a square matrix with size mi. The probability density function

and cumulative distribution function are defined as:

f(t) = αeQt(−Q · I) (3.4)

F (t) = 1−αeQt · I, (3.5)
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where I is the column vector of ones with the appropriate size.

Although the hyper-Erlang distribution has exponentially decaying tails, its variance can still

be large enough to fulfil the requirements for successful restart as formally introduced in Section

4.3.1. Since the completion times of a task have a lower threshold greater zero, as can be seen in

Fig. 3.2 and PH-distributions preferably have a non-zero density at the origin, we have shifted the

density fo(t) to the left by the minimum observed value T omin for To, i.e. fo(t) = f ′o(t− T omin).
This yields f ′o(t) as the PH fitting result of the experimental data shifted to the origin.

Table 3.2: Hyper-Erlang parameters
T omin 806

Phase-Type Distribution

m λ α

normal [5, 2, 3] [0.016, 0.0041, 0.0037] [0.88, 0.047, 0.073]

deteriorated [3, 6, 2] [0.00082, 0.0163, 0.0023] [0.1, 0.7, 0.2]

bad [4, 8, 4] [0.008, 0.0036, 0.001] [0.7, 0.15, 0.15]

Fig. 3.8-3.10 show the histograms and the PH results of the shifted To of the normal, deterio-

rated and bad subset. We used three clusters to fit the data, M = 3. Since we grouped the data

into three categories this seemed to be a natural choice as using 3 clusters for each subset. Of

course, one could have chosen more clusters, which might have increased the goodness of fit.

The parameter results are shown in Table 3.2.

Table 3.3: Error
Normal Deteriorated Bad

4f 0.2783 0.3051 0.2921

e1 0.1077 0.0262 0.2894

Table 3.3 shows the error measurement of the PH results of the three subsets. We use the

area difference between densities 4f and the relative error in the first moment e1 to measure

the error. 4f =
∫∞
0 |f̂(t) − f(t)|dt and e1 =

|ĉ1 − c1|
c1

, f(t) denotes the empirical pdf of

the distribution to be fitted, f̂(t) is the pdf of the PH result, c1 and ĉ1 is the first standardized

moment of the empirical distribution and of the fitted PH distribution, respectively.

These distribution functions will be used later in the following chapters to verify that the

condition of applying restart in mobile offloading systems is satisfied under the unstable network.

More important, the optimal timeout to launch the restart is also mathematically derived from

these distribution functions of task completion time.
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3.3 Summary

In this chapter, we demonstrate that the network quality is not constant over time. By conducting

experiment in our offloading test-bed, the variability of network quality in a local area network

over one day is observed. When the network experiences a high traffic, the distribution of the

task completion time in offloading is heavy-tailed. A long delay in data transmission is inevitable

in this situation. In the next chapters, we will propose how to deal with this problem of unreliable

network in mobile offloading with restart.
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Chapter 4

Restart Theory

All offloading systems mentioned so far may suffer under poor network condition and the

application of well-designed fault-tolerance methods is in place. Restart is a simple and popular

recovery scheme to mitigate network failures. It can be very effective for certain types of failures

and its performance has been widely studied. Markov chain models and Laplace transforms have

been developed to analyse the performance of restart for improving the expected task completion

time [8, 85, 126, 86, 13, 32]. These analyses strongly support the efficiency of restart if the best

restart timeout is known. Their implementation in an online algorithm for practical application

is not straight forward. A fast method based on iteration theory to identify the optimal restart

time is presented in [98]. The algorithm is improved in [141, 140, 142]. It is tailored for Internet

applications in [117]. The authors of [118] introduce some performance metrics to measure the

adaptivity of restart.

In the mobile offloading system, there is a selection between two types of restart: offloading

retry or local retry. The two options give rise to multiple restart modes. First, the system can

immediately restart local execution after the original offloading try has failed. Second, the local

restart can be never used. The mobile device restarts with offloading infinitely until the task is

completed. The last, a hybrid scheme coordinates the two types of restart. Prior to the final local

restart, the system launches several offloading restarts. A threshold is configured to restrict the

number of offloading restarts.

4.1 When Does Restart Work?

When using restart one has to decide whether and when to abort a running task and how to

restart it. Obviously, there is a trade-off between waiting for the offloading task to complete and

terminating the attempt to try again locally. In [142], an iterative solution for an infinite number

of possible retries has been derived. In this section we derive an expression that formulates a
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condition under which restart in our offloading scenario will be beneficial.

The theoretical concept of restart applies to random variables for which, first, two successive

tries are statistically independent and identically distributed, and, second, new tries abort previ-

ous attempts. In the mobile offloading system, the second assumption is certainly met. When

the mobile device restarts the task by a local try it abandons the first try on the remote server,

where it might continue to run, but will not influence further processing of the restarted task.

However, the two successive tries are not drawn from the same distribution, as the computation

time in the local device follows a different distribution than the offloading task. The offloading

timeout might not be optimal, but completion of the task is guaranteed as the local computation

always finishes.

For a given random variable T describing task completion time restart after a timeout τ is

promising if the following condition holds [142]:

E[T ] < E[T − τ |T > τ ] (4.1)

The interpretation of condition (4.1) means that for restart to be beneficial the expected com-

pletion time when restarting from scratch must be less than the expected time still needed to

wait for completion. It can be shown [142] that condition (4.1) holds if the task completion time

follows a distribution with sufficiently high variance or heavy-tail. In Section 3.2.1, we have

shown that when the network quality deteriorates to a certain degree, the distribution of offload-

ing task completion time has a heavy-tail. In the following sections the sampled experiment

data shown in Chapter 3 will be analysed to determine whether the theoretical conditions for

successful restart are met, and we also derive the optimal timeout after which to restart.

4.2 Single Local Restart

Obviously, when the offloading task fails, the mobile device may retry offloading or restart the

task using the resources in the local mobile device instead of those in the Cloud. As introduced in

[146], if the offloading task needs an unknown time to migrate computation through the unstable

network connection, re-executing and completing the computations locally by the mobile device

can save both time and energy. In this section, we adopt the solution for computing the optimal

timeout from [142] for two tries and a single restart: a first attempt using offloading and a fall

back local computation after expiry of the timeout.

4.2.1 Derivation of the Condition for a Single Local Restart

Remember that To represents the offloading completion time OCT of an offloading task with-

out restart. Its density is fo(t) and its distribution function is Fo(t). Assume τ is the restart
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time, at which the previous offloading task is aborted and the local computation is issued. Cor-

respondingly, Tl represents the local computation time LCT of the same task, fl(t) its density

and Fl(t) its distribution. We assume that Fo(t) and Fl(t) are both continuous probability dis-

tribution functions defined over the domain [0,∞), such that Fo(t) > 0 and Fl(t) > 0 if t > 0.

We introduce T to denote the completion time when a local restart is allowed. We write f(t)

and F (t) for its density and cumulative distribution function, respectively. We are interested in

the expectation of T using the optimal timeout τ for one local restart.

F (t) =

Fo(t) (0 6 t < τ)

1− (1− Fo(τ))(1− Fl(t− τ)) (τ 6 t)
(4.2)

f(t) =

 fo(t) (0 6 t < τ)

(1− Fo(τ))fl(t− τ) (τ 6 t)
(4.3)

Analogous to [142] we define the partial moments Mn(τ) of the completion time T to deter-

mine its expectation E[T ].

Mn(τ) =

∫ τ

0
tnf(t)dt =

∫ τ

0
tnfo(t)dt (4.4)

The respective densities of T and To are identical between 0 and τ , so their partial moments

are equal.

E[Tn] =

∫ τ

0
tnfo(t)dt+

∫ ∞
τ

tn(1− Fo(τ))fl(t− τ)dt

=Mn(τ) + (1− Fo(τ))
n∑
k=0

 n

k

 τn−kE[T kl ]

(4.5)

E[T ] =M(τ) + (1− Fo(τ))(τ + E[Tl]) (4.6)

A simple criterion to decide whether to restart or not can be formulated. If there exists an

interval S in [0,∞), where τ ∈ S ⇒ E[T ] < E[To], then restart is beneficial. With (4.6), this

condition can be written as the following inequality:

E[Tl] <

∫∞
τ tfo(t)dt

1− Fo(τ)
− τ (4.7)

Since the data has been shifted to the origin (4.7) has to be adjusted to

E[Tl] <

∫∞
τ−T o

min
tf ′o(t)dt

1− F ′o(τ − T omin)
− (τ − T omin) (4.8)
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Figure 4.1: Restart timeout for the different subsets of the data

The optimal restart time is the value of τ where E[T ] is minimal. Hence, fo(t) is the key

factor for finding the optimal τ and to take the decision to restart. As introduced in Section

3.2.1, fo(t) changes with the network quality. Accurately capturing fo(t) at run time gives a

good solution, but it is a challenge. In Chapter 8, we will introduce a fast method to dynamically

approximate fo(t). Before that, we use the previous experiment data to test the validity of the

local restart condition (4.8).

4.2.2 Optimal Timeout for Single Local Restart

For convenience we use g(δ) to represent the right hand side of (4.8), δ = τ − T omin, i.e.

g(δ) =

∫∞
δ tf ′o(t)dt

1− F ′o(δ)
− δ (4.9)

The potential benefit of the local restart is expressed by g(δ) and E[Tl] is the threshold to

decide whether the local restart is useful or not. If the value of g(δ) is low, it indicates that the

task has a high probability to be completed by offloading and local restart is not helpful. If the

value of g(δ) is high, it indicates that the network condition is poor and the task completion has

a high probability to be delayed. In this case restart can be very beneficial to the task.

Fig. 4.1 shows the result of (4.1), calculated according to f ′o(t) of the three subsets from Table

3.2. E[Tl] is calculated based on the data in Fig. 3.3. Only for values δ for which g(δ) is larger

than the expected local completion timeE[Tl] a retry will be beneficial. It can be seen in Fig. 4.1
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Figure 4.2: Expectation of OCT with/without the local restart versus τ

that such values only exist for the curve based on the bad subset of data.

However, Fig. 4.1 does not allow to determine the optimal restart timeout. We use the expec-

tation of T as a metric to evaluate the system performance under different restart timeouts. The

optimal time is found when E[T ] is minimal. Equation (4.6) is used to calculate E[T ].

For comparing the system performance with and without local restart, Fig. 4.2 shows E[T ]

and E[To] for the three subsets. As expected only E[T ]−bad benefits from restart and even has

a clear minimum under restart. The optimal restart time is found at the value for δ, for which

E[T ]−bad is minimal. We can confirm observations we already made earlier for restart, that

when in doubt, one should rather set the timeout a litter larger. A too large timeout may not be

optimal, but still better than too early retry. Because Fig. 4.2 confirms the observation that a too

small restart timeout can be detrimental to the expected task completion time. The figure also

shows that none of the other subsets benefit from restart.

Since network states often change, the histogram should be updated accordingly. The real

time histogram is expected, hence a dynamical method is needed. In Chapter 8, we propose a

fast and simple method to dynamically update the histogram and to estimate the restart condition

directly from the histogram without first fitting a distribution.

4.3 Optimal Adaptive Restart

In this section, we adopt a similar method as in the last section to derive an expression for the

expected task completion time of a hybrid adaptive restart scheme. The hybrid restart launches
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several offloading restarts before the final local restart. A threshold is configured to restrict the

number of offloading restarts. Based on the theoretical analysis, the optimal timeout for every

restart and the optimal threshold for the number of offloading restarts are derived. The sampled

data used to demonstrate the theoretical analysis results is collected from experiments. Details

about the data collection and the distribution fitting process have been introduced in Chapter 3.2.

4.3.1 Derivation of the Condition for Adaptive Restart

Obviously, in the mobile offloading system, the prerequisite of adopting offloading instead of

local execution is:

E[To] < E[Tl] (4.10)

If the mean completion time when offloading the task is longer than that of local execution,

the offloading loses its advantage and should be rejected.

We still use T to denote the completion time when restart is allowed. We are interested in

the expectation of T using the optimal timeout τ . The value of τ can be changed at real time

according to system performance. But for simplifying the theoretical analysis, we assume that

τ is constant in the process of completing a given task. At first, we take the same value of τ for

both local and offloading restart. Then, in the next subsection, we use individual timeout values

for the restart with offloading and local execution.

F (t) =



Fo(t) 0 6 t < τ

1− (1− Fo(τ))(1− Fo(t− τ)) τ 6 t < 2τ

...

1− (1− Fo(τ))n−1(1− Fo(t− (n− 1)τ))

(n− 1)τ 6 t < nτ

1− (1− Fo(τ))n(1− Fl(t− nτ)) nτ 6 t

(4.11)

f(t) =



fo(t) 0 6 t < τ

(1− Fo(τ))fo(t− τ) τ 6 t < 2τ

...

(1− Fo(τ))n−1fo(t− (n− 1)τ)

(n− 1)τ 6 t < nτ

(1− Fo(τ))nfl(t− nτ) nτ 6 t

(4.12)
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Remember in equation (4.11) and (4.12), that n > 2, when n = 1 is the single restart mode

which has been analysed in Section 4.2 as:

F (t) =

Fo(t) (0 6 t < τ)

1− (1− Fo(τ))(1− Fl(t− τ)) (τ 6 t)
(4.13)

f(t) =

 fo(t) (0 6 t < τ)

(1− Fo(τ))fl(t− τ) (τ 6 t)
(4.14)

We define the partial expectation M(τ) of the completion time T to determine its expectation

E[T ].

M(τ) =

∫ τ

0
tf(t)dt =

∫ τ

0
tfo(t)dt (4.15)

The respective densities of T and To are identical between 0 and τ , so their partial expecta-

tions are equal as well.

