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We introduce a class of quantum non-Markovian processes—dubbed process trees—that exhibit
polynomially decaying temporal correlations and memory distributed across timescales. This class of
processes is described by a tensor network with treelike geometry whose component tensors are
(1) causality-preserving maps (superprocesses) and (2) locality-preserving temporal change-of-scale
transformations. We show that the long-range correlations in this class of processes tends to originate
almost entirely from memory effects and can accommodate genuinely quantum power-law correlations in
time. Importantly, this class allows efficient computation of multitime correlation functions. To showcase
the potential utility of this model-agnostic class for numerical simulation of physical models, we show how
it can efficiently approximate the strong memory dynamics of the paradigmatic spin-boson model, in terms
of arbitrary multitime features. In contrast to an equivalently costly matrix-product-operator representation,
the ansatz produces a fiducial characterization of the relevant physics. Finally, leveraging 2D tensor-
network renormalization-group methods, we detail an algorithm for deriving a process tree from an
underlying Hamiltonian via the Feynmann-Vernon influence functional. Our work lays the foundation for
the development of more efficient numerical techniques in the field of strongly interacting open quantum
systems, as well as the theoretical development of a temporal renormalization-group scheme.
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I. INTRODUCTION

Correlations and complexity are intimately intertwined.
It is generally the case that for simple, ordered systems,
correlations are easy to model. On the other hand, although
chaotic systems can become highly correlated across large
space and timescales, the correlations between local
degrees of freedom can often be simply described using
the tools of statistical mechanics [1–3]. Somewhere
between these two extremes lies the interesting case which
can be difficult to model: complex dynamics [4–7]. A
characteristic feature of complex systems is long-range
correlations—a power-law spectrum or 1=f noise [8]. This
complexity property is ubiquitous across fields of science,
from criticality in condensed-matter physics [9,10] and

random networks [11,12] to characteristics of the human
brain [13] and DNA sequences [14,15].
A central challenge in modern physics is isolating the

key properties of correlated quantum systems, taming
complex systems into their essential physics. For instance,
numerical techniques based on tensor networks, such as
tree tensor networks (TTNs) [16–19] and the multiscale
entanglement renormalization ansatz (MERA) [20,21],
have constituted groundbreaking progress in the develop-
ment of quantum many-body physics, accurately modeling
critical states, such as ground states of gapless
Hamiltonians. As it stands, no such equivalent exists in
the dynamical setting. However, quantum combs [22] and
process tensors [23,24] provide a natural framework to
study multitime processes by mapping them to many-body
states. But even equipped with these space-time dualities,
the translation of the aforementioned tensor network results
in the temporal (or spatiotemporal [25]) regime being
highly nontrivial. In open dynamical systems, temporal
correlations can be mediated by a strongly interacting, but
inaccessible, bath. The resulting model is hence both mixed
and subject to causal order requirements. That is to say,
correlations are carried forward in time by an external bath,
not just via the system itself. As a result, there is a glaring
gap in the description of open quantum systems with
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power-law temporal correlations, such as in spin-boson
models [26,27], Floquet time crystals [28], and open solid-
state systems subject to complex noise [29]. Such cases
constitute monumental simulation challenges, with (at
worst) exponential growth in both the spatial and temporal
degrees of freedom.
In this work, we are concerned with addressing this gap.

Specifically, we build a class of quantum non-Markovian
processes to efficiently represent processes that exhibit
strong and slowly (polynomially) decaying temporal cor-
relations. We then apply our methods to a prototypical
model, the spin-boson model, to showcase their high
efficacy over usual multitime models.
A key lesson from tensor-network theory is that the

geometry of a tensor-network limits the structure and scaling
of correlations in the many-body state it represents [30]. For
instance, a matrix product state (MPS), which has a linear
geometry, generally exhibits exponentially decaying
correlations [31,32]. Meanwhile, TTNs and MERA, both
of which are hierarchical tensor networks extending to a
hyperbolic geometry, naturally accommodate polynomially
decaying spatial correlations. Our class of models takes
inspiration from the TTN structure, and we hence refer to
themas process trees. Their general form is depicted in Fig. 1.
A key result in this paper is showing that process trees
generically exhibit power-law decay for temporal correla-
tions and non-Markovianity. That is, beyond a direct power-
law correlation on some system of interest, the memory as
mediated by an inaccessible bath has an influence on the
system that also decays slowly. Moreover, process trees can
compute correlations between time-local operators with
polynomial cost, making the analysis efficient. We substan-
tiate these claims with a series of analytic results and
numerical calculations. Although we take inspiration from
the spatial TTN geometry, the analogy ends there as the
internal structures of the process tree are quite different,
stemming from temporal causality constraints.
While the process tree is designed to capture a specific

structure of temporal correlations, it is not a priori obvious
that this implies it is relevant to real physics. In light of this,
we showcase how these characteristics may be applied to
the study of relevant physical systems by demonstrating
that the ansatz can be used to faithfully represent the spin-
boson model across a critical phase transition of
Berezinskii-Kosterlitz-Thouless (BKT) type [26,27,33].
This system models physically relevant impurity setups,
and generally exhibits long-range temporal correlations. In
fact, the bond dimension of the approximate influence
matrix for the Ohmic spin-boson model can be shown to
have polynomially growing bond dimension [34] character-
istic of critical (power-law) temporal correlations. We take
a variational ansatz for the process tree and fit it to the true
spin-boson model with an optimization approach. That the
tree fits well is in contrast to taking a matrix-product-
operator (MPO) fit—with a greater number of free

parameters—which is much less capable of describing
the multitime physics across the phase transition. The
upshot here is that tailoring the geometry of the model
to expectations of the physics permits both a more efficient
and a more suitable representation of complex processes.
Moreover, not only does a process tree fit this model well,
but it also serves as a generalization. Once we determine the
elementary building block of the process tree, we can use it
to construct large-scale processes. We demonstrate this
extension again for the spin-boson model with surprisingly
high efficacy. This suggests that some time- and scale-
invariant properties about the dynamics may be learned and
later applied to understand greater instances of those
systems. Finally, we lay out a method for constructing a
process tree from an underlying Hamiltonian, combining
techniques from the celebrated influence matrix approach
to multitime physics [35–39], with the tensor renormaliza-
tion-group method of 2D tensor networks [40–44].
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FIG. 1. Depiction of the essential ideas found in this work. (a) A
process tree describing an open quantum system S interactingwith
its environment. The process is constructed by a series of
iteratively connected maps (tensors). These maps implement a
temporally consistent fine-graining operation where one inter-
vention at a single time is mapped to two interventions at two
times. The vertical extent of the tensor network hence corresponds
to a timescale s where interventions may be exponentially more
frequent. Each pair of open indices at the bottom of the tree and
pairs of open indices intersected by the dashed lines at any
timescale is an intervention slot where an instrument may be
applied. (b) Each causality-preserving map is parametrized as
shown by two unitary maps U2 and U1 and a (vectorized) density
matrix ρ. (c) Indicative figure of the hallmarks of polynomially
decaying correlations captured by the tensor network.
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Therefore, we show both that our ansatz is expressive of
relevant systems, and that it can be systematically produced
from an underlying model.
Consequently, the process tree also serves as a practical

path to better theoretical and numerical analyses of com-
plex quantum processes. These results add to the growing
number of studies analyzing the richness of open quantum
systems, beyond the weak-coupling and Markovian
regime [24,45–52]. Indeed, the introduction of process
tensors [23,24,53] permitted an operational description of
multitime statistics whereby temporal correlations are
mapped onto spatial ones, spurring the nascent study of
many-time physics [54,55]. Recently, MPO representa-
tions have been the chief tool of choice in taming
inefficient representations, from cutting-edge numerical
techniques [35–39,56–69] to experimental reconstruction
of multitime processes in a laboratory setting [54,70].
However, such methods lead only to relative efficiency
when correlations grow slowly with time, unless extra
approximations and fine-tunings are made.
Our work instantiates a conceptual reevaluation of the

structure of temporal correlations and presents a framework
by which scale and renormalization may be understood in a
dynamical context. In the spatial case, the fact that TTNs
andMERA capture properties of the state at different length
scales can be used to extract universal properties of the
state, e.g., in the case of critical ground states, the under-
lying conformal field theory data [71]. Moreover, these
methods can be used to pinpoint quantum-phase transitions
by computing the fixed points of the renormalization map.
The process tree analogously opens up the possibility of
developing systematic tools for temporal coarse graining to
identify different phases of quantum processes and their
universal properties, i.e., the universality in long-time
quantum dynamics. Indeed, we find that a process tree
endowed with hyperbolic geometry is better suited for
representing a spin-boson process than a linear network.
The remainder of the paper is organized as follows. In

Sec. II, we review basic concepts pertaining to quantum
processes and superprocesses alongside graphical notation
which is used extensively in this work. In Sec. III, we
construct from first principles our process tree descriptor.
The key constituent here is a temporal fine-graining
transformation alongside causal consistency conditions.
In Sec. IV, we turn to analyzing the scaling and computa-
tional cost of computing multitime correlation functions
from process trees. We prove that generic process trees
always exhibit polynomially decaying two-time correlation
functions, and how a “causal structure” emerges in the
timescale direction of the network, which helps reduce the
computational cost and complexity of their software
implementation. In Sec. V, we consider specifically the
non-Markovian properties of process trees, showing that
they capture critical correlations mediated by both classical
and genuinely quantum baths. We then turn to showcasing

the relevance and applicability of this ansatz to physical
models: First, in Sec. VI, using variational fitting tech-
niques we demonstrate process trees to be both a suitable
and efficient descriptor of the many-time physics found in
the spin-boson model across a critical phase transition.
Finally, in Sec. VII, we show how to systematically
construct a process tree from an underlying Hamiltonian.

II. BACKGROUND

We will now briefly review the process tensor
framework [22–24,53]. This is the operational basis for
describing multitime temporal correlation functions in any
dynamical open quantum system, including arbitrary non-
Markovian phenomena. In doing so, we encounter a hier-
archy of increasingly complex objects: quantum states →
operators → channels → processes ðmultitime channelsÞ →
superprocesses (maps of multitime channels). All of these
objects are basically instances of tensors, namely, multidi-
mensional arrays of numbers. Throughout this section, we
also introduce the graphical representation of tensor net-
works, which is used extensively in this paper to provide a
compact yet precise representation of expressions with
potentially many indices. A more complete introduction to
graphical notation and tensor networks can be found in
Appendix A and in a selection of comprehensive reviews
Refs. [72–75]. Further details on the process tensor frame-
work can be found in the tutorial of Ref. [24].

A. Non-Markovian quantum processes

Consider a controlled quantum system S that is interact-
ing with an inaccessible and uncontrollable environment E
taken to be described together by the finite-dimensional
Hilbert spaces HS ⊗ HE. This is the standard setup for
open quantum systems.
Without loss of generality [76], we assume that the

system and environment together constitute a closed system
that evolves unitarily in time under the action of a unitary
map U,

ρt ¼ U tðρ0Þ ¼ u†t ðρ0Þut ¼ Utjρ0⟫; ð1Þ

where ut is a unitary matrix parametrized by time t, and the
final equality corresponds to the Liouville superoperator
representation, with U ≔ u� ⊗ u acting through left matrix
multiplication on the vectorized density matrix jρ0⟫ [77].
Within this (Liouville) representation, when referring to a
“system Hilbert space,” we mean the doubled-space
HS ⊗ HS ≅ BðHSÞ, wherein elements are vectorized den-
sity matrices.
During its evolution, one may intervene instantaneously

on the system S by applying an arbitrary time-ordered
sequence of instruments, leading to a general expression for
a multitime correlation function,
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ð2Þ

Here, U i represents the global SE dynamics for time
ðtiþ1 − tiÞ, and the top (bottom) wire represents the
time-evolving space HE (HS). The sequence of system
observables is represented by instruments fAxjgkj¼1 with
outcomes fxjg, where subscript j denotes the time tj [78].
An instrument Axj is a completely positive trace non-

increasing map, with Axk in the second line of Eq. (2) its
Liouville superoperator representation. The same distinc-
tion holds between U and U. In this representation, the
composition of maps simply corresponds to matrix multi-
plication and therefore can be represented graphically
through tensor contractions, as in the final line of
Eq. (2). We will work almost exclusively in this represen-
tation in this work. We use the convention of time running
from right to left, such that state vectors and kets (dual
vectors and bras) have open wires to the left (right),

ð3Þ

where we also introduce the special notation of an oblique
line for the identity projection corresponding to a (partial)
trace. Notice that wires in this representation are squared in
size, e.g., dimension four for a qubit system HS encoding
all degrees of freedom of a (possibly) mixed state. See
Appendix A for further details on graphical notation.
In computing Eq. (2), it is not always possible to trace

out the environment to obtain a single completely positive
and trace-preserving (CPTP) map, or even a time-ordered
sequence of uncorrelated CPTP maps, that completely
describe the time evolution of the system without refer-
encing the environment. Processes that admit such descrip-
tions are called Markovian (memoryless). In general,
however, the environment retains a memory of the system’s
past, which influences (correlates with) the future evolution
of the system. In this non-Markovian case, it is desirable to
have an exact description of all correlations Eq. (2) for any
chosen set fAxjgkj¼1.
Through the lens of tensor networks, it is simple to

separate the outside interventions fAxjg from the uncon-
trollable parts of the full system-environment dynamics
fUj; ρg in expression (2) to get hAxk � � �Ax1iϒ ¼
⟪ϒjAk⟫ ¼ tr½ϒAT

k �, where the T superscript indicates a
transpose. Here, we implicitly defined the process tensor
ϒk and the multitime instrument Ak,

ð4Þ

and

ð5Þ

Above,⋆ denotes the Link product [22,24] corresponding to
tensor contraction on theHE subspace, and a tensor product
onHS. We denote byHi

SðtjÞ the input i to the process on the
system Hilbert space, at time tj. In the following, we will
discuss mapping between different numbers of input and
output pairs, or intervention times. We call an index pair
ðij; oj−1Þ a “time” or “slot” j representing the Hilbert space
Hi

SðtjÞ ⊗ Ho
Sðtj−1Þ. Note that in the multitime (process tensor)

picture, the system Hilbert space at different times is
independent spaces, as is apparent from the graphical
representation in Eq. (4). Through an abuse of notation,
wewill later take the times to be discrete, such that they label
the first, second, third,…, kth intervention tj ∈ f1; 2;…; kg.
ϒk in Eq. (4) is the Choi state representation of the

process tensor, i.e., a (2k − 1)-body quantum state, where
each “body” corresponds to either an input or output index
at an intervention time. In other words, it is possible to
show that it has all the properties of a (supernormalized)
density matrix

ϒk ≥ 0; ϒk ¼ ϒ†
k; tr½ϒk� ¼ d2k−1: ð6Þ

This can also be understood from the Choi-Jamiołkowski
isomorphism; i.e., the process tensor results from feeding in
half of a maximally entangled state at each intervention
time and collecting all of the outputs [23]. However, while
process tensors are isomorphic to a quantum state, the
converse is not true. A further sequence of affine con-
straints enforce the causal influence of interventions. These
causality conditions are iteratively expressed by

troj ½ϒj� ¼ 1ij ⊗ ϒj−1 ∀ 1 ≤ j ≤ k

with tro0 ½ϒ0� ¼ 1; ð7Þ

i.e., tracing over a final output leg “commutes through” to the
previous input. This ensures that an instrument applied at a
given time cannot causally influence the statistics of any
instrument preceding it in the past. Physically, discarding
information at the latest available time step separates the
preceding leg from the rest of the tensor, equivalent to the
stochastic process property where the past should be unaf-
fected by actions averaged across the future [24]. This
isomorphism between a multitime process and a quantum
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state is a key insight, allowing for operationally meaningful
notions of non-Markovianity [23,24,53,60] and genuinely
quantummemory [55,80]. It further provides a natural setting
for studying optimal control [81–85], as well as foundational
questions regarding when large, chaotic systems become
Markovian (simple) [25,86–89].
We stress that a particularly important instrument in the

context of the process tensor formalism is the (trivial)
identity map,

ð8Þ

which simply corresponds to connecting input and output
indices at a time step: a “do-nothing” operation. This is
operationally distinct from a full measurement and averag-
ing operation (tracing), in contrast to the classical case
where these are equivalent [90,91]. These facts form the
basis of the process tensor constituting the quantum
generalization of stochastic processes [24,92].

