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Abstract 

Background Microplastics, polymer-based particles < 5 mm, affect plant–soil systems positively or negatively, sug-
gesting there are different modes of action. Microplastics, as particles, have physical effects but the leaching of addi-
tives likely contributes chemical mechanisms, both of which may be dependent on microplastic size. To disentangle 
such mechanisms, we established a controlled experiment involving polypropylene and polyethylene films of small, 
medium and large size, and we evaluated the individual and combined effect of plastic particles and additives (lea-
chates from plastic particles) on soil properties and plant performance of the phytometer Daucus carota and on bare 
soils.

Results We find that additives better explained variation in soil properties (e.g., 44.6% vs 1.3%). Soil respiration 
and aggregation were negatively affected for additives, likely due to the presence of toxic substances. Overall, such 
effects increased as plastic size decreased. By contrast, plastic particles better explained plant biomass responses. The 
positive effect of particles on aeration which may promote root penetration and nutrient uptake, and microplastics 
itself as a source of carbon potentially promoting soil microbial activity, help explain the positive effect of particles 
on plant biomass. Plants mitigated the negative effects of additives on bare soils while enhancing the positive effects 
of particles. This improvement was likely linked to an increase in root activity and rhizodeposition, as plastic parti-
cles improved soil aeration. The combined effect of additives and particles, which mimics the microplastic found 
in the soil, mitigated their individual negative effects on plant–soil systems. As the negative effect of additives could 
have been masked by the positive effects of particles, simply reporting net positive effects would capture only part 
of the response.

Conclusions Additives and plastic particles differently affect soil properties and plant biomass. Additives primar-
ily negatively affect soil properties due to toxic substances, while plastic particles enhance plant biomass likely 
by improving soil aeration. When examining microplastics effects on terrestrial systems (i.e., the combined effect 
of additives and particles), the negative effect of additives may be masked by the positive effects of plastic particles. 
Reporting only net positive effects risks overlooking these underlying negative effects. Plants can mitigate the nega-
tive impacts of additives and amplify the positive effects of plastic particles. Our study emphasizes the importance 
of investigating both the individual and combined effects of additives and particles to fully understand and address 
the impacts of microplastics on terrestrial ecosystems.
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Introduction
Microplastics, plastic particles with their chemical addi-
tives, may enter the soil in various shapes, sizes and poly-
mer types [1–3] through numerous pathways including 
soil amendments, plastic mulching, irrigation, atmos-
pheric input, abrasion from car tires or road paint [3–5]. 
Their ubiquity and diverse physical and chemical prop-
erties make them a recognized threat to terrestrial eco-
systems worldwide. Among them, films are particularly 
abundant, largely due to the use of agricultural plas-
tics [6]. Plastic mulches, walk-in tunnels and low tun-
nel covers, silage, and temporary greenhouses, which 
are employed to increase crop yields [7, 8], contribute to 
soil pollution with microplastic films. Currently, about 
3,500,000 metric tons of films are produced annually for 
the plasticulture market [9] posing a significant risk to 
terrestrial systems. These agricultural plastics are mostly 
made from polyethylene (e.g., low density polyethylene), 
though polypropylene and other polymers are also used 
depending on the application (e.g., silage, mulch) [7, 10]. 
Beyond agricultural lands, natural grasslands also face 
microplastic pollution. Grasslands are critical ecosystems 
that provide several services, including water supply, car-
bon storage, erosion control or climate mitigation  [11, 
12]. These services are essential and could be compro-
mised by soil pollution with microplastics [13, 14].

Microplastic films may affect soil properties and plant 
performance positively or negatively. For instance, 
enzymatic activities such as urease or catalase can be 
enhanced in the presence of films [15], while by contrast 
soil aggregation may be decreased by them [16]. Addi-
tionally, plastic films can alter the soil water distribution, 
decreasing retention [17, 18]. These changes in soil prop-
erties can have multiple effects on plant performance, 
ranging from positive to negative. For instance, shoot 
and root mass can be increased by ~ 60% and ~ 59% with 
microplastic films [16], while seed germination rate and 
velocity can be negatively affected [19, 20].

These diverse effects of microplastics on plant–
soil systems suggest that different mechanisms are 
involved, highlighting different modes of action. These 
include a physical mechanism driven by the presence 
of plastic particles in the soil, and a chemical mecha-
nism, driven by the leaching of additives. Both mecha-
nisms are strongly dependent on microplastic size. As 
microplastics enter the soil, they undergo fragmenta-
tion into smaller pieces due to degradation [21, 22], 
which implies an increase in the surface area:volume 

ratio, which may affect soil aeration and water flows, 
potentially exerting positive effects on soil aggregation, 
microbial activity, root development and plant growth 
[16, 23]. However, these positive effects of plastic parti-
cles can be counteracted by the negative effects of toxic 
chemicals, as the decrease in microplastic size also pro-
motes the leaching of additives and impurities, which 
can have detrimental effects on soil biota and plant per-
formance [24, 25].

Two of the most widely used microplastic films 
affecting terrestrial systems are polypropylene (PP) 
and polyethylene (PE). These films possess additives 
that can be released into the environment [26]. Specifi-
cally, these plastics typically contain process aids such 
as slip agents and lubricants, stabilizers like UV absorb-
ers and antioxidants, and plasticizers including phtha-
lates and citrates [26, 27]. Lubricants, surfactants, and 
unreacted hydrocarbons appear to contribute 18% and 
17% of total additives, respectively [29]. The additives 
such as dipentyl phthalate and di-(2-ethylhexyl) adi-
pate are commonly found in PE films, alongside stabi-
lizers such as bisphenol A (BPA), TGIC, cadmium, and 
lead compounds [28, 29]. Many of these chemicals can 
cause irritation to the eyes, skin, or respiratory system, 
while others, including BPA and phthalates, are known 
endocrine disruptors [30]. Although polypropylene 
films contain fewer toxic additives than polyethylene, 
as reflected in their lower toxic effects on plant per-
formance [31], the ingestion of these particles by soil 
organisms can still disrupt the food chain, posing risks 
to ecosystems and human health [32].

