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„The important thing is not to stop questioning. Curiosity has its own reason for existing.“

— Albert Einstein





Abstract

The motion of salt water through the Earth’s geomagnetic field generates characteristic
electromagnetic (EM) signals. These ocean-induced EM signals can be observed from
outside the ocean by space-borne satellite magnetometers. They depend on oceanic ve-
locities and conductivity (i.e., temperature and salinity) and, therefore, could contribute
to observing the ocean heat content or water mass transport. However, the identifica-
tion of ocean-induced magnetic fields requires a separation from other geomagnetic field
contributions (e.g., the core, lithosphere, and ionosphere). In contrast to tidal-induced
EM signals, circulation-induced EM signals have not yet been identified in geomagnetic
observations.

This thesis developed a novel Kalman-filter-based rescaling of EM signals (KREMS)
to detect ocean-circulation-induced magnetic fields. The essential separation from other
magnetic field contributions was achieved by predetermining the temporal behavior of
the searched EM signal. KREMS was then used to locally rescale the amplitude of this
predetermined EM signal by assimilating geomagnetic observations.

An observing system simulation experiment (OSSE) based on synthetic Swarm-like
observations demonstrated that KREMS allowed for a global signal identification of
circulation-induced EM signals regardless of their complex temporal behavior and low
intensity. In an ideal scenario, the uncertainty of the rescaling could be reduced by 70%
on average. The best detectability was found in the Indian Ocean basin and in parts of
the Southern Ocean. In a more realistic scenario of the OSSE, KREMS performed com-
parably well as a least-squares approach. Moreover, it was shown that including spatial
constraints in KREMS further improved signal identification.

Based on the these findings, KREMS was applied to seven years of real Swarm geo-
magnetic satellite observations. Compared to the OSSE, the Swarm assimilation results
proved to be more ambiguous and strongly dependent on the presumed estimate of the
circulation-induced EM signal. The rescaling remained highly uncertain and did not re-
veal a consistent spatial pattern. In some areas the signal-to-noise ratio turned out to
be too low (e.g., the East Pacific Ocean), on others the rescaling indicates substantial
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discrepancies between the presumed and the true circulation-induced EM signal (e.g., the
Southern Indian Ocean).

Finally, a purely observation-based detection of circulation-induced EM signals was
considered by estimating the temporal behavior of the EM signal from satellite altimetry.
This combination also indicated the potential of KREMS to correct water mass transport
estimations (e.g., from satellite altimetry) and suggested the applicability of KREMS not
only for examining the detectability of EM signals but also in a broader context of ocean
observations.



Kurzfassung

Die Bewegung von Salzwasser durch das geomagnetische Feld der Erde erzeugt charakteri-
stische elektromagnetische (EM) Signale. Diese durch den Ozean induzierten EM-Signale
können außerhalb des Ozeans mittels Satellitenmagnetometern aus dem Weltraum be-
obachtet werden. Aufgrund ihrer Abhängigkeit von den Geschwindigkeiten der Ozean-
strömungen und der Leitfähigkeit des Ozeans (d. h. Temperatur und Salzgehalt) kön-
nen sie zur Beobachtung des Wärmeinhalts oder des Wassermassentransports im Ozean
beitragen. Die Identifizierung von ozeaninduzierten Magnetfeldern erfordert jedoch eine
Trennung von anderen geomagnetischen Feldbeiträgen (z. B. des Kerns, der Lithosphä-
re und der Ionosphäre). Im Gegensatz zu gezeiteninduzierten EM-Signalen wurden die
durch die Ozeanzirkulation induzierten EM-Signale bisher noch nicht in geomagnetischen
Beobachtungen identifiziert.

In dieser Arbeit wurde eine neue Kalman-Filter-basierte Reskalierung von EM-Signalen
(KREMS) entwickelt, um die durch Ozeanzirkulation induzierten Magnetfelder zu detek-
tieren. Die entscheidende Separation von anderen Magnetfeldbeiträgen wurde erreicht,
indem das zeitliche Verhalten des gesuchten EM-Signals vorher festgelegt wurde. KREMS
wurde dann verwendet, um die Amplitude dieses vorbestimmten EM-Signals durch die
Assimilation geomagnetischer Beobachtungen lokal neu zu skalieren.

Die Simulation eines Beobachtungssystemexperiments (OSSE) auf der Grundlage syn-
thetischer Swarm-ähnlicher Beobachtungen zeigte, dass KREMS eine globale Signalidenti-
fizierung von durch die Ozeanzirkulation induzierten EM-Signalen unabhängig von ihrem
komplexen zeitlichen Verhalten und ihrer geringen Intensität ermöglicht. In einem idea-
len Szenario konnte die Unsicherheit der Reskalierung im Durchschnitt um 70% reduziert
werden. Die beste Nachweisbarkeit wurde im Becken des Indischen Ozeans und in Teilen
des Südlichen Ozeans festgestellt. In einem realistischeren Szenario des Beobachtungsex-
periments zeigt KREMS vergleichbare Resultate wie mittels einem Ansatz der Methode
der kleinsten Quadrate. Darüber hinaus wurde gezeigt, dass die Einbeziehung räumlicher
Beschränkungen in KREMS die Signalidentifizierung weiter verbessert.

Auf der Grundlage dieser Erkenntnisse wurde KREMS auf sieben Jahre realer geo-
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magnetischer Satellitenbeobachtungen von Swarm angewendet. Im Vergleich zu dem si-
mulierten Beobachtungsexperiment stellten sich die Ergebnisse der Swarm-Assimilation
als mehrdeutig heraus und waren stark abhängig von der angenommenen Schätzung des
durch die Ozeanzirkulation induzierten EM-Signals. Die Reskalierung blieb sehr unsicher
und offenbarte kein einheitliches räumliches Muster. In einigen Gebieten erwies sich das
Signal-Rausch-Verhältnis als zu niedrig (z. B. im Ostpazifik), in anderen wies die Res-
kalierung auf erhebliche Diskrepanzen zwischen dem vermuteten und dem tatsächlichen
zirkulationsbedingten EM-Signal hin (z. B. im südlichen Indischen Ozean).

Schließlich wurde ein rein beobachtungsbasierter Nachweis von durch die Ozeanzirku-
lations induzierten EM Signalen in Betracht gezogen, indem das zeitliche Verhalten des
Signals aus der Satellitenaltimetrie geschätzt wurde. Diese Kombination zeigte auch das
Potenzial von KREMS zur Korrektur von Schätzungen des Wassermassentransports (z.
B. aus der Satellitenaltimetrie) und deutete auf die Anwendbarkeit von KREMS nicht nur
zur Untersuchung der Nachweisbarkeit von EM-Signalen, sondern auch in einem breiteren
Kontext von Ozeanbeobachtungen hin.
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1
Introduction

1.1 Basic motivation

In recent years, observing and understanding our Earth system has gained more impor-
tance than ever. The complexity of the system’s dynamics, the responsible mechanisms,
and the interaction of a variety of different components pose major challenges for sci-
ence. In addition, the ongoing changes in the climate system with far-reaching conse-
quences demand increasingly detailed knowledge. Over the years, through tremendous
effort in various research fields, substantial progress in our understanding has already
been achieved. Thereby, monitoring and observing the Earth System plays a decisive
role in all developments. Often novel observation techniques and the linkage of differ-
ent scientific fields represent a great potential to yield more profound insights. One of
the most important components of our Earth system, requiring a variety of observations
for its exploration and benefiting from a combination of them, is the global ocean (Lin
and Yang, 2020). The oceans and their dynamics are still challenging to observe and
measure due to their horizontal and vertical size combined with their inaccessibility. In
addition, the oceans not only cover 70% of the Earth’s surface but also store a large
amount of heat and undoubtedly play an essential role in our climate system (Schmitt,
2018). Since 90% of the Earth’s thermal energy excess due to ongoing warming is stored
in the ocean (Zanna et al., 2019), they are strongly affected by present changes in the
Earth’s climate (Johnson et al., 2022). Moreover, large-scale water transports through
ocean circulation significantly influence our climate system globally. Understanding and
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especially predicting ocean dynamics requires as numerous and diverse observations as
possible. Given the challenging spatial and temporal scales of ocean dynamics, ocean
modeling has played a crucial role in this process. Thereby, correcting numerical model
conditions by satellite or in-situ observations and combining ocean models and observa-
tions through data assimilation has become very common (Anderson et al., 1996; Moore
et al., 2019). When observing the oceans, satellite measurements play a special role as
they provide an all-season full view with global coverage. Nowadays, various quantities
like sea surface temperature and salinity, sea surface hegiht, surface winds, and wave
heights are remotely sensed from space. A major advance in ocean observation was made
through high-precision altimetry (e.g., TOPEX/Poseidon mission (Fu et al., 1994) and
its successors, the Jason series (Masters et al., 2012)). However, most of these observa-
tion techniques only allow direct measurements of the ocean surface and thereby showing
that each observing system has its advantages and limitations. In the future, comple-
menting and combining observation techniques from different research fields represents a
promising perspective to better understand our Earth system. An outstanding example
of connecting research fields and establishing novel observation techniques is presented
by satellite gravity measurements. The satellite gravity missions GRACE (Tapley et al.,
2004) and GRACE-FO (Landerer et al., 2020) not only complement existing observations
but also contribute to understanding climate change (Tapley et al., 2019), especially when
combined with other sources of measurement, such as altimetry and in-situ measurements
(Barnoud et al., 2023). Thereby, the advantage of satellite gravimetry, compared to other
space-borne observations, is providing not only ocean-surface information but on the entire
ocean mass redistribution (Chen, 2019). Another example of a connection between dif-
ferent research fields providing such a similarly intriguing source of information is offered
by geomagnetic observations and their link to ocean dynamics. Analogous to monitoring
changes in the gravitational field, slight changes in the geomagnetic field could indirectly
reveal ocean information about the whole water column. Indeed, secondary electromag-
netic (EM) fields are generated by the motion of conductive salt water through the Earth’s
geomagnetic field. These oceanic EM signals depend on water transport and, additionally,
on the oceanic conductivity, i.e., temperature and salinity, and are, in principle, remotely
observable. Consequently, satellite measurements of ocean-induced EM signals provide
both an all-season view with global coverage and an exciting complementary source of
information on the whole water column. Motivated by the potential to serve as an indirect
source of information and novel observing system, the possible detection and identifica-
tion of ocean-circulation-induced EM signals in geomagnetic satellite observations is the
topic of this thesis.
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1.2 Historical development and current state of
research

The theoretical foundations of electromagnetic induction were laid by Michael Faraday
in 1831 (Ronald Anderson, 1993). Faraday himself already pointed out the generation of
electric currents due to the movement of large water masses through the Earth’s ambi-
ent magnetic field. Twenty years later, Charlton Wollaston was able to observe the first
voltage fluctuations in submarine cables (Nature, 1948). The connection between elec-
tromagnetism and oceanic water movements was consolidated in the early and mid-20th
century by Young et al. (1920); Cherry and Stovold (1946) and Longuet-Higgins et al.
(1954). Later on, electromagnetic induction processes in the ocean were the subject of
comprehensive theoretical research studies by Larsen (1968) and Sanford (1971) and fur-
ther developments by Chave and Luther (1990), who introduced the poloidal and toroidal
decomposition of the ocean-induced magnetic field (OIMF). First estimations of the EM
signals based on an ocean general circulation model (OGCM) were performed by Stephen-
son and Bryan (1992); Flosadóttir et al. (1997) and Tyler et al. (1997). Since the poloidal
part of the OIMF can reach outside the ocean, ocean-generated magnetic fields provide a
remote observation possibility. This potential to remotely sense the oceans from distant
land or satellite observation was discussed by Tyler et al. (1999). Consequently, new per-
spectives have emerged with the launch of the satellite mission CHAMP (Reigber et al.,
2002) and especially the high-precision magnetometer observation by the ongoing Swarm
satellite mission (Friis-Christensen et al., 2006). Typically one distinguishes between two
types of OIMF: the one associated with tidal motion and the one caused by ocean circula-
tion. Thus, several further theoretical research activities were already dedicated to both
tidal EM signals (e.g. Kuvshinov and Olsen, 2005; Dostal et al., 2012; Velímský et al.,
2018) as well as OIMF from circulation (e.g. Vivier et al., 2004; Manoj et al., 2006). Nev-
ertheless, due to the weak signal strength and the superposition with other magnetic field
components, the detection of OIMF poses a major challenge Kuvshinov (2008). However,
the regularity of the periodic tidal EM signals allowed their identification in various obser-
vations. Maus and Kuvshinov (2004) identified tidal-induced EM signals in observatory
measurements, Schnepf et al. (2014) and Velímský et al. (2021) analyzed measurements
from ocean-bottom electro-magnetometer and seafloor voltage cables, and in particular,
Tyler et al. (2003) and Sabaka et al. (2016, 2018, 2020) achieved the detection of tidal-
induced EM signals in CHAMP and Swarm satellite observations. In contrast, the OIMF
from ocean circulation could not be identified in satellite observations so far. In the case
of ocean circulation, the irregular ocean flow complicates the separation from other mag-
netic field constituents. Moreover, there are also no promising approaches for a possible
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identification so far. However, the success of tidal OIMF detection and several research
studies clearly demonstrate oceanic EM signals as an exciting source of indirect observa-
tion. Hence, many additional research activities addressed the applications and benefits
of observing OIMF, covering a broad spectrum of topics. Of particular importance is the
dependence of these signals on electric conductivity and transport in the ocean and the
Earth’s electromagnetic structure. Schnepf et al. (2015); Grayver et al. (2016) used tidal
magnetic signals to explore the characteristics of the Earth’s structure. Saynisch et al.
(2016) used the sensitivity on electric conductivity, and therefore on temperature and
salinity, to investigate the climate impact, and Petereit et al. (2019) expanded on this
conductivity sensitivity and studied climate trends in shelf regions. Additionally, climate
phenomenons like the El Niño Southern Oscillation were analyzed using the EM signals
(Petereit et al., 2018). The connection of EM signals to oceanic conductivity was even
successfully used to estimate the ocean heat content from satellite observations (Irrgang
et al., 2019; Trossman and Tyler, 2019). Finally, EM signals have been associated with
extreme events like tsunamis (Toh et al., 2011; Schnepf et al., 2016; Minami et al., 2021).
Concerning the ocean circulation-induced EM signals, Irrgang et al. (2017) has already
performed a synthetic assimilation experiment to demonstrate that OIMF could provide
valuable constraints for an OGCM. All things considered, the overwhelming amount and
variety of research studies and results reveal considerable benefits from OIMF observa-
tions and indicate that observing oceanic EM signals can also contribute to a deeper
understanding of ocean dynamics in the future.
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1.3 Research objectives and structure of the thesis

According to the current state of research, the question of the detectability of ocean-
circulation-induced magnetic signals arises naturally. The remarkable success based on
the already identified tidal EM signals suggest the exploration of the detectability of
circulation-induced EM signals. On the one hand, scientific studies agree that the de-
tectability of circulation-induced EM signals would open up new possibilities for observ-
ing ocean dynamics, e.g., oceanic transports. On the other hand, these studies also agree
that their separation from other magnetic contributions is an enormous challenge. How-
ever, since the European Space Agency (ESA) launched the high-precision magnetometer
Swarm satellite mission, the weak EM signals from circulation and their spatio-temporal
variations are, for the first time, in the range of measurement precision, and, therefore,
in principle detectable. Indeed, one of the Swarm mission’s secondary research objectives
is identifying ocean circulation by its magnetic signature (Friis-Christensen et al., 2006).
The present thesis is dedicated to this research objective. Due to missing approaches on
how to achieve this, a new method has been developed in context of this thesis:
A Kalman-filter-based Rescaling of ElectroMagnetic Signals (KREMS).
This method rescales an initially given EM signal, representing a presumed estimate, by
a constant factor through the assimilation of geomagnetic satellite observations. In this
thesis, KREMS is used to rescale presumed estimates of the ocean-circulation-induced
magnetic field. Subsequently, the rescaling of presumed estimates of the OIMF will be
used to evaluate their signal identification in observational data. The goal is to use the re-
sulting scale factor from KREMS to analyze the detectability of ocean-circulation-induced
EM signals.

This thesis aims to validate and evaluate the novel KREMS method for the identifi-
cation of ocean-circulation-induced magnetic fields in geomagnetic satellite observations
and presents the application to real Swarm magnetometer measurements. Therefore, the
thesis is structured as follows: First of all, the theoretical background and the method-
ology used are briefly described in Chapter 2. Subsequently, since the proposed KREMS
is based on presumed estimates of the OIMF, critical dependencies and relevant approxi-
mations are initially outlined in Chapter 3. Finally, the KREMS as a detection method
is considered in terms of two general objectives:
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1. Validation and evaluation of KREMS

The proof of concept and the validation of the KREMS as a detection method is addressed
in Chapter 4. This chapter valuates the detectability of OIMF using KREMS in the
context of an observing system simulation experiment (OSSE). Besides the validation,
the OSSE is also used to extensively study the KREMS method and answer the following
research questions:

• What are the advantages and capabilities of KREMS?

• What are the most relevant influences on the results of KREMS?

• What are the limitations of KREMS?

2. Application of KREMS to Swarm satellite observations

The real-world application of KREMS as a detection method is presented in Chapter
5. In this chapter, KREMS is used to identify both model-based and observation-based
presumed OIMF estimates in Swarm satellite observations and to answer the following
questions:

• Can KREMS be used to identify ocean-circulation-induced EM signals in Swarm
satellite observations?

• Is a purely observation-based detection of ocean-circulation-induced magnetic fields
possible?

At the end, a summary is given, and the results and major findings are concluded in
Chapter 6.



2
Theoretical background and methodology

2.1 The ocean induced-magnetic field

2.1.1 Electromagnetic induction

The presence of dissolved ions as charge carriers makes seawater a conductive fluid. The
motion of conductive seawater through the Earth’s main magnetic field generates both
electric and magnetic fields. The deflection of differently charged ions by the ambient
magnetic field induces electric currents, which in turn cause secondary so-called ocean-
induced magnetic fields (OIMF). The phenomenon of motionally induced magnetic fields
in the ocean can be fully described by the theory of classical electromagnetism. The force
acting on dissolved ions moving in the oceans is given by the fundamental Lorentz force
Florentz (Heaviside, 1889; Lorentz, 1895):

Florentz = q (E + v × Bearth), (2.1)

where E describes the electric Field, v the oceanic velocity, Bearth the Earth’s main
magnetic field and q a unit charge. According to Ohm’s law, the electric current density
J is then proportional to this force per unit charge:

J = σ (E + v × Bearth) (2.2)

where the conductivity σ represents the proportionality factor.
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The theoretical foundations of electromagnetic induction processes are described by
Maxwell’s equations (Maxwell, 1865):

∇ · E = ϱ

ϵ0
(2.3a) ∇ · B = 0 (2.3b)

∇ × E = −∂B
∂t

(2.3c) ∇ × B = µ0

(
J + ϵ0

∂E
∂t

)
(2.3d)

This set of partial differential equations describes the generation and transformation of
electric and magnetic fields (E and B) by charges and currents (ρ and J). The constants
µ0 and ϵ0 in these equations stand for the vacuum magnetic permeability and the vacuum
permittivity. In the case of the OIMF, where electric currents do not change rapidly, one
can consider a quasi-static approximation, so that the displacement current ϵ0

∂E
∂t

in (2.3d)
can be neglected. Hence, (2.3d) can be replaced by Ampère’s law:

∇ × B = µ0J (2.4)

This directly implies that ∇·J = 0 (divergence of the curl of a vector field is always zero),
which is the condition of magnetostatic dealing with steady currents (i.e., continuous
current without change and charge pile up). In fact, this approximation is valid until
currents do not change extremely rapidly, and is well justified in the case of oceanic
values (Sanford, 1971). On this basis, the induction equation can be derived. By using
(2.2) to express the electric field E and substituting it in Faraday’s law (2.3c), one gets:

∇ ×
( 1

σ
J − v × Bearth

)
= −∂B

∂t
(2.5)

Subsequently, using Ampère’s law (2.4) to replace J yields the electromagnetic induction
equation:

∇ ×
( 1

σ
∇ × B

)
+ µ0

∂B
∂t

= µ0∇ ×
(
v × Bearth

)
. (2.6)

The induction equation can be solved according to the OIMF B for a given oceanic
velocity field v, corresponding conductivity σ, and the main magnetic field Bearth. Various
approaches have been carried out to perform this task and to solve the induction equation
numerically. Firstly, a so-called thin sheet approximation developed by Tyler et al. (1997)
and Vivier et al. (2004) was used to solve a simplified version of the induction equation by
neglecting the self-induction term (µ0

∂B
∂t

). Furthermore, approaches to solving the com-
plete induction equation in the time domain, like ElmgTD (Velímský and Martinec, 2005;
Velímský, 2013), were implemented. Additionally, electromagnetic induction solvers, like
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X3DG (Kuvshinov, 2008), which operate in the frequency domain, were developed. In
spectral space, the electric and magnetic field (E, B), as well as the electric charge and
current density (ρ, J), are depending on frequency rather than time. The transformation
between frequency and time domains can be achieved using Fourier transformation with a
time dependency of exp(iωt), where ω is the angular frequency, and i the imaginary unit
and t the time. As a result, since Faraday’s law (2.3c) is transformed to ∇ × E = −iωB,
the induction equation in the frequency domain is given by:

∇ ×
( 1

σ
∇ × B

)
+ iµ0ωB = µ0∇ ×

(
v × Bearth

)
. (2.7)

Generally, since the magnetic field is divergence-free, it can be decomposed into a
poloidal and a toroidal part:

B = Bpoloidal + Btoroidal, (2.8)

and each part can be represented by a scalar potential (Backus, 1986):

Bpoloidal = ∇ × (∇ × (rΦ)) Btoroidal = ∇ × (rΨ), (2.9)

where r denotes the radial vector in spherical coordinates and Φ and Ψ the scalar poten-
tials. Thereby, the toroidal field is tangential to spheres in contrast to the poloidal part,

Figure 2.1: Schematic illustration of the poloidal (red) and toroidal (green) part of the
magnetic field in relation to a plane. Figure was taken from Yi and Choe (2022).

where the curl of the poloidal field is tangential to spheres (Figure 2.1). Therefore, the
poloidal part of the OIMF is of primary interest to the detection of EM signals because
it contains a radial component and can reach outside the ocean. On the contrary, the
toroidal field is confined to the ocean, meaning that it is not observable from outside
the ocean. However, if conductivity is assumed to be not only radially, but also laterally
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dependent, the toroidal and poloidal parts are coupled (Velímský et al., 2019). This fact
emphasizes that these lateral conductivity variations must be considered when modeling
the OIMF.

2.1.2 X3DG induction solver

The forward modeling of the poloidal part of the OIMF in this thesis is mainly based
on the electromagnetic induction solver X3DG. X3DG is a thoroughly tested and widely
used electromagnetic induction solver (Kelbert et al., 2014; Šachl et al., 2019). This solver
calculates numerical solutions of Maxwell’s equations in the frequency domain. Instead
of taking the ocean velocity directly into account, the X3DG allows for the excitation of
any external electric current. Accordingly, Equation (2.4) reads as follows:

∇ × 1
µ

B = σB + Jext (2.10)

In the case of the OIMF, the external excitatory electric current Jext is then given by:

Jext = σ(v × Bearth). (2.11)

The calculation of the frequency-domain magnetic field is performed using an iterative
volume integral approach. The volume integrals are solved using a Greens function tech-
nique in a background 1D conductivity. Conductivity anomalies are considered through
introduced scattered electric and magnetic fields. More details can be found in Kuvshinov
and Semenov (2012).

3D
Temperature

3D
Salinity

TEOS-10

2D Earth Main
Magnetic Field

3D Horizontal
Velocities

3D Ocean
Conductivity
(from T/S fields)

3D Electric
Current Density
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Conductance

2D Sediment
Conductance

1D Mantle
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∫
dz

∫
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Figure 2.2: Sketch of the processing steps for the input of the electromagnetic induction
solver X3DG. (Note: blue boxes highlight time-dependent quantities, brown boxes
mark quantities assumed to be constant in time)
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Both the electric source and an appropriate description of a surrounding conductance
model are needed as input for the X3DG solver. Figure 2.2 illustrates the usual processing
steps to obtain both required inputs for the X3DG solver. The external excitatory electric
source induced by the ocean flow is prescribed in an infinitesimal thin sheet as a depth-
integrated density:

jext =
∫ 0

−d
σ (v × Bearth)dz, (2.12)

where d denotes the depth of the ocean. The vertical ocean velocities are typically assumed
to be negligible (resulting in an ocean velocity vector of v = (vx, vy, 0)) since they are at
least one order of magnitude smaller than horizontal ocean velocities. However, Velímský
et al. (2019) recently took vertical velocities into account when analyzing the toroidal
magnetic field. The conductivity weight in Equation (2.11) and (2.12) is derived from a
realistic 3D ocean conductivity description, as Irrgang et al. (2016) showed that its spatial
distribution and temporal variation influence the OIMF. Such an ocean conductivity
description can be taken directly from datasets like the World Ocean Atlas 2018 (WOA18)
by Tyler et al. (2017) or can be additionally calculated from 3D temperature and salinity
fields. This can be accomplished using the Gibbs Seawater Oceanographic Toolbox from
the Thermodynamic Equation of Seawater 2010 (McDougall and Barker, 2011, TEOS-10).
The Earth’s main magnetic field is assumed to be constant over depth and the data can
be taken from the International geomagnetic reference field IGRF-13 model (Alken et al.,
2021).

