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Unifying finite-temperature dynamical and excited-state quantum phase transitions
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In recent years, various notions of dynamical phase transitions have emerged to describe far-from-equilibrium
criticality. A unifying framework connecting these different concepts is still missing, and would provide
significant progress toward understanding far-from-equilibrium quantum many-body universality. Initializing
our system in a thermal ensemble and subsequently performing quantum quenches in the Lipkin-Meshkov-Glick
model, we establish a direct connection between excited-state quantum phase transitions (ESQPTs) and two
major types of dynamical phase transitions (DPTs), by relating the phases of the latter to the critical energies and
conservation laws in the former. Our work provides further insight into how various concepts of non-ground-state
criticality are intimately connected, paving the way for a unified framework of far-from-equilibrium universality.
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I. INTRODUCTION

Phase transitions and critical phenomena, along with
the resulting features of universality and scaling, are well-
understood concepts in equilibrium. In a far-from-equilibrium
setting, a unified framework of these notions is still missing.
The pursuit of an overarching theory of far-from-equilibrium
quantum many-body criticality has recently led to different
concepts of nonequilibrium phase transitions [1,2]. The first
one is related to the dynamics of the equilibrium Landau order
parameter, which is connected to the spontaneous breaking
of a global symmetry in the ground state [3]. Upon quench-
ing a given symmetry-broken initial state, if the long-time
steady state exhibits a nonzero (zero) order parameter, then
the system is in a symmetry-broken (symmetry-preserved)
dynamical phase [4,5]. The value of the quench parame-
ter separating these two phases is the dynamical quantum
critical point. This type of dynamical phase transition has
been dubbed DPT-I, and has been studied in various sys-
tems, including mean-field models [6–14], the Hubbard model
[15–17], the O(N ) model [18–22], and long-range quantum
spin chains [23,24], among others [25–27].
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Another approach to dynamical criticality encompasses the
construction of a dynamical analog of the thermal free energy.
This becomes straightforward when recognizing the overlap
of the time-evolved wave function with the initial state as
a boundary partition function where evolution time stands
for a complex inverse temperature [28–30]. By taking the
negative of the logarithm of this overlap in the thermodynamic
limit, one obtains the return rate, which is the sought-after
dynamical analog of the thermal free energy. Nonanalyticities
in the return rate are thus dynamical quantum phase transitions
(DQPTs) at critical evolution times. DQPTs are also referred
to as DPT-II, and have been extensively studied in noninte-
grable short-range quantum spin systems [31–33], long-range
quantum many-body models [8,9,12,13,24,34–40], topologi-
cal systems [41–49], higher-dimensional models [42,50–56],
systems initialized in thermal ensembles [10,11,57–60], high-
energy models known as lattice gauge theories [61–70],
non-Hermitian systems [71–76], short-range interacting sys-
tems with broken time-translation symmetry [77,78], and
disordered models [79,80]. Furthermore, they have been the
subject of several successful experiments [81–83].

A different source of criticality beyond the ground state is
given by excited-state quantum phase transitions (ESQPTs)
[84,85]. They consist in a generalization of quantum phase
transitions to excited states, typically manifested as a singular-
ity of the density of states and the level flow. Notwithstanding,
the main consequences are dynamical, like huge decoherence
[86,87], singularities in quench dynamics [88–92], feedback
control in dissipative systems [93], quantum work statistics
[94], symmetry-breaking equilibrium states [95,96], dynami-
cal instabilities [97], irreversibility without energy dissipation
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[98], and reversible quantum information spreading [99]. It
has been recently shown that they may give rise to a phase
diagram composed by different dynamical phases, each one
characterized by a set of (generally noncommuting) constants
of motion [12,13,100].

A pertinent question is how these different concepts of
nonequilibrium quantum phase transitions are related to one
another. When it comes to DPT-I and DPT-II, a connection has
been established between the phase of the former and the type
of the latter [9]: Starting in a symmetry-broken initial state,
if the long-time steady state breaks (preserves) the global
symmetry of the quench Hamiltonian, then the DPT-II will be
of the anomalous (regular) type. This connection also persists
at finite temperature [10,11]. This potentially allows drawing
connections between far-from-equilibrium critical exponents
arising in both these DPTs [101,102]. Nevertheless, the con-
nection between ESQPTs and DPTs, in particular at finite
temperature, is still ambiguous. Given the potential of under-
standing DPT criticality from that of ESQPTs, it is therefore
important to investigate if a direct connection exists. This is
the purpose of this Letter.

