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Zusammenfassung

Die Übertragung verschiedener Phänomene erfolgt, wenn Individuen in einer für die jew-
eilige Übertragungsroute relevanten Weise interagieren. Der Begriff "Kontakt" ist hierbei
je nach Phänomen unterschiedlich definiert – von sexuellen Begegnungen für STIs bis hin
zur Nähe für luftübertragene Infektionen. Zur Verbesserung der Simulationsgenauigkeit
wurden in früheren Studien verschiedene Netzwerkmodelle entwickelt, die die Dynamik der
Krankheitsübertragung und deren Zusammenhang mit Kontaktmustern erfassen.

Wenn sich das Kontakt-Netzwerk langsam verändert und während eines Ausbruchs
weitgehend stabil bleibt, kann es als statisch betrachtet werden. In manchen Fällen jedoch
müssen sowohl die Dynamik des Netzwerks als auch die Phänomenaussbreitung berück-
sichtigt werden, besonders wenn beide Prozesse auf ähnlichen Zeitskalen ablaufen und
Netzwerkveränderungen die Ausbreitung beeinflussen. Diese Arbeit untersucht ein Szenario,
in dem Kontaktänderungen und Phänomenaussbreitung eng verbunden sind. Dabei beein-
flussen Ausbreitungsereignisse die Netzwerkstruktur, was die weitere Ausbreitung prägt.
Dieses adaptive Verhalten ermöglicht eine realistischere Modellierung und Erfassung des
Zusammenspiels von Kontaktmustern und Ausbreitung.

Die Notwendigkeit dieser Arbeit ergibt sich aus dem erforderlichen Bedarf, Präzision
und Laufzeit bei der Simulation von Ausbreitungsprozessen auf adaptiven, zeitlich verän-
derlichen Netzwerken auszugleichen. Die stochastische Natur sowohl der Ausbreitungs-
als auch der Kontaktprozesse erschwert die Wahl eines geeigneten Simulationsalgorithmus.
Näherungsweise Algorithmen bieten schnelle Berechnungen, können jedoch an Genauigkeit
verlieren, während exakte Algorithmen präzise, aber oft ineffizient sind. Besonders die
Integration adaptiver Netzwerkreaktionen ist bisher ein kritischer und oft vernachlässigter
Aspekt des dynamischen und reaktiven Modellierens in komplexen Systemen.
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Abstract

The transmission of different phenomena takes place when individuals interact in ways
relevant to the specific transmission route. The definition of "contact" varies depending on
the modelled phenomenon. For instance, sexual encounters are relevant for the transmission
of sexually transmitted diseases (STDs), while close proximity is significant for airborne
infections. To improve the accuracy of the simulation of the spread of phenomena of different
origin, researchers have advanced various network models in previous studies. These models
aim to better capture the dynamics of disease transmissions and their relationship to contact
patterns.

In cases where the contact dynamics occur at a much slower pace than the spreading dy-
namics, leading to transmission whenever contact is made, it is sufficient to focus exclusively
on the contact dynamics. If the network undergoes gradual changes and remains mostly
unaffected throughout an outbreak, approximating it as a static network would be suitable.
However, there are specific circumstances in which it becomes vital to consider both the
dynamic nature of the contact network and the spread of the phenomena. Such consideration
becomes particularly relevant when these two processes unfold at comparable timescales,
and network modifications can shape the trajectory of the spread. In such circumstances, it
is vital to include these changes in the analysis to obtain a comprehensive understanding of
the dynamics of the spread. This research work addresses a specific scenario in which the
temporal processes of the contact changes and the spreading process are closely intercon-
nected. In this scenario, the occurrence of spreading events directly influences the structure
of the network, subsequently influencing the subsequent spread of the disease. This adaptive
behaviour enables a more realistic representation of behavioural changes that arise when
individuals become aware of their infection and make choices such as self-isolation . This
approach allows to capture the interplay between contact patterns and the progression of
the spreading process, providing valuable insights into how different phenomena propagate
within a population.

The necessity of this work arises from the critical need to balance accuracy and compu-
tational efficiency in simulating spreading processes on adaptive, time-evolving networks.
The challenge in simulating transmission models on time-evolving adaptive networks stems
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from the stochastic nature of both spreading processes and contact behaviour. Choosing
an appropriate stochastic simulation algorithm is challenging due to this dual stochasticity.
While a range of stochastic simulation algorithms exists, selecting a suitable method is not
straightforward. Approximate algorithms offer rapid computation but may compromise
simulation accuracy and predictive reliability. Conversely, exact simulation algorithms yield
accurate predictions but can suffer from computational inefficiency and protracted simulation
times. This often hampers research progress and limits the generation of a sufficient amount
of simulation trajectories for robust predictions. A distinct category of algorithms is available
that allows for the explicit integration of internal dynamics and the evolution of contact
network structures within simulations. However, these algorithms predominantly lack the
capability to incorporate adaptive responses, a critical aspect of dynamic and responsive
modelling in complex systems.

This thesis presents the development and validation of a novel hybrid algorithm, bridging
gaps in current methodologies by combining the exact simulation of spreading dynamics
with faster, either exact or approximate, simulations of contact dynamics. This methodology
focuses on accurately simulating and predicting spreading dynamics while maintaining
reliable statistics of contact behaviour, significantly enhancing computational performance
for real-world scenarios.

Overview of the thesis structure

The first chapter of this work focuses on continuous-time Markov processes in modelling
the spread of infectious diseases, information, and innovations. This analysis reveals the
strength of Markov models in capturing the probabilistic nature of these processes and their
ability to account for the temporal dynamics of spread. However, the research also identifies
critical gaps in traditional compartmental models, particularly their inability to reflect the
heterogeneity of individual behaviour and network structures.

To address these shortcomings, the thesis advocates for the utilisation of agent-based
models. These models allow for the simulation of individual actions and interactions within
a network, providing insights into how individual behaviours and network characteristics
influence the overall dynamics of spreading processes. The second chapter of this thesis
examines various approaches to modelling the network of contacts relevant to spreading
phenomena and emphasises the importance of incorporating the temporal nature of contact
and the adaptive change in contact behaviour into the models.

The third chapter of the thesis conducts an in-depth analysis of the currently available
simulation algorithms for stochastic models of different complexity. It evaluates their capacity
to accurately simulate the spreading dynamics on complex adaptive contact networks. This
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evaluation discusses the practical applicability of these algorithms in modelling real-world
scenarios. The chapter provides a critical examination of the limitations and strengths of
existing methods. By doing so, it not only highlights the areas where these algorithms excel
but also identifies the gaps and challenges that need to be addressed for improved simulation
performance. This analysis contributes to the development of more effective and efficient
approaches to simulate spreading processes within time-evolving adaptive networks.

The fourth chapter of the thesis introduces the design of a novel algorithm, focusing
on its foundational principle: the separation of contact and spreading dynamics. This is
achieved by identifying distinct boundaries where the contact dynamics can be independently
simulated. Consequently, this division allows for an approximate simulation of contact
dynamics, leading to substantial improvements in simulation runtime. Additionally, the
chapter provides a theoretical analysis of the algorithm’s correctness and its anticipated
computational complexity, offering insights into its efficiency and reliability in simulating
complex dynamics.

Chapter five presents an application-based evaluation of the algorithm, using a specific
example for demonstration. In this evaluation, the results are benchmarked against the
stochastic simulation algorithm (SSA), which serves as the ground truth. This comparison
reiterates the accuracy of the simulations produced by the novel algorithm. Additionally,
a comparison of the runtime of both algorithms highlights the significant computational
efficiency gained with the new approach.

Chapter six introduces a hybrid Python/C++ package that implements the algorithm.
This chapter provides a detailed description of the main classes and the primary Application
Programming Interface (API), offering insights into how users can interact with and utilize
the software. Furthermore, it discusses the limitations of the current implementation and
explores potential future directions for the software’s development.

In chapter seven, the thesis discusses the main contributions and limitations of the study.
This final chapter also outlines several potential directions for future research, suggesting
avenues through which the work can be expanded or refined. This chapter serves as a bridge
connecting the current study to forthcoming inquiries in the field, aiming to inspire and guide
subsequent investigations.
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Chapter 1

Spreading process

1.1 Introduction

The term "spreading process" refers to how phenomena, such as information, influence, or
disease spread through a population. The pattern of the spread can be defined by various
factors, including the nature of the spreading agent, the structure of the contact network,
and the behaviour of individuals within the population. Examples of the spread of such
phenomena include the following:

• Spread of infectious disease: The spread of pathogens through a population, which
can depend on factors such as the virulence of the disease, the contact patterns of
individuals, and the effectiveness of preventive measures such as vaccination.

• Spread of information: The spread of information, beliefs, and behaviours through
a society, which can depend on factors such as the credibility of the information
source, the structure of the social network, the social norms of the community, and the
influence of opinion leaders.

• Spread of innovation: The spread of new ideas or technologies through a population,
which can depend on factors such as the worth value of the innovation, the factors
promoting adoption, and the characteristics of the population (e.g., age and occupation).

This work focusses on the spreading processes in an epidemiological context. However, the
key findings and results can be rather straightforwardly adapted to other relevant contexts of
interest.

Analytical and numerical studies of spreading process dynamics have been widely pub-
lished in the literature. In the past several decades, this field of research has made significant
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headway due to advances in modern networks and epidemiological science. Two widely
applied approaches to model the spreading process are deterministic and stochastic.

The deterministic approach requires the assumption that for large populations, average
rates of spread without random fluctuations are known. For instance, if 10,000 individuals
each have a 90% chance of surviving one year, it can be reasonably assumed that 9,000 of
them will survive. Deterministic models generate consistent results with the same inputs,
regardless of how many times the model is recalculated. Mathematical characteristics in this
case are fixed and not random, and each problem has a single set of values and solutions.
The unknown factors in a deterministic model are external to the model, which emphasizes
definitive outcomes and does not account for errors.

Stochastic models are used to describe the evolution of a system over time, where the
evolution is random and uncertain. These models include random fluctuations induced by
factors such as parameter uncertainties or population sizes being too small to apply average
rates. For example, consider a population of 20 individuals, each with a 0.8 probability of
surviving another year. The average number of survivors would be 20×0.8 = 16. However,
due to the small size of the population, random variations would appear, and a probabilistic
representation of the population at the end of the year may be more appropriate. For the
given example, a binomial model of the population can be used, providing the probabilities
of having from zero up to 20 survivors at the end of the year. This choice of model provides
a probability distribution for the number of survivors rather than just an average number.
Stochastic modelling is substantially unpredictable, with unknown components incorporated
into the model. The model generates numerous answers, estimates, and outcomes. To
estimate the behaviour of the modelled system, the same procedure is then repeated multiple
times in different settings.

A hybrid modelling approach combining both stochastic and deterministic elements can
comprehensively capture the complexities of many real-world systems, particularly those
exhibiting both continuous and discrete behaviour. Combining stochastic and deterministic
models, a hybrid approach can capture both the random and predictable aspects of a system
and better explain its behaviour. For example, a hybrid model could use stochastic methods
to model the spread of a disease within a population while incorporating deterministic models
to capture the effects of public health interventions or social distancing measures.

Models, either deterministic or stochastic, can be either continuous or discrete in time. In
a continuous model, events can occur at any point in time. For instance, the duration between
infection and recovery for the individual could be any positive decimal number. In contrast,
in a discrete model events are classified within time intervals. For instance, the number of
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infections can be tallied in various time intervals: between 0 and 1, between 1 and 5, between
5 and 10, between 10 and 20, and so on (the interval lengths do not need to be identical).

In this study, the interest lies in the modelling of the stochastic spreading process. One
modelling technique widely used for stochastic modelling is "Markov models" or "Markov
processes". The name comes from the mathematician Andrey Markov, who developed the
theory of stochastic processes in the early 20th century. Markov processes are a type of
stochastic process that models random behaviour over time. It includes two basic components
– a set of states and a set of transitions between states – that are used to depict the system’s
behaviour. They can model diverse behaviour types observed in natural complex systems.
The current study will further focus on a continuous-time Markov process, rather than
a discrete Markov chain, because continuous-time models are better suited to capture the
continuous and dynamic nature of many real-world processes, such as the spread of infectious
diseases, the diffusion of innovations, or the flow of information in social networks.

The next sections present the main theoretical framework of continuous-time Markov
processes, alongside its application in modelling epidemiological spread.

1.2 Markov jump process

To introduce a mathematical model describing a random process, it is necessary to define the
probability space beforehand.

Definition 1.2.1. Also called probability triple, probability space (Ω,A ,Pr) is a mathemati-
cal construct consisting of three elements:

1. Sample space Ω: The set of all possible outcomes.

2. σ -algebra A : The collection of all considered events. An event refers to a collection
of outcomes within the sample space.

3. Probability measure Pr : A 7→ [0,1]: A probability function that assigns a probability
value between 0 and 1 to each event in the event space.

Definition 1.2.2. For a given probability space (Ω,A ,Pr), a random variable X is a measur-
able function assigning a value from a measurable space S to each possible outcome of a
random event or a process:

X : Ω 7→S .
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The random variable allows for the probability of each event to be expressed as the
probability of the corresponding set of values in the space S :

Pr(ω) = Pr(X(ω)), ω ∈Ω, X(ω) ∈S .

Definition 1.2.3. For a given probability space (Ω,A ,Pr) and a measurable space S , a
collection of random variables Xt = {X(t) : Ω 7→S } is called a stochastic process with the
time-index t ∈ [0,∞) and a state space S .
For a particular ω ∈Ω, the set {X(t,ω)}, t ∈ [0,∞] is called a trajectory or realisation of the
stochastic process Xt .

In other words, the state space is defined using elements reflecting the different values the
stochastic process can take, and Xt maps sample space Ω to this state space S . Considering
a dynamical system evolving through time, the notion X(t) refers to the state of the system
Xt at the time t.

Definition 1.2.4. The vector of probabilities of the process Xt being in each state x ∈S at
the initial time t0 = 0,

p0 = {Pr(X(0) = x)},∀x ∈S ,

is called an initial distribution. If, for any particular x, the probability Pr(X(0) = x) = 1,
then x is called an initial state.

It is often assumed that the state of the system Xt at initial time t0 = 0 is known as
X(0) = x0, however, states X(t) for t > 0 are still random variables representing values
observed at time t and could be predicted only probabilistically.

To analyse the evolution of Xt over time, the state of the system at successive time points
t1 ≤ t2 ≤ t3 ≤ ...≤ tn can be investigated. Any realisation of a stochastic process obeys the
joint probability:

P(xn, tn;xn−1, tn−1; . . . ;x1, t1 | x0, t0)dxndxn−1 . . .dx1 ≡
Pr(X(ti) ∈ [xi,xi +dxi),xi ∈ S,∀i = 1,n | X(t0) = x0).

(1.1)

Because P defined above is a joint probability function, it can be extended:

P(x1, t1,x2, t2, . . . ,xn, tn | x0, t0) = P(x1, t1 | x0, t0)×
×P(x2, t2 | x1, t1;x0, t0)×P(x3, t3 | x2, t2;x1, t1;x0, t0)× . . .

×P(xn, tn | xn−1, tn−1;x2, t2;x1, t1;x0, t0),xi ∈ S,∀i = 1,n.

(1.2)
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Equation (1.2) defines a joint probability density function for n random variables. By
integrating the function P over any chosen xi the function for n−1 variables can be achieved;
however, in most cases, it is impossible to derive a probability density function for n+ 1
random variables. This complexity makes further comprehensive analysis significantly more
intricate and tangled.

In the study of spreading processes, however, a specific subclass of stochastic processes
is of particular interest.

Definition 1.2.5. If the state density function P of the stochastic process Xt satisfies the
property

P(xn, tn | xn−1, tn−1;x2, t2;x1, t1;x0, t0) = P(xn, tn | xn−1, tn−1) , ∀t ∈ [0,∞), (1.3)

then Xt is called the Markov process. Equation (1.3) is called the Markov property.

The Markov property is also known as the "past-forgetting" or "memoryless" property, which
implies that the next value of the process depends only on its current, most recent state, and
not on any of its previous states or events or the history of the process.

The joint probability function (1.2) for the Markov process is simplified to the following:

P(x1, t1,x2, t2, . . . ,xn, tn | x0, t0) = P(xn, tn | xn−1, tn−1)×
×P(xn−1, tn−1 | xn−2, tn−2)× . . .×P(x2, t2 | x1, t1)×P(x1, t1 | x0, t0).

Definition 1.2.6. Markov processes Xt is time-homogeneous or temporally homogeneous if
the right part of equation (1.3) does not explicitly depend on ti but on the time-increment
ti− ti−1

Most Markov processes observed in reality are temporally homogeneous. This trend,
however, does not imply that Xt and its density function P are completely time-independent,
yet this dependency can be somewhat simplified:

P(x, t | x0, t0) = P(x, t− t0 | x0,0), x0,x ∈S .