Finally, the conductance model considered in X3DG consists of two parts. The first
part is an anomalous ocean conductance layer that accounts for oceanic and sediment
conductivity. The ocean conductance stems from the 3D ocean conductivity used before
by simple integration over depth. A time-constant conductance of the sediments is ob-
tained with the heuristic approach from Everett et al. (2003) using the sediment thickness
of Laske and Masters (1997). In this approach, the different thicknesses of sediments and
igneous rock are weighted with fixed conductivity values. The second part of the conduc-
tance model consists of a background 1D conductivity profile characterizing the Earth’s
mantle conductivity, e.g., as determined by Grayver et al. (2017) or Püthe et al. (2015).
It is accompanied by a highly conductive core. Finally, the atmosphere over the ocean
layer is assumed to be an insulator. The conductance model used in X3DG is summarized
in Figure 2.3.

Output of the X3DG induction solver

X3DG allows the calculation of the OIMF at any point in time and space. Therefore,
the OIMF can be evaluated at surface or approximately 460 km satellite height (typical
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Figure 2.3: The two parts of the conductance model used in the X3DG induction
solver. The left side shows the 2D anomalous conductance layer accounting for the
ocean and sediment conductance. The right side illustrates the 1D conductivity profile,
which is assumed to be located beneath the anomalous conductance layer accounting
for the mantle conductivity.

height for the Swarm satellite mission) with a spatial resolution of 1◦. The results of a
temporal averaged OIMF derived from ocean model velocities are exemplarily presented
in Figure 2.4. The underlying X3DG input, the zonal and meridional external electric
current density (top panel), are shown, as well as the corresponding X3DG output at
surface and satellite height (bottom panel).

Quasi-stationary regime

Since the temporal pattern of oceanic tides corresponds to well-known frequencies, calcu-
lating the OIMF in the frequency domain is of particular value when considering tidal-
induced EM signals. Contrarily, the temporal behavior of the general ocean circulation
does not exhibit specific frequencies. Consequently, when analyzing the magnetic field
included by ocean circulation, the time series is of higher interest rather than a specific
frequency. Therefore, solving the electromagnetic induction for each time step in a quasi-
stationary regime is helpful. In the case of the X3DG solver, this is managed by choosing
a sufficiently small excitation frequency of the external electric current (because a zero
frequency is not allowed). The imaginary part of the complex frequency-domain magnetic
field accounts for its temporal evolution. In order to simulate the quasi-stationary case
with X3DG, it is reasonable to choose the excitation frequency as small as possible so that
the imaginary part tends to zero. This criterion was used in test calculations to set an
excitation frequency of 10−12 days−1 for the quasi-stationary regime. However, the quasi-
stationary use of X3DG also introduces some errors since quantities like the penetration
depth of EM signals are assumed frequency-independent. A more detailed analysis of this
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Figure 2.4: Input and Output of the X3DG electromagnetic induction solver. The top
row shows the zonal and meridional electric current density used as an external exci-
tation input in X3DG. The input is representatively derived from temporal averaged
ocean model velocities. The bottom row shows the resulting radial component of the
magnetic field induced by ocean circulation. The left side shows the magnetic field
on Earth’s surface height; the right side on approximately Swarm satellite height at
460 km over the Earth’s surface.

quasi-stationary approach and its errors is given in Section 3.2.3.
From the description of the X3DG induction solver, it is evident that the OIMF

depends on various quantities (oceanic conductivity and velocities, Earth’s main magnetic
field, and mantle and sediment conductivity) and is influenced by several assumptions
(e.g., quasi-stationary approximation). The potentially resulting uncertainties on the
OIMF must be taken into account in the subsequent analysis and interpretation of the
results. Therefore, the impact of these essential quantities and considered approximations
on the oceanic EM signals is investigated in more detail in Section 3.2.
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2.1.3 Biot-Savart solver

As a conclusion for oceanic EM signal calculations, an additional, more simplified ap-
proach to estimate the OIMF will be introduced shortly. In a magnetostatic context,
the OIMF can be directly calculated from an electric current distribution using the law
of Biot-Savart. The Biot-Savart equation is the fundamental law of magnetostatic and
describes the magnetic field generated by a constant electric current. It is given by:

B(r) = µ0

4π

∫
V

J(r ′) × r − r ′

|r − r ′|3
dV ′ (2.13)

The magnetic field can be calculated at an arbitrary position in space r by integrating over
the complete electric current density distribution J in the Volume V ′. The Biot-Savart
law, combined with the superposition principle, is equivalent to Maxwell’s equation in the
case of magnetostatic. A derivation of Equation (2.13) from Maxwells’s equation can be
found in the Appendix A.1. With this simplified Biot-Savart approach, it is impossible
to consider the surrounding conductivity model or the coupling of poloidal and toroidal
parts through lateral conductance variations. However, the direct link between electric
current density and the magnetic field within Biot-Savart is beneficial for understand-
ing and examination purposes. Due to this direct link and the superposition principle,
the Biot-Savart magnetic field calculations can be linearized, allowing an inversion in
future developments. In some exceptionally simplified cases, the Biot-Savart approach
even allows an analytical solution. On the downside, solving the volume integral of the
Biot-Savart law can also quickly get cumbersome. Moreover, due to the neglection of
the surrounding conductivity and its lateral variations, the solutions resulting from the
Biot-Savart law must be considered inaccurate. In the context of this thesis, a simple
Biot-Savart solver was implemented and used for investigations on an inaccurate electro-
magnetic framework and as a simple approximation. Furthermore, the goal was to exam-
ine whether presumed OIMF estimates calculated by this simplified Biot-Savart approach
are still sufficient to analyze the detectability using the KREMS method. Therefore, a
comparison of the resulting OIMF based on the law of Biot-Savart with the advanced
X3DG induction solver will be first drawn in Section 3.2.4.
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2.2 Geomagnetic field modeling by assimilating
satellite observations

2.2.1 Geomagnetic field

The Earth’s geomagnetic field comprises several contributions from different origins. Ac-
cordingly, various interests arise in determining individual contributions, ranging from
understanding the generation processes (e.g., dynamo action in the core, magnetization
in the crust, electric currents in the ionosphere and magnetosphere) to studying further
dependencies and implications (e.g., probing the conductivity of the mantle and exam-
ining ionospheric and magnetospheric phenomena). However, direct measurement of the
geomagnetic field only provides the superposition of all magnetic field constituents. In
addition, separating the geomagnetic field obtained from direct measurements into its
constituents is a complex and challenging task due to the wide range of spatial and tem-
poral scales and the fact that the latter are overlappping. The most dominant magnetic
field contribution, the core field, arises from dynamo actions in the Earth’s outer core.
This field reaches intensities up to 65 000 nT at the Earth’s surface and varies on time
scales ranging from months to millennia. On smaller spatial scales, a lithospheric part
resulting from the magnetization of rocks in the crust has to be taken into account. Its
temporal variations are only on geological timescales. Furthermore, electric currents in
the ionosphere or magnetosphere caused by thermospheric winds or solar radiation sig-
nificantly contribute to the geomagnetic field. These parts, in turn, can lead to intense
variations on very short up to decadal timescales. Additionally, the fluctuation of the ge-
omagnetic field can induce electric currents in the crust or mantle, resulting in secondary
magnetic fields. Finally, as described in Section 2.1, induction processes in the ocean
generate further secondary magnetic fields.

2.2.2 Kalman filter-based assimilation

The OIMF is only a tiny contribution to the geomagnetic field. Identifying and potentially
utilizing this field in geomagnetic satellite data requires a precise separation from the
different constituents. This separation is a demanding task due to the broad spectrum
of spatial and temporal scales of the geomagnetic constituents. In geomagnetic field
modeling, several approaches were pursued to meet this challenge (Hulot et al., 2015).
Of these, numerous models are based on the regularized least squares method, like the
geomagnetic field model CHAOS (Finlay et al., 2020) or the comprehensive models by
Sabaka et al. (2020). Eventually, some of them followed a Bayesian approach, like the
geomagnetic field model Kalmag (Baerenzung et al., 2020). The Bayesian approach is
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based on updating a prior probability of a model under the influence of observational data
using Bayes’ theorem. For a model M and its prior probability P (M) and observed data
D, the posterior probability P (M | D), which describes the probability of the considered
model M after the observation of D, can be determined through Bayes’ theorem (Bayes,
1763):

P (M | D) = P (D | M) · P (M)
P (D) . (2.14)

Thereby, P (D | M) is the so-called likelihood and describes the probability distribution
of the data D given the model M . The advantage of the Bayesian approach is the
consideration of uncertainties in a natural way. In the case of magnetic field modeling,
it not only allows to determine mean-field solution but also its associated uncertainty.
Gillet et al. (2013) initiated this Bayesian approach for geomagnetic field models. This
approach was further developed and combined with a Kalman filter in the Kalmag model.

Kalman filter

A Kalman filter (Kalman, 1960) is an algorithm that sequentially assimilates observa-
tions, whenever available, to update a model. Thereby, inaccuracies and noise in the
measurements are taken into account, and a complete probability distribution of the pa-
rameters describing the system is estimated. By capturing correlations in the system, the
Kalman filter allows a reasonable state estimation while optimally reducing errors. The
Kalman filter is notably less computationally demanding than a full Bayesian inversion
as it is a recursive algorithm. The algorithm works in two alternating steps: First, a
forecast step, where the evolution of the system state is predicted until some observations
become available. During this step, the system’s dynamic is modeled, and a forecast
state Xf

t ∼ N (xf
t, Pf

t) is calculated, predicting both the mean (xf
t ) and covariance (Pf

t ) of
the model assuming a gaussian distribution. Secondly, an analysis step follows, where a
Bayesian inversion updates the system accordingly to the new data. Thereby, whenever a
new observation yt is available at time t, an analyzed state (xa

t , Pa
t ) can be computed by:

xa
t = xf

t + Kt

(
yt − Hxf

t

)
Pa

t = (I − KtH) Pf
t. (2.15)

Here, H denotes the observation operator, which projects the model state xf
t to the

observation yt, and Kt is the Kalman gain at time t. This Kalman gain accounts for error
covariances and depends on both the uncertainty of the system (Pt) and observations
(Rt). This combined uncertainty information is used to weight the observation residuals
(yt − Hxf

t) when updating the system (Equation (2.15)). The Kalman gain is given by:

Kt = Pf
tHT

(
HPf

tHT + Rt

)−1
. (2.16)
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The steps of the Kalman filter algorithm can then be repeated recursively.

2.2.3 The geomagnetic field model Kalmag

The method introduced later in this thesis is used to detect oceanic EM signals and is
based on the Kalman filter algorithm of the geomagnetic field model Kalmag (Baeren-
zung et al., 2020, 2022). This model is derived from assimilating geomagnetic satellite
observations from the low-orbit satellite missions CHAMP and SWARM. The model con-
sists of seven different magnetic sources (listed in Table 2.1) contributing to the obser-
vations. Three internal ones accounting for the core field, a lithospheric field, and an
induced/residual ionospheric field. And additionally, four external sources are consid-
ered, namely a remote, a close, and a fluctuating magnetospheric field, and, finally, a field
associated with field-aligned currents. Since the magnetic field is considered in the current
free region (which means ∇ × B = 0), each of them can be expressed by a potential V:

B = −∇V. (2.17)

An exception must be made for the source accounting for field-aligned currents, these
currents are assumed to be poloidal, and, therefore, the magnetic field can be expressed
by: B = −r × ∇V. Depending on whether it is considered an internal (Vint) or external
(Vext) magnetic source, the corresponding potential is described in spherical harmonics
(SH):

Vint = a0

ℓmax∑
ℓ=0

mmax∑
m=0

(
a0

r

)ℓ+1
gℓ,mYℓ,m Vext = a0

ℓmax∑
ℓ=0

mmax∑
m=0

(
r

a0

)ℓ

gℓ,mYℓ,m. (2.18)

Here, Yℓ,m represent the spherical harmonics functions of degree ℓ and order m using a
Schmidt semi-normalization and excluded Condon-Shortley phase. Accordingly, the gℓ,m

are the spherical harmonics coefficients. Lastly, r is the radius at which the potential
is evaluated, and a0 is a corresponding reference radius. Here, magnetic sources are
expanded up to a maximum degree and order of ℓmax and mmax (given in Table A.1).

During the Kalman filter’s forecast step, the dynamic of the geomagnetic field and its
components must be modeled, and proper prior characterization of the individual sources
is required. Due to the complexity of the system, direct simulations of the different
geomagnetic field components are not feasible. Therefore, the spatio-temporal evolution
of the different magnetic sources is prescribed by autoregressive processes (Gillet et al.,
2013). An autoregressive process (ARP) is a simple stochastic equation describing certain
time-varying processes. Hence, each magnetic source is predicted by its own ARP, which
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can be written in the following general form:

zs(t + ∆t) = Fs(∆t)zs(t) + ξ, (2.19)

where zs characterizes each source by a vector of SH coefficients, Fs describes the ARP
parameter, and ξ is a Gaussian white noise. The ARP parameter Fs results from a
scale-dependent and source-specific characteristic time. The Gaussian noise ξ is spatially
described through stationary covariance matrices corresponding to each source. Thus,
the ARP dynamics of each source are fully defined by the characteristic time and the
covariance matrix. The covariance matrices, in turn, are derived from prior energy spectra.
The shape of an energy spectrum of a corresponding source is assumed to be either flat or
C-based, as proposed by Holschneider et al. (2016). The basic characteristic time scales
and ARP parameters for the considered sources are listed in the Appendix A.3. For more
details about ARP parametrization used in Kalmag, see Baerenzung et al. (2022).

Table 2.1: Magnetic sources considered in the Kalmag model

Magnetic source ℓmax mmax

Core 20 ℓmax
Lithospheric 75 ℓmax
Residual ionospheric/induced 50 1
Close magnetospheric 1 1
Remote magnetospheric 15 0
Fluctuating magnetospheric 15 0
Field-aligned currents 15 1

2.2.4 Ocean-induced magnetic source

To account for the OIMF, the Kalmag model has been extended by another internal
source. As stated before, one commonly distinguishes between two types of OIMFs: the
one associated with tidal motion and the one caused by ocean circulation. In the context
of this thesis, the focus lies on the magnetic field generated by global ocean circula-
tion. Regarding the separation of the oceanic component from the other geomagnetic
field contributions, there is a clear advantage of tidal-induced magnetic signals due to the
well-known temporal behavior of oceanic tides. The magnetic field induced by tides is
strongly constrained by tidal frequencies. In contrast, the temporal behavior of magnetic
signals induced by ocean circulation is much more complex and cannot be characterized
by a single frequency. Even though both tidal and circulation-induced magnetic fields are
of comparable amplitude, this fundamental difference makes separating magnetic signals
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induced by circulation a much more demanding task. For one thing, this is why tidal mag-
netic signals have already been successfully extracted from CHAMP and Swarm satellite
data before (Tyler et al., 2003; Sabaka et al., 2016, 2018, 2020), and magnetic signals
from ocean circulation have not yet been identified in satellite observations. Secondly,
this emphasizes the need for a different approach to characterize the oceanic source for
the separation in the Kalmag model. Indeed, different extensions of the Kalmag model
have been performed for both tidal and circulation-induced EM signals.

Tidal-induced EM signals

An extension of the Kalmag model for tidal-induced EM signals was performed and
successfully used to extract these signals from satellite magnetometer observations of
CHAMP and Swarm in (Saynisch-Wagner et al., 2021). Contrary to the other magnetic
contributions in the Kalmag model, the tidal-induced magnetic source is not characterized
using autoregressive processes. Instead, the harmonic tidal signals are described entirely
by their frequency. Additionally, only an initial first guess of the spherical harmonic
power spectra is assumed. Furthermore, physical ocean properties influencing the tidal
EM signal (e.g., oceanic conductivity) are assumed to be static. Therefore, instead of
the potential in Equation (2.17), the tidal-induced magnetic field can be described by the
following potential using a superposition of a cosine (real) part and a sine (imaginary)
part:

V = a0

ℓmax∑
ℓ=0

m=ℓ∑
m=0

(
a0

r

)ℓ+1
gc

ℓ,mYℓ,m cos(ωt) + a0

ℓmax∑
ℓ=0

m=ℓ∑
m=0

(
a0

r

)ℓ+1
gs

ℓ,mYℓ,m sin(ωt), (2.20)

whereby gc
ℓ,m and gs

ℓ,m are the spherical harmonic coefficients for the cosine and sine part,
respectively. This tidal potential is assumed to be static over the assimilation period.
Different tidal constituents are only described by their period of harmonic oscillation
through the specific angular frequency ω. Subsequently, the real and imaginary parts can
be used to derive the amplitude and phase of the extracted tidal signal. This way, the
Kalmag model was used to simultaneously estimate the ocean-induced magnetic signals
by eight major tides up to a spatial resolution of SH degree of 30 (Saynisch-Wagner et al.,
2021). Thereby, the Kalman filter-based approach already showed its particular value
since, for the first time, also a robust posterior error distribution for the tidal OIMF
could be derived.

Circulation-induced EM signals

The ocean-circulation-induced EM signals can neither be sufficiently characterized by an
autoregressive process nor a specific frequency. However, an adequate temporal prior
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characterization of circulation-induced EM signals is crucial to separate these from other
magnetic sources. Therefore, the extension of the Kalmag model by a source accounting
for the OIMF by circulation must be performed differently. For this purpose, the novel
KREMS was developed in this thesis.

In this method, the entire temporal behavior of the searched signals is characterized
via a given presumed estimate. This way, complex temporal patterns from the irregular
ocean flow can be prescribed and used as prior characterization instead of only a specific
frequency, as with tidal-induced EM signals. Hence, Kalmag is extended by a magnetic
source where prior estimated proxies of the OIMF are imposed to predict and constrain the
temporal behavior. The Kalman filter is then used to locally rescale the given presumed
estimates by a temporal constant factor. Thus, local corrections of the amplitude of these
presumed estimates are determined by assimilating geomagnetic observations. The aim
is to use these local scale factors as a measure of detectability and to evaluate the signal
identification of the presumed estimates in geomagnetic observations. The implementation
of this idea is described and extensively studied in Chapter 4 of the thesis.

2.3 Observation-based estimates of the
ocean-induced magnetic field

2.3.1 Basic idea

As outlined in Section 2.2.4, the proposed KREMS used to investigate the detectability of
ocean-circulation-induced magnetic fields relies on presumed estimates of the OIMF. In
the first place, these presumed OIMF estimates are taken from ocean model data. How-
ever, this thesis additionally examines the possibility of using KREMS with observation-
based instead of model-based OIMF estimates, which would allow for a purely observation-
based identification of circulation-induced EM signals. The basic idea is to obtain a rough
estimate of the OIMF by circulation from independent non-geomagnetic observations and
subsequently use this to constrain the temporal behavior. This thesis investigates obtain-
ing such a first OIMF estimate using independent observations from satellite altimetry,
as already proposed by Saynisch et al. (2018).

2.3.2 Satellite altimetry

In satellite altimetry, the altimeter range, which is the distance between the satellite and
the Earth’s surface, is measured using radar. This allows the determination of the sea
surface height related to a reference ellipsoid, which can be calculated from the difference
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in satellite altitude and the altimeter range. The sea surface height is used to determine
sea level anomalies (SLA) with respect to the mean dynamic topography (MDT), which
is the temporal mean sea surface height over a certain period and the reference surface
for altimetry (e.g. Rio et al., 2011; Mulet et al., 2021). Finally, the SLA is used to
obtain the absolute dynamic topography (ADT), which is the instantaneous height over a
geoid (equipotential surface corresponding to an ocean at rest) and contains information
on the ocean dynamics (Stammer and Cazenave, 2018). The ocean dynamics can then
be further specified using the ADT and the geostrophic approximation, as explained in
the following subsection. The first satellite altimetry mission started already in the 1970s
with GEOS-3 (Stanley, 1979) and SeaSat (Grantham et al., 1977). At the latest, since the
TOPEX/POSEIDON missions (Fu et al., 1994) in the 1990s, satellite altimetry has been
widely used to monitor ocean dynamics (Stammer and Cazenave, 2018; Le Traon, 2013).
Since then, various applications of satellite altimetry have evolved and demonstrated the
benefit of altimetry measurements (Eldardiry et al., 2022).

2.3.3 Geostrophic approximation

Satellite altimetry provides global measurements of the sea surface height. However,
oceanic velocities are required for estimating the OIMF. Consequently, these ocean veloc-
ities must first be derived from sea surface height data in order to predict ocean-induced
EM signals from satellite altimetry measurements. For this purpose, the geostrophic
approximation is assumed. The geostrophic approximation is already widely used to ob-
tain ocean velocities from sea surface height measurements (Holton and Hakim, 2013;
Ivchenko et al., 2011; Doglioni et al., 2023). This approximation assumes a so-called
geostrophic balance between horizontal pressure gradients and the Coriolis force. Under
the assumption of a steady state of the ocean (ocean velocities do not change with time)
and assuming zero other forces (e.g., no friction), the geostrophic balance can be deduced
from the equations of motion (see Appendix A.4 for a detailed derivation). The approx-
imations are justified for large-scale mean circulation in the ocean’s interior (Pond and
Pickard, 1983): Finally, the geostrophic balance can be expressed by (Gill, 1982; Stammer
and Cazenave, 2018):

fvgeo
x = −1

ρ

∂p

∂y
fvgeo

y = 1
ρ

∂p

∂x
, (2.21)

where vgeo
x and vgeo

y are the desired zonal and meridional geostrophic velocity, f = 2Ω sin ϕ

describes the Coriolis parameter (where Ω is the magnitude of the angular velocity of the
Earth’s rotation and ϕ the geographical latitude), ρ represents the density and p denotes
the pressure. However, horizontal pressure gradients cannot be measured in-situ and must
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be linked to the sea surface elevation in order to be accessible by satellite altimetry. In
fact, assuming that density is constant and pressure is proportional to depth, one can
relate the pressure gradients in Equation (2.21) to slopes of sea surface elevation (see
again Appendix A.4 for more details), yielding (Stammer and Cazenave, 2018):

vgeo,s
x = − g

f

∂η

∂y
vgeo,s

y = g

f

∂η

∂x
, (2.22)

where η describes the sea surface height, respectively ADT, and g the Earth’s gravitational
acceleration. Equation (2.22) eventually allows estimating geostrophic surface velocities
from sea surface height measured by satellite altimetry.

In conclusion, the geostrophic balance is sketched in Figure 2.5. The figure highlights
the link between sea surface height and pressure and illustrates the ocean flow orthogonal
to the resulting pressure gradients.
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current

Pressure

gradient force

Coriolis

force

Figure 2.5: Sketch illustrating the geostrophic balance. The pressure gradient force
(red arrow) is balanced by the Coriolis force (green arrow). The resulting movement
of the water is a geostrophic current (black arrow) proportional and orthogonal to the
pressure gradient. High-pressure areas can be linked to high sea surface elevation (H)
and low-pressure areas with low sea surface elevation (L).

Finally, according to Equation (2.12), the geostrophic surface velocities derived from
sea surface height are combined with the oceanic conductivity and used to derive an
external electric current density. Although this represents a strong simplification, it first
poses a rough estimate of the OIMF. It has to be noted that the goal is to estimate the
temporal behavior rather an accurate amplitude for the application with KREMS. The
approach to obtain OIMF estimates using the geostrophic approximation is validated and
examined in more detail in Section 3.3.
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2.3.4 Combination of satellite altimetry with in-situ
observations

The geostrophic velocities estimated using Equation (2.22) are limited to the surface.
Therfore, geostrophic transport estimations can be improved by complementing sea sur-
face height observations with in situ measurements (Stammer and Cazenave, 2018). The
additional measurements used for a better estimation of the geostrophic velocity at any
depth and allow generating 3D geostrophic currents (Vigo et al., 2018). Instead of as-
suming that density is constant with depth, additional in-situ measurements of ocean
temperature, salinity, and pressure are used to obtain the density ρ. For example, such in
situ temperature and salinity profiles can be measured by Argo floats (Wong et al., 2020).
The geostrophic velocities with respect to a reference velocity can then be calculated by
the thermal wind equation:

vgeo
x (z) = g

ρf

z∫
z0

dρ

∂y
dz + v0

x vgeo
y (z) = − g

ρf

z∫
z0

∂ρ

∂x
dz + v0

y, (2.23)

where v0
x and v0

y are the zonal and meridional velocities at reference depth z0, which in the
case of altimetry would be the surface velocity. This combination of satellite altimetry
observations and in situ measurements is widely used to estimate oceanic geostrophic
transports (Gray and Riser, 2015; de Verdière and Michel Ollitrault, 2016; Ollitrault
and de Verdière, 2014; K. et al., 2007). These obtained geostrophic transports provide
an opportunity to estimate the OIMF, in particular, the combination with temperature
and salinity measurements is advantageous since these also allow the calculation of the
required oceanic conductivity.
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3
Datasets and preparatory studies

3.1 Datasets

The calculations of the OIMF in this thesis rely on various datasets of different types
ranging from numerical models to in-situ and satellite observations. The following sec-
tion introduces and briefly describes these datasets. Each dataset provides a distinct set
of variables with specific spatial and temporal resolutions and with a particular number
of depth layers. On the one hand, for ocean-model-based OIMF calculations, the data
is taken either from an Estimating the Circulation and Climate of the Ocean, Phase II
(ECCO2) project or a Global Ocean Ensemble Reanalysis (GLOCER), which are both
based on an ocean general circulation model (OGCM). On the other hand, for observation-
based OIMF calculations, the data are taken from the Data Unification and Altimeter
Combination System (DUACS) or a Multi-Observational Global Ocean Product (AR-
MOR3D), which are both based on altimetry observations and in case of the ARMOR3D
product additionally in-situ observations. Finally, the ocean conductivity can addition-
ally also be taken from the World Ocean Atlas 2018 (WOA18). An overview of the used
datasets is given in Table 3.1. For each dataset, the original spatial resolution was re-
duced by interpolation through conservative remapping onto a 1◦ grid before the OIMF
calculation. Typically, a data period of 7 years is considered (from 2014.0 until 2021.0)
corresponding to the Swarm satellite mission. However, the provided temporal resolution
and the considered depth layers of the datasets vary.
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Table 3.1: Datasets used in this thesis

Dataset Source/Type Temporal
resoultion

Depth
levels Variables

ECCO2
Estimating the Circulation
and Climate of the Ocean

(ECCO2, 2022)

Numerical
model 3-daily 50 T, S

vx, vy

GLOCER
Global Ocean

Ensemble Reanalysis
(GLOCER, 2022)

Numerical
model daily 75 T, S, η

vx, vy

DUACS
Data Unification and

Altimeter Combination System
(DUACS, 2022)

Satellite
observations daily 1 vgeo

x ,vgeo
y

ARMOR3D
Multi-Observation

Global Ocean Product
(ARMOR3D, 2022)

In-situ & satellite
observations weekly 50 T, S

vgeo
x ,vgeo

y

WOA18
World Ocean
Atlas 2018

(WOA18, 2019)

In-situ
observations

climatological
mean 102 σ

ECCO2

The ECCO2 dataset (ECCO2, 2022) is provided by the Jet Propulsion Laboratory (JPL).
The ECCO2 model uses a Green’s function approach to estimate the ocean state (Men-
emenlis et al., 2005) and is constrained by several in-situ and remote observational data
(Menemenlis et al., 2008). In this thesis the cube92 model output of ECCO2 is used.
The 3D output fields of the ocean model have been provided as 3-day averages on 50
depth levels. The OIMF calculations made use of the four oceanic variables: zonal and
meridional velocity (vx,vy), as well as temperature (T ) and salinity (S), which can be
used to obtain oceanic conductivity.