Plastic particles and the leaching of additives appear 
to be key mechanisms explaining the effects of micro-
plastics on plant–soil systems. For example, pristine 
glitters, which may represent physical and chemical 
effects of such microplastics, along with their leachates, 
have been shown to reduce the root length of the 
aquatic plant Lemna minor [33]. However, the physi-
cal and chemical effects of microplastics on plant–soil 
systems can differ from their effects on bare soil with-
out plants. For example, in soils without plants, the 
microplastics tended to decrease the number of newly 
formed aggregates and reduce overall aggregate sta-
bility [34, 35]. Conversely, when a plant is present, 
microplastics might have the opposite effect, increas-
ing aggregate stability [14], suggesting that plants 
can mitigate the negative effects of microplastics on 
soil systems. Thus, here, we aimed to disentangle the 
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mechanisms by which microplastic films affect plant–
soil systems. Specifically, we sought to determine the 
roles of the physical presence of plastic particles and 
the chemical additives on soil properties and plant per-
formance, and to assess the effects of microplastic size 
and polymer type on these mechanisms. Additionally, 
we investigated whether the presence of a plant in the 
system alters the magnitude and direction of micro-
plastic physical and chemical effects on soils (e.g., 
mitigating or exacerbating such effects). To achieve 
this, we established a microcosm experiment using 
polyethylene and polypropylene films. We examined 
whether plastic particles, additives and their combined 
effect affect plant–soil systems as a function of plastic 
size (small, medium, and large) and polymer type (PE, 
PP). The experiment was carried out on bare soils and 
including the phytometer Daucus carota subsp. carota.

Materials and methods
Plant species and microplastic selection
We selected Daucus carota as a phytometer, which is a 
biennial herbaceous plant typical of grassland ecosystems 
[36] that shows clear responses to microplastics in soil 
[16, 37]. The seeds were obtained from commercial sup-
pliers in the region (Rieger-Hofmann GmbH, Blaufelden, 
Germany). Also, we selected two widely used microplas-
tic films. One is frequently used in agricultural systems as 
mulch, greenhouses, etc., (low density polyethylene, PE; 
black film, Folien-Bernhardt, thickness 0.07 mm), and the 
other widely used in several household items and in the 
packaging industry (polypropylene, PP; transparent fold-
ers of Cast Polypropylene STYLEX) [38].

Microplastic degradation
Plastics were exposed to UV-C degradation (254  nm 
irradiation) by using a photodegradation chamber with 
three 36 W UV-C lamps. The average incident energy of 
the chamber was 20.98  Wm−2 (photometer; item number 
HD 2302.0, DeltaOHM), which aimed to mimic the ini-
tial natural weathering of the plastic before entering the 
soil [37]. Polyethylene (PE) was degraded over a period 
of 2 weeks, while polypropylene (PP) was degraded dur-
ing 2 days, the latter becoming too brittle after that time. 
Then, plastic was manually cut with scissors and sepa-
rated using sieves of different mesh sizes. Three micro-
plastic sizes were used: small (< 1  mm2), medium (1 < x < 2 
 mm2) and large (2 < x < 4  mm2).

Photodegradation caused the emergence of brittleness, 
surface microcracks, water absorption and an increase 
in hydroxyl and carbonyl bands. Previous research has 
demonstrated that photodegradation of PP and PE films 
results in the formation or broadening of the hydroxyl 
band (3700–3250 cm⁻1) and the appearance, increase, or 

broadening of the carbonyl band (1850–1550 cm⁻1) [37]. 
Notably, the intensity of the hydroxyl and carbonyl peaks 
is more pronounced in PP than in PE suggesting that 
photodegradation affects the two polymers differently. 
The chemical structure of PP, which contains tertiary car-
bon atoms, makes it more prone to oxidation than PE, 
which primarily contains secondary carbon atoms. As a 
result, PE typically displays strong peaks for C–H bond 
stretching and bending but lacks significant hydroxyl or 
carbonyl signals [39]. Additionally, photodegraded PP 
films exhibit a 2484% increase in water absorption, while 
PE films showed a comparatively lower increase of 177% 
when compared to their pristine counterparts [37]. Based 
on this, we utilized different polymer types. Also, we 
used degraded plastics instead of pristine ones, as they 
more accurately represent the type of plastic that typi-
cally enters the soil environment.

Soil preparation and plastic particles treatment
We collected soil in Dedelow, Brandenburg, Germany (53 
37’ N, 13 77’ W). The soil was a dry sandy loam (Albic 
Luvisol; 0.07% N, 0.77% C, pH: 6.66) from a dry grass-
land plant community. It was sieved (4  mm mesh size), 
homogenized, and mixed with microplastics at a con-
centration of 0.4% (w/w) for treatments requiring micro-
plastic particles (see experimental design below). We 
used this relatively high concentration of plastic parti-
cles in soil, to simulate potential scenarios for the next 
50–100 years if plastic used is not reduced [40]. Specifi-
cally, 0.76 g of microplastic was mixed into 190 g of dry 
soil for each pot (4 cm diameter, 21 cm height, 200 ml). 
The microplastics were manually mixed with the soil 
for 1  min in a large container to ensure even distribu-
tion before being placed into individual pots. Soil with-
out added microplastic particles was handled similarly to 
provide similar disturbance levels.