E[T ] =

∫ τ

0
tfo(t)dt+ (1− Fo(τ))

∫ 2τ

τ
tfo(t− τ)dt+ · · ·

+ (1− Fo(τ))n−1
∫ nτ

(n−1)τ
tfo(t− (n− 1)τ)dt

+ (1− Fo(τ))n
∫ ∞
nτ

tfl(t− nτ)dt

=M(τ) + (1− Fo)(τ)(M(τ) + τFo(τ)) + · · ·

+ (1− Fo(τ))n−1(M(τ) + (n− 1)τFo(τ))

+ (1− Fo(τ))n(nτ + E[Tl])

=
n−1∑
k=0

(1− Fo(τ))k(M(τ) + kτFo(τ))

+ (1− Fo(τ))n(nτ + E[Tl]),

(4.16)

(1− Fo(τ))nnτ + (1− Fo(τ))n−1(n− 1)τFo(τ)

=(1− Fo(τ))nτ + (1− Fo(τ))n(n− 1)τ

+ (1− Fo(τ))n−1τFo(τ)

=(1− Fo(τ))nτ + (1− Fo(τ))n−1(n− 1)τ,

(4.17)
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n−1∑
k=0

(1− Fo(τ))kkτFo(τ) + (1− Fo(τ))nτ

=τ

n∑
k=1

(1− Fo(τ))k.
(4.18)

Substituting (4.18) in equation (4.16), we get

E[T ] =M(τ) +

n−1∑
k=1

(1− Fo(τ))k(M(τ) + τ)

+ (1− Fo(τ))n(τ + E[Tl]).

(4.19)

LetE[Ti] representE[T ] when n = i, andE[Tτ ] means n→∞. When n→∞ is the second

restart mode with infinite offloading restart, as derived in [142]:

E[Tτ ] =
M(τ) + τ

Fo(τ)
− τ. (4.20)

When n = 1,

E[T1] =M(τ) + (1− Fo(τ))(τ + E[Tl]). (4.21)

The criterion to decide whether to restart or not can be formulated as E[T ] < E[To]. With

(4.19), this condition can be written as the following inequality:

E[Tl] <

∫∞
τ tfo(t)dt

(1− Fo(τ))n
−
n−1∑
k=1

M(τ) + τ

(1− Fo(τ))k
− τ (4.22)

In [150] and the last section, the restart criterion for n = 1 has been derived as

E[Tl] <

∫∞
τ tfo(t)dt

1− Fo(τ)
− τ (4.23)

For n→∞, the restart criterion is

M(τ) + τ

Fo(τ)
− τ < E[To]. (4.24)

Theorem 1. When the criterion of exclusive local restart (n = 1) is satisfied, the criterion of

the adaptive restart scheme (n > 1 or n→∞) is also satisfied.

Proof.
As the prerequisite of using offloading is E[To] < E[Tl], equation (4.23) can be extended as:
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E[To] < E[Tl] <
E[To]−M(τ)

1− Fo(τ)
− τ (4.25)

=⇒
E[To](1− Fo(τ)) < E[To]−M(τ)− τ(1− Fo(τ))

=⇒
M(τ) + τ(1− Fo(τ)) < E[To]Fo(τ)

=⇒
M(τ) + τ

Fo(τ)
− τ < E[To].

So when n→∞, Theorem 1. is true, let

g1(τ) =

∫∞
τ tfo(t)dt

1− Fo(τ)
− τ. (4.26)

When n > 2,

gn(τ) =

∫∞
τ tfo(t)dt

(1− Fo(τ))n
−
n−1∑
k=1

M(τ) + τ

(1− Fo(τ))k
− τ. (4.27)

Remember the result of (4.24), we have

gn(τ)− gn−1(τ)

=

∫∞
τ tfo(t)dt

(1− Fo(τ))n−1
(

1

1− Fo(τ)
− 1)− M(τ) + τ

(1− Fo(τ))n−1

=
E[To]−M(τ)

(1− Fo(τ))n
Fo(τ)−

M(τ) + τ

(1− Fo(τ))n−1

>

M(τ) + τ

Fo(τ)
− τ −M(τ)

(1− Fo(τ))n
Fo(τ)−

M(τ) + τ

(1− Fo(τ))n−1
= 0.

(4.28)

We have proved that gn(τ) > gn−1(τ), when n > 2. Thus if g1(τ) > E[Tl], the inequality of

(4.22) is always true for any n > 1, including n→∞.

Fig.4.3 shows the result of (4.27), calculated according to fo(t) of a more representative set

of data introduced in Appendix A, Table A.1. Theorem 1. is also demonstrated in Fig.4.3. An

interesting point worth to mention is that when (M(τ) + τ)/Fo(τ) − τ = E[To], τ is at the

critical value and gn(τ) = gn−1(τ) = · · · = g1(τ) = M(τ). When τ is larger than this critical

value, gn(τ) becomes an increasing function with n at the same τ . Thus if g1(τ) > E[Tl], then

gn(τ) > E[Tl].

Theorem 2. When the criterion of restart is satisfied as the inequality (4.24) holds, the expected

task completion time E[Tn] decreases with the number of restart n at the same τ .
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Figure 4.3: Restart timeout with 0∼4 offloading retries and 1 local retry

Proof.
Using the prerequisite of utilizing offloading, E[To] < E[Tl], the inequality of (4.24) can be

extended as:

M(τ) + τ

Fo(τ)
− τ < E[Tl]. (4.29)

When n > 1, we have E[Tn] < E[Tn−1]:

E[Tn]− E[Tn−1]

=(1− Fo(τ))n−1(τ +M(τ)) + (1− Fo(τ))n−1(τ

+ E[Tl])(1− Fo(τ)− 1)

=(1− Fo(τ))n−1((τ +M(τ))− (τ + E[Tl])Fo(τ))

<(1− Fo(τ))n−1(
(τ +M(τ))

Fo(τ)
− τ − E[Tl]) = 0.

(4.30)

When n→∞:

E[Tτ ]− E[Tn]

=
M(τ) + τ

Fo(τ)
− τ −M(τ)−

n−1∑
k=1

(1− Fo(τ))k(M(τ) + τ)

− (1− Fo(τ))n(τ + E[Tl]),

(4.31)
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Figure 4.4: Expectation of the task completion time versus τ under different numbers of restarts

n−1∑
k=1

(1− Fo(τ))k =
(1− Fo(τ))− (1− Fo(τ))n

Fo(τ)
, (4.32)

E[Tτ ]− E[Tn]

=
M(τ) + τ

Fo(τ)
− τ −M(τ)− 1− Fo(τ)

Fo(τ)
(M(τ) + τ)

− (1− Fo(τ))n

Fo(τ)
(τ +M(τ))− (1− Fo(τ))n(τ + E[Tl])

=(1− Fo(τ))n(
M(τ) + τ

Fo(τ)
− τ − E[Tl]) < 0.

(4.33)

Thus if inequality (4.29) holds, we have E[Tτ ] < E[Tn] < · · · < E[T1] < E[To] < E[Tl].

4.3.2 Identical Optimal Timeout

The optimal restart timeout is the value of τ where E[Ti] is minimal. For comparing the

system performance under the hybrid adaptive restart scheme with different number of restarts,

Fig.4.4 shows E[Ti](i = 1 ∼ 5), E[Tτ ] and E[To] for the same sample data fo(t) of Table A.1.

As expected E[Tτ ] has the best performance, the minimum of E[Tτ ] is the lowest. The most

important observation shown in Fig.4.4 is that when i = 2, E[T2] is quite close to the ideal

performance of E[Tτ ]. To evaluate the performance of different numbers of restarts, we define a

metric to measure the distance between the optimal performance E[Tτ ] and E[Ti]. As we have
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proved that E[Ti] < E[To] for i = 1, 2, . . . ,∞, the value of E[Ti] can only vary in the space

of (E[Tτ ], E[To]). So we define di = (E[To]− E[Ti])/(E[To]− E[Tτ ]) to measure how close

E[Ti] is to E[Tτ ].

From Table 4.1, we can easily find that the performance of using two restarts (one local restart

plus one offloading restart) can closely approach the best performance of infinite offloading

restarts. Because E[T2] has reached 87% performance of E[Tτ ], whereas if restarting exclu-

sively with the local execution and no offloading restart, its performance E[T1] reaches merely

50% of E[Tτ ]. Accordingly, we can conclude that the adaptive restart scheme is better than the

exclusive single local restart. This is because it uses the offloading restart to speed up the task

completion. Although the performance of using more restarts is a little better, E[T4] < E[T2],

this result is in theory. In practice, the failure of the first offloading restart indicates a high pos-

sibility of the failure of the successive offloading restart. Actually, by applying local restart, the

hybrid adaptive restart scheme can also avoid unpredictable waiting times of redundant offload-

ing restart. We will use experiments to prove this observation in Chapter 8.

Table 4.1: Performance
E[T1] E[T2] E[T3] E[T4] E[Tτ ]

Min 2630 2305 2230 2208 2198

τ 6901 4402 3576 3185 2818

d 0.49 0.87 0.96 0.98 1

4.3.3 Individual Restart Timeout

In the previous subsection, we have evaluated the performance of the adaptive restart scheme

with identical optimal timeout value. In this subsection, applying a different τl as the timeout

for the local restart is analysed. T
′

denotes the task completion time when τl is allowed.

F (t) =

Fo(t) 0 6 t < τ

1− (1− Fo(τ))(1− Fo(t− τ)) τ 6 t < 2τ

...

1− (1− Fo(τ))n−1(1− Fo(t− (n− 1)τ))

(n− 1)τ 6 t < (n− 1)τ + τl

1− (1− Fo(τ))n−1(1− Fo(τl)(1− Fl(t− (n− 1)τ)− τl)

(n− 1)τ + τl 6 t

(4.34)
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f(t) =



fo(t) 0 6 t < τ

(1− Fo(τ))fo(t− τ) τ 6 t < 2τ

...

(1− Fo(τ))n−1fo(t− (n− 1)τ)

(n− 1)τ 6 t < (n− 1)τ + τl

(1− Fo(τ))n−1(1− Fo(τl)fl(t− (n− 1)τ)− τl)

(n− 1)τ + τl 6 t

(4.35)

As in the function (4.11) and (4.12), n > 2 in the above function (4.34) and (4.35). When

n = 1, the situation is identical with (4.13) and (4.14), so we do not write them out again.

Using the similar expression as equation (4.16), we calculate the expectation of T
′

as

E[T
′
] =

n−1∑
k=0

(1− Fo(τ))k(M(τ) + kτFo(τ))

+(1− Fo(τ))n−1(1− Fo(τl))((n− 1)τ + τl + E[Tl])

(4.36)

Unfortunately, it is impossible to give a simplified expression for E[T
′
] as for (4.19). Fig.

4.5 shows E[T
′
2] for various values of τ with different τl. The bottom of the graph indicates

the best timeout fraction (parameters in Table. 4.2). Comparing the two tables 4.1 and 4.2, we

can find that using different timeout values for the offloading and local restarts individually can

improve the performance. The minimum of E[T
′
2] is less than that of E[T2]. But considering the

complexity of the computation for the optimal τ and τl, this performance increase is expensive.

In addition, in real applications, it is difficult for a mobile device to estimate the optimal τ and

τl online as it requires to simultaneously sort a two dimensional matrix. A large amount of time

and energy is required for calculating the individual timeout values, but the benefit is limited.

Thus, we cannot recommend the use of individual timeouts for the adaptive restart scheme.

Table 4.2: Performance
Min τ τl d

E[T
′
2] 2284 3767 6901 0.90

E[T
′
3] 2220 3266 6901 0.97

Before moving on to the next section of experiments, we briefly review the conclusions ob-

tained in this section.
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Figure 4.5: Expectation of the task completion time versus τ and τl

1 Theoretically, infinite offloading restart is the optimal option with the lowest mean completion

time. But applying the adaptive restart scheme with two restarts (one offloading and one local)

can reach almost 90% of the best performance.

2 Although triggering the offloading and local restart with individual timeout value can slightly

reduce the expected completion time, due to its high complexity for calculating the optimal

timeout values, we do not implement this scheme in the experiments.

4.4 Summary

In this Chapter, we have theoretically derived the condition for launching restart. From the

analysis reault, we confirm that when the distribution of task completion time has high variance,

restart is beneficial. We further derive the function to calculate the expected task completion

time in the mobile offloading system when restart is enabled. The optimal restart timeout under

three restart schemes are identified as the expected task completion time reaches its minimum.

According to our analysis, applying different timeout values respectively for offloading restart

and local restart cannot improve the system performance obviously, and an expensive overhead

is required for this method. Thus, we propose using the identical and constant timeout value for

every offloading or local restart.

52



Chapter 5

Offloading Program Engine

In section 2.1.3, we have introduced several existing mobile offloading frameworks. Although

each of them has its individual merits, some common behaviours are shared by them. These

behaviours are performed in both the mobile side and the server side. The execution and man-

agement of offloading tasks in the server involve much content concerning cloud computing,

distributed computing and workload balancing. This is another important as well as interesting

research filed which spans a wide range. In this thesis, we mainly focus on the mobile client,

which can be monitored and analysed more easily. Using the mobile device as an entry point,

some system behaviours can be observed.

Although the existing frameworks have provided a complete function of mobile offloading,

their structures are mostly encapsulated like a black-box. They are not open-source and do

not open any interface for public performance measurement. All data on performance of these

frameworks are measured through inner channels which are reserved only for the developers. In

order to understand the behaviour of the mobile offloading system facing the changing network

quality and evaluate the performance of the restart scheme under different system configurations,

we develop a full-functional mobile offloading engine ourselves. Through the reserved interface,

we can measure most related data required for performance analysis.

In this chapter, we first describe an abstract work flow of the mobile client in the offloading

system. Then we introduce our own mobile offloading engine. After that, we describe the restart

process, which occurs when the mobile offloading system meets connection failures between the

client and the server.

5.1 Work Flow of Mobile Client

We draw a general flow chart of the mobile device by using abstract state modules instead

of the concrete functional components. The components constituting the mobile device are
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Figure 5.1: Flow Chart of the offloading process

categorised into the corresponding module according to their state in the execution of a mobile

offloading task. Each of the modules are connected in the sequence of the working process of

the mobile offloading system.