B. Operational non-Markovianity
from a process tensor

A key advantage of a process tensor representation of a
dynamics is the ability to define non-Markovianity mea-
sures in an operational unambiguous way. One particularly
elegant choice is the quantum mutual information η
between two channels of the process, with identity super-
operators inserted everywhere else.
The quantity η is based on introducing a causal break on

the S space such that any remaining mutual information
must be mediated by the environment E, leading to an
instrument-independent measure of non-Markovianity.
Explicitly, we find the marginal process tensor on two
channels labeled a and b, and find the quantum mutual
information between them

ηðϒ; ta; tbÞ ≔ Sðϒb;akϒa ⊗ ϒbÞ
¼ SðϒaÞ þ SðϒbÞ − Sðϒb;aÞ; ð9Þ

with

ð10Þ

and where Ub∶a≔Ub−1 ���Uaþ1 and ρ0 ≔ Ua−1;…; U1jρ⟫.
Then, ϒa ≔ trb½ϒb;a� is the reduced state of ϒb;a on
Ha ¼ Hi

SðtaÞ ⊗ Ho
SðtaÞ, and SðσÞ ≔ −tr½σ log σ� is the von

Neumann entropy. The independent preparation jρa⟫ and
measurement ⟪ρbj together represent a “causal break”
distinguishing temporal correlation within HS from genu-
ine non-Markovianity transferred through the environment
HE. This measure Eq. (9) is operationally meaningful
both as a distance to the closest Markovian process and as

the exponential scaling of the probability of mistaking
the process as a Markovian one after N experiments
P ∼ exp½−ηN� [24,53]. It also agrees with the classical
limit [53].
The process tensor description we have detailed above is

universal. Namely, the process tensor can describe any
quantum process, Markovian or non-Markovian, with any
amount of temporal correlations or memory (including
“slow” polynomially decaying correlations), provided the
dimension of the environment wire (Hilbert space) dE is
allowed to be arbitrarily large. This point can be seen
clearly from the graphical representation in Eq. (4). The
process tensor there has a “tensor-train-like” internal
structure, i.e., the form of an MPS [23,24,56], albeit it is
not a pure state, as it represents open quantum dynamics.
When the environment dimension is fixed but the number
of time steps (denoted by k) scales, the process tensor
corresponds to an MPO with a bond dimension equal to dE.
It can be shown that such matrix product processes with
finite dE have a finite temporal correlation length, such that
arbitrary correlations and indeed non-Markovianity decay
exponentially; see Appendix B. This then raises the
question whether a process tensor can be rearranged into
an alternative tensor-network geometry. And in doing so,
can we efficiently model slowly decaying temporal corre-
lations? This is the main task ahead in this work. We will
see that a tree tensor-network geometry provides an
efficient and natural representation of processes with strong
memory. To undertake this challenge, we first need to
introduce the higher-order class of objects which map
between process tensors.

C. Quantum superprocesses

The basic building block of process trees, which we
define in Sec. III, is a quantum superprocess—a causality
and positivity-preserving linear map between two process
tensors and/or (correlated) instruments [22,83,93]. In this
work, we consider the subclass of superprocesses which
map between process tensors with a discrete number of
time slots. As a map, such a superprocess acts by
composition on the intervention slots of a process tensor
and transforms it into a possibly different process tensor. In
the Liouville representation, the action of such a super-
process is realized by contracting the superprocess repre-
sented as a tensor with the corresponding indices of the
process tensor. We will now detail the minimal structure of
this tensor.
Given a causal ordering across wires, a superprocess can

be written as a sequence of CPTP maps acting on combined
input, output, and possibly ancilla Hilbert spaces. For
example, a nontrivial superprocess between two input
intervention slots in a process tensor made of pairs of
wires ði; jÞ and ðk; lÞ, and two output intervention slots on
the resulting process tensor ði0; j0Þ and ðk0; l0Þ is
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ð11Þ

where Λ’s are CPTP maps, the wire at the top (bottom)
corresponds to the input (output) spaces, the middle wire
corresponds to an ancilla, and ρ represents some initial state
of the ancilla plus the output space. The top open wires are
time ordered relative to the bottom open wires as
i ← i0 ← j0 ← j ← k ← k0 ← l0 ← l. This then maps a
process tensor to a generally different but physical process
tensor on the same name of times modified time locally
around the two times, Djϒk⟫ ¼ jϒ0

k⟫. However, this
superprocess is not the unique choice. Other two-time to
two-time superprocesses are possible, corresponding to
different relative causal orders of the wires while keeping
the causal orders of the inputs (outputs) fixed. For instance,
the superprocess

ð12Þ

corresponds to the relative causal order i ← fj; i0g ←
j0 ← k0 ← fk; l0g ← l. For example, for this causal order-
ing, state preparations on the index k0 cannot influence the
measurement statistics on the output space outgoing index
k. This is in contrast to the causal ordering of Eq. (11).
Superprocesses between an arbitrary number of input

and output slots (times) can be constructed analogously,
with each slot consisting of an ingoing (to a CPTP map)
wire and an outgoing (from a CPTP map) wire such that the
outgoing wire is to the future of the ingoing wire. Different
possible superprocesses are enumerated by the different
causal orders of all the wires (input and output) that fulfill
this constraint.
In the following, we will be concerned with super-

processes which map from one time to two time. This will
be the building block with which we construct the process
tree, the main object of study in this work.

III. CONSTRUCTION OF PROCESS TREES

We now formally construct a class of quantum processes
with long-range temporal correlations, as depicted in Fig. 1.
Specifically, we first identify a general one-time to two-
time temporally local superprocess, the building block from
which we can iteratively construct process trees. Then, we
next introduce a consistency condition. This leads to both
an interpretation of the resultant superprocess as a change-
of-scale transformation, as well as convenient numerical
and analytic properties, which we exploit in Sec. IV.

A. Temporally local fine graining of processes

The building blocks of a process tree are fine-graining
superprocesses, namely, causality-preserving maps that
locally (in time) transform a process tensor with k inter-
vention slots to a process tensor with kþ 1 intervention
slots. A (time-) local superprocess acts on a single slot of a
process tensor, say, the tth slot, without modifying the
process to the past or future of the slot. In other words,
the transformed process differs from the input process only
at slot t.
Such a superprocess is a map from a single intervention

slot to two slots [94] Y∶H⊗2
Sc

→ H⊗4
Sf
, where HSc denotes

the system space at the coarse level, and there are two
copies for the input and output indices; see Sec. II A. As
remarked in the previous section, the causal ordering
between the input and output slots and a choice of ancilla
space almost entirely fixes the structure of the map
[conditions (1)–(3) described below Eq. (12)]. In particular,
we demand that all the information fed into the single,
coarse input intervention slot should be able to affect the
full measurement statistics of two fine interventions, and
these fine interventions can, in turn, influence the future of
the process at the coarse level (via index ic below). The
most general map Y is paramterized by three CPTP maps
Λ1, Λ2, and Λ3, an ancilla space (represented by the middle
wire), and a preparation ρ as depicted below

ð13Þ

where the upper (lower) indices ic (if) represent coarse
(fine) temporal scales. For notational simplicity, we will
often drop the indices and discuss the full tensor (super-
process), where the input and output spaces will be clear
graphically, and the full one-to-two superprocess is suc-
cinctly represented as a colored triangle. We prove explic-
itly in Appendix C 1 that Y is indeed a superprocess that
maps a process tensor with k-time steps to a process tensor
with kþ 1 times, fulfilling the positivity and causality
constraints, Eqs. (6) and (7).
For a single-time slot, a process tensor is physically

equivalent to encoding all possible measurements and
observables with respect to some reduced state ρ0,

ð14Þ

A process tree is then obtained by recursively fine graining

this simple case by applying a superprocess YðjÞ
s , thus
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refining the single intervention slot of the single-time
measurement process into a multitime intervention space.

That is, the first fine-graining map is denotedYð1Þ
1 , resulting

in a process with two intervention slots, while the next fine

graining from Yð1Þ
2 and Yð2Þ

2 of each of these two slots
results in a four-time process, and so on. After N − 1 steps,
we obtain a process tree with 2N intervention slots. Figure 2
illustrates a process tree with 2N¼4 ¼ 16 intervention slots.
Note that a process tree is explicitly dependent on the

set fYðjÞ
s g with indices 1 ≤ s ≤ N and 1 ≤ j ≤ 2s−1, the

initialization ρ0, and the choice of local dimension ds at
each scale s. We will often drop subscripts for notational
simplicity.
The above temporal fine-graining transformations lead to

tree tensor networks with “baked-in” causality [Eq. (7)].
Not only is the output of the final iteration a legitimate
process tensor, but each iteration of the above fine-graining
procedure produces a quantum process with twice as many
intervention times as the previous step. Therefore, fine
graining produces a sequence of quantum processes with
doubling intervention slots,

ϒðtreeÞ
0 → ϒðtreeÞ

1 → … → ϒðtreeÞ
N : ð15Þ

Here, ϒðtreeÞ
s is the process at scale s, ϒðtreeÞ

0 is the initial

prepare process at the coarsest scale, and ϒðtreeÞ
N is the

process obtained at the finest timescale with 2N interven-
tion slots; see Fig. 2.

B. Consistency in change of scale

In order to interpret the different layers in Fig. 2 as
temporal “scales,” we will now impose a consistency

condition on the Y bricks from Eq. (13). This will allow
us to interpret the hierarchy of process trees in Eq. (15) as
different temporal scales of the same physical process.
To understand why extra structure is desirable, consider a

height N ¼ 4 process tree as shown in Fig. 2, and consider
the application of (a sequence of) instruments at a coarser
scale, e.g., the scale s ¼ 2. There are two natural choices in
how to extract such a correlation function from an N ¼ 4
height process tree; one could either (i) chop the shown
process tree and compute the correlators on the coarse
process tree consisting of only the three superprocesses

fYð1Þ
1 ;Yð1Þ

2 ;Yð2Þ
2 g on layers s ¼ 0, 1, 2 (this means we

essentially ignore the finer scales s ¼ 3, 4) or (ii) insert do-
nothing operations on the finest scale (s ¼ 4), contract the
process tree to s ¼ 2, and then insert appropriate instru-
ments (with the result generally dependent on the full set

fYðjÞ
s g4s¼1). These two choices are equally valid physically

but are generally different. We choose the following
condition to impose that these situations (i) and (ii) are
equivalent:

ð16Þ

For clarity, here we have written the same condition in three
equivalent representations, respectively, superoperator, index,
and graphical. We call this the scale consistency condition.
The superscriptT means transpose, as by conventionwe have
taken theY to act from top to bottomas a “fine-graining”map.
Such a notation is conveniently not necessary in the graphical
representation. We call process trees composed of super-
processes satisfying Eq. (16) W type, and these process
tensors will b the focus of the rest of the paper.
We stress that imposing the scale consistency condition is

a choice, and Y-type process trees composed of super-
processes which do not satisfy Eq. (16) may describe
interesting physical phenomena. Further, we could define
a scale consistency condition with respect to different
instruments V, such that YT jV⟫jV⟫ ¼ jV⟫. If V corre-
sponds to a unitary map, then the resultant process tree is
equal to a W-type process tree, up to (temporally) local
transformations only at the coarsest and finest scales s ¼ 0
and s ¼ N, respectively; see Appendix C. It remains to be
seenwhether different scale conditions could lead to relevant
models; Y-type process trees serve as a general base from
which to study this.
Equation (16) is, however, a natural choice [95].

Intuitively, we are imposing that a do-nothing operation
at a fine scale corresponds to do nothing at a coarse scale.