Microplastic additives treatment
We used 0.76 g of plastic to prepare both the plastic par-
ticles and the water extractable additives (from now on 
additives) treatments. Here, we mixed 0.76  g of each 
microplastic into 45  ml of distilled water in a 50  ml 
syringe, ensuring air pockets were carefully removed 
without spilling water. The 45 ml of water corresponds to 
the amount needed to saturate 190  g of our soil, which 
allows the full interaction between the soil and the addi-
tives. The syringes were closed with parafilm and vor-
texed for 5  s. One syringe per replicate of each plastic 
size was used. We then incubated the syringes for 15 days 
at 40  °C in a lying position. Syringes with only distilled 
water were also incubated at the same temperature to be 
used as control. Using distilled water ensures the repli-
cability of our research and allows for easier comparison 
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with other studies. Subsequently, we filtered the extrac-
tions with a sterile syringe filter to minimize the risk of 
plastic particles contaminating the extraction (pore size 
0.45 μm, Carl Roth, GmbH, Germany). Here we obtained 
the “microplastic additives” treatment. The microplastic 
particles left in the syringe were washed three times with 
distilled water to obtain plastic from which water extract-
able additives have been removed. Here we obtained the 
“plastic particles” treatment. During the experiment, 
plastic particles would have released additional additives 
over time [24]. As a result, the impact of these additives 
in our study may be slightly underestimated. Further-
more, the observed effects of the plastic particles them-
selves may also have been influenced by the toxic effects 
of these released additives.

Experimental design
In March 2022, we established the experiment in a glass-
house with a daylight period set at 12  h, 50 klx, and a 
temperature regime at 22/18C day/night with a relative 
humidity of 40%. To disentangle microplastic physical 
effects (plastic particles) from the chemical effects (addi-
tives) on plant–soil systems, we established four micro-
plastic treatments. Soil without added films was watered 
with (i) distilled water (control treatment).or (ii) additives 
(additives treatment), while soil mixed with films from 
which additives were extracted was watered with (iii) dis-
tilled water (plastic particles treatment) or (iv) additives 
(plastic + additives treatment). This design was applied to 
each microplastic size and polymer type, and in two soil 
systems: bare soil and including a plant.

 The experimental design consisted of two systems (soil, 
plant-soil) × 2 polymer types (PE, PP) × 3 microplastic 
sizes (small, medium, large) × 4 microplastic treat-
ments × 6 replicates = 288 pots. Additionally, we included 
12 control samples with plants and 15 control samples 
with bare soil to account for natural variability in the sys-
tem and better distinguish true treatment effects from 
random fluctuations. Daucus carota seeds were surface-
sterilized with 4% sodium hypochlorite for 5 min and 
75% ethanol for 2 min, then thoroughly rinsed with dis-
tilled water. Three days after germination, seedlings of 
similar size were transplanted into individual pots, with 
one seedling per pot. At the start of the experiment, pots 
were watered with 35 ml of either the additive solution or 
distilled water. Two days later, an additional 10 ml of the 
same solution was applied to achieve saturation. Plants 
grew for 6 weeks and were watered every third day with 
10 ml of distilled water during the first 2 weeks, and 
every second day with 20 ml thereafter, to maintain 
approximately 70% water holding capacity. All pots were 
randomly distributed in the glasshouse chamber, and 
their positions shifted twice during the experiment to 

homogenize environmental conditions. All plants sur-
vived until the end of the experiment. At harvest, plants 
were separated into above and belowground parts; soil 
was air-dried and stored at 25 ॰C for soil aggregation 
analyses, while fresh soil samples were used to measure 
soil respiration.

Measurements
We measured different chemical components of the 
water-extractable additives obtained from small, medium 
and large microplastics. Specifically we assessed: non-
purgeable organic carbon (Total organic carbon-TOC) 
by a combustion catalytic oxidation method (Shimadzu 
TOC-L, Shimadzu Corporation, Japan) and heavy metals 
such as cadmium (Cd), cobalt (Co), chromium (Cr), cop-
per (Cu), nickel (Ni), lead (Pb), zinc (Zn), iron (Fe) and 
manganese (Mn) by using the ICP-OES Avio 220 Max, 
PerkinElmer Inc. USA. We also performed untargeted 
LC−MS of the water-extractable solutions whose experi-
mental procedures and data processing are described in 
Appendix 1.

After harvest, we measured soil aggregation follow-
ing a protocol by Kemper and Rosenau [41], modified by 
Lehmann et al. [42]. That is, we placed 4 g of dried soil 
(< 4  mm) on small sieves with a mesh size of 250  µm. 
Soil was rewetted with distilled water by capillarity and 
inserted into a sieving machine (Agrisearch Equipment, 
Eijkelkamp, Giesbeek, Netherlands) for 3 min where the 
agitation and re-wetting caused the treated aggregates 
to slake. Subsequently, we dried and weighed the water-
stable fraction (dry matter) and we extracted the coarse 
matter, which was also dried at 60 °C for 24 h. Soil aggre-
gation represented by water-stable aggregates was calcu-
lated as:

Additionally, we measured soil respiration via infrared 
gas analysis. We placed 25 g of fresh soil in 50 ml centri-
fuge tubes (Sarstedt AG & Co. KG, Nümbrecht Germany, 
item number 62.548.004) with modified lids to con-
trol gas exchange via a rubber septum (Supelco, Darm-
stadt, Germany, item number 27235 U). We measured 
 CO2 concentration (ppm) at two time points: First, we 
flushed the tubes with  CO2 free air for 5  min to meas-
ure  CO2 concentration at time zero. Then, soil samples 
were incubated at 20 °C for 24 h and we measured  CO2 
concentration for the second time. At both times, we 
took 1-mL air sample and injected it to an infrared gas 
analyzer (LiCOR- 6400XT photosynthesis system, Li-Cor 
Biosciences, Lincoln, NE). The measurements were taken 
every ~ 2 s. The difference between the maximum and the 
minimum value (peak) was converted to ppm using the 

(1)
WSA (% ) =

(

dry matter− coarse matter
)

/(4.0g− coarse matter).
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calibration equation (ppm = −  467 + 195.18 peak). Soil 
respiration was reported as the net  CO2 production (in 
ppm). At harvest, the roots were carefully removed from 
the soil and gently washed by hand. Subsequently, shoots 
and roots were dried at 60 °C for 72 h, after which their 
mass was determined.

Statistical analyses
To disentangle the physical effects of plastic particles 
from the chemical impact of additives on plant–soil sys-
tems, we performed variance partitioning analyses using 
the “vegan” R package. Likewise, to evaluate the effects of 
plastic size and polymer type on plant and soil variables, 
we applied linear models and multiple comparisons via 
the “nlme” and “multcomp” R packages. We also assessed 
whether plant presence altered the magnitude and direc-
tion of microplastic effects on soils, using the Relative 
Index of Interaction (RII). The chemical components of 
water-extractable additives, including total organic car-
bon (TOC) and heavy metals, were analyzed through lin-
ear models.

Variance partitioning modeling
The importance of plastic particles and additives in 
explaining the variation in soil properties and plant bio-
mass was analyzed using variance partitioning “varpart” 
function from the “vegan” R package [43]. The parti-
tion was based on linear regression, as the response 
variables were single vectors (i.e., individual variables) 
[43, 44]. Each factor (additives, particles) was com-
puted and tested using partial RDA, which helps to 
control for known linear effects or isolate the effect of 
a single explanatory variable [45]. The effect of addi-
tives was analyzed while accounting for the particles 
effect, and vice versa. We applied this approach to each 
response variable. For example, for soil respiration, we 
used the following code: rda.additives <–rda (soilrespi-
ration ~ additives + Condition (particles)). The adjusted 
coefficients of determination in regressions could occa-
sionally take negative values, which were interpreted as 
zeros [46]. Additives and plastic particles effects were 
analyzed with the “anova.cca” function [45].

Linear models and multiple comparisons
We performed general linear models to test the effect 
of microplastic treatments on our response varia-
bles. Since control samples were never exposed to any 
microplastic treatment, our design was not fully facto-
rial. Instead, we analyzed the data using a single factor, 
’treatment,’ with 10 levels: 3 microplastic sizes (small, 
medium, large) × 3 microplastic mechanisms (additives, 

particles, additives + particles), plus a control (Appen-
dix  2). We took into account the correlation between 
samples from the same plastic size by using the func-
tion “corCompSymm” from the “nlme” R package. The 
outliers, defined as data points lying more than 1.5 
times the interquartile range above the upper quartile 
or below the lower quartile in a boxplot, were identi-
fied using “boxplot (variable) $out”. We found n = 4 in 
respiration and n = 1 in aggregation measurements for 
soils exposed to PE films. Statistical analyses conducted 
with and without these outliers showed no significant 
differences. The residuals were checked to validate 
assumptions of normality and homogeneity. When het-
erogeneity of variances was present we implemented 
the function “varIdent” from the “nlme” R package 
to account for it in the treatment [47]. Then, for the 
selected model, we implemented the function “glht” 
from the “multcomp” R package [48, 49], to compare 
microplastic treatments within each plastic size (Tukey 
test) and each microplastic treatment versus the con-
trol (Dunnett test). The analyses were done indepen-
dently for each soil system and polymer type.

Relative Index of Interaction (RII)
We calculated the Relative Index of Interaction (RII) 
to compare the direction and magnitude of microplas-
tic physical and chemical effects on soil properties. By 
using a bootstrap procedure, we took a random repli-
cate for the microplastic treatment (i.e., plastic par-
ticles, additives and the combination of them) and a 
second random replicate for the control (plant or soil, 
respectively). We then calculated the RII index follow-
ing Armas et al. [50] as:

where  Ymicroplastic, is the soil property value when the 
soil was affected by the microplastic treatment (i.e., 
plastic particles, additives or their combination); and 
 Ycontrol, is the soil property value in control samples. 
For each soil property, we repeated the calculation of 
the RII index 999 times by bootstrap sampling with 
replacement [51]. It was calculated for each system (i.e., 
bare soil, including plant) and polymer type. This index 
ranged from − 1 to 1, with positive values indicating soil 
property values greater with microplastic treatments 
than in control samples and negative values indicat-
ing the opposite. Afterwards, we constructed 95% con-
fidence intervals by using the function ‘CI’ from the 
“Rmisc” R package [52], and performed a Student’s 
t-test to determine whether the mean value of RII index 

(2)
RII soil property = (Ymicroplastic−Ycontrol)/(Ymicroplastic + Ycontrol).
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was different from zero. Statistical analyses were done 
in R 4.1.2 [53].