Referring to the most representative mobile offloading platform: MAUI, proposed in [39], we

describe the offloading process as shown in the flow chat Fig.5.1. It has five states. The function

of each state is listed as below:

• Migrating: The mobile device transmits the necessary information to the remote server for

offloading tasks. The time spent in this state is related to the network condition and the data

size. During this time, data transmission could be interrupted by the network failure. The

mobile device has to restart this work after the network recovery.

• Remote Execution: After the mobile device completes the data transmission, offloaded tasks

are executed in the remote server. The mobile device stays on in the current state, and waits

for receiving the result from the remote server.

• Receiving: This state is the same as Migrating. When the network condition satisfies the

offloading requirement, the mobile device receives the result of completed offload tasks

from the remote server. If not, the mobile device goes into Waiting state.

• Waiting: If the wireless network fails, the offloading process moves to this state and the

mobile device begins to count the waiting time. After the network was recovered, data

transmission resumes again. But once the waiting time exceeds the timeout limit, the mobile

device stops waiting and launches Local Re-execution.

• Local Re-execution: When the mobile device has waited a long time for network recovery, in

order to avoid wasting more time, the pre-determined offloading task is locally executed by

the mobile device instead of the remote server.
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Both before and during the data transmission (Migrating and Receiving), the condition of the

wireless network is monitored. When the network cannot support the data transmission, the

mobile device moves to the state of Waiting. There are two inputs for Waiting (¬ and ), they

come from Migrating and Receiving individually. After the network recovery, the offloading

process goes back to the state according to the input source. If the network is not stable, as the

connection breaks frequently, the mobile device has to wait a long time for a sufficient up-time

of the network to complete data transmission. In order to avoid the long waiting time, the task,

which has decided to offload, is re-executed locally in the mobile device. It may need a longer

execution time than offloading, but the execution continuity is maintained.

As we know, a mobile device consists of several components like CPU, Storage, Antenna,

Battery and so on. During serving the function of each state in the offloading process, the

utilizations of these components are different. In Migrating and Receiving, the utilization of

antenna and other components related with wireless communication are high, but CPU is not

heavyly loaded. Whereas in Local Re-execution, the utilization of CPU is close to 100%, an

antenna is almost not used. Thus, when completing the function of a given state, we consider

that these components make up a particular module. The power of this module equals the sum of

every individual component power. As researched in [28], the energy consumed by each module

does not change. Therefore, we classify the states based on the modules used by them. When

focusing on theoretical analysis, for simplifying the calculation only three kinds of modules

(CPU, WiFi and Idle) are used. It is assumed that the energy consumption of the states belong to

the same module are equal. Migrating and Receiving are grouped into WiFi as they mainly use

wireless components. Waiting and Remote Execution belong to Idle, because most components

are in the idle state when the mobile device is waiting. In Local Re-execution, CPU of the mobile

device undertakes many intensive computations, it consumes a lot of energy, thus it is seperated

as a single category.

According to this workflow, a stochastic model is designed to analyse the operation of the

mobile client. Details about the model are introduced in Chapter 6.

5.2 Engine Structure

For the purpose of closely seeing and dealing with the details of offloading, we create a mod-

ular and reusable offloading engine for applications with certain properties (a focused part with

intensive computation). Our concept of mobile computation offloading is to have both the possi-

bilities of executing a given application locally in a mobile device as well as remotely in a server.

To do so, we copy the potentially offloadable application algorithm from the mobile device to

the server. It is important to mention, that our engine will not provide a way to detect potentially

offloadable parts of code, instead, we assume the programmer of each application has already
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Figure 5.2: Structure of the application with the offloading engine

partitioned the application properly.

Fig. 5.2 shows a system architecture of an application equipped with the offloading engine.

The given application algorithm is implemented both in the mobile device and the server. Our

engine consists of two components: a decision algorithm and a connection manager. The deci-

sion algorithm decides whether to use offloading based on network conditions and user prefer-

ences. Once the engine decides to offload, the connection manager sends the input parameters

that the application algorithm needs to the server through 3G, Wi-Fi or any kind of connection

the mobile device has, and waits until the server answers with its result.

Our engine’s decisions are based on the estimated computation and transmission costs. It is

expected to provide a cost function for the application algorithms, which means that for a given

input of the algorithm, this function is able to predict its cost. However, this is not easy, and only

possible in the case of deterministic algorithms. They take the same time to calculate the output

for a given input. For non-deterministic algorithms with random, pseudo-random or probabilistic

execution flows, it will not be possible to estimate the cost. Thus, our engine estimates the cost

based on past experience of using the same application algorithm. It is easy to understand that

there is no need to offload if the application algorithm needs little time to be completed in the

mobile device.

The input data sent by the mobile device are the cargo of offloading. We do not work with

applications sending and receiving large amounts of data, for example, the case where the server

could continuously answer with an audio or video stream is not considered. A timeout scheme

is used to deal with connection failures during sending and receiving results.
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5.2.1 Decision Algorithm

Considering the relevant parameters which affect the execution of offloading, we proposed

the decision algorithm to decide whether it is worth or not to offload in a given situation. As the

offloading aim is mainly to reduce the execution time and the battery consumption, two saving

modes are optional in the engine: the Time Criterion and the Energy Criterion. The choice may

depend on user preferences: there might be a user who prefers saving energy if the capacity

of his battery is below 30%, while others might prefer saving execution time when they keep a

battery with more than 50% capacity. Here the idea is not to combine both criteria in the decision

step, but to provide automatic selection by assigning some weights to each part. For instance, the

weight on the Energy Criterion will become larger while the level of battery capacity decreases.

The decision algorithm will be run every time after finding a potentially offloadable part of code

in an application that is using the offloading engine. The parameters in the flow chart of Fig.5.2

are introduced as below:

• T ts: Data transmission time, which is the time spent by the data travels from the mobile

device to the server and plus the time required by the server’s answer comes back to the

device again.

• T se: Estimated server execution time, which is the time spent by the cloud server to complete

the execution of the offloaded computation task.

• T le: Estimated local execution time, which is the time spent for completing the execution of

the offloaded computation task locally in the mobile device.

• E se: Estimated offloading energy consumption, which is the energy consumed by the mobile

device to send parameters and receive results with the cloud server.

• E le: Estimated local execution energy consumption, which is the energy consumed by exe-

cuting the offloaded task locally in the mobile device.

The values of all the parameters are collected and updated while running the given application.

Before the first execution of an application using the engine, the initial attempt has to be made

to obtain the necessary values of these parameters. Then the values of time parameters (T ts,

T se and T le) are going to be recalculated and updated in every execution. The data of energy

parameters (E se and E le) are stored persistently, so they can be retrieved in future executions

with no need to re-initiate them.

5.2.2 Connection Manager

After making the offloading decision, the program engine has to establish a connection with

the cloud server to send parameters and receive results. While using this connection for data

transmission, the condition of the wireless network is monitored. The connection manager is the

module in charge of this work. It is also responsible for dealing with the connection failure by
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Figure 5.3: Process of the failure handling scheme in offloading58



5.3. RESTART SCHEME

launching the local re-execution. Based on the proposal in [39], we describe the failure handling

scheme as a kind of timeout restart method. The workflow of this timeout scheme under different

situations is shown in Fig. 5.3.

In the offloading process, once the network fails and cannot support the data transmission, the

connection manager informs the offloading engine to wait. A timeout value, or called threshold,

is set to restrict the waiting time. If the network recovers quickly before the waiting time exceeds

the threshold, the engine goes on to resume the execution of offloading. Generally, the offloaded

computations are more time and energy intensive. Local re-execution may quickly use up the

capacity of the battery in the mobile device. If the failed network can recover in a short time,

as shown in Fig. 5.3, it is worth waiting for a moment rather than re-executing immediately.

However, if the network is not robust enough, the connection may be lost frequently and be

unable to recover in a short time. The mobile device has to wait a long time for a sufficiently

long up-time of the connection to complete the data transmission. In order to avoid such a long

waiting time, the pre-determined offloading task will be re-executed locally in the mobile device

in case the waiting time exceeds the threshold.

5.2.3 Engine Implementation

The engine works with mobile devices using the Android system and the server supporting

an ordinary web service. The mobile device calls the service by querying with simple HTTP

requests. Apache Tomcat is implemented in the server, as it uses Java programming language,

which is the same used by the Android applications. The server answers the queries in XML

format, which is parsed in the mobile device to obtain the results of the offloaded computation

tasks.

5.3 Restart Scheme

The objective of offloading is to reduce the task execution time by migrating heavy compu-

tations to the remote server. But the computation does not exclusively rely on the server. As

mentioned in Section 5.2, our concept of mobile offloading is to provide both options, i.e. of

executing a given application locally in a mobile device as well as remotely in a server and se-

lecting the suitable one of the two. In the normal system state, the mobile device can establish a

reliable connection with the server to send parameters and receive results. When the connection

is interrupted or suffers degradation, the system is in some kind of a failed state. The failure

handling consists of restart after expiry of a timeout. The workflow of normal offloading and

adaptive restart is shown in Fig. 5.4.
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Figure 5.4: Process of the offloading execution with and without restart60



5.4. SUMMARY

Offloading Restart
We assume that during the offloading process, if the network connection is disturbed and

cannot support the data transmission, the mobile device is informed to wait. A timeout value

is set to restrict the waiting time. If the network recovers quickly before the timeout expires,

the offloading process resumes execution. However, if the network is not robust enough, the

connection is unable to recover in a short time. This is assumed to happen when the waiting

time exceeds the timeout. In this case the previous task is abandoned, and a new try of the same

offloading task is restarted.

Adaptive Restart
At times the offloading process may meet an unpredictable delay in data transmission. Various

events can cause this delay, for example, one node on the path between the mobile device and

the server can be overloaded. The offloading data can be blocked or even lost at this node. In

this situation, repeated restart cannot solve the problem, on the contrary, it increases congestion.

If the connection quality experiences a long term turbulence, the mobile device has to restart

several times and waits long for a sufficiently long up-time of the connection to complete the

data transmission. Obviously, the redundant restart consumes not only time but also too much

energy. In order to avoid such a long waiting time, the offloading task will be restarted locally

in the mobile device. Although the local restart may take longer than offloading, the execution

continuity is maintained.

5.4 Summary

In this chapter, the structure of our mobile offloading engine is introduced. We implemented a

decision algorithm into this engine to automatically migrate tasks to the server according to the

user preference and the application property. The major difference of our engine with others is

that our engine keeps the capability to complete the task locally in the mobile client. When the

offloading task experiences a long delay caused by the unreliable network, restart is launched to

increase the task completion. The work flows of several restart schemes are also illustrated in

this chapter.
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Chapter 6

Independent Static Model with Single
Client

In this chapter, using Stochastic Activity Networks (SAN), many more system factors, like

the processing rate of mobile devices, the delay of data transmission between clients and servers

and the workload of offloading tasks will be considered. Besides the execution time, by referring

to some experimental parameters, we derive the formulas to calculate the energy consumption.

We take two steps to evaluate the performance of local re-execution. At first, SAN is used as

modelling technique. The measures are determined through simulation, and the parameters in

the model are configured based on the experiment results of our program engine. Then, these

measures are used to calculate the performance based on the metrics. The metrics are introduced

in the second section.

6.1 Performance Analysis Models

Our models do not cover the whole system, they mainly focuse on the operation of the con-

nection manager of the engine introduced in section 5.2. Other parts of the engine are simplified

to reduce the simulation time. Two parts compose our model: a network model and an execution

state model.

The network model is an independent model shown in Fig. 6.1. It is used to simulate the state

changes of the wireless network during offloading. The execution state model in Fig. 6.2 is used

to simulate the process of offloading in the mobile device. Each state in the offloading process is

represented by the corresponding marking in our SAN models, and the execution of offloading is

represented by activities which control the movements between those states. We also discuss the

interactions between the two models and the factors which disturb the completion of offloading

tasks.
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Figure 6.1: Wireless Network Model

6.1.1 Wireless Network Model

As can be seen in Fig. 6.1, this simple model only consists of two places Up and Down,

two activities Fail and Repair. During transmission of data in the offloading process, it is easy

to distinguish the two states of the wireless network. It is either up or down. If the network

satisfies the offloading requirements, it is in the up state, parameters and results can be trans-

mitted smoothly. Otherwise, the network is in the down state. Through the two activities Fail

and Repair, the network condition turns from one state to the other after halting for a randomly

distributed time, with the probability density function (pdf) f(t). In this chapter, we use the

exponential distribution as the f(t) for Fail and Repair.

6.1.2 Execution State Model

Based on the process of offloading described before, the state movement in the execution state

model is corresponding to the workflow of the connection manager of the engine. It is easy to

find this relation by looking at Fig. 5.3 and Fig. 6.2. The execution state model consists of five

places, the token departs from the initial place Suspend. Either through Remote Execution or

Local Re execution, it returns back. This denotes the end of an offloading task execution. The

interpretations of the markings of the five places are as below:

• Suspend: The mobile device is preparing for offloading. When Invoke is activated, the token

moves out and it indicates the offloading decision has been made. After the token returns

back, it waits for a new offloading task to begin by activating Invoke again.

• Migrating: The marking of this place may denote two states: offloading and waiting. If the

marking of Up is 0, the token in Migrating represents that the mobile device is waiting for

network recovery. Otherwise, it represents that the mobile device is in the offloading state.

Until Data Trans is activated, the offloading step is successful. Before that, the mobile
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Figure 6.2: Execution State Model

device could move into the waiting state again, once the marking of Up changes from 1

to 0 as the enabling condition of Data Trans is broken (Table 6.1). From this place, the

engine starts the connection manager. The time spent in this place is related to the network

condition.

• Remote Execution: A token in this place denotes that the engine has successfully sent the

parameters to the cloud server. Then it waits for the results returned by the could server after

completing the offloaded computation.

• Receiving: This place is the same as Migrating. It denotes that the mobile device could be in

one of the states receiving or waiting. If the network condition satisfies the requirement of

returning results, the engine receives the completed results from the cloud server. If not, the

mobile device goes into the waiting state. After Result Trans is activated, the returning step

succeeds.