GLOCER

The GLOCER dataset (GLOCER, 2022) is taken from Copernicus Marine Environment
Monitoring Service (CMEMS). This global ocean reanalysis dataset consists of an ensem-
ble of three homogeneous gridded descriptions of the physical state of the ocean. The
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reanalyses are based on the numerical OGCM of the Nucleus for European Modelling
of the Ocean (NEMO) (Gurvan et al., 2022) framework and are constrained with data
assimilation of satellite and in-situ observations. The dataset provides 3D output fields
from zonal and meridional velocities as well as temperature and salinity as daily averages
on 75 vertical depth levels. Additionally, the sea surface height is available as a daily
2D output field. In this thesis, an ensemble of three members is considered (listed in
Table 3.2): The Ocean Reanalysis System 5 (ORAS5) (Zuo et al., 2017, 2019) from the
European Centre for Medium-Range Weather Forecasts (ECMWF), the Global Seasonal
forecast system (GloSea5) (MacLachlan et al., 2015; Blockley et al., 2014) from the Met
Office, and the Global Ocean Reanalysis and Simulation (GLORYS) (Ferry et al., 2010)
from Mercator Ocean International organization. The individual reanalyses slightly differ
in surface forcing (e.g., sea surface temperature (SST) or sea surface salinity (SSS)) the
used assimilation system (NEMOVAR, Mogensen and Balmaseda (2012) or SEEK, Pham
et al. (1998)), and corresponding assimilation window (one to seven days). The differences
are summarized in Table 3.2 and further details can be found in Desportes et al. (2022).

Table 3.2: Considered ensemble members of the GLOCER dataset

Ensemble member Production center Surface Forcing Assimilation
ORAS5 ECMWF No surface nudging 5-day NEMOVAR

GloSea5 Met Office SST and SSS 1-day NEMOVAR

GLORYS Mercator Ocean Surface waves forcing,
SST and SSS 7-day SEEK

DUACS

The Sea Level Thematic Assembly Center (SL TAC) from the CMEMS, as part of the
DUACS, provides a comprehensive dataset of sea surface height observations (DUACS,
2022). In this dataset, different altimeter missions are combined. Along-track measure-
ments of sea level anomalies (SLA) with respect to a twenty-year mean (1993-2012) are
taken to produce gridded data using optimal interpolation (Pujol et al., 2016). In ad-
dition, the absolute dynamic topography (ADT) and especially the derived geostrophic
currents (see Section 2.3.3) are also directly provided by the DUACS dataset. The 2D
surface variables are available as daily averages (more detail can be found in Pujol et al.
(2023)).
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ARMOR3D

The ARMOR3D dataset (ARMOR3D, 2022) is a multiobservational ocean product also
provided by CMEMS. This dataset combines satellite altimetry observations and in-situ
temperature and salinity measurements (see Section 2.3.4). Satellite observations of sea
surface temperature and sea surface salinity are used to derive synthetic temperature and
salinity profiles with multiple linear regression and covariances deduced from historical
observations (Guinehut et al., 2012). These profiles are combined with in-situ observations
using an optimal interpolation method (Bretherton et al., 1976). The temperature and
salinity profiles are combined with geostrophic surface currents from altimetry to generate
3D geostrophic ocean velocities based on the thermal wind equation (2.23). Therefore,
3D output fields of temperature, salinity, and geostrophic ocean velocities are available as
weekly averages on 50 depth levels (more details can be found in Greiner et al. (2021)).

3.2 Ocean-induced magnetic field studies

In order to investigate and evaluate the detectability, it is necessary to know and estimate
possible influences, effects, and sources of error on the OIMF calculations. The following
considers and quantifies the most important influences on these magnetic field calcula-
tions. Three major parts were investigated: First, the main influences on the electric
current density as the source of the OIMF. Second, the influences of the surrounding con-
ductance model, and third, the quasi-stationary approximation used with X3DG. Finally,
a comparison to the simple OIMF estimation from Biot-Savart is drawn.

3.2.1 Influences of electric current density

As described in Section 2.1, the electric current density depends on three physical quan-
tities (Equation (2.11)): The oceanic conductivity σ, the oceanic velocities v, and the
Earth’s main magnetic field Bearth. All three quantities are subject to temporal variations:
ocean conductivity due to temperature and salinity changes in the ocean, oceanic veloci-
ties or rather transports due to the general wind-driven ocean circulation, and the Earth’s
magnetic field due to changes known as secular geomagnetic variation (Aubert et al.,
2013). These temporal variations are crucial for the detectability of ocean circulation-
induced EM signals. Therefore, it is essential to know the three quantities’ influences on
the variability of electric current density and the resulting magnetic field.

The daily time series of the ensemble mean of the GLOCER dataset was used to in-
verstigate this in a preparatory study. The OIMF was calculated in three different ways
to study the influence of the three quantities separately. The variations due to ocean



3.2 Ocean-induced magnetic field studies 29

conductivity (σ - variations) was investigated by varying only the ocean conductivity
when calculating the electric current density and assuming constant mean values for the
oceanic velocities and the Earth’s magnetic field. On the other hand, when investigating
the variations due to oceanic transports (v - variations), only the oceanic velocities were
varied daily, and the conductivity and the Earth’s magnetic field were assumed to be con-
stant. Finally, only the Earth’s magnetic field was varied (Bearth- variations), and oceanic
conductivity and velocities were assumed to be constant over the considered period.
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Figure 3.1: Influence of external electric current density variations on the radial com-
ponent of the OIMF. Different variations due to conductivity σ (left), oceanic velocities
v (middle), and Earth’s magnetic field Bearth (right) on the electric current density
and its resulting radial OIMF are considered. At the top, the standard deviation of the
electric current density (STD of jext) is shown when only the specified quantity (σ, v
or Bearth) is varied. At the bottom, the corresponding standard deviation of the radial
OIMF (STD of Br) is displayed. Note the different plotting ranges for each quantity.

Figure 3.1 summarizes the resulting variations in the electric current density. The
variability of the electric current density is illustrated by the standard deviation over
the considered period of 7 years. Figure 3.1 (top row) clearly shows that the variability
caused by temporal variations in oceanic transports has the most significant influence
on the electric current density. Variations caused by conductivity changes are an order
of magnitude smaller. Nevertheless, for example, seasonal temperature variations can
also cause significant changes in electrical conductivity. Temporal variations due to the
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secular variation of the Earth’s magnetic field turn out to be the smallest and have only
a minimal influence on the variability of the electric current density. The larger temporal
scales of the secular geomagnetic variation compared to the considered period of 7 years
can explain this small influence of the Earth’s magnetic field variations.

Finally, Figure 3.1 also shows the variability of the corresponding radial magnetic field
(STD of Br). As expected, the major part of the OIMF variability is caused by variations
in oceanic transports. The variations due to ocean conductivity are again an order of
magnitude smaller but still within the range of measurement accuracy of high-precision
magnetometers (0.1 nT) used in satellite missions like Swarm. However, the fluctuations
due to secular variation are much smaller and below the current measurement accuracy.
The main conclusion from this preparatory study is that the temporal variations of the
OIMF are dominated by oceanic transports.

3.2.2 Influences of the conductance model

As described in Section 2.1 (see also Figure 2.2), the conductance model consists of two
parts: A 2D ocean conductance layer and a 1D mantle conductivity profile. The two
components were varied to determine the influence of the conductance model, and the
resulting changes on the OIMF were determined. For this test calculations, the ocean
model data from the GLOCER data set was used. Two different ocean conductance layers
were considered. First, an ocean conductance layer was calculated from the temperature
and salinity of the ocean model data (as described in Section 2.1.2). Second, another
conductance layer was obtained from a globally uniform constant ocean conductivity
of 3.3 S/m (volumetrically weighted mean of the global ocean conductivity, Tyler et al.
(2017)). In both cases, the OIMF was calculated at sea surface height using X3DG.
Figure 3.2 shows the difference in the ocean conductance (top left) and the corresponding
difference in the resulting OIMF (top right). In particular, near the coast, the OIMF
exhibit significant deviations caused by the differences in the ocean conductance layers.
The magnetic field differences can be in the order of several nT locally. This mainly
shows that the lateral conductivity differences are important and influence the radial
OIMF decisively by coupling poloidal and toroidal components.

Finally, in another test, the assumed mantle conductivity was varied. Instead of the
commonly used conductivity profile of Grayver et al. (2017), the OIMF was also calcu-
lated with the conductivity profile of Püthe et al. (2015). Both 1D conductivity profiles
are shown in the bottom left plot of Figure 3.2. The corresponding resulting differences
in the OIMF are presented in the bottom right plot of Figure 3.2. The mantle conductiv-
ity mainly influences the penetration depth of the OIMF. Therefore, the differences are
more related to the OIMF signal strength than land-ocean conductivity differences. The
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Figure 3.2: Influence of the assumed ocean conductance model on the OIMF calcula-
tions. Differences in the OIMF due to variations in the 2D ocean conductance layer
(top row) and due to the Earth’s mantle conductivity (bottom row) are shown. The
left side shows the different model assumptions: difference in the assumed ocean con-
ductance (top) and different mantle conductivities (bottom). The right side shows the
corresponding resulting differences in the OIMF.

differences in the OIMF are also smaller than those caused by the 2D conductivity layer
but can still reach values up to 0.5 nT. Overall, this preparatory study shows that the
surrounding conductance model can significantly influence the calculation of the OIMF
and must therefore be considered a major source of error.

3.2.3 Quasi-stationary approximation

As stated in Section 2.1.2, the quasi-stationary case is simulated in X3DG using an excita-
tion frequency smaller than 10−12 days−1. This criterion was determined in a preparatory
study, where the OIMF was calculated from ECCO2 data using different excitation fre-
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Figure 3.3: The left side shows the spatial variations of the imaginary part of the
magnetic field in dependence on the excitation frequency ω used in X3DG. The right
side shows the differences between the radial magnetic field calculated with a daily
excitatory frequency and the quasi-stationary approximation.

quencies in X3DG. For each excitation frequency, the imaginary part of the corresponding
magnetic field solution was considered to examine wheather the quasi-stationary case is
justified. In the stationary case, any spatial variation of the imaginary part should van-
ish. Therefore, Figure 3.3 presents the spatial variation of the imaginary part for all
magnetic field components dependent on the corresponding excitation frequency. From
Figure 3.3 (left plot) can be seen that spatial variations of the imaginary part decrease
for smaller frequencies until 10−12 days−1. Accordingly, the excitation frequency must be
chosen larger to satisfy a quasi-stationary regime.

However, the quasi-stationary approximation introduces some errors since the mag-
netic field calculation is assumed frequency independent. The shortest time intervals
considered in this thesis are daily. Therefore, the spatial difference between the radial
magnetic field calculated with a daily excitation frequency and using the quasi-stationary
approximation is calculated. The differences are shown in Figure 3.3 (right plot) and serve
as an extreme estimation of error which can occur in a single frequency band due to the
quasi-stationary approximation. The deviations decrease for lower frequencies and are
already halved for a weekly excitation frequency (see Appendix A.5 for additional plots).
It should be noted that the magnetic field in this study was calculated again on surface
height, and the error at satellite height is reduced. Nevertheless, minor inaccuracies are
introduced, especially for higher frequencies due to the quasi-stationary approximation.
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3.2.4 Comparison between X3DG and Biot-Savart solver

Apart from the OIMF calculations using the complete Maxwell solver X3DG, the law
of Biot-Savart (Equation (2.13)) allows for a simplified and approximate estimate of the
OIMF. As shortly introduced in Section 2.1.3, the Biot-Savart approach does not consider
the surrounding conductivity and, therefore not consider the coupling between the poloidal
and toroidal magnetic field components. On the one hand, this poses an inaccurate
electromagnetic framework; on the other hand, this simplifies the OIMF calculations and
would facilitate a future inversion of the OIMF.

In order to investigate the deviations due to this simplified approach, the OIMF cal-
culated using Biot-Savart is compared to the solutions obtained from the electromagnetic
induction solver X3DG. In both cases, the OIMF is derived from a complete time series
of the electric current density resulting from the ECCO2 model. The temporal mean of
the radial OIMF (Br)at surface height and spatial resolution of SH degree 30 are shown
for both calculations in Figure 3.4 (top row).
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Figure 3.4: Comparison of the OIMF resulting from the Biot-Savart approximation and
from the electromagnetic induction solver X3DG. On the top, both temporal means of
the radial OIMF are shown. On the bottom, the difference (left) between both fields
and their correlation (right) are shown.
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In this comparison, two aspects are of interest, namely the extent of the inaccuracies
and the question of whether the temporal behavior can still be sufficiently described by
the Biot-Savart approach. The differences in the mean radial magnetic field (bottom left
plot in Figure 3.4) quantify the inaccuracies and illustrate a maximal error due to an
inaccurate electromagnetic framework. The OIMF calculated by the law of Biot-Savart
captures the large-scale dipole caused by the Antarctic Circumpolar Current (ACC).
The global average of the mean absolute difference is 0.3 nT. However, deviations at
medium and smaller scales are clearly visible. Most notably, larger deviations occur in
the southern ocean around Australia and New Zealand caused by the unaccounted effect
of lateral conductivity variations between coastal and marine areas. The magnitude of the
radial OIMF can deviate in some areas by about up to 3 nT, although the same electric
current density is used for both calculations. The correlation between both radial magnetic
fields (bottom right plot in Figure 3.4) indicates the similarities in temporal behavior.
The correlation ranging from -0.56 to 0.96 with a global average of 0.41 emphasizes a
good agreement in temporal behavior in some larger parts of the ocean (e.g., the Pacific
Ocean). However, areas with more significant deviations (e.g., the Southern Ocean around
Australia) also reveal a lower correlation (average correlation in the Southern Ocean is
0.24). Additionally, it should be noted that the highest correlation arises around the
equator, where the ocean-induced magnetic signal is typically very low. This comparison
justifies using the Biot-Savart approach only as a rough approximation and indicates
already areas of significant deviations in both spatial and temporal patterns due to the
inaccurate electromagnetic framework.

3.3 Validation of observation-based
ocean-induced magnetic field estimates

3.3.1 Model-based validation of the geostrophic approach

In Section 2.3.3, it was already proposed to use altimetry for estimating the temporal
behavior of the large-scale OIMF from circulation. Thereby, the OIMF is estimated from
sea surface height data, accessible by altimetry, based on the geostrophic approximation.
In the following, this geostrophic approach to obtain the OIMF is first examined and
validated in an entirely model-based framework according to Saynisch et al. (2018). For
this purpose, the global ocean ensemble reanalysis (GLOCER) dataset from CMEMS is
used to calculate the OIMF in two different ways. First, for the geostrophic approach, the
OIMF is derived from sea surface height data of the GLOCER ensemble mean, mimicking
altimetric observations (geostrophic OIMF). Second, as a comparison, the OIMF is derived
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directly from the ocean velocities of the GLOCER ensemble (full-model OIMF). Finally,
both OIMF predictions are compared to validate the geostrophic approach (Figure 3.5
illustrates the validation framework).

Full model Geostrophic model

Ocean model data
Global ocean ensemble reanalysis

3D Oceanic velocities

Full-model OIMF

2D Sea surface height

Geostrophic
surface velocities

Geostrophic OIMF

Geostrophic approximation

Figure 3.5: A sketch showing the setup of the two approaches to validate the
geostrophic approach and the processing steps to obtain the geostrophic and the full-
model OIMF.

According to Equation (2.22), in the geostrophic approach, the sea surface height will
be converted into zonal and meridional geostrophic surface velocities (Equation (2.21)).
Since the ocean-induced electromagnetic signal depends on the entire water column,
these geostrophic surface currents are projected until the ocean bottom to obtain depth-
integrated ocean velocities. Thereby, the geostrophic velocity is assumed to be constant
over depth, which leads to an unrealistic overestimation of the geostrophic transports (i.e.,
depth-integrated ocean velocities). However, it should be noted the primary goal is more
to estimate the temporal behavior rather than absolute values. The ocean depth is taken
from the ETOPO1 dataset. In order to evaluate the geostrophic approach, the correlation
between the geostrophic and the ocean full model-based transports is considered. The
correlation is shown for both zonal and meridional directions in Figure 3.6 (top row).

Except for the equatorial area, zonal and meridional transports exhibit a high correla-
tion, with a global average of 0.6 (for both zonal and meridional transports), demonstrat-
ing remarkable temporal correspondence. The invalidity of the geostrophic assumption
due to the vanishing Coriolis force causes a lower correlation around the equator. This
comparison indicates that sea surface height variations can describe the most temporal
behavior of oceanic water transport in most areas.

Subsequently, these geostrophic transports are multiplied with the depth-weighted
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averaged ocean conductivity (derived from salinity and temperature of the GLOCER
dataset) to obtain the depth-integrated electric current density, which serves as input
for X3DG. The geostrophic electric current density has to be preprocessed to avoid an
exaggerated amplified magnetic signal around the equator due to the spatial expansion
of the OIMF. A simple way to avoid such an extreme magnetic signal is to mask the
geostrophic electric current density at latitudes below 7◦. The resulting geostrophic OIMF
is again compared to the full ocean-model-based OIMF by showing the correlation between
both time series in Figure 3.6 (bottom left). In many parts of the oceans, a correlation
of 0.8 is achieved, but the global average is 0.14.
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Figure 3.6: Comparison between geostrophic and full-model-based approach. The top
row shows the correlation between the geostrophic (derived from sea surface height
data) and the full-model-based depth-integrated ocean velocities for the zonal (left)
and meridional (right) components. The bottom plots show the correlation between
the corresponding OIMF. On the left side, the geostrophic electric current density is
equatorial-masked, and on the right side, its complete time series was calibrated by
linear rescaling.
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A more advanced approach is calibrating the electric current density instead of simple
equatorial masking. In doing so, an inadequate estimation caused by the inaccurate
assumption of constant geostrophic velocity until the ocean’s depth can be additionally
corrected. The calibration can be performed by linearly rescaling the geostrophic electric
current density to a model-based reference independently chosen from the comparison
period. Here, such a rescaling is performed using the GLOCER data from the year 2013
(which is not included in the comparison period of 2014-2021). The calibration of the
geostrophic electric current density is then determined through a least-square fit based
on the following equation:

jmodel(t) = a · jgeo(t) + b, (3.1)

where jmodel and jgeo denote the model-based and geostrophic electric current density from
year 2013, and a and b are the calibration parameters. These calibration parameters are
finally used to rescale the complete time series of the electric current density and can be
found in the Appendix A.6. Finally, the calibrated geostrophic OIMF resulting from the
calibrated electric current density is once again compared to the full ocean-model-based
OIMF, and their correlation is shown in Figure 3.6 (bottom right). A significantly higher
correlation is visible when comparing the correlation of the calibrated versus the previous
equatorial-masked OIMF with the full model-based OIMF (bottom row in Figure 3.6).
The global average correlation increased from 0.14 to 0.27, emphasizing the improve-
ment through the calibration using linear rescaling. However, it must be noted that the
calibration depends again on model data.

In both cases, using an equatorial-masked or a calibrated electric current density,
the geostrophic approach can estimate the temporal behavior of the OIMF to a large
extent. Accordingly, this model-based validation justifies the geostrophic approach as
an attempt to derive observation-based OIMF estimates. Three essential points can be
concluded from this preparatory study: First, sea surface height variability explains large
parts of the OIMF variability, and the geostrophic approach can be used to predict the
temporal behavior of the ocean-circulation-induced EM signal in a first approximation.
Second, the correlation of electric current densities derived by the geostrophic approach
is significantly higher than the correlation of the corresponding radial magnetic field.
Third, linear rescaling of the electric current density used as calibration can improve
these predictions of the OIMF.
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3.3.2 Observation-based validation of the geostrophic approach

After the purely model-based validation of the geostrophic approach, a short comparison
with real observation-based data is given. In Section 3.1, two different datasets based
on altimetry measurements are introduced. Firstly, the purely altimetry-based DUACS
dataset providing the geostrophic surface currents, as described in Section 2.3.3, was
considered. Secondly, since the model-based validation demonstrated that the geostrophic
approach could be further improved (e.g., by calibrating the electric current density), the
more advanced ARMOR3D dataset is considered. Therefore, the OIMF is derived from
altimetry observations in combination with additional in-situ measurements based on the
thermal wind equation (2.23). In doing so, the in-situ measurements are used to better
project the geostrophic surface currents into the ocean depth, which results in a more
realistic estimation of the oceanic transports.

As in the model-based validation, the observation-based OIMF estimates from DUACS
and ARMOR3D are compared with the ensemble mean of the ocean reanalysis dataset
GLOCER. The correlations of both radial magnetic fields with the model-based OIMF are
slightly smaller than those obtained before in the model-based validation. Although the
global average correlations of 0.12 (DUACS) and 0.13 (ARMOR3D) are rather low, the
temporal behavior is in good agreement in decisive parts of the ocean (e.g., the Southern
Ocean and the area of the Antarctic Circumpolar Current), achieving correlations of
0.82 (DUACS) and 0.77 (AMRO3D). The correlation for both observation-based OIMF
estimates are shown in the Appendix A.7.

Neither the observation-based OIMF derived from DUACS nor the one derived from
ARMOR3D show a significantly better temporal agreement with the OIMF derived from
GLOCER since both originate from similar altimetry data. However, the amplitude of
the OIMF estimate derived from DUACS deviates significantly more prominent from the
model-based OIMF than the OIMF derived from ARMOR3D. This deviation is illustrated
by the root-mean-square-deviation (RMSD) between the time series of the observation-
based and the model-based OIMF, which is presented in Figure 3.7. The global aver-
age RMSD between the OIMF from DUACS and the OIMF from GLOCER is 1.96 nT,
whereas the global average RMSD between the OIMF from ARMOR3D and the OIMF
from GLOCER is 0.69 nT. This reduction of the RMSD of about 1.27 nT reveals the
improvement by using multiobservational data.

Generally, the observation-based estimates also confirm the potential to derive a realis-
tic temporal behavior of the OIMF from the altimetry data. In particular, this comparison
shows that observation-based OIMF estimates can be further improved by the combina-
tion with in-situ measurements. However, the improvements due to in-situ measurements
affect more the amplitude of the magnetic field than the temporal behavior.
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Figure 3.7: The RMSD between the time series of the observation-based and model-
based OIMF estimates. The observation-based OIMF is derived either from the DU-
ACS dataset (left side) or the ARMOR3D dataset (right side), while the model-based
OIMF is derived from the GLOCER dataset.
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4
A magnetic field observation system

simulator

4.1 Design of the observation system simulator

4.1.1 Basic concept

The idea of using Kalman-filter-based rescaling of EM signals (KREMS) to identify mag-
netic signals induced by ocean circulation in geomagnetic satellite observations was intro-
duced in Section 2.2.4. The following chapter introduces KREMS in detail and describes
the approach as a detection method of ocean-circulation-induced EM signals in geomag-
netic satellite observations. To validate the suggested method and to extensively study the
advantages and limitations of this approach, an observing system simulation experiment
(OSSE) was performed. Hence, the OSSE is presented in this chapter as proof of concept
of the proposed KREMS method. The development of this completely new method is the
first approach made so far to identify OIMF in geomagnetic satellite observations. The
validation and analysis in the context of the presented OSSE have already been published
in Hornschild et al. (2022). The following chapter will strongly refer to this publication
and recapitulate and expand on its findings.

The central goal is to obtain a posterior separation of the individual magnetic field con-
tributions through the assimilation of satellite magnetometer data by using an adequate
prior spatio-temporal characterization. In the OSSE, synthetic artificial measurements
instead of real satellite magnetometer data are used for assimilation. In this way, the
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crucial advantage of the OSSE is the knowledge of actual individual magnetic parts con-
tained in the artificial data. This fact allows a precise evaluation of the separation and
potential identification of the OIMF by circulation. Finally, the assimilation of the arti-
ficial observations is performed using the Kalman filter algorithm and Bayesian inversion
of the Kalmag model, described in Section 2.2.2.