Results
Microplastic additives: total organic carbon and heavy 
metals increased in water extracts from microplastics 
of small size
The analyses of water extractable additives showed that 
overall, total organic carbon (TOC) and heavy metals 
were higher in additives extracted from microplastics 
of any size compared to control water. TOC increased 
by ~ 173%, ~ 116% and ~ 151% in additives extracted 
from small, medium and large PE films, respectively, 
and by around 175%, 141% and 117% in additives from 
PP films, compared to control water. Chromium content 
increased by ~ 591% and ~ 383% in additives from small 
and medium PE films compared to control water. Man-
ganese, Fe and Ni contents were higher in water extracts 
from PE plastics of all sizes, with the highest increase 
(~ 1000%) observed in additives from small PE films. 
Copper levels increased by ~ 706% and ~ 772% in water 
extracts from medium and large PE plastics, respectively, 
and by ~ 265%, ~ 861% and ~ 156% in water extracts from 
small, medium and large PP films compared to control 
water. Cobalt increased by ~ 168% in water extracts from 
PP films of small size, while Cd and Pb content were not 
affected by microplastic size or polymer type (Fig.  1, 
Table S1).

Untargeted chemical screening of the extractable additive 
solution
Water-extractable additives from films of small, medium 
and large size, and the solvent blank (a total of 13 

samples; 2 replicates for each microplastic type) were 
analyzed using LC−MS in both positive and negative 
ion modes. For polypropylene films, the small, medium, 
and large sizes revealed 8, 5, and 9 features, respec-
tively, in the positive ion mode, while polyethylene films 
revealed 12, 15, and 14 features. The most common 
feature identified in the positive ion mode was 2-aceta-
mido-3-hydroxyoctadecanoate. In the negative ion mode, 
polypropylene films revealed 7, 5, and 5 features, while 
polyethylene films revealed 6, 7, and 11 features, with 
the most common feature being (2S)-2-hydroxy-2-[[(Z)-
octadec-9-enoyl]amino]acetate (supporting information; 
xlxs files). Information on the use or function of these 
tentatively annotated compounds was not available in 
PubChem.

Microplastic additives mostly explain variation in soil 
properties while plastic particles mostly explain 
the variation in plant performance
Microplastic additives played the most important role 
in determining soil properties while plastic particles 
was the key attribute explaining variation in plant bio-
mass (Fig.  2). Specifically, the soil respiration was bet-
ter explained by additives than by plastic particles of PE 
films in bare soils (6.4% vs 0.1%) or in a system with plant 
species (44.6% vs 1.3%) (Fig. 2a, b). No clear effects were 
found with PP films (Fig.  2c, d). Similarly, soil aggrega-
tion was better explained by additives, although plastic 
particles also played a role (Fig.  2e–h). That is, in bare 
soils, aggregation was better explained by additives than 
by plastic particles for both polymers (2.3% vs 0.1% with 
PE and 22.6% vs 0.1%% with PP). In soils with a plant, 
soil aggregation was also better explained by additives 

Fig. 1 Concentration of total organic carbon (TOC, mg  L−1) and heavy metals (µg  L−1) in water extractable additives from microplastics of small, 
medium and large size. Polyethylene (PE) and polypropylene (PP) were used as microplastics. Mean and standard error are represented. Data points 
are shown as circles. N = 3
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than by plastic particles of PP films (8.8% vs 0.1%), but 
the opposite pattern was found with PE films, as soil 
aggregation was better explained by plastic particles than 
by additives (20.7% vs 0.1%) (Fig. 2e–h). Lastly, root and 
shoot mass were better explained by plastic particles than 
by additives. Root mass was better explained by PP plas-
tic particles (3.9%) than by additives (0.1%). Shoot mass 
was better explained by plastic particles (3.9% and 3.0%) 
than by additives (0.1%, 0.1%) irrespective of the polymer 
type (Fig. 2i–l).

Chemical and physical effects of microplastics on plant–
soil systems depend on the plastic size: negative effects 
of additives from small plastic films
Overall, the additives were most important attribute 
explaining soil respiration while plastic particles played 
a secondary role (Fig. 2). These effects varied as a func-
tion of microplastic size (Fig. 3, Table S2-S4). In a system 
with a plant, the soil respiration decreased by ~ 22% with 
additives from small PE films and increased by ~ 23% 
with additives from larger PE films compared to control 

samples (Fig. 3a, Table S3). This reduced soil respiration 
with small films followed a similar pattern for both poly-
mer types in bare soils (Fig. 3a, b, Table S4). Additionally, 
PE particles, particularly those of medium size, tended 
to negatively affect soil respiration in the presence of a 
plant.

Overall, the additives better explained soil aggregation, 
though particles also played a role (Fig. 2). For instance, 
with a plant, the soil aggregation increased by ~ 16% 
with additives from small PE films, while in bare soils 
it decreased by ~ 15% in comparison with their respec-
tive controls (Fig.  3c). Similarly, in soils with a plant, 
soil aggregation increased by ~ 17% with additives from 
medium PP films compared to control soils, but in bare 
soils, it decreased by ~ 21% with additives from large 
PP films (Fig.  3d). Lastly, with plants, soil aggregation 
increased by ~ 18% with large plastic particles of PE films 
compared to control samples (Fig. 3c). By contrast, root 
and shoot mass were better explained by plastic particles 
than by additives (Fig. 2). Specifically, root mass tended 
to increase with small and medium-sized PE particles, 

Fig. 2 Variance partitioning. Variation in soil respiration, soil aggregation, shoot and root mass in a system with bare soil or in one that includes 
a plant. Variance is explained by microplastic additives, plastic particle presence or their interaction. Films of polyethylene (PE) and polypropylene 
(PP) were used. Values close to zero are shown as 0.1. Variance explained is based on adjusted R2 (*p < 0.1, **p < 0.05, ***p < 0.001)
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while tended to decrease with large PE particles com-
pared to control samples (Fig.  3e). Similar pattern was 
observed for shoot mass (Fig. 3f ).