• Local Re execution: This marking denotes that the connection manager has launched the lo-

cal re-execution for the pre-determined offloading computation. Since the wireless connec-

tion failed, the waiting time has been counted by the engine. When it exceeds the threshold,

in order to avoid wasting more time, the token moves to this place, which represents that the

engine stops waiting and executes the offloading computation locally. After a local service

time, modelled by activating Local Service, the pre-determined offloading computation is

completed in the mobile device.

This model shares the same place Up with the previous network model. Through the input

gates, it controls the enabling condition of the three activities, Data Trans, Result Trans and
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Table 6.1: Enabling predicate of the input gates
Gate Predicate Function

Input Data Trans #Up > 0 & #Migrating = 0;
#Migrating > 0 #Remote Execution = 1;

Input Result Trans #Up > 0 & #Receiving = 0;
#Receiving > 0 #Suspend = 1;

Input Timeout (#Up == 0 & #Local Re execution = 1;
#Migrating > 0), If(#Migrating > 0)
or (#Up == 0 & then #Migrating = 0;
#Receiving > 0), else if (#Receiving > 0)

then #Receiving = 0;

# refers to the number of tokens in the given place

Timeout, which change the marking of Migrating and Receiving. If the wireless network is not

in the up state, the two activities Data Trans and Result Trans cannot be activated. The token

only stays in Migrating or Receiving and waits for the activation of Timeout. When the wireless

network returns to the up state, the two activities are enabled again. However, the activation of

Data Trans (Result Trans) only moves the token from the place Migrating (Receiving) to the

place Remote Execution (Suspend). The marking of Up is not controlled by this model, it only

depends on the wireless network model.

The activity Timeout is used to control the threshold for launching local re-execution. In case

the connection manager informs the engine to wait, the waiting time is recorded. If the network

recovers before the threshold, the process of offloading is resumed as the enabling predicates

of Data Trans or Result Trans are satisfied again. If the waiting time exceeds the threshold,

Timeout is activated, which represents the local re-execution has been launched. Unlike the

wireless network model, we apply the normal distribution to control the activation time. The

mean values of normal distribution in the execution state model and their definitions are shown

in Table 6.2. The activation time of Timeout is calculated using a fraction of the mean execution

time of an offloading task. This offloading task includes the activations Data/Result Trans and

Remote Service.

As we know, a mobile device consists of several components like CPU, storage, antenna,

battery and so on. While serving different functions of the engine, the utilization of these com-

ponents is different. In the connection manager, the utilization of the antenna and other com-

ponents related with the wireless communication are high, but the CPU does not take too many

jobs. Whereas in the local re-execution, the utilization of CPU is close to 100%, but the antenna

is almost not used. Thus, when completing a given function of the engine, the entire energy

consumption equals the sum of the energy used by every individual component. As found in
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Table 6.2: Parameters for each activity (normal distribution)
Name Parameter Definition

The mean time before the next
Invoke: Tarrival offloading request arrival.

The mean time to complete the
Data/Result Trans: Ttrans data transmission.

The mean service time of off-
Remote Service: Tserver loaded tasks in remote servers.

P is the percentage of the entire
Timeout: P×(Tserver+2×Ttrans) execution time of an offloading

* task, it controls the threshold.

The mean time to locally comp-
Local Service: Tlocal lete the offloading task in mobile

devices.

* In the process, the system experiences two data transmission states: Migrat-
ing and Receiving. As the activation time of Data Trans is the same as Re-
sult Trans, the numerator is 2.

[28], the energy consumed by the component is related with the functionality. Therefore, we

classify the functions into three categories (CPU, WiFi and idle) for simplifying the calculation.

It is assumed that the energy consumptions of the functions in the same category are equal.

Sending and returning data are grouped into WiFi as they mainly use wireless components.

Waiting and remote execution belong to idle, because most components are not running when the

engine is in these states. In the local re-execution, the CPU of the mobile device undertakes many

expensive computations, it consumes a lot of energy, thus it is separated as a single category.

6.2 Computing Performance

The model simulation only provides raw data. In order to compare the performance of dif-

ferent timeout values, the metrics are calculated from this data. In this section, three metrics

are used to measure the performance: instability, energy consumption and throughput. We do

not only analyse them independently. After normalizing the values of each metric, the three

metrics are integrated through calculating their geometric distance from the best value in the

same metric. The data of instability and throughput are directly received through simulation re-

sults. Energy consumption has to be calculated with the power parameters, which are measured

through experiments.
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6.2.1 Instability

The aim of this metric is to evaluate the delay caused by the network failure which interrupts

the communication between mobile devices and cloud servers. The instability is defined as the

probability that an offloading task experiences a connection failure while sending parameters or

receiving results. In the model this is represented as the token halting in Migrating or Receiving,

while the network is in the down state. As shown in Table 6.1, it is the same as the enabling

predicate of Input Timeout.

Prinstability = Pr((#Migrating = 1 ∨

#Receiving = 1) ∧#Up = 0)
(6.1)

6.2.2 Throughput

The throughput H, which reflects the efficiency of our offloading engine, is always one of the

most important metrics for any computer system. In this chapter, we defined H as the number of

offloading tasks completed in the simulated system lifetime of a given simulation. In the model,

it is represented as the number of Invoke activations.

6.2.3 Energy Consumption

In [28], Aaron Carroll made detailed measurements of the energy consumption of each mod-

ule in a mobile device. Although their data is quite accurate, considering those expensive mea-

surement instruments, we use the self-owned functions of Android SDK in our engine to measure

and calculate the energy consumption. As introduced in [28], the energy consumption of execut-

ing different assignments are not equal. We define three power categories (pwifi, pidle and pcpu)

to distinguish them. Their values are also measured from the experimental data. The energy

consumption of each stage in the offloading execution equals the holding time multiplied with

the power. The holding time is how long the token stays in the corresponding place. The power

of each stage is defined according to the category of its function [28], as introduced in the last

section. The entire energy consumed in a given offloading process is:

E′re = Ttrans × pwifi + Tidle × pidle + Tre × pcpu (6.2)

Ttrans as in Table 6.2, is the time spent on offloading parameters and receiving results. It

also includes the time wasted in the interrupted data transmission. Tidle consists of two parts T1
and T2, T1 is the remote execution time. T2 is the waiting time for the network recovery. As

being restricted by the threshold, T2 has an upper limit as P × (Tserver + 2 ∗ Ttrans). The local

re-execution is launched when the waiting time exceeds the threshold. Tre is the time used for
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local re-execution, which has a positive correlation with the processing rate of the mobile device

and the intensity of the offloaded computation. Ts is the total simulated system lifetime.

Ttrans = Pr((#Migrating = 1 ∨

#Receiving = 1) ∧#Up = 1)× Ts
(6.3)

Tidle = T1 + T2 (6.4)

T1 = Pr(#Remote Execution = 1)× Ts (6.5)

T2 = Prinstability × Ts (6.6)

Tre = Pr(#Local Re execution = 1)× Ts (6.7)

Actually, the total energy consumption is related to the throughput H in the simulated system

lifetime. To exclude this influence, the average energy consumption of each offload task Ere is

calculated

Ere = E′re/H. (6.8)

6.2.4 Synthetical Performance Analysis

In order to comprehensively compare the performance of different timeout values, the three

metrics are synthetically analysed. As the three metrics have quite different orders of magnitude

and units, the normalization is used to transform all the data of the same metric into the range of

[0,1]. The transform formula is:

y =
x−Min(X)

Max(X)−Min(X)
(6.9)

After transforming, we found under the same timeout, the results of three metrics make up a

three-dimensional vector 〈ui, ei, hi〉 (ui: instability, ei: energy consumption, hi: throughput).

Thus, the performance of each timeout is defined as the geometric distance of this vector from

the best one. For instability, it is expected to be the lower the better as for the energy consump-

tion. But for throughput, if the system can complete more tasks in a given period, it has better

performance. Therefore, the best vector is 〈0, 0, 1〉, and the distance is calculated as:

A =
√
w1 × u2i + w2 × e2i + w3 × (1− hi)2 (6.10)

69



CHAPTER 6. INDEPENDENT STATIC MODEL WITH SINGLE CLIENT

(w1, w2, w3) is the weight vector for the three metrics. It can be adapted for different appli-

cation scenarios. In this chapter, we only analyse the equal weight vector (1,1,1). Through the

geometric distance, it provides a direct view of the performance comparison between different

timeout values, which are controlled by the corresponding percentage.

6.3 Experiments and Simulations

In order to explore the effects of our connection failure handling scheme, which launches local

re-execution based on a threshold, we take three steps. First, we design some test experiments to

demonstrate the operation of our engine and collect the data of some parameters for our simula-

tion model. Then, the model parameters are configured with the values, which are derived from

the fitting result of the test experiment data. The system performance is calculated according to

the formulas in section 6.2 and the simulation result. By comparing the performance, the opti-

mal percentage for setting the timeout is found. Finally, we input the optimal timeout percentage

into our engine, and verify its efficiency in a practical application scenario.

6.3.1 Test Experiment

In most situations, offloading is an efficient way to save both time and energy. Since not

all applications are suitable for offloading, our engine uses the decision algorithm to separate

the applications into offloadable and unoffloadable. For clearly illustrating the effect of the

computation intensity on the offloading decision, a simple algorithm of iteration is applied as

the sample application. It does nothing but counts up to a specific number. We test three mobile

devices (Y: Samsung Galaxy Young, 832 MHz; N: Samsung Galaxy Nexus, 1.2 GHz Dual Core;

S: Sony Xperia MT25, 1 GHz) to explain the decision algorithm of the Time Criterion. The same

iteration algorithm is also implemented in a private server (4 cores: Intel Xeon CPU E5649 2.53

GHz) with Apache Tomcat 6, which is used as our cloud server. WiFi is used to support the

connection between the mobile client and the server.

As shown in Fig. 6.3, the time spent for locally executing the iteration algorithm in the mobile

device increases quickly with the number of iterations. But for remotely executing in the server,

the execution time increases much slower. The reason is that, as the cloud server has a powerful

computation capability, it can complete the iteration algorithm in a short time and it keeps a low

rate of increase with the number of iterations. In addition, most of the remote execution time is

used for the data transmission between the mobile device and the server. Since the data size of

transmission almost remains the same, the transmission time does not change. The entire time

of remote execution is mainly controlled by the number of iterations and it increases slowly.

In Fig. 6.3, the crossing point of the line “Local” and “Offload” is the watershed to divide

the applications into offloadable or unoffloadable. Obviously, if the number of iterations is
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Figure 6.3: Execution Time of Iterations

larger than the vertical dotted line, the task is offloadable, if it is below this line, the task is

unoffloadable. It can also be seen that a mobile device with a faster CPU completes the same

intensive computation in a shorter time. However, for the remote execution time, the processing

rate of the CPU is not the only factor. As shown in Fig. 6.3, the device “S” has a faster CPU

than the device “Y”, but it needs more time to complete remote executions, because the device

“Y” has a shorter data transmission time. Therefore, our engine takes the decision based on the

practical execution data.

6.3.2 Parameter Fitting

After the test experiment, the data is fitted with a suitable distribution to obtain the model pa-

rameter values. Generally, Phase-type (PH) distributions are suitable to fit the time distributions

in SAN models. But two factors make it improper for our models. The first one is the tremen-

dous state space of the transition matrix. It needs more than a thousand phases to accurately fit

our experiment data. This causes difficulties to configure this distribution in our model during

simulation. The second one is the extended simulation time. Even applying only ten phases to

configure the PH distribution, the simulation time is quite long.

Fig. 6.4 shows an example of the distribution fitting result. The histogram is the density

function (pdf ) of the execution time of running 1000 million of iterations in the mobile device.

The sample space is 3000. We compare the fitting results of two distributions (Normal and

PH). To fit with a PH distribution, we apply a cluster-based algorithm as proposed in [115],
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Figure 6.4: Execution Time Fitting with Distributions

which divides the samples into several clusters and individually fits each cluster with an Erlang

distribution. Since the pdf has a long and heavy tail on both sides, fitting with one cluster cannot

provide a good result for both the peak and the tail at the same time, at least using two clusters

can make a satisfactory fitting result. The results are shown in Table 6.3. It is easy to find

in the figure that the fitting result with more clusters and more phases is better than that with

less clusters. “PH Distribution” in the figure is the closest to the histogram, especially in both

transition parts close to the x-axis. “Miniphase PH” loses the accuracy in the transition parts and

has a heavy left tail. We decided to use the normal distribution to simulate the stochastic time

parameters in the execution state model. Although it is not as accurate as the PH distribution as

shown in Fig. 6.4, it can save a lot of simulation time. And from Table 6.3, it can be seen that

the transition matrix of PH distribution has more than 1000 phases. It is difficult to implement

them in the model and it requires a long time for simulation. Therefore, we apply the normal

distribution and the exponential distribution in our model for simulating.

6.3.3 Simulation

After fitting the experimental data, we obtain the values of our model parameters in a given

application scenario. Then we simulate our model with Mobius [41]. Lagged Fibonacci random

number generator is used with the seed of 31415. Mobius would need extended functionality,

allowing to import a PH distribution parameter file and efficient random number generation

to improve the situation. In the next chapter, we will introduce our method to implement PH
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Table 6.3: Results of Distribution Fitting
Normal Distribution

Mean Standard Deviation

28820 81

Phase-Type Distribution

N* λ α

1830 0.863 0.181

626 0.293 0.168

152 0.0702 0.183

2000 0.964 0.173

789 0.371 0.174

4 0.0015 0.119

PH Distribution with Minimized Phases

N* λ α

7 0.0029 0.288

1005 0.476 0.711

* Number of phases in each cluster.

distribution with Mobius. The simulated system lifetime of a simulation is fixed at 86400s

(24 hours), which is long enough comparing with the execution time of a single offloading task.

Performance of different timeouts under the same application scenario (Algorithm: 1000 million

iterations, Mobile Device: Sony MT25, Server: Google Engine) are investigated by changing

the percentage P in Table 6.2. The complete set of simulation parameters is provided in Table

6.4. We fixed the network failure and repair time only based on assumptions, they represent

various network environments.