II. MODEL

Although our arguments are general, we chose a collective
model, allowing us to reach large system sizes, as an illustra-
tion. It is the transverse-field Ising model with infinite-range
interactions, which coincides with a version of the Lipkin-
Meshkov-Glick (LMG) Hamiltonian [103–105],

Ĥ = − λ

N
Ĵ2

x + hĴz. (1)

The total collective spin operator commutes with the Hamilto-
nian, [Ĥ, J2] = 0, allowing us to separate spin sectors labeled
by the eigenvalues of J2, j( j + 1), the dimension of each
being D( j) = 2 j + 1. Hamiltonian (1) also has a discrete Z2

symmetry generated by a π rotation around the z axis. In each
j sector it is represented by a parity operator, �̂ = eiπ (Ĵz+ j),
which allows to classify the Hamiltonian eigenstates accord-
ing to �̂|En,±〉 = ±|En,±〉, n = 0, 1, . . . .

The full model displays two critical phenomena. At λc =
λ there is a quantum phase transition (QPT): for λ > λc the
ground state is ferromagnetic and the symmetry generated by
�̂ is broken; for λ < λc the ground state is symmetric. In the
first case, there exists also a thermal phase transition with a
critical inverse temperature given by βc = 2h−1arctanh(h/λ);
at lower temperatures, the system is ferromagnetic, and the Z2

symmetry is broken.
To make a connection between these facts and ESQPTs

and DPTs, we work with all j sectors, j = 0, 1, ..., N/2,
each with a degeneracy factor of g(N, j) = 1+2 j

1+ j+N/2

( N
N/2− j

)
, so∑N/2

j=0 g(N, j)D( j) = 2N . As noted in [106] for a similar fully
connected model, each j sector is completely independent of
the others, and therefore it can be described by Hamiltonian
(1) with an effective coupling constant given by λeff = 2 jλ/N .
This means that each j sector has its own critical points.
For the QPT, it is λc( j) = hN/(2 j). Thus, above the critical
point for the global QPT, λc = h, some of the j sectors are
in the ferromagnetic ground-state phase, and some others are

in the paramagnetic ground-state phase; they are separated at
critical value jc(λ) = Nh/(2λ). If j > jc, the corresponding
sector is in the ferromagnetic phase, and the opposite occurs if
j < jc. This argument is important to understand the behavior
of ESQPTs.

(i) If λ < λc, all the j sectors are in the paramagnetic phase.
Therefore, there are no critical energies and their ground-state
energies are εGS( j) = −2h j/N , where ε = 2E/N .

(ii) If λ > λc, the behavior is more involved;
(a) If j > jc(λ), the j sector is in the ferromagnetic ground-

state phase. Therefore, it has a critical energy below which all
its energy levels are pairwise degenerate in the infinite-size
limit. This is the ESQPT energy:

εc( j) = −2h j

N
. (2)

The corresponding ground-state energy is

εGS( j) = −
[

2λ

(
j

N

)2

+ h2

2λ

]
. (3)

Note that Eqs. (2) and (3) coincide if j = jc, εc( jc) = −h2/λ.
(b) If j < jc, the sector is in the paramagnetic phase.

Therefore, none of its eigenlevels are degenerate, with a
ground-state energy of εGS( j) = −2h j/N .

The main consequence of these facts is that we can define
two critical energies for the full Hamiltonian, εc1 = −h and
εc2 = −h2/λ > εc1. If ε < εc1, all the energy levels are de-
generate in pairs; and if εc1 � ε < εc2, pairwise degenerate
and nondegenerate energy occur simultaneously. Above εc2,
there are no degeneracies.