Without the loss of generality, it could be posited that t0 = 0, and the state density function
then takes the form

P(x, t | x0) = Pr(X(t) = x | X(0) = x0), x0,x ∈S . (1.4)

Equation (1.4) expresses the probability of jumping from the state x0 to the state x within a
period of time t.
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Because temporally homogeneous Markov processes are the central focus of this chapter
and this work, the term "Markov process" will further refer to a temporally homogeneous
Markov process unless otherwise specified.

Realistically speaking, natural systems and models representing spreading processes do
not evolve gradually, but rather in sudden bursts. The process is in state x at time point t
and will remain there until time t ′ > t, when it jumps to another state x′ ̸= x. This behaviour
motivates the name Markov jump process (MJP).

Although the general stochastic processes and Markov process definitions provided above
assume continuous state space, the main interest of this work lies in a Markov jump process
with discrete countable state space S. Moreover, as covered in section 1.4.7, the specific case
of the Markov models for the spreading process takes values on non-negative integers, so
from now on it will be assumed that S = N+.

Markov state density function P for the stochastic Process Xt with the discrete-valued
state space is defined as follows:

P(y, t | x) = P(X(t) = y | X(0) = x), x,y ∈S , t ≥ t0.

As P is a probability density function, this function must satisfy two relations:

P(y, t | x)≥ 0, x,y ∈S , t ≥ t0,

∑
∀y∈S

P(y, t | x) = 1. (1.5)

Moreover, to reassure that no transition happens in zero time, the function P should also
satisfy the following condition:

P(y,0 | x) = δ (y,x), x ∈S , (1.6)

where δ (y,x) is a Kronecker-Delta function and takes value of unity if x = y and zero
otherwise.
The Markov Property (1.3) also holds for the discrete state space S .

The state density function P is also required to satisfy the Chapman–Kolmogorov equa-
tion, which implies a consistency condition of P for the Markov process Xt :

P(x2, t2 | x0) = ∑
∀x1∈S

P(x2, t2− t1 | x1)P(x1, t1 | x0), 0≤ t1 ≤ t2; x0,x1,x2 ∈S .
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The Chapman–Kolmogorov equation reads that the probability of transitioning from one state
to another over a period of time can be expressed as the sum of probabilities of transitioning
through all possible intermediate states.

1.3 Components of the Markov jump process

Although the definition of the Markov process already provides two essential components
– state space S and time index t – two further aspects are of particular interest for a jump
Markov process:

• When will the system leave its current state? This is described by residual or holding
times.

• What would be the next state? This is described by the embedded Markov Chain – a
discrete-time Markov chain that tells what transitions are made.

Definition 1.3.1. Given that Xt is a Markov jump process on S , then

τ(t) = inf{h > 0 : X(t +h) ̸= X(t)}

is called holding times or residual lifetimes. In other words, it refers to the length of time
spent in the state X(t).

To preserve the Markov memoryless property, holding times must have an exponential
distribution [1, 2]. The conditional distribution of τ(t) given X(t) = x is exponential with
parameter λ (x) ∈ [0,∞]:

Pr(τ(t)> h | X(t) = x) = exp(−λ (x)h), h > 0.

λ (x) is called a jump rate associated with the state x ∈S .
Notably, τ(t) defines a stopping time, indicating a specific behaviour of interest exhibited

by the MJP at that moment – the next jump occurs at the time t + τ(t).
Given that Xt is in the state x at the time t and given the exponential parameter λ (x), the

probability that the process will jump away from x to some other state during time interval
dt can be expressed as follows:

Pr(X(t +dt) ̸= x | X(t) = x) = λ (x)dt.

Definition 1.3.2. Consider Markov process Xt being at the state x ∈S
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1. If λ (x) = 0, then Pr(τ = ∞ | X(t) = x) = 1, and x is an absorbing state. Hence, the
Markov process never leaves the state.

2. If λ (x) ∈ (0,∞), then Pr(0 < τ < ∞ | X(t) = x) = 1, and x is a stable state. Hence, the
Markov process leaves the state after a reasonable amount of time.

3. If λ (x) = ∞, then Pr(τ = 0 | X(t) = x) = 1, and x is a instantaneous state. Hence, the
Markov process exists in the state as soon as it enters it.

If absorbing states are quite common in practical applications – for example, in Fig.1.1
absorbing states of the SIR model lack infectious individuals, and neither further infection
nor further recovery is possible; in Fig. 1.2 the state ∅, depicting deceased individuals, is
absorbing – instantaneous states are associated with undesirable behaviour and are generally
avoided in most scenarios. To ensure this avoidance, it is assumed in this work that the
Markov jump processes under consideration are right continuous:

lim
t→0+

P(y, t | x) = δ (x,y), x,y ∈S . (1.7)

As instantaneous states are excluded from consideration, the sequence of stopping times
{Ti : i ∈ N} can be defined as follows:

T0 = t0; Ti =

inf{t ∈ (Ti−1,∞) : X(t) ̸= X(Ti−1)}, i ∈ N+, X(Ti−1) stable,

Ti−1 = ∞, X(Ti−1) absorbing.

By construction, this sequence is strictly increasing unless the absorbing state is entered,
in which case it becomes Ti = Ti+1 = Ti+2 = ...= ∞. Denote M = sup{i ∈ N : Ti < ∞} the
number of jumps made by MJP Xt . If M < ∞, then the MJP lands at the absorbing state at
some time TM. Time increments Ti+1−Ti, i < M define holding times. This allows for the
initiating of an embedded discrete-time Markov chain.

Definition 1.3.3. Let Xt be the Markov jump process on state space S. Let {Ti : i ∈ N}
be the set of stopping times of Xt introduced above. For i ∈ N let Yi = X(Ti) for i ≤ M
and Yi = X(TM) otherwise. A homogenous discrete-time Markov chain on S is defined as
Y = {Yi : i ∈ N} is known as embedded Markov chain or jump chain of Xt .

For the discrete-time Markov chain Y ,

Pr(Yi+1 = y | Yi = x) = Pr(X(Ti+1) = y | X(Ti) = x).
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The one-step transition probability can be conveniently represented with the matrix Q, such
as follows:

Q[x,y] =

Pr(Y1 = y | Y0 = x), x is stable,

I x is absorbing,
x,y ∈S .

I denotes an identity matrix. From construction, Q[x,x] = 0 if the state x is stable, and
Q[x,x] = 1 if x is absorbing. Because Q is a probability matrix, it possesses the following
properties:

Q[x,y]≥ 0,

∑
y∈S

Q[x,y] = 1, ∀x,y ∈S . (1.8)

Proposition 1. Given the initial state X(0) = x, holding time and the next state are indepen-
dent, and for x,y ∈S and t ∈ [0,∞) then holds

Pr(Y1 = y,τ1 > t | Y0 = x) = Q(x,y)exp(−λ (x)t)

Proof. By applying the Bayes Rule, the following can be derived:

Pr(Y1 = y,τ1 > t | Y0 = x) =Pr(X(T1) = y,τ1 > t | X(0) = x) =

=Pr(X(T1) = y | τ1 > t,X(0) = x) ·Pr(τ1 > t | X(0) = x).

For t < τ1, given X(0) = x, it is true that also X(t) = x. Utilising the Markov property, the
chain starts over at the time t with X(t) = x, independent of τ1 > t and X(0) = x. As such,

Pr(X(T1) = y | τ1 > t,X(0) = x) =Pr(X(T1) = y | X(t) = xτ1 > t,X(0) = x) =

=Pr(X(T1) = y | X(0) = x) = Q[x,y].

If x is a stable state, then λ (x) ∈ (0,∞), and

Pr(τ1 > t | X(0) = x) = exp(−λ (x)t).

If x is an absorbing state, then λ (x) = 0 and P(τ1 = ∞ | X(0) = x) = 1 as well as P(Y1 = x |
Y0 = x) = 1. Therefore,

Pr(Y1 = y,τ1 > t | Y0 = x) = Q[x,y]exp(−λ (x)t) = I[x,y].
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Proposition 1 can be generalised for set of the stable states {x0,x1, ...,xn}, xi ∈S , and
sequence (t1, ...tn) on the interval [0,∞):

Pr(Y1 = x1,τ1 > t1,Y2 = x2,τ2 > t2, ...,Yn = xn,τn > tn | Y0 = x) =

Q[x0,x1]exp(−λ (x0)t1) ·Q[x1,x2]exp(−λ (x1)t2) · ... ·Q[xn,xn−1]exp(−λ (xn)tn) .

Definition 1.3.4. For the sequence of stopping times {Ti : i ∈ N} of the jump process Xt , the
limit

T∞ = lim
i→∞

Ti

exists on [0,∞) and is called explosion time. Even though the holding time spent in a state is
positive, it remains feasible that Pr(T∞ < ∞)> 0. In this case, the Markov jump process Xt

is called explosive. Otherwise, MJP is called regular or non-explosive.

An explosion, then, indicates that the process becomes arbitrarily large in a finite time. The
next two propositions specify conditions under which the Markov jump process is regular.

Proposition 2. If λ is bounded, then Xt is regular.

Proposition 3. A necessary and sufficient condition for a homogeneous Markov jump process
to be regular is that

Pr

(
∑

x∈S +

1
λ (x)

= ∞

)
= 1,

where exponential parameter function λ : S 7→ [0,∞) and S + = {x ∈S : λ (x)> 0}.

Proofs for both propositions can be found, for instance, in [3]. As a corollary, if state
space S is finite, then λ is bounded, and a continuous-time MJP on a finite state space is
regular.

Definition 1.3.5. Let Xt be a regular MJP on S with exponential parameter function λ and
transition matrix Q, parameter µ(x,y) = λ (x)Q[x,y]) for pair x,y ∈S is called a transition
rate.

Parameter µ(x,y) determines the parameters λ (x), x ∈S , and transition probabilities Q[x,y]
for stable state x ∈S and state y ∈S :

λ (x) = ∑
y∈S

µ(x,y), x ∈S ,

Q[x,y] =
µ(x,y)
λ (x)

, x,y ∈S , x - stable.



1.3 Components of the Markov jump process 11

S

I

R

: 3

: 1

: 0

S

I

R

: 2

: 2

: 0

S

I

R

: 1

: 3

: 0

S

I

R

: 3

: 0

: 1

S

I

R

: 2

: 1

: 1

S

I

R

: 0

: 4

: 0

S

I

R

: 1

: 2

: 1

S

I

R

: 2

: 0

: 2

S

I

R

: 0

: 3

: 1

S

I

R

: 1

: 1

: 2

S

I

R

: 0

: 2

: 2 S

I

R

: 0

: 1

: 3

S

I

R

: 0

: 0

: 4S

I

R

: 1

: 0

: 3

β

γ

β

4γ
3γ

2γ

2γ γ2β

β

4β

2β

3β 2β

β

3β

Fig. 1.1. State graph for the Markov jump process of the SIR compartmental model.
The model obey the following rules: S+I

γ−−→ 2I ; I
β−−→ R. It starts with population size

N = 4, where 3 individuals are susceptible and 1 infected. Red arrows depict the jumps
corresponding to the infection events, and green arrows – the recovery events. Arrows are
labelled with the corresponding jump rate. There are 4 absorbing states: {S : 3, I : 0,R : 1},
{S : 2, I : 0,R : 2}, {S : 1, I : 0,R : 3}, {S : 0, I : 0,R : 4}, where the number of infected is 0,
so no further transmission or recovery is possible.

For the absorbing state x holds λ (x) = 0 and Q[x,x] = 1.
Given Xt being in the state x at the time t and the exponential parameter µ(x,y), the

probability that the process will jump away from x to some other state during time interval
dt and land at some state y can be expressed as follows:

P(y, t +dt | x, t) = Pr(X(t +dt) = y | X(t) = x) = µ(x,y)dt.

Continuous-time MJP on a finite state space S can be represented with a state graph
graph: the vertex set of this graph is state space S , and the edges E = {(x,y) ∈S ×S :
Q[x,y]> 0}. Each edge (x,y)∈ E is labelled with transition rate µ(x,y). For example, Figure
(1.1) depicts the transition between possible states of the SIR model for the population of
size 4.

One can consider the Markov jump process as a set of timers, assigned to every pair of
states (x,y) ∈S ×S . Each timer is set to some random value Zxy distributed exponentially
with parameter µ(x,y). As soon as the process enters state x, all adjacent timers on (x,y),
y ∈S start synchronously. As soon as the first timer fires, the process jumps immediately
to the corresponding state y, and then the process repeats. If x is absorbing, then all alarms
Zxy = ∞, and none of the timers fires ever.
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1.4 Analysis of the Markov jump process

1.4.1 Connectivity and recurrence

Definition 1.4.1. Given a regular Markov jump process Xt on a state space S . Then for two
states x,y ∈S , it can be said that

• x leads to y or x→ y if there exists some t > 0, such as: P(X(t) = y | X(0) = x),

• x and y communicate, or x↔ y if x leads to y and y leads to x, and

• the MJP is irreducible if all state pairs (x,y) ∈S ×S , x ̸= y communicate.

The equivalence relation↔ divides state space S into communicating classes. If the Markov
jump process is irreducible, all its states are in the same class.

Definition 1.4.2. The stopping time

TH(x) = inf{t ≥ 0 : X(t) = x | X(0) ̸= x}

is called a first hitting time for the state x ∈S .
The stopping time

TE(x) = inf{t ≥ 0 : X(t) ̸= x | X(0) = x}

is called a first escape time from the state x ∈S .
The stopping time

TR(x) = inf{t > TE(x) : X(t) = x}

is called a first return time to the state x ∈S .

Definition 1.4.3. State x ∈S is called recurrent if Pr(TR(x)< ∞) = 1 or if x is absorbing.
Otherwise, it is considered transient.

In a communicating class either all states are transient or all states are recurrent. Therefore,
the MJP can be referred to as the "transient MJP" or the "recurrent MJP" respectively. If the
MJP is irreducible and recurrent, then it is also regular.

1.4.2 Transition semigroup and infinitesimal generator

Definition 1.4.4. For the regular Markov jump process Xt on a state space S , matrix Pt,
such that

Pt[x,y] = Pr(X(t) = y | X(0) = x) = P(y, t | x), x,y ∈S , t ∈ [0,∞)
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is called transition probability matrix. By definition, P0 = I.

The probability density function of Xt with initial condition X(0) = x0 is given by the
mapping y 7→ Pt[x,y]. Consequently, Pt can be identified as a probability matrix satisfying
the following requirements:

Pt[x,y]≥ 0,

∑
y∈S

Pt[x,y] = 1, ∀x,y ∈S .

The transition matrix also satisfies the Chapman–Kolmogorov equation:

Pt+t′ = PtPt′,

which can be expressed in the following element-wise form:

Pt+t′ [x,z] = ∑
y∈S

Pt[x,y]Pt′[y,z].

Definition 1.4.5. The collection of the transition probability matrices P = {Pt, t ∈ [0,∞)} is
called a semigroup. Because the MJP Xt is right continuous (1.7) and contains no instanta-
neous states, then the following holds:

lim
t→0+

Pt[x,x] = 1, for each x ∈S .

The semigroup satisfying this property is also called standard.
The semigroup is called uniform or uniformly continuous if this property holds uniformly for
all x ∈S .

The standard semigroup property states that the probability of a Markov process staying
in state x at time t approaches 1 as t approaches 0 from the right. This property ensures that
the Markov process behaves smoothly and avoids abrupt transitions.

The uniform semigroup property, on the other hand, requires that the convergence of the
transition probability matrix to be uniform across all states in the Markov process. Hence,
not only does the probability of staying in state x approach 1 as t approaches 0, but it does
so uniformly across all states in the process. The uniform semigroup property is a stronger
condition than is the standard semigroup property and provides more information about the
continuity of the Markov process.

In practical terms, the uniform semigroup property is a desirable criterion for the validity
of numerical methods for approximating Markov processes, as it ensures that the method
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accurately captures the behaviour of the process for all states. The standard semigroup
property is a weaker condition but remains important to ensure the smooth behaviour of the
Markov process.

Proposition 4. If parameter λ of the MJP X is bounded, it implies that the corresponding
semigroup is uniform.

Proof. Assume that λ is bounded. It implies that the supremum norm – such as: ∥λ∥ =
sup{|λ (x)|,x ∈S } –exists. Consider now Pt[x,x]:

Pt[x,x] =P(x, t | x) = Pr(X(t) = x | X(0) = x)≥
≥Pr(τ > t | X(0) = x) = exp(−λ (x)t)≥ exp(−∥λ∥t).

The term exp(−∥λ∥t)→ 1 as t→ 0 uniformly for all x.