After introducing the framework, the OSSE is used in an ideal scenario (Section 4.2) to
demonstrate the general capability of KREMS and the main dependencies of the results.
Subsequently, Section 4.3 presents a further development of the method using additional
spatial constraints, while afterward, the OSSE is considered in different non-ideal scenarios
(Section 4.4) to prove the method’s optimality and robustness. The chapter is finally
closed with a further discussion of the limitations of KREMS and a comparison to the
existing approach for tidal-induced EM signals (Section 4.5).

4.1.2 Creating artificial Swarm-like observations

In order to create artificial Swarm-like observations, the orbiting positions of the satellites
Alpha and Bravo from the Swarm constellation between 2014 and 2021 are extracted.
The satellites fly at two different low orbits, Alpha at an initial altitude of 460 km with
an inclination of 87.4◦ and Bravo at a slightly higher initial altitude of 530 km with an
inclination of 88◦. The third satellite of the Swarm mission, Charlie, was not taken
into account due to problems with its backup magnetometer. Additionally, the following
selection was applied to this track set to obtain a similar data distribution as the one used
to derive the Kalmag model. The satellite positions were picked at a sampling interval
of 10 s and further selected to satisfy relatively geomagnetic quiet conditions. Therefore,
at low magnetic latitudes (below 60◦), only nighttime locations were considered, and in
addition, a low level of geomagnetic activity is required. For this purpose, the planetary Kp

index of geomagnetic activity (Matzka et al., 2021) is chosen, and only satellite positions
at times with Kp ≤ 2 are taken into account.

In a further step of producing artificial observations, realistic measurements have to be
generated. Therefore, seven magnetic contributions, one associated with ocean circulation
and six others, which are components of the Kalmag model, were simulated: a core field,
a lithospheric field, an ionospheric field, and three magnetospheric fields (close, remote
and fluctuating). Table 4.1 shows the maximum spatial resolution in spherical harmonics
for each of these components used in the presented OSSE to create the artificial obser-
vations. The prior characterization of these non-oceanic contributions is realized using
the autoregressive processes (ARPs) mentioned before in Section 2.2.3 and described in
detail in Baerenzung et al. (2020, 2022). Using these established ARPs of the Kalmag
model, it is possible to generate some random time series for each non-oceanic magnetic
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Table 4.1: Non-oceanic magnetic sources considered in the OSSE

Internal sources SH degree External sources SH degree

Core 20 Close magnetosphere 15
Lithosphere 75 Remote magnetosphere 1

Residual/Ionosphere 5 Fluctuating magnetosphere 1

source. The initial state of these time series was randomly drawn from the ensemble of
the Kalmag model in 2014.0 and then propagated with a time step of 30 minutes accord-
ingly to the associated ARPs until 2021.0. Finally, at each time step, these sources are
evaluated as vector field components at the current satellites’ locations. Since a char-
acterization through autoregressive processes is insufficient for magnetic signals induced
by ocean circulation, the oceanic contribution has to be taken into account differently.
To incorporate the oceanic part into the artificial measurements, the OIMF is directly
derived from ECCO2 ocean model data (introduced in Section 3.1) using the electromag-
netic induction solver X3DG, as described in Section 2.1.2. The resulting 852 snapshots (7
years of 3-daily values) of the OIMF were first converted in spherical harmonic functions
(SH) up to a degree of 30 using SHtools (Wieczorek and Meschede, 2018), interpolated
in time and then evaluated at the different satellite positions. The temporal mean (Br)
and corresponding standard deviation (STD of Br) of the time series of OIMF from the
ECCO2 model used in this OSSE is displayed in Figure 4.1. In the OSSE, especially
the OIMF from the ECCO2 model but also the other randomly generated magnetic field
contributions constitute the ground truth that is tried to recover with the assimilation
algorithm.
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Figure 4.1: Temporal mean (left) and standard deviation (right) of the radial compo-
nent of the magnetic field from ocean circulation (calculated from ECCO2 data) at
sea surface height. The spatial resolution corresponds to a decomposition to spherical
harmonic functions up to degree 30.
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4.1.3 Kalman-filter based assimilation

Subsequently, after the creation of the artificial observations, their assimilation can be
initiated. The assimilation is performed using the Kalman filter algorithm of Kalmag,
as described in Section 2.2.2. Accordingly, the prior characterization of the non-oceanic
contributions is once more realized using the ARPs, which are thereby parameterized in
the same way as for the generation of the artificial observations. The spatial resolution of
the non-oceanic contributions corresponds to the SH degree listed in Table 4.1. The prior
characterization of the magnetic source accounting for the oceanic contribution is chosen
differently. Following the idea outlined in Section 2.2.4, the complete temporal behavior
of the oceanic contribution is prescribed by some a priori presumed estimates. Therefore,
proxies of the OIMF are calculated in parallel to the Kalman filter algorithm, and the
assimilation is used to rescale these presumed estimates, i.e., to determine a scale factor.
This scale factor is assumed to be constant in time but variable in space. The general
detectability (whether the oceanic contribution can be extracted from the data or not)
at different locations can be assessed by this scale factor. Subsequently, the factor also
provides a quality measure of how well the assimilated data reflect the a priori assumed
OIMF.

In the OSSE, the presumed OIMF estimates used for KREMS are denoted as imposed
oceanic field Bimp, and the magnetic contribution induced by ocean circulation in the
artificial observations is denoted as the true oceanic field Btrue. Consequently, the scale
factor k(x, y) to be determined by the assimilation aims to satisfy the following relation:

k(x, y) · Bimp(t, x, y) ≈ Btrue(t, x, y) . (4.1)

In order to achieve this, first, the radial component of the imposed oceanic magnetic field
is projected on a grid of the Earth’s surface and point-wise modulated by scale factor
from the assimilation ki on each grid point i, described by:

Br,i = ki · Bimp
r,i , (4.2)

whereby Br,i denotes the radial magnetic field on the corresponding grid point i. Using a
Gauss Legendre grid (containing N = (ℓmax +1) · (2ℓmax +1) points) allows the conversion
of the radial magnetic field into a potential ϕ in the spherical harmonics domain through
the following relation:

ϕℓ,m =
N∑

i=1
Br,i ωi Pℓ,m,i , (4.3)

where i indicates the ith Gauss node of the grid, Pℓ,m,i the associated Legendre polynomials
of degree ℓ and order m, ωi the Gaussian quadrature weights, and ϕℓ,m describes the



4.1 Design of the observation system simulator 45

PRIOR POSTERIOR

Prior characterization
parameters of auto-

regressive processes (ARP)

Imposed ocean (t)
presumed estimate

from ocean circulation

C
or
e
(t
)

fr
om

K
al
m
ag

Li
th
os
ph
er
e
(t
)

fr
om

K
al
m
ag

Io
no
sp
he
re
(t
)

fr
om

K
al
m
ag

Tr
ue

oc
ea
n
(t
)

fr
om

E
C
C
O
2

C
lo
se
,
re
m
ot
e

an
d
flu
ct
ua
ti
ng

M
ag
ne
to
sp
he
re
(t
)

fr
om

K
al
m
ag

Swarm-like artificial
Observations (t)

Kalman filter
assimilation and separation

Core field
(ARP)

Lithospheric field
(ARP)

Ionospheric field
(ARP)

Oceanic field
scale factor k(x, y)

Close, remote and fluctuating

Magnetospheric field
(ARP)

Figure 4.2: Sketch of the OSSE illustrating the input of the assimilation and the
separation of the different magnetic field contributions. The magnetic component
from ocean circulation is highlighted in red. The other contributions modeled by
autoregressive processes (ARP) are marked in blue.

potential expanded up to SH of degree ℓ = ℓmax. The potential ϕℓ,m allows evaluating
the predicted oceanic induced field everywhere above the Earth’s surface, particularly at
the different satellite positions, which is required to perform the analysis of the Kalman
filter algorithm. Through the assimilation, the predicted radial oceanic magnetic field can
be corrected by updating the scale factor. The OSSE is initialized with an ensemble of
scale factors, and through the assimilation, the convergence of the ensemble mean value
k and the associated standard deviation is observed. In the beginning, the scale factors
are typically drawn on each grid point from a normal distribution N (0, 1) with zero mean
and standard deviation of one. The structure of the OSSE is summarized in a scheme
displayed in Figure 4.2.
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4.2 Results in an ideal scenario

4.2.1 Scale factor determination

First of all, an ideal scenario of the OSSE is considered. In this case, the imposed oceanic
magnetic field (the presumed OIMF estimate) is chosen to be identical to the true oceanic
contribution in the artificial observations. Consequently, the scale factor should be pre-
cisely one at each time step and each location (see equation 4.1). Although imposing the
exact OIMF from circulation may not be the most realistic scenario, it exhibits the gen-
eral principle and upper limit of the proposed method. Therefore, this idealistic scenario
serves also as a reference. In the following, the main results of this scenario are used to
evaluate the scale factor determination.

At the beginning of the assimilation in 2014.0, at each node of the Gauss Legendre
grid, an ensemble of scale factors is distributed following the Gaussian normal distribution
N (0, 1). Under the influence of 7 years of Swarm-like artificial observations, the Kalman
filter updates the scale factors making them converge to the actual values. Therefore,
for the analysis, the final ensemble of scale factors of the year 2021.0 is considered. The
final results of the assimilation are then expressed in two quantities: the final posterior
ensemble mean and its corresponding final posterior standard deviation of the scale factors
at each node of the Gauss Legendre grid. The final mean (kf ) is used as a measure of
OIMF detectability, and its standard deviation (STD of kf ) is viewed as the associated
uncertainty. Eventually, the final determined scale factor can be used to rescale the
presumed estimates of the OIMF:

Bres(t, x, y) = kf (x, y) · Bimp(t, x, y) . (4.4)

The chosen distribution N (0, 1) of the scale factors at the beginning of the assimilation
implies that initially, no contribution from the OIMF is assumed. Therefore, the rescaled
field Bres reflects the detected OIMF and emphasizes the part of the signal gained from
the true OIMF by assimilating artificial observations (under the given imposed magnetic
field). Both quantities mean and STD of kf are shown in Figure 4.3 (top row). In the
ideal scenario of the OSSE, the actual scale factor is known to be one. Therefore, the
accuracy of the final scale factor determination can be examined by the absolute deviation
(|kf − 1|), and the precision of the scale factor determination can be analyzed through
the uncertainty (STD of kf ). For the evaluation of the scale factor determination, this
absolute deviation is also depicted in Figure 4.3 (bottom left). It is mentionable again
that both the scale factor deviation as well as the standard deviation of the scale factor
are initially equal to one.
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Figure 4.3: The assimilation results for the ideal test case scenario with identical true
and imposed magnetic fields. The upper row shows both the final scale factor (kf ) on
the left and the associated uncertainty (posterior standard deviation) of the final scale
factor (STD of kf ) on the right. The bottom row shows both the absolute deviation
of the final scale factor from the true value (|kf - 1|) on the left and the temporal
mean of the rescaled radial magnetic field (Bres

r ) on the right. Dark red in the bottom
left plot (respectively blue in the upper right) indicates unchanged major deviations
(respectively large remained uncertainty) after the assimilation, whereas lighter colors
point out areas with lower deviations and reduced uncertainty.

The results in Figure 4.3 show clearly that the Kalman filter strongly reduces the
deviation of the scale factor (Figure 4.3, bottom left panel) in nearly all oceanic areas.
Expectedly, in large parts of the continental regions, where no magnetic signals from the
ocean arise, the scale factor’s deviations remained close to their initial value. Moreover,
the standard deviation of the final factor (Figure 4.3, top right panel), which is considered
as associated uncertainty, also exhibits a significant reduction in the oceanic areas. The
pattern of this reduced uncertainty correlates well with the high variance of the OIMF
(see Figure 4.1, right panel). Areas characterized by high variability of the OIMF evince
low uncertainties, whereas areas with a tiny OIMF variability evince high uncertainties.
The temporal fluctuations of the imposed magnetic field are decisive to the scale factor
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determination. Thus, the mean of the OIMF (Figure 4.1, left panel) does not affect the
results (neither the scale factor nor its associated uncertainty). In other words, KREMS
is sensitive to the imposed magnetic field anomalies.

It can be noted that the standard deviation of the scale factor strongly increases at
higher latitudes (larger than 60◦). This latitude dependence corresponds to the cho-
sen nighttime data selection below 60◦. Therefore, an increased influence of ionospheric
magnetic field contribution and field-aligned currents at higher latitudes can explain this
substantially larger uncertainty. The dependence of the scale factor determination on the
imposed magnetic field variability and the latitude will be analyzed in more detail later.

Finally, the determined scale factor can be used to rescale the imposed OIMF according
to Equation (4.4). The radial component of the temporal mean rescaled field Bres

r is shown
in Figure 4.3 (bottom right panel). When rescaling the mean OIMF, it must be noted
that the scale factor is determined from the OIMF anomalies because, as stated before,
it is not sensitive to the mean magnetic field. Nevertheless, the rescaled field reflects the
detectable part of the OIMF and emphasizes the part of the signal gained from the true
OIMF by the assimilation. The mean rescaled field (Figure 4.3 bottom right panel) is very
similar to the mean of the true OIMF (compare to Figure 4.1). The only slight deviations
between the rescaled and true oceanic field demonstrate that KREMS provides a correct
rescaling of the imposed oceanic field.

Spatial analysis

An advantage of the approach is locally varying rescaling, which allows for spatial analysis
of the scale factor determination. Although the results of the OSSE indicate a reasonable
scale factor determination globally over large parts of the oceans, some local differences
are noticeable. Large parts of the Indian Ocean and the Western Pacific evince only tiny
deviations of the scale factor. However, some local deviations are more increased in parts
of the Atlantic, the Eastern Pacific, or the Southern Ocean.

In order to compare the main oceans, the area-weighted spatial average of the final
scale factor, its associated uncertainty and its deviation from one is considered in the cor-
responding areas. Therefore, the basin masks of the World Ocean Atlas 2018 (WOA18)
were used to define areas of the main oceans and adapted to the Gauss Legendre grid.
These resulting areas for the Atlantic, Pacific, Indian, and Southern Oceans are high-
lighted in Figure 4.4. Additionally, the ETOPO1 dataset (Amante and Eakins, 2009) was
used to define a global oceanic area. Table 4.2 lists the area-weighted spatial averages
over the main oceans and the overall oceanic spatial average.

The spatial average is close to one in all cases; in particular, one is always within the
average uncertainty. The closeness of the final scale factor to the true value is also high-
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Figure 4.4: On the left side, a world map with highlighted areas for the main oceans:
Atlantic, Pacific, Indian and Southern Ocean. The marked areas are used for area-
weighted spatial averages and correspond to the used spatial resolution of SH degree
30. On the right side, two specific areas are marked, which comprise a small selection of
grid points corresponding to SH of degree 30. Several connected grid points with higher
OIMF variability define the Indian ACC area; conversely, grid points with lower OIMF
variability define the East Pacific area. In the background, the standard deviation of
the radial OIMF from the ECCO2 model underlines the OIMF variability.

Table 4.2: Area-weighted spatial averages of the final scale factor, its associated un-
certainty and its deviation

Area scale factor kf uncertainty (STD of kf) deviation |kf − 1|

Atlantic 0.93 0.33 0.33
Pacific 0.95 0.24 0.26

Indian Ocean 0.99 0.14 0.15
Southern Ocean 0.96 0.43 0.28
Full oceanic area 0.93 0.30 0.27

lighted by the average deviations, which correspond well to the uncertainties. The Indian
Ocean provides the best average scale factor and lowest uncertainty results. Likewise, the
scale factor determination results in the Pacific are slightly better than in the Atlantic.
These results indicate that regions with minor deviations of the scale factor from the
actual value coincide with a low standard deviation of the scale factor. Conversely, more
significant deviations occur in areas with higher standard deviations. Interestingly, the
Southern Ocean shows a comparable small average deviation of the scale factor despite its
relatively high average uncertainty. This discrepancy again indicates that the uncertainty
covers the influence of other magnetic sources in this area. Generally, the results demon-
strate a reasonable scale factor determination on global and finer spatial scales, and the
posterior standard deviation of the scale factor proves to be a valuable measure to assess
the quality of the assimilated scale factor.
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4.2.2 Evolution and convergence of the scale factor

Further insight can be gained by looking at the development of the scale factor in the
Kalman filter over assimilation time. The changes from the initial value of the scale factor
under the influence of new observations and its convergence towards the true value are
investigated.

First, the scale factor evolution in two different areas is considered in more detail:
One area with high and another with relatively low variability of OIMF. According to
the previous results, this corresponds to a relatively low, respectively high uncertainty of
the scale factor. The high-variability area (low scale factor uncertainty) is located in the
Southern Indian Ocean between Africa and Australia, around 45◦ South (named Indian
ACC area), and the low-variability area (high scale factor uncertainty) is located in the
Eastern Pacific close to the coast of central South America, around 15◦ South (named
East Pacific area). The comprised grid points and areas are marked in Figure 4.4 (right
side).

The OIMF at the Indian ACC area evinces a spatial area-weighted mean of the OIMF’s
standard deviation of around 0.35 nT. Contrary, in the East Pacific, it is an order of
magnitude lower around 0.05 nT. Correspondingly, the spatial area-weighted average of
the scale factor uncertainty also differs in both areas (0.13 at the Indian ACC area, 0.44
in the East Pacific area). Consequently, a different evolution of the scale factor is also
expected in both areas. The pointwise local results from several connected grid points and
their spatial area-weighted mean in these specifically chosen areas are presented together
in Figure 4.5.

As can be seen from this figure, the factor evolves remarkably fast towards the true
value of 1.0. The spatial mean in the high-variability area (Indian ACC, Figure 4.5 left
panel) converges already close to one after less than one year of assimilated data. It is
clearly visible that the convergence in the case of the low-variability (East Pacific, Figure
4.5 right panel) area takes a longer time. However, the spatial mean in this area also
approaches the correct value after approximately two years of assimilated data. This
relatively short time suggests sufficient assimilated observations to obtain a reasonable
scale factor. In comparison, the spread of the local scale factor results is significantly
narrower for the high-variability area, which corresponds well to the lower standard de-
viation of the scale factor. Some individual local results with low OIMF variability show
large deviations from the true value, indicating that a proper scale factor determination
at these locations is impossible. Promisingly, the fast convergence of the scaling factors,
especially of the spatial area-weighted mean, emphasizes the sensitivity of KREMS to
magnetic signals from OIMF.
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Figure 4.5: The evolution of the scale factor over the entire assimilation period is con-
sidered in two different areas: An area of high OIMF variability located in the Southern
Indian Ocean (Indian ACC) on the left side and an area of low OIMF variability lo-
cated in the Eastern Pacific (East Pacific) on the right. The grey lines denote the
pointwise local factors, and the red lines highlight the spatial area-weighted averaged
mean and uncertainty (posterior standard deviation). The horizontal, dashed, black
line indicates the true scale factor.

Scale factor convergence

The final convergence can be examined separately by inspecting two assimilations with
different start values of the scale factor. Besides the already studied assimilation with
initially drawn scale factors from Gaussian distribution N (0, 1), another one with an
identical setup but initial scale factors following an N (2, 1) distribution was performed.
Thus, in the ideal scenario, both assimilations start with a scale factor one standard
deviation distant from the true value. Theoretically, the scaling factors should still match
at the end of the assimilation despite the initial difference. The convergence can then be
considered as the difference between the final scale factor from different initial conditions:
|k2

f − k0
f |.

The difference is shown in Figure 4.6. In large parts of the ocean, the convergence is
close to zero, which implies a conclusive result from the assimilation in most areas. As
expected, the pattern corresponds to the scale factor uncertainty, and higher convergence
differences occur only in areas of higher uncertainty. Convincingly, at all grid points over
the ocean, the convergence difference is below the uncertainty of the scale factor. Actually,
in some areas, e.g., at higher latitudes in the Southern Ocean, the convergence difference is
tiny, but the scale factor uncertainty (see Figure 4.3 top right panel) is significantly larger.
It can be concluded from this that the convergence indicates a consistent scale factor
determination. However, additional aspects (like other magnetic sources or nighttime
data selection) influence the scale factors’ uncertainty. Furthermore, an advantage of
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Figure 4.6: The convergence of the scale factor is illustrated by the absolute difference
between the final scale factors from two differently initiated assimilations. One scale
factor (k2

f ) stems from assimilation with a scale factor start value of two. The other
scale factor (k0

f ) stems from assimilation initiated with a zero scale factor. Light colors
indicate a satisfactory consistency in the final scale factor results despite different initial
conditions. Dark colors indicate a poor convergence and reveal that the assimilation
results are inconclusive.

the convergence is that it can be computed without knowing the true scale factor, thus
allowing to test the conclusiveness of the scale factor determination outside the OSSE.

4.2.3 Scale factor dependence on imposed variability and
geographical latitude

The results of the OSSE in an ideal scenario indicate two major dependencies of the scale
factor determination. First, the uncertainty of the scale factor determination depends
on the temporal variability of the imposed magnetic signal. Furthermore, there is also a
dependence on the geographical latitude of the scale factor’s location. Both dependencies
will be investigated in more detail in the following section.

For this purpose, the standard deviation of the final scale factor (STD kf ) is plotted
over the standard deviation of the imposed radial magnetic field (STD Bimp

r ) for each grid
point. Additionally, the absolute latitude position |φ| of each grid point is marked in color.
This illustration can be viewed in Figure 4.7. The presentation undoubtedly confirms the
hypothesis that the scale factor’s uncertainty strongly depends on the temporal variability
of the imposed magnetic field and latitude position. The higher the imposed variability
is at a given grid point, the more the uncertainty of the scale factor can be reduced from
the initial value of one by the assimilation. However, this effect is much more increased
at lower latitudes than at high latitudes (can be seen in Figure 4.7, where only dark
colors show a strong uncertainty reduction). Remarkably, the minimal uncertainty for a
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Figure 4.7: The final scale factor uncertainty (STD kf ) over imposed variability (STD
of Bimp

r ) for each scale factor on the Gauss -Legendre grid corresponding to SH of
degree 30. The absolute latitude of each grid point is marked in color. The blueish
color highlights low latitudes, whereas the yellowish color highlights high latitudes.
Exemplarily, for two different latitudes, the result of an exponential fit is shown to
analyze the imposed variability dependence.

fixed latitude is limited and cannot be substantially reduced further by higher imposed
variability.

The uncertainty reduction exhibits a clear exponential dependence on the variability.
This dependency can be validated by fitting a 3-parametric exponential function to all
grid points of a given latitude of the form: f(x) = a · exp(b · x) + c. The fit results
for two exemplary different latitudes are additionally shown in Figure 4.7. Generally,
the exponential fit describes the dependence adequately. On the one hand, the most
significant difference is revealed by the fit parameter c, which can be interpreted as the
minimal achievable uncertainty. Close to the equator (latitude of 5.71◦), the minimal
uncertainty of the scale factor is around 0.12 compared to the higher latitude (62.84◦),
where only 0.58 can be achieved. On the other hand, high values of the fit parameter b

but similar for different latitudes indicate the minimal uncertainty is already reached for
relatively small imposed variability in this OSSE.

4.2.4 Spatial and temporal scales

Finally, the ideal scenario of the OSSE was used to explore the sensitivity of KREMS
to different spatial and temporal scales of the ocean-induced magnetic field. Therefore,
the spatial and temporal resolution of the OIMF is varied. Three different temporal
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resolutions of the OIMF of 3-daily, weekly, and monthly means are considered. In addition,
also three different spatial resolutions corresponding to SH of degree and order of 15,
30, and 45 are tested. In all cases, the true OIMF included in the artificial data and
the imposed OIMF are still chosen identically to keep the ideal scenario. A separate
assimilation was performed for each combination of these different spatial and temporal
scales of the OIMF. Afterward, the results are compared in terms of the global area-
weighted averaged scale factor deviation and the associated scale factor uncertainty.

An overview of these results is illustrated in Figure 4.8, where the final values are given
for each test case. From this figure, two clear tendencies can be identified: First, a higher
temporal resolution of the OIMF leads to an improved scale factor determination (lower
scale factor deviation and uncertainty). Since the higher temporal resolution is accompa-
nied by higher variability, the imposed signal is easier to identify in this case. Secondly, a
higher spatial resolution of the OIMF deteriorates the scale factor determination (larger
scale factor deviation and uncertainty). Interestingly, although a higher spatial resolution
also provokes a higher variability, the scale factor determination is diminished in this case.
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Figure 4.8: Globally averaged scale factor determination results for different spatial
and temporal scales of the OIMF in the ideal scenario of the OSSE. The area-weighted
spatial averages are shown for the final scale factor determination (left side) and its
associated uncertainty (right side). The temporal scales are varied from monthly to
3-daily temporal resolution, and the spatial scales from SH degree of 15 up to 45.

The influence on the scale factor determination by different spatial resolutions is larger
than by different temporal resolutions. The better scale factor determination for lower
spatial scales indicates a higher sensitivity of KREMS to lower SH degrees. However,
it should be noted that the OIMF identification using KREMS is also based on strong
temporal constraints via the imposed OIMF and only weaker spatial constraints.