III. EQUIVALENCE OF ESQPTS AND DPTS

All these features refer to static or equilibrium properties
of the LMG Hamiltonian. However, DPTs are nonequilibrium
phenomena. To establish a link between them, we focus on a
dynamical property of a class of ESQPTs. In Refs. [12,13,100]
it is shown that for a wide class of models to which the LMG
belongs, there are two additional constants of motion below
the critical energy of the ESQPT related to the order parameter
of the QPT and the operator generating the Z2 symmetry:
Ĉ = sign(Ĵx ) and K̂ = (i/2)[Ĉ, �̂]. Thus, if a nonequilibrium
protocol leads the system into an energy region below the
ESQPT, then the dynamics is restricted by the conservation of
Ĉ and K̂. As a consequence, quenching an initial symmetry-
breaking state polarized along the ferromagnetic axis cannot
lead the order parameter 〈Ĵx〉 to change sign in its dynamics.
On the contrary, there are no restrictions if the energy is above
the ESQPT. These dynamical features are also expected for
noncollective models with an equilibrium symmetry-breaking
phase [13,107].

From these facts, we propose the main conclusion of this
Letter: there are only two possible dynamical phases (DPs)
starting from an equilibrium symmetry-breaking initial state:

DPa. A constant value for Ĉ and K̂, together with the order
parameter 〈Ĵx〉 oscillating around a nonzero value, without
changing sign.
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FIG. 1. (a)–(d) Density of states for the LMG model with N =
10 000 particles and parameters h = 0.1, λ = 0.5. Each panel cor-
responds to the level density as obtained for a given j sector.
(a) j = N/2 = 5000, (b) j = 4500, (c) j = 4000, (d) j = 3000. The
eigenvalues are rescaled as ε = 2E/N . Black vertical lines mark
the ESQPT critical energy of each j sector (2). (e) Expectation
value of Ĉ in states of different parity as a function of energy.
Model parameters are h = 0.1, λ = 0.5, with N as indicated in the
panel. Dashed vertical lines mark the energies ε = −h = −0.1 and
ε = −h2/λ = −0.02. Points represent an average over a small en-
ergy window containing all j sectors, and with the corresponding
degeneracy factors g(N, j) appropriately taken into account.

DPb. Both Ĉ, K̂, and 〈Ĵx〉 oscillating around zero. These
two dynamical phases are separated by the critical energy of
the ESQPT.

To illustrate this picture, we show in Fig. 1 the density of
states for λ = 0.5, h = 0.1, and different values of j. All of
them verify j > jc(λ), and therefore exhibit ESQPTs. It is
clearly seen that the corresponding critical energy, identified
by the logarithmic divergence in the density of states, shifts to
lower energies as j is increased. This means that the populated
sectors of j play a fundamental role in the dynamics. Let us
suppose that we prepare a state with ε = −0.07. This value
is above the critical energy of panels (a)–(c), and below the
one on panel (d). If the expectation value of J2 in our state,
which is a conserved quantity, is narrowly picked around
j/N > 0.35, then neither Ĉ nor K̂ are constants, and there-
fore the order parameter 〈Jx〉 must oscillate around zero. On
the contrary, from Eqs. (2) and (3), we can conclude that if√

0.06 < j/N < 0.35, then both Ĉ and K̂ are constant, and
therefore 〈Ĵx〉 cannot cross 〈Ĵx〉 = 0.

In Fig. 1(e) we represent the consequences of the previous
facts for the full Hamiltonian. As discussed in [100], the
constancy of Ĉ requires that 〈εn,−|Ĉ|εn,+〉 = ±1 for degen-
erate energy levels εn,− = εn,+. The results indicate that this
is globally fulfilled if ε < εc2 in the thermodynamic limit.
The reason is that, the lower the value of j, the larger the
degeneracy factor, g(N, j); therefore, only the lowest possible

value of j, which gives rise to the highest critical energy εc( j),
contributes to the dynamics of Ĉ in the thermodynamic limit.
Therefore, we can expect symmetry-broken thermal states if
ε < εc2, whose associated temperature is below the critical
temperature of the phase transition, T < Tc. However, this
is not enough to determine the dynamics of a thermal state
subjected to a nonequilibrium process. As Ĵ2 is conserved,
the population of each j sector must be taken into account to
determine whether the final state is above or below the critical
energies of the corresponding ESQPTs. It is worth noting
that the same qualitative result shown in Fig. 1(e) has been
observed in the transverse-field Ising model with long-range
interactions [13], in which Ĵ2 is not conserved. Hence, the
same classification in two dynamical phases is expected for
noncollective models.