Due to the requirement of no transitions in zero time (1.6) and right-continuity assump-
tion (1.7) in this work, it can be asserted that the transition semigroup P is uniform, and
limt→0+ Pt = I. The term "semigroup" will further refer to a uniform semigroup unless
otherwise specified.

Connection between regular transition semigroup P, one-step transition matrix Q and
jump parameter λ can be described with the integral equation,

Pt[x,y] = I[x,y]exp(−λ (x)t)+
∫ t

0
λ (x)exp(−λ (x)s)QPt−s[x,y]ds. (1.9)

Definition 1.4.6. Consider semigroup P = {Pt : t ∈ [0,∞)} of the Markov jump process
Xt .Then,

G = lim
t→0+

Pt− I
t

is an infinitesimal generator of Xt , and G[x,y] =−λ (x)I[x,y]+λ (x)Q[x,y] for all x,y ∈S .

Generator matrix G possesses the following properties:

−∞ <G[x,x]≤ 0,

∑
y∈S

G[x,y] = 0, x ∈S .

Jump rate λ and transition matrix Q are also defined by G, such as:

λ (x) =−G[x,x], ∀x ∈S ,

Q[x,y] =−G[x,y]
G[x,x]

, x ∈S is stable,y ∈S \{x}.
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A comparison of definition 1.4.6 with 1.3.5, reveals

G[x,y] = µ(x,y), x ̸= y, x,y ∈S

G[x,x] =− ∑
y∈S ,y̸=x

G[x,y] =− ∑
y∈S ,y̸=x

µ(x,y). (1.10)

Also, now the probability of the process Xt being in a state x and jumping to the state y during
time interval dt can be expressed using the generator matrix G:

P(y, t +dt | x, t) = G[x,y]dt.

1.4.3 Backward, forward, and master equations

Consider MJP Xt with transition semigroup P and generator matrix G. Then, the matrix
function t 7→Pt is differentiable on t ∈ [0,∞) and satisfies the Kolmogorov backward equation:

dPt
dt

= GPt. (1.11)

The uniform semigroup P also satisfies the Kolmogorov forward equation:

dPt
dt

= PtG (1.12)

A comparison (1.11) and (1.12) indicates that for the uniform semigroup P holds PtG = GPt.
For the finite state space S , the solution of the equation(1.12) can be given in the form

of the matrix exponential:

Pt = exp(tG) =
∞

∑
n=0

tn

n!
Gn, t ∈ [0,∞).

Notably, in the case of an infinite state space, the transition probabilities may not be well-
defined for all pairs of states. Therefore, it may not be possible to define the infinitesimal
generator straightforwardly for an infinite state space Markov process. Hence, in some cases,
it may become necessary to solve coupled ordinary differential equations (ODE) systems of
the component-wise forms of the Kolmogorov backward and forward equations:
Kolmogorov backward equation:

dPt[x,y]
dt

=−λ (x)Pt[x,y]+ ∑
∀z∈S ,z̸=x

λ (x)Q[x,z]Pt[z,y], (x,y) ∈S ×S , (1.13)
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Kolmogorov forward equation:

dPt[x,y]
dt

=−λ (y)Pt[x,y]+ ∑
∀z∈S z̸=y

Pt[x,z]λ (z)Q[z,y], (x,y) ∈S ×S . (1.14)

As compared to the forward equation, the backward equation has wider scope, requiring
only the transition semigroup to be standard, whereas the forward equation requires a uniform
semigroup. Sometimes, however, the forward equation is easier to solve, so the assumption
is often made that λ is bound and, therefore, P is uniform.

If the initial distribution vector p0 is known (see definition 1.2.4), then by denoting

pt = p0Pt, (1.15)

where pt is a vector describing the probability of the Xt being at state x at the time t, given
the initial distribution p0:

pt[y] = Pr(X(t) = y | x)Pr(X(0) = x) = P(y, t | x)p0[x], ∀x,y ∈S .

By applying left-side multiplication to the forward equation (1.12), the master equation is
derived:

dp(t)
dt

= p(t)G. (1.16)

The general solution of the master equation (1.16) for the finite state space S is based on the
matrix exponential:

p(t) = p0 exp(tG). (1.17)

The component-wise form of the master equation is as follows:

dpt[x]
dt

= ∑
∀y∈S

pt[y]G[y,x] =−λ (x)pt[x]+ ∑
∀y∈S−exp(

y̸=x

pt[y]λ (y)Q[y,x].
(1.18)

The above equation could also be rewritten as,

dpt[x]
dt

= ∑
∀y∈S

pt[y]G[y,x] = ∑
y=x

pt[y]G[y,x]+ ∑
∀y∈S

y̸=x

pt[y]G[y,x] =

=pt[x]G[x,x]+ ∑
∀y∈S

y̸=x

pt[y]G[y,x].
(1.19)
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According to (1.10) G[x,x] =−∑
∀y∈S

y̸=x G[x,y], therefore, equation(1.19) becomes,

dpt[x]
dt

=− ∑
∀y∈S

y̸=x

pt[x]G[x,y]+ ∑
∀y∈S

y̸=x

pt[y]G[y,x] =

= ∑
∀y∈S

(
pt[y]G[y,x]−pt[x]G[x,y]

)
.

(1.20)

The first term on the right side of equation (1.20) represents the rate at which the system
transitions from any other state y to state x, weighted by the probability of being in state y at
time t. The second term represents the rate at which the system transitions from state x to
state y, weighted by the probability of being in state x at time t.

Notably, if the initial state X(0) = x0 is known (i.e., p0[x0] = 1), the master equation
(1.20) describes the evolution of the state density function P(x, t | x0):

dP(x, t | x0)

dt
= ∑
∀y∈S

(
P(y, t | x0)G[y,x]−P(x, t | x0)G[x,y]

)
. (1.21)

In summary, the forward equation is used to predict the future state of a system based on
its current state and describe how the probability distribution of the state evolves over time
in a forward direction. The backward equation is used to compute transition probabilities
backwards in time. It is typically applied in the context of calculating conditional probabilities
and expectations when considering the reverse time direction. The master equation is often
used to model the time evolution of the state of a system in a discrete state space, understand
the long-term behaviour and compute statistical properties of the system, depending on its
specific form and context.

The master equation is a powerful tool for describing the time evolution of a system
over time, but it suffers from the curse of dimensionality. As the number of states or
variables increases, the number of terms in the equation grows exponentially. It thus becomes
increasingly difficult to solve the equation analytically or numerically.

1.4.4 Long-term behaviour of Markov jump processes

Definition 1.4.7. Function f : S 7→ [0,∞) satisfying:

f = f Pt, ∀t ∈ [0,∞)

for every t ∈ [0,∞) is called invariant for the MJP Xt . If also f (S ) = 1, then it is a stationary
distribution of the MJP Xt .
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An invariant function is one that remains constant over time, while a stationary distribution
is a probability distribution that remains constant over time.

If a function is invariant under the transition probabilities of the MJP, then the expected
value of that function remains constant over time, regardless of the initial state of the system.
Ergo, the system will eventually reach a steady-state distribution where the probability of
being in any particular state is constant over time. Furthermore, an invariant function can be
used to determine the limiting behaviour of the MJP as time approaches infinity.

A stationary distribution of a Markov jump process is a probability distribution that
remains unchanged over time, even as the system transitions between states. If the stationary
distribution f exists, then the Markov state density function P eventually becomes time
independent. However, the MJP itself does not thereby become static, but rather stochastic
properties of the MJP eventually become static. In other words, if the Markov jump process
starts in any initial state, after many transitions the probability distribution over the states
converges to the stationary distribution.

1.4.5 Markov propagator

The Markov process can also be described using the Markov propagator.

Definition 1.4.8. Given Markov process Xt being in the state x at the time t, the state
displacement of the Xt during time interval dt

Ξ(dt;x, t) = X(t +dt)−X(t)

is called the Markov propagator of the MJP Xt .

The state displacement Ξ(dt;x, t) is a random variable and is specified by its density
function:

Π(ν | dt;x, t) = Pr(x+ν , t +dt | x, t).

However, as the focus of this work is time-homogeneous MJPs, so using the definition of the
homogeneity (1.2.6) and probability density function of the time-homogeneous process (1.4),
the above equation can be rewritten:

Π(ν | dt;x) = Pr(x+ν ,dt | x). (1.22)

Given X(t) = x, by the time t + dt, the process either will have jumped once with the
probability λ (x)dt or the jump did not occur with the probability 1−λ (x)dt. If the jump
does occur, then the probability that it landed in the state x+ν is Q[x,x+ν ]. If the jump did
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not occur, then the probability of it landing at the state x+ν is zero if ν ̸= 0 and 1 otherwise.
Hence, the probability density function Π(ν | dt;x) takes the following form:

Π(ν | dt;x) = λ (x)Q[x,x+ν ]dt +[1−λ (x)dt]δ (ν ,0) =

= G[x,x+ν ]dt +

1− ∑
∀ν ′:

(x+ν ′)∈S

G[x,x+ν ′]dt

δ (ν ,0),

where δ (ν ,0) denotes Kronecker-Delta function.
The state density function can be expressed using the propagator density function (1.22):

P(x, t | x0) = ∑
∀ν1:

(x1+ν1)∈S

... ∑
∀νk−1:

(xk−1+νk−1)∈S

k

∏
i=1

Π(νi | dt;xi−1).

1.4.6 Moments evolution

Often master equations (1.20) or (1.21) of the MJP Xt on a discrete state space S could not
be solved directly for pt or P(y, t | x), respectively. It therefore becomes useful to know
how various moments of the process Xt evolve over time. While generating trajectories and
computing sample averages can be a viable approach, density function equations are essential
to analytically calculate a system’s moments.

Definition 1.4.9. The initially conditioned average of any univariate function g(X(t),

⟨g(X(t) | X(0) = x0)⟩= ⟨g(X(t))⟩= ∑
∀x∈S

g(x)P(x, t | x0).

Definition 1.4.10. The average

⟨Xk(t)⟩ ≡ ∑
∀x∈S

xkP(x, t | x0), t ∈

is called the kth raw moment of Xt .

The raw moments of the process describe the expected values of the number of times the
process is in each state at a given time. With respect to the normalisation condition (1.5), the
zeroth moment of X always exists and equals one:

⟨X0(t)⟩= 1.
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Deriving moment evolution equations using the Markov propagator

The moment evolution equation can be derived using the definition of the propagator (1.4.8):

X(t +dt) = X(t)+Ξ(dt;X(t), t).

Rising in power n ⩾ 1 and applying binomial formula:

Xn(t +dt) =[X(t)+Ξ(dt;X(t), t)]n =

=
n

∑
k=0

(
n
k

)
Xn−k(t)Ξk(dt;X(t), t) =

=Xn(t)+
n

∑
k=1

(
n
k

)
Xn−k(t)Ξk(dt;X(t), t).

By applying the average operator ⟨⟩ to both sides of the above equation and using its linearity:

⟨Xn(t +dt)⟩= ⟨Xn(t)⟩+
n

∑
k=1

(
n
k

)〈
Xn−k(t)Ξk(dt;X(t), t)

〉
. (1.23)

Utilising the definition of the average (1.4.9) for the
〈
X j(t)Ξk(dt;X(t), t)

〉
,〈

X j(t)Ξk(dt;X(t), t)
〉
=
〈
X j(t)Bk(X(t), t)

〉
dt +o(dt),

where Bk(X(t), t) = ∑
∀x∈S

∑
∀ν :

(x+ν)∈S

ν
kG[x,x+ν ]. (1.24)

The term o(dt) denotes a term that goes to zero faster than dt (o(dt)/dt→ 0 as dt→ 0). The
detailed derivation of this property can be found in [4]. Substituting equation (1.24) to the
(1.23) yields the following:

⟨Xn(t +dt)⟩= ⟨Xn(t)⟩+
n

∑
k=1

(
n
k

)〈
Xn−k(t)Bk(X(t), t)

〉
dt +o(dt).

Dividing through dt and taking the limit dt→ 0, the set of the equations is derived:

d
〈
Xk(t)

〉
dt

=
n

∑
k=1

(
n
k

)〈
Xn−k(t)Bk(X(t), t)

〉
,

where
〈

Xn−k(t)Bk(X(t), t)
〉

is initially conditioned average.
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Deriving moment evolution equations using the master equation

To derive the time evolution equations for the raw moments of X , the time derivative is taken:

d⟨Xk(t)⟩
dt

=
d
dt ∑

x∈S
xkP(x, t | x0) = ∑

x∈S
xk ∂P(x, t | x0)

∂ t
.

Using component-wise form of the master equation (1.21) :

d⟨Xk(t)⟩
dt

= ∑
x∈S

xk
∑
∀y∈S

y̸=x

[
P(y, t | x0)G[y,x]−P(x, t | x0)G[x,y]

]
=

= ∑
x∈S

∑
∀y∈S

y̸=x

xkP(y, t | x0)G[y,x]− ∑
x∈S

∑
∀y∈S

y̸=x

xkP(x, t | x0)G[x,y].

By performing expansion of the summation operators and regrouping the elements, the above
equation can be rewritten in the form below:

d⟨Xk(t)⟩
dt

= ∑
x∈S

∑
∀y∈S

y̸=x

(xk− yk)P(y, t | x0)G[y,x] (1.25)

The next step of the derivation is to note, that for each state y ∈S , every other state x ∈S

with x ̸= y, can be represented as x = y+ν , where ν is a size of the jump from y to x. Now,
equation (1.25) can be rewritten as:

d⟨Xk(t)⟩
dt

= ∑
∀y∈S

∑
∀ν :

(x+ν)∈S

((y+ν)k− yk)P(y, t | x0)G[y,y+ν ].

Using the binomial formula to expand (y+ν)k, the following form of the equation could be
derived:

d⟨Xk(t)⟩
dt

= ∑
∀y∈S

∑
∀ν :

(x+ν)∈S

[
k

∑
j=0

(
k
j

)
yk− j

ν
j− yk

]
P(y, t | x0)G[y,y+ν ] =

= ∑
∀y∈S

∑
∀ν :

(x+ν)∈S

[
k

∑
j=1

(
k
j

)
yk− j

ν
j

]
P(y, t | x0)G[y,y+ν ] =

=
k

∑
j=1

(
k
j

)
∑
∀y∈S

yk− jP(y, t | x0) ∑
∀ν :

(x+ν)∈S

ν
jG[y,y+ν ].
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Applying the definition of the initially conditioned average 1.4.9, the set of the time evolution
equations of the kth raw moment of the MJP Xt can be obtained:

d
〈
Xk(t)

〉
dt

=
k

∑
j=1

(
k
j

)〈
Xk− j(t)Bk(X(t)), t)

〉
, (1.26)

where Bk(X(t))is given by formula (1.24).
These equations for the kth raw moment are to be solved with initial conditions:〈

Xk(t0)
〉
= xk

0

Important to note, that set of equations (1.26) depends on the first k− 1 moments of Xt ,
being multiplied by the polynomial function Bk(X(t)). If this function is a polynomial in
y of degree ≤ k, then the hierarchy of the moment evolution equations will be closed and
could have a closed solution. If, however, this condition is not satisfied, then in some cases,
an approximate solution could be obtained by applying, for instance, the approximation
procedure described in [4]. The most used raw moment is the first one, which is also an
expectation of the process Xt and denoted as E[X ]. The time evolution of the expectation of
the Xt is described with the following equation:

dE[X ](t)
dt

=
d⟨X(t)⟩

dt
= ∑
∀x∈S

∑
∀ν :

(x+ν)∈S

νG[x,x+ν ] = ∑
∀x∈S

∑
∀y̸=x

(x− y)G[y,x], (1.27)

with initial condition being:
E[X ](t0) = ⟨X(t0)⟩= x0

Definition 1.4.11. The average〈
X̄k(t)

〉
≡ ∑
∀x∈S

(x−⟨X(t)⟩)kP(x, t), t ∈ (1.28)

is called the kth central moment of Xt . ⟨X⟩ denotes the expectation or the first raw moment of
the Xt .
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Central moments could be expressed in terms of the raw moments. By applying the
binomial formula to the definition of the central moment (1.4.11) :

〈
X̄k(t)

〉
= ∑
∀x∈S

[
k

∑
j=0

(
k
j

)
(−1)k− jxk− j

〈
X(t)

〉k
]
P(x, t) =

=
k

∑
j=0

(
k
j

)
(−1)k− j

〈
X(t)

〉k
∑
∀x∈S

xk− jP(x, t) =

=
k

∑
j=0

(
k
j

)
(−1)k− j

〈
X(t)

〉k〈
Xk− j(t)

〉
=

=
〈

X(t)
〉k k

∑
j=0

(
k
j

)
(−1)k− j

〈
Xk− j(t)

〉
.