Plant presence mitigates the negative effects of additives 
while enhancing the positive effects of plastic particles, 
as a function of plastic size
Soil respiration: single effects of additives and plastic 
particles
Overall, the magnitude of additives effect on soil res-
piration was greater than that of plastic particles, 

particularly for PE films (Fig.  4a, Table  S5). Additives 
from small PE films negatively affected soil respiration 
in both bare soils and soils with a plant, while additives 
from large PE films positively affected soil respiration 
in bare soils. Such effect was further enhanced by the 
presence of the plant (Fig.  4a). The negative effect of 
additives from small PE films became more positive 
with additives from larger sizes. Similarly, the negative 
effect of additives from small PP films was mitigated 
by the presence of a plant, turning it into a positive 
effect (Fig. 4a). Plastic particles had a minimal impact 
on soil respiration. Polyethylene particles had a neutral 

Fig. 3 Soil respiration, soil aggregation, root mass and shoot mass responses to additives (A), plastic particles (P) and the combination of additives 
and plastic particles (AP) in a system with plant or in bare soils. Polyethylene (PE) and Polypropylene (PP) films were used at small, medium and large 
sizes. Mean and standard error are represented. Data points are shown as circles. Soil aggregation was expressed as the percentage of water-stable 
aggregates. Significance was established at 0.05 (*) and 0.1 ( +) for both Tukey and Dunnett test. Asterisks above the lines in the figure indicate 
differences between microplastic treatments (Tukey test), while asterisks next to error bars show differences between the soil with microplastics 
and the control samples (Dunnett test). n = 6 for microplastics treatments, n = 12 for control samples in a system with a plant, n = 15 for control 
samples in bare soils
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effect on respiration of bare soils, regardless of parti-
cle size, but caused a negative effect when a plant was 
present.

Soil aggregation: single effects of additives and plastic 
particles
Additives and plastic particles effects on soil aggrega-
tion tended to be positive (higher than control) when 
a plant was present, regardless of the polymer type 
(Fig.  4b). Additives played a key role in explaining 
soil aggregation (Fig.  2). Notably, the negative effect 
of additives from small and large PE films and from 
medium and large PP films on aggregation of bare soils 
was mitigated by the presence of a plant (Fig. 4b), while 
the positive effect of additives from small PP films on 
bare soils was enhanced due to the plant presence.

Plastic particles played a key role in explaining soil 
aggregation, especially PE films (Fig. 2), which always 
had a positive effect on soil aggregation when plants 
were present, regardless of the size (Fig.  4b). Indeed, 
the negative effect of small PE particles on bare soils 
was turned into a positive effect by the presence of 
a plant. Additionally, the neutral effect of large PE 
films on soil aggregation became positive with plants. 
Similarly, with PP films, the positive effects of plastic 
particles on soil aggregation in bare soils were always 
enhanced by the presence of the plant, regardless of 
the plastic size.

Combined effect of additives and plastic particles on soil 
properties
The combined effect of additives and plastic particles 
from small PE films was negative on soil respiration in 
bare soils, but this was mitigated by the presence of the 
plant. By contrast, large PE films had a positive effect on 
soil respiration, irrespective of the system. For PP films, 
the effect of small films on soil respiration was negligi-
ble, while the effects of medium and large films were 
mitigated by the presence of the plant (Fig. 4a). Regard-
ing soil aggregation, the combined effect of additives and 
plastic particles from small PE films was negative regard-
less of the system. Conversely, the combined effect with 
large PE films was positive in bare soils, and enhanced 
by the presence of a plant. The neutral effect of medium 
PE films on soil aggregation became positive due to plant 
presence. Similarly, the combined effect with small PP 
films was positive for soil aggregation in bare soils and 
was enhanced by the plant presence. The negative effects 
of medium and large PP films on soil aggregation in bare 
soils were mitigated and turned positive by the presence 
of a plant (Fig. 4b).

Discussion
Microplastic additives mostly explain variation in soil 
properties
Additives played the most important role explaining the 
variation in soil properties, while plastic particles had a 

Fig. 4 Magnitude of microplastic chemical (additives) and physical (plastic particles) effects on soil respiration and aggregation, in a system 
with a plant or in bare soils. The Relative Index of Interaction (RII) compares each microplastic treatment against the control without microplastics. 
Microplastic treatments: additives (A), plastic particles (P) and their combined effect (AP) from microplastics of small, medium and large size. 
Polyethylene (PE) and polypropylene (PP) were used as plastic films. Positive values in the RII indicate higher trait value in the microplastics 
treatment than in control samples and negative values indicate the opposite. RII values different from zero are indicated by asterisk (*p < 0.05)
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more secondary influence. Overall, this could be due to 
the additives directly impacting soil chemical and bio-
logical properties, which lead to rapid and noticeable 
effects on soil biota [54, 55]. In contrast, plastic particles 
primarily affect physical properties (e.g., soil porosity and 
aeration) [18, 56, 57], with their influence on soil biota 
being more indirect and comparatively slower to mani-
fest. Consequently, the additives have a stronger, more 
immediate, and direct impact on soil properties such as 
respiration and aggregation.