To test our hypothesis, we have performed a set of numeri-
cal experiments on the LMG model. In all of them, we prepare
an initial state in the ferromagnetic phase, with ε < εc1. As Ĵ2,
�̂, Ĉ, K̂ are conserved under these circumstances, the most
general equilibrium state is

ρ̂ = 1

Z
e−βĤ−μcĈ−μkK̂−μπ �̂−μ j Ĵ2

, (4)

where Z is the partition function ensuring that Tr[ρ̂] = 1, and
μc, μk , μπ , μ j ∈ R are free parameters linked to the initial
values of 〈Ĉ〉, 〈K̂〉, 〈�̂〉, and 〈Ĵ2〉. To study the dynamics, we
start from an initial state ρ̂i of the form (4) with μk = μπ =
μ j = 0, μc = 100, and β = 5, though our conclusions also
hold for other values (see the Appendix). The initial Hamil-
tonian, Ĥi, has parameters λ = 0.5 and hi = 0. This choice
gives rise to a polarized thermal state, with 〈Ĵx〉 < 0. We then
quench the initial state with a final Hamiltonian, Ĥf , with dif-
ferent h f = 0.1, 0.15, 0.2, 0.3 and λ = 0.5. The time-evolved
density operator at time t is ρ̂ f (t ) = e−iĤ f t ρ̂ieiĤ f t . Since Ĵ2

is conserved by Eq. (1), the distribution P( j) of populated j
sectors remains unchanged in the wake of the quench. The
dynamics will be dominated by j sectors with large P( j).

Figure 2 illustrates the dynamical effects of these
quenches. We focus first on the largest system size, N = 1600.
For h f = 0.1 and h f = 0.15, the average quench energy is
below the critical energy of the most-populated j sector. We
can see that 〈Ĵx〉 oscillates around a nonzero value (note that
the larger the system, the longer the oscillating behavior re-
mains), and 〈Ĉ〉 is perfectly constant; therefore, the system is
in the dynamical phase DPa. On the contrary, for h f = 0.2
and h f = 0.3 the average quench energy is above the critical
one, and the dynamics is consistent with the dynamical phase
DPb: both 〈Ĵx〉 and 〈Ĉ〉 oscillate around zero. It is worth to
remark that the critical quench separating regular and anoma-
lous DPTs-II is given by hc

f ≈ 0.1776 [10]. Therefore, our
numerical results show that DPa leads to anomalous DPTs-II,
and DPb to regular ones.

Notwithstanding, the picture is not so clear for smaller
system sizes. For h f = 0.15 and N = 100, 200, 400, and 800,
〈Ĵx〉 oscillates around a nonzero value, but 〈Ĉ〉 is clearly not
constant. To explain this behavior and to understand what
is expected to occur in the thermodynamic limit (TL), we
perform a finite-size scaling. Results are given in Table I.
We focus there on two quantities: the energy width, σε =
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FIG. 2. Instantaneous values of the magnetization, Ĵx , (left), and
the Ĉ operator, (right), following different quenches with β = 5,
λ = 0.5 and hi = 0. (a1,2) hf = 0.1; (b1,2) hf = 0.15; (c1,2) hf =
0.2; (d1,2) hf = 0.3. System sizes are N = 100, 200, 400, 800, 1600
from light to dark color curves. In all the cases, 〈ε〉 = −0.126
and the critical energies for the most populated j-sector, given by
Eq. (2), are: (a1,2) εc( jmax) = −0.0711, (b1,2) εc( jmax) = −0.107,
(c1,2) εc( jmax) = −0.142, (d1,2) εc( jmax) = −0.213.