Time evolution equations respectively take a form:

d
〈
X̄k(t)

〉
dt

=
d
dt

[
⟨X(t)⟩k

k

∑
j=0

(
k
j

)
(−1)k− j

〈
Xk− j(t)

〉]
=

=

[
d
dt
⟨X(t)⟩k

] k

∑
j=0

(
k
j

)
(−1)k− j

〈
Xk− j(t)

〉
+

+⟨X(t)⟩k
[

d
dt

k

∑
j=0

(
k
j

)
(−1)k− j

〈
Xk− j(t)

〉]
=

=k⟨X(t)⟩k−1
[

d
dt
⟨X(t)⟩

] k

∑
j=0

(
k
j

)
(−1)k− j

〈
Xk− j(t)

〉
+

+⟨X(t)⟩k
k

∑
j=0

(
k
j

)
(−1)k− j d

dt

〈
Xk− j(t)

〉
.

This set of equations, again, depends on a k− 1 first raw moments of Xt , and is therefore
subject to similar restrictions applied to the evolution equations of the raw moments. The
most used central moment, variance, is easy to derive from their definition.
The variance of Xt is the second central moment:

V[X ](t) = ∑
∀x∈S

(
x−⟨X(t)⟩

)2
P(x, t) =

〈
X2(t)

〉
−⟨X(t)⟩2 . (1.29)

Taking time derivative,

d
dt
V[X ](t) =

d
dt

[〈
X2(t)

〉
−⟨X(t)⟩2

]
=

d
dt

〈
X2(t)

〉
−2⟨X(t)⟩ d

dt
⟨X(t)⟩ . (1.30)
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Substituting equations (1.26) and (1.27),

d
dt
V[X ](t) = 2

[〈
X(t)B1(X(t))

〉
−
〈

X(t)
〉〈

B1(X(t))
〉]

+
〈

B2(X(t))
〉
, (1.31)

where Bk(X(t)) is given by formula (1.24).
The initial condition for the variance is,

V[X ](0) = 0. (1.32)

1.4.7 Application to the spreading process

Compartmental modelling

Although the approach described in this section was originally developed for the chemical
species to describe the time evolution of the chemical species concentration [5, 6], the
formalism of the reaction-diffusion process can be applied to model the spread of infectious
diseases in populations [7]. The basic principles of reaction kinetics can be adapted to
epidemiological modelling by interpreting the individuals in the population as chemical
species and the disease transmission events as chemical reactions.

The population is divided into different compartments based on epidemiological status:
for example, susceptible (S), infected (I) and recovered (R), in the SIR models [8]. For the
compartmental approach to be feasible, the assumption should be made that the population is
well-stirred, meaning that all individuals are equally likely to interact with each other.

Individuals are assumed to interact through "reaction channels" Rk with the form of

ZA +ZB −−→ ZC + ...

This form specifies the transition of two individuals from compartments A and B into
compartments C and beyond, with those in compartments A and B referred to as reactants,
and those in compartments C considered as product species. The goal is to apply the tools of
Markov process theory to analyse these reactions Rk.

For the particular combination of reactant individuals, there exists some constant ck –
probability per unit of time that they will react, called the specific probability rate constant.
Because the system is well-stirred and the selection of reactant individuals is arbitrary, this
probability per unit of time is the same for any other combination of reactant individuals.
Then ckdt is a probability that the chosen combination of individuals will react according to
Rk in the next time interval [t, t +dt). This is a probability per randomly chosen reactants of
Rk.
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For spontaneous (0th order) and unimolecular (1st) order reactions, the constant ck is
always independent of the population size N. For bimolecular reactions, however, ck will be
proportional to population size. This dependency follows from the fact that in a well-stirred
population, the probability of the individual contacting any other is 1/(N−1).

It is assumed that ck are all known (are constants), the propensity rates are time-
independent, and the fluctuations in the system arise from intrinsic noise. If ck is a time-
dependent function, it corresponds to time-dependent propensity rates and the fluctuations in
the system arise from variability in external factors (extrinsic noise) [9].

The total number of potential combinations of reactant individuals is NANB, where N·
refers to the number of individuals in the corresponding compartment. Assuming a brief time
interval dt, during which the likelihood of multiple reactions is insignificant, the probability
that one of these combinations will react is cNANBdt. The term ak = cNANB represents the
reaction propensity, indicating the probability of a reaction taking place per unit of time. As
can be seen, the reaction propensities ak for the reactions order ≥ 1 depend on the current
state of the system X(t) – namely on the current number of the reactant individuals. Reaction
propensities of the typical reactions up to the 3rd order are presented in Table 1.1. The main
interest of the model is for the value X(t) = X1(t),X2(t), ... – the number of individuals in
each compartment of the population at the time t.

Importantly, however, reaction propensity differs from the deterministic reaction rate.
The general form of the reaction rates of elementary reactions is given by the law of mass
action, which states that the rate of an elementary reaction Rk is proportional to the product
of the concentration of all involved reactants raised to the power of their stoichiometric
coefficients with the factor of proportionality known as reaction rate constant.

Reaction rate defines a number of reactive events per unit of time, usually expressed as
an equivalent concentration change per unit of time. Propensity, on the other hand, expresses
the probability of a reactive event per unit of time. Generally speaking, deterministic
formalism is an approximation of stochastic formalism, generally accurate only if the system
is sufficiently large. Therefore, despite a very close connection between propensity functions
and conventional deterministic reaction rates, the latter, being an approximate special case of
the former, cannot be used to derive the former [10].

Stochastic process Xt , governing described reaction kinetics, is a well-defined temporarily
homogeneous regular MJP on non-negative integers NN . Its value changes only when one
of the reactions Rk occurs. Moreover, its value changes to a particular size, defined by the
reaction. An example of the reactions and stoichiometric matrix for a compartmental model
is presented in Fig.1.2.
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Order Reaction propensity
0 ∅ c−−→ . . . c
1 ZA

c−−→ . . . cNA

2 ZA + ZB
c−−→ . . . cNANB

2 ZA + ZA
c−−→ . . . cNA(NA−1)/2

3 ZA + ZB + ZC
c−−→ . . . cNANBNC

3 ZA + ZA + ZB
c−−→ . . . cNA(NA−1)NB

3 ZA + ZA + ZA
c−−→ . . . cNA(NA−1)(NA−2)/6

Table 1.1 Reaction propensities for the typical reactions. Adapted from [5].

Z(·) represents reactant individuals, N(·) represents the number of the individuals in the
respective compartment.

The alterations in the number of individuals in each compartment are defined by the
stoichiometric matrix, denoted by S. This matrix encloses information regarding all the
changes caused by the reactions Rk. It comprises the stoichiometric coefficients from each
reaction that depict the spreading process. The stoichiometric coefficients are integer numbers.
The organisation of these coefficients forms the matrix, such that the columns correspond to
chemical reactions, while the rows identify the compounds of the population.

For the finite state space, the propensity functions define the corresponding infinitesimal
generator matrix:

G[x,x+νk] = G[x,x+νk] = ak(x),

G[x,x] =− ∑
∀νk ̸=0,

(x+νk)∈S

G[x,x+νk], (1.33)

where νk = S[·,k], the change vector corresponding to the reaction Rk.
Now, the master equation (1.20) takes the following form:

dpt[x]
dt

=
M

∑
k=1

pt[x−νk]ak(x−νk)−pt[x]ak(x). (1.34)

Equations (1.34) are also called chemical master equations or CME. As discussed in section
1.4.3, solving CME often seems impossible due to limitations as a curse of dimensionality.

Among the moment and moment evolution equations, the most interesting are those for
mean (first raw moment) and variance (second central moment).
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The time evolution equation for the expectation is,

d⟨X(t)⟩
dt

=
M

∑
k=1

νk ⟨ak(X(t))⟩ . (1.35)

If any of the reaction channels Rk involves two and more reactants, then the equation (1.35)
will have at least one quadratic moment in the form of

〈
Xi(t)X j(t)

〉
on its right-hand side,

such that none of the moment evolution equations will be closed [11].
If no fluctuations are assumed, however, meaning X(t) is a deterministic process, then

V(X(t)) = 0, ⟨X(t)⟩= X(t) and equation (1.35) simplify to the following:

dX(t)
dt

=
M

∑
k=1

νkak(X(t)). (1.36)

A set of coupled ODEs (1.36) is called the reaction rate equations. It can be also expressed
in the matrix form:

dX(t)
dt

= S ·a(X(t)) (1.37)

where S is a stoichiometric matrix and a = {ak(X(t))}T is a reaction propensity vector.
The reaction rate equations would be applicable in the absence of all fluctuations, however,
this assumption necessitates a justified rationale. Overlooking fluctuations without solid
reasoning can oversimplify the model, potentially leading to inaccuracies. Therefore, it
is important to consider when and why such an approach is taken, as the assumption to
disregard fluctuations may not always yield accurate results.

The specific case of the moment evolution of the first-order reaction system was studied
and described in detail in [12].

Due to the difficulty of solving CME (1.34) and evolution equations for the mean and
variance, it is often more practical to generate simulated trajectories of X(t) over time instead.
The numerical methods used to generate the stochastic trajectories are further discussed in
Chapter 3.

Agent-based approach

Although the well-stirred approach of compartmental models is a popular tool to study
spreading processes of different origins, its limitations make it less suitable in certain cases.
That is, it does not include factors of population heterogeneity, but in reality, individuals
differ in their characteristics, behaviour, and susceptibility to diseases and other phenomena.

Population heterogeneity can be crucial to understand disease transmission dynamics
and to evaluate interventions. The centrality of population heterogeneity can be expressed,
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Reactions

r1 : S δ−−→∅ r5 : R δ−−→∅ r9 : E
γA−−→ IA

r2 : E δ−−→∅ r6 : S+ IA
α−−→ E + IA r10 : E

γS−−→ IS

r3 : IA
δ+σ−−→∅ r7 : S+ IS

α−−→ E + IS r11 : IA
βA−−→ R

r4 : IS
δ+σ−−→∅ r8 : E

φ−−→ S r12 : IS
βS−−→ R

Stoichiometry matrix:

S =

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12


S -1 0 0 0 0 -1 -1 1 0 0 0 0
E 0 -1 0 0 0 1 1 -1 -1 -1 0 0
IA 0 0 -1 0 0 0 0 0 1 0 -1 0
IS 0 0 0 -1 0 0 0 0 0 1 0 -1
R 0 0 0 0 -1 0 0 0 0 0 1 1

Fig. 1.2. Reaction-diffusion SEIR model of the pathogen spread. Inspired by [13],
in this model the population consists of susceptible individuals SSS, exposed individuals EEE,
symptomatic IIISSS and asymptomatic IIIAAA infected and recovered part of the population RRR. The
state ∅∅∅ denotes deceased individuals. Susceptible individuals, who have been in close contact
with the infected, whether or not those infected are displaying symptoms, are at risk of being
exposed to the pathogen and, therefore, move to the exposed compartment. Some exposed
individuals do not become infected and can transition back to the susceptible population,
while the remainder move to either the asymptomatic or symptomatic infectious population.
Most infectious individuals recover and move to the recovered compartment. All individuals
are affected by natural death, with the infected being at a higher risk because of the disease.
The state graph depicts a Markov jump process describing transitions between population
compartments; its edges are labelled with the transition rates which are at the same time
reaction propensities for the depicted reactions. Population changes for all compartments are
given by the stoichiometry matrix S.
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for example, in the different transition rates for each individual in the compartment. If
the modelled system is subject to any kind of spatial dynamics, it is not always possible
to incorporate it into the compartmental models, but it could significantly influence the
pathogen’s spread.

In many infectious diseases, the network of contacts between individuals and behavioural
responses is crucial to disease transmission. The well-stirred compartmental model assumes
that everyone is equally likely to interact with everyone else, but in reality, individuals exhibit
different contact patterns and behavioural changes in response to disease outbreaks and
interventions.

As a result of these limitations, an agent-based approach may be necessary to capture the
dynamics of the system accurately [14–16]. This modelling technique focusses on individual
agents xi and their interactions with each other and their environment. In these models, each
agent is in a specific state, and the transitioning from one state to another depends on the
current state of the system and the behaviour of individual agents. Reaction channels Rk in
this case are defined for each individual transition (i.e., transitions of each individual agent).
The Markov process in this case describes the state of the whole system X = xi. For example,
consider a model of disease transmission in a population of individuals. Each individual is
in one of three states: susceptible, infected, or recovered. The probability of an individual
transitioning from the susceptible state to the infected state depends on the contact patterns
and behaviour of the individual, as well as the current state of the population as a whole. The
transition probabilities for the Markov process can be calculated based on the behaviour of
individual agents and their interactions with each other.

1.5 Summary

Markov models can powerfully model the spreading process because they allow to analyse
and predict the behaviour of a system over time, based on its current state. They are partic-
ularly useful for modelling the spread of infectious diseases, because they can incorporate
important factors such as the transmission rate and the probability of recovery or death. The
framework of the Markov models allows representation using several mathematical and
computational techniques, including transition matrices, differential equations, and Monte
Carlo simulations. They also allow for the incorporation of uncertainty and variability in
the modelling process, crucial to accurately capture the behaviour of real-world systems.
Overall, while Markov models have many advantages and are widely used in many fields,
it is important to carefully consider their limitations and ensure that the assumptions and
limitations of the model are appropriate for the specific application. Although this work
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focusses on Markov processes, the findings may be adapted to non-Markovian processes to
some extent, as discussed in Chapter 7.



Chapter 2

Current approaches in contact network
modelling

2.1 Introduction

Many diseases are transmitted through physical contact, droplets, or contaminated surfaces.
When an infected person comes into contact with a susceptible person, the infectious agent
can be transmitted from one person to the other. For example, respiratory diseases such as
COVID-19 or influenza can spread through respiratory droplets expelled when an infected
person coughs or sneezes. These droplets can land on the mouth or nose of another nearby
person, allowing the virus to enter their body and potentially cause an infection. Other
diseases, such as sexually transmitted infections (STIs), require sexual contact between
individuals for transmission to occur. For instance, HIV is transmitted through the exchange
of bodily fluids during sexual activity or through the sharing of contaminated needles. In some
cases, diseases may also be transmitted indirectly through contaminated surfaces or objects,
such as in the case of foodborne illnesses. In these cases, contact with the contaminated
surface or object is necessary for transmission to occur. Overall, the mode of transmission
and the infectiousness of the disease will determine the importance of contact in the disease’s
spread.

Contacts between individuals within the studied population can be formalised as graphs
where the nodes represent individuals or entities, and the edges represent the connections
or interactions between them. This representation is called a contact network. The contact
network topology and its change over time are important in understanding the spreading
process of infectious diseases. They determine how easily and quickly the disease can
propagate through the population [17–20]. For example, if the contact network is highly
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clustered, with individuals tending to interact primarily with their immediate neighbours,
then infectious diseases may spread quickly within tightly knit communities, but may not
spread easily beyond those communities [21–23]. In addition, the presence of hubs, or highly
connected individuals in the contact network, can greatly enhance the spread of disease.
Hubs can act as "super-spreaders", transmitting the disease to numerous individuals with
whom they are in contact [24, 19].

In reality, the contact network is not fixed and may change over time due to factors such
as changes in social behaviour, migration, or interventions such as vaccination or social
distancing. These changes can have important consequences for the spread of infectious
diseases [25–28].

Obtaining an accurate contact network model requires having information about all
individuals in a population and all instances of disease transmission through contact, such as
sneezing or coughing for airborne diseases or sexual contact for sexually transmitted diseases
(STDs). However, this task is often shown impractical, even for populations of relatively
small sizes, so different approximation techniques are usually used to represent relevant
population connectivity and, if necessary, its evolution over time.

This chapter synopsises the various methods used to incorporate population connectivity
into models of disease spread. The first approach discussed in section 2.2 is the classical
homogeneous mean-field approximation, which assumes a uniform population and does not
consider network structure. The model is refined to incorporate the static network structure,
which has been effective in many cases. However, this model lacks temporal information
essential to understanding the causal paths that underlie the spreading process.

To address this limitation, section 2.3 introduces the temporal network model, which
captures both the static and temporal aspects of network structure, enabling the modelling
of dynamic spreading processes. Section 2.4 presents an important extension that models
spreading on contact networks by including adaptive behaviour, leading to the class of
adaptive networks.

2.2 Static network models

2.2.1 Mean-field approximation

In the context of epidemiological modelling, mean-field approximation is used to simplify
the analysis of disease transmission dynamics by applying a number of assumptions to the
modelled population. It presupposes population homogeneity, meaning that all individuals in
a population have identical interaction patterns and susceptibilities to the disease (as briefly
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discussed in section 1.4.7). It also assumes a random mixing, meaning that interactions
between individuals are random and occur with equal probability, regardless of their location
in the contact network [29]. Additionally, the approximation assumes that the population
size is large enough that the effects of individual interactions on disease transmission can
be treated as continuous variables. Finally, it requires a well-mixed population, meaning
that the probability of disease transmission between any two individuals is independent
of the presence or absence of other individuals in the population. The contact network of
the population in this case may be represented as a complete graph, where nodes represent
individuals and edges between them represent contacts [30].