In relation to these additives, total organic carbon, 
which measures the amount of organic compounds in 
the water [58], including organic pollutants, increased 
in water extracts from any microplastic. The heavy met-
als generally followed a trend of increasing concentra-
tion with smaller plastic sizes, as smaller particles have 
a higher surface area-to-volume ratio compared to 
medium and large particles. However, the copper lev-
els were higher in the leachates from medium and large 
particles than from small ones. This may be due to the 
rougher surfaces and microcracks typically found in 
larger plastic pieces, which can accelerate copper release 
compared to smaller, more uniform pieces [59]. Such 
a phenomenon can be further amplified by photodeg-
radation, as suggested by Feng et  al. [60]. Nonetheless, 
the concentrations of heavy metals detected were below 
the toxicity threshold for agricultural soils [61]. This, 
as plastic films used in the packaging and agriculture 
industry are designed with substances that are difficult 
to extract with water, aiming to ensure human health 
[27, 30]. However, our results suggest that leached addi-
tives could affect soil properties, even at low concentra-
tions. Indeed, as polypropylene and polyethylene films 
degraded, the formation of hydroxyl and carbonyl groups 
increases their water absorption capacity, facilitating 
the breakdown of the material [62]. This could promote 
the release of smaller chemical compounds includ-
ing potentially toxic additives or byproducts, which are 
more likely to leach into the soil [21, 63]. Such leaching 
can have harmful effects on plant-soil systems, introduc-
ing contaminants into the soil food web and surrounding 
water systems, with potential impacts on a wide range of 
organisms.

The additives extracted from polyethylene and poly-
propylene had differing effects on soil properties. For 
instance, soil respiration was better explained by addi-
tives from PE films, while additives from PP films had no 
clear impact. Although PE and PP share some additives, 
they are designed for different purposes and thus contain 
distinct additives (e.g., color, with black PE film vs. trans-
parent PP film). Additionally, since PP degrades faster, it 
may have released its additives before interacting with 
the soil [63]. Depending on the polymer type (PE or PP), 

plastics can also release degradation products such as 
NIAS (non-intentionally added substances) [64], which 
may further contribute to the differing effects of PE and 
PP on soil properties. We did not observe a clear effect of 
PP films on soil respiration, likely because many poten-
tially hazardous additives were eliminated during degra-
dation. However, we found that additives from PP films 
influenced soil aggregation, possibly due to chemical sub-
stances that remained or the presence of NIAS.

Our results showed that the additives from small films 
had higher concentrations of heavy metals and organic 
compounds compared to additives from larger sizes or 
control water. This can be attributed to a “leachable” layer 
at the plastic surface [38] which is more pronounced in 
small plastic particles due to their larger surface area. 
Polyethylene has been associated with metals such as 
Cr, Ni, Fe, and Mn, having negative effects on aquatic 
organisms [65–67], soil bacteria [68] and nematodes [24]. 
Therefore, the expected negative effects of additives on 
soil biota activity can explain the observed decrease in 
soil respiration and in soil aggregation. By contrast, the 
additives from small films positively affected soil aggrega-
tion in a system with plant. Polyvalent metal cations such 
as Fe, or Mn, another reactive metal co-occurring with 
Fe, which increased in additives from small plastic, may 
serve as cementing agents stabilizing organic matter [69] 
contributing to the formation of soil aggregates [70]; this, 
added to the plant presence whose roots help to entan-
gle soil particles by producing mucilages and establishing 
mycorrhizal associations [70], promoted soil aggregation 
despite the negative effects of additives on this property.

Microplastic particles mostly explain variation in plant 
performance
In contrast, plastic particles, rather than additives, played 
the most important role in influencing plant biomass. 
This may be due to the soil substrate acting as a buffer, 
absorbing the additives leached from the microplastics 
and reducing the plant’s exposure to contamination (or 
the compounds released were not phytotoxic). As a result, 
the positive effects of the plastic particles outweighed the 
potentially negative toxic impact of the additives. Plastic 
particles could enhance soil physical properties relevant 
for plant growth such as porosity, bulk density and aera-
tion [18, 56, 57]. As suggested by previous research, these 
improvements may promote root penetration, nutrient 
uptake, rhizodeposition, microbial activity, and mycor-
rhizal associations [23, 56, 71, 72], resulting in increased 
root mass, and potentially greater shoot mass. The posi-
tive effects of plastic particles tend to be more evident 
with smaller plastics, becoming more negative as the size 
of the plastic (e.g., PE) increases. Large microplastic films 
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can create water evaporation channels [18] reducing soil 
water content, and potentially limiting plant growth.

Chemical and physical effects of small microplastics 
on plant‑soil systems are generally negative
Overall, the additives extracted from small microplastics 
had a more negative effect on soil respiration and aggre-
gation than those from larger microplastics. Photodeg-
radation fragments plastics into smaller pieces [21, 22], 
which leads to greater leaching of chemicals (additives 
and impurities) compared to larger plastics. The larger 
surface area of small plastics and specifically, the faster 
degradation of polypropylene may allow organic pollut-
ants like pesticides and herbicides to adhere more read-
ily [73], supporting the idea that smaller plastics are more 
toxic than larger ones [74].

Plants mitigate negative effects of additives 
while enhancing positive effects of plastic particles, 
as a function of plastic size
The positive effects of plant presence on soil respiration 
and aggregation can mitigate the toxicity of additives 
such as those from small polyethylene on soil aggrega-
tion. In fact, the negative effects of additives on bare soils 
became positive due to plant presence, explaining why 
previous research has found positive effects of micro-
plastics on plant–soil systems (e.g., [16, 23]) despite their 
known toxicity [75].