N

Time

FIG. 2. Recursive fine graining of the initial single-time
measurement process using Y-type fine-graining maps generates
the generic process tree, here shown forN ¼ 4 scales. The tensors

fYðjÞ
s g are organized according to the jth tensor at timescale s.
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This leads to a number of nice properties, which we
investigate in the remainder of this paper. In particular,
we see a kind of causal cone structure in the scale direction
for temporally local quantities. This is represented dia-
grammatically in Fig. 3, where the blue colored region
represents all the tensors that need contracting in order to
compute a single-time expectation value. This means that
local quantities will depend only on a restricted number of
tensors in the process tree, linear in the height of N of the
tree, compared to the general Y-class tree, which involves
at worst contractions of all Oð2NÞ bricks (the entire tensor
network). This leads to computations using the process tree
that are computationally efficient and even analytically
tractable in certain asymptotic regimes (see Theorem 1).
We will study this next in Sec. IV B.
We can intuitively understand the consequences of

Eq. (16) by examining the time-resolved description of a
process tree. Here, tensors at different timescales in the
network indicated by the dashed lines in Fig. 2 capture
properties of the process at different timescales. More
specifically, if the system is intervened on timescales only
longer than a scale s, then all the relevant properties, such
as multitime correlation functions, of the process can be
calculated entirely from the tensors located above scale s in
the network. The remaining tensors corresponding to
shorter timescales can be then discarded.
We will explicitly incorporate the constraint Eq. (16) by

choosing Λ1 ¼ U2;Λ2 ¼ U†
2U1, and Λ3 ¼ U†

1 in Eq. (13),
where U2 and U1 are unitary maps. Explicitly,

ð17Þ

It is readily checked that the superprocess W satisfies
Eq. (16). The map W can be viewed as a fine-graining
transformation of processes (given its property as a
superprocess),

ð18Þ

while the transpose map WT acts as a coarse-graining
transformation between scales on instruments [given the
scale consistency condition Eq. (16)]:

ð19Þ

Here, through abuse of (graphical) notation, we have
taken the gray boxes to represent process tensors that
may be any size, as defined in Eq. (4). Only the one input
and two output time slots of this process are relevant here,
as these superprocesses are (time) local. s refers to the
temporal scale (as in Fig. 2). Note that the transpose
map WT coarse grains instruments, not processes, with
jAs⟫ ¼ WT jAsþ1⟫j ∪ ⟫. Ostensibly, a coarse-graining map
for processes must be a superprocess (causality preserving)
that should invert the action ofW as a fine-graining map on
a process. While it is unlikely that such an inverse exists for
all W, it is an open question what properties of U2 and U1

in Eq. (17) (or of a more general Y) imply the existence of
an inverse. Unitaries satisfying the so-called “dual-unitary
property” appear to be a promising candidate [96], but we
leave a detailed study of this question to a future work.
In the remainder of this paper, we focus exclusively on

process trees composed only of theW-type superprocesses
defined through Eq. (17), and use “process tree” to refer
hereon only to such processes. More details on process
trees without the scale consistency condition (Y type) can
be found in Appendix C.

IV. CORRELATION FUNCTIONS
OF PROCESS TREES

In this section, we describe how k-time correlation
functions of a process tree can be computed efficiently
and showcase their behavior. In particular, we show
both numerically and analytically that temporal correlations
of a generic process tree decay with a characteristic
power law.

(a) (b)
Ti

m
es

ca
le

FIG. 3. (a) The scale-causal cone (shaded blue) of a single
intervention slot in a process tree composed from W-type maps,
illustrating the emergent causal structure also in the scale
direction. Only tensors inside the causal cone influence the
intervention slot (for instance, the expectation value of an
intervention A applied on that slot). The causal cone is comprised
of exactly one tensor from each scale. (b) An intervention slot in a
generic process tree composed from Y-type maps is influenced
by all past tensors at all scales.
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A. One-time expectation values and emergent causal
structure along scale

Figure 3 illustrates the tensor-network contraction that
evaluates the expectation value of a single instrument A. We
see that the instrument is contracted with one slot of the
tree, while the remaining slots are contracted with the
identity. Thanks to the scale consistency condition fulfilled
by W-type maps Eq. (16), in this case the total contraction
that evaluates the expectation value simplifies significantly.
For instance, the contraction depicted in Fig. 3(a) reduces to

ð20Þ

¼ ⟪AjWð4Þ
4;LW

ð2Þ
3;LW

ð1Þ
2;LW

ð1Þ
1;Rjρ⟫j1⟫; ð21Þ

where ⟪Aj ¼ ⟪ϕþjA† ⊗ 1 is the dual Choi state of some
instrument A, and

ð22Þ

Note that while graphically we have depicted tensors at
different scales with congruent triangles, each superprocess

WðjÞ
s could be different in general.
From Eq. (20), we can readily estimate the computa-

tional cost of computing the single-time correlation func-
tion in a process tree. In particular, hAi depends only on a
linear subset of tensors in the process tree; a single
superprocess W per “scale” s. Therefore, for a height N

process tree ϒðtreeÞ
N , it reduces to a contraction of N tensors

WðjÞ
s . Assuming that each superprocess WðjÞ

s has the same
“bond dimension” d (i.e., same input and output space
dimensions between scales), hAi requires Nd6 operations.
See Appendix A for further details about estimating the
computational cost of tensor-network contractions and
Appendix E for further details on contracting the tree.
This contraction behavior can be interpreted as an

emergent causal structure in the bulk of the tensor network.
We call the set of tensors that influences an intervention slot
the scale-causal cone of the slot depicted in Fig. 3. For the
W brick [satisfying Eq. (16)], the scale-causal cone of any
intervention slot consists of exactly one tensor at each
timescale. Note that this emergent causal structure in the
scale direction is distinct from the causal structure in the
time direction. The latter causal structure results from the
process tree fulfilling the causality constraints, Eq. (7).
Recall that the most general process trees, those composed
of Y maps, fulfill causality constraints along the direction
of the intervention time, such that future dynamics have no
influence on past interventions, but they do not have this

kind of scale-causal structure in the scale direction. That is,
in a process tree made from Y-type tensors, an intervention
slot is influenced by all the past tensors at all scales, as
illustrated in Fig. 3(b). This is detailed further in
Appendix C.
The scale-causal cone that manifests in process trees can

be understood as a temporal analog of the causal cone in
spatial tree tensor networks and MERA representations of
quantum many-body states. In the spatial case, the causal
cone structure results from the local isometric property of
the tensors, namely, the product of each tree or MERA
tensor component with its Hermitian adjoint equates to
the identity. In the present case of process trees, the causal
cone structure results instead from enforcing the scale
consistency condition, Eq. (16). Spatial tree tensor net-
works and MERA equipped with their respective causal
cone structures have been interpreted as encoding an
emergent holographic two-dimensional anti–de Sitter
geometry [97,98]. We remark that the emergence of the
causal structure in process trees might also lead to an
analogous holographic description of quantum processes,
but further exploration of this feature of process trees is
beyond the scope of the current paper.

B. Two-time correlators

Next, let us analyze how two-time correlators generally
scale with the duration Δt ¼ t0 − t between the two
interventions. Figure 4 shows the tensor-network contrac-
tion that equates to the correlator between two instruments
A and A0 applied on time slots t and t0 > t, respectively.
Notice that the scale-causal cones of A and A0 overlap
beyond some scale s. This can be implemented efficiently
numerically, leading to a computational cost which scales
as O( log2ðNÞ) similar to the single-time case (see
Appendix E). It is not apparent that enforcing causality
and the coarse-graining constraints at the level of individual
tensors, as in a W process tree, preserves the polynomial
decay (critical behavior) of correlations that originates in
the tree geometry of the network. However, we find that
these constraints are, in fact, compatible with polynomially
decaying correlations. In Fig. 5(b), we plot the averaged
two-time correlator in a height N ¼ 8 uniform process tree.

A uniform process tree is composed ofWðjÞ
s ≡W for all s,

j, where for the numerical results, W is composed of
randomly sampled (according to the Haar measure) unitary
maps U2 and U1 in Eq. (17). For each value of separation
Δt ¼ t0 − t, we averaged the correlators of fixed instru-
ments A and A0 inserted at all possible intervention slots t
and t0 > t such that t0 − t ¼ Δt. These results demonstrate
that temporal correlations in process trees decay polyno-
mially, and moreover, this feature is generic. Namely, this
behavior is a structural property of the class of processes
(specifically, the tree geometry of the network [30]) and
does not require fine-tuning of the tensors.
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Furthermore, in Appendix D, we prove the following
statement pertaining to the asymptotic scaling of connected
correlators in a uniform process tree.
Theorem 1. Consider a uniform process tree ϒðtreeÞ

N
of 2N intervention times, composed from a “generic”
fine-graining superprocess W defined in Eq. (17), and
two instruments At and A0

t0 applied on slots t ¼ t0 and t0 ¼
tn > t0 with Δt ¼ tn − t0 ¼ 2n − 1 (n is a positive integer).
Then in the asymptotic limit N; n → ∞,

jhA0
tnAt0iϒðtreeÞ

N
− hA0

tniϒðtreeÞ
N

hAt0iϒðtreeÞ
N

j ∼ Δt−α; ð23Þ

where α > 0. The sufficient conditions on the superprocess
W are defined in terms of spectral properties of a derived
transfer matrix given in Eq. (22).
We note that the spectral conditions on W in the above

theorem are highly nonrestrictive—numerically always being
satisfied (and so we expect these to hold almost surely). We
limit to the case where Δt ¼ 2n − 1 because it leads to a
symmetric, repeated structure amendable to an analytically
tractable proof without averaging. However, as exhibited in
Fig. 5(b), for randomly sampled W bricks, one expects
polynomial decay of correlations on average for all Δt.

A process tree may of course also have an inhomogeneous
structure, while still beingW type [i.e., satisfying Eq. (16)].
We expect such a process tensor to also exhibit polyno-
mially decaying correlations, and this more general setting
will be relevant later when studying the spin-boson model
in the context of a process tree ansatz; see Sec. VI.
Here, we summarize the main argument underlying the

proof. Applying the scale consistency condition Eq. (16),
the unconnected correlator simplifies to

ð24Þ

where we choose t ¼ 0 and t0 ¼ 2n − 1 in order to get a
repeating structure. We see that two matrices WR and WL
appear repeatedly, n − 1 times, on the right and left
branches of Eq. (24), respectively. These matrices are what
we call “right” and “left” contractions from Eq. (22), and
are two of the fundamental steps in computing any
correlation function in a process tree (numerically or
otherwise); see also Appendix E. Here,WR=L are complete
positivity (CP) maps, but need not be unitary, unital, or
TP in general. However, due to the scale consistency
condition Eq. (16), WR=L has the identity supermap j∪⟫
as an eigenvector with the largest eigenvalue equal to 1.
Therefore, the spectral radius ofWR is equal to 1; that is, all
eigenvalues ofWR lie on the unit disk in the complex plane.
Numerical evidence convincingly implies that this largest
eigenvalue is unique for generic W. From this, one can
show that for large n,

hAnA0
n0 iϒðtreeÞ

N
∼ hAniϒðtreeÞ

N
hA0

n0 iϒðtreeÞ
N

þOðjλL2 λR2 jnÞ; ð25Þ

where λL2 ; λ
R
2 < 1 are the second largest eigenvalues ofWL,

WR, respectively. To prove this, we need to use the
modified quantum Perron-Frobenius theorem [99,100].
Then, since Δt ¼ 2n − 1, we rewrite Eq. (25) as

hAnA0
n0 i ∼ hAnihA0

n0 i þOðΔtlogðλ2ÞÞ; ð26Þ

where λ2 ¼ jλL2 λR2 j < 1. Therefore, the connected correlator
Eq. (23) decays as Δn−α, with α ¼ j logðλ2Þj.
One can make similar arguments to examine the

asymptotic behavior of higher point correlation functions.
Generally, such correlations will decay polynomially
with time between each nearest intervention. That is,
the above result can be generalized to show that
hAtk ;…; At2At1At0iϒðtreeÞ ∼ ðΔtkÞ−αk ;…; ðΔt2Þ−α2ðΔt1Þ−α1 ,
where tk<…<t1<t0 and Δti¼ tiþi−ti. Computationally,

Fused intervention

FIG. 4. A diagrammatic representation of the contractions
involved in computing two-point correlations in a process tree.
The joint scale-causal cone of two interventions A and A0 applied
on slots t and t0 > t, respectively. The correlator of the two
interventions depends only on the tensors inside the causal cone.
The two-time correlator of A and A0 equates to a one-time
expectation value at a scale s where A and A0 fuse together after
coarse graining s times. On average across all sites ft; t0g, such
that t0 − t ¼ Δt, the number of required coarse-graining moves
until the operators’ “fuse” is s ∼ log2ðΔtÞ. See Appendix E for a
more detailed explanation of the efficient computation of corre-
lation functions.
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for W-class process trees, k-time correlations reduce to a
concatenation of OðkNÞ right or left contraction moves, as
described in the computation of one-time correlations in
Sec. IVA, and of k “fusion moves” as in the computation of
two-time correlations above. We detail this in more detail in
Appendix E.
While in this section, and throughout this work, we have

examined temporal scaling of observables measured on a
single timescale s ¼ N, the process tree allows for cross-
scale interventions. What this means is that we could find
the correlation between, for example, an instrument at the
tTHs time slot at a coarse scale s, together with an instrument
at some finer scale s0 at slot t0s0 . Physically, one could also in
principle measure a quantum system at some coarse time-
scale and apply unitary control mechanisms at a finer scale.
If one has a process tree representation of a process, and the
different scales s in fact correspond to physical temporal
scales, then by construction such operations are easily
accessible. This is because we have built this model out of
locally causality-preserving bricks, rather than imposing

causality preservation globally. More technically, process
trees are constructed from local one-to-two time super-
processes, rather than the much more general situation of a
one-to-many-time global superprocess. This feature of
process trees could be relevant to a range of physical
applications where vastly different timescales appear nat-
urally, such as in quantum-computing setups where the
timescales for single-qubit operations, two-qubit opera-
tions, and measurements are vastly different. Such a device
with many qubits may possess a complex (power-law)
noise profile. It would be interesting to explore this further
in future work.

V. NATURE OF LONG-RANGE CORRELATIONS

We have seen that the process tree generically exhibits
polynomial decaying multitime correlations, suggestive of
its utility in describing complex physical dynamics. Before
analyzing the process tree structure of the spin-boson
model, we will first investigate the nature of these strong
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FIG. 5. Numerical results for general process trees. (a) All quantities shown in the plots can be derived from a process tree with identity
maps ∪ inserted everywhere, except for the two W tensors, which are Δt apart. (b) Connected two-point correlations for Haar random
samplings of the unitary mapsU1 andU2, and ρ from Eq. (17). The process tree exhibits polynomially decaying correlation between two
instruments applied on the open slots at scale s ¼ 0. The simulation was performed for a tree of depth N ¼ 8, which contains 28 ¼ 256

intervention times. d is the dimension of system at each scale; equivalently, d2 is the bond dimension of the tensor-network
representation of the process tree. We chose the Hermitian observables A ¼ A0 to be a Pauli σx measurement on the output index, and an
independent preparation of the j0i state on the input index for each intervention time. The first Gell-Mann matrix and σx ⊗ σx was
instead measured for d ¼ 3 and d ¼ 4, respectively. Such observables take expectation values jhAij ≤ 1, and so the presented data
represent a significant range. Each faded line is a single run of the simulation for 100 runs per plot, and the bolded line is the average of
the runs. (c) Quantum mutual information [Eq. (9)] measure for non-Markovianity between reduced channels in a homogeneous process
tree, produced for random, homogeneous process trees as in the two-point correlation results. We see power-law decay of non-
Markovianity, indicating that memory follows the same trend as general correlations for particular instruments. (d) Negativity witness
[Eq. (28)] of entanglement in time for the case of process trees with unitary maps U2 and U1 generated by the Hamiltonian in Eq. (29).
We see that negativity, hence, entanglement in time, decrease as we increase randomness in the process. As β increases, the time Δt
beyond which entanglement in time is zero decreases, but for all cases, we see a power-law trend.
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temporal correlations. In particular, whether these correla-
tions stem from memory effects and if they can be
genuinely quantum, i.e., involve entanglement in time.