√
〈Ĥ2〉 − 〈Ĥ〉2, and a range of critical energies obtained from

the population of the different j sectors (see caption for de-
tails). The key point is the overlap between these two intervals.
For a nonempty overlap, we expect a mixture of DPa and DPb.
For those sectors in which 〈ε〉 j < εc( j), 〈Ĉ〉 j is constant, and
〈Ĵx〉 j oscillates around a nonzero value [〈•〉 j stands for the
expectation value of an observable in the projection of the
state onto the eigenspace in which Ĵ2 is equal to j( j + 1)].
And for those sectors in which 〈ε〉 j > εc( j), both 〈Ĉ〉 j and

TABLE I. Average energy, 〈ε〉, width σε and estimated maximal
and minimal critical energies corresponding to the minimum and
maximum j-sectors, respectively, with a cumulative probability of
95%, as a function of the system size N for the quench hi = 0 →
hf = 0.15, λ = 0.5.

N 〈ε〉 ± σε [εc,min, εc,max]

100 −0.120 ± 0.041 [−0.135, −0.057]
200 −0.124 ± 0.028 [−0.1275, −0.078]
400 −0.125 ± 0.020 [−0.1223, −0.08775]
800 −0.126 ± 0.014 [−0.1178, −0.09375]
1600 −0.1259 ± 0.0097 [−0.1146, −0.09769]

〈Ĵx〉 j oscillate around zero. Therefore, when putting together
all the j sectors, we obtain the intermediate picture observed
for h f = 0.15 and N = 100, 200, 400, and 800. On the con-
trary, if the intervals do not overlap, the dynamical phases are
either DPa or DPb.

To extrapolate these result to the TL, we study how
the energy width and the range of critical energies change
with system size. A least-squares fit of the data shown
in Table I provides σε ∝ N−0.516(5) and |εc,max − εc,min| ∝
N−0.54(2). This means that the only possible nonequilibrium
dynamics in the TL is either DPa or DPb, and that an initial
state gives rise to either one or the other depending on whether
its average quench energy is below or above the critical energy
of the ESQPT.

IV. DISCUSSION AND OUTLOOK

Through analytic arguments and numerical simulations,
we have shown that ESQPTs and two major types of DPTs
have a direct connection to each other in the LMG model.
When the quench energy is below (above) the ESQPT critical
points, the long-time steady-state falls in the ferromagnetic
(paramagnetic) phase of DPT-I. Given that DPT-I and DPT-II
have been shown to be directly connected to each other in the
LMG model [9,10], this means that ESQPTs are also directly
connected to DPT-II.

Demonstrating such a direct connection between ESQPTs
and DPTs provides evidence that varying concepts of critical-
ity beyond that of the ground state may be intimately related.
This is promising in the pursuit of an overarching framework
for far-from-equilibrium quantum many-body universality.

Our conclusions should be valid in other mean-field models
where large enough system sizes are accessible in order to
faithfully probe criticality. An interesting question is whether
our findings also hold for nonintegrable models where access
to the full spectrum is only possible for small system sizes
that cannot reasonably discern criticality. This makes it hard to
adequately study ESQPTs in such systems, although a direct
connection between DPT-I and DPT-II is well established in
them [108].

Another interesting venue for future work entails connect-
ing the critical exponents extracted from ESQPTs and DPTs.
For example, it is known that DPT-I and DPT-II have seem-
ingly disparate critical exponents, but since both DPTs have
been shown to coincide [10,108], it is likely that their critical
exponents have a direct relation.

TABLE II. Average energy, 〈ε〉, of the quenched state hi = 0 →
hf , for different values of hf , and estimated maximal and minimal
critical energies corresponding to the minimum and maximum j
sectors, respectively, with a cumulative probability of 95%. System
size is N = 1600 and β = 10.