Since the performance is evaluated by its geometrical distance from the optimum, which is

calculated using Eq. (10), a value close to zero is desirable. As shown in Fig.6.5, the perfor-

mance comparison of various values of P with different Trepair is depicted. The bottom of the

graph indicates the best timeout fraction (parameter P in Table 6.2) under different Trepair. We

also show the performance of no re-execution in the end of the axis P . Apparently it is far from

the minimum distance. Thus we could show that the local re-execution is effective to deal with

network failure.

In Fig.6.6, we compare the optimal P under different network failure times. Each line in the

figure shows the best P (bottom line in Fig. 6.5) with different network repair times under a

fixed failure time. Apparently, the failure time has no effect on choosing the optimum, note

those lines of different MTTFs are very close to each other. This behaviour can be justified by
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Table 6.4: Model parameter values used in the simulation
parameter List of values (in seconds)

Arrival rate λarrival 1/10
Local Execution Time T ∗local, V

∗
local 28.820, 6.561

Data Transmission time T ∗trans, V
∗
trans 0.168, 0.25

Remote service time T ∗server, V
∗
server 3.502, 0.548

Mean times to failure Tfail 100, 500, 1000, 2000
Mean times to repair Trepair 60 values between 0.5 and 30

Percentage of timeout P+ 21 values between 0% and 200%
+ refer to Table 6.2 item Timeout
* Mean and Variance of Normal distribution

an MTTF longer than the execution time of a single offloading task (Table 6.4). We assume

that it is extremely unlikely to experience more than one failure in the same offloading process.

Thus, once a failure happens, the repair time becomes the critical factor to determine the system

performance. As shown in the figure, the optimal P increases with Trepair. It confirms our

assumption that it is worth to wait a moment for the network recovery when meeting connection

failures.

However, when Trepair becomes longer, the curves are not stable and suffer from severe os-

cillation. Referring to Fig. 6.5, it can be seen that the bottom field (dark blue area) becomes

Figure 6.5: Performance Comparison with P and Network Repair Time
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Figure 6.6: Optimal Timeout Value under different Failure and Repair Times.

smooth when Trepair is long. This makes it difficult to accurately determine the optimum. There

are two solutions for this problem. The first one is extending the percentage to a wider range

like 300%, and then comparing performance. Unfortunately, the result is still dissatisfying. The

wave between [150%, 250%] is stronger under the long Trepair (> 20s), and we are unable to

find a stable optimum. Another solution is to comprehensively consider the performance of all

Trepair. Actually in the real application scenario, it is impossible to predict the recovery time.

So we try to find an optimal P ∗, even if it cannot provide the best performance under all Trepair,

it is still able to maintain an acceptable result for most Trepair. This P ∗ is viewed as the default

optimum. For this target, we sum up all the distances of Trepair over P in Fig. 6.5. Then the

default optimal timeout fraction can be found by comparing the sum of the distances of different

fractions. In order to provide a clear view, we show the summed distances on a log-scale (base

10). As shown in Fig. 6.7, the shape of the transformed result is still like a valley and the bottom

is the default optimal timeout P ∗.

6.3.4 Verification Experiment

We use the optimal timeout fraction as input for our engine to verify its efficiency. The

iteration algorithm (1000 millions) is used again as the sample application. The wireless network

environment is in a campus which has been almost completely covered by WiFi. But there are

still some blank areas without wireless signal. So when we take the mobile device and move

around the campus, it experiences connection failure and recovery intermittently. We have tried
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to use PH distribution to simulate the failure or recovery time. However, in this case, the interval

between failures is strongly stochastic. Without a tremendous number of tests, it is difficult to

provide sufficient samples for fitting. So in simulation, we use the exponential distribution for

MTTF and MTTR. The experiment results are shown in Fig. 6.7. To analyse the performance,

we used two metrics: throughput and energy consumption, under a fixed experiment time of 30

minutes.

It is obvious that the throughput increases with the timeout P , and reaches the top when

arriving at the optimum P ∗. This indicates that, comparing with the long local re-execution time,

waiting for the network recovery can save time and improve throughput because the offloading

can complete the intensive computation more quickly. However it is restricted by an upper limit,

which means there is no benefit of waiting indefinitely. Moreover, the energy consumption

increases with the timeout P after passing the optimal percentage. It is easy to understand that

when P is low, a large number of local re-executions spend much energy. While P is rising,

the number of remote executions increases and this saves energy. But since the screen and the

wireless module are always turned on during waiting, they cost more energy if the waiting time

is prolonged. For this reason, the energy consumption under a given timeout fraction has a

minimum. Combining both of the two metrics, the best timeout P is very close to the value we

predicted through the model simulation. Therefore, the efficiency of our method to identify the

percentage based optimal timeout value is verified.

Figure 6.7: Performance of Different Timeout P .

76



6.4. SUMMARY

6.4 Summary

In this chapter, we design a Stochastic Activity Network (SAN) model based on the engine

structure and three metrics to evaluate the engine performance. The model parameters are set to

values obtained from experimental data of our engine. We compare the performance of different

local re-execution launching intervals with the model simulation and find the optimum. Then,

the optimal launching interval is returned to configure the engine and its efficiency is verified

with experiments. The result shows that starting the local re-execution after an appropriate

interval provides a better performance than always offloading, and our model can effectively

find the optimal launching interval.
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Chapter 7

Modular Synthetic Model with
Multiple Clients

In this chapter, we design three individual modular static models to respectively emulate the

operation of a mobile client, network and remote server in the mobile offloading system. In the

practical scenario, the three parts run independently. A series of standard interfaces are used to

connect them. But the performance of each part has a significant impact on the whole system.

One of the most uncertain factors which affect the system performance is the mobile client. The

impact mainly comes from two aspects: the number of clients and their relatively independent

behaviours. Normally, the number of clients is not constant. As the traffic in the network and

the workload on the server are positive correlated with the number of clients, the change of this

number will directly affect the system performance. In addition, the behaviours of individual

mobile clients are independent of each other. For instance, the reactions of individual clients are

not the same when facing a network failure. The diverse behaviours will also have impact on

the system recovery. The motivation of designing the modular models is to analyse the impact

of the diverse behaviours. By assembling the individual models together to compose a complete

offloading system model, we provide the capability of flexibly adjusting the number of clients

in the mobile offloading system.

With these models, we analyse the impact of multiple clients on the failure handling scheme

with local restart. We find a congestion avoidance mechanism by repeating local execution

when the throughput of a server reaches its upper limit. In this chapter, first the workflow

of the congestion avoidance mechanism is introduced. Then, the system model consisting of

several modular component models is depicted. Finally, the simulation result demonstrates the

efficiency of the congestion avoidance mechanism.
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7.1 Congestion Avoidance with Local Execution

As we have introduced in the last chapter, using the local restart can not only save the task

completion time but also energy consumption. However in Section 6.1, we assume that the

cloud server is perfect as it will always responsed immediately when receiving a request. The

request from the mobile client does not have to wait in the queue for service. Unfortunately,

this ideal server does not exist in the real computer system. As we know, no matter how fast

the processing rate of the server, it cannot simultaneously answer infinite requests. Maintaining

a waiting queue is necessary to cache the requests when the server is busy. And obviously, the

queue length has an upper limit. Although memory technology has been fast upgraded, it is

still difficult to provide the capacity to cache all the request. Because traffic based on Internet

Applications also experiences a massive growth at the same time. Within a short interval, when

the number of requests arriving exceeds the capacity of queue, the server cannot handle the over

load. The later requests have to be discarded since the server has been overloaded. Therefore,

with a network failure, a busy server can also cause the failure of the offloading task completion.

When the offloading task has to wait a long time for the service, using local restart can not only

speed up the task completion but also reduce the workload of the server. As the mobile client also

has computation power, the mobile offloading system is not a pure client-server system. It can

be seen as a distributed computation system with a main compute center: the cloud server, and

a large number of small compute units, the mobile clients. When the workload of the compute

center increases to an unaffordable level, the small compute units can be employed to share the

workload.

In fact, when the queue of the server stays full and new requests still come continuously,

server congestion happens. It can be predicted that if no congestion avoidance mechanism is

applied, the congestion at the server usually lasts for a while. The queue length of the sever

cannot be reduced until the mean interval between new arriving requests is longer than the mean

service time for a request.

In this thesis, we assume that the sever will not actively notify the clients of its overload.

The mobile client can only infer congestion from the long waiting time for task completion. An

efficient method to avoid the congestion is reducing the number of new coming requests. In

the mobile offloading system, if most of the clients keep executing the offloading task locally

instead of delivering them to the server, the number of request arriving at the server will quickly

decline. At the same time, executing these tasks locally can also maintain the total throughput

of the whole offloading system by avoiding useless waiting time at the server. After the queue

length of the server returns to a moderate level, offloading tasks can be pushed to the server

again.

Fig.7.1 shows the three states of the congestion avoidance mechanism with local execution.
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Figure 7.1: Congestion Avoidance by Repeated Local Execution
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In the light load state, only a few offloading requests arrive at the server. The cloud server can

rapidly complete these tasks and return the results. In the heavy load state, a larger number

of tasks wait in a long queue to be completed by the server. As we introduced in section 5.3,

when the waiting time exceeds the timeout threshold, the local restart is launched to complete

the offloading task. Then the mobile client informs the server to discard the request from the

queue. After the first local restart the mobile client has detected the congestion, it continuously

uses local computation resource to complete the next several offloading tasks. As shown in the

state of congestion avoidance, the mobile device repeats the local execution instead of delivering

new offloading requests to the server. Since there are less new coming requests, the server can

quickly recover to a normal state by completing the tasks which are waiting in the queue.

7.2 Modular Analysis Models

We still use the Stochastic Activity Networks (SAN) as the modelling technique. According

to the individual operation process of client decision, data transmission and server response in

the mobile offloading system, three types of model are designed. Among them, the models

of client decision and server response are still split into several sub-models according to the

different functions of each step in the operation process. First, we introduce the Hyper Erlang

Model which represents the delay action in data transmission and task completion. Then the

model which emulates the operation of the mobile client is illustrated. At last, we present the

complex server model which can be accessed by multiple clients.

7.2.1 Hyper Erlang Model

In completing an offloading task, the process includes several actions which consume time.

For example, data transmission, task completion and local execution, all of them need tens of

milliseconds to several seconds. Most importantly, according to the experimental experience,

the time values are definitely not constant, they are random variables following some given

distributions. As we have introduced in Section 3.2.2, the hyper-Erlang distribution is a suitable

option to fit these random variables. Fig.7.2 shows the SAN model which can generate a delay

action according to a given hyper-Erlang distribution.

Referring to Table A.1, T omin and α are controlled by the activity of Min Delay. The other

two parameters m and λ are configured individually into the four activities Erlang 1—4. The

halting time in the four activities follows an Erlang distribution with two particular parameters:

’shape’ m and ’rate’ λ. Theoretically, as introduced in [51, 37], this model can be extended

to include infinite branches of Erlang distribution, as long as increasing the number of output

places of the activity Min Delay. But increasing the Erlang branches, the model spends more

time in simulation. The accuracy improvement by fitting a Hyper-Erlang distribution with more
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Figure 7.2: Hyper Erlang Model

branches is limited. Thus, we use four branches in this model Erlang 1—4, which is accurate

enough to represent the distribution of a random variable for the time delay action, as proved

by the error measurement in Table A.1 and Table 3.3. The gate of Hyper Erlang Input Gate

controls the begin of the delay action. When the activity of Min Delay is enabled, only one of

the four output places is selected randomly as the destination of the token. And before the token

is forwarded by the activity of Erlang 1—4 to the end place, the activity of Min Delay cannot

be enable again.

Table 7.1: Enabling predicate of the input gate Hyper Erlang Input Gate
Gate Predicate Function

Hyper Erlang Input Gate #Start > 0 & #Start − 1 ;
#Case 1 = 0 &
#Case 2 = 0 &
#Case 3 = 0 &
#Case 4 = 0

# refers to the number of tokens in the given place

7.2.2 Mobile Client Model

As can be seen in Fig.7.3, the model emulates the operation of the mobile client. The two input

gates, Offloading Input Gate and Local Execution Input Gate, coordinate together to decide

whether the offloading task is delivered to the cloud server or executed locally by the mobile

clients. Table 7.2 shows the enable predicates of the two gates. As we have introduced in

Subsection 7.1, once the congestion in the server is detected, the number of tokens in the place

Number of Repeat controls the number of tasks which will be locally completed.
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Figure 7.3: Mobile Client Model with Restart

Table 7.2: Enabling predicate of Offloading Input Gate and Local Execution Input Gate
Gate Predicate Function

Offloading Input Gate #Start > 0 & #Start − 1 ;
#Number of Repeat = 0

Local Execution Input Gate #Start > 0 & #Start − 1 ;
#Number of Repeat > 0 #Number of Repeat − 1;

# refers to the number of tokens in the given place

If the enabling condition of the gate Offloading Input Gate is satisfied, the mobile client

model moves into the offloading state. In this state, both of the places Wait and Request contain

a token. The place Request triggers the execution of the following models to complete the of-

floading task. At the same time, the place Wait monitors the waiting time for task completion.

Once the waiting time exceeds the timeout threshold, the activity Timeout is enabled. The con-

figuration of the activity Timeout is the same as its analogue in Fig.6.2 and Table 6.2, so we do

not repeat it here.

The output gate Timeout Output Gate is responsible for launching the local restart and the fol-
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lowing congestion avoidance. Table 7.3 demonstrates the output function of Timeout Output Gate.

The parameter n decides the number of offloading tasks which will be locally completed to avoid

the congestion in the server. We will analyse the impact of n in the simulation.

Table 7.3: Output Function of Timeout Output Gate
Gate Function

Timeout Output Gate #Local Restart = 1 ;
#Number of Repetitions = n

# refers to the number of tokens in the given place

If a token moves into the place End, it means the offloading task has been completed by the

server and the result has been received by the mobile device. Then the token in the place Wait is

removed. After the activity Invoke is enabled, a new process of completing another offloading

task takes place. The interval between the beginning of the new task and the completion of the

old task is based on an exponential distribution that is similar as the analogue in Fig.6.2 and

Table 6.2.