Stochastic models with the mean-field approximation may be approximated with classic
deterministic compartmental models, such as SIS, SIR, or other compartmental ODEs [8, 31],
assuming the fluctuation is minimal and can be neglected [29, 32]. Deterministic models
tend to overestimate the true stochastic process [30].

2.2.2 Random graph models

In the context of disease transmission, it is unlikely, however, that individuals are in constant
contact with all other individuals, particularly in large populations or for diseases transmitted
through sexual contact. Empirical evidence suggests that contact networks for STIs are rather
sparse [33–35].

To account for this sparsity, a random network model, first proposed by Erdös and
Rényi [36], may be considered. This model constructs a random graph by starting with N
disconnected nodes and then connecting each pair of nodes with some arbitrary probability
p, or not connected with the complementary probability 1− p. Since each edge in this graph
has the same probability, the algorithm results in a homogeneous graph. The average degree
(i.e., the number of contacts) of each node ⟨k⟩= p(N−1) is determined by this probability
and, for a large population number, converges to a constant, meaning that every node in the
network has exactly ⟨k⟩ contacts.

Since this is a Bernoulli process, degree distribution is given in the binomial form, and
with the large N and fixed p can be approximated by a Poisson distribution:

Pr(k) =
(

N
k

)
pk(1− p)N−k ≈ ⟨k⟩

k exp(−⟨k⟩)
k!

.

For fixed probability p, this equation defines the collection of graphs {GN,p}, where graph
with exactly m edges is constructed with the probability pm(1− p)M−m, M = N(N−1)/2
being the maximum number of edges.
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A series of works [37–40] has shown that for large graph sizes, several properties of
random graphs, such as clustering coefficient and the expected size of the giant component,
can be determined exactly.

Bollobás [41] has proposed an extension of the homogeneous random graph model to
an inhomogeneous one, based on a prescribed kernel. Rather than relying on an arbitrary
probability value p, the connection probability between any two nodes is determined by a
non-negative, bounded kernel function κ(x,y) that is symmetric with respect to its arguments
(x,y).

Another approach to constructing a homogeneous random graph is the Waxman model
[42]. In this model, N nodes are uniformly placed in a rectangular domain, and the connection
probability between any two nodes vi,v j depends on their Euclidian distance di j:

Pr(i, j) = β exp
(
−

di j

αL

)
,

where L is the maximum distance between two nodes, and α,β ∈ [0,1) are model parameters
governing the edge density.

The Waxman model generates a homogeneous network with an exponential degree
distribution, indicating that the probability of a node having a degree different than the mean
degree ⟨k⟩ decays exponentially.

The random graph models exhibit the small world effect, meaning that the average
shortest path length ⟨l⟩ scales logarithmically ⟨l⟩ ≈ logN/ log⟨k⟩ or slower with network
size for fixed mean degree [43, 39]. However, it fails to capture important features of real-
world networks, such as high clustering coefficient, non-Poisson degree distribution, and
community structure [44].

Although random graph models may not capture the full complexity of real systems,
they serve as useful tools for analysing and evaluating dynamic processes in networks. The
homogeneity of the model simplifies mathematical modelling, making it easier to understand
and interpret results. The presence of correlations also makes it a valuable structural model
for assessing the accuracy of dynamic models. Despite its limitations, the random graph
model provides valuable insights into the behaviour of dynamic processes in networks.

2.2.3 Small-world network

The small-world network model was first proposed by Watts and Strogatz [45]. It involves an
ordered lattice, such as a ring of N vertices, where each vertex is connected to its neighbour
h or fewer lattice spacings away. The model then introduces a rewiring process, where
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each edge is reconnected to another vertex with a probability of p, except for self-loops and
multiple edges.

The rewiring process transforms a regular lattice into a structure similar to, though not
identical to, a random graph. When p = 0, the graph remains a regular lattice with a high
clustering coefficient that tends to 3/4 for large values of h. However, the average distances
between vertices are also high, tending to N/4h for large N [39]. On the other hand, when
p = 1, all edges are rewired, and the resulting graph becomes almost random with typical
distances on the order of logN/ logh, but with a relatively low clustering coefficient of
≈ 2h/N. Watts and Strogatz demonstrated numerically that the small-world model exhibits
low path lengths and high clustering for intermediate values of p.

To address some of the limitations of the original model, Monasson [46] and Newman
and Watts [47] proposed a modified version where pairs of vertices are randomly selected and
connected with a probability of p, but no rewiring is involved. This modification significantly
reduces the average shortest path length while still maintaining a large clustering coefficient
for moderate values of p.

The small-world model produces homogeneous networks where each metric has a typical
value shared by all nodes with minimal variations [32].

2.2.4 Degree sequence models

Empirical findings from various research fields indicate that many real-world networks
exhibit a scale-free structure, characterised by a heavy-tailed degree distribution that often
follows a power-law function of the form P(k) ∼ k−α , where the value of parameter α is
typically in the range 2 < α < 3 [48]. In contrast to homogeneous graphs, where the degree
distribution centres on the average degree ⟨k⟩, heterogeneous networks display a diverse
range of node degrees.

To construct networks with non-Poissonian degree distributions, the configuration model
[49] can be used. This model allows one to construct a graph with a given degree distribution
in two steps:(i) based on a distribution P(k), each vertex is assigned a degree (number of
outgoing edges) ki (ii) the pairs of outgoing edges are chosen randomly from the network and
connected together. However, for power-law degree distributions with α ≤ 3, the original
configuration model leads to the formation of networks with loops and multiple edges. This
problem can be addressed by imposing a structural cut-off, such as setting the maximum
degree to kmax∼

√
N, which limits the average degree to ⟨k⟩= 1/

√
N to prevent the formation

of loops and multiple edges in the network [50, 51]. Newman [52] has proposed an extension
of the configuration model allowing to incorporate a clustering structure in the modelled
network.
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The deterministic Havel-Hakimi algorithm, published by Havel [53], and later by Hakimi
[54], constructs a simple graph for a given degree sequence K = {k1,k2, . . . ,kn} by suc-
cessively connecting the node of the highest degree to other nodes of the highest degree,
resorting remaining nodes by remaining degree and repeating the process. Nodes are labelled
with integers that correspond to the index of their expected degree in the input sequence.

Chung and Lu [55] used a random model enabling the construction of graphs with a
given sequence of expected degrees, denoted by K = {k1,k2, . . . ,kn}. The model constructs
these graphs by assigning an edge between nodes vi and v j with a probability proportional to
the product of their expected degrees (i.e., kik j/∑s ks). The nodes in the graph are labelled
with integers corresponding to the index of their expected degree in the input sequence. The
model accounts for the possibility of self-loop edges. However, for finite graphs, this model
does not precisely generate the given expected degree sequence. Instead, the expected degree
of node v j is given by E[deg(v j)] = k j

(
1+ k j/∑i ki

)
.

2.2.5 Growing network models

The model of Barabási and Albert [56] belongs to the class of growing network models. This
model recognises that numerous real-life networks do not maintain a constant number of
nodes and edges. Instead, they evolve over time, with new nodes and links continually being
added. This undirected network model utilises the preferential attachment approach, first
observed and proposed by Price [57, 39]. The original model assumes that the probability of
a newly added vertex v j connecting to some already existing vertex vi depends linearly on
the degree ki:

Pr(vi,v j) =
ki

∑s ks
. (2.1)

The construction of a network of the desired size obeys the following rules: (i) The network
starts with some n0 randomly connected vertices. (ii) At each following step the new vertex
with some m < n0 edges is added. (iii) New edges are connected to the node vi in the network
with probability given by 2.1. The most connected vertices are more likely to receive new
connections. Thus, networks generated by this model present a power-law degree distribution
P(k)∼ k−α with α → 2.9±0.1 [56].

The initial growing network model has received great attention in the field. Many
variations and extensions of the Barabási–Albert model have been proposed to incorporate
diverse properties, such as high clustering and adjustable degree-degree correlations, as well
as variations in the degree distribution exponent [58, 39].

The Spatial scale-free (SSF) network model, proposed by Barthélemy [59] constructs
a scale-free network of desired size N nodes. First, N nodes are distributed randomly
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(uniformly or following the other distribution) in the d dimensional space of linear size L.
Then the following algorithm is applied: (i) a random subset of n0 active nodes is selected,
and (ii) randomly inactive node vi is selected and connected with the "active" node v j with
the probability:

Pr(vi,v j) ∝
k j +1

exp(di j/rc)
.

Here, k j is a degree of the active node v j, di j is a Euclidian distance between them, and rc

is a finite scale parameter, governing the clustering coefficient and the assortativity of the
network. (iii) The node vi is labelled as "active". Steps (ii)–(iii) are then repeated until all
nodes are "active". To achieve the average degree ⟨k⟩= 2m, steps (ii)–(iii) are performed m
times for each node.

The Dorogovtsev–Goltsev–Mendes procedure [60] constructs a deterministic pseudofrac-
tal graph by starting with a triangle graph (with three nodes and three edges), adding one
vertex at the time and connecting it to two already existing adjacent vertices.

2.2.6 p* models

First proposed by Frank and Strauss [62, 63] and Frank [62] and then formulated by Wasser-
man and Patisson [64], p* models, also often called exponential random graph models, are a
family of network models aiming to model the probability of observing a network structure
using nodal and dyadic covariates.

Exponential random graph models (ERGM) have the following form for the probability
of observing a graph x:

Pr(X = x) =
exp
(
θ T z(x)

)
κ

=
exp(θ1z1(x)+θ2z2(x)+ . . .+θrzr(x))

κ
,

where z(x) is the vector of the r of measurable properties of a graph (e.g., number of edges
or diads, number of starts or cycles; more detailed review can be found in [65]), θ is a vector
of unknown model coefficients that must be estimated, and κ is a normalising constant that
ensures that the probabilities sum to unity.

To construct a network, the following five steps are executed [66]: (i) For a fixed set
of N vertices, it is assumed that a contact, or an edge between each pair (i, j) is a random
variable Xi j. This variable takes a value of 1 if i and j are connected and 0 otherwise. If the
constructed network is undirected, then Xi j = X ji, or directed, implying that Xi j ̸= X ji. (ii) A
dependence hypothesis is chosen. For instance, ties may be assumed to be independent of
each other, but they may also depend on node-level attributes such as age, gender, or number
of already existing connections. (iii) The chosen dependence hypothesis implies a particular



38 Current approaches in contact network modelling
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Fig. 2.1. Static network models. (A) Erdös-Rényi random graph model of N = 20 nodes
and the edge probability p = 0.3. (B) Waxman graph model for N = 20 nodes and model
parameters α = 0.5 and β = 0.5. (C) Newnan’s modification of the small-world model
(without reconnection of the edges) for N = 20 nodes connected to their 4 nearest neighbours,
and with the probability p = 0.2 for the random edges. (D) Configuration model network for
N = 20 nodes with a power-law degree sequence. (E) Barabási – Albert model for N = 20
nodes and m = 2 edges of each newly appearing node. (F) Network constructed using the
duplication-divergence model of Isopatov [61] for N = 20 nodes and the probability for
retaining the edge of the replicated node p = 0.2. (G) Pseudofractal network constructed
using the Dorogovtsev–Goltsev–Mendes procedure, repeated for 4 steps and resulted into
N = 42 nodes.

form of the model. The model then represents a distribution of random graphs assumed to be
“built up” from the localised patterns represented by the configurations. (iv) The parameters
are simplified through the introduction of constraints. To reduce the number of parameters,
heterogeneity may be introduced. Some parameters may be reformulated in other ways. (v)
The model parameters are estimated and interpreted with pseudo-likelihood estimation or
Monte Carlo maximum likelihood estimation. A comprehensive review of the dependent
hypotheses and parameter estimation methods and particular subclasses of the ERGM, such
as bipartite random networks and Markov random graphs, can be found in [67, 65, 68].

2.2.7 Duplicating growths methods

Networks such as biochemical interaction networks have power-law degree distributions but
do not fit the preferential attachment model. Kleinberg et al. proposed a hyperlink-induced
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topic search (HITS) model [69] to explain the growth of directed networks like the Web,
suggesting that they grow by adding vertices and copying edges from existing vertices. The
procedure involves the following steps: (i) A pre-existing vertex is selected, and the number
of edges m to be added to it is determined. (ii) The destination of these edges is decided by
randomly choosing another vertex and replicating the targets of m of its edges. If the selected
vertex has fewer than m outgoing edges, then its edges are copied and the process is repeated
for another vertex until m edges in total have been duplicated. The degree distribution is a
power law with an exponent α = (2−a)/(1−a), where a is the ratio of the number of edges
added whose targets are chosen at random to the number whose targets are copied from other
vertices [39].

A modified version of the concept of vertex copying is present in the autocatalytic network
models proposed by Jain and Krishna [70], as well as in protein interaction network models
investigated by Isopatov [61] and random growing graphs investigated by Knudesen and
Wulf [71].

2.2.8 General modifications of graph models

While the general definition of network models is typically presented for the case of undi-
rected networks, the specific definition of transmission-relevant contacts and the population
being modelled may require a transformation to directed or hybrid networks with both
directed and undirected edges [72].

Weighted networks are another important extension, of the general network models,
where a weight ωi, j is assigned to the edge between vertices to represent, for example, the
intensity or frequency of contacts [32].

Moreover, in some cases where the mode of transmission or the multiple pathogen-host
dynamics require more complex models, multilayer network models are a valuable tool by
which to study complex spreading processes. A comprehensive review of multilayer network
models can be found in Kinsley et al. (2020) [73].

2.3 Temporal and dynamic network models

Up to this point, the described models have operated under the explicit assumption that the
network is stationary, implying that the rate of partner turnover is negligible and has no effect
on spreading dynamics. Nonetheless, a critical aspect of numerous real-world networks
is the temporary nature of certain connections. To capture the temporal causality of the
underlying system, different time-evolving network models have recently been introduced
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[26, 74, 75]. If the network’s contact frequency changes slowly, its influence on the spread
of the disease can be ignored, and one of the earlier described static approximations can be
applied. In contrast, if individuals change partners rapidly enough to disregard the possibility
of a single edge transmitting twice, the network can be approximated using a time-averaged
version. However, when the network and the process evolve at comparable rates, their
interaction becomes significant. For instance, an infected individual’s connections may
undergo substantial changes during their infectious period. In such cases, temporal networks
enable one to capture the temporal causality of the spread. A temporal or dynamic network
is a network structure that changes over time, with the nature of the change and the notation
used for timing varying widely and depending on the data and application.

A temporal network is a graph G(t) = {V,E(t)}, consisting of a set of vertices V and a
collection of temporal edges, E(t). Each temporal edge is a trio (vi,v j, t), where vi and v j are
vertices in V and t is a time component, indicating that nodes vi and v j are in contact at time
t. Time component t can either be a time stamp, meaning that the time is discretised and the
network is updated at fixed time intervals, or an interval, implying that the network evolves
on a continuous time scale. [76, 77]. This definition assumes that the set of vertices V does
not change over time, distinguishing dynamic networks and temporal networks; however, it
is possible to incorporate the change in vertices in the model. A static graph for some fixed
t is called a snapshot. Figure 2.2 depicts time-varying networks represented as a series of
snapshots, one for each time step.

There are several general ways to represent temporal networks graphically, such as with
time-node graphs or temporal tensors, and the comprehensive review can be found in [76].

Several books and comprehensive reviews have focussed on the network structure and
modelling techniques for temporal networks[20, 26], as well as on the epidemiological and
other spreading processes, happening on the dynamic and temporal networks[78, 27].

Temporal network modelling is not a straightforward generalisation of static network
models, and relevant analytical findings and techniques cannot be transferred directly to these
classes of models, primarily because the contacts in the temporal networks can be defined
on a broad spectrum. In the static network, a link between two individuals represents some
kind of personal relationship between them, while the contact in the temporal network can
represent either just a one-time contact or a relationship lasting for the time period between
the first and last contact. In addition, any indirect connection between two nodes is temporal
and time-dependent. The connections must happen along time-respecting paths of contacts
(with strictly increasing timestamps). However, even if there are some contacts between
nodes vi and v j and between nodes v j and vk, it may still be impossible that the phenomenon
spreads from vi to vk, because the infection of v j can happen too late, and there will be no
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Fig. 2.2. Temporal network model. The temporal network is represented as a sequence of
snapshots at time points {t1, t2, . . . , tn}. At the time t2, thr edge between nodes 3 and 8 no
longer exists, but the new edge between nodes 6 and 8 appears, though not observed at the
time t1, appears. At the time tn−1 node 3 no longer exists, nor its adjacent edges. At the time
tn, a new node 9 appears, with the new adjacent edges, connecting it to nodes 7 and 8.

more contact to vk. The most common generalisation of distance is latency or temporal
distance – the time it would take to reach v j from vi starting at time t and following only
time-respecting paths.