Plant presence not only mitigated the negative effects 
of additives, but also enhanced the positive effects of 
plastic particles on soil aggregation. Polyethylene and 
polypropylene films of any size consistently exhibited a 
more positive effect on soil aggregation in the presence 
of a plant compared to bare soils. This enhancement 
can be attributed to roots and rhizodeposition promot-
ing soil microbial activity and facilitating the entangle-
ment of soil particles [70]. However, plastic particles of 
both polymers and any size (except small polypropylene 
particles), consistently exhibited a more negative effect 
on soil respiration in the presence of a plant. This output 
may be linked to nutrient competition between roots and 
soil microorganisms [76]. Although root–microorganism 
interactions are inherent in soil, plastic particles appear 
to exacerbate this competition, likely due to their hydro-
phobicity, electrostatic interaction, and other non-cova-
lent forces [77], which enable plastic particles to absorb 
various organic and inorganic substances [78], potentially 
reducing nutrient availability in the soil. Indeed, research 
indicates that sediments with added microplastics exhibit 
higher concentrations of nutrients (C, N, P) than control 
sediments [79].

The combined effect of additives and plastic particles 
of small size mitigates their individual negative effects 
on soil properties and plant performance
The combined effect of additives and plastic particles 
largely mitigated the negative individual effects of small 
films on soil properties such as polyethylene negative 
effects on soil respiration. This likely occurred because 
the negative effects of additives, such as toxicity, were 
counterbalanced by the positive effects of plastic par-
ticles linked to the amelioration of soil physical proper-
ties such as soil porosity, bulk density, and aeration [18, 
56, 57]. Similar patterns were observed in plant biomass 
with medium-sized polypropylene films. Although addi-
tives mostly affect plant–soil systems in a negative man-
ner, with plastic particles having positive effects, opposite 
patterns could also be found depending on the polymer 
and plastic size. For instance, the additives can positively 
affect soil aggregation, as observed with small and large 
PE films or medium PP films, which can be potentially 
linked to the presence of organic substances with lower 
partition coefficients [21] that promote soil microbial 
activity [80]. These effects were potentially neutralized 
when plastic particles were added to the soil, as they can 
reduce soil water content, ultimately destabilizing soil 
particle aggregation.

Future directions and research opportunities
This study opens multiple opportunities for advancing 
our understanding of the effects of plastic particles and 
additives on terrestrial ecosystems. Since plastic parti-
cles have a primary effect on plant-soil systems, future 
research can include a broader spectrum of plastic 
shapes (e.g., fibers, foams, fragments) and polymer types 
(e.g., polystyrene, polyvinyl chloride). Exploring these 
effects across various plastic concentrations would allow 
the study of microplastic pollution gradients that bet-
ter reflect real-world conditions. Likewise, studying the 
combined effects of multiple microplastic types acting 
together would provide insights into the potential for 
synergistic interactions, as these particles commonly 
coexist in natural environments.

We could have underestimated the positive effects 
of plastic particles, as toxic additives could have been 
released from the plastics during the experiment. To 
address this, future research might consider using plas-
tic particles or similar inert materials that do not release 
additives, helping to better isolate the effects of the par-
ticles themselves from the effects of additives. While we 
conducted an untargeted screening of these chemical 
substances, detailed chemical analyses of the additives 
leached by each plastic type would be valuable, as the 
diverse chemical profiles may exert unique influences on 
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plant–soil systems, and as these substances change dur-
ing degradation and, due to their interaction with soil 
and water. In this regard, significant efforts should be 
made to broaden free access to chemical information on 
these substances.

Also, future research should investigate the effects of 
plastic particles and additives across a range of plant spe-
cies, including those from different functional groups 
(e.g., grasses, forbs, legumes) and provenances (e.g., 
native, invasive). The studies could examine these effects 
both on individual plants and within plant communities 
across various soil types, which would provide a more 
comprehensive understanding of how microplastics 
influence plant–soil systems. Our findings highlight the 
crucial role of plants in mitigating the negative effects of 
microplastics on terrestrial ecosystems. However, this 
buffering effect can diminish if plastic pollution exceeds 
certain thresholds or if harmful additives are present at 
high concentrations. Therefore, the efforts to reduce 
plastic consumption are essential for protecting terres-
trial ecosystems.

We should continue accounting for degraded plastic, 
which is the plastic that actually enters the soil. Degraded 
plastic has been shown to release more leachates (addi-
tives) than pristine plastic [22], significantly altering the 
effects of microplastics on plant-soil systems [37], our 
research represents an accelerated version of what hap-
pens in the field. However, under such conditions, plastic 
degradation could be affected by factors like precipita-
tion, cloud cover, atmospheric moisture or the exposure 
to other environmental variables. Our results may still 
hold true in the field, but presumably at a slower rate. 
Thus, conducting similar studies under field condi-
tions would also improve the ecological relevance of 
our findings, offering a clearer picture of how these 
environmental factors interact with microplastic parti-
cles and additives and their consequences on terrestrial 
ecosystems.

Conclusions
Microplastic additives negatively affect soil properties 
such as respiration and aggregation, due to their toxicity, 
with these effects increasing when additives are extracted 
from smaller plastic particles. By contrast, plastic parti-
cles appear to enhance plant biomass, as they primarily 
improve the physical environment for plant growth. We 
found that the positive effects of plastic particles can 
counterbalance the negative effects of additives. Then, 
when considering the effects of microplastics on terres-
trial systems as a whole (i.e., the combined effect of addi-
tives and particles), the negative effects of additives might 
be masked by the positive effects of plastic particles. Our 
work here is important because simply reporting net 

positive effects of microplastics in plant–soil systems 
would overlook the negative effects that are also present. 
Additionally, our results indicate the crucial role of plants 
in mitigating the negative effects of microplastics on ter-
restrial systems.
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