In order to examine this more closely, the energy spectra of the true and the final
rescaled OIMF are considered and shown in Figure 4.9. From the comparison of the
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energy spectrum, one can see that the rescaled OIMF matches the true OIMF very well
for lower SH up to degree 15. For higher SH degrees, minor deviations can be recognized,
and the uncertainty increases. On the one hand, this is to be expected since the energy
per SH degree is significantly lower for higher SH degrees. On the other hand, this is
consistent with the better scale factor determination for lower spatial scales and the noisy
pattern seen in the scale factor determination (see Figure 4.3). As a conclusion from the
analysis of spatial and temporal scales of the OIMF, it can be noted that the temporal
resolution of the imposed OIMF has a minor influence on the scale factor determination
and that the proposed KREMS yields better results for lower SH degrees.
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Figure 4.9: The energy spectrum of the true and the rescaled OIMF in the ideal
scenario. The mean true OIMF energy spectrum is drawn in black; the mean rescaled
OIMF and its associated uncertainty are shown in red.
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4.3 Improvements by spatial constraints

4.3.1 Motivation

In the previously presented results, the temporal behavior of the presumed OIMF esti-
mate was the only constraint at each grid point. So far, the scale factors at each grid were
uncorrelated and could evolve independently during assimilation. However, it is reason-
able to assume that nearby factors are related and not independent of one another. First,
the possible relation of the rescaling to oceanic quantities suggests a spatial correlation
among the local scale factors. Typically, oceanic quantities (like temperature, salinity,
and transport) are also correlated over some spatial extent. Large-scale correlations of
such oceanic quantities like oceanic heat (Mazloff et al., 2018) or salinity (Bao et al., 2020)
are already found and analyzed in a different context. Second, the spatial expansion of
the magnetic field itself causes neighboring grid points to be affected by each other, which
justifies a spatial correlation among nearby scale factors. Moreover, the final scale factor
of the ideal scenario analyzed before exhibits a partially unrealistic noisy spatial pattern,
indicating a potential for improvement by incorporating spatial constraints. The Kalman
filter algorithm allows us to incorporate such spatial information via the parametrization
of the prior covariance. That can be achieved by adding a spatial correlation for the scale
factors at the beginning of the assimilation. Such a potential approach to incorporate
spatial constraints by a simplified prior covariance structure is introduced and described
in the following subsection.

4.3.2 Exponentially decaying covariance matrix

The goal is to specify a spatial constraint of the scale factors by a simplified covariance
structure, where no specific patterns but distance-dependent correlations are imposed.
Thereby, nearby scale factors are assumed to correlate more than distant ones. One
possible parametrization of the covariance, which takes this into account, is based on
an exponentially decaying correlation of the scale factors. In doing so, the prior spatial
covariance is initialized by the following parametrization:

Cij = exp
(

−dij

l

)
, (4.5)

where, i and j indicate the Gauss node of the grid, and dij denotes the distance between
two grid points. The covariance Cij between two scale factors is supposed to exponentially
decay with distance compared to a characteristic correlation length scale l. The correlation
length then determines the strength of the spatial constraint. Exponential or gaussian
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covariance structures using a correlation length a few times larger than the grid size are
already established in the context of Kalman filters (Brankart et al., 2010; Park et al.,
2022). In order to estimate a reasonable characteristic correlation length for the scale
factors, both the spatial correlation of related oceanic quantities and the spatial expansion
of the magnetic field are considered in more detail.

First, the correlation length of the zonal depth-integrated velocity and the depth-
weighted averaged conductivity is analyzed. For both quantities, the correlation averaged
over 100 km between each grid point on the Gauss-Legendre grid corresponding to SH of
degree 30 is plotted against the distance in Figure 4.10. Subsequently, an exponential
function is fitted using the form: f(x) = a · exp(−x

l
) + b, where a and b are fit parameters

and l corresponds to the correlation length. For one thing, the results of this exponential
fit justify the assumption of an exponentially decaying correlation in both cases. Ad-
ditionally, they provide a first estimation for the correlation length of the scale factors
(l = 357 km for zonal depth-integrated velocity and l = 1108 km for depth-weighted aver-
aged conductivity). Taking into account the larger influence of oceanic velocities on the
OIMF (see Section 3.2.1), the correlation length of the zonal depth-integrated velocity
should be considered more dominant for the scale factors.
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Figure 4.10: Analysis of the correlation length on OIMF-related oceanic quantities.
The correlation averaged over 100 km between each grid point of the Gauss-Legndre
grid corresponding to SH of degree 30 is plotted against the distance. The distant-
dependent correlation of the zonal depth-integrated ocean velocity is shown on the left
side and the depth-averaged ocean conductivity on the right. For both, the exponen-
tially decaying correlation is highlighted through an exponential fit (red dashed line),
determining a characteristic correlation length.

Secondly, the spatial expansion of the OIMF is approximately estimated using the law
of Biot-Savart. Under simplified conditions, a rough formula can be analytically derived
to estimate the distance dependence of the magnetic field magnitude. The derivation of



58 A magnetic field observation system simulator

the formula is given in the Appendix A.2.
Based on this consideration, an exponentially decaying covariance structure is em-

ployed using a correlation length of l = 500 km. Additionally, also correlation lengths of
l = 1000 km and l = 2000 km are tested to investigate the effect of stronger spatial con-
straints. Also, other data assimilation experiments using OIMF showed the best results
with a higher observation radius (Irrgang et al., 2017). However, one has to be careful
not to over-restrict the scale factors by too strong correlations. Since there is no source
of OIMF over land, the prior spatial correlation between scale factors is only applied be-
tween different grid points over the oceans (Cij is set to zero for i ̸= j if i or j indicate
a Gauss node located on land). The ETOPO1 dataset (Amante and Eakins, 2009) was
used again to distinguish ocean and land grid points. The resulting exponentially decay-
ing covariance matrix is then included at the beginning of the assimilation. The structure
of such an exponentially decaying covariance matrix can be seen in the Appendix A.8. In
addition, this appendix section also compares the covariance matrix with the covariance
resulting from the OIMF estimates based on the ECCO2 model. Finally, the incorporated
spatial covariance matrix is tested within the OSSE, and the corresponding results are
presented in the next section.

4.3.3 Results using spatial constraints

An assimilation using a prior spatial covariance with an exponentially decaying correlation
structure and a characteristic correlation length of 500 km as described in the previous
subsection was performed are presented in Figure 4.11.
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Figure 4.11: The assimilation results of an OSSE using an ideal scenario and in-
corporated spatial constraints. An exponentially decaying covariance matrix with a
correlation length of l = 500 km is used. The left side shows the final scale factor
deviation, and the right side shows the corresponding uncertainty of the scale factor.
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Table 4.3: Area-weighted spatial averages of the final scale factor, its associated un-
certainty and its deviation

Area scale factor kf uncertainty (STD of kf) deviation |kf − 1|

Atlantic 0.98 0.31 0.30
Pacific 0.98 0.23 0.24

Indian Ocean 1.00 0.14 0.14
Southern Ocean 0.98 0.31 0.21
Full oceanic area 0.97 0.27 0.24

In comparison to Figure 4.3, there is an overall improvement in the scale factor de-
termination by incorporating the exponentially decaying correlation structure. The scale
factor deviation from the true value, as well as the associated uncertainty of the scale fac-
tor, are further reduced compared to the previous result. Due to the spatial correlations,
the STD of kf decreased significantly also at latitudes larger than 60◦. Furthermore,
the improved scale factor determination is also emphasized by the area-weighted spatial
averages given in Table 4.3.

Compared to the previous results in Table 4.2, the scale factors are closer to one,
and the uncertainty is lower (especially in areas like the Southern ocean). On average,
the scale factor is strikingly close to one indicating excellent detectability. The average
scale factor deviation is within the uncertainty. Expectantly, the enforced spatial relation
between the scale factor at the beginning of the assimilation results in slightly smoother
scale factors. However, large parts of the noisy pattern still remain in the final scale
factor deviations. The effect of the type of prior spatial covariance also influences the
scale factor evolution. On the one hand, the spread of the local pointwise results will be
narrower according to the lower uncertainty. On the other hand, the spatial correlation
expedites the convergence toward the correct value at the beginning of the assimilation.

Finally, the effect of different higher correlation lengths is considered. Overall, the
scale factor determination in this OSSE can be slightly further improved using a higher
correlation length. However, it should be noted that in this idealistic OSSE, the true
value of all scale factors equals one at each location, which means that they are perfectly
correlated. The results of these further assimilations using a higher correlation length are
included in the Appendix A.8.

In conclusion, these OSSE results evidently demonstrate that incorporating spatial
constraints improves scale factor determination. Already a simplified spatial covariance
structure based on distance-dependent exponentially decaying correlations between the
scale factors enhances the detectability of the imposed signal. Accordingly, further assim-
ilation results in this thesis are based on a prior covariance with exponentially decaying
correlation structure using a correlation length of l = 500 km.
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4.4 Results in non-ideal scenarios

4.4.1 Optimal scale factor

The previous results were obtained in an ideal scenario. However, imposing the exact
OIMF from circulation may not be the most realistic scenario. Therefore, more realis-
tic scenarios are considered where the presumed OIMF estimates deviate from the true
oceanic contribution in the synthetic observations. The objective of these non-ideal sce-
narios are to show the robustness and optimality of KREMS in the presence of slight
deviations between the imposed and true OIMF. Obviously, in such scenarios, the true
value of the scale factor is not precisely one at each location and time step anymore.
Hence, a theoretically optimal scale factor is of interest for evaluating the method. In the
OSSE, such an optimal scale factor can be calculated and used as a reference due to the
known true and imposed magnetic field.
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Figure 4.12: Exemplary time series of the OIMF anomalies to illustrate the optimal
scale factor. At two arbitrary locations in a non-ideal scenario, the OIMF anomalies of
the deviating true (black) and imposed (dotted grey) OIMF are shown. Additionally,
the optimal rescaled OIMF anomaly time series is drawn in red. The optimal scale
factor kopt is calculated by a least-squares method. In the top example, the imposed
signal is scaled up to fit the true signal better (kopt = 2.7). At the bottom example,
the imposed signal is scaled down with the opposite sign (kopt = −0.3).

In this thesis, the optimal scale factor kopt(x, y) is determined by a least-squares fit of
the time series between the true and the scaled imposed field at each grid point. Since the
presented method is not sensitive to the mean value of the OIMF, the radial magnetic field
anomalies (B̃r) are used to calculate this optimal scale factor. The scale factor obtained
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by a least-square method is considered the best possible result of the Kalman filter-based
assimilation. Figure 4.12 illustrates the optimal scale factor.

In this example, the time series of the differing true and imposed OIMF anomalies are
compared to the optimal rescaled ones. In one case (top plot of figure 4.12), the imposed
signal is too weak compared to the true OIMF anomaly and is scaled up by an optimal
factor (kopt = 2.7). In the other case (bottom plot of figure 4.12), the imposed signal is too
strong and even of the opposite sign compared to the true OIMF anomaly, which therefore
results in a negative downscaling by the optimal scale factor (kopt = −0.3). In addition,
it should be kept in mind that the optimal rescaling depends on the temporal accordance
of the imposed and true OIMF anomalies. This example illustrates the rescaling of the
imposed OIMF anomaly that is considered achievable in the optimal case. Both examples
also highlight the necessity to allow a locally different rescaling with a wide range of scale
factors.

Normalized root mean square deviation (NRMSD)

Moreover, an appropriate quality measure of how well the final rescaled magnetic field
reflects the true magnetic field is helpful. For this purpose, the normalized root mean
square deviation (NRMSD) is considered as a measure of differences between time series
of magnetic field anomalies. The NRMSD is calculated with respect to the true magnetic
field and defined as follows:

NRMSD(B̃r) =

√√√√√∑N
ti=0

(
B̃r(ti, x, y) − B̃true

r (ti, x, y)
)2

∑N
ti=0 B̃true

r (ti, x, y)2
, (4.6)

where ti denotes the time steps and B̃true
r the true radial OIMF anomalies. The normal-

ization accounts for the relation of deviations to the strength of the true signal. In doing
so, the NRMSD(B̃res

r ) describes the differences between rescaled and true OIMF. Ac-
cordingly, optimal rescaling minimizes the NRMSD between the true and rescaled OIMF
anomalies. The zero magnetic field assumed at the beginning of the assimilation yields
NRMSD(0) = 1 An optimally rescaled magnetic field after the assimilation would result
in NRMSD(B̃true

r ) = 0. It should be noted that the NRMSD corresponds to the already
shown absolute deviations |kf − 1| in the case of an ideal scenario discussed before (see
Appendix A.9).

Furthermore, the NRMSD can be employed to quantify the changes due to the rescaling
of the presumed OIMF estimate by assimilation. Thereby, two different aspects can be
considered: First, the signal recovery (Λrecovery) describes how much the rescaled magnetic
field changed from the initially assumed zero magnetic field due to the assimilation. It
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can be defined by:
Λrecovery = 1 − NRMSD(B̃res

r ). (4.7)

A positive signal recovery (at most 1 in case of optimal signal recovery) demonstrates a de-
creased deviation between the rescaled and true magnetic field compared to the beginning
of the assimilation.

Second, the signal correction (Λcorrection) indicates how much the final rescaled mag-
netic field actually reflects the true signal better than the one originally imposed. It is
expressed by:

Λcorrection = NRMSD(B̃imp
r ) − NRMSD(B̃res

r ). (4.8)

Here, a positive signal correction exemplifies that the assimilation successfully improved
the imposed magnetic field. Finally, the signal correction can be examined by using
the rescaling from assimilation (Λcorrection

assim ) or the introduced optimal rescaling from the
least-squares fit (Λcorrection

opt ).

4.4.2 Deviations by spatial resolution

In the first place, deviations between the imposed and true OIMF caused by differently
chosen spatial resolutions is considered. Since the magnetic field is not restricted to
a fixed point in space, both spatial and temporal differences influence each other, and
therefore, spatial and temporal deviations are not strictly distinguishable. Nevertheless,
in the following case, the OIMF primarily differs in the spatial domain emphasizing the
leading cause of the deviations. In order to ensure comparability, the imposed field was
initially kept the same in this scenario as in the assimilations before, and only the true
oceanic contribution in the Swarm-like artificial data was replaced. In doing so, the results
are not affected by a different imposed OIMF variability.

The effect of spatial deviations is tested by investigating spatial undersampling of the
true OIMF. The true OIMF was included in the artificial satellite data with a higher
spatial resolution instead of using the same spatial resolution as the imposed OIMF.
In this way, a more realistic scenario is mimicked where the presumed proxies of the
OIMF are imposed with lower spatial resolution than the true field. Exemplarily, the
assimilation results, including the true OIMF in the artificial satellite data up to SH degree
60, are shown and discussed. Spatial constraints were incorporated in the assimilation of
this scenario by using the exponentially decaying covariance with a correlation length of
500 km, as discussed in Section 4.3. Figure 4.13 presents the final results of this test case
scenario.

Despite the spatial deviations of the imposed magnetic field, the scaling factor is
still expected to be close to one on average. The results (top left plot in Figure 4.13)



4.4 Results in non-ideal scenarios 63

60°E 120°E 180° 120°W 60°W

45°S

0°

45°N

−2 −1 0 1 2

kf

60°E 120°E 180° 120°W 60°W

45°S

0°

45°N

0.0 0.2 0.4 0.6 0.8 1.0

STD kf

OSSE results: Spatial deviations

60°E 120°E 180° 120°W 60°W

45°S

0°

45°N

0.0 0.2 0.4 0.6 0.8 1.0

|kf − kopt|

60°E 120°E 180° 120°W 60°W

45°S

0°

45°N

−1.0 −0.5 0.0 0.5 1.0

Λrecovery

Figure 4.13: The OSSE results for the test case considering deviations by different
spatial resolution. The true OIMF is resolved up to SH degree 60; however, the
imposed OIMF only up to SH 30. The top row shows the final scale factor kf (left
side) and its associated uncertainty STD of kf (right side). The bottom left plot
shows the deviation of the final scale factor to the optimal scale factor kopt calculated
by least-squares. The bottom right plot shows the signal recovery by the assimilation
(Λrecovery).

confirm that the final scale factor over the oceans is globally close to one. Since the
imposed magnetic field and the parametrization of the other magnetic sources remained
unchanged, its associated uncertainty (top right plot in Figure 4.13) is identical to the
previous results.

The accuracy of the scale factor determination is evaluated by considering the differ-
ence to the optimal scale factor. (described in Section 4.4.1). This scale factor deviation
|kf − kopt| is presented in the Figure 4.13 bottom left panel. Compared to the scale factor
deviation of the previous ideal scenario (see Figure 4.3), an apparent similarity is visible.
Only in some individual grid points, the deviation is slightly increased. One can draw
two conclusions from this: First, KREMS determines a scale factor close to the optimal
scale factor resulting from the least-square method without explicitly knowing the true
OIMF. Second, minor spatial deviations caused by different spatial resolution only slightly
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influence the scale factor determination.
Finally, the signal recovery (explained in Section 4.4.1) is shown in the bottom right

plot in figure 4.13. The globally positive signal recovery over the oceans (with an global
averag of 0.31) demonstrates the improvement of the final rescaled magnetic field com-
pared to the beginning of the assimilation. This again underlines the ability to identify
a given EM signal in artificial observations using KREMS regardless of slight spatial
deviations.

However, the signal recovery only reflects the improvement compared to the initially
assumed scale factor of zero, which raises the question of whether the method also allows
for a correction of the imposed field. Accordingly, the signal correction (as introduced
in Section 4.4.1) is examined and shown in Figure 4.14. From this figure, it can be seen
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Figure 4.14: Signal correction by rescaling in terms of NRMSD differences. The left
plot shows signal correction using the final determined scale factor taken from the
assimilation for the rescaling. The right plot shows the optimal signal correction de-
termined using an scale factor resulting from a least-squares fit for rescaling.

that the imposed OIMF cannot be significantly improved by rescaling at most grid points.
Especially in areas of low variability of the imposed OIMF and higher uncertainty of the
scale factor (e.g., East Pacific), there is even a deterioration of the imposed OIMF. The
result is also compared to the optimal achievable signal correction (Λcorrection

opt ) using the
optimal scale factor (kopt) for rescaling. The optimal signal correction clearly indicates
a limitation of the scale factor approach. Even the optimal scale factor barely allows
an improvement in the case of the considered imposed magnetic field in this test case
scenario. In most oceanic areas, the optimal signal correction is nearly zero or only very
tiny, which means the NRMSD to the true signal is not reducible by a constant factor
in this scenario. One can summarize that despite small spatial deviations of the imposed
magnetic signal, KREMS, on the one hand, allows the identification of the signal but, on
the other hand, is limited in its correction.
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4.4.3 Deviations by temporal behaviour

Deviations between the true and the imposed OIMF can not only be caused by different
spatial resolutions but also arise when only an incomplete temporal behavior is imposed.
Therefore, in this scenario, the full OIMF time series signal is included in the artificial
data, but only parts of the signal are imposed. Since a different imposed OIMF is used
in this case, the comparability to previous results is hampered. However, this scenario
allows evaluating robustness of KREMS to imposing an incomplete temporal behavior.

For this purpose, the OIMF anomalies derived from the ECCO2 model at each grid
point are decomposed into several parts according to certain frequency bands. The decom-
position of the time-discrete ocean-induced magnetic signal in its frequency components
is based on the Fast Fourier Transformation (FFT). Subsequently, several frequencies are
combined in four different frequency bands. These four frequency bands correspond to
signal periods of: > 365 days, 182 − 365 days, 30 − 182 days, and 7 − 30 days. Note,
since the underlying dataset consists of 3-daily time steps, at least a minimum period
of 7 days (higher than corresponding Nyquist frequency) is considered. Such a temporal
decomposition of the OIMF is exemplarily shown at an arbitrary location in Figure 4.15.
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Figure 4.15: The frequency band decomposition of time series of the imposed OIMF
anomalies at an exemplary grid position. The black line denotes the complete imposed
signal. The decomposed parts of the signal (four frequency bands) are shown addi-
tionally in bluish colors. At the top, the two low-frequency bands are shown, and at
the bottom high-frequency bands.

This figure presents the total signal and its four temporal components according to
the frequency bands (lower frequencies at the top and higher frequencies at the bottom).
After that, each of these temporal components was used in a separate assimilation as
an imposed signal. In all cases, the true OIMF was represented by the total signal.
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Accordingly, in this OSSE scenario, only different components of the true signals are
imposed. Since only a part of the signal is used as a presumed estimate, the imposed
variability is evidently reduced. Consequently, the scale factor determination becomes
more difficult. When evaluating the signal recovery, the reduced imposed variability has
to be taken into account.

The results of each assimilation, i.e., for each frequency band, are summarized in Figure
4.16 by showing the area-weighted averages of the final scale factor and its corresponding
uncertainty in different oceanic areas (see Figure 4.4). Additionally, the average imposed
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Figure 4.16: The summarized OSSE results for the test case scenario using different
frequency bands as imposed OIMF. The area-weighted spatial average of the scale
factor and its uncertainty are provided for different areas and each considered frequency
band at the top panel. At the bottom, the corresponding imposed variability is shown
in comparison for better evaluation.

standard deviation of the imposed signal is shown for better evaluation. Despite the
lower imposed variability, the final scale factor distinctly evolved from its initial value
of zero to one for all frequency bands in all areas indicating the detectability for all
frequency bands. Likewise, the decreased associated uncertainty highlights the robustness
of KREMS in recovering the signal when imposing an incomplete temporal behavior.
Of course, the scale factor determination depends on the imposed variability again (see
Section 4.2.3). Both areas (e.g., the Indian Ocean), as well as frequency bands (e.g., period
of 30-182 days) with higher imposed signal, exhibit better scale factor determination
(higher scale factor and lower uncertainty). Contrarily, areas (e.g., the Atlantic) and
frequency bands (e.g., period of 182-365 days) with lower imposed signal, reveal a poorer
scale factor determination (lower scale factor and higher uncertainty). The uncertainty in
the Southern Ocean is increased due to higher latitudes despite relatively high imposed
variability (e.g., compared to the equatorial region). Besides the already established
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and analyzed sensitivities, in the results of Figure 4.16, a slightly better scale factor
determination for higher frequency bands is notable. Interestingly, especially also when
the imposed variability is comparable (e.g., frequency bands with a period of >365 days
and 30-182 days in the Pacific).

In summary, this scenario demonstrates certain robustness of the KREMS to slightly
incompletely imposed OIMF temporal behavior. Moreover, the method reveals a sensi-
tivity to a broad frequency spectrum, although higher frequencies seemed a little more
favorable.

4.4.4 Deviations by electromagnetic framework

After the consideration of spatial and temporal deviations between the presumed OIMF
estimate and the true signal, an explicit test case scenario is presented to examine the
influence of differences in the electromagnetic framework used for the OIMF calculations.
As already studied and explained in Chapter 3.2, the calculations of the OIMF can be
influenced by various quantities and model assumptions (e.g., surrounding conductance
model, mantle conductivity, and quasi-stationary approximation).

In this scenario, a rather extreme case is tested, where the simplified Biot-Savart ap-
proximation is used to calculate the presumed OIMF estimate, and the true magnetic field
(used for the artificial data construction) is calculated using the full electromagnetic solver
X3DG. The spatial and temporal resolutions of both true and imposed OIMFs are identi-
cal in this scenario. As already described in Section 3.2.4, the insufficient electromagnetic
framework based on the law of Biot-Savart (e.g., missing assumption on surrounding con-
ductance model) introduces significant deviations in the radial magnetic field, both on
spatial and temporal scales. The OSSE in this scenario investigates how such imperfect
assumptions affect the scale factor determination by KREMS. The results are summarized
and presented as in the previously studied test case scenarios and displayed in Figure 4.17.

The scale factor (top left plot in Figure 4.17) indicates already larger discrepancies and
does not globally tend to a uniform value. Particularly in areas like the Southern Ocean
around Australia and parts of the Indian Ocean, where the imposed OIMF variability is
high, the scale factor clearly deviates from a value of one, which would imply a correct
imposed OIMF. Despite a different imposed magnetic field, the associated uncertainty
of the final scale factor (top right plot in Figure 4.17) is exceptionally similar to the
previous test cases. The similar variability of the imposed magnetic field explains the
striking resemblance. Furthermore, the deviations between the resulting scale factor and
the optimal scale factor (bottom left plot in Figure 4.17) obtained from a least-squares
fit are considered. A similar pattern as seen before in the scale factor deviation (e.g.,
compare Figure 4.13) demonstrates once again that KREMS provides a suitable scale
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Figure 4.17: The summarized OSSE results for the test case considering deviations by
an inaccurate electromagnetic framework. The true OIMF is calculated using X3DG,
but the imposed field is approximated using the law of Biot-Savart. The top row shows
the final scale factor kf (left side) and its associated uncertainty STD of kf (right side).
The bottom left plot shows the deviation of the final scale factor to the optimal scale
factor kopt calculated by least-squares method. The bottom right plot shows the signal
recovery by the assimilation (Λrecovery).

factor determination close to the optimal rescaling regardless of significant deviations
between the imposed and true OIMF. Consequently, the discrepancies in the scale factor
to previous scenarios cannot be justified by an incorrect rescaling. Instead, the small final
scale factors (e.g., in the Southern Ocean around Australia and parts of the Indian Ocean)
indicate incompatibilities in the temporal behavior between the true and imposed signal.

Finally, signal recovery by the assimilation (bottom right plot in Figure 4.17) clearly
exemplifies this by showing substantial differences. Compared to the test case scenario
considering slight spatial deviations (see Figure 4.13), the initial chosen scale factor of
zero cannot be improved significantly in extended oceanic areas. The average global
signal recovery is 0.04 (compared 0.31 in the OSSE scenario described in Section 4.4.2).
The imposed EM signal can only be recovered in areas around the equator and the East
Pacific. These areas are in perfect accordance with the correlation between the OIMF
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prediction from X3DG and Biot-Savart (see Section 3.2.4 and especially Figure 3.4).
It can be concluded that a high correlation between the imposed and true signal is

an essential condition for adequate signal recovery. Since temporal behavior is the cru-
cial part of the separation, this underlines distinctly that a high correlation between the
imposed and the true OIMF is necessary to identify the oceanic magnetic signal. This
test case scenario also revealed that an appropriate electromagnetic framework is of great
relevance, and identifying oceanic EM signals requires precise modeling of the electromag-
netic induction processes. Accordingly, discussed influences on the OIMF calculation (like
the surrounding conductance or the quasi-stationary approximation) will indeed affect the
detection of EM signals using KREMS. Moreover, this scenario proved the simplified Biot-
Savart approach to be insufficient as presumed OIMF estimate. The lack of predicting
the correct temporal behavior using Biot-Savart in decisive areas prohibits oceanic EM
signal identification.