There are several modelling techniques for generating a temporal network. A few are
described below, and a more comprehensive review can be found, for example, in [26, 20].

A straightforward approach to creating a temporal network involves first constructing
a static network using any of the previously described models, and then transforming each
edge in the network into a temporal edge by assigning a sequence of contacts over time to it.
Holme [79, 80] proposed the following technique: (i) generate some static network of choice,
(ii) for every edge randomly generate its activity time interval, (iii) generate a sequence of
contact times, and (iv) match the sequence of contacts to the activity intervals. Furthermore,
randomisation techniques such as randomized edges or randomly permuted times are used
primarily to analyse contact datasets and the impact of the topology of the network on the
spreading process, but can also be used to generate a temporal network [26].

Another approach, used by Perra et al. [81], proposes to (i) clear all edges of the graph at
each time step and (ii) consequently activate each node vi with the probability αi∆ for a time
window of a given length ∆, connecting it to the m other nodes. Here, αi is a firing rate of
the node vi.

Past studies have examined spreading processes on time-evolving networks by applying
several types of rewiring rules based on averaged group behaviour, but the agent-based
approach has recently gained prominence. For example, Vestergaard [82] has proposed
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a model where the activation rate of both nodes and links is proportional to their "age"
– the time period ∆i since their last activity. The model operates as follows: (i) Initially,
the network comprises N nodes and all links are inactive. (ii) Node vi uses its last contact
involvement time ∆i as a reference point to activate a new link. The link is chosen from
the nodes v j that are currently not in contact with it, with a probability depending on the
∆ j of these nodes. (iii) An active link is inactivated with a rate that is also dependent on
∆i, j. Starnini [83] used a two-dimensional spatial model where each agent is characterised
by their social attractiveness parameter αi. Agents perform a random walk, and as soon as
the distance between two agents is less than some set value d, they start to interact. The
more attractive an agent vi is, the more their interaction partner v j is affected, who will slow
their exploration random walk accordingly. A similar model, but without the attractiveness
component was used by Djurdjevac-Conrad [84] to study the spread of innovations spreading
in ancient times and by Nadini [75] to study the epidemic spreading and vaccination strategies
in an urban-like environment.

It is also possible to combine static and temporal edges in one model, as, for example in
[74] or [85] where the links within "household" communities stay unchanged, but the links
between agents on a "social" level change with time.

The agent-based models provide a detailed representation of a population of interacting
individuals. Agents can represent anything from cells to animals, each following a set of
rules controlling their behaviour and interactions. This approach allows for the inclusion of
heterogeneity and stochasticity, and environmental processes can be more easily incorporated.
Agent-based models are well suited to explain how complex group-level features emerge from
individual behaviour, and they capture features that a mere averaging across the population
would miss. [86, 16].

The timing of human behaviour, however, often does not follow a Poisson distribution,
but can be better described with a heavy-tailed power-law distribution [87, 88], meaning
it happens in concentrated bursts, interspersed by long waiting periods. This property is
called "burstiness", and has been shown to significantly impact the spreading dynamics [89].
Burstiness imposes certain challenges on simulation techniques that can be used to capture
the power-law waiting time distribution. This challenges are touched upon in Chapter 7.

2.4 Adaptive network models

Incorporating temporal network structure and evolution into the study of the spreading
process has improved overall prediction accuracy, but the assumption that contact dynamics
are independent of what spreads on the network is likely to be invalid in many cases [20].
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With the increase in travel activity at both short and long distances, individual behaviour
increasingly shapes the spread of epidemic diseases [90, 91]. Furthermore, the high awareness
of society due to easy access to disease-related information through mass media and the
internet may affect their behaviour in response to an outbreak. For instance, individuals may
alter their travel plans, practice self-isolation, avoid contact with infected persons, or seek
vaccination. Additionally, the health status of individuals frequently affects their behaviour,
limiting their mobility and reducing their likelihood of infecting others [91].

Various methods have been employed to incorporate changes in behaviour into epidemic
models [78]. These methods include modifying contact rates based on health status [92],
adding new compartments to compartmental models, and appropriately linking models of
disease and information propagation [93]. A pivotal step in this direction is the concept of
adaptive, or co-evolving, networks, initially proposed by Gross [28, 94]. These networks’
structures are dynamically shaped by the disease-spreading process [16].

By integrating the principle of adaptivity into temporal network modelling, researchers
can capture the network’s ongoing structural evolution in response to disease spread. This
approach is instrumental in examining the feedback mechanisms between the spread of
the phenomena and network structure. The principal advantage of co-evolving networks
lies in their ability to capture the dynamics of disease transmission and the emergence of
transmission patterns over time while incorporating temporal modifications in response to
the presence of an infectious agent or some kind of intervention, offering critical insights
into the efficacy of control measures [78, 29, 22, 95, 16].

Human interaction networks inherently possess a stochastic nature, as they involve nu-
merous interacting individuals whose behaviour can be influenced by many factors, including
random events and external stimuli. These factors can lead to unpredictable and random
outcomes in social interactions, making it difficult to accurately predict the behaviour of
individuals in a social network. Furthermore, the formation and dissolution of relationships,
changes in individual behaviour, and external events may also occur randomly or in response
to unpredictable events.

Consequently, stochastic and agent-based modelling techniques are often used to model
human interaction networks to capture the inherent uncertainty and variability in social
interactions and network dynamics. These methods can help researchers to better understand
the complex behaviour of social networks and the individuals within them, as well as to
make predictions about their future behaviour and the spread of the phenomenon through the
population.

Nevertheless, a primary challenge in the development and implementation of time-
evolving adaptive network models in epidemiology and other research fields lies in balancing
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model complexity and computational efficiency with the need for the accurate representation
of spreading dynamics. Time-evolving adaptive network models can improve the under-
standing of transmission dynamics and shape effective interventions to mitigate, prevent, or
control the spread of phenomena of different origins.

contacts epidemic 

C. Adaptive network

contacts epidemic 

B. Temporal network

contacts epidemic 

A. Static network

Fig. 2.3. Different approaches for modelling spreading processes on networks. (A) In
static network approaches, the network topology, which determines the linkage and thus the
spreading process, remains fixed. (B) In temporal networks, the network topology evolves
according to some contact dynamics, which is independent of the epidemic dynamics. (C)
Adaptive networks denote a class of co-evolving stochastic processes, where the contact
structure affects the spreading process and where the spreading process alters the contact
dynamics.

2.5 Summary

Incorporating contact networks in the model of the phenomena spreading is crucial to
the study of the spreading processes of diseases, information, and opinions. Chapter 2
differentiates existing modelling approaches for contact networks, categorising them into
static, temporal, and adaptive models. Static models offer insights into network structures,
and have their place in certain applications, such as in modelling social networks and
analysing historical data. Temporal models introduce the crucial element of time and allow
for capturing the dynamic nature of contact networks. However, the most noteworthy are
adaptive network models. These models excel in reflecting how networks evolve in response
to spreading progression, capturing the dynamic interplay between spread of the phenomena
and network adaptation. This adaptivity is especially pivotal for accurate prediction of disease
transmission and evaluating the efficiency of medical interventions such as vaccination or
treatment, as well as non-medical interventions such as social distancing and introduction
of the spreading barriers (for instance, masks during the COVID-19 pandemic or usage of
condoms to prevent the spread of STIs).



Chapter 3

Existing computational methods and their
application to simulate spreading
processes on complex systems

3.1 Introduction

The study of complex systems has been a challenging task for scientists across various fields,
as they often involve intricate relationships between multiple entities. Agent-based models
(ABMs) have emerged as a powerful tool to model such systems, as they allow for the
representation of individual entities and their interactions in a more realistic and nuanced
way. The impact of incorporating community structure with its stochasticity was discussed
in the previous chapter. However, as the complexity of these models increases, it becomes
more challenging to accurately analyse system behaviour.

Stochastic simulation methods address the challenge of simulating community dynamics
and spreading processes in a stochastic framework, as they introduce randomness into the
model to account for the inherent uncertainty and variability in the system. These methods
have been widely used in the field of ABMs, but their application to time-varying adaptive
networks has not yet been fully explored.

In ABMs of complex systems with contact networks, the interaction process is often
modeled stochastically to account for the heterogeneity of both the agents and the network
structure. As such, not only may the spreading events occur randomly, but also contacts
between individuals are established and discarded stochastically.

This chapter explores the application of stochastic simulation methods in the context of
ABMs with time-varying adaptive networks. Different methods are investigated, including



46
Existing computational methods and their application to simulate spreading processes on

complex systems

stochastically exact algorithms, approximate approaches, and hybrid methods that can
account for the impact of the dynamic environment. For a comprehensive and detailed review,
please refer to the studies [96–99].

3.2 Exact methods

Exact stochastic simulation algorithms are a class of computational methods used to simulate
the dynamics of reaction-diffusion Markov models from various scientific fields. These
algorithms are designed to exactly simulate the probability distribution of the state of the
system over time, based on a given set of reaction rules and initial conditions.

3.2.1 Direct method

The most well-known exact stochastic simulation algorithm is Gillespie’s algorithm, also
called the SSA or a direct method (DM). It was originally developed to simulate the dynamics
of biochemical reaction networks in a stochastic manner [5]. The algorithm works by
simulating the occurrence of individual chemical reactions in the system, one at a time, based
on their propensity functions.

The key element in generating the numerical realisation of the process Xt is a joint
probability density function of the time to the next reaction (τ) and the index of the next
reaction ( j), given the current state of the process at the time t:

Pr (τ, j | X(t), t) = Pr(τ | X(t), t) ·Pr( j | τ;X(t), t) = a j(X(t)) · exp(−a0(X(t))τ), (3.1)

where a0(X(t)) = ∑
j

a j(X(t)) defines the total of all propensities at the time t. (3.2)

Given the PDF 3.1, it is possible to derive the probability density function of the next
jump:

Pr(τ | X(t), t) = ∑
j

Pr(τ, j | X(t), t) = a0(X(t)) · exp(−a0(X(t))τ),

meaning that the time to the next reaction is an exponential random variable with intensity
a0(X(t)). Furthermore, the probability densityPr( j | τ;X(t), t) can also be expressed as
follows:

Pr( j | τ;X(t), t) =
a j(X(t))
a0(X(t))

. (3.3)

Using these theoretical insights, the algorithm proceeds in a series of steps, where at each
step, the time of the next reaction is sampled from the exponential probability distribution
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with intensity a0 (X(t)). The identity of the next reaction to occur is chosen with reference
to the probability (3.3). The state of the process X(t) is then updated according to the
stoichiometry of the reaction that occurred.

Gillespie’s algorithm is exact in the sense that, given enough computational resources, it
will simulate the exact time course of the system without any approximation. However, to
effectively implement Gillespie’s direct method in ABMs to analyse stochastic spreading
processes across complex stochastic networks, it is important to account for all potential
reactions. For network models, it is often necessary to differentiate between individuals and,
occasionally, between various edges. This is because varying neighbour sets and personal
characteristics can influence infection probabilities and the overall dynamics of the spread.
In these models, some reaction channels are attributed to nodes, while others pertain to the
state of the edges, which may toggle between "on" (presence of the edge) and "off" (absence
of the edge) [100, 97].

Typically, all reactions R in such models can be categorised into two primary types:
state-changing events Rs and interaction or contact events Rc. Given the diverse nature of
agents, a single reaction Rc

jk often represents only one instance of the formation or dissolution
of a connection between two individuals i and j. Similarly, a single reaction Rs

i denotes the
state transition of an individual agent i. Consequently, this approach requires the inclusion
of up to N(N−1)/2 distinct Rc type reactions and N×Ms individual state change reactions
Rs, where Ms denotes the number of possible state change reactions for a single agent. This
comprehensive inclusion of reactions can lead to computational overhead, especially as the
population size increases, posing a significant challenge in terms of computational efficiency
and resource management.

Algorithm 1. SSA.
1: t = 0
2: while t < TF do
3: Calculate the reaction propensities a j for each reaction R j based on the current state

of the network G(t) and the agents
4: Compute the total of the reaction propensities a0 = ∑ j a j
5: Sample τ ∼ Exp(a0)

6: Choose the next reaction, with probability:
a j

a0
7: Execute the chosen reaction
8: t = t + τ

The direct method allows for the seamless integration of adaptive agent behaviour into
simulation. This integration can be done by executing corresponding adaptivity step right
after a triggering reaction takes place (line 7 in Algorithm 1).
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The direct method has an average complexity of O(nsimM), where nsim is the number
of simulated steps and M refers to the total number of all reactions, Rs and Rc, together.
As such, the complexity has a linear relationship with the number of reaction channels M.
However, the number of events occurring per time unit typically also scales linearly with
the size of the population N, leading to computational complexity O(NM) or O(N2) for
sparse networks. The evaluation of the DM within real-world biological models indicates that
propensity updates generally account for 65% to 85% of the entire simulation cost, reaching
even 99% in certain cases [99]. Certain improvements can be made to enhance simulation
performance, such as updating only the rates affected by the event instead of all a j at each
time step (lines 3,4 in Algorithm 1). This update can be done in constant time O(1), if the
average number of affected reaction channels remains constant, as stated in [97, 99]. This
enhancement, however, will not eliminate the overall linear scaling, meaning that for large M
the direct method can be quite slow.

When the reaction propensities have only a few distinct values, a technique to decrease
the effective number of reaction channels in the DM is feasible, hastening the selection of the
next event. The approach involves grouping reactions with identical propensity values and
utilising a rounding operation, which can be quickly executed by a computer, to determine a
single reaction to be chosen [101].

To enhance the simulation runtime , a binary tree data structure can be employed to store
the reaction propensities a j. This structure allows for the selection of the reaction channel i
that will produce the next event (line 6 in Algorithm 1) in O(log(M)) operations instead of
O(M) operations and will speed up the whole algorithm. A more detailed explanation can be
found, for example, in [97]. Other data structures and search techniques that can be used to
improve the performance of the DM are discussed in [99].

Although modern pseudo-random-number generators have significantly improved per-
formance, it remains a good practice to minimise the number of random numbers generated
during simulation. Yates and Klingbeil [102] propose a method to recycle a pseudo-random
number in the DM. This approach may help to lessen computation time, but may also lower
the accuracy of the outcome, although insignificant inaccuracy [97].

3.2.2 First-reaction method

In his publication [5], Gillespie also introduced the concept of the first-reaction method. This
approach involves computing the first putative event time τ j ∼ Exp(a j) for each reaction
channel, which represents when each reaction would fire assuming no other changes occur in
the system. After calculating these putative times for all reactions, the algorithm selects the
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next reaction to occur R j by identifying the one with the smallest putative time τ = min j τ j,
where j ranges from 1 to M.

The first-reaction method also has an average complexity of O(nsimM). In the original
algorithm, all propensities are updated, and new putative times are generated every time a
reaction occurs. To improve efficiency, similar to the direct method, only the propensities
are updated, and new putative times are generated for the reaction channels affected by the
reaction. Unaffected reaction channels can have their putative times updated by subtracting τ

from the previous value: τ j− τ [97].

3.2.3 Next reaction method

Gibson and Bruck [103] have proposed a significant improvement to the first-reaction method
with their next reaction method. Instead of storing putative waiting times τ j for each reaction
channel, they stored the absolute times of the next reaction t j = t + τ j, where t denotes
absolute simulation time. By using absolute time rather than waiting time, the complexity
of the reaction propensities update was reduced to O(1), since few reaction channels are
affected by each event, on average. To store and retrieve the putative absolute firing times of
reactions, the authors introduced an efficient data structure called an indexed priority queue,
typically implemented as a binary heap.

The authors also introduced a procedure to recycle pseudo-random numbers when gen-
erating new putative waiting times τ j for reaction channels other than i and affected by
the event. This procedure involves rescaling the waiting time using the following formula:
τnew

j = (aold
j τold

j )/anew
j .

The next reaction method uses a dependency graph D , a data structure that precisely
identifies which reaction propensities to modify when a given reaction occurs. Using the
dependency graph, the algorithm can recalculate only the minimum number of a j values
after a reaction occurs.

Similarly to the direct method, the next reaction algorithm also allows one to incorporate
the simulation of an agent’s adaptive behaviour. This integration can be achieved by executing
the adaptivity step right after a triggering reaction takes place (line 7 in Algorithm 2) and
correspondingly updating a dependency graph D , if necessary. All of these improvements
reduced the average complexity of the algorithm to O(nsim log(M)).