A. Non-Markovianity

In this section, we analyze non-Markovianity in process
trees. Recall the operational measure of non-Markovianity
as described in Sec. II A: quantum mutual information
ηðϒN ; a; bÞ between local channels in a process tensor
[Eq. (9)]. This quantifies howmuch information is transferred
through the environment, in terms of how well an optimal
Markovian process models all accessible measurement sta-
tistics of a process [53]. We numerically plot ηðϒN ; a; bÞ in
Fig. 5(c), for a uniform W-class process tree. We can see
essentially complete agreement between this and two-point
correlation behavior in Fig. 5(b). This means that the
characteristic behavior for multitime correlations that we
saw in the last section stems primarily from non-
Markovianity. This is by construction,whichwenowexplain.
To explain why non-Markovian effects dominate in the

process tree, it is helpful to consider how one would
compute ηðϒN ; a; bÞ in practice. Through quantum process
tomography [60], one can reconstruct a process tensor Choi
state through a complete basis of measurement and prep-
arations. From this Choi state, ηðϒN ; a; bÞ is directly
computable. From Eq. (9), for the process tree the tomo-
graphic experiments will have the form of the multitime
correlation

ð27Þ

where the gray comb represents the rest of a process tree, as
in Fig. 2, and A, A0 are some tomographically selected
instruments of the channels (usually a prepare and measure
pair). The other projections (measurements and prepara-
tions), which are represented as uncolored triangles, are
unimportant and can be chosen freely as long as they are
fixed across experiments and are uncorrelated. The impor-
tant thing here is that at the finest scale s ¼ 0, the quantum
mutual information includes a causal break. This prevents
any (quantum) information flow through the system wire,
such that any nonzero mutual information must be due to
correlations mediated solely through the environment (all
other wires). We can see in the second line that the two-time
instrument A (A0) coarse grains to an effective one-time
instrument B (B0). B will generally not itself involve any
causal break. The remaining process tree ϒðtreeÞ

N−1 , with one
less layer, will exhibit polynomially decaying correlations
from the treelike geometry of ϒðtreeÞ

N−1 . The self-similarity of
the tree implies that one sees long-range correlations at all
scales, and therefore, any causal break in a non-
Markovianity measure will not interrupt this.
In order to understand the non-Markovian structure of

process trees, in Fig. 6 we reexpress a depth-3 process tree
in terms of its component maps. As detailed in Sec. III and
Fig. 2, this expression consists of fine graining a one-time
measurement process by iteratively applying the super-
process W. Graphically, acting with W introduces a new
system wire, with the old system wire from the previous
(coarse) layer now mediating memory effects. In this way,
we can see that fine graining iteratively produces a non-
Markovian process with memory distributed across all
timescales. In particular, each additional layer introduces
an additional single line of memory, and so memory
dimension increases exponentially with the number of
timescales. Here, we have labeled the wires that carry
environmental degrees of freedom as Es. Temporal corre-
lations in the process are then mediated through the various
wires, and examples of memory traversing different layers
are shown in colored lines.
Consider now the temporal correlations between

neighboring intervention slots t and tþ 1. Each of these

12345678

Causal break

FIG. 6. The circuit representation of a three-level process tree ϒðtreeÞ
3 expanding out the explicit expressions for the constituent W

bricks Eq. (17). The environment wires Es are organized in timescales s with higher timescales depicted with thicker lines, and the
corresponding tensor colored according to scale. The thin wires at the bottom of the tensor-network represent the system S on which
interventions may be applied. Shown also in red is the possible flow of correlations between three different pairs of neighboring
intervention slots, t ¼ f1; 2g; f4; 5g, and f6; 7g. By construction, a process tree includes causal breaks at different timescales, forcing
correlations to route through higher timescales. Note that correlations flow only from past to future.
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next-neighbor sites is included in the averaging of the
results from Fig. 5. Figure 6 illustrates that for different
intervention times t, correlations between neighboring slots
could be carried by wires at different timescales. Shown in
the figure are three different pairs of neighboring slots
corresponding t ¼ f1; 2g; f4; 5g, and f6; 7g, where corre-
lations are mediated only through scales s ¼ 0 and 1,
s ¼ 3, and s ¼ 2, respectively (correlation “paths” are
shown in red). Note that the mediation of correlations is
also limited by causality; correlations cannot flow from the
future back into the past. The latter two paths mediate
strictly non-Markovian correlations. This is because, by
construction the process tree contains a hierarchy of causal
breaks that force correlations to be routed through wires at
longer timescales. It is these built-in causal breaks that
organize the total memory in the process into different
timescales. On the other hand, the interventions at times
corresponding to t ¼ f1; 2g are correlated through envi-
ronmental and system paths, implying that the correlations
between these two slots will generally be a mix of
Markovian and non-Markovian.
We note that the above analysis of correlation (Fig. 6) is

for a single copy of a process tree, treating the individual
wires (Hilbert spaces) as being physical environmental
degrees of freedom. Later, when we find the tree repre-
sentation of physical processes from variational model
fitting, the analysis of this section is difficult to apply. In
this case, the meaning of the different scale levels s is an
open question. On the other hand, the process tree which
would result from the method in Sec. VII retains the circuit
structure. Depending on the model, in this case each scale
corresponds to different environmental modes or systems;
the details of Fig. 6 inform us of the correlation structure
therein.

B. Entanglement in time

We have seen that in generic process trees, correlations
and the degree of memory generically decay polynomially.
It therefore seems to be a good model for long-range
memory dynamics. But are these correlations classical or
quantum? The measures of correlations that we have
looked at indiscriminately quantify correlations in the
Choi state of the process. Since the Choi state is generally
a mixed state, the corresponding correlations could be
entirely classical. That is, the memory in the process tree
could be classical, such that all multitime correlations
could be producible from a classical register [55,80],
or could even be modeled by an entirely classical stochastic
process [90,91].
We would therefore like to test whether it is possible to

have entanglement in time in a process tree. From an
operational viewpoint, entanglement in time quantifies the
extent to which the multitime correlations in the process
require genuinely quantum memory and cannot be repro-
duced by a classical memory [80]. Mathematically, this is

equivalent to measuring bipartite entanglement in the Choi
state of the process tensor, that is, entanglement across two
intervention slots. Note that “entanglement in time” should
not be confused with the (unfortunately named) quantity of
“temporal entanglement” in influence matrices [38,39,66],
an object related to the process tensor. Despite its name,
temporal entanglement is a measure of total correlation
(both classical and quantum), more akin to quantum mutual
information η [Eq. (9)] rather than entanglement in time.
While there exists a range of inequivalent monotones for

entanglement in mixed quantum states, here we look at the
entanglement negativity of the Choi state of the process
tree [101]

EðϒðtreeÞ
tt0 Þ ≔ kðϒðtreeÞ

tt0 ÞTtk1 − 1

2
; ð28Þ

whereϒðtreeÞ
tt0 is the reduced state of intervention slots t and t0

obtained by inserting the identity instrument (∪) in all
remaining slots of the process, Tt denotes the partial trans-
pose with respect to the slot t, and k:k1 denotes the trace
norm. We first numerically computed the negativity for the
uniform process tree, as in Sec. IV, for a Haar random
sampling of U2 and U1, averaging over all possible t, t0 for
each value of Δt. This was for the reduced Choi state of the
process tree for two times, with identity instruments every-
where else, as in the graphic of Fig. 5(c). Note that a j0i state
preparation is contracted with the very final wire, as by
temporal causality constraints [Eq. (7)], this wire cannot be
correlated with the others. Remarkably, we found that the
negativity tended to decay to zero after at mostΔt ¼ 10 time
steps, for almost every trial of a random tree. Therefore,
having nonzero entanglement in time across long times is
apparently not a typical property of a homogeneous,W-class
process tree.
To see whether a process tree can possibly exhibit strong

entanglement in time, we next computed the negativity for
unitaries parametrized by a HamiltonianUa ¼ exp½−iHβ;a�,
where for a∈ f1; 2g,

Hβ;a ¼ ð1 − βÞ aπ
6
HSWAP þ βHGUE: ð29Þ

Here, HSWAP ≔ σx ⊗ σx þ σy ⊗ σy þ σz ⊗ σz generates
the SWAP unitary, with σa the Pauli-a matrix, and HGUE
is sampled from the (chaotic) Gaussian unitary matrix
ensemble. Therefore, for β ¼ 0 we have U2 ¼ SWAP2=3

and U1 ¼ SWAP1=3, whereas for β ¼ 1 we recover the
random unitary case. We tested between these two extreme
cases and found that entanglement in time drops off quickly
with β heuristically with the amount of randomness in the
unitary. On the other hand, for small values of β, we found
that negativity decays polynomially with Δt ¼ t0 − t. The
results are plotted in Fig. 5(d). Note that for any β, the
resultant process tree exhibits power-law-decaying temporal
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correlations (and memory), as in Figs. 5(b) and 5(c). These
results suggest that the scrambling character of W (specifi-
cally of the unitaries U2 and U1) determines whether the
polynomial decaying correlations in a process tree are
quantum or classical.
These numerical results suggest that while process trees

generically exhibit power-law correlations, it is not typical
that this is genuinely quantum in nature. This is likely due to
the cumulative addition of new environment wires in the
process tree, with growing time difference Δt. Each of these
wires needs to be traced out, by assumption of them
corresponding to (inaccessible environmental) degrees of
freedom. Looking at Fig. 6, we see that even for a height
N ¼ 3 process tree corresponding toΔt ≤ 7, there are seven
trace operations. Then, if the unitaries U1 and U2 are
sufficiently scrambling, every trace operation potentially
introduces classical noise and correlation into the process.
However, we have shown in Fig. 5(d) that there is the
capacity for the process tree to exhibit genuinely quantum
temporal correlation across long times. This can be inter-
preted as a kind of “quantum 1=f noise”: a power-law
correlation that cannot be produced from a classical model.

VI. PROCESS TREE REPRESENTATIONS
OF SPIN-BOSON MODELS

We have so far constructed and analyzed a class of
models for capturing the essence of processes with long-
range memory. However, the generality of the model has
not yet been established, and moreover, the connection to
physically reasonable open dynamics is not clear. Although
we have shown that process trees can capture nominally
interesting physics with these properties, is this actually
reflected in reality? We now turn to this problem by
considering a prototypical example of non-Markovian open
quantum dynamics in the spin-boson model, and how well
it can be described by process trees.
This particular model has been well studied in the

literature and has many appealing properties that make it
a useful class of dynamics to study, both in the analysis
of its physics and in the benchmarking of numerical
methods [37,102]. In particular, the order parameter
governing system-bath coupling initiates a BKT-class
quantum-phase transition [26,27]. Moreover, as we shall
show, it exhibits polynomially decaying correlations in its
non-Markovian memory, making this a compelling candi-
date for the process tree model.

A. Spin-boson model

Quantum impurity systems are a widely studied class of
physical problems, with relevant contexts in biology,
condensed-matter physics, and noise in quantum informa-
tion processors. Various subclasses of these dissipative
models exist, including that of the spin-boson model, where
a two-level system couples to an environment of bosonic

modes. The corresponding Hamiltonian for our particular
setup takes the form

H ¼ Ωσx þ
X
i

σzðgiai þ g�i a
†
i Þ þ ωia

†
i ai

≕HS þHE; ð30Þ
where Ω is the tunneling amplitude between Z eigenstates,
σx, σz are Pauli spin operators, gi coupling coefficients, and
a†i ; ai bosonic creation and annihilation operators of an
environment mode with energy ωi. The internal bath corre-
lations are governed by the spectral density of bath frequen-
cies. Awell-known spin-bosonvariant—theOhmicmodel—
is the case where the bath has a linear spectral density
JðωÞ ∼ αω. The dimensionless parameter α determines the
coupling between the system and the environment (or the
strength of dissipation). More specifically, the spectral
density we work with has an exponential cutoff at some
frequency ωc. That is, JðωÞ ¼ 2αω expð−ω=ωcÞ. Here, the
BKT phase transition occurs at a critical value of α denoted
by αc. The location of this phase transition has been well
studied in the literature; its exact value depends on the chosen
cutoff frequency αc ¼ 1þOðΩ=ωcÞ. Below αc ≈ 1, the
system takes a localized phase before discontinuously
jumping to a delocalized phase at α ¼ αc [33]. For a
complete discussion of these properties, see Refs. [26,27].
For the Hamiltonian in Eq. (30), a process tensor may be

constructed representing all of the multitime correlations of
the spin-boson model by, at each step, evolvingH for some
time δtwhere one half of a freshBell pair plays the role of the
system at each time. This construction is the standard
formulation of the generalized Choi state [23], as detailed
in Sec. II A. To accomplish the above method, we use the
OQUPY software package [103] which employs the process
tensor time-evolvingmatrix-product-operator (PT-TEMPO)
algorithm [37,82] to solve the MPO representation of the k-
step process tensor for the corresponding spin-boson
Hamiltonian given in Eq. (30) [104]. Our parameter choices
are a frequency cutoff ofωc ¼ 10 ps−1 and a step spacing of
δt ¼ 0.1 ps. Note that since the system Hamiltonian does
not factor into the PT-TEMPO computation, we are probing
only the influence of the bath. This means that when
computing the non-Markovianity, we will be operating in
the Ω ¼ 0 regime, where the phase transition occurs at
αc ¼ 1. However, when we perform our fits, the process
tensorswith andwithoutHS are related up to Trotter error by
local rotations. Thus, up to Trotter error, the absence of HS
will not affect the quality of the fits. We designate this exact

(up to numerical truncation) process tensor asϒðSBÞ
k . This is

the class of process to which we fit our variational process
tree models, which we will now detail.

B. Fitting methods

Let ϒ̃ðtreeÞ
N be our model for the process using the tree

ansatz, with the tilde e· representing variational models for
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the extent of this section. In particular, for k ¼ 2N steps, this
object encodes

P
N−1
i¼0 2i W bricks, which each implicitly

depend on two two-body unitaries. Let us denote this
object by

ϒ̃ðtreeÞ
N ≡ ϒ̃ðtreeÞ

N ½W⃗1; W⃗2;…; W⃗N �;
where W⃗1 ¼ fWð1Þ

1 g;
W⃗2 ¼ fWð1Þ

2 ;Wð2Þ
2 g;

..