7.2.3 Server Model

As shown in Fig.7.4, the server model consists of three sub-models: Arrive Model, Leave

Model and Queue Model. Each model respectively emulates a specific function of the cloud

server. First, when a new offloading task J arrives at the server, it waits in the queue. Then

after the server completes all the tasks which are ahead of J, J is executed. Remote Execution

Hyper Erlang Model is used to emulate the execution action. Finally, the completed task leaves

the server and returns to the mobile client. This process is emulated by Leave Model. An

independent pair of Arrive Model and Leave Model exclusively belongs to every individual

mobile client. That means the number of clients equals the number of the pairs of Arrive Model

and Leave Model. All the pairs are connected by the unique Queue Model, which is the core of

the server model. Queue Model, as the meaning expressed by its name, emulates the process of

queueing in the server. The details about each sub-model are introduced below:

Arrive Model
This model uses two instant activities to represent the actions of moving in the queue and

waiting in the queue. The two input gates Start Input Gate and Execute Input Gate control the

two activities. As the enable predicate in Table 7.4 shows, Start Input Gate controls that each

time only one task J per client can move in the queue. The place Previous Queue records the

information about the number of tasks which stand before J in the queue. As the output function

of Start Output Gate in Table 7.5 shows, after the instant activity is enabled, the number of
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Figure 7.4: Server Model

tokens moved in Previous Queue equals the number of tasks which have been in the queue.

Then, Arrive Model goes into the waiting state. Once the server completes an offloading task

from another client, the number of tokens in Previous Queue decreases by one. Until there is

only one token left in Previous Queue, which means all the tasks standing in front of J have been

completed, it is the turn of J to be executed.

Table 7.4: Enabling predicate of Start Input Gate and Execute Input Gate
Gate Predicate Function

Start Input Gate #Arrive > 0 & #Arrive − 1 ;
#Previous Queue = 0

Execute Input Gate #Previous Queue = 1 #Previous Queue = 0 ;

# refers to the number of tokens in the given place

Leave Model
When the offloading task J is completed, Leave Model functions as a hinge to trigger the

execution of another two models: Result Return Hyper Erlang Model and Queue Model. The
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Table 7.5: Output Function of Start Output Gate
Gate Function

Start Output Gate #Queue + 1 ;
#Previous Queue = #Queue

# refers to the number of tokens in the given place

former model returns the result back to the mobile client, and Queue Model reduces the queue

length of the server.

Table 7.6: Output Function of Queue Delete Output Gate
Gate Function

Queue Delete Output Gate if(#Queue > 0)
{ #Queue − 1 }

if(#Previous Queue 1 > 1)
{ #Previous Queue 1 − 1 }

if(#Previous Queue 2 > 1)
{ #Previous Queue 2 − 1 }

...
if(#Previous Queue N > 1)
{ #Previous Queue N − 1 }

# refers to the number of tokens in the given place

Queue Model
Queue model stores all the information about the queue length in the server and the position

of each offloading task Ji from client i in the queue. Each time when one offloading task is

completed by the server, the instant activity in Queue Model is enabled. The output function of

the gate Queue Delete Output Gate is listed in Table 7.6. Queue Model uses the places Previous

Queue i, (i = 1,2,...N) to control the queuing process of each arrived task Ji. The number of

tokens in Previous Queue i represents the sequence of Ji in the queue. According to the output

function of Start Output Gate in Arrive Model, Previous Queue i, (i = 1,2,...N) represents how

many tasks from other clients are before Ji. On the contrary, the unique place Queue is shared

by all Arrive Models. The number of tokens in Queue tells the new incoming offloading tasks

the current queue length of the server. Theoretically, we can access an infinite number of Arrive

Models to Queue Model. The number of Arrive Models indicates the number of mobile clients

in the mobile offloading system. In this chapter, we connect 100 mobile clients to the server. We

understand that compared with the real mobile offloading system, 100 clients are still relatively
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a few. Since more clients consume more time in simulation, we assume that 100 clients are

sufficient to analyse the system performance.

7.3 Performance Analysis

We take three steps to explore the efficiency of our congestion avoidance scheme, which

utilizes local resource to complete offloading tasks when the server is under heavy workload.

First, we design the experiments to collect data for configuring some parameters in our model.

Then, the data from experiments is fitted with the Phase-Type distribution by Hyperstar [116].

The fitting results are used to configure the values of the model parameters in simulation. Finally,

the simulation results are analysed to demonstrate the efficiency of our congestion avoidance

scheme. The optimal configuration of the scheme is also identified.

7.3.1 Measurement Experiment

The offloading task completion consists of three time delay actions: data delivery, remote

execution and return of result. In Chapter 3, we take the task completion time as a whole and use

it as the metric to evaluate the network quality. In order to measure the time consumed in each of

the three actions, we modify the test bed used in Chapter 3. The same mobile device (Samsung

GT-S7568) is still used as the client. We move the server side to Google APP Engine [2], which

is a real cloud server platform which works as Platform as a Service (Paas). In most situations,

the content of offloading tasks are not the same. The time consumption of completing each task

is also different. For better simulating the task diversity, we implement a language translation

instead of OCR as the sample application into our offloading engine. We translate the famous

fiction “Gone with the Wind” from English to Chinese sentence by sentence. The translation of

one sentence is one offloading task. On the server side, an online language translation application

interface Youdao [4] is utilized to complete the offloading task. On the mobile client side, we

install an offline English-Chinese dictionary to translate each sentence. As we mainly focus on

the time property of the mobile offloading system, the accuracy of the translation result is not

considered in this thesis.

We modify the program of our offloading engine on the server side to record two timestamps:

Arrive and Leave. As shown in Fig. 7.5, Arrive is recorded at the arrival instant of the offloading

task at the server, and Leave is recorded at the moment when the completed result is returned

back to the client. The interval between the two timestamps is the time spent in remote execution

Tremote. This interval Tremote is modelled by Remote Execution Hyper Erlang Model as shown

in Fig.7.4. For measuring the time used for data transmission, we also record two timestamps on

the client side: Request and End. Request is recorded at the moment when the offloading task

is pushed out to the server, and End is recorded at the moment when the result of the completed
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Figure 7.5: Consists of the Task Completion Time

task comes back to the client. The interval between Request and End is the total offloading

task completion time Tcomplete. Subtracting Tremote from Tcomplete, the remainder is the time

used in data transmission Tsend and returning the result Treturn. Tsend and Treturn are modelled

by Data Transmit Hyper Erlang Model and Result Return Hyper Erlang Model respectively as

appeared in both Fig.7.3 and Fig.7.4. We understand that Tsend and Treturn are different. But

as our models are mainly interested in the role of the cloud server here, we simply assume that

Tsend and Treturn are equal as Tsend = Treturn = (Tcomplete − Tremote)/2. That means the

parameters of the models: Data Transmit Hyper Erlang Model and Result Return Hyper Erlang

Model are identical. Tlocal represents the time consumed by the local execution of the offloading

task. As shown in Fig.7.3, Local Execution Hyper Erlang Model is used to control Tlocal.

There are total 51,566 sentences in “Gone with the Wind”. Thus, we launche 51566 offloading

tasks to collect the data. All the tasks are executed consecutively without any interruption. We

utilize a 10M Wifi connection (provided by Eduroam [1] in our campus) to link the mobile device

and the server of Google APP Engine. In order to guarantee a stable network quality during the

experiment, we completed all the offloading tasks on Saturday. As there are only a few students

in the campus in the weekend, the network utilization is low and the network quality is good.

7.3.2 Parameter Configuration

We collect data of 51,566 offloading tasks to fit the distribution of Tremote, Tsend/Treturn and

Tlocal. Table 7.7 lists the fitting results and the corresponding parameters in the models. The unit
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of all time values is milliseconds in Table 7.7. We review the probability density function (pdf )

of Hyper-Erlang distribution here to help the reader understand the definition of each parameter

in our model. For details about Hyper-Erlang distribution, please refer to Section 3.2.2. The pdf

of Hyper-Erlang distribution p(x) is:

p(x) =
M∑
i=1

αi × Eri(x) (7.1)

As we have introduced in section 7.2.1, in our models M = 4 and
∑M

i=1 αi = 1. Eri in

equation 7.1 is the pdf of Erlang distribution:

Eri(x) =
λmi
i xmi−1

(mi − 1)!
× e−λix (7.2)

Generally, mi is called the shape parameter and λi is the rate parameter.

Table 7.7: Results of Distribution Fitting
Local Execution Hyper Data Transmit Hyper Remote Execution Hyper
Erlang Model: Tlocal Erlang Model: Tsend † Erlang Model: Tremote

Activity Parameter Value Parameter Value Parameter Value

Min Delay* Tmin local 2.11 Tmin trans 0.175 Tmin remote 0.583
αlocal 1 0.1995 αtrans 1 0.3785 αremote 1 0.0482
αlocal 2 0.283 αtrans 2 0.359 αremote 2 0.4217
αlocal 3 0.234 αtrans 3 0.109 αremote 3 0.5238
αlocal 4 0.2835 αtrans 4 0.1535 αremote 4 0.0063

Erlang 1 mlocal 1 2 mtrans 1 235 mremote 1 1
λlocal 1 14.606 λtrans 1 2272.36 λremote 1 8.0353

Erlang 2 mlocal 2 119 mtrans 2 4 mremote 1 4
λlocal 2 1216.79 λtrans 2 27.679 λremote 2 199.636

Erlang 3 mlocal 3 14 mtrans 3 13 mremote 3 17
λlocal 3 169.387 λtrans 3 18.045 λremote 3 1150.98

Erlang 4 mlocal 4 98 mtrans 4 1 mremote 4 15
λlocal 4 866.454 λtrans 4 1.191 λremote 4 11.3527

* The halting time in the activity Min Delay follows a deterministic distribution.
† The values of the parameters in Result Return Hyper Erlang Model: Treturn are identical
with that in Data Transmit Hyper Erlang Model: Tsend

There are still two activities Invoke and Timeout left in the Mobile Client Model that need to

be configured. The definition and values of the parameters in the two activity are show in Table

7.8. We control the system workload through Tarrival in the simulation. The performance of
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Table 7.8: Parameters for the activity Invoke and Timeout
Name Distribution Parameter Definition Value

Invoke: Exponential Tarrival The mean time before the next
offloading request arrival.

0.1s ∼
10000s

Timeout: Deterministic 1.8
†
×(Tremote+

2
∗
× Tsend)

Tremote is the mean of the Hyper
Erlang Distribution in Remote
Execution Model

0.6s

Tsend is the mean of the Hyper Erlang
Distribution in Data Transmit Model

0.3s

* Refer to Table 7.7, as the values of the parameters in two data transmission models Tsend
and Treturn are identical, the numerator is 2.
† According to the conclusion in Section 6.3 and Fig.6.7, the optimal timeout percentage is
180%.

the congestion avoidance scheme under different values of n in the Mobile Client Model are

compared through simulation.

7.3.3 Simulation Result

We use Mobius [41] as the tool to execute the model simulation. The simulated system life-

time of a simulation is fixed at 3600s (1 hour), which is long enough compared with the short

completion time of a single offloading task. Performance of the congestion avoidance scheme

under different workloads are investigated by changing the task arrival interval Tarrival in Mo-

bile Client Model. We applied the waiting time at the queue in the server and the throughput

of the mobile client as the metric to evaluate the system performance. The queue waiting time

is defined as the period which starts at the arrived moment of an offloading task at the server

and ends when the task is handled by the server. The congestion intensity of the server can be

observed as the queue length, which has a direct impact on the waiting time. Thus, measuring

the queue waiting time can provide a clear visualized comparison of the system performance

under different configurations of the congestion avoidance scheme.

As shown in Fig. 7.6, the average waiting time of each offloading task in the server queue

appears a shape of step increase. The traffic load in the server side increases exponentially

with the task arrival interval decreasing in the client side. As the number of clients in our

model is still fixed, the queue waiting time has an upper limit when the queue length reach

its maximum. Otherwise, the queue waiting time will keep on rising exponentially. Obviously,

utilizing the local resource to complete parts of the offloading tasks can reduce the queue waiting

time. Congestion occurs when the task arrival rate in the server is larger than its service rate, and

the congestion intensity depends on the difference between the two rates. After the offloading

task meets a long delay and the mobile client launches local restart to complete this task, using
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Figure 7.6: Queue Waiting Time under different task arrival intervals

local execution in mobile client to complete the following tasks can narrow the gap. As parts of

workload of the offloading tasks are shared by the mobile device itself, the task arrival rate can

be kept at a low level.

The efficiency of the congestion avoidance scheme enhances with n, which is the number

of local executed tasks. However, the degree of performance improvement declines with the

increment of n. From Fig.7.6, we can find that when n > 3, the queue waiting time cannot be

reduced much further. One reason could be that the gap between the task arrival rate and the

service rate widens too fast for the congestion avoidance to offset. Another reason may arise

from the categorised mobile clients after they experience the offloading failure. Assume that

when congestion occurs, some of the clients will experience offloading failures and launch local

restart to complete the task. We define these clients as type A. The other clients whose tasks

are smoothly completed by the server are defined as type B. When n increases, type A clients

need a long time to finish several local executions and launch offloading again. In this period,

the traffic of the server is low and the queue length is acceptable. Thus, type B clients can keep

using the server to complete the offloading task in a short time. When the next time A clients

launch offloading again, they still face a higher possibility of a long waiting time in the server

queue than type B clients. The categorised clients may impair the efficiency of the congestion

avoidance scheme.