4.4.5 Deviations by observation-based presumed estimate

This final test case scenario is addressed to the observation-based detection of oceanic
EM signals using KREMS. The OSSE was used to investigate whether observation-based
presumed OIMF estimates would lead to a reasonable scale factor using KREMS. There-
fore, the geostrophic approach was used to derive the OIMF. This approach was already
explained in Section 2.3 and validated in Section 3.3. According to that, the geostrophic
OIMF, which was derived from sea surface height data of the GLOCER ensemble mean,
is used in this OSSSE to mimic an observation-based OIMF estimate. In this OSSE
scenario, the geostrophic OIMF estimate was used as imposed magnetic field, and a full-
model-based OIMF estimate was incorporated in the artificial observations as the true
oceanic signal. In doing so, the deviations between the true and imposed field in this
OSSE stem from the geostrophic approach.

The results of this OSSE scenario are shown in Figure 4.18. The scale factor could be
determined with a globally very low scale factor uncertainty, 0.14 % on average. The scale
factor shows larger values deviating from the initial zero value in the Southern Ocean (0.25
on average). Near the equator, the scale factors remain close to zero, 0.02 on average.

The last test case using Biot-Savart (Section 4.4.4) already indicated the importance
of the correlation between imposed and true magnetic fields. Therefore, the scale factor
determination was additionally analyzed regarding the correlation between the geostrophic
OIMF and the true model-based EM signal. Hence, the results are presented in Figure
4.18 (bottom plots) by showing the absolute final scale factor and its final uncertainty for
each grid point in dependence on the absolute correlation between the imposed and true
signal. Additionally, either the deviation from the optimal scale factor or the variability
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Figure 4.18: The OSSE results using a geostrophic OIMF as imposed magnetic field
and a full-model-based as the true magnetic signal. The top row shows the final
scale factor and corresponding uncertainty after the assimilation. At the bottom, the
absolute final scale factor |kf | (left) and corresponding uncertainty STD of kf (right) is
plotted over the absolute correlation between imposed and true signal. In the bottom
left, the deviation to the optimal scale factor is highlighted in color. In the bottom
right, the imposed variability is highlighted in color.

of the imposed oceanic signal is highlighted. In accordance with the previous findings,
two important conditions for an appropriate scale factor determination can be derived
from Figure 4.18.

First, the determined scale factor, which represents a measure of detectability, in-
creases for higher correlations between true and imposed signals (Figure 4.18, bottom left
panel). In particular, higher scale factors with lower deviation from the optimal scale
factor, i.e. an accurate signal identification, showed also a higher correlation. On the one
hand, this leads to a weak correlation between the geostrophic OIMF and the true signal;
on the other hand, to an unrealistic, exaggerated geostrophic EM signal. Therefore, a
scale factor close to zero near the equator could either indicate a weak detectability due
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to the weak correlation or a reasonable downscaling of the exaggerated signal. Without
further information, these scenarios are indistinguishable.

Secondly, as already stated several times, high variability in the imposed OIMF is
needed to reduce the final scale factor uncertainty and achieve a precise scale factor de-
termination. Scale factors at grid points with high imposed OIMF variability (colored
in Figure 4.18 bottom right panel) expose remarkably lower uncertainty (STD kf ). In-
terestingly though, Figure 4.18 also indicates that this is independent of the correlation
between the imposed and true signal. Consequently, a high correlation is not required to
achieve a low uncertainty of the scale factor. In turn, a result of the scale factor with
low uncertainty does not necessarily reveal a high correlation. Therefore, based on the
uncertainty, a low value of the scale factor (e.g., near the equator) can still indicate both
a weak detectability (low correlation) or reasonable downscaling (high correlation).

Overall, it can be concluded from this scenario that in areas where the geostrophic
OIMF show high variability, a scale factor with low uncertainty can be determined inde-
pendent of the correlation between geostrophic and true OIMF. If the imposed geostrophic
OIMF also strongly correlates with the true one, the resulting scale factors exhibit higher
values indicating good detectability. Finally, the scale factor results with low values and
low uncertainty are challenging to interpret. In this OSSE, the geostrophic OIMF estimate
was, in principle, successfully used as an observation-based OIMF estimate. However, the
correlation proved vital to obtain conclusive results, which must be considered when ap-
plying the geostrophic approach.
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4.5 Further discussion and conclusion

4.5.1 Limitations by temporally constant rescaling

In some cases, the result of the previous scenarios already exemplified a limitation of
KREMS. Despite a reasonable scale factor determination, the signal correction was lim-
ited (e.g., test case scenario of Section 4.4.2), and even a weak signal recovery occurred
(e.g., test case scenario of Section 4.4.4). In these cases, even the optimal scale factor
calculated using a least-square fit revealed these limitations. In general, KREMS aims for
an amplitude correction and assumes a rescaling constant in time. However, temporally
constant rescaling strongly restricts the signal correction in these cases. When the scale
factor is assumed to be constant over time, it cannot correct temporally varying deviations
between the imposed magnetic field. In order to overcome these limitations in correcting
the imposed signal, a time-dependent rescaling would be required.
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Figure 4.19: Exemplary time series of true and rescaled OIMF. Two types of rescaled
imposed OIMF are drawn. The normal-rescaled OIMF using a constant optimal scale
factor (blue) and a frequency-rescaled OIMF using a scale factor for each considered
frequency band (blue).

A possible approach to introduce a time dependence of the scale factor is to decompose
the imposed signal in different components and, afterward, determine a scale factor for
each part. A simple frequency decomposition of the imposed signals was performed in
Section 4.4.3, demonstrating that a scale factor could also be determined for each imposed
signal component. Separately imposing the frequency components takes advantage of the
fact that KREMS can be used with any predetermined EM signal. Instead of one, the
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total EM signal would then be rescaled with four different frequency band-dependent scale
factors. This frequency-rescaling is compared with the normal rescaling as used before
based on a single scale factor. The comparison is shown in an example in Figure 4.19.

It can be seen from this figure that determining several scale factors for each frequency
component only slightly increases the correction compared to a normal rescaling based on
one single scale factor for the total EM signal. On the one hand, decomposing the OIMF
into several parts heavily decreases the imposed variability and, therefore, the method’s
sensitivity. On the other hand, determining a scale factor only for a small number of
signal components has only a little effect on the temporal dependence of the correction.
Therefore, even though rescaling several temporal components is easy to perform using
KREMS, it must be carefully chosen. In the example shown here, the frequency-rescaling
does not represent a significant improvement. Consequently, achieving an effective time-
dependent rescaling would require a different approach. One has to conclude that the
assumption of a constant scale factor remains a major limitation of KREMS.

4.5.2 Influence of other magnetic sources

Modeling and recovering the other magnetic sources will affect the scale factor determi-
nation of the oceanic source. In general, the Kalmag assimilation distinguishes between
internal and external sources. As one of the internal sources, the ionospheric field is ar-
guably a strong competitor for the separation of ocean-induced magnetic fields. In com-
parison, the other two internal sources from the core and lithosphere differ more clearly
in time behavior since they develop much slower. Most of the ionospheric influence is
avoided by the selection of nighttime data and low geomagnetic activity. Moreover, the
crucial areas of this assimilation are the mid-latitudes (due to the applied data selection
below 60◦ and low ocean-induced signals at the geomagnetic equator). In this case, the
solar-quiet magnetic fields dominate the ionospheric component. Since studies like Suzuki
(1978) and Takeda (2002) found that low degrees of SH can capture the solar-quiet fields,
the ionospheric component was simulated in the OSSE up to an SH degree of 5 in the
first place. However, the treatment of the ionospheric magnetic field still affects the sensi-
tivity of KREMS. Therefore, the possible ionospheric influence must be considered when
applying KREMS outside of this OSSE.

4.5.3 Comparison to tidal-induced electromagnetic signals

In conclusion, a comparison is drawn to the existing approach to detect tidal-induced
EM signals with Kalmag (see Section 2.2.4). As stated in Section 2.2.4, the successfully
employed extension of the Kalmag model for tidal OIMFs can not be used to identify
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OIMF from circulation. However, the introduced KREMS in this thesis could also be
applied to tidal-induced EM signals. Instead of a single frequency, KREMS allows the
identification of signals with a more general temporal behavior. In principle, this more
general imposed temporal behavior could also be chosen as a simple harmonic oscillation.
Although this is less promising as a direct frequency-dependent separation, it allows for
the comparison to the detection of tidal-induced EM signals.

Another simple OSSE is performed to show the generality of KREMS and demon-
strate the scale factor determination in a different context. In this scenario, the tidal
transports from the TPXO8 dataset (Egbert and Erofeeva, 2002) are used to compute
the tidal-induced EM signals. Instead of the OIMF derived from the ECCO2 model data,
the principal lunar semi-diurnal constituent ocean tide constituent (M2) is derived from
TPXO8. The OIMF time series derived from TPXO8 is then included in the artificial
Swarm-like observations. Hence, in this scenario, the true OIMF is a magnetic signal
induced by the semi-diurnal M2 tide. Subsequently, an hourly time series of a simple
harmonic oscillation is used as imposed OIMF.

In doing so, the correct temporal behavior is imposed, and at each grid point, a scale
factor corresponding to the oscillation amplitude can be determined. In this scenario, a
valid scale factor at each location would describe the amplitude of the tidal OIMF from
the M2 (B̂r). Thus, the M2 tidal signal contained in the artificial data can be extracted
using KREMS. The results of this OSSE are presented in Figure 4.20.

The top row shows the final scale factor and its associated uncertainty. Additionally,
these results are compared to the amplitude of the M2 tidal-induced magnetic signal.
As a first comparison, a direct forward calculation of the tidal OIMF based on TPXO8,
which represents the true OIMF in this scenario, is presented (bottom left). Secondly,
the M2 OIMF amplitude extracted from real Swarm satellite data using the extended
Kalmag model is also shown (bottom right). The scale factor determined using KREMS
clearly reveals the pattern of the M2 amplitude. The results of the OSSE showed a strongly
decreased uncertainty. Consequently, the amplitude of the presumed harmonic oscillations
was adapted with very low uncertainty to the correct M2 amplitude. The spatial pattern
of the amplitude obtained by KREMS is much noisier than the results using the direct
approach for tidal-induced EM signals of Kalmag. However, the spatial resolution of the
scale factor is slightly higher (SH degree of 30), and no spatial constraints are included.
The OSSE results demonstrate the generality of KREMS to rescale the amplitude of any
EM signal.
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Figure 4.20: Comparison of KREMS with the existing approach to detect tidal-induced
EM signals. The results of an OSSE considering the EM signals induced by the M2
tide are shown in the top row. Both the final scale factor (left), which in this case
corresponds to the amplitude of the OIMF by the M2 tide, and the associated uncer-
tainty (right) are presented. At the bottom, the amplitude of the radial magnetic field
induced by the M2 is shown as a comparison. The left side presents the M2 amplitude
directly from TPXO (B̂tpxo

r ), which is considered the truth in the OSSE. The right side
shows the M2 amplitude recovered by the Kalmag model from satellite data (B̂kalmag

r )
using the existing approach to detect tidal-induced EM signals.

4.5.4 Conclusion

In this chapter, KREMS as detection method for possible identification of ocean-circulation-
induced magnetic signals in geomagnetic satellite observations was introduced. In the
context of an OSSE, the method could be successfully validated. The challenging sepa-
ration of the oceanic signals from other magnetic field contributions could successfully be
achieved by imposing the temporal behavior and using a Kalman filter-based assimilation.
The results of this OSSE show that a scale factor could be determined regardless of the
complex temporal behavior and the low intensity of the magnetic field from ocean circu-
lation. A reasonable scale factor determination in the ideal scenario of the OSSE (Section
4.2) indicates a high capability of the proposed method to detect EM signals from ocean
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circulation. A clear advantage of KREMS is the combination of a scale factor and the as-
sociated uncertainty allowing a meaningful interpretation of the results. Another benefit
is the locally varying rescaling allowing a more specific analysis in different ocean regions.
Based on the analysis in Section 4.2.4, KREMS yielded accurate results, especially for
larger spatial resolution (up to SH degree 15). The sensitivity of KREMS proved to be
sufficient for a scale factor determination within the considered period of seven years of
assimilated data. The results of the OSSE also pointed out the main dependencies on
the variability of the presumed OIMF estimate and latitude. Furthermore, the optimality
of KREMS was demonstrated by showing that the determined scale factor is close to a
rescaling obtained by a least-squares fit. The optimality also remained unchanged in non-
ideal scenarios indicating a certain robustness of the KREMS. Finally, the comparison of
KREMS to the approach for tidal-induced EM signal detection showed the generality of
KREMS.

Apart from that, the rescaling in some cases revealed also limitations of KREMS.
A rescaling constant in time is limited in corrections of the presumed OIMF estimates.
Therefore, KREMS cannot sufficiently correct the presumed OIMF estimate when de-
viations between this estimate and the ground truth vary strongly with time. A high
correlation of the presumed OIMF estimate with ground truth revealed a necessary con-
dition for signal identification.



5
Real-world application: Detectability of the

ocean-induced magnetic field in Swarm
satellite observations

5.1 Applicability to geomagnetic satellite observations

5.1.1 Comparision of real and artificial satellite observations

The last chapter has introduced KREMS as method to detect OIMFs from the ocean
circulation. The analysis and evaluation have been discussed in the context of an OSSE
and, therefore, were based on synthetic artificial measurements. The following chapter
aims to adapt the method for its application to actual satellite observations. The de-
tectability of different presumed proxies of the ocean-circulation-generated magnetic field
in Swarm satellite data will be investigated. Furthermore, a purely observation-based
identification of OIMF is examined by estimating the presumed estimates from altimetry
or multiobservational data.

The used geomagnetic satellite observations from the Swarm satellite mission are iden-
tical to the ones used before to derive the orbiting positions for the artificial data. The
measurements of the Alpha and Bravo satellite at a sampling rate of every 10 s were taken,
and the same selection was applied (nighttime selection below 60◦ and low level of geo-
magnetic activity). First, with regard to the application of the method on this real Swarm
satellite data, a comparison of these magnetometer data with the artificial measurements
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Figure 5.1: Comparison of the selected vector field magnetic satellite measurements
from Swarm and the artificial data used in the OSSE. The top panel shows the radial
component of each 100th satellite measurement over the complete time series. The
residuals from the core and lithosphere components, depending on the latitude, are
shown in the bottom row for each vector field component of the year 2014 (again, each
100th measurement) The artificial data used in the presented OSSE are marked in red;
the real Swarm observational data are marked in black.

used in the OSSE was made to identify potential differences. This comparison of artificial
and real data is shown in Figure 5.1.

The upper images of Figure 5.1 initially present the comparison of every 100th mea-
surement of the crucial radial component of the geomagnetic field over the complete time
series. The measurement series of artificial and real geomagnetic satellite observations are
very similar due to the equivalent satellite track selection,. The individual measurements
are close together and barely distinguishable compared to the radial magnetic field mag-
nitude range (see top plot in Figure 5.1). The core and the lithospheric component of the
geomagnetic field dominate the satellite measurements. The similarity in the time series
of measurements indicates that these components are captured well in the artificial data
and that the artificial data reasonably represent realistic satellite observations.

However, a more detailed comparison is needed to investigate more minor deviations
which are important for oceanic contributions. Therefore, the core and lithosphere com-
ponents of the Kalmag model were subtracted from both datasets. The corresponding
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residuals of all three vector components (Br, Bθ, Bϕ) of each 100th measurement are an-
alyzed in dependence on the satellite latitude position. This comparison of the remaining
magnetic field measurements is presented in the bottom plot of Figure 5.1, exemplary for
the year 2014. On the one hand, the comparison shows that the residuals of both artifi-
cial and Swarm magnetic field measurements are again in the same order of magnitude
and similar shape. On the other hand, the comparison also discloses differences between
the artificial and the real Swarm measurements. The variability of the residuals in the
artificial data, especially in the radial component, is larger around the equator and lower
at higher latitudes than in the Swarm observations in the θ and ϕ components. The lower
variability in the higher latitudes of the non-radial components could be well explained by
missing field-aligned currents, which are not considered when building the synthetic data
set. The increased variability of the artificial data residuals at lower latitudes, particu-
larly the radial component, could indicate an overestimation in the prior of the ionosphere
component around the equator.

5.1.2 Adaptation to real satellite observations

When KREMS is applied to real swarm data, the magnetic field sources are treated the
same way as in the OSSE. However, in contrast to the OSSE, a source accounting for field-
aligned currents is also included in the Kalman filter. This source of field-aligned current is
evaluated as in the original Kalmag model and described in Section 2.2.3. The ionosphere
is considered as before. On the one hand, Baerenzung et al. (2022) demonstrated that the
ionosphere-induced magnetic source of the Kalmag model is consistent within induction
processes. On the other hand, the data comparison of artificial and real observations
indicates some deviations the ionosphere could cause. Especially, modeling the ionosphere
at nighttime remains challenging and may require further investigations. Therefore, in the
context of this thesis, at least different spatial resolutions are considered for the ionosphere.
For the ocean-induced magnetic field, the method is exactly applied as introduced and
analyzed in the OSSE. The following will examine the detectability of several imposed
magnetic field (i.e., presumed OIMF estimates). Thereby, the scale factor is considered as
a measure of detectability and will be initiated at the beginning of the assimilation again
following a Gaussian normal distribution N (0, 1). The ocean-induced magnetic field is
typically considered up to a spatial resolution of SH of degree 30 or 15.

Additionally, also ground-based observatory measurements are taken into account dur-
ing the assimilations of Swarm satellite observations. Further information about the
included observatories and their locations are listed in Baerenzung et al. (2022). Conse-
quently, the number of assimilated data is increased compared to the OSSE. The inclusion
of observatory measurements will primarily help to constrain the core field and its secular
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variation. That, in turn, will facilitate the separation of the ocean-induced magnetic field
from the other sources.

5.2 Detectability of ocean model based estimates

5.2.1 Presumed estimate from ECCO2

The investigations about the detectability will depend on the initial assumptions utilized
for the imposed magnetic field. In the first place, the ECCO2 model data (see Section
3.1), which was employed in the OSSE, is considered a presumed estimate and taken to
constrain the temporal behavior of the OIMF. In this first detectability study using real
Swarm satellite observations, the imposed signal relies entirely on the ECCO2 model. As
in the OSSE, oceanic velocities, as well as conductivity (resulting from temperature and
salinity), were used to provide seven years of a 3-daily-mean time series of snapshots of
OIMF from 2014.0 until 2021.0. According to the previous results of the OSSE, spatial
constraints of the scale factor are incorporated by an exponential decaying covariance.
First, a correlation length of 500 km is considered. Furthermore, the source accounting
for the ionosphere is performed up to a spatial resolution of SH degree 5.

Results

The results of the assimilation of the real Swarm satellite data and the imposed ocean-
induced magnetic field from ECCO2 are presented in Figure 5.2. The final scale factor
determined in 2021 (Figure 5.2, upper left panel) clearly deviates from its initial value of
zero, indicating a partial temporal accordance with the imposed signal in the assimilated
observations. In this case, a comparison to the optimal scale factor is impossible since the
true signal in the Swarm observation is unknown. Therefore, the associated uncertainty
of the determined scale factor is of particular value for the evaluation of the results. The
uncertainty of the scale factor (measured as STD of kf , Figure 5.2 upper right panel)
show, as expected, a weak pattern related to the variability of the imposed magnetic sig-
nal. However, the uncertainty is generally much higher than in the OSSE at all locations,
implying less uncertainty reduction could be achieved by the assimilation. Especially, the
minimal arisen uncertainty is only 0.54 compared to 0.06 in the OSSE. The high uncer-
tainty is also pointed out in the area-weighted spatial averages of the scaled factor and its
associated uncertainty over the main oceanic areas listed in Table 5.1. Consequently, the
determination of the scale factor is much more inaccurate in this case compared to the
OSSE (see Table 4.2). The bottom plots of Figure 5.2 also visualize the mean imposed
and rescaled ocean-induced magnetic field. Thereby, the mean rescaled field again exem-
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Figure 5.2: The assimilation results based on Swarm observations and using an imposed
OIMF estimated from the ECCO2 ocean model data. The upper plots show both the
final scale factor kf (left) and the associated uncertainty (posterior standard deviation)
of the final scale factor kf (right). The assimilation was initialized with a scale factor
of zero and a corresponding uncertainty of one.

plifies the amount of signal recovered from the satellite observations. Both imposed and
rescaled fields differ significantly, and the latter is much less intense in most parts.

Detailed analysis

Additionally, the energy spectrum of the imposed and the rescaled OIMF is shown in
Figure 5.3, allowing the comparison of both fields on different spatial scales. In general, the
energy spectrum of the rescaled field differs significantly from the imposed one (compared
to the energy spectrum in the ideal scenario of the OSSE in Figure 4.9), showing again
that the imposed signal could not or only partly recovered. However, an adaption of the
energy spectrum of the rescaled OIMF to the imposed one can be found at lower SH
degrees (up to SH degree of 15). In accordance with the findings based on the OSSE (see
Section 4.2.4), this indicates a better signal recovery on larger spatial scales. Signals of
spatial scales greater than degree and order of SH 15 have lower energy in the imposed
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Table 5.1: Area-weighted spatial averages of the final scale factor and its associated
uncertainty

Area scale factor kf uncertainty (STD of kf)

Atlantic 0.15 0.92
Pacific 0.48 0.86

Indian Ocean 0.56 0.78
Southern Ocean 0.38 0.80
Full oceanic area 0.38 0.86

signal and are, consequently, harder to identify.
Two possible principal explanations come into question for the poorer signal recovery

and the larger uncertainty compared to the OSSE. On the one hand, a lower signal-to-noise
ratio compared to the OSSE could decrease the sensitivity of KREMS. On the other hand,
an incorrect imposed temporal behavior of the presumed estimates could result in larger
incompatibilities with the ground truth of the OIMF in observations. Both would result
in higher uncertainty of the determined scale factor and, therefore, indistinguishable when
considering the scale factor uncertainty exclusively. Even though interpreting the scale
factor is more difficult without knowing the optimal factor, a more detailed consideration
reveals further indications of the higher uncertainty cause. The scale factor convergence
introduced and shown in Section 4.2.2 using the OSSE provides a valuable opportunity
for such an analysis. Therefore, the complete assimilation is repeated, but the initial scale
factor values are slightly changed following a Gaussian normal distribution N (2, 1). The
corresponding scale factor convergence as the absolute difference of the final scale factors
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Figure 5.3: The energy spectrum of the imposed and the rescaled OIMF from the
assimilation of Swarm observations using presumed estimates from ECCO2. The mean
imposed OIMF energy spectrum is drawn in black; the mean rescaled OIMF and its
associated uncertainty are shown in red.
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from both assimilation (|k2
f − k0

f |) is shown in Figure 5.4 (top panel).
The scale factor convergence reveals a distinct area where the assimilations lead to

similar results despite different initial conditions. A good convergence (low difference
between the final scale factors) means a significant change in at least one of the scale
factors due to assimilation. That demonstrates the method’s sensitivity and indicates
that an incorrect temporal behavior of the presumed estimates causes the still remained
high uncertainty. On the downside, a poor convergence (high difference between the
final scale factors) implies unchanged initial scale factors. That, in turn, exposes an
insensitivity and indicates a too-low signal-noise ratio to recover the imposed signal. This
distinction is also pointed out by the scale factor evolution.
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Figure 5.4: The plot shows the scale factor convergence (top) as the difference between
two final scale factors from differently initialized assimilations. Light colors indicate
good convergence (small scale factor-differences), and dark colors poor convergence
(large scale factor-differences) The bottom plots show the evolution of both scale factors
over the entire assimilation period in two different areas. The areas (Indian ACC and
East Pacific) and their containing grid points are equal to the previously studied areas
(see Figure 4.4) and marked again in the top panel. The grey lines denote the pointwise
local factors, and the red lines highlight the spatial area-weighted averaged mean and
uncertainty (posterior standard deviation).
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Figure 5.4 (bottom panel) shows the area-weighted spatial average of scale factor
evolution and the corresponding local results in the same two areas already investigated
in the OSSE in the previous chapter (Figure 4.5): The Indian ACC area (high imposed
variability and good convergence), and the East Pacific area (low imposed variability and
poor convergence). In the East Pacific, it is clearly visible that both scale factors remain
unchanged, and the imposed OIMF cannot be detected there. However, in the Indian
ACC, both initial scale factors converge together and demonstrate the conclusiveness of
the scale factor. This scale factor convergence analysis shows that compared to the OSSE,
the poorer signal recovery is not only explained by an increased signal-to-noise ratio but
also by a larger incompatibility between the imposed and the true OIMF. Although the
analysis of the proposed method in Section 4.4 indicated a certain robustness of the scale
factor determination concerning the imposed OIMF, the results of the OSSE were purely
based on the ECCO2 model, which means that the imposed and the in the artificial
data included signal are still based on the same model. However, in particular, the
oceanic transport predictions and the resulting OIMF anomalies may vary more widely.
Therefore, in the application to real Swarm observations, incompatibilities of the temporal
behavior between the imposed and the true signal play a decisive role in the scale factor
determination and explain the larger scale factor uncertainty in areas of good convergence.