.

W⃗N ¼ fWð1Þ
N ;Wð2Þ

N ;…;Wð2NÞ
N g:

EachWðjÞ
s corresponds to the jthW block at the sth level of

the tree, as in Sec. III. Moreover, eachWðjÞ
s itself depends on

two unitary operations U1; U2 ∈SUðdSdEÞ parametrized by
some θ⃗ and ϕ⃗, respectively. Note that the spaceE of scale s is
equal to the S space of the coarser scale s − 1 implying that
dS ¼ dE ≔ D. We can hence readily count the number of

free parameters in this variational ansatz ϒ̃ðtreeÞ
N ðfθ⃗; ϕ⃗gÞ

as 2Nþ1ðdSdEÞ2 þ
P

N−1
i¼1 2iþ1D4.

Suppose now that we have access to a representation of a
multitime process given by process tensor ϒðtargetÞ

k . This
process tensor may be in any form (quantum or classical),
so long as we have access to inner products with it. As an
objective function, we take the 2-fidelity between the
variational process tree, and the true spin-boson process
tensor as target:

F 2ðϒ̃ðtreeÞ
N ;ϒðtargetÞ

k Þ

with F 2ðρ; σÞ ≔
trðρσÞ

max½trðρ2Þ; trðσ2Þ� : ð31Þ

This measure is not exactly the Uhlmann fidelity, but
has the desirable properties that F 2ðρ; σÞ∈ ½0; 1�, and
F 2ðρ; σÞ ¼ 1 ⇔ ρ ¼ σ. Moreover, it is symmetric, unitar-
ily invariant, and reduces to the Uhlmann fidelity in the
case where either ρ or σ is pure [106]. These features make
this metric an ideal objective function for fitting mixed
quantum states. Importantly, the 2-norm is far easier to deal
with in the case of tensor networks than the 1-norm,
rendering the subsequent computations feasible. We remark

that evaluation of Eq. (31) for generic ϒðtargetÞ
k is inefficient.

In practice, however, we find that we can compute it for
single-qubit processes up to 128 steps on a personal laptop.
Although the process tree construction clearly embeds

multitime physics, it is only efficient in time steps k for
computing l-body expectation values (with l fixed), where
every other step is projected onto the identity supermap. In
order to fit a process tree with an efficiently evaluated
objective function, one could always fit the tree to l-body
marginals of the target process. This may be pertinent
(for example, with the spin-boson model) in instances

where important physics is captured by low-weight corre-
lations in the dynamics. Here, we are interested in examin-
ing the overall expressiveness of the ansatz and hence do
not employ this approach.
Now that we have an objective function and a para-

metrized tensor network, it is straightforward to fit a
process tree to given dynamics. We use the L-BFGS-B

optimizer [107] to maximize Eq. (31) with a JAX back
end [108] to compute the gradients via automatic differ-
entiation, as well as the PYTHON library QUIMB [109] to
handle tensor-network semantics. Rather than embedding
the unitarity condition into U1 and U2, the operators are
permitted to be general and then unitized at each step. The
optimization procedure is highly nonlinear. Hence, each
process fit is run many times from different random seeds
until appropriately converged. Typically, however, we find
that this optimal value is quickly found. Only occasionally
does the optimizer get stuck in a local minima, but with
the addition of stochastic methods (such as a change from
L-BFGS-B to Adam [110]) the methods are highly reliable.
We finally remark that we have an extra freedom to

explore in the parametrization of ϒðtreeÞ
N , namely, the

invariance of W across different time steps and timescales.
In particular, we can further compress the description of the
dynamics by enforcing a type of homogeneity of the tree,
where W bricks in different locations are made to be the
same as one another. There are two important cases we
consider in that respect, a time-homogeneous tree and a
scale-time-homogeneous tree. The former supposes that
dynamics are invariant on translation across time (same W
block within a level but different between levels), and the
latter is invariant across both time and scale (sameW block

in each position of the tree). That is, we set WðjÞ
s ≡Ws in

the former case and WðjÞ
s ≡W in the latter. We denote

these, respectively, by ϒðTH treeÞ
N and ϒðSTH treeÞ

N , such that

ϒðTH treeÞ
N ≡ϒðTH treeÞ

N ½W1;W2;…;Wn�;
ϒðSTH treeÞ

N ≡ϒðSTH treeÞ
N ½W�: ð32Þ

The above constitutes all the required machinery to fit
process tree models to target (here, spin-boson) multitime
processes.

C. Results

There are two properties of the tree that we wish to
examine. First, we are interested in determining whether
the W-brick construction is expressive enough to describe
real physical systems. Next, we wish to explore the extent
to which homogeneity of the tree can play a role both in
compressing the model and in generalizability: construct-
ing larger trees from smaller constituents to describe future
time dynamics. We will first demonstrate the long-range
nature of the spin-boson model through an analysis of
its non-Markovian memory and then investigate the
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performance of process tree fits for a range of coupling
strengths, and finally, determine how smaller process tree
fits generalize to larger ones.

1. Spin-boson memory structure

We start by providing some motivation for this analysis.
The spin-boson model is well known to feature long-range
interactions in time, usually explored via its mapping to an
Ising spin chain with long-range interactions [26]. We show
here first how this characteristic behavior also corresponds
to long-range temporal correlations, as we have motivated it
so far throughout this work. First, it is instructive to look at
the bond dimension scaling of the PTMPOs for a 128-time-
step spin-boson process tensor given in Fig. 8(i). With a
relative truncation threshold of 10−7, we can see how the
choice of evolution times δt influences the resulting
maximum bond dimensions. This informs our choice of
δt ¼ 0.1 ps: this timescale seems to capture the most
interesting memory dynamics. Starting with the numeri-
cally computed spin-boson process tensor across 128 time

steps ϒðSBÞ
128 , we sweep ηðϒðSBÞ

128 ; t; tþ ΔtÞ [Eq. (9)] to find
the average quantum mutual information for different
values of Δt. The results of this are shown in Fig. 7(b)
across a wide range of coupling strengths from 0.1 to 5 in
steps of 0.1. From this, we can see several interesting
features. First, it is clear that temporal correlations are
decaying polynomially, corroborating the notion of a spin-
boson model as possessing long-range memory. This is true
for almost all values of α. However, it appears to be a
coupling-dependent observation. Although correlations
decay polynomially for most values of α, this is not true
for very low or very high values. At α ¼ 10−4 (not shown),
for example, the non-Markovianity curves show exponen-
tial decay in time. Similarly, one can see that with
increasing α, the curves in Fig. 8(b) begin to lose their
linear character on the log-log plot. Respectively, this could
be understood as an extremely weak environment incapable
of mediating this slow memory, and a thermalized envi-
ronment where information effectively dissipates only
outward. The nonmonotonic behavior at very early times
likely results from the effect of the causal break operations
ρa and ρb in Eq. (9). We expect these independent
measurements and preparations to affect correlations most
at earlier times, before their influence has a chance to
effectively dissipate through the environment. Further,
these will be more pronounced for stronger SE couplings.
However, this is only speculative: It is a nonequilibrium
system and may have other pathologies in the dynamics.
It is not clear the extent to which the polynomial decays

at other α are finite-sized effects. Away from the phase
transition, the curves start to deviate from their linear
character for high values of Δt. For the purposes of this
work, it suffices to observe the polynomial decay to
demonstrate both the efficacy and the suitability of a tree
ansatz, but in a future work, it would be interesting to see

whether this behavior holds at much longer times, and
whether it is truly only at the phase transition where this
correlation length is effectively infinite. Although Fig. 8(b)
does not represent all of the properties of the process, it is
interesting to note that the short-range non-Markovian
memory is maximized at (and near) the phase transition.
The nature of non-Markovianity or multitime correlations
has not been studied in this context to our knowledge but
serves as a platform to further understand the interesting
physics of this paradigmatic model.

2. Process tree fits

Having established the memory scaling behavior of spin-
boson models, we can investigate the extent to which
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FIG. 7. Properties of the PT-TEMPOs for the spin-boson model
within which we work. (a) Comparison of the maximum bond
dimension of each MPO as a function of the coupling strength α
across different choices of time step δt. We see that when this is
chosen too small, there is little interesting memory structure; too
large and the system starts to thermalize, also removing memory.
The time step δt ¼ 0.1 is therefore chosen for all further plots.
(b) Memory structure of the spin-boson model. We determine the
scaling of non-Markovianity as a function of the temporal distance
Δt for different coupling strengths α (with δt ¼ 0.1). From the
linear plot, it is clearly seen that this process has polynomially
decaying correlations. Inset: the short-time correlations as a
function of α; these are maximized close to the phase transition.
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simple process trees represent the physics. The setup to the
fitting problem (as discussed in the previous subsection) for
a generic tree is depicted in Fig. 8(a). For a 16-step process,

we generate ϒðSBÞ
16 for a range of values of α. For the sweep

of α, we then find the best fit for five different models:

a W-brick process tree ϒ̃ðtreeÞ
4 , a time-homogeneous tree

ϒ̃ðTH treeÞ
4 , a scale-time-homogeneous tree ϒ̃ðSTH treeÞ

4 , and

an MPO ϒ̃ðMPOÞ
16 . We also consider a process tree with

a “relaxed” superprocess condition, which we denote by

ϒ̃ðr treeÞ
N . It is constructed out of W bricks with unitaries

that are not constrained to multiply out to the identity. That
is, Λ1 ¼ U1, Λ2 ¼ U2, and Λ3 ¼ U3 as per Eq. (13);
they are not scale consistent. We include this last tree to
test the restrictiveness of the W brick in comparison to
a proxy for Y, recalling that W allows for efficient
computation of two-point correlations, but is a restriction
which is not necessarily the best choice. We trial these
various models for an environment size of D ¼ 2, 3, and 4

(which are, respectively, the square roots of their internal
bond dimensions). The system size (bottom layer) is kept
constant at dS ¼ 2.
The results of the various model fits can be seen in

Figs. 8(b), 8(c), and 8(f). Additionally, the tree fits for the

W-brick process tree ϒ̃ðtreeÞ
4 from (b) and (c) are used to

compute the state of the spin as a function of the time in two
scenarios: In the first, the system is prepared in the j0i state,
and a σx propagator expð−iδtσx=2Þ applied at each time,
and hZi determined. In the second, the system is prepared
in the jþi state, left with HS ¼ 0, and then hXi computed.
These values are then each compared with the PT-TEMPO
computation. Naturally, the error is larger in the delocalized
phase before the spin effectively freezes. This provides an
additional metric to the F 2 overlap. Note however, that
since the trees are not optimized for these two-point
correlations, we would not necessarily expect this to be
the best tree representations to compute these quantities.
We see several remarkable results in the remainder of plots.
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FIG. 8. Procedure and results fitting process tree Ansätze to physical models. (a) Illustrative diagram of the fitting procedure. We
parametrize eachW brick of the process tree in terms of its unitary constituents. The tree is then optimized to maximize F 2 with respect
to some target process (in this case the spin-boson process tensor). (b) Results fitting differentD ¼ 2 process Ansätze to the 16-step spin-
boson process tensor. We report the best overlap of various trees as well as a fixed bond dimension MPO with respect to the stated model
across a range of coupling strengths α. Not only does the tree well capture the intended physics of the process, we clearly see the effects
of the spin-boson BKT transition as correlations increase. (c) Results fitting D ¼ 3 and D ¼ 4 process trees to the spin-boson process
tensor, both with the strictW-brick parametrization, and with the relaxedW. (d) Computing accuracy of observables of the spin from the
W-tree fits in (b) averaged over the 16 time steps. We start the spin in j0i, apply a σx propagator, and then measure hZi. We also start the
spin in a jþi state, let it idly evolve, and then determine hZi. (e) Illustrative diagram of generalizing scale-time-homogeneous trees to
larger processes. After fitting theW brick of a smaller process, one can then construct a larger generalization out of that optimized brick.
(f) Results showing the generalization of smaller fits to larger ones. A scale-time-homogenous process is fit to an eight-step spin-boson
process tensor and its optimized W brick used to construct 16-, 32-, and 64-step processes.
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The first is to note that the generic process tree serves as a
very good fit for the spin-boson model, even for small
internal bonds (D ¼ 2) but especially as we increase the
bond slightly. This demonstrates that our approach to
efficiently characterizing long-range temporal correlations
is not only of academic interest, it practically captures the
physics of well-established non-Markovian open quantum
systems. Moreover, it is interesting to note that these fits
witness the phase transition with α. The minimum value
of the D ¼ 2 curves coincide with the value of αc ¼
1þOðΩ=ωcÞ (since the exact location of the phase
transition is dependent on the system propagator, we have
indicated some uncertainty here).
Although the reduction in fit quality coincides with an

intuition of criticality at the phase transition, it is not
entirely clear what singular property causes this break-
down. As observed in Fig. 7(b), the short-range memory is
maximized at the phase transition and remains polyno-
mially decaying. However, the non-Markovianity
described here is perhaps too coarse a measure to fully
describe the fitting results. For instance, taking α ¼ 0.5
gives nearly the same scaling of the memory, but the tree is
a substantially better fit. It is likely that finer measures of
the process complexity (such as multitime correlations or
spectral properties) are needed to sufficiently answer this
question. Nevertheless, we are not aware of this perspec-
tive on the spin-boson model phase transition elsewhere in
the literature, and believe it warrants further study. It
would also be interesting to investigate the exact role
played by the use ofW superprocesses in this context. The
relaxed tree fits clearly perform much better, but do not
have substantially more free parameters. This may hint at
a process wherein scale consistency does not immedi-
ately hold.
The next feature worthy of attention is to compare

between the fits of ϒ̃ðSTH treeÞ
4 and ϒ̃ðTH treeÞ

4 . The two
models very closely match for α < αc and start to deviate
only once the system transitions from the delocalized to
localized phases, despite an order-of-magnitude difference
in the number of free parameters. We might understand this
as also representing a change in the memory structure to
something less homogeneous in scale. This is suggestive
that complex dynamical systems may exhibit a temporal
change-of-scale invariance, in close analogy to critical
many-body states and the tensor-network representations
thereof, such as MERA [71].
Lastly, and perhaps most compelling to the case for the

process tree in this instance, there is a large gap between the
optimized MPO model and the different process tree fits,
particularly near the phase transition. In this small instance,
a fixed bond dimension MPO is still expressive enough to
significantly overlap with the spin-boson process tensor.
However, despite possessing substantially more (2–60×)
free parameters than the different process tree models,
the MPO is not appropriately structured to match the

polynomial decay of the temporal correlations in the
spin-boson model. We present this as evidence that not
only are process trees better suited to represent complex
dynamics, they are also a more efficient representation.