Quench 〈ε〉 [εc,min, εc,max]

hf = 0.2 −0.2430 ± 0.0063 [−0.1988, −0.1955]
hf = 0.24 −0.2430 ± 0.0063 [−0.2385, −0.2346]
hf = 0.26 −0.2430 ± 0.0063 [−0.2584, −0.2542]
hf = 0.3 −0.2430 ± 0.0063 [−0.2981, −0.2933]
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FIG. 3. Instantaneous values of the magnetization, Ĵx , (left),
and the Ĉ operator, (right), following different quenches with
β = 10, λ = 0.5, and hi = 0. (a1,2) hf = 0.2; (b1,2) hf =
0.24; (c1,2) hf = 0.26; (d1,2) hf = 0.3. System sizes are N =
100, 200, 400, 800, 1600 from light to dark color curves. The critical
hc

f ≈ 0.2464.
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TABLE III. Average energy, 〈ε〉, of the quenched state hi = 0 →
hf , for different values of hf , and estimated maximal and minimal
critical energies corresponding to the minimum and maximum j
sectors, respectively, with a cumulative probability of 95%. System
size is N = 1600 and β = 7.

Quench 〈ε〉 [εc,min, εc,max]

hf = 0.15 −0.2136 ± 0.0094 [−0.1418, −0.1354]
hf = 0.21 −0.2136 ± 0.0094 [−0.1985, −0.1895]
hf = 0.26 −0.2136 ± 0.0094 [−0.2457, −0.2347]
hf = 0.33 −0.2136 ± 0.0094 [−0.3119, −0.2978]

TABLE IV. Average energy, 〈ε〉, of the quenched state hi = 0 →
hf , for different values of hf , and estimated maximal and minimal
critical energies corresponding to the minimum and maximum j
sectors, respectively, with a cumulative probability of 95%. System
size is N = 1600 and β = 4.5.

Quench 〈ε〉 [εc,min, εc,max]

hf = 0.08 −0.07522 ± 0.01108 [−0.0507, −0.0363]
hf = 0.12 −0.07522 ± 0.01108 [−0.07605, −0.0545]
hf = 0.15 −0.07522 ± 0.01108 [−0.09506, −0.06806]
hf = 0.18 −0.07522 ± 0.01108 [−0.1141, −0.08168]

APPENDIX: ADDITIONAL NUMERICAL RESULTS

Here we show the quench dynamics generated by initial
states with inverse temperatures β and h f different from
those in the main text. The qualitative picture for β =
10, 7, and 4.5 in Figs. 3–5 is essentially the same as in Fig. 2.
As an exception to this behavior, in Fig. 6 we focus on β =
3.5 < βc, for which the time evolution of the relevant observ-
ables always oscillates around zero, irrespective of h f . This
is because for β < βc, the most populated j-sector is always
below the critical jc, and therefore there is no ESQPT critical
energy. As such, this does not contradict our conclusions,
but rather reinforces them, because also for β < βc there is

FIG. 4. Instantaneous values of the magnetization, Ĵx , (left),
and the Ĉ operator, (right), following different quenches with
β = 7, λ = 0.5, and hi = 0. (a1,2) hf = 0.15; (b1,2) hf =
0.21; (c1,2) hf = 0.26; (d1,2) hf = 0.33. System sizes are N =
100, 200, 400, 800, 1600 from light to dark color curves. The critical
hc

f ≈ 0.2311.
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FIG. 5. Instantaneous values of the magnetization, Ĵx , (left),
and the Ĉ operator, (right), following different quenches with
β = 4.5, λ = 0.5, and hi = 0. (a1,2) hf = 0.08; (b1,2) hf =
0.12; (c1,2) hf = 0.15; (d1,2) hf = 0.18. System sizes are N =
100, 200, 400, 800, 1600 from light to dark color curves. The critical
hc

f ≈ 0.1378.

no DPT for quenches in h. Tables II, III, and IV compare
the average energy of the quenched state with the range of
ESQPT critical energies associated to the 95% most populated
j sectors in the final Hamiltonian. Note that for the quench

FIG. 6. Instantaneous values of the magnetization, Ĵx , (left), and
the Ĉ operator, (right), following different quenches with β = 3.5,
λ = 0.5, and hi = 0. (a1,2) hf = 0.1; (b1,2) hf = 0.15; (c1,2) hf =
0.2; (d1,2) hf = 0.3. System sizes are N = 100, 200, 400, 800, 1600
from light to dark color curves. Note that as N increases, the oscil-
lation in 〈Ĵx (t )〉 gives an average value that approaches zero. Since
our state is prepared with hi = 0, in the infinite-N limit, the magne-
tization should vanish at all times. Finite-size deviations from this
limiting behavior are expected.

where β < βc, Fig. 6 has no corresponding table as there is no
ESQPT critical energy.
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[8] B. žunkovič, A. Silva, and M. Fabrizio, Dynamical phase
transitions and Loschmidt echo in the infinite-range xy model,
Philos. Trans. R. Soc. A 374, 20150160 (2016).