Influence of assimilation parameters

Finally, the presumed estimates from ECCO2 are used to test the influence of some assim-
ilation settings and parameters. Here, the previously shown result serves as a reference.
The different assimilation results are compared by the spatial average of the scale fac-
tor over the area exhibiting a good convergence (scale factor difference is less than one,
meaning at least 50% reduction). An overview of the result is given in Figure 5.5. First,
the influence of the included observatory data is examined. Since the observatory data
is just used as secular variation data to constrain the core field better, the effect is little
on the OIMF identification and, therefore, not visible in the shown area-weighted average
of the final scale factor. Secondly, the assimilation is performed using different correla-
tion lengths of the exponential decaying covariance matrix incorporated in the Kalman
filter. A clear improvement is visible when using the exponential decaying covariance
matrix. Lastly, the parameter for spatial resolution of the magnetic source accounting for
the ionosphere is varied in the assimilation. The results show a deterioration through an
increased spatial resolution of the ionosphere.
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Figure 5.5: An overview of the assimilation result using different settings based on
the presumed estimates from ECCO2. The results are compared by the area-weighted
average of the scale factor and its uncertainty. The considered area is defined via a
good scale factor convergence (see Figure 5.4, top panel).

5.2.2 Presumed estimate from GLOCER

The assimilation results in the previous section based on the presumed OIMF estimates
from the ECCO2 model showed the functionality and general applicability of KREMS on
Swarm observations. However, the results also suggest a significantly reduced sensitivity
of KREMS compared to the OSSE in Chapter 4. Even in areas where a conclusive scale
factor determination was possible, considerably larger uncertainties occurred. In this
context, the question was raised to what extent potential incompatibilities of the imposed
and the real signal in the Swarm satellite data affect the assimilation and scale factor
determination. This question is strengthened by the fact that the results so far were only
based on the presumed OIMF estimates from the ECCO2 model. In order to examine this
in more detail, further imposed magnetic fields are tested and compared to extend the
variety of the presumed OIMF estimates. Therefore, the global ocean ensemble reanalysis
(GLOCER) dataset introduced in Section 3.1 was considered. In the following, both the
ensemble mean, and the three individual members (ORAS5, GloSea5, and GLORYS)
were taken and used to derive various presumed OIMF estimates instead of the ECCO2
model. All data sets provide 2557 time steps of daily means (from 2014.0 until 2021.0) of
3D ocean velocities, temperature, and salinity fields. Hence, the calculation of the OIMF
can be kept as before. These further assimilations are used to investigate the dependence
of the results on the presumed estimates of the OIMF.

At first, the results of the assimilation based on the imposed field retrieved from the
ensemble mean of the GLOCER dataset are considered. According to the findings before,
the final results are evaluated only up to more reliable spatial scales of SH degree 15.
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Figure 5.6: The assimilation results based on Swarm observations and using an imposed
OIMF estimated from the ensemble mean of the GLOCER dataset up to SH degree
of 15. The upper plots show both the final scale factor kf (left) and the associated
uncertainty (posterior standard deviation) of the final scale factor kf (right). The
bottom plot shows the scale factor convergence as the difference between two final
scale factors of assimilations with different initial values.

Figure 5.6 presents the final scale factor and its associated uncertainty (top panel)
and, additionally, the scale factor convergence (bottom panel, calculated using a second
assimilation with different initial values as described before). Generally, the scale factor
determination results are also less conclusive than in the OSSE, and an overall larger
scale factor uncertainty arises. In this case, the uncertainty can again, at best, only
be reduced to 0.42. Nevertheless, the pattern of the scale factor and the associated
uncertainty evidently differs from the results based on the ECCO2 model. Since the
imposed OIMF was changed, also the imposed variability was altered in this assimilation.
The scale factor determination, and especially the pattern of the associated uncertainty,
is obviously affected by that. However, this already illustrates the strong dependence
on the imposed signal. Likewise, the scale factor convergence pattern changed to the
results based on the presumed estimate from ECCO2. However, general regions of good
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convergence remain similar, like areas of the Indian Ocean, the Southern Ocean around
New Zealand, and also the areas of the Kursoshio or the Gulf stream, which correspond to
the areas of higher variability of oceanic EM signals. Interestingly, the scale factor differs
also in areas of comparable lower uncertainty and good convergence, which indicates a
considerable influence of the OIMF detectability on the imposed temporal behavior.

The dependence on the imposed temporal behavior can even be more affirmed by
looking at the different assimilation results of the individual members of the GLOCER
data set. Both imposed variability of the EM signal as well as the scale factor results vary
widely between the individual ocean reanalysis product (ORAS5, GloSea5, GLORYS).
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Figure 5.7: An overview of the assimilation outcomes based on Swarm observations
and using different imposed OIMFs from the individual ensemble members (ORAS5,
GloSea5, GLORYS) of the GLOCER dataset. The results are compared by the area-
weighted average of the scale factor and its associated uncertainty (top panel) in dif-
ferent ocean basins. In the bottom plot, additionally, the averaged imposed variability
of each ocean product in each area is shown to evaluate the results better.

Figure 5.7 gives an overview of the results by showing the spatial area-weighted mean of
the final scale factor and its associated uncertainty in different regions (according to Figure
4.4) and comparing the results of the individual ocean reanalysis products. In addition,
the average imposed variability for each presumed estimate in each area is highlighted
in the figure for a better evaluation. Even though only the spatial area-weighted mean
over large ocean basins is shown in this figure, significant differences in the results can be
seen. These averaged scale factors already indicate different detectability of the imposed
OIMFs from the individual ocean products in different areas. Unfortunately, the scale
factor uncertainty remains very large for all products in most areas. Even the initial scale
factor of zero is within the range of the spatially averaged uncertainty in all considered
areas. General differences between the areas are as expected from the previous results,
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e.g., lower detectability in the Atlantic Ocean and higher detectability in the Southern
Ocean but with larger uncertainty due to the higher latitudes.

When comparing the individual results, the assimilation outcome based on the GloSea5
product consistently shows a lower averaged uncertainty, which is well in accordance with
its higher imposed variability. However, in all areas, also the average scale factor using
the imposed OIMF from GloSea5 is lower than the ORAS5 and the GLORYS product
results. The higher imposed OIMF variability allows, on the one hand, a more precise
signal identification (lower scale factor uncertainty) but, on the other hand, results, in this
case, in a lower signal accuracy (lower scale factor). The low accuracy of the recovered
imposed signal is assumably explained by either an incorrect temporal behavior or an
overestimation of the imposed OIMF. High variability in the imposed OIMF caused by
an incorrect temporal behavior results also more likely in a low scale factor. However, an
overestimation of the imposed OIMF would also exhibit a higher variability and result
in a lower scale factor to scale down the overestimated imposed signal. In contrast, the
results based on the GLORYS product show comparable high averaged scale factors but
also with high associated uncertainty. A lower imposed variability explains the lower scale
factor uncertainty.

In this case, the higher scale factor could indicate either a better temporal accordance
of the imposed OIMF with the true one or a partly underestimation of the imposed sig-
nal. Interestingly, also compared with the ORAS5 product results (with similar imposed
variability), the average scale factor based on the GLORYS product exhibits a larger
scale factor in some areas,e.g., the Atlantic and Pacific Oceans. The individual results
for each assimilation using the different ocean products as imposed OIMF are shown in
the Appendix A.10 for a more detailed comparison. Generally, the variety in the differ-
ent assimilation outcomes confirms a stronger dependence of the results on the imposed
temporal behavior. Consequently, this points out again the importance of imposing an
exact temporal behavior to identify small variations of the circulation-induced magnetic
field anomalies. However, the temporal behavior of the considered presumed estimates of
the OIMF differs significantly, indicating that the deterioration of the scale factor deter-
mination compared to the OSSE is explained to a large extent by insufficient presumed
estimates of the OIMF.
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5.3 Detectability of observation-based estimates

5.3.1 Presumed estimate from altimetry data

The considered presumed OIMF estimates could not, or only to some extent, be identified
in Swarm observations with KREMS. Nevertheless, the following presents an advanced
approach toward an ocean model independent identification of the OIMF. Especially
emphasized by the results of the global ocean ensemble reanalysis in the previous section,
the OIMF detectability heavily relies on the presumed estimate from an ocean model and,
therefore, can not be seen as a model-independent identification. However, the objective
of the following is a purely observation-based identification of the circulation-induced EM
signals. As suggested earlier in this thesis and proposed by Saynisch et al. (2018), the
combination with altimetry measurements is considered to achieve this goal. Therefore,
the presumed estimates taken from ocean model data are replaced with OIMF predictions
from independent altimetry observations. The geostrophic approach to obtain OIMF
estimates from altimetry observations was already validated in Section 3.3. Moreover, the
principle use of the geostrophic OIMF as presumed estimates in KREMS was also shown
in the OSSE (Section 4.4.5).

Despite the raised caveats during this validation, the application of this approach
to real Swarm satellite observations will be investigated in the following. Therefore,
altimetry data from the Data unification and Altimeter Combination System (DUACS)
is used. DUACS is a multimission production system of altimeter data and provides
combined high-quality altimeter data from several missions (see Section 3.1). The sea
surface height data from ocean model data was replaced by the eastward and northward
geostrophic velocities taken from DUACS. Here, 366 timesteps from 2014 until 2021 of
weekly velocity data are considered. Apart from that, the required ocean conductivity
can be taken directly from the World Ocean Atlas 2018 (WOA18) instead of derived from
an ocean model. The WOA18 provides a dataset of an observation-based statistical mean
of ocean conductivity. Even though the conductivity is assumed constant over time in
this way, the WOA18 allows a sufficient conductivity description for the derivation of the
OIMF estimates. In order to obtain the geostrophic OIMF from the DUACS data, the
geostrophic velocities are assumed to be constant until ocean depth from the ETOPO1
dataset and subsequently weighted by the depth-averaged WOA18 ocean conductivity.
Based on these conductivity-weighted velocities from the DUACS data, the geostrophic
OIMF can be derived using X3DG and used as presumed estimate for KREMS.

Figure 5.8 (top row) presents the mean and the standard deviation of the estimates
from DUACS used as imposed OIMF. The radial magnetic field amplitude is more exten-
sive than the magnetic field derived from ocean model data (compare to Figure 4.1). This
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Swarm results: Presumed estimate from DUACS

Figure 5.8: A summary of the assimilation results using presumed estimates from
altimetry based on the DUACS product. The top row shows the imposed magnetic
field’s mean (left) and corresponding standard deviation (right). In the middle, the
final resulting scale factor (left) and its associated uncertainty (right) are shown. At
the bottom, the time series of imposed (black) and rescaled(red) magnetic fields are
illustrated at two different locations. Additionally, in grey, the time series from the
GLOCER ensemble mean is shown as a reference.
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enhancement is caused by the overly strong assumption of constant geostrophic veloci-
ties until ocean depth. Furthermore, around the equator, the standard deviation of the
geostrophic OIMF is evidently intensified. Since the Coriolis force vanishes at the equator,
the invalidity of the geostrophic approximation in this region leads to unrealistically high
magnetic fields.

Eventually, the Kalman filter assimilation is then initialized with scale factors fol-
lowing the normal distribution using the exponential decaying spatial correlation with
a correlation length of 500 km. The assimilation results of the Swarm observations are
demonstrated as usual in terms of the final scale factor and its standard deviations as
associated uncertainty in Figure 5.8 (middle row). On the one hand, the high variability
in the equatorial band yields a very low uncertainty of the scale factor (0.22 on average in
the equatorial area). On the other hand, the final scale factors in this area remain close
to zero (0.04 on average in the equatorial area). Concluding from this, the unrealistic
extensive geostrophic signal at the equator cannot be found in the Swarm observations.
Remarkably, the scale factor’s low uncertainty clearly supports this conclusion. However,
as already discussed in the OSSE (Section 4.4.5), it must be considered that a scale factor
close to zero, despite a low uncertainty, is still difficult to interpret. It is indistinguish-
able whether a low correlation between the imposed signal with the ground truth or the
exaggerated amplitude of the imposed EM signal causes the results.

In other oceanic areas, the uncertainty is significantly higher, and the pattern of the
scale factors could be more conclusive and less noisy. Moreover, two exemplary locations
in the Indian ocean are marked: A) at the ACC and B) in the equatorial region. Gridpoint
A) at the ACC show a partial detectability with a final scale factor of 0.3. According to
the previous findings, this indicates a partial correlation between the imposed geostrophic
signal and the true OIMF at this location.

Figure 5.8 (bottom row) shows the time series of the imposed and the final rescaled
magnetic field at this location. In addition, the OIMF resulting from an ocean model is
depicted as a reference. This illustration reveals the overestimation due to the geostrophic
assumption again. However, the rescaled geostrophic OIMF is much closer to the OIMF
retrieved from an ocean model, demonstrating the plausibility of the scale factor. Simi-
larly, the time series at location B) in the equatorial region confirms a reasonable rescaling.
The overestimated imposed signal is rescaled close to zero in agreement with the OIMF
estimate from an ocean model.

5.3.2 Presumed estimate from multiobservational data

An issue of the presumed estimates from altimetry data, like the DUACS data, is the in-
conclusive assumption about the depth-integration of the geostrophic surface velocities to
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obtain the transports. Even though the method is only sensitive to the OIMF anomalies
and the crucial aspect is their temporal behavior and not their amplitude, the assumption
of constant geostrophic velocity is deficient. This assumption of depth-constant conductiv-
ity weighted velocities not only leads to overestimating but also neglects relative changes
with depth. Moreover, avoiding an overestimation could be beneficial by preventing the
scale factor from being too close to zero.

A potential improvement of geostrophic OIMF estimates, which still purely rely on
observations, was already discussed in Section 2.3.4 and is explored in the following. In
order to accomplish this, the altimetry data is combined with in-situ temperature and
salinity profiles to obtain 3D geostrophic velocities (see Section 2.3.4). The ARMOR3D
dataset introduced in Section 3.1 represents a possible multiobservational ocean data
product combining temperature and salinity measurements and altimetry data. In Section
3.3.2, it was already demonstrated that this combination improved the OIMF estimate
by reducing the RMSD to the model-based OIMF. Here, the presumed OIMF estimate,
based on the multiobservational ARMOR3D dataset, is considered and the corresponding
assimilation results are discussed. The OIMF can be estimated similarly to the purely
altimetry-based DUACS estimates from the previous section and considered in the same
time period and temporal resolution. However, since the ARMOR3D dataset is also
based on in-situ measurements, the conductivity can be calculated from the corresponding
temperature and salinity fields instead of using the data from WOA18. In doing so, the
presumed OIMF estimate consistently relies on the ARMOR3D dataset.

Figure 5.9 illustrates the assimilation results of real Swarm satellite observations using
the presumed OIMF estimate based on the ARMOR3D dataset. The final scale factor
(top left) and its associated uncertainty (top right) are presented. The final scale factor
still exhibits an inconclusive, noisy pattern and indicates no significant improvement in
EM signal identification. Overall, the corresponding uncertainty of the scale factor is
higher than the uncertainty from the DUACS product estimates. The global average is
0.67 compared to 0.48 for the estimates from DUACS. This is explainable by the lower
imposed variability due to lower overestimation in the presumed OIMF estimates caused
by a more realistic determination of the EM signal magnitude. The uncertainty is clearly
diminished in the equatorial region, where the presented method is particularly sensitive,
but the altimetry-based estimates are inaccurate due to the invalidity of the geostrophic
approximation. In this equatorial area, the scale factor uncertainty is 0.44 compared to
0.22 for the estimates from DUACS. However, the average scale factor in the equatorial
area is 0.02, even smaller than the average from DUACS of 0.04. Unfortunately, the more
realistic OIMF estimation from ARMOR3D did not help to avoid a scale factor close to
zero.
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Swarm results: Presumed estimate from ARMOR3D

Figure 5.9: The assimilation results based on the presumed estimates from the mul-
tiobservational ocean product ARMOR3D. The top row shows the final scale factor
(left) and its associated uncertainty (right). At the bottom, the time series of imposed
(black) and rescaled (red) magnetic fields are illustrated at two different locations.
Additionally, in grey, the time series from the OIMF estimate based on the DUACS
dataset is shown as a comparison.

As in Section 5.3.1, the time series of the imposed and the rescaled OIMF at the same
two exemplary locations, A) at the ACC and B) in the equatorial region, is shown. The
time series are compared to the OIMF estimates from the DUACS dataset considered in
the previous section. On the one hand, this comparison shows the improved presumed
OIMF estimate by the ARMOR3D dataset, especially in the equatorial region (a less
extensive geostrophic signal), but on the other hand, the presumed OIMF estimate is still
scaled down by KREMS. The downscaling, in combination with the high uncertainty in
the ACC, indicates a poor or only partial identification of the ocean-circulation-induced
EM signal.

In conclusion, compared to the model-based result in Section 5.2, KREMS using
observation-based estimates provide results of similar quality. Consequently, KREMS can
be, in principle, used for purely observation-based detection. In particular, the equato-
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rial area revealed interesting results when using satellite-altimetry-based presumed OIMF
estimates. KREMS determined a scale factor close to zero in combination with remark-
ably low uncertainty. This clearly shows that the EM signal derived from the DUACS or
ARMOR3D was not found in Swarm satellite observations. Whether this is due to low
temporal correlation or overestimated amplitude is difficult to distinguish. Preparatory
studies showed a low correlation but also amplitude comparison revealed an overesti-
mation. However, such inaccuracies are reasonable in the equatorial region due to the
invalidity of geostrophic approximation. The presented results at least demonstrate the
potential of KREMS to correct such inaccuracies and indicate the benefit beyond the pure
detectability of EM signals.



6
Conclusion

6.1 Summary

This thesis deals with the observation of electromagnetic (EM) signals caused by general
ocean circulation. These so-called ocean-induced magnetic fields (OIMF) provide a benefi-
cial source of information due to their sensitivity to ocean conductivity (i.e., temperature
and salinity), ocean flow velocity, and the Earth’s mantle conductivity. Moreover, the
remotely measurable radial component of OIMF allows for a global observation through
space-borne satellite magnetometers. Remote sensing techniques for the ocean often only
allow surface observations (e.g., satellite altimetry). In contrast, oceanic EM signals de-
pend on the depth-integrated ocean velocities and provide indirect information about the
whole water column. Therefore, observing oceanic EM signals provides the opportunity to
access large-scale oceanic water mass transports indirectly by space-borne satellite mea-
surements. However, the OIMF is only a tiny contribution (around ±4 nT) to the total
geomagnetic field (ranging from 25 to 65 µT). Since geomagnetic observations exclusively
measure the total magnetic field, the detection of oceanic EM signals requires a separation
from other magnetic field contributions. The precision of magnetometer satellite missions,
such as CHAMP and Swarm, theoretically enabled the detection of oceanic EM signals
for the first time. While tidal-induced EM signals were successfully extracted from geo-
magnetic satellite observations, a suitable approach to extract ocean-circulation-induced
EM signals is missing so far.

In this thesis, a novel method was developed to address the challenge of identifying
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ocean-circulation-induced EM signals in Swarm satellite observations for the first time. A
Kalman-filter-based rescaling of EM signals (KREMS) using the geomagnetic field model
Kalmag was proposed to achieve the essential separation from other geomagnetic field
contributions. The crucial aspect of this separation is an adequate prior characterization
of the oceanic EM signals based on their temporal variations. Therefore, in KREMS,
the entire temporal behavior of the oceanic EM signals is characterized by a presumed
estimate to account for the complex temporal pattern of the irregular ocean current.
The Kalman filter is then used to locally rescale the amplitude of these given presumed
estimates by a temporal constant factor by the assimilation of geomagnetic observations.
In the context of this thesis, KREMS is used with different presumed estimates of the
OIMF to evaluate their detectability via the resulting scale factor from assimilation. For
this purpose, the assimilation was initiated with a completely downscaled amplitude of
the presumed OIMF estimate, and the detectability was measured after full assimilation.
If the amplitude remained downscaled, the signal was unidentifiable; otherwise, the final
scale factor states that the signal was identified in observations.

Presumed OIMF estimates

In the first place, the required presumed OIMF estimates for KREMS are derived from
ocean model data. However, in addition, observation-based OIMF estimates that allow
for purely observational signal identification were also considered in this thesis.

Generally, these presumed OIMF estimates were calculated using the X3DG elec-
tromagnetic induction solver X3DG. It has been demonstrated that most of the OIMF
variability is driven by the ocean flow velocities. Additonally, the OIMF was also esti-
mated in a first approximation based on the law of Biot-Savart, which would facilitate
future inversions of the magnetic field. A comparison of this simplified approach with
the OIMF calculations from X3DG showed an averaged global difference of 0.3 nT and an
average correlation of 0.4. However, these simplified presumed OIMF estimates proved
to be insufficient for adequate signal identification using KREMS since in decisive areas
(e.g., Southern Indian and Pacific Oceans), larger deviations (up to 3 nT) and a inconsi-
tent temporal behavior occurred. It can be concluded that an accurate electromagnetic
framework is required when determining the presumed OIMF estimates for KREMS.

Furthermore, the observation-based presumed estimates were calculated from satellite
altimetry data. According to the geostrophic balance, ocean surface velocities can be
estimated from sea surface height data and used to roughly approximate the OIMF.
These observation-based and model-based OIMF estimates are temporally correlated of
up to 0.8 (average global correlation of 0.3). An extension by in-situ measurements allows
further improvement of the observation-based OIMF estimates.
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Validation and evaluation of KREMS

The validation of KREMS as a novel detection method was performed using an observ-
ing system simulation experiment (OSSE) based on synthetic Swarm-like observations
and model-based OIMF estimates derived from the Estimating Circulation and Climate
2 (ECCO2). In this case, knowing the true oceanic signal contained in the synthetic
observations allowed a precise evaluation of KREMS and served as proof of concept.

Using an OSSE showed that an amplitude rescaling with low associated uncertainty
is possible regardless of the complex temporal behavior and the low intensity of the pre-
sumed EM signal. After the assimilation of 7 years of synthetic observations, the scale
factor could be determined with a globally averaged deviation from the true value of 0.27,
and the initially assumed uncertainty was vastly reduced on average, around 70% over
the oceanic areas. Thus, the OSSE demonstrated that KREMS could be used to identify
an oceanic EM signal in geomagnetic observations. Moreover, the locally varying scale
factor allows for spatial analysis of the OIMF detectability. Local differences in the scale
factor indicated a potentially better detectability in the Indian Ocean basin and parts of
the Southern Ocean, as well as in individual areas influenced by large ocean currents like
Kuroshio or Gulf Stream. Additionally, it was shown that an assumed a priori spatial
correlation between the scale factors further improves the assimilation results. Further-
more, the evaluation of KREMS was extended to more realistic, non-ideal scenarios of
the OSSE, where the presumed OIMF estimate deviates from the true signal contained in
the synthetic observations. These non-ideal scenarios proved the robustness of KREMS
in determining a reasonable scale factor despite different deviations and inaccuracies be-
tween the presumed OIMF estimate and the true signal. The deviations of the scale factor
compared to a rescaling obtained by a least-square-fit showed the optimality of KREMS.
In this sense, a given presumed oceanic EM signal is adapted by KREMS to the real
signal contained in the observations as best as possible.

The extensive examination of KREMS based on the OSSE was also used to answer
the research questions raised in Section 1.3:

• What are the advantages and capabilities of KREMS?

The chosen Kalman filter approach using Bayesian inversion proves to be particularly
advantageous since it provides uncertainties associated to the results. The natural con-
sideration of uncertainties allows including measurements or known model inaccuracies as
well as incorporating dependencies on background assumptions. Therefore, the Kalman
filter allows the consideration of different prior assumptions at the beginning of the as-
similation (e.g., incorporating spatial correlations of the scale factors). In addition, the
resulting scale factor uncertainty proved valuable for the interpretation of rescaling by
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indicating how trustworthy a result is.
Another major advantage is that KREMS allows for a locally different rescaling of the

amplitude of the given EM signal. The signal strength of oceanic EM signals and the
accuracy of predicting and modeling the OIMF or other background sources are known
to be locally different and, consequently, the signal-to-noise ratio. KREMS can account
for these regional differences and answer the question at which location a globally given
EM signal is best detectable.

Although in this thesis, KREMS is used to detect ocean-circulation-induced EM sig-
nals, the method is generally not limited to a specific type of EM signal. In an additional
OSSE scenario, it was already exemplarily shown that KREMS can also be used to identify
tidal-induced EM signals. In principle, KREMS could also be used to rescale non-oceanic
EM signals. This generality could be further expanded in future studies.

• What are the most relevant influences on the results of KREMS?

The results of KREMS most strongly depend on the variability of the presumed EM
signal. The OSSE clearly demonstrated that highly varying signals are easier to identify
and can be detected more accurately due to a better signal-to-noise ratio. Particularly,
no clear evidence could be found that a specific frequency band or a type of variation is
easier to identify than others.

Besides the signal variability, the results depend on the geographic latitude position.
KREMS allows better identification of EM signals at lower latitudes. In the OSSE, an
EM signal near the equator of similar variability can be rescaled with uncertainty up to
five times smaller than at a geographic position at 60◦ latitude.

Moreover, the detection of oceanic EM signals will always depend on the understanding
and modeling of other magnetic field contributions. The findings of this thesis indicate
that despite the nighttime data selection, the separation from the ionospheric magnetic
field significantly influences the identification of OIMF.

• What are the limitations of KREMS?