3. Generalizing scale-time-homogeneous models

Our last set of results constitutes an investigation into the
utility of these models in predicting future dynamics.
A generic tree fit might be highly tailored to that specific
process and set of steps, rendering future predictions
inaccessible. However, if the process exhibits homo-
geneous features, then it should be possible to assemble
a larger future representation from a smaller process. This
method is depicted graphically in Fig. 8(b). In particular,

here we fit a variational tree ϒ̃ðSTH treeÞ
3 to an eight-step spin-

boson process tensor. Recall that this process tree is fully
characterized by a single W brick at all times and scales. It
is therefore straightforward to construct a larger process

ϒ̃ðSTH treeÞ
N from this optimized W.
Once more, we sweep a range of coupling values α. The

optimal W fitting to an eight-step spin-boson process
tensor is then used in the best case to construct a 16-,
32-, and 64-step process, and their overlaps computed with
the true spin-boson processes for these higher steps. Our
results are shown in Fig. 8(e), alongside the 16-step fit

ϒ̃ðSTH treeÞ
3 from Fig. 8(d) as a point of comparison.

Although the quality of the curves decays with the
increased number of steps, there is still a surprising amount
of overlap in the larger instances. Quantum states at this
scale are extremely unlikely to have any coincidental
overlap. Clearly, there is some essential physics that can
be captured and generalized from small processes without
explicitly solving for the Hamiltonian. Although only
preliminary, this points at the ability for the tree to not
only be efficient in its representation but to be predictive of
future dynamics of a system.

VII. PROCESS TREES
FROM MICROSCOPIC PHYSICS

An interesting remaining question is that of how to
construct a process tree from the underlying dynamics.
Although we have so far studied representability and the in-
principle expressivity of the process tree ansatz, if one were
interested in explicit simulation of a non-Markovian
open quantum system, it is often desirable to take an
additional step and start from the underlying dynamics.
When supplied with a system-environment Hamiltonian,
the prototypical method to obtain a process tensor is to
employ the Feynmann-Vernon influence functional
(IF) [111], which encodes environment correlations in an
effective Trotterization of the full dynamics. The resulting
functional generally grows exponentially with time, but can
be exactly represented by a 2D tensor network, whose
contraction can typically be hard to compute. In this
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section, we pose a resolution to this problem as an of
the tensor-renormalization-group (TRG) scheme [40–44].
This can be used to iteratively construct a process tree
from the IF. We leave, however, the problem of explicit
numerical analysis and benchmarking against the state-of-
the-art numerical packages, such as ACE [63,105] or
TEMPO [37,58,82], to future work.
Suppose we have a spin system coupled to an external

bath via the time-independent Hamiltonian H ¼ H0 þHE.
The time-evolution operator Uδt for this open system can be
approximated to first order as Uδt ¼ Vδt=2WδtVδt=2, where
Vt ¼ expð−iH0tÞ is the free evolution of the system, and
Wt ¼ expð−iHEtÞ is both the free bath evolution and any
interactions. Then, for a finite time t discretized into k
steps, the time-evolution operator can be written as
U t ¼

Q
k
i¼1 Vδt=2WδtVδt=2, up to an error Oðδt3Þ [112]. If

we take the initial state overHS ⊗ HE to be a product state
ρS ⊗ σE, then it was shown in Ref. [58] that the process
tensor can be arbitrarily approximated via

ϒk ≈ ðVδt=2 ⊗ V�
δt=2Þ⊗k½F k� ⊗ ρ0; where

F k ¼
X
s⃗;r⃗

TrE½Wðsk;rkÞ
δt

� � �Wðs1;r1Þ
δt

½σE��

× jsksk � � � s1s1ihrkrk � � � r1r1j: ð33Þ

The matrix F k is known in the literature as the influence
matrix (IM)—the matrix form of the IF. Naturally, in its
dense form this is exponentially large, but this complexity
can be simplified down in both space and time, and it can be
represented as a tensor network [37,38,63,113]. For an
environment that factorizes across a finite number of modes
N, the Liouville superoperator representing the time incre-
ment Wδt can be written as a matrix product operator with
some exact bond dimension that depends on the locality of
the interaction.
After k steps of the process are composed together, then

precontraction of the process tensor will be representable as
a 2D tensor network, as depicted in Fig. 9(a). Here, we

Time

Space
(a)

(b)

(e)

(c) (d)

(f) (g)

FIG. 9. Coarse-graining scheme to construct a process tree from an influence matrix. (a) System-environment dynamics are written
exactly as a 2D tensor network using the influence matrix formalism. This tensor network is in general inefficient to contract. We
propose a series of plaquette moves whereby groupings of the influence matrix are coarse grained. At the bottom row (in green) is the
“system” component of the influence matrix. (b) Each group of four sites is replaced with a close tensor network that possesses a
structure amenable to renormalization. The system components that later comprise the tree can be put intoW or Y form. (c) The IM after
one round of plaquette moves reduces to (d) wherein corresponding horizontal (purple) and vertical (yellow) triangles multiply out and
reduce the internal dimension. These matrices may then be absorbed into the (gray) box tensors. (e) The next round of transformations
repeats the plaquette moves on the newly renormalized lattice, resulting in the next stage at (f), and the final process tree at (g).
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delineate the system in green (bottom row), which has free
indices at each time as inputs and outputs. The causal
structure of this tensor network can be exploited to give it a
canonical form [58], circumventing computational hard-
ness issues in the contraction of a lattice [114]. Depending
on the exact contraction scheme employed (see Ref. [113]
for an in-depth analysis), the computational cost is
Oðkχ2t χ2sd2S), where χt and χs are the respective temporal
and spatial bond dimensions in the network. In the worst
case, χs can grow like dkS. In many physical instances,
however, this is not the case, and one can include bond
truncation in the final consideration without sacrificing
accuracy. As a concrete example, it was shown analytically
in Ref. [34] that the bond dimension of the spin-boson
model IF scales polynomially both in the simulation time
and the error on the physical observables. Further, the
influence matrix of a range of integrable lattice models turn
out to also exhibit subexponential bond dimension scaling:
low temporal entanglement [38,39,67].
We now show how—using the TRG approach to renorm-

alize the IM—we can iteratively construct the process tree
via a series of plaquette moves. A similar renormalization
was performed in Ref. [44] with respect to a lattice of
Trotterized imaginary time evolution. Our contribution here
is first the insight that the same type of lattice can be used to
represent an IM, and that we can keep the bottom layer free
to represent the process tensor. Crucially, the process of
renormalizing in this fashion places the process tensor
exactly into tree form. At each step of coarse graining, we
simply need to encode our chosen W- or Y-brick structure
into the plaquette elements that contain the process tensor.
Unlike the direct tree fits, this process does not scale at all
with the number of steps, and so can be performed
efficiently. Note, however, that it does scale with the size
of the environment.
Consider first a base unit cell of the lattice, such as the

dotted-line (red) boxes depicted in Figs. 9(a) and 9(b). Since
each column in this tensor network represents a propagator, it
can be placed into an appropriate canonical form [113]. The
two ingoing horizontal indices then propagate a subpart of
the system-environment state, and the top and bottom indices
are coupling terms between different environment modes at
different times. In principle, then, from right to left, we have a
trace-preserving map, and from bottom to top we have a
superprocess. We leave these possible identities in place, but
unless we wish to cut the internal bonds of the IM, it is
unnecessary to preserve this structure. Instead, suppose that
we can find a plaquette coarse-graining transformation that
replaces these four IM siteswith a structured network [shown
in Fig. 9(b)] incurring minimal error. The triangles here are a
mapping from the ith and jth environment modes to some
artificial space of size χ:BðHEi

Þ ⊗ BðHEj
Þ → BðHχlÞ. This

represents some dimensionality reduction of the problem,
and in practice, each χl can be chosen based on the desired
numerical precision.

It is not obvious how to analytically construct this
decomposition of the IM unit cell. As such, we defer to
numerical methods that would greedily find a best fit. Note
that this is not unusual in the tensor-network literature: For
example, the MERA has no known analytic form for
computing its disentanglers from an arbitrary underlying
state [21]. In particular, each element of the plaquette can
be individually parametrized. For the bulk of the IM,
we can then optimize for the distance with respect to the
unit cell:

ð34Þ

We also need to take care of the bottom level, where the
system has open indices for inputs and outputs to the
process. This can be done similarly, except that the bottom
tensor must now be parametrized as a superprocess, as per
the structure of superprocesses we have so far introduced.
Imposing a variational form on this map additionally gives
us some flexibility in the final tree structure. For instance, if
we wished our tree to be composed of either W- or Y-type
bricks, respectively, then we could simply encode this
parametrization in the superprocess constituents with each
optimization:

ð35Þ

The particular details of this optimization are not pertinent.
We can, of course, adopt a similar strategy as in Sec. VI. If
the IM is translationally invariant in both time and space,
then the minimization procedure needs to be carried out
only once. Otherwise, we will need OðkNÞ optimizations,
which can be carried out in parallel. Finally, we remark that
the boundary cases follow similar logic, but will have only
three out of the four isometries, reflecting the reduction to
six outer indices instead of eight.
With a best approximation to each unit found, the IM can

be recast as the lattice shown in Fig. 9(c). We note then that
the inner products between isometries and superprocesses
from adjacent cells reduce into linear maps on the chosen
internal bond dimension depicted in Fig. 9(d). Both the
small boxes on the horizontal (pink) and vertical (yellow)
bonds can each be absorbed into new larger box (dark gray)
tensors to define a new lattice. The exception to the above
rewriting is the bottom row of coarse-graining superpro-
cesses, which have open indices representing input and
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output legs onHS. These indices remain free and the above
can be used to iteratively construct the process tree. The
above procedure now defines a new lattice in which the
time and space sites have all been reduced by a factor of 4.
We can simply repeat this step by coarse graining the lattice
once more, replacing each plaquette as in Fig. 9(e), and end
up with the coarse-grained lattice shown in Fig. 9(f). We
continue this until the IM has been reduced to a single
point. The final optimization must now also include the
initial environment projection at the very top level. The
resulting concatenation of superprocesses mapping the
system is now exactly a process tree. This is depicted in
Fig. 9(g).
The purpose of this section is to sketch out an in-principle

method by which process trees can be constructed from the
microscopic physics which define them. This leaves, nat-
urally, a host of open questions for future work, including
benchmarking, stability, and the determination of best
practices for selecting plaquette moves. Nevertheless, we
have demonstrated that the construction of process trees is
well within reach of commonly studied approaches, both in
the context tensor renormalization and the simulation of
open quantum systems. For the former task, TRGalgorithms
comprise an extensive bodyof literature [40–44,115]; for the
latter, IM methods are key in essentially all state-of-the-art
simulation methods for non-Markovian open quantum
systems [37,58,63,82,105,116]. It will be imperative future
work to find and characterize open dynamics whose struc-
ture is amenable to a tree construction (such as the spin-
boson model, which we have demonstrated).

VIII. DISCUSSION AND CONCLUSIONS

In this work, we have introduced and systematically
studied a new class of quantum non-Markovian process
tensors (Sec. III), which we have shown to structurally
exhibit power-law correlations and memory (Sec. IV). We
refer to them as process trees, and they are naturally suited to
represent complex quantum processes. Namely, the process
tree can accommodate genuinely quantum long-range cor-
relations (Sec. V). Moreover, process trees include a notion
of temporal scale and are constructed such that observables
at different scales and across arbitrarily many times at these
scales are efficiently computable. Finally, we have shown
that this model can accurately fit the multitime process
tensor of the paradigmatic spin-boson model (Sec. VI), and
detailed a method for systematically constructing the ansatz
from underlying dynamics (Sec. VII).
The process tree, including its applications to the spin-

bosonmodel, forms a proof-of-principle model to efficiently
represent and simulate complex physical non-Markovian
quantum processes. This paper thus opens up many avenues
of future research in simulating large-scale complex quantum
processes, new tensor-network Ansätze, understanding
phases of quantum dynamics, and much more. We discuss
each of these avenues in some detail below.

Representations of full, many-body quantum states can
quickly become expensive using tensor networks.
Alternatively, when one is interested in only few-point
correlations, isometric tree tensor networks offer efficient
encoding methods for long-range systems. In the time
domain, we have shown that a similar principle applies.
Indeed, existing numerical methods that rely on reconstruct-
ing the full process tensor (and hence, implicitly encoding
many-point correlation functions) similarly tend to have a
cost which scales fast. Extending tree tensor-network
principles to the time domain, the process tree class offers
fertile ground for innovations regarding efficient numerical
simulation. It remains a pressing task to implement the
spatiotemporal TRG method described in Sec. VII, or a
similar method, for realistic physical models. Such an
algorithm would be predictive, in contrast to the fitting
method of Sec. VI, which while informative, is generally
inefficient and relies on an existing process tensor of the
dynamical system.We stress that this method is underlying-
model agnostic, and should apply equally to influence
matrices derived from continuous environments [37,63]
or from many-body lattice models [35,36,38,39].
Moreover, the TRG method systematically incorporates
temporal environmental scales, such that one could access
different levels of coarse observables from the single-tensor-
network description of the process (tree). This method
would be relevant to systems with different physics emer-
gent at different scales, additionally helping to identify
temporal phases of quantum processes.
The model introduced in this work was largely moti-

vated by the physical models that exhibit long-range
temporal correlations, and we adapted structures from
tree tensor-network theory from many-body physics to
identify this generic dynamical class. However, MERA
tensor networks also exhibit long-range (critical) corre-
lations and have the advantage of not needing averaging to
achieve exact polynomially decaying correlations.
MERA networks differ from tree tensor networks
through alternating layers of two-to-two isometries called
“disentanglers” [71]. We investigated the possibility of
extending process trees to include two-to-two time-slot
bricks, such as the D and F superprocesses in Eqs. (11)
and (12), but we were unable to find an ansatz which
exhibited the same desirable properties as the spatial
MERA. Part of the problem is the inherent causal ordering
of indices in a process, such that one cannot possibly find
a nontrivial two-to-two time superprocess that is isomet-
ric, i.e., which perfectly preserves information going
between scales. It would be interesting to investigate this
question further, as it may relate to more formal aspects of
change-of-scale (renormalization group) transformations
in the temporal setting, including identifying phases and
universal features of quantum dynamics. Recent advances
in temporal scale simulation [117] and in lattice RG
techniques [118] may help in this research program.
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Interpreting the fine graining as depicted in Fig. 6, we
can see that going to “finer” timescales (lower down the
tree) involves introducing more dynamics (tensor boxes).
Physically, this represents the fact that there exist time
regimes in dynamics where certain Hamiltonian terms are
relevant, and when they become irrelevant. For example,
high-frequency modes of a Hamiltonian may be relevant
only at a fine scale, but average out at a coarse scale (such
as via the rotating-wave approximation [119]). One could
also connect this with master equation descriptions of open
quantum system dynamics, which can be derived exactly
from the process tensor [120]. Looking at Fig. 3(a), we can
see that with the scale consistency condition, W-class
processes have a restricted amount of information trans-
ferred from the past. That is, adding a single scale layer
adds a singleW-brick tensor, but describes a process tensor
with twice as many time steps. This fits with the idea of
approximate master equations from a restricted or efficient
memory kernel [58,59], and may be related to notions of
the complexity of open quantum systems [121,122].
Finally, we remark that the process tree can be prepared

using only two-body gates in a laboratory setting.
Therefore, in principle, process trees can be engineered,
and the various structural properties that we have described
here could also be verified experimentally. Our results
hence pave a way forward for engineering and simulation
of complex quantum processes based on the ansatz intro-
duced in this work.
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APPENDIX A: TENSOR NETWORKS

A tensor Tijk… is a multidimensional array of real or
complex numbers. The tensor components are located
within the tensor via a set of indices i; j; k;…. The number
of values an index runs over is the dimension of that index.
For instance, if i ¼ 1; 2;…; d, then index i has dimension
equal to d. We denote the index dimension as jij ¼ d. The
size of a tensor—the number of components it has—is
equal to the product of the dimensions of all its indices.