In 2007 Anderson [9] has proposed a modification of the next reaction method incorpo-
rating the support of time-dependent reaction rates.
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Algorithm 2. Next reaction method.
1: t = 0
2: Build the reaction dependency graph D
3: Calculate the reaction propensities a j for each reaction R j based on the current state of

the network G(t) and the agents.
4: Compute all putative times τ j and store times t j = t + τ j in a priority queue Q.
5: while t < TF do
6: Extract the reaction Rµ with the smallest reaction time tµ from Q
7: Execute reaction
8: t = tµ
9:

10: for all other reactions R j dependent on Rµ according to the dependency graph D do
11: Compute anew

j
12: if j = µ then ▷ sample new time
13: τµ ∼ Exp(anew

j )
14: tµ = t + τµ

15: else ▷ update times

16: t j = t +
a j(t j− t)

anew
j

17: a j = anew
j

18: Update values t j in a queue Q

3.2.4 Rejection-based SSA (RSSA)

To increase simulation speed, Thanh et al. [104] aimed to minimise the number of propensity
updates for most of the simulation steps by applying the concept of propensity bounds and
fluctuation intervals. Instead of recalculating the precise reaction propensities at every time
step, the authors defined reaction propensity bounds, a j and a j, to determine the next reaction
time and identity. The exact propensity is recalculated only if the propensity bounds test
fails. Following the acceptance of the reaction, the RSSA assesses whether the new system
state falls within the fluctuation interval. If it does, the algorithm can proceed with the next
selection step without recomputing the propensity bounds. However, if the new system state
lies outside the fluctuation interval [X ,X ], a new interval is established and all propensity
bounds must be updated.

The average complexity of the algorithm can be estimated as O(nsimαM), where α is
the average number of times the search for the next candidate reaction is performed, and is
often bounded by a small constant value [99]. Although the method generates more random
numbers than direct or next reaction methods, the decrease in the number of propensity
updates significantly outweighs the additional computational cost [96].
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Several techniques allowing performance increase (e.g., the incorporation of tree-based
or table-lookup search) are available for the RSSA and discussed, for example, in [99]. Later
authors have also proposed an extension of the method to incorporate extrinsic noise and
delays[105].

In the case of the network, however, one must often consider individual reaction channels
separately (e.g., if the transmission of the disease can occur through each contact between
infected and susceptible individuals with different intensities, each of these possible trans-
missions is considered to be a separate reaction channel), significantly diminishing the
advantages of the RSSA.

3.3 Approximating methods

Exact simulation methods allow for the detailed documentation of each individual reaction
event, providing a thorough understanding of the modeled process. However, for systems
of practical interest, compiling this extensive record can be time-consuming due to the
large number of reaction events that occur in real-world systems. In many cases, it is
sufficient to know the frequency of each reaction channel during a particular time interval.
This approach forms the basis of approximate simulation methods, allowing for increased
simulation efficiency over (controlled) accuracy reduction.

3.3.1 τττ- Leaping method

The τττ-leaping method has been proposed by Gillespie [106] in 2001. In this approach,
simulation time is split into the leap intervals of length τττ , redefined adaptively during the
simulation. During each time interval τττ a group of reactions is fired simultaneously instead
of generating individual reaction events for each reaction.

The length of the leap τττ chosen to satisfy the leap condition
∣∣a j(X(t))−a j(X(t + τττ))

∣∣≤
εa0(X(t)). j = 1 . . .M. This condition reassures that the expected changes in the propen-
sity functions in time τττ are small enough, so the propensity of each reaction R j can
be approximated as a constant value a j(X(t)) during the time interval. At each simula-
tion step, for each reaction R j the number of its firings k j is sampled from the Poisson
distribution P

(
a j(X(t))τττ

)
with intensity a j(X(t))τττ , and the state of the system is up-

dated according to the stoichiometry and the number k j of the reaction that occurred:
X((t)+ τττ) = X(t)+∑

M
j k jν j, where ν j is a change vector corresponding to the reaction

R j. If the conditions for a leap are violated to the point where certain population values
become negative, the modifications are reversed, and the value of τττ is reduced by multiplying
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Algorithm 3. τττ-leap algorithm.
1: t = 0
2: while t < TF do
3: Compute reaction propensities R(·,·) and a(·) based on the current contact network

G(t)
4: Compute the sum of the reaction propensities

R0 = ∑R jk; a0 = ∑aℓ
5: Calculate τττ satisfying the leap conditions
6: accepted = FALSE
7: repeat

8: if τττ <
l

a0 +R0
then

9: Execute n steps of the SSA(Algorithm 1)
10: else
11: Generate M random numbers k− ∼P(R−0 τττ), k+ ∼P(R+

0 τττ) and u j ∼
P(a jτττ)

12: if negative values then
13: reject changes
14: set τττ = ατττ

15: else
16: Update network, performing k− deletions and k+ additions of the network

edges.
17: Execute u j reactions a j
18: t = t + τττ

19: accepted = TRUE
20: until accepted

it by the coefficient α (originally set to α = 0.5). Additionally, the τττ-leaping technique will
switch to the exact SSA if the anticipated number of changes during the leap is deemed
relatively low. In such cases, performing n steps of the SSA (typically set to n = 100) is
more effective. Although the overall computational complexity of this method still scales
linearly with the total number of reactions M due to the requisite recalculation of propen-
sities and their total during each leap, the approach enhances runtime performance. This
improvement is primarily attributable to a decrement in the number of simulation steps nsim

as a consequence of executing multiple reactions within a single leap.
Selecting a suitable value of τττ that satisfies the leap conditions is crucial for the effec-

tiveness of the τττ-leaping algorithm. Opting for a value that is too small often results in
switching to the SSA, while choosing a value too large can lead to the violation of the leap
conditions, which requires repeating the step with a smaller τττ value and rejecting the changes.
An inappropriate choice of τττ can lead to inefficient or inaccurate results alongside other
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issues. To address these problems, various studies have proposed modified versions of the
τττ-leaping method. These modifications include the reaction partition method [107], binomial
methods [108, 109], implicit methods [110, 111], K/R/S-leaping [112–114], and a post-leap
correcting method [115].

As the reactant populations become very large, the τττ-leap method approaches an even
faster Langevin simulation method [106]. When the expected number of reactions for each
channel during the time interval τττ is much greater than one a j(X(t))τττ ≫ 1, the Poisson
random variable P(a j(X(t))τττ) can be well approximated by a normal random variable
N (a j(X(t))τττ,a j(X(t))τττ). The Langevin method smoothly transitions to the deterministic
reaction rate equations as the inequalities become strongly satisfied. Therefore, the increment

∑
M
j k jν j can be written as ∑

M
j a j(X(t))τττν j, which is an Euler formula for the reaction rate

equations.
One important aspect to consider is that in continuous-time processes on complex net-

works, nodes change state asynchronously, meaning that the change of state or contacts of one
node can immediately affect the transition rates of itself and other nodes. For instance, the
dissolution of contact between a susceptible and an infected individual instantly reduces the
probability of infection. Incorporating adaptive network behaviour highlights the significance
of this aspect, where a single reaction can alter the behaviour of the entire system, rendering
the approximation made during time step τττ invalid.

3.3.2 HRSSA

Marchetti et al. [116] has proposed a hybrid rejection-based algorithm built on top of
the rejection-based SSA. The method employs a concept of propensity upper bounds and
fluctuation intervals, along with the categorisation of reactions into classes of slow (Rs) and
fast (R f ) reactions. This approach was also previously used by Cao [107] for the τττ-leap
algorithm to avoid negative values. The system partitioning is updated only when the current
state exits the fluctuation interval. HRSSA calculates the sum of upper propensity bounds
of slow reactions as

0(X(t)), and then samples the candidate firing time of a slow reaction

τ ∼ Exp
(

as
0(X(t))

)
. Assuming the system state will remain within the fluctuation interval

during [t, t + τ], the upper bound as
0(X(t)) is considered time-independent over the interval,

allowing for the simulation of fast reactions without side effects on slow reactions. Fast
reactions are then simulated for the interval [t, t + τ] according to an approximate simulation
algorithm that can be either stochastic or deterministic. Following the simulation of fast
reactions, a slow reaction is chosen and validated to fire using a rejection test, following the
RSSA simulation strategy. To maintain the accuracy of the simulation of slow reactions,
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the feasibility of the current system state must be preserved during the simulation of fast
reactions. Thus, when the system state goes beyond its bounds, the simulation is halted, and
the fluctuation interval is updated.

While presenting a promising avenue for simulating spreading processes within complex
systems, this algorithm is not without limitations. The original reaction partitioning algorithm
introduced by the authors split reactions into two classes – slow and fast – based solely on the
reaction’s propensity and does not take the type of reaction (whether populational or contact)
or its dependencies into consideration. This approach could result in populational reactions
being inaccurately classified as fast reactions, potentially leading to their approximate
simulation and overlooking the necessary adaptivity step, if such a reaction is triggering for
adaptivity. Moreover, the method proposed by the authors for estimating the upper and lower
bounds of propensities presumes that reaction propensities remain constant over time and are
unaffected by any external processes, either stochastic or deterministic.

3.3.3 Discrete time-approximation

Another way to simulate continuous-time Markov process spreading models is to use discrete-
time approximation. This approach has gained popularity, especially in modelling spreading
processes involving complex networks to represent the dynamics and structure of contact
networks [117–119, 74]. Its popularity is due largely to its simplicity and minimal simulation
time, making it a convenient alternative to exact algorithms that are unnecessarily detailed
and to τττ-leap methods that require meticulous τττ-selection procedures, which in some cases
can be captious to the complexity of the modelled system.

In discrete-time simulation of continuous-time Markov processes, time is not treated as a
continuous variable, but instead as a discrete variable advancing in time intervals of length ∆t.
Typically, ∆t is assumed to have a value of 1. In this framework, reaction rates γi are replaced
by reaction probabilities γ̃ j = γ j∆t. For instance, susceptible nodes become infected through
their infected neighbours with a probability of γ̃tr = γtr∆t per infected neighbour. At each
time step interval [t +∆t], reactions occur according to their corresponding probabilities.

While the discrete-time approximation is easy to implement and useful for modelling
systems of varying complexities, it introduces several deviations from the continuous-time
process. When the time interval ∆t is very small, the probability of multiple reactions
occurring can be ignored, and the probability that reaction R j will occur during this interval
is precisely γ j∆t. However, as ∆t grows, this expression becomes an approximation, and the
exact probability for the continuous-time Markov process that reaction R j with rate γ j will
occur is 1− exp(−γ j∆t). Unlike in the τττ-leaping methods, there is typically no control over
the step size ∆t in the discrete-time framework.
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Another crucial consideration is the synchronous updates occurring during the time-step
∆t, similar to τττ-leaping. Particularly when the step size selection is uncontrolled, such
updates can produce notable discrepancies between predicted outcomes and reality. These
limitations have been demonstrated by Fennel et al. [120] and partially by Malysheva et al.
[121], showing that this discrete-time approach can accurately replicate the continuous-time
dynamics for relatively small ∆t. However, it is important to note that a smaller step size,
while increasing accuracy, also leads to greater computational time. As the step size increases,
the accuracy significantly decreases, highlighting a key limitation of this method. These
deviations impact both the range of applicable model parameters and the feasible size of ∆t.
A more comprehensive examination of the limitations of the discrete-time framework can be
found in [120].

3.4 Simulation approaches considering dynamic environ-
ment

The impact of a dynamic environment on the spread of different phenomena can be significant
and can arise from external aspects such as weather patterns, biological systems interactions,
and ecological processes. However, the most significant impact on the spread of phenomena
is often caused by human behaviour such as social interactions. In recent years, the incorpora-
tion of these factors into the modelling of spreading processes has gained popularity and has
led to new insights into the dynamics of various phenomena. While some methods already
described in this chapter allow for the inclusion of dynamic inputs into simulations, several
newer methods have been developed allowing not only for the incorporation of environmental
impacts but also for computational advantages such as speed.

3.4.1 Temporal Gillespie algorithm

Vestergaard’s Temporal Gillespie algorithm [122] presents a modified version of the direct
method to simulate jump processes occurring in switching temporal networks. These net-
works are characterised by abrupt changes in their structure at specific time points. For
example, many real-world networks are constructed based on observed contact statistics
within certain time intervals, denoted as ∆n. The author considers networks evolving over
time, independently from the processes taking place on them, excluding the possibility of
adaptive behaviour.

The behaviour of switching temporal networks, particularly those constructed from
empirical data, displays notable intermittency, complicating any analytical description of



56
Existing computational methods and their application to simulate spreading processes on

complex systems

spreading processes occurring on these networks. Consequently, the survival function
for the waiting time τ until the next event among all the processes denoted as Ψ(τ, t) =
exp
(
−
∫ t+τ

t a0(X(τ ′))dτ ′
)
, where a0(X(t)) is a propensity total as defined in 3.2, cannot be

straightforwardly inverted to sample the waiting time to the next event, as is typically done
in the direct method. To address this, the author suggests the use of unitless, normalised
waiting times τ̃ =

∫ t+τ

t a0(X(τ ′)),dτ ′. This normalised waiting time follows an exponential
distribution with an expected value of one. Since the temporal network undergoes discrete
changes with intervals of ∆n, a0(X(τ ′)) remains constant between these changes. To deter-
mine the interval in which the next event occurs, the algorithm compares the generated value
of τ̃ ∼ Exp(1) with the integral value

∫
∆n

t ′ a0(X(t)),dt.

Algorithm 4. Temporal SSA.
1: t = 0
2: Compute the sum of the reaction propensities a0 = ∑ j a j
3: i = 1
4: while i≤ n, t < TF do
5: Draw a normalized waiting time until the first event from a standard exponential

distribution τ̃ ∼ Exp(1)
6: accepted = FALSE
7: repeat
8: if ∆ia0 ≤ τ then
9: ▷ no reaction happened ◁

10: τ̃ = τ̃−a0∆i
11: t = t +∆i
12: i = i+1
13: Update propensities a j affected by changes in the temporal network and the

a0 accordingly
14: else
15: ▷ some reaction happened ◁

16: Calculate reaction time τ ′ =
τ̃

a0

17: Choose the firing reaction with probability
a j

a0
18: Execute chosen reaction
19: t = t + τ ′

20: accepted = TRUE
21: Update the remaining length of the present time window ∆i = ∆i− τ ′

22: Update propensities a j affected by changes in the temporal network and the
a0 accordingly

23: until accepted
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The algorithm operates by iterating through the list of discrete times at which the network
changes. Within each interval between network switches, it compares the normalised waiting
time τ̃ with the total instantaneous rate integrated over the time interval a0∆n. If τ̃ is greater
than or equal to a0∆n, nothing happens. After a0∆n is subtracted from τ̃ , the algorithm
proceeds to the next interval ∆n+1. On the other hand, if τ̃ is smaller than a0∆n, an event
occurs within the nth time window. The algorithm then determines the timing of the event,
selects the reaction channel responsible, updates the system, draws a new normalised waiting
time, and repeats the procedure.

The temporal Gillespie algorithm guarantees stochastic exactness, meaning that all
distributions and moments of a stochastic process evolving on a time-varying network,
obtained through simulations, converge to their exact values.

The expected complexity of the algorithm is O(⟨E(t)⟩n)+O(⟨F(t)⟩n), where n is a
number of discrete steps of the network change, ⟨E(t)⟩ is the mean number of contacts per
time-step and ⟨F(t)⟩ is the mean number of transitions that occur per time-step.

Djurdjevac Conrad et al. [84] applied the temporal Gillespie algorithm to explore the
spread of innovation within the context of human mobility. They introduced an event-based
variant of the algorithm tailored for a 2-state ABM. In this model, an agent’s state is binary:
either having adopted an innovation, indicated by state value 1, or not, represented by state
value 0 (analogous to the SI state compartments in epidemiological models). In their study,
the aspect of human mobility, which consequently shapes the contact network defined by the
agents’ positions, was simulated using the Euler–Maruyama scheme [123].

The authors have also proposed an extension allowing the incorporation of the adaptive
behaviour, which can be executed after the relevant transition reaction is performed (after
line 14 in Alg. 5).

A limitation of this method arises from the fact that the size of the discrete-time step ∆i

is determined by the network’s dynamics rather than the spreading dynamics. This can be
advantageous when the network dynamics are considerably slower or at least comparable
to the spreading dynamics. In such cases, it is reasonable to examine every time window
of network change to check whether the transition reaction has occurred. However, if the
network dynamics are significantly faster than the spreading dynamics, this approach can
lead to numerous network updates with very few transition reactions firing. Since the primary
research focus often lies on predicting spreading patterns, this approach may not be optimal.
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Algorithm 5. Temporal SSA variation.
1: t = 0
2: Init I (t) – the set of agents that have not adopted the innovation until time t.
3: Choose a time step ∆i of the network updates
4: Draw a normalised waiting time until the first event from a standard exponential distribu-

tion τ̃ ∼ Exp(1)
5: while t < TF and I (t) ̸=∅ do
6: update I (t)
7: compute adaption rates a j for each agent and its total a0
8: if ∆ia0 ≤ τ̃ then
9: Position update using Euler–Maruyama scheme for the time-step ∆i.