Fig.7.7 shows the throughput of the mobile client in the system lifetime of simulation. As
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Figure 7.7: Throughput of Mobile client with different task arrival intervals

the throughput increases with n under the same task arrival rate, the efficiency of the congestion

avoidance scheme is shown. Using congestion avoidance can at least enhance the throughput

by around 40%, as the throughput of n = 0 is 836 but the throughput of n = 1 is 1108. As

similar as Fig.7.7, the throughput improvement also has an upper bond as the throughputs of

n > 2 are close. It demonstrates that utilizing too many times of local execution can trade

for only a little performance improvement. Although locally executing the offloading task can

alleviate the intense traffic in the server, the throughput of the mobile client is restricted by

its low computation capability. As we have not considered the power consumption of mobile

clients in using the local execution, the cost of the congestion avoidance scheme with n > 2

could be too expensive to be applied. Therefore according to the simulation result, we propose

an optimal congestion avoidance scheme with launching two local executions after the offloading

task experiences a failure.
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7.4 Summary

In this chapter, we proposed a congestion avoidance scheme for the mobile offloading system.

By employing local execution to share the high workload of the server, the whole throughput of

the system is increased. For evaluating the performance of the congestion avoidance scheme, we

designed a system model with SAN model. The system model consists of three types of modular

models, which respectively emulate the operation of a mobile client, data transmission and cloud

server. We use the experimental data to configure the parameters in our model for simulation.

The simulation results demonstrate that our congestion avoidance scheme can effectively reduce

the queue waiting time in the server.
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Chapter 8

Optimal Dynamic Restart Mechanism

The restart algorithm mentioned in Chapter 4 relies on the probability density function pdf of

the task completion time. In pratice, a density function is approximated by the corresponding

histogram. Since the distribution of the completion time in a real-time system keeps changing

with the operation, a dynamic method to adapt the histogram is required. In [45] the bucket width

is adjusted when the number of samples in some buckets satisfy a given criterion. Histogram

data can be stored in a structure called Q-digest which is a binary tree [128]. This allows to

quickly find quantiles of the data set using a post-order traversal on the tree. In [58] the data

stream is compressed by wavelet transform into a sketch. The quantile query is answered by

estimating the original data with the sketch. As introduced in [131, 96, 72, 145, 144], wavelet

transform is an efficient method used for histogram compression. But as wavelet transform is

a heavy computation task to the mobile client considering its restricted resource, we cannot

implement wavelet transform in our restart scheme.

There are also a large number of methods that have been proposed to compress the massive

data and fast the query process [12, 73, 132, 74, 79, 154]. In [73], an anti-entropy aggregation

protocol is proposed to compute aggregates of components properties like extremal values, av-

erage and counting. And [132] focused on the conditional expectation of quantile derivative of a

linear combination of random variables. The authors of [74] revealed the relevant dependability

issues of the majority of the existing aggregation algorithms which are used to allow the determi-

nation of meaningful properties. Based on iterative averaging techniques, the authors proposed

two new Push-Pull Gossip algorithms to solve the problem. In [79], an efficient partitioning

algorithm is introduced to break an array into some intervals and keep the maximum weight of

the intervals is minimized.

All these methods can be used to set up the histogram for the restart algorithm. We do not

evaluate the different algorithms in this chapter. We use a width-fixed histogram and propose a

cost-effective method to update the histogram at run time.
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8.1 Dynamic restart scheme

The procedure of fitting a theoretical distribution and computing the optimal restart timeout

from this distribution is very expensive in terms of computation cost. Various algorithms and

tools exist for fitting PH distributions to empirical data [133, 64, 136, 149, 16], and the fitted

distributions approximate the data in many cases very well. For efficiency reasons we use a

direct method [117] to estimate g(δ) and E[T ] from the histogram. We dynamically build and

update a histogram and then repeatedly determine the optimal restart timeout as discussed in the

following subsections.

The procedure of fitting a theoretical distribution and computing the optimal restart timeout

from this distribution is very expensive in terms of computation cost. For efficiency reasons we

use a direct method [117] to estimate gn(τ) and E[Ti] from the histogram. The asymptotically

unbiased ratio estimator is introduced in Subsection 8.1.2. We dynamically build and update a

histogram and then repeatedly determine the optimal restart timeout.

8.1.1 Dynamic Histogram

A histogram simply divides up the range of possible observations into intervals, which we call

buckets, and counts the number of observations that fall into each bucket. Buckets can have a

variable or a constant width; we choose the latter for simplicity. Histograms initially hold too

few samples to provide a good approximation of a probability distribution. After collecting data

for a while a stationary distribution is represented increasingly well. However, if the distribution

changes, old samples will never be dismissed from the histogram and will forever bias the new

probability distribution.

There are several options how to handle changes in distribution: the histogram can be re-

peatedly flushed as to build up a new histogram for the respective current state of the system.

This introduces many initial periods with insufficient data. Another option is to transform the

buckets into dripping buckets that lose samples constantly over time. It is not easy to adjust the

dripping speed such that the histogram will hold sufficient but not too many samples at all times

[107, 97, 128, 134, 70].

We propose a partial flush which is tuned using two parameters, the total number of samples

in the histogram when executing the partial flush and the percentage of samples to equally flush

from all buckets.

Algorithm 1 shows the algorithm to initialise the histogram prior to run time. The parameters

are the following:

T omin: The lower bound of the histogram.

T omax: The upper bound of the histogram.

Tl: The task completion time by local execution.
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Algorithm 1 (Initialization for the histogram)
Tl ← Local Run() //Complete the task by local execution
T o
min ← Offload Run() //Complete the task by offloading
T o
max = Tl
4B = (T o

max − T o
min)/N //4B: The bucket width

for i = 1 to N do
Baverage[i] = 0
NB [i] = 0

end for
Nout = 0
Bout = 0

N : The number of buckets in the histogram.

Baverage[i]: The mean of all the samples in the ith bucket.

NB[i]: The number of samples in the ith bucket.

Nout: The number of samples, whose value > T omax.

Bout: The mean of all the samples > T omax.

The number of buckets N must be chosen manually. The upper bound of the histogram is

determined by the execution time of one local run. The lower bound is given as the execution

time of one offloading task. In the course of the experiments there may later be shorter offloading

times which will be used as new lower bound and additional buckets will be inserted. These

choices are motivated by the purpose of the histogram: to determine the optimal restart timeout

the precise shape of the distribution in the tail is not needed.

Algorithm 2 shows the algorithm to record a new sample at run time. If the sample comes

from local execution, Tl is updated by the mean of its original value and the new sample. Hence,

the impact of old samples is reduced and replaced by that of new ones.

If the new sample is produced by offloading, it can be added to the histogram in three ways

according to its value. Case 1, when new samples are larger than T omax, they are all added to the

out bucket. Case 2, when a shorter offloading time arrives, M additional buckets are inserted,

M is calculated based on the ceiling function shown in line 9. T omin moves down to include the

new sample. Line 21 ∼ 24 adjusts the mean and index of each original bucket accordingly. Case
3, when the sample falls into the range between T omin and T omax, it is added to the corresponding

bucket in the histogram. Fig. 8.1 is the illustrative diagram of the three cases.

The partial flush algorithm, shown as Algorithm 3, needs the two new parameters Nbound and

p:

Nbound: threshold to start the update. When the number of samples stored in the histogram

exceeds this value, the update algorithm is triggered.

p: percentage of samples to be kept. From each bucket, (1− p)/100 ∗ ni samples are removed
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Algorithm 2 (Recording a new sample)
Local Execution:

1: Ttemp ← Local Run()
2: Tl = (Tl + Ttemp)/2

Offloading:
3: Ttemp ← Offload Run()
4: switch Ttemp do
5: case 1 : Ttemp > T omax
6: Bout =

(Bout×Nout)+(Ttemp−T o
min)

Nout+1
7: Nout ++

8: case 2 : Ttemp < T omin
9: M = d(T omin − Ttemp)/4Be

10: INSERT(M )
11: Baverage[1] = Ttemp − T omin
12: NB[1] = 1

13: case 3 : T omin 6 Ttemp < T omax
14: j = b(Ttemp − T omin)/4Bc+ 1

15: Baverage[j] =
(Baverage[j]×NB [j])+(Ttemp−T o

min)
NB [j]+1

16: NB[j] + +

17:

18: function INSERT(k)
//Insert k empty buckets between Ttemp and T o

min

19: N = N + k
20: T o

min = T o
min −4B × k

21: for i = 1 to N do
22: Baverage[i+ k] = Baverage[i] +4B × k
23: NB [i+ k] = NB [i]
24: end for
25: end function

Algorithm 3 (Update for the histogram)

B =
N∑
i=1

NB[i] +Nout

if B > Nbound then
NB[i] = bNB[i]× pc // i from 1 to N
Nout = bNout × pc

end if

if the bucket holds a total of ni samples before the partial flush.

A large number of samples Nbound until partial flush leads to a long sampling period. Con-

versely, a large percentage p indicates that the majority of the samples are kept after updating.

This will lead to frequent inexpensive partial flushes. Please note that the mechanism is related

to hysteresis as used in the control of queueing systems.
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Figure 8.1: Recording a new offloading sample

8.1.2 Asymptotically Unbiased Ratio Estimator

The estimate for the optimal restart timeout is based on the asymptotically unbiased ratio

estimator [36]. Using the dynamic histogram proposed in the last subsection, an estimator for

g(δ) in equation (4.9) from Chapter 4 is:

ĝ(δi) =

∑N
j=iNB[j] ·Baverage[j] +Nout ·Bout
(
∑N

k=iNB[k] +Nout)(1− F̂o
′
(δi))

− δi (8.1)

We assume that the optimal timeout δ only takes on values δi = i×4B, i = 1, 2, ..., N . The

cumulative distribution function F̂o
′
(δi) is estimated as:

F̂o
′
(δi) =

∑i
j=1NB[j]∑N

k=1NB[k] +Nout

(8.2)

If the maximum estimate ĝ(δi)max > Tl, the local restart condition (4.8) is fulfilled. Then, an

estimate of E[T ] provides the optimal timeout.

Ê[T ]δi = M̂ ′(δi) + (1− F̂o
′
(δi))(δi + Tl) + T omin (8.3)

Remember that we have shifted all data, and the histogram to the origin. Therefore the lower
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bound T omin of the histogram should be added to the expectation. The partial moment M̂ ′(δi) is

estimated as:

M̂ ′(δi) =

∑i
j=1NB[j] ·Baverage[j]∑i

k=1NB[k]
(8.4)

The optimal local restart time can be identified by selecting the value of δi, which minimizes

Ê[T ]δi , and the optimal timeout is τ = δi+T
o
min. Actually, at run time first the restart condition

is evaluated and if it is not satisfied, Ê[T ]δi is not determined.

For the hybrid adaptive restart scheme, an estimator for gn(τ) in equation (4.27) and E[T ] in

equation (4.19) are:

ĝn(τi) =

∑N
j=iNB[j] ·Baverage[j] +Nout ·Bout

(
∑N

k=iNB[k] +Nout)(1− F̂o
′
(τi))n

−
n−1∑
l=1

M̂ ′(τi) + τi

(1− F̂o
′
(τi))l

− τi

− T omin(1−
1

F̂o
′
(τi)

)(1− 1

(1− F̂o
′
(τi))n−1

)

(8.5)

Ê[T ]τi =M̂
′(τi) +

n−1∑
k=1

(1− F̂o
′
(τ))k(M̂ ′(τi) + τi) + (1−

F̂o
′
(τi))(τi + Tl) +

1− (1− F̂o
′
(τi))

n

F̂o
′
(τ)

T omin

(8.6)

The optimal local restart time is identified by selecting the value of τi, which minimizes

Ê[T ]τi , and the optimal timeout is τ = τi + T omin.

8.2 Evaluation of Single Local Restart

In order to evaluate the performance of the dynamic local restart scheme, it is implemented

in our mobile offloading engine [146] and evaluated using the OCR application with the same

picture as Fig. 3.1. As introduced in Section 3.2, we again conduct measurements over a period

of 24 hours from 8:00 on 28th April 2014 and we sampled 54 318 completion times. Using the

experiment we then show that our dynamic histogram captures changes in the system and allows

the offloading system to react to those in real-time.

Fig. 8.2 shows a short episode of the whole experiment process. This episode lasts for about

5 minutes (begins at 9:12) and contains 180 successive tasks. A scatter plot of some related

parameters of the 180 tasks is shown in Fig. 8.2. It can be seen that the potential benefit of the

local restart, ĝ(δ)max, first increases stepwise and then remains constant. After some very long
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Figure 8.2: Scatter plot of the dynamic local restart scheme with N = 20, Nbound = 100 and
p = 50%.

Figure 8.3: Throughput of different times in a day

offloading times, ĝ(δ)max > TL, several restarts complete the computation locally.

For comparing the performance of the scheme with and without the dynamic local restart,

the throughput of the two schemes over periods of two hours are shown in Fig. 8.6. We define
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Figure 8.4: The image to be recognised and the mobile Application

the throughput as the number of tasks completed in each period. Here we compare data from

the two experiment sessions that took place on different days: the right column in each interval

represents the first series of experiments without restart, while the left column shows the new

series of experiments using restart. Surprisingly, both columns follow a similar pattern over the

day and in most intervals the throughput is almost identical in both experiment series. Only

for the last three pairs of columns the dynamic local restart scheme can effectively increase the

throughput.

In conclusion, the dynamic local restart scheme can effectively increase the system perfor-

mance sometimes and does not harm it at any time.

8.3 Comparison of Adaptive Restart

In order to observe and analyse the performance of the adaptive restart scheme in a real ap-

plication we design an experiment. Using the experiment we show a comparison of the three

restart modes as introduced in Section 4.3 using the same scenario.

8.3.1 Experiment Configuration

For the experiments a mobile phone (Samsung S5-G900F, Android 4.4.2) and a server (4

cores: Intel Xeon CPU E5649 2.53GHz) have been used. The mobile phone is placed in a main

102



8.3. COMPARISON OF ADAPTIVE RESTART

teaching building (Fig. 8.5 shows the floor plan of the building) and connects to the Internet

through Wifi (100Mbps provided by Eduroam). The server is in the lab of the university campus

and connects to the Internet through a LAN port of 100M. We have used the Linux command

”traceroute” to track the route from the mobile phone to the server. Normally, the route passes 6

hops to reach the destination, and the total round-trip time is around 8ms. The offloading engine

as introduced in Chapter 5 includes an Android Application (App) for the mobile client and a

website project for the server. In our experiment, the Tesseract OCR Engine [3] is used in both

parts of the offloading engine. An image (400×680px, 6 KiB) with a rectangle text region, as

shown in Fig. 8.4, is used for image recognition. Only 100 Bytes are used to represent the

decyphered words.