Common examples of tensors are vectors and matrices.
A vector (ket) jψi ¼ P

i ψ ijii inside a vector or Hilbert
spaceH is described by tensor ψ i with one index, where jii
denotes a basis in H and its dual (bra) hψ j ¼ P

i ψ
�
i hij ( �

denotes complex conjugation). Similarly, a matrix U acting
on H is described by a two-index tensor Uij as
U ¼ P

ij Uijjiihjj. Higher-order tensors are arrays with
more than two indices. For instance, a two-body gate in a
quantum circuit, for example, a controlled-NOT (CNOT)
gate, is described by a four-index tensor Vijkl with two bra
indices i, j, and two ket indices k, l. In fact, a CNOT gate is a
multi-index matrix, a particular type of higher-order tensor
obtained by reshaping a matrix.
We graphically represent tensors as shapes (such as a

circle, triangle, or square) with wires emanating from them;
see Fig. 10. The wires correspond to the indices of the
tensors. In this paper, most diagrams are time ordered, which
results in an implicit orientation of ket and bra indices or
wires.We follow the convention that time flows from the left
to the right, which means that indices emanating to the left
(right) of a shape are bra (ket) indices.
Elementary tensor operations are also represented

graphically. A matrix-vector multiplication w ¼ Mv is
represented by connecting the bra wire of M with the
single (ket) wire of v. Analogously, the product of two
matrices P ¼ MN is depicted by connecting the ket wire of
matrix M and the bra wire of matrix N; Fig. 10(b). The
computational cost of multiplying a matrix Mik with a
matrix Nkj is proportional to jijjjjjkj.
Matrix multiplication can be generalized to the multi-

plication or contraction of any number of tensors. A
contraction of a set of tensors can be specified by
interconnecting their wires (consistent with their ket-bra
orientations) according to a graph. Such a set of inter-
connected tensors is called a tensor network. The computa-
tional cost of contracting a tensor network is proportional to
the product of the dimensions of all the indices in the tensor
network, generalizing the rule for estimating the computa-
tional cost of matrix multiplication. For example, the cost
of contracting the simple tensor network depicted in Fig. 10
is proportional to jijjjjjkjjljjmjjnj.
Tensor networks [73–75] are widely used in quantum

many-body physics as efficient representations of complex
quantum many-body wave functions. Examples of popular
tensor networks include (1) MPSs, which consist of
contracting tensors in a linear geometry, (2) TTNs and
the MERA, which are hierarchical tensor networks based
on hyperbolic geometry, and (3) projected entangled pair
states, which generalize MPSs in higher dimensions.
The graphical representation of the basic mathematical

objects encountered when describing quantum processes is
shown in Fig. 10. Here, we have used red and blue colors to
distinguish between indices of elementary matrices M and
their Hermitian conjugate (adjoint) M†. The matrix forms
of superoperators are not regarded as elementary matrices,
and their indices, which are tensor products of red and blue
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indices and label a basis in the space BðHÞ of bounded
operators acting on a Hilbert space H, are colored black.
A matrix Mij can be vectorized into a vector ma by

applying duality and grouping together the bra and ket
indices i and j into a single index a [123]. Figures 10(d)
and 10(e) depict the vectorization of a density matrix ρ and
the identity matrix, which is depicted simply as a wire.
A superoperator—a map between matrices—can be

analogously matricized by combining indices, as shown
in Fig. 10(f). Here, we show the matricization of a unitary

map U into a matrix, which by slight abuse of notation, we
call U ¼ U ⊗ U�, by grouping the left and right pairs of
red and blue indices as black indices. The matricized map
acts on vectorized identity and density matrices, as shown
in Figs. 10(g) and 10(h). Figure 10(i) depicts the matrici-
zation of a generic CPmap with Kraus operatorsKii. In the
quantum dynamics literature, the matrix form of a CPTP
map (for instance, the unitary mapU) is called the Liouville
representation of the map [72,77,100].

APPENDIX B: TRANSLATIONALLY
INVARIANT MPS PROCESS

Here we review the generic correlation structure of
a process with a restricted memory size. This will be in
order to contrast the correlation structures exhibited
by a general MPO process tensor discussed in past
literature [23,53,56,57,60,70], with the process tree which
we study in this work.
In many practical situations, an unknown environment

may affect a dynamics, but not carry over any significant
memory (quantum information) to future interventions on
the local system HS. Such processes are particularly
amendable to numerical simulation, such as through an
MPO ansatz for the corresponding process tensor. To
showcase correlation behavior in this setting, consider a
generic process which admits a (temporally) translation-
invariant MPO representation. That is, we define the MPO
process ϒðMPOÞ consisting of dynamics of a repeated CPTP
map Λ on a finite system,

ðB1Þ

where Λ appears n times. It is well known that the repeated
application of a generic CPTP map leads to exponentially
decaying two-point correlations. In Appendix D, we
prove the following result that extends this correlation
behavior to memory, showing that non-Markovianity
generically also decays exponentially, given a constant-
sized environment [124].
Proposition 2. In an MPO process ϒMPO½Λ� with a

constant environment dimension dE and generic Λ, then in
the asymptotic limit nδt ¼ tb − ta → ∞,

ηðϒðMPOÞ
k ½Λ�; ta; tbÞ ∼ e−jtb−taj=ξ; ðB2Þ

where ξ > 0.
We now offer a sketch of a proof of this result. For a

generic (irreducible) CPTP map Λ, for large Δt, two-point
connected correlations decay exponentially. As this is true
for any choice of observables, this directly leads to the
states ϒb;a and ϒa ⊗ ϒb being exponentially close to each
other, according to the operational meaning of the 1-norm

Duality

Duality

Vectorize

Vectorize

Matricize

(a)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(b) (c)

FIG. 10. Graphical representation of some elementary math-
ematical objects pertaining to quantum dynamics. (a) Ket jΨi and
corresponding bra hΨj. The indices and wires of a matrix and its
Hermitian conjugate (adjoint) are colored blue and red, respec-
tively. (b) Matrix multiplication P ¼ MN. (c) A simple tensor
network comprised of a contraction of three tensors X, Y, and Z.
(d) A density matrix ρ in matrix and its vectorized form jρii by
applying the state-functional duality jii → hij. (In this paper,
we represent normalized density matrices as blue triangles.)
(e) The identity matrix I (as a do-nothing operation on a wire)
and its vectorized form jIii. (f) Matrix form of a unitary map
Uð:Þ ¼ Uð:ÞU†. (g) The action of a unitarymapUð:Þ on an identity,
and (h) on a density matrix ρ. (i) A generic CP map with Kraus
operators fKigi. (j) The Choi-Jamiolkowski duality or isomor-
phism between CP maps and density matrices corresponds to
applying the state-functional duality on the red and blue
wires as shown.
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distance. We can then apply the Fannes-Aubenaert
inequality [101], which roughly states that when two
density matrices are close, so are their entropies. This
difference of entropies Sðϒa ⊗ ϒbÞ − Sðϒb;aÞ is exactly
the quantum mutual information measure of non-
Markovianity ηðϒ; ta; tbÞ from Eq. (10).
The two key properties leading to this exponential decay

property here is that (i) the process ϒMPO½Λ� has a bounded
size memory, and (ii) it has a linear (MPO) geometry. This
is analogous to the state case, where an area law—a
bounded bond dimension—is generically equivalent to
exponentially decaying correlations [31,32]. Of course, a
perfectly coherent system-environment (unitary) interac-
tion with a constant-sized environment would lead to
recurrences and hence nonmonotonically decaying tempo-
ral correlations. Such interactions are rather atypical in a
practical sense, given the difficulty in isolating a quantum
system from outside noise. For noisy interactions (repre-
sented by CPTP maps), Proposition 2 (Appendix B)
indicates that a finite-sized environment generically leads
to exponentially decaying temporal correlations. However,
within this translationally invariant (linear) MPS geometry,
it is not possible to achieve all possible correlation
structures. There are relevant physical examples that exhibit
a strong memory for all times, which cannot be efficiently
modeled with an MPO processes, for example, the spin-
boson model which we examine in Sec. VI. This motivates
our introduction of the process tree, which utilizes tensor-
tree-like geometry to produce multitime processes with
structurally slowly decaying correlations and memory.

APPENDIX C: FORMAL PROPERTIES
OF GENERAL PROCESS TREES

In this section, we discuss some additional properties of
one-to-two time superprocesses, extending the exposition
of Sec. III. For a Y-type process tree, i.e., that without the
scale consistency condition Eq. (16), one needs to keep
track of the effect of inserting identity superoperators ∪
across times without observables or instruments, and across
fine timescales.
General process trees instead are in terms of a general

one-to-two superprocess as in Eq. (13). As discussed in
Sec. III B, such a transformation does not need to preserve
the identity instrument when coarse graining up the process
tree, YT j ∪ ⟫ ¼ jX⟫, where X ≠∪ in general. Therefore,
even a single-time correlation function could, in principle,

depend on all Oð2NÞ tensors fYðjÞ
s g in the tree. This fact is

represented by the scale-causal cone shown in Fig. 3(b), in
comparison to W-class bricks as shown in Fig. 3(a). When
computing correlation functions, one needs to keep track of
a range of “influence tensors,” as shown in Fig. 11. This
could still, in principle, be done relatively efficiently for a
homogeneous process tree. However, one needs to care-
fully choose the height of the process tree N, as such a

choice would have a significant impact on observables, in
contrast to the W-brick case.

1. Proof that Y is a superprocess

Here we prove explicitly that Y as defined in Eq. (13) is a
valid superprocess. To prove this, we need to show that
when acting on any step of an arbitrary process ϒk, the
output ϒ0

kþ1 ¼ Yϒk satisfies (i) positivity and normaliza-
tion Eq. (6) and (ii) the affine causality conditions Eq. (7).
Recall the general expression for a process Eq. (5),

ðC1Þ

and for the general Y brick,

ðC2Þ

Then we can write out the full expression of a single fine-
graining map acting on a time slot of an arbitrary process
tensor ϒk,

ðC3Þ

Past
influence
tensors

(a) (b)

(c)

FIG. 11. Without the scale consistency condition Eq. (16),
contracting the process tree in computing correlation functions is
not as efficient, as one generally needs to compute nontrivial
influence tensors. (a) The tensor-network contraction that equates
to the expectation value of the intervention A in a Y−type process
tree. (b) The influence tensor X appearing in part (a). (c) The
recursive influence tensor also appearing in part (a), dependent on
the tensor X.
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where we have dropped the labels in the graphical repre-
sentation in the second line for comprehensibility. Then the
two conditions detailed above can be directly proven from
this expression:

(i) Equation (C3) is a network of a composition of
CPTP maps, and so the positivity and normalization
conditions of Eq. (6) are satisfied.

(ii) The causality conditions Eq. (7) for ðϒ0
kþ1Þ are

inherited from ðϒkÞ for outputs at times ocþj for
j ≥ 2. We can then graphically show that the
conditions are also preserved on the f; f̄ indices,

ðC4Þ

where the trace commutes through TP maps from the
left. We can then apply the same techniques to further prove
that

trof ½ϒ0
f∶0� ¼ j1if̄⟫ ⊗ ϒ0̄

f∶0 and

trof̄ ½ϒ0̄
f∶0� ¼ j1if̄⟫ ⊗ ϒ0

c−1∶0 ¼ j1ic−1⟫ ⊗ ϒc−1∶0: ðC5Þ

Therefore, W is a valid superprocess, and so the process
tree in Fig. 2 is a process tensor.

2. Gauge freedom in W-type process trees

Here we describe that we can change the scale consis-
tency condition to instead be with respect to any other
unitary map by modifying only a W-class process tree
through local unitary operations on the finest (s ¼ N) and
coarsest scales (s ¼ 0).
We start with aW-class superprocess satisfying Eq. (16).

Consider an arbitrary unitary matrix V, where as usual its
Liouville superoperator representation is V ¼ V ⊗ V� (see
Sec. II). We modify the W brick as follows:

ðC6Þ

where the yellow (bottom) boxes represent
ffiffiffiffiffiffi
V†

p
, while the

blue (top) boxes represent
ffiffiffiffi
V

p
. Then, WV satisfies a new

scale consistency condition with respect to the unitary instru-
ment V, instead of the identity supermap ∪ as in Eq. (16),

WV jV⟫jV⟫ ¼ jV⟫: ðC7Þ
One can see this directly from the fact that

ffiffiffiffiffiffi
V†

p
V

ffiffiffiffiffiffi
V†

p
¼ ∪

(the identity map) and then by using the property Eq. (16)
forW. Constructing an entire process tree fromWV leads to
canceling of the blue and yellow blocks (

ffiffiffiffi
V

p
and

ffiffiffiffiffiffi
V†

p
within

the bulk and is equivalent to the usual W-class process tree,
except by yellow bricks at every site on the finest scale
(s ¼ N), and blue bricks at the coarsest.