KREMS identifies an EM signal by its temporal variations and, therefore, is only sen-
sitive to the OIMF anomalies. Consequently, KREMS does not allow for the identification
of the static part of an EM signal and is incapable of detecting the mean of OIMF, which
would be indistinguishable from the magnetic field contributions of the lithosphere

A major limitation of KREMS is the fixed temporal behavior of the presumed esti-
mate, which is, on the one hand, crucial for signal separation but, on the other hand,
severely limits the searched signal. Accordingly, the temporally constant rescaling only
allows for an amplitude correction but not for a correction of an inaccurate predefined
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temporal behaviour. Therefore, the success of KREMS as a detection method relies on an
accurate temporal behavior of the presumed OIMF estimate. However, this thesis showed
that the considered spatial resolution, the used electromagnetic framework (e.g., assump-
tion of the Earth’s conductivity), or observation-based derivation of the OIMF estimates
influence OIMF temporal behavior and consequently affect the result of the OSSE. There-
fore, KREMS would benefit from improved predictions of the ocean-circulation-induced
magnetic field.

A simple first approach to tackle this limitation by determining various scale factors
for different temporal components of the ocean-circulation-induced EM signal proved
troublesome. The temporal decomposition of the oceanic EM signal always entails a
lower temporal variability, which invariably results in more difficult signal identification.
In the current setup, the gain in signal detectability by a temporal decomposition of the
oceanic EM signal can not compensate for the loss in sensitivity.

Application of KREMS

Finally, KREMS was applied to real Swarm satellite observations over the same 7-year
period as the OSSE. The assimilation was performed using various model-based presumed
OIMF estimates derived from either the ECCO2 model or the Global Ocean Ensemble
Reanalysis (GLOCER) dataset. In addition, two different observation-based OIMF es-
timates from the satellite-altimetry-based dataset DUCAS and the multiobservational
dataset ARMOR3D are considered.

The Swarm assimilation results proved to be more ambiguous and significantly devi-
ated from the results obtained in the OSSE. The uncertainty of the rescaling was only
be reduced by 14% on average for presumed estimates derived from ECCO2 and 15% for
estimates derived from the ensemble mean of the GLOCER dataset. Similar to the OSSE,
the best detectability was still observed in the Indian Ocean and parts of the Southern
Ocean (with an uncertainty reduction of up to 20%). The determined scale factors did not
reveal a consistent spatial pattern. The local results differ significantly from each other for
different presumed OIMF estimates. Moreover, the KREMS results indicate an increased
signal identification for lower spatial scale, higher correlation length, and lower spatial
resolution of the ionosphere. Generally, the assimilation results proved to be similar when
using observation-based OIMF estimates. However, the ocean-circulation-induced EM
signals derived from satellite altimetry exhibit an exaggerated amplitude near the equa-
tor due to the invalidity of the geostrophic balance in this region. This equatorial signal
was convincingly downscaled by KREMS. The uncertainty was reduced by 78% near the
equator, and a scale factor of 0.04 was determined.

The application of KREMS also aimed to answer the remaining research questions
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raised in Section 1.3:

• Can KREMS be used to identify ocean-circulation-induced EM signals in Swarm
satellite observations?

Due to the high remaining uncertainty of the assimilation results, ocean-circulation-
induced EM signals could not be conclusively identified in Swarm satellite observations.
However, in some areas, parts of the signal could be recovered by assimilating the Swarm
observations, which could be interpreted as partial detection of the EM signal. The reli-
ability of the rescaling could be emphasized by showing that different initial assimilation
conditions lead to the same result in areas of high signal variability. Therefore, two rea-
sons come into consideration for the ambiguous results: Either the signal-to-noise ratio
was too low or substantial discrepancies between the presumed and the true circulation-
induced EM signal occurred. The high uncertainty of the rescaling implies an increased
signal-to-noise ratio compared to the OSSE. The strong dependence of the result on dif-
ferent presumed OIMF estimates indicates larger incompatibilities between the presumed
and true circulation-induced EM signal. The predetermined temporal behavior is subject
to too many uncovered or incorrect fluctuations. The complex temporal OIMF variations
are needed to identify the signal; conversely, it diminishes the accuracy of the presumed
estimates.

• Is a purely observation-based detection of ocean-circulation-induced magnetic fields
possible?

Similar results obtained using presumed OIMF estimates derived from satellite altime-
try suggest a purely observation-based detection is possible using KREMS. The results
show no evidence that the predetermined temporal behavior of observation-based OIMF
estimates is insufficient for a general detection with KREMS. In particular, the down-
scaling with low uncertainty of the exaggerated signal in the equatorial region implies a
reasonable rescaling by KREMS.
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6.2 Outlook

Since it was claimed as a secondary research objective of the ongoing Swarm mission and
especially in the light of future magnetic field missions like NanoMagSat, there is still a
growing desire to identify ocean-circulation-induced EM signals in satellite observations.
KREMS and the corresponding magnetic field observation system simulator developed in
this thesis could play a decisive role in future studies and have the potential to contribute
to emerging research questions.

This thesis showed that KREMS provides a tool to analyze the detectability of EM
signals in Swarm satellite observations. KREMS can be adapted to different satellite con-
stellations and additional geomagnetic observations. Concerning possible future satellite
magnetic field missions, KREMS can be used to identify optimal conditions for oceanic
EM signal detection.

Since KREMS is an extension of the geomagnetic field model Kalmag, the separation
of oceanic EM signals would benefit from any improvement in the characterization of
other geomagnetic contributions in Kalmag. In particular, KREMS could be used to
investigate the impact of further advancements in modeling the ionosphere during solar-
quite nighttime on the detectability of oceanic EM signals.

In future studies, the results of KREMS could be more specified by a more confined
prior due to the Bayesian approach of the method. This thesis already gave an example
by incorporating simple spatial correlations, but it could be expanded to a more detailed
spatial pattern of the large-scale ocean flow. KREMS also allows for applied-oriented
studies with more precisely defined temporal patterns of the EM signal, like seasonality
due to temperature changes or trends caused by climate change. In particular, since
KREMS is not limited to ocean-circulation-induced EM signals, the approach is suitable
for combined analysis with tidal-induced EM signals.

The rescaling of EM signals is not limited to a measure of detectability. In this thesis,
KREMS already exemplified the potential to correct observation-based OIMF estimates
from satellite altimetry. In the future, KREMS could be used to independently evaluate
oceanic water mass transport predictions derived from ocean models or other observations.

Based on the findings of this thesis, the following developments of KREMS are proposed
to address the aforementioned limitations.
1) The sensitivity of KREMS can be increased by a better characterization of the mag-
netic field contribution of the ionosphere. An improved separation from the ionospheric
magnetic field would increase the signal-to-noise ratio.
2) Incompatibilities between the predefined temporal behavior and the ground truth con-
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tained in the observations should be tackled by identifying a more robust temporal pre-
diction of the EM signal or weakening the temporal constraints in KREMS.
3) The limitations in correcting the EM signal by rescaling the constant in time should
be addressed by a specific temporal decomposition or by considering an approach for
time-dependent rescaling.
Finally, a major suggestion of this thesis is to directly rescale the sources of the magnetic
field instead of the resulting field itself. Rescaling the electric current density would
switch the focus from measuring the detectability towards the utilization as an ocean
observation system since this electric current density is coupled directly to the desired
ocean conductivity and velocities. Moreover, a linear calibration of the electric current
density in this thesis already showed a better temporal magnetic field prediction, which
would benefit signal separation. However, the magnetic field calculations must be inverted
to rescale the electric current density. Since the simplified approach using Biot-Savart has
proven to be insufficient in this thesis, this inversion has been accomplished based on an
electromagnetic solver and used to obtain tidal transports (Saynisch-Wagner et al., 2023).
In the future, it is recommended to incorporate this inversion to develop KREMS towards
an ocean observation system.

Successfully detecting ocean-circulation-induced magnetic fields would provide a major
step toward establishing novel observation techniques to explore the dynamics in the
interior ocean. This thesis has provided the first approach to identifying these magnetic
fields in geomagnetic satellite observations.
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Appendix

A.1 Derivation of the law of Biot-Savart

The law of Biot-Savart describes the magnetic field B generated by a constant electric
current J. It can be derived from Maxwell’s equations. According to Maxwells’s equation
(Equation (2.3b)), the magnetic field B is divergence-free, allowing the representation
using a vector potential A:

B = ∇ × A, (A.1)

where one chooses the Coulomb gauge so that the vector potential also fulfills:

∇ · A = 0. (A.2)

In order to derive the law of Biot-Savart, the case of magnetostatics is considered. In this
case, as explained in Section 2.1.1, Maxwell’s equation (2.3d) is simplified to:

∇ × B = µ0J. (A.3)

The magnetic field B in this equation can then be expressed by the introduced vector
potential A. Using the Grassmann identity and Equation (A.2), it follows:

∇ × B = ∇ × (∇ × A) = ∇(∇ · A) − (∇ · ∇)A = −(∇ · ∇)A, (A.4)

103
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with the definition (∇ · ∇) = ∇2 this leads to a Poisson equation for the vector potential
depending on the electric current :

∇2A = −µ0J. (A.5)

The fundamental solution of Poisson’s equation using Greens’s function can be written
as:

A(r) = µ0

4π

∫
V

J(r ′)
|r − r ′|

dV ′ (A.6)

Subsequently, the definition of the vector potential (A.1) is applied again to the fun-
damental solution of Poisson’s equation to obtain the magnetic field B. Thereby, the
integrand of Equation (A.6) is transformed using the following relation:

∇ × J(r ′)
|r − r ′|

= J(r ′) × r − r ′

|r − r ′|3
(A.7)

Finally, the combination of this relation with Equation (A.6) yields the law of Biot-Savart:

B(r) = µ0

4π

∫
V

J(r ′) × r − r ′

|r − r ′|3
dV ′ (A.8)

A.2 Biot-Savart distance formula

In order to estimate to what extent the spatial expansion of the magnetic field influences
the neighboring scale factors, a simplified case is considered. Here the distance dependence
of the strength of the magnetic field, which is caused by a current of a single grid cell,
is examined. For simplification, a cuboid grid cell with the dimensions sx, sy and sz at
the origin of a Cartesian coordinate system is considered (the curvature of the Earth is
neglected in the area around the grid cell). In this grid cell, a constant current in the
x-direction is assumed. Finally, the resulting magnetic field can be evaluated at distance
d above to this grid cell and satellite heigh h using the law of Biot-Savart:

B(r) = µ0

4π

∫
V

J(r ′) × r − r ′

|r − r ′|3
dV ′, (A.9)

In the simplified case, the electric current density in the considered grid cell is given by
J = (J, 0, 0) and is assumed to be zero everywhere else. And the magnetic field B is
evaluated at the position rd = (0, d, h). The r ′ respresents the position vector in the grid
celld and V ′ the corresponding volume. The consideration of electric current density and
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location vector results in the following cross product:

J(r ′) × (r − r ′) =


J

0
0

×


−x

d − y

h − z

 =


0

−J(h − z)
J(d − y)

 (A.10)

Thus in this case the z-component of the magnetic field Bz (corresponding to the decisive
radial magnetic field) is given by Biot-Savart (combine Equation (A.9) and Equation
(A.10)):

Bz(rd) = µ0

4π

sz
2∫

− sz
2

sy
2∫

− sy
2

sx
2∫

− sx
2

J(d − y)√
x2 + (d − y)2 + (h − z)2

3 dx dy dz. (A.11)

The considered grid size sz is much smaller than the satellite height (satellite height of
460 km compared to ocean depth ≈ 5 km), which means z ≪ h in the integration volume
so that one can approximatley assume z ≈ 0. This allows the z-integration and lead to:

Bz(rd) = µ0

4π

sy
2∫

− sy
2

sx
2∫

− sx
2

j(d − y)√
x2 + (d − y)2 + h2

3 dx dy, (A.12)

where the depth-integrated electric current density j is used, which is in the case of the
considered simple cuboid grid cell given by: j = J · sz.
The y-integration can be solved analytical using the following integral relation:

∫ (d − y)√
(d − y)2 + c

3 dy = 1√
(d − y)2 + c

+ const. (A.13)

If this relation (A.13) is now applied to Equation (A.12) follows:

Bz(rd) = µ0j

4π

sx
2∫

− sx
2

1√
x2 + (d − sx

2 )2 + h2
− 1√

x2 + (d + sx

2 )2 + h2
dx. (A.14)

Similarly, the x-integration can be solved analytical using the following integral relation:

∫ 1√
x2 + c

dx = tanh-1
(

x√
x2 + c

)
+ const, (A.15)

which in combination with th relation of tanh-1 (x) = − tanh-1 (−x) leads to:

∫ s

−s

1√
x2 + c

dx = 2 · tanh-1
(

s√
s2 + c

)
(A.16)
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Now, using Equation (A.16) resolves the integral in Equation (A.14) and allows the sim-
plification to:

Bz(rd) = µ0j

4π

2·tanh-1

 sx

2√
sx

2

4 + (d − sy

2 )2 + h2

 − 2·tanh-1

 sx

2√
sx

2

4 + (d + sy

2 )2 + h2

,

(A.17)
which can be transformed further and with the assumption of a grid cell with the same
length and width s ≈ sx ≈ sy simplified to:

Bz(rd) = µ0j

2π

tanh-1

 s√
s2 + (2d − s)2 + 4h2

 − tanh-1

 s√
s2 + (2d + s)2 + 4h2

 .

(A.18)
This distance formula can be used with typical values (e.g., s = 100 km and h =

460 km) to estimate the strength of the magentic field at distance d. In this thesis, this
was used to motivate a typical correlation length.

A.3 ARP Parameters used in the Kalmag model

Table A.1: ARP paramters for the magnetic sources considered in the Kalmag model

Magnetic source Spectrum Radius Timescale
Core Flat 3456 935 a
Lithospheric C-based 6287 ∞
Residual ionospheric/induced Flat 6324 0.71 d
Close magnetospheric C-based 12524 1.54 d
Remote magnetospheric C-based 235570 10.31 a
Fluctuating magnetospheric C-based 13028 0.36 - 0.55 days
Field-aligned currents C-based 7917 0

A.4 Geostrophic balance

Derivation of the geostrophic equations

The Equations (2.21) describing the geostrophic balance can be derived from the equations
of motion under certain assumptions. Starting from Newton’s second law a = F

m
, the

equations of motion can be formulated to describe ocean dynamics. These equations of
conservation of linear momentum can be written in a three-component version for the
coordinates x (eastward),y (northward), and z (upward) and corresponding velocities vx,
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vy and vz as follows (see Pond and Pickard, 1983):

dvx

dt
= −1

ρ

∂p

∂x
+ 2Ω sin(ϕ)vy − 2Ω cos(ϕ)vz + Fother

x (A.19a)

dvy

dt
= −1

ρ

∂p

∂y
− 2Ω sin(ϕ)vx + Fother

y (A.19b)

dvz

dt
= −1

ρ

∂p

∂z
+ 2Ω cos(ϕ)vx − g + Fother

z (A.19c)

The terms on the right-hand side of these equations of motion explicitly consider pres-
sure, Coriolis, and gravity as acting forces. All other physical forces per unit mass (e.g.,
frictional or tidal forces) are summarized as Fother. In Equations (A.19), ρ and p describe
the density and the pressure, Ω the magnitude of the angular velocity of rotation of the
Earth, ϕ the geographic latitude, and g the Earth’s gravitational acceleration. The veloc-
ity components v then describe the motion of the ocean. The geostrophic approximation
considers the large-scale mean circulation in the interior of the oceans. In this case, a
steady state of the ocean is assumed, where oceanic velocities do not change with time,
meaning no acceleration:

dvx

dt
= dvy

dt
= dvz

dt
= 0, (A.20)

and all other forces assumed to be zero:

Fother = 0. (A.21)

Under these assumptions, the equations of motion (A.19) simplify to (Pond and Pickard,
1983):

0 = −1
ρ

∂p

∂x
+ 2Ω sin(ϕ)vy − 2Ω cos(ϕ)vz (A.22a)

0 = −1
ρ

∂p

∂y
− 2Ω sin(ϕ)vx (A.22b)

0 = −1
ρ

∂p

∂z
+ 2Ω cos(ϕ)vx − g (A.22c)

Additionally, vertical velocities are assumed to be so small compared to horizontal ones
that the term 2Ω cos(ϕ)vz in Equation (A.22a) can be neglected. By using the Coriolis
parameter f = 2Ω sin(ϕ), Equation (A.22a) and (A.22b) yield the geostrophic equations
for horizontal velocities:

fvgeo
y = 1

ρ

∂p

∂x
fvgeo

x = −1
ρ

∂p

∂y
(A.23)
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Derivation of the hydrostatic equation

The hydrostatic equations can be derived using the same assumptions as described before
in Section A.4 and considering Equation (A.22c). However, the term 2Ω cos(ϕ)vx is small
compared with g (typically four orders smaller, see Pond and Pickard, 1983) and can be
neglected. From this follows the hydrostatic equation:

∂p

∂z
= −ρg (A.24)

Derivation of geostrophic surface velocities and thermal
wind equation

Instead of using the geostrophic balance (A.23) to calculate the absolute geostrophic
velocities from pressure gradients, one can derive the geostrophic surface velocities from
the slope of the sea surface height η. For this purpose, the hydrostatic equation (A.24)
is considered and integrated over z from depth d until sea surface height η to obtain an
expression for the pressure p (see Stewart, 2008):

p =
η∫

−d

gρ dz =
0∫

−d

gρ dz +
η∫

0

gρ dz, (A.25)

where the integral has been split into two parts accounting for the pressure due to the
height of water between depth d and the geoid z = 0 and the pressure to the height of
water above the geoid (Stewart, 2008). The expression (A.25) can be used to replace the
pressure in equation (A.23):

vgeo
y = 1

fρ

∂

∂x

0∫
−d

gρ dz + g

f

∂η

∂x
vgeo

x = − 1
fρ

∂

∂y

0∫
−d

gρ dz − g

f

∂η

∂y
. (A.26)

The first term on the right-hand side of these equations describes the pressure gradient
due to horizontal density differences, i.e., the baroclinic component, and the second term
describes the pressure gradient due to sea surface slope, i.e., the barotropic component
(Stewart, 2008). When assuming density ρ is constant, the first term in Equation (A.26),
i.e., the baroclinic part, is zero. It follows an equation for the geostrophic surface currents:

vgeo,s
x = − g

f

∂η

∂y
vgeo,s

y = g

f

∂η

∂x
. (A.27)

Otherwise, the first term in Equation (A.26) is used to calculate geostrophic velocities
at depth z) with respect to a given reference level z0, where the velocity is known . This
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leads to the so called thermal wind equation:

vgeo
x (z) = − g

fρ

z∫
z0

∂ρ

∂y
dz + vgeo

x vgeo
y (z) = g

fρ

z∫
z0

∂ρ

∂x
dz + vgeo

y . (A.28)

A.5 Additional plots quasi-stationary approximation

In Section 3.2.3, the deviations of the radial magnetic field in a single frequency band due
to the quasi-stationary approximation are calculated. In Figure A.1, the deviations for
two different excitation frequencies (weekly and monthly) are shown. Compared toFigure
3.3, it can be seen that the differences are already much smaller than for a daily excitation
frequency.
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Figure A.1: Deviations between the radial magnetic field calculated with a different
excitatory frequencies and the quasi-stationary approximation. The left side shows the
differences for a weekly excitatory frequency and the right side for a monthly excitatory
frequency.

A.6 Calibration of geostrophic electric current
density

In the model-based validation of the geostrophic approach, the electric current density is
derived from sea surface height taken from the GLOCER dataset. In order to avoid an
exaggerated amplified magnetic signal around the equator, the geostrophic electric current
density is calibrated. The geostrophic electric current density is calibrated using a depth-
integrated electric current density directly derived from oceanic velocities of the ensemble
mean of the GLOCER dataset. The data from the year 2013 (which is not concluded
in the model-based validation of Section 3.3.1) is used for this calibration. Both zonal
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and meridional depth-integrated electric current density is linearly calibrated according
to Equation (3.1), where a is a calibration scale factor and b is a calibration constant.
Both parameters are obtained independently for zonal and meridional depth.-integrated
electric current density by a least-square-fit. Figure A.2 shows the resulting calibration
paramters. It can be clearly seen that the scale factor a is the most important calibration
parameter. Around the equator, the calibration results in a significant downscaling of the
geostrophic electric current density.
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Figure A.2: Parameters for calibrating the geostrophic electric current density accord-
ing to Equation (3.1). The left side shows the calibration scale factor a, and the right
side the calibration constant b. The calibration parameters for the zonal electric cur-
rent density are shown in the top row and the bottom for the meridional.
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A.7 Correlation between observation-based and
model-based OIMF estimates

In order to validate the geostrophic approach using real satellite altimetry-based data,
the observation-based OIMF estimates are compared to the OIMF derived from the ocean
reanalysis dataset GLOCER, which was also used in the validation study in Section 3.3.
The temporal behavior of both the OIMF estimates based on the DUACS and ARMOR3D
datasets are both compared using the correlation of the weekly time series from 2014 until
2021. The correlation is shown in Figure A.3.
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Figure A.3: Correlation between the time series of the observation-based OIMF from
DUACS (left) or ARMOR (right) and the model-based OIMF derived from the en-
semble mean of the ocean reanalysis dataset GLOCER.

A.8 Spatial constraints through an imposed
covariance structure

Covariance matrix

As stated in Section 4.3, spatial constraints of the scale factors can be considered by a
simplified parametrization of their covariance structure. Here, the chosen exponentially-
decaying covariance matrix (see Equation (4.5)) is shown for different correlation lengths
of l = 500 km and l = 1000 km. Moreover, the covariance is compared to the OIMF
covariance obtained from the OIMF estimates from the ECCO2 model. All covariance
matrices are shown in Figure A.4.

Both positive and negative correlations occur in the full covariance matrix from the
OIMF from ECCO2 (see left panel of Figure A.4). Also, significant correlations over
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Figure A.4: An illustration of the covariance matrix associated with the OIMF (left
plot) or the associated scale factor (middle and right plot). The grid positions of
the Gauss-Legendre grid corresponding to SH 30 are sorted in a vector from north to
south. The correlation between each other positions is then highlighted as a matrix.
The left plot shows the covariance obtained from the OIMF estimates from ECCO2,
and the right plot shows the exponential-decaying parametrization of the covariance
for l = 500 km and l = 1000 km correlation length.

larger distances between different grid points can be seen. Contrarily, only positive corre-
lations occur in the exponentially-decaying covariance matrix (see middle and right panel
of Figure A.4), and significant correlations only arise for small distances. This is reflected
in the secondary diagonal structure of the covariance matrix. A larger correlation length
strengthens this structure (compare the middle to the right panel of Figure A.4). For all
covariance matrices, the correlation between any grid point on land is set to zero, resulting
in gaps in the structure of the covariance matrix. Notably, the secondary diagonal struc-
ture can also be identified in the full covariance matrix from the OIMF ECCO2 estimates.
This comparison justifies the simplified exponentially-decaying covariance structure but
also indicates that the correlation length must be chosen carefully.
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OSSE results using different correlation length

The exponentially decaying covariance parameterizations based on different correlation
lengths are used for further assimilations in an ideal OSSE. The results are presented
similarly to Figure 4.11 in the case of l = 500 km using the imposed OIMF based on the
ECCO2 up to a spatial resolution of SH degree of 30. Figure A.5 shows the final scale
factor and its corresponding uncertainty using an exponentially decaying covariance with
a correlation length of l = 1000 km and l = 2000 km.
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Figure A.5: The assimilation results of an ideal OSSE incorporating spatial constraints
by an exponentially decaying covariance matrix with a correlation length of l = 100 km
(top row) and l = 500 km (bottom row). The left side always shows the final scale
factor deviation, and the right side the corresponding uncertainty of the scale factor.
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A.9 NRMSD in ideal scenario

Here, it is shown that the NRMSD(B̃res
r ) between rescaled and true magnetic field in

the ideal scenario of the OSSE equals the scale factor deviation |kf − 1|. The rescaled
magnetic field anomalies are generally expressed by B̃res

r = kf (x, y) · B̃imp
r , which can be

used in the NRMSD definition:

NRMSD(B̃res
r ) =

√√√√√∑N
ti=0

(
kf (x, y) · B̃imp

r − B̃true
r (ti, x, y)

)2

∑N
ti=0 B̃true

r (ti, x, y)2
, (A.29)

In the ideal scenario, B̃imp
r = B̃true

r also applies, from which follows (since kf is indepen-
dent in time):

NRMSD(B̃res
r ) =

√√√√√(kf (x, y) − 1) ·∑N
ti=0

(
B̃true

r (ti, x, y)
)2

∑N
ti=0 B̃true

r (ti, x, y)2
= |kf − 1| . (A.30)

A.10 Detectability of presumed estimates from
individual members of the GLOCER dataset

In the context of section 5.2.2, the method’s application on real Swarm satellite ob-
servation based on presumed estimates from the GLOCER dataset was considered. A
Kalman-filter assimilation was performed for each ensemble member (ORAS5, GloSea5,
GLORYS) of the GLOCER dataset. In section 5.2.2, the results of the ensemble mean
were presented (see figure 5.6) and discussed, and for the individual ensemble members,
only an overview was given (see figure 5.7). Here, in figure A.6, the assimilation results
based on an imposed OIMF from ORAS5, GloSea5, and GLORYS are presented sep-
arately. The final scale factor and its associated uncertainty are shown with a spatial
resolution of SH degree of 15.
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Figure A.6: The assimilation results based on Swarm observations and using various
imposed OIMF estimated from the ORAS5, GloSea5, and GLORYS ocean reanalysis
products of the GLOCER dataset. The left plot always shows the final scale factor
(kf ) and the right one the associated uncertainty (posterior standard deviation) of the
final scale factor (STD of kf ). The assimilation was initialized with a scale factor of
zero and a corresponding uncertainty of one and performed with a spatial resolution
of SH degree of 15.
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