[9] I. Homrighausen, N. O. Abeling, V. Zauner-Stauber, and
J. C. Halimeh, Anomalous dynamical phase in quantum spin
chains with long-range interactions, Phys. Rev. B 96, 104436
(2017).

[10] J. Lang, B. Frank, and J. C. Halimeh, Concurrence of dy-
namical phase transitions at finite temperature in the fully
connected transverse-field Ising model, Phys. Rev. B 97,
174401 (2018).

[11] J. Lang, B. Frank, and J. C. Halimeh, Dynamical quantum
phase transitions: A geometric picture, Phys. Rev. Lett. 121,
130603 (2018).

043080-6

https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevLett.100.175702
https://doi.org/10.1103/PhysRevLett.100.120404
https://doi.org/10.1103/PhysRevLett.105.220401
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1098/rsta.2015.0160
https://doi.org/10.1103/PhysRevB.96.104436
https://doi.org/10.1103/PhysRevB.97.174401
https://doi.org/10.1103/PhysRevLett.121.130603


UNIFYING FINITE-TEMPERATURE DYNAMICAL AND … PHYSICAL REVIEW RESEARCH 6, 043080 (2024)

[12] Á. L. Corps and A. Relaño, Dynamical and excited-state quan-
tum phase transitions in collective systems, Phys. Rev. B 106,
024311 (2022).

[13] Á. L. Corps and A. Relaño, Theory of dynamical phase transi-
tions in quantum systems with symmetry-breaking eigenstates,
Phys. Rev. Lett. 130, 100402 (2023).

[14] Á. L. Corps, P. Pérez-Fernández, and A. Relaño, Relaxation
time as a control parameter for exploring dynamical phase
diagrams, Phys. Rev. B 108, 174305 (2023).

[15] M. Eckstein, M. Kollar, and P. Werner, Thermalization after
an interaction quench in the Hubbard model, Phys. Rev. Lett.
103, 056403 (2009).

[16] M. Moeckel and S. Kehrein, Crossover from adiabatic to
sudden interaction quenches in the Hubbard model: Prether-
malization and non-equilibrium dynamics, New J. Phys. 12,
055016 (2010).

[17] N. Tsuji, M. Eckstein, and P. Werner, Nonthermal antiferro-
magnetic order and nonequilibrium criticality in the Hubbard
model, Phys. Rev. Lett. 110, 136404 (2013).

[18] A. Chandran, A. Nanduri, S. S. Gubser, and S. L. Sondhi,
Equilibration and coarsening in the quantum o(n) model at
infinite n, Phys. Rev. B 88, 024306 (2013).

[19] A. Maraga, A. Chiocchetta, A. Mitra, and A. Gambassi, Aging
and coarsening in isolated quantum systems after a quench:
Exact results for the quantum O(n) model with n → ∞,
Phys. Rev. E 92, 042151 (2015).

[20] P. Smacchia, M. Knap, E. Demler, and A. Silva, Exploring dy-
namical phase transitions and prethermalization with quantum
noise of excitations, Phys. Rev. B 91, 205136 (2015).

[21] A. Chiocchetta, A. Gambassi, S. Diehl, and J. Marino, Dynam-
ical crossovers in prethermal critical states, Phys. Rev. Lett.
118, 135701 (2017).

[22] J. C. Halimeh and M. F. Maghrebi, Quantum aging and
dynamical universality in the long-range o(n → ∞) model,
Phys. Rev. E 103, 052142 (2021).

[23] J. C. Halimeh, V. Zauner-Stauber, I. P. McCulloch, I. de Vega,
U. Schollwöck, and M. Kastner, Prethermalization and per-
sistent order in the absence of a thermal phase transition,
Phys. Rev. B 95, 024302 (2017).
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