APPENDIX D: PROOFS

Theorem 1. Consider a uniform process tree ϒðtreeÞ
N of 2N

intervention times composed from a generic fine-graining
superprocess W defined in Eq. (17), and two instruments
At and A0

t0 applied on slots t ¼ t0 and t0 ¼ tn > t0 with
Δt ¼ tn − t0 ¼ 2n − 1 (n is a positive integer). Then, in the
asymptotic limit N; n → ∞,

jhA0
tnAt0iϒðtreeÞ

N
− hA0

tniϒðtreeÞ
N

hAt0iϒðtreeÞ
N

j ∼ Δt−α; ðD1Þ

where α > 0. The sufficient conditions on the superprocess
W are defined in terms of the spectral properties of a
derived transfer matrix given in Eq. (22).

Proof. Let ϒ ¼ ϒðtreeÞ
N for some N. Consider temporal

correlation functions at a duration of Δt ¼ tn − t0 ¼ 2n − 1
steps, where n∈Z≥1. For simplicity, here we also take t0 ¼
0 to be on the leftmost part of the tree (earliest time), and so
tn ¼ 2n − 1. Graphically, using the scale consistency con-
dition (16) these correlation functions reduce to

ðD2Þ
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In particular, we see a repeated structure with increasing n.
This is the key expression of the proof. We can see that
Eq. (D2) is a function of a transfer matrix WR,

hA0
tnAt0iϒ ¼ ⟪A0jWn−1

L WðbÞðWT
RÞn−1jA⟫; ðD3Þ

where the superscript T denotes transpose, and

ðD4Þ

The first two matrices are what we call right and left
descending maps and are key elementary operations in
computing correlation functions numerically, as we discuss
in Appendix E. We assume that the process tree is deep
enough (N ≫ 0) such that the contribution from the middle
tensor WðbÞ is approximately constant with increasing n
(and hence Δt). The task is then to show that this transfer
matrix WR is dominated by a subleading eigenvector as
n → ∞, and that the corresponding eigenvalue satisfies
jλj < 1. Then we can show that the connected correlation
function jhAt0Atiϒ − hAt0iϒhAtiϒj decays exponentially
with n, and therefore polynomially so with l. To prove
this, we need two ingredients: CP and the existence of a
(unique) eigenvector with eigenvalue 1. Then, the Russo-
Dye theorem ensures that all eigenvalues lie within the
complex unit disk jλj ≤ 1 [100], and that there exists a
single dominant eigenvector with the maximal λ ¼ 1 (see
the proof for Theorem. 2.3.7 in Ref. [99]).
Choosing the intervention separation Δt ¼ 2n − 1

ensures that the causal cone of each intervention consists
only of the left or right descending maps. Therefore, the
correlator Eq. (24) is dictated by the (n − 1)th power ofWL

and WT
R, in each causal cone.

We will first show that WT
R is CP. We will do this by

showing that the Liouville superoperatorWT
R can be written

in terms of the Kraus operators Ki as

WT
R ¼

X
i

Ki ⊗ K�
i : ðD5Þ

Here, Ki acts on the ket parts of the input, and K�
i on the

bra, with the index i being generated from all lines
connecting the two “halves.” Being able to write the
Liouville superoperator representation of a map in this
way is equivalent to the map admitting a Kraus operator
sum representation (with equal left and right operators), and
this is possible only for CP maps [72,77,100].
To prove Eq. (D4), we will use the definition of WT

R,
Eq. (D3), in terms of the W superprocess definition
Eq. (17). Explicitly,

ðD6Þ

where in the fourth line we have “unfolded” the tensor-
network diagram, such that wires represent a bra or ket
contraction, and boxes are unitary matrices with italic
labels. This is in contrast to the two preceding lines, where
boxes represent the superoperator representation of a
unitary map with upright font labels; see Eq. (2) and the
surrounding exposition. For clarity, we have colored all the
ket objects in red and the bra objects in blue. The trace at
the end then corresponds to connecting the ket and bra
copies through the orthonormal basis of projections hi2j,
and the initial state ρ ¼ P

i2hi2jρji2iji2ihi2j provides
another connection between the copies, with ji2i being
the (diagonal) eigenbasis of ρ. With ⃗i in Eq. (D5) being the
combined index of ði1; i2Þ,

ðD7Þ

and so WT
R can be written in the form of Eq. (D4). WT

R is
therefore CP [77]. Note that this does not depend on the
particular choice ofW in terms of U1 and U2, compared to
other maps, and a similar proof to Eq. (D5) would hold for
other choices of W satisfying the scale consistency con-
dition Eq. (16).
Now, due to the scale consistency condition (16), we

know there exists an eigenvector with eigenvalue 1. This is
the identity superoperator j ∪ ⟫,
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ðD8Þ

We will assume for now that this is the unique eigenvector
(i.e., that WT

R is irreducible [100]), and later argue that this
is the generic case. Now, an equivalent argument to that
above applies to the case of WL via left contraction (left
matrix multiplication), such that it is CP with a unique left
eigenvector.
As j∪⟫ is a right eigenvector with maximum eigenvalue

λ∪ ¼ 1, we can write

lim
n→∞

ðWT
RÞn−1 ≈ j ∪ ⟫⟪λRj; ðD9Þ

where we leave the left eigenvector jλR⟫ unspecified, but
know that ⟪λRj ∪ ⟫ ¼ 1 [100]. An equivalent statement
applies to WL acting through left multiplication. In this
case, for large n, to first order two-point correlations for the
process tree factorize,

lim
n→∞

hAAtiϒ ¼ lim
n→∞

⟪AjðWLÞn−1WðbÞðWT
RÞn−1jA⟫

≈ ⟪AjλL⟫⟪∪jWðbÞj∪⟫⟪λRjA⟫
¼ ⟪AjλL⟫⟪∪jWðbÞj∪⟫⟪∪jWðbÞj∪⟫⟪λRjA⟫
¼ lim

n→∞
⟪AjWn−1

L WðbÞj∪⟫⟪∪jWðbÞðWT
RÞn−1jA⟫

¼ hAtiϒhAt0iϒ: ðD10Þ

Here, in the third line we have used that ⟪∪jWðbÞj∪⟫ ¼ 1,
which can be proven from the scale consistency condition
(16) and from the normalization of the initial environment
state,

ðD11Þ

Therefore, the connected correlation function will decay
according to the subleading eigenvalues λ2 ¼ λL2 λ

R
2 ,

jhAt0Atiϒ − hAtiϒhAt0iϒj ∼l≫0
jλ2j2n ¼ e−n=ξ; ðD12Þ

where the final equality is due to jλsubj<1 and where ξ > 0
can be interpreted as the (temporal) correlation length.
Using Δt ¼ 2n − 1, we arrive at the result.
Randomly sampled matrices generically have a non-

degenerate spectrum. The question remaining is whether
the internal structure of the transfer matrix WR=L means that
it will not satisfy this same generic property. For choices of
randomly chosen U1 and U2 within the definition ofW, we
numerically compute the spectrum of WR=L and find that it
tends to always be nondegenerate. ▪

Proposition 2. In an MPO process ϒMPO½Λ� with a
constant environment dimension dE and generic Λ, then in
the asymptotic limit nδt ¼ tb − ta → ∞,

ηðϒðMPOÞ
k ½Λ�; ta; tbÞ ∼ e−jtb−taj=ξ; ðD13Þ

where ξ > 0.
Proof. Assume that the CPTP dynamics Λ is generic, in

that it is irreducible and so admits a unique (left) eigen-
vector with eigenvalue jλ1j ¼ 1 from its TP property [100].
Then, for large times tb − ta ¼ nδt,

Λn ≈ jλ⟫⟪1j þ λn2P2 þOðλ3Þ; ðD14Þ
where λ2 is the subleading eigenvalue, and P2 the corre-
sponding projector onto this Jordan block. From this, one
can show using the Perron-Frobenius theorem that two-
point correlators will have exponential decay with (a large)
number of “time steps” n [100],

jhAðtaÞBðtbÞi − hAðtaÞihBðtbÞij ∼ e−n=ξ: ðD15Þ

Now consider any positive operator-valued measure
(POVM) M, which is defined by the set of positive
Hermitian operators fMðrÞg called POVM elements, such
that

P
r Mr ¼ 1. Any arbitrary POVM element on a

bipartite space can be written in a basis of separable (local)
operators,

MðrÞ ¼
X
i

AðrÞ
i ⊗ BðrÞ

i ; ðD16Þ

where AðrÞ
i and BðrÞ

i are operators solely on the space Hta
and Htb , respectively. This comes from the fact that any
operator can be expanded in a local operator basis (such as
the Pauli basis). Such a decomposition always exists, which
can be proven from operator Schmidt decomposition.
Recall the operational definition of the 1-norm distance,

kρ − σk1 ≔ max
M

X
r

jtr½MðrÞðρ − σÞ�j; ðD17Þ

where the maximum is over all POVMs. Writing this out
forϒb;a as in Eq. (10), and expanding the POVMs in a local
basis on Hta ⊗ Htb ,

kϒb;a −ϒa ⊗ ϒbk1
¼ max

M

X
r

��tr�MðrÞðϒb;a −ϒa ⊗ ϒbÞ
���

¼ max
M

X
r

����
X
i

tr
h
AðrÞ
i ⊗ BðrÞ

i ðϒb;a −ϒa ⊗ ϒbÞ
i����

≤ max
M

X
r

X
i

���tr
h
AðrÞ
i ⊗ BðrÞ

i ðϒb;a −ϒa ⊗ ϒbÞ
i���

¼ max
M

X
r

X
i

���
D
AðrÞ
i BðrÞ

i

E
−
D
AðrÞ
i

ED
BðrÞ
i

E���;
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where in the penultimate line we have used the triangle
inequality jPi xij ≤

P
i jxij. Now, the inside of the abso-

lute value is exactly a connected two-point function
Eq. (D14), which decays exponentially with n for any
operators and so any r, i. The summation gives a multi-
plicative factor that depends only on the dimension of
Hta ⊗ Htb , and so

kϒb;a −ϒa ⊗ ϒbk1 ∼ e−n=ξ: ðD18Þ
Finally, we can apply the Fannes-Aubenaert inequality to
get [101]

ηðϒ; ta; tbÞ ¼ SðϒaÞ þ SðϒbÞ − Sðϒb;aÞ ðD19Þ
¼ Sðϒa ⊗ ϒbÞ − Sðϒb;aÞ ðD20Þ
≤ e−n=ξðn=ξþ κ log dabÞ; ðD21Þ

where in the second line we have also used the additivity of
von Neumann entropy, dab is the dimension of the density
matrix ϒb;a, and where κ is a positive constant. With long
times n → ∞, the exponential factor here dominates, and so
non-Markovianity as measured by the quantum mutual
information ηðϒ; ta; tbÞ must decay at least exponentially
with large n. ▪

APPENDIX E: DETAILS OF PROCESS
TREE NUMERICS

This section provides extra details on the numerical
simulations computed for the results in Fig. 5, as well as an
explanation for how one can estimate the computing cost
for a correlation function computed on a process tree.
Arbitrary correlations in a W-class process tree can be

computed numerically through three elementary opera-
tions: left and right descending moves as in Eq. (22),
and a fusion move which we will introduce below.
We first return to the computation of a one-time expect-

ation value of an intervention A acting on the tth slot of a
process tree with 2N intervention slots, as in Sec. IVA. For
simplicity, we assume that each wire of the tensor network
has the same dimension d. We can break down the total
contraction into a sequence of two basic contractions
corresponding to coarse graining an instrument acting
either on the left or right slot of a tensor:

ðE1Þ

We refer to these basic contractions as the left and right
moves, respectively. The contraction to evaluate the one-
time expectation value can now be viewed as a sequence of
left or right moves that coarse grains the intervention A all
the way to the longest scale, where it is contracted with the

single-time measurement process ϒðtreeÞ
0 [Eq. (14)].

According to thegeneral estimate of the cost of contracting
tensor networks reviewed in Appendix A, the computational
cost of a left or right move is proportional to d6. Since the
scale-causal cone consists of precisely one tensor at every
timescale (Fig. 3), the total number of left or right moves
required to coarse grain intervention A to the longest time-
scale isN (equal to the height of the process tree). Therefore,
the total computational cost of computing the expectation
value of an instrument that acts on a single intervention slot is
proportional to Nd6, as reported in Sec. IVA.
The decomposition of the total contraction into a

sequence of left and right moves, as described above, also
eases the software implementation of the computation of
one-time expectation values, particularly if the process tree
is homogeneous (i.e.,WðjÞ

s ≡W). In practice, one has only
to implement the basic contractions Eq. (E1) and then call
them iteratively to coarse grain the intervention to the
longest timescale, where it is easily contracted with single-
time measurement process [Eq. (14)]. This can be done
through a binary expansion of the site number t. This is
easiest to explain via an example. Recall the single-time
expectation value Eq. (20) from the main text,

ðE2Þ

¼ ⟪AjWð4Þ
4;LW

ð2Þ
3;LW

ð1Þ
2;LW

ð1Þ
1;Rjρ⟫j1⟫: ðE3Þ

This comes from computing the expectation value of the
instrumentA on the site t ¼ 8, for the heightN ¼ 4 tree as in
Fig. 3(a). Then, in binary t ¼ “1000” and from this we can
immediately determine the required tensors in the contrac-
tion in Eq. (E2): Reading from left to right, the first digit “1”
corresponds to contracting withWR first, then the next three
“0” digits correspond to three left moves WL.
The computational cost for two-time and higher corre-

lation functions can be estimated analogously by breaking
down the computation into a sequence of elementary
contractions. Each instrument independently ascends
through its causal cone, via the left or right move
Eq. (E1), and the two instruments fuse together into an
effective one-time intervention at some scale s, which then
ascends the causal cone to the top of the tree. The fusion
move corresponds to the contraction of a tensor with both
slots occupied by instruments:
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ðE4Þ

One can implement this numerically through the binary
expansion of the time t and t0. Each index represents a left
or right move, and where the indices first differ (reading
from left to right) is where a fusion move is applied. We
implement these operations above to arrive at the efficient
numerical results of Fig. 5, using the PYTHON package
NCON for elementary tensor-network semantics [126].
Finally, higher-time correlators then generalize the above

in a straightforward manner and can also be computed as a
sequence of the left, right, and fusion moves. Figure 12
shows the tensor-network contraction for a three-time
correlator. From this figure, it is intuitive to see that the
polynomial decay of correlations results of Fig. 5 and
Theorem 1 (Sec. IV B), in terms of Δt, will generalize to k-
time correlations hAtk ;…; At2At1At0iϒðtreeÞ for k ≥ 3 to pro-
duce polynomial decay in each of the varia-
bles Δti ¼ tiþ1 − ti.
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