In order to imitate a scenario where the network connection is unreliable, we walk around the

main building carrying the mobile device. The blue line in Fig. 8.5 shows the route of the device.

As shown by the scale on the upper right corner in Fig. 8.5, the area of this teaching building

is about 300× 200m2 and seamlessly covered by wireless network. When the mobile device is

moving, it has to hand-off frequently between different Wifi access points(AP). We state that the

time interval of switching from one AP to the next is decided by some factors, e.g. the moving

velocity of the device, the idle capacity of the next AP and the number of available APs near the

device. But in our experiment, we assume that this interval time is a random variable. During the

interval, the wireless network is unavailable for the mobile device. Thus the wireless network

connection between the mobile device and the server is unstable when the device is moving.

Completion of an offloaded OCR task can be divided into three phases: 1) the Android appli-

cation transmits the image from the mobile device to the server, 2) the words on the image are

recognised using the OCR engine in the server, and 3) the mobile device receives and displays

the result from the server. The Offloading Completion Time is the time needed to complete the

three steps. The same offloading task has been repeated successively while the mobile device

was moving. The results were stored in a text file in the mobile device. The memory of the

mobile phone used for caching is cleared after each task completion and reused again in the next

new task.

8.3.2 Experimental Results

In our experiment, we started from point A as shown in Fig. 8.5. For initialising the dynamic

histogram, we stayed there for five minutes. Then, we walked ten minutes to the point B. A sec-

ond chronograph is used to measure the time in the experiment. Although we cannot accurately

reached the point B on time, we guaranteed that the deviation is no more than 15 seconds. Then

we had a rest at the point B for five minutes. During the break, the mobile device connected with

an identical Wifi AP which covers the area around point B. Even when we move in the 5× 5m2

area around B, the mobile device did not hand-off to another AP. Thus, in the remaining time,
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Figure 8.5: The plan of the teaching building

the mobile device kept a reliable network connection to the server. The reason we stayed was to

observe the impact of restart on a good network connection in the offloading system.

After the break, we spent ten minutes again walking along another route back to point A as

shown by the arrow in Fig. 8.5. The total time of one walk was thirty minutes. We compared

five different restart schemes:

A: No restart.

B: Infinite offloading restart, n→∞.

C: Exclusively local restart, n = 1.

D: One offloading restart + local restart, n = 2.

E: Two offloading restart + local restart, n = 3.

For each scheme we walked along the same route for six times and summed up the results. The

throughput of the five schemes over periods of five minutes are shown in Fig. 8.6. We defined

the throughput as the number of tasks completed in each period. For each scheme, the number of

tasks completed by the original offloading (oof), the restarted offloading and the local execution

are marked individually in Fig. 8.6. Surprisingly, the experiment result shows that infinite

offloading restart is not the optimum as its throughput is less than the other three restart schemes

C, D and E. The explanation for this phenomenon is that when the mobile device is changing

Wifi AP, sometimes the hand-off process requires tens of seconds. In particular, if the next

access point has already connected to a large number of users, the new coming mobile device is

hardly assigned sufficient resources to build a stable connection. Connecting to a heavily loaded

AP means that the hand-off time may extend to several minutes. During this time, repeatedly
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Figure 8.6: Throughput of different times in a day

restarting to offload cannot speed up the task completion. Under a slow hand-off, local restart

can at least guarantee task completion.

Fig. 8.6 also demonstrates that the throughput of scheme C is lower than that of scheme D, E.

This phenomenon follows Theorem 2. in Section 4.3. However, the throughput of scheme D is

higher than that of scheme E because in practical applications successive offloading tries are not

independent. Generally, the failure of the first offloading restart indicates a high possibility of

the failure of the successive offloading restart. Here, we demonstrated the correlation between

successive restarts through our experiment, but due to its complexity we did not consider the

correlation in our theoretical analysis. In conclusion, the automated restart with one offloading

retry and one local restart is the optimal scheme to increase system performance.

8.4 Summary

In this chapter, We proposed a dynamic restart scheme for the mobile offloading system. In

this scheme, a dynamic histogram is used to track the variation of the network quality, and the

restart condition and the optimal time is estimated with the histogram. The efficiency of the

restart theory introduced in Chapter 4 is confirmed by experimental results. The experiment

shows that adaptively utilizing offloading and local restart at the right time achieves better per-

formance than always offloading.
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Chapter 9

Conclusion and Future Work

In brief, offloading is an efficient technique to overcome current constraints of mobile devices.

With migrating the heavy computation tasks to remote servers, it can not only provide a better

user-experience by accelerating the execution time but also save energy for the mobile device.

Connecting mobile terminals and remote servers, the network plays an important role in the of-

floading system. To some degree, it directly affects the performance of the offloading execution.

But smooth offloading of computation depends on a fast and stable network connection, which

guarantees seamless communication.

In this thesis, the main target has been to study the efficiency of a failure handling scheme

with restart in mobile offloading systems. Since an unstable network may cause a failure or

a long delay in the offloading task completion, restart can accelerate the recovery from failure

and reduce the task completion time. The stochastic models and iteration based mathematical

derivations are used to identify the optimal timeout for launching a restart. The performance

of the restart mechanism under different timeouts is evaluated through simulations and experi-

ments. The results indicate that launching restart at a proper moment is applicable to accelerate

the task completion and enhance the throughput of the whole system.

9.1 Conclusion

When the offloading task fails, there are two major failure handling schemes. The client may

retry offloading or restart the task using the resources in the local device instead of those in

the Cloud. The first one is a halt in the current execution state and waiting for the network

condition to satisfy the offloading requirement, then relaunching the offloading task. The other

one is as soon as the wireless connection is lost, the mobile device immediately re-executes the

pre-determined offloading task locally. However, both of the two schemes only adapt extreme

scenarios. The former one performs well when the wireless network can quickly recover to the
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demanding level. But it may waste a large amount of time for waiting if the network suffers

from a long time failure. In this case, the latter should be chosen. We have analysed the per-

formance of locally re-executing the offloaded tasks for handling connection failure in mobile

offloading, we also proposed the method to find the appropriate moment for launching the local

re-execution.

First, we introduced an experiment in Chapter 3 to illustrate the impact of unreliable network

on the completion of offloading task. Then, conditions for applying local restart and the opti-

mal timeout in order to reduce the task completion time are mathematically derived based on a

greedy method in Chapter 4. Restarting the task again at the appropriate moment can reduce its

completion time. We also proposed an adaptive restart scheme to improve the performance of

mobile offloading systems. The adaptive scheme restarts first with offloading and when the num-

ber of offloading restarts exceeds a given threshold, the task is completed locally in the mobile

device. By theoretically comparing the performance of applying different numbers of offload-

ing retries, infinite offloading restart is proved to perform best. However in practice, applying a

limited number of offloading restarts is preferred.

In the following Chapter 5, we further introduced the program engine, which is developed to

implement the offloading application between mobile devices and cloud servers.

After that, in Chapter 6, based on the structure of our offloading engine, we designed a SAN

model to simulate the execution of our engine. Simulations of the SAN model showed that

if the offloading task needs an unknown time to migrate computation through the unreliable

network connection, restarting and completing the computations locally by the mobile device

can save both time and energy. Three metrics are used to evaluate and compare the performance

of different thresholds, which control the moment for launching the local re-execution. The

threshold is identified by multiplying the offloading execution time with a percentage. The

optimal timeout fraction is found by synthetically comparing the performance under different

network conditions. The advantage of launching the local re-execution at the optimal moment

has been verified by the experiments with our engine in a practical application scenario.

As introduced in Chapter 7, we further proposed a congestion avoidance scheme for the mo-

bile offloading system by using local execution. After the offloading task suffering a long delay

and launching local restart to complete the task, the congestion avoidance scheme continuously

handle the following offloading task several times with the local computation resource of the

mobile device. A threshold is configured to control the number of local execution. After the

period of local execution, the mobile client offloads the task to the server again. We designed

a modular based system model with SAN to analyse the efficiency of this scheme. As PH dis-

tributions provide the best fitting result, we included them in the simulation by extending the

simulation tool with a specific model. Through the simulation we found that when the whole

system undertakes a heavy workload, completing offloading tasks with the local resource can ef-
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fectively mitigate the congestion in the server. According to the simulation results, we proposed

an optimized threshold of the number of local execution for the congestion avoidance scheme.

At last, in Chapter 8, we introduced a dynamic restart scheme to improve the performance of

the mobile offloading system. In this scheme, a dynamic histogram is used to track the variation

of the network quality, and the restart condition and the optimal time is estimated with the

histogram. The experiment results confirm that restarting the offloading task again locally in the

mobile device at the appropriate moment can reduce its completion time in some cases.

9.2 Future Work

The main goal of utilizing the restart mechanism is to quickly recover the system from the

state of failure or degraded performance. Although multiple techniques and algorithms have

been proposed, considering the specific environment of mobile offloading system, it is expected

to investigate the following question:

(1) Since the mobile client is still a thin device with limited computation resource, the over-

head of restart should be estimated before the implementation. As we have proposed in Chapter

8, the dynamic restart scheme needs to collect the data of the task completion time constantly,

and then evaluates the restart benefit and calculate the optimal launching time. For the mobile

client, this could be a heavy task to complete the preparation work itself. To some degree, the

merit of quickly recovery could be offset by the overhead of restart. Pursuing an efficient method

to accurately predict the overhead is important to evaluate the performance of restart in a more

convincing manner.

(2) Another key component in our dynamic restart scheme is the distribution of the task com-

pletion time. The restart prerequisite and the optimal launching time is calculated through a

proximate estimator of the probability density function. The equal width histogram used in our

scheme is a simple but easily implemented method. Finding a more accurate and fast estima-

tor for the distribution can reduce the response time of the restart scheme. The equal depth

histogram is a potential option.

(3) As the distribution of the task completion time is not constant over time, a dynamic his-

togram is used to follow the change. A more efficient method to track the update of the histogram

is worth to study. In addition, the update frequency is also a important issue in designing the

tracking method. In our dynamic mechanism as introduced in Section 8.1, we check and update

the histogram every time when the new sample arrives. This update rate may be too high for a

relative stable distribution and it also brings a high cost of execution. Two optimized alterna-

tives could be considered: 1). Calculating through a given algorithm to set a reasonable interval,

after collecting a sufficient number of samples in this interval, the histogram is updated. 2.)

According to the distance between the value of new samples and the mean of previous samples,
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the update rate is changed accordingly. When the distance is wide enough, the update rate is

increased, otherwise maintain the same rate. If the distances of several successive new samples

stay in a low level, the update rate is decreased.

(4) The stochastic models for the mobile offloading system can also be improved by including

more information. In our models, we considered all the mobile clients are all the same. As

restricted by the limited computation resource, we accelerated the simulation by simply config-

uring all the mobile clients with identical parameters. But in the real scenario, the behaviours

of these mobile clients are quite diversity. The behaviour is affected by several factors, such as

the processing rate and power consumption of the micro-processor, the network quality and the

interaction between the device and the user. For better understanding the impact of the diverse

behaviours of the clients on the mobile offloading system, a more precise and sophisticated sys-

tem model needs to be designed. This model should be able to represent the specific action of

the individual client in the simulation.

(5) SAN models used in this thesis are static models. Although the parameters configured

in the models are calculated from practical experiment results, they are captured by analysing

the offline data. A more functional dynamic model is expected, which can predict the system

performance at run time. As the continued improvement of hardware technology, for example

producing processors with memristor, the performance of mobile devices and servers can be

monitored and analysed at run time. That also provides the capability to update the parameters

of the model with the online data. Then, the dynamic model can quickly configure these real-

time parameters and produce the simulation result within a short period.

(6) For all Information Technology and Communication (ITC) systems, energy consumption

is considered more and more important. As introduced in [14], the energy-related costs amount

to 42% of the total budget. Reducing the energy consumption of ITC systems not only saves

money for enterprises, but also helps the environment. Because the green house gases emission

is positively correlated with the power consumption. For a long time, people mainly focused on

the power consumption of large computer system. The energy wasted by the tiny mobile devices

has been neglected. At present, more and more applications installed in the mobile device run

the background service permanently. In this way, the battery can normally sustain at most one

or two days. Assume that every week users have to add one more charge for the mobile device,

and one charge consumes 5×10−3kWh, 200 million global mobile users will consume 106kWh

more energy every week. Therefore, we have to seriously consider the energy consumption

when implementing the restart mechanism into the mobile offloading system.
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Appendix A

Verification Experiment

In order to verify the accuracy of the fitting method introduced in Section 3.2.2, we conducted

a similar experiment with the offloading test bed again. The same offloading task of recognising

the image Fig. 3.1 has been repeated over a 2-hour period starting at 6pm on 22nd October 2014.

Fig. A.1 shows a scatter plot of the data of 1199 samples in this period. The majority of the

samples fall into the range between 3871ms and 6859ms, corresponding to the 0.02 and 0.82

quantile of all the samples. Fig. A.2 shows the histogram and density function of the samples in

Fig. A.1.

The parameter results and the error measurements are shown in Table A.1. Compared with

Table 3.3, the errors of fitting result in these two tables are at the same level. It proves the

cluster-based fitting algorithm with PH distribution is efficient to reflect the distribution function

of task completion time in the mobile offloading system. And the error of fitting results is kept

in an acceptable range.

Table A.1: Hyper-Erlang parameters
T omin 3464

Phase-Type Distribution

m 6 5 2 4

λ* 6.1544 2.1843 0.0967 0.925324

α 0.4958 0.2932 0.0663 0.1447

Error Measurement

4f : 0.1934 e1 : 0.082

* ×10−3
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Figure A.1: Scatter plot of the OCR samples

Figure A.2: Histogram and PH result of the OCR samples
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