10: τ̃ = τ̃−a0∆i
11: t = t +∆i
12: else
13: Select the firing reaction (agent adopting the innovation) with the probability

a j

a0
14: Execute chosen reaction by changing the state of the chosen agent to 1

15: Calculate reaction time τ ′ =
τ̃

a0
16: Position update using Euler-Maruyama scheme for the time-step (t, t + τ ′)
17: t = t + τ ′

18: Draw a normalized waiting time until the first event from a standard exponential
distribution τ̃ ∼ Exp(1)

3.4.2 Extra reaction algorithm for networks in dynamic environments
(Extrande)

Proposed by Voliotis et al. [124], the extra reaction algorithm for networks in dynamic
environments (Extrande) allows the exact stochastic simulation of reaction-diffusion models
influenced by the time-dependent external process I(t). The dynamic of this external process
is initially assumed to be simulated in advance. The Extrande method uses the concept of the
total propensity upper bound B(TL) which is valid over a certain time interval TL. To generate
a tentative reaction time τ , the method employs this bound on total propensity, generating
a value from an exponential distribution: τ ∼ Exp(B(TL)). If the reaction time surpasses
the time horizon TL, it is discarded. Consequently, the time advances by TL, and the process
restarts by establishing a new bound.

Alternatively, if the reaction time falls within the time horizon, the actual propensities
a j (t + τ, I(t + τ)) and the total propensity a0 are calculated. Based on these values, the
reaction is either selected with a probability of a j/B(TL), or "thinned", meaning that none of
the reactions has fired and the state of the spreading process remains unchanged. The time
advances by τ .
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Algorithm 6. Extrande.
1: t = 0
2: Precalculate the dynamics of the background process I(t) for the time interval [0,TF ]
3: while t < TF do
4: Define look-ahead time TL ≤ TF − t
5: Define propensity upper bound B(TL) such as: a0(t +u)≤ B(TL) for u ∈ [0,TL]
6: Generate putative reaction time τ ∼ Exp(B(TL))
7: if τ > TL then ▷ leftyleft
8: ▷ reject ◁
9: t = t +TL

10: else
11: t = t + τ

12: Obtain the value I(t) from pre-simulated data, update all propensities a j (X , I(t))
that depend on I(t)

13: Compute a0 = ∑ j a j
14: Sample u∼U (0,1)
15: if a0 ≥ B(TL) ·u then
16: ▷ accept: ◁

17: Choose the next reaction with probability
a j

B(TL)
18: else
19: ▷ thin: network remains the same ◁

This algorithm enables one to incorporate the influence of diverse external processes on
the dynamics of spreading. The function I(t) employed to simulate the inputs relies on the
nature of the input processes. It could take the form of a deterministic solution of ordinary
or partial differential equations. It can also be the functions that return values on a discrete
grid, such as those obtained through the Euler–Maruyama method for stochastic differential
equations, or the states of the empirical contact network observed at some points in time.
The method, however, offers no possibility to incorporate adaptive dynamics, where the I(t)
can change in response to the spreading dynamics.

Unlike Vestergaard’s method, the step size in this approach is determined by the spreading
process itself, regulated by the look-ahead time TL and upper bound B(TL). By selecting this
bound appropriately, the frequency of "thinning" events can be minimised. Consequently, the
method can focus more on simulating the spreading process itself, improving computational
performance. Assuming that the upper bound B(TL) is determinable within a constant time,
and considering that the process I(t) is precomputed prior to the beginning of the simulation,
the computational complexity of the Extrande algorithm can be approximated as O(nsimM),
linear with regards to the total number of reactions M. However, the number of simulation
steps nsim depends upon the chosen value of B(TL). If B(TL) is set too high, numerous
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of "thinning" events result, thereby, increasing the number of simulation steps. Thus, the
selection of B(TL) demands careful consideration to optimise the efficiency and efficacy of
the simulation.

3.4.3 Event-based simulation algorithm

An event-based algorithm to simulate spreading dynamics on contact networks was proposed
by Holme [125]. It is based on the event-driven algorithm for SIR on static networks by Kiss,
Miller, and Simon [30] and connects to the next reaction method.

This algorithm is also based on the assumption that the dynamic of the temporal contact
network is known in advance and can be represented as a sequential collection of contacts
(vi,v j, t), meaning that individuals vi and v j were in contact at time t. Every interaction
between infected and susceptible nodes carries an equal contagion probability β . This
scenario is conceptualised as a Bernoulli process applied to these contacts, subject to specific
criteria. A contagion event occurs during the initial non-zero interaction following the
transition of a node pair to the susceptible-infected (SI) state, provided that the nodes remain
in the SI state at the time of this interaction.

The algorithm uses a priority queue Q to maintain a sorted sequence of potential infection
events, prioritising earlier occurrences to enhance computational performance.

The algorithm strategically avoids searching through all contact events between individu-
als vi and v j when determining the specific event where vi successfully infects v j. Instead, it
leverages the knowledge that the infection process between vi and v j can be modelled as a
finite sequence of binary random variables, following a Bernoulli process with a probability
of β . The number of these random variables corresponds to the number of contacts, denoted
as ni j(ti), between vi and v j for t > ti. Consequently, the probability that the k-th contact
transmits the disease is given by β (1−β k−1). To determine the value of the random variable
k, the algorithm samples a random number u from a uniform distribution in the range (0,1)
and computes k as

⌊
log(1−u)/log(1−β )

⌋
.

Notably, the author remarks that if there are too many contacts between two nodes, then
the distribution of inter-event times gets further from exponential.

The computational complexity of the algorithm expectedly depends on the density of
the network, and in the worst-case scenario when the contact network is dense, the time
complexity would be O(N2 logN logC), where N is the number of nodes and C is the total
number of contacts. The expected complexity for the sparse networks, when C≫ N, is
estimated as O(N logN logC).
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Algorithm 7. Event-based SIR algorithm.
1: Initialize and store contact data
2: Initialize infected nodes by placing them in queue Q with an initial infection event time

t = 0
3: while Q is not empty do
4: Extract the node vi with the smallest infection time from Q
5: for all v j – neighbours of vi do
6: if v j is Susceptible then
7: ▷ get the time τ j when it would be infected by vi ◁
8: From the contact list, find the index k of the contact between vi and v j with

the smallest timestamp, such that ti < ti, j

9: sample u∼U (0,1) and calculate k′ = k+

⌊
log(1−u)
log(1−β )

⌋
10: if k′ exceeds the number of contacts between vi and v j then
11: No contact will spread the disease.
12: else
13: The k′ths contact between vi and v j that could be contagious. Set τ j =

ti, j(k′)
14: if There is no earlier infection event of v j on the Q and

i’s recovery time is not earlier than τ j then
15: put the contagion of v j by vi in the Q
16:

3.5 Summary

This chapter synopsises contemporary stochastic simulation methods and their capacities for
simulating time-varying adaptive network behaviour. It categorises these methods into exact
algorithms, approximation algorithms, and a subgroup dedicated to incorporating the effects
of external processes, like contact dynamics in populations. While exact methods facilitate
the integration of behavioural responses and adaptivity without compromising accuracy,
approximation methods struggle with this integration, often introducing additional biases.
Moreover, methods that explicitly account for external processes typically presuppose known
or pre-simulated behaviour, constraining the integration of adaptive simulations. Despite
advancements in the modelling of dynamic environments, significant challenges persist in the
accurately simulation of spreading processes on time-varying adaptive networks. Therefore,
ongoing research and development are crucial to enhance the range and efficacy of methods
that can not only capture and simulate adaptive network behaviour, but also maintain time
efficiency.





Chapter 4

Designing a hybrid algorithm to simulate
spreading on temporal adaptive networks

4.1 Introduction

In the context of dynamic networks, the simulation of phenomena such as infectious disease
spread or information flow is challenging due to the dynamic nature of networks and the
complexity of the spreading processes. Traditional simulation methods frequently face
challenges in effectively capturing the dynamic interplay between spreading phenomena
and the evolving structure of the network, often resulting in significant computational
overhead. This chapter presents the stochastic simulation algorithm for effective spreading
dynamics simulation on time-evolving adaptive networx (SSATAN-X), a hybrid algorithm
developed to address these challenges in simulating spreading processes on temporal adaptive
networks. SSATAN-X combines innovative techniques to accurately and efficiently model
these dynamics.

The design of the SSATAN-X algorithm combines the precision of detailed spreading
simulations with the efficiency of more general approaches in simulating contact dynamics.
This balance allows SSATAN-X to offer significant computational advantages, allowing
it to handle the complexities of temporal adaptive network models without compromising
accuracy or speed.

The chapter provides insights into the core principles of the SSATAN-X algorithm. It
discusses the algorithm’s capabilities in simulating spreading and contact dynamics, high-
lighting the balance between precision and computational load. The chapter comprehensively
explains the algorithm’s methodology, complexity, and computational advantages.
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4.2 The idea

This study focusses on a class of models describing the propagation of a phenomenon within
a population, where the spread occurs stochastically through relevant interactions. Moreover,
the dynamics of these interactions are also subject to stochastic behaviour.

Consider a population denoted as P, which is partitioned into distinct compartments
represented by P=

⋃
iPi. Within this population, individuals are interconnected through

a network of contacts. As elaborated in chapter 2, the precise definition of a "contact"
can vary depending on the specific model and its intended purpose. For instance, in the
context of STDs, contact may refer to sexual interactions, while in the case of airborne
diseases, it may be associated with the spatial proximity between individuals. Importantly,
the interconnections among individuals within the population exhibit temporal variability,
as pairs of individuals can initiate or terminate contacts at different points in time. The
characteristics and attributes of individuals (e.g., age, sex, social status, profession, and other
individual-specific traits) can influence various aspects of contacts and spreading dynamics
within the model. This influence encompasses the quantity, duration, and intensity of contacts
experienced by each individual, as well as their susceptibility to and contagiousness of the
phenomenon under study. Additionally, the population under investigation may be subject to
vital dynamics, wherein new individuals are introduced (through births or migration from
external sources) or removed (through deaths or departures) from the population.

Within the population P, individuals can transition between different compartments Pi.
Notably, certain transitions depend upon the presence of specific contacts. For instance, in
the context of pathogen transmission, for an infected individual to transmit the pathogen to a
susceptible individual, thus transitioning an individual from the susceptible compartment to
the infected compartment, direct contact between the infected and susceptible individuals is
required.

Moreover, the spreading process can be influenced by various interventions that modify
the dynamics of contact. Additionally, individual behavioural changes may occur as a result of
transitioning to a particular compartment. For instance, in the context of disease transmission,
an individual who becomes aware of their infectious status or receives a diagnosis may
temporarily reduce or halt their contact activities to restrain further transmission.

This generalised formulation of the model provides a framework by which to understand
the spreading process with adaptive dynamics. In this framework, the dynamics of contacts
exhibit adaptability, wherein changes occur discontinuously, depending on the epidemic state.
This adaptive behaviour allows for a more realistic representation of the spreading process,
accounting for the dynamic nature of contacts and their dependency on the current state
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of the epidemic. It also allows for the incorporation of the impact of possible containment
measures.

The above-described model can be mathematically formulated as follows: population P

can be represented as a weighted temporal contact network, denoted as G(t) = {V (t),E(t)}.
Here, V (t) represents the set of nodes {v1(t),v2(t), ...,vN(t)} at a given time t. Each node
vk ∈ V corresponds to an individual pk from the population P and is assigned the set of
individual characteristics essential for the model (e.g., age, profession, and sex).

The set of edges is denoted as E(t) = {e jk(t)}, where e jk = (v j,vk;φ) for j ̸= k if
individuals v j and vk are in contact. The edges of the network can be either directed or
undirected. For simplicity, the undirected variant is considered in subsequent analysis,
although the transformation to a directed or mixed graph with both directed and undirected
edges can be easily implemented. The graph G(t) is a simple graph, meaning it neither
possesses multiple edges connecting the same pair of nodes nor contains loops. The weight
φ = {φ1, ...φs} represents a set of parameters specific to this interaction. For instance, it
can include the rate of virus transmission between individuals v j and vk. In addition, each
existing edge in the network is assigned a disassembly rate, representing the probability of
the edge being removed. Conversely, each possible, but not yet existing edge is assigned an
establishment rate, representing the probability of a new edge being formed.

The evolution of the complex system G(t) is governed by a continuous-time Markov
process denoted as Xt . The events in this process can be categorised into two main groups:

1. Contact dynamics Rc = {R+,R−}

• R+ = {R+
jk,λ

+
jk} – assembly of a new contact. For each pair of nodes (v j,vk),

where j ̸= k and there is no existing edge, an edge can be formed with the rate
λ
+
jk.

• R− = {R−jk,λ
−
jk} – disassembly of an existing contact. Each edge connecting a

pair of nodes (v j,vk), where j ̸= k, can be disassembled with the rate λ
−
jk.

2. Population dynamics Rs includes, but is not limited to the following types of reactions:

• RPi→P j = {RPi→P j
k ,γ

Pi→P j
k } – transition of the individual node vk from com-

partment Pi to the compartment P j happens with the corresponding rate γ
Pi→P j
k .

• R∅→Pi = {R∅→Pi
k ,βPi} – birth or introduction of a new individual in the com-

partments Pi happens with the corresponding rate βPi .

• RPi→∅ = {RPi→∅
k ,ρPi} – death or departure of an individual from the compart-

ments Pi happens with the corresponding rate ρPi .
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3. Intervention measures and adaptive behaviour change. Although not typically stochas-
tic reactions themselves, but are integral to population dynamics due to their close
association with these processes.

The events within the group Rs can be either contact-dependent or contact-independent. If
the event is contact-dependent, its occurrence rates may vary based on the current state of
the contact network G(t). For instance, in SI or SIR state space models, the transition of a
node vk from the susceptible (S) to the infectious (I) compartment is directly influenced by
its contagious contacts. An example of a contact-independent event is the death of a node
vk, not influenced by the quantity or quality of its contacts at the time of death, but rather
depending on its individual status.

Given the significant heterogeneity within the population, it is logical to approach these
as agent-based models. In this approach, every individual in the population is treated as a
distinct agent, and state change of each agent is treated as an individual reaction. Additionally,
each interaction between agents is considered an individual reaction, acknowledging the
individuality and uniqueness of agent behaviours and interactions within the system. This
ABM framework allows for a more detailed and realistic representation of the complex
dynamics arising from the heterogeneity present in the population.

The fundamental concept of the proposed algorithm is to divide the stochastic process
Xt into two distinct processes: Yt and Zt . The process Yt focusses on contact dynamics,
encompassing all reactions Rc as previously described, concentrating on events involving
the formation of new contacts and the dissolution of existing ones. On the other hand, the
process Zt governs reactions Rs related to population dynamics, as well as the adaptive
changes triggered by this reactions. It captures the dynamics associated with the spread of
the epidemic, as well as other relevant factors such as vital dynamics, intervention measures,
and adaptive behavioural changes.

The algorithm then introduces a putative reaction time ∆t for the first reaction of the
process Zt , which acts as a reference point. This reference point allows for the independent
simulation of the contact dynamics process Yt , either exactly or approximately, up to this
predetermined time ∆t, without needing to account for any potential impact on the process Zt .
This process distinction allows for detailed study of how the phenomenon spreads within the
population, without the need for precise control of the temporal contact dynamics captured
by Yt .
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Fig. 4.1. Methods for simulating spreading processes on networks. Two processes
Y |Z : E → E and Z|Y : V → V are considered. The process Y |Z affects the edges E of the
network. It governs the topology and contact dynamics within the network. The second
process Z|Y rules the V (population and spreading dynamics), focussing on how the state
(e.g., infected, susceptible) of each node evolves based on the network’s topology and other
nodes’ states. (A) Exact stochastic simulation [126] of spreading processes on adaptive
networks. In this approach, every change of the network, either topological or populational,
is explicitly modelled. This includes every contact alternation, and the state of the nodes
(empty circles vs. filled red circles). (B) Hybrid approach of SSATAN-X: The proposed
method is more focussed on the overall effect of topological changes on spreading dynamics.
It prioritises understanding how changes in network connections influence the spread of
an epidemic. An upper bound BL is computed such that BL ≥ ∑ j∈Z a j(V,E). Then, time-
step ∆(BL) of the first possible reaction is chosen. This choice reassures that no contact
change leads to an earlier putative time than ∆(BL). The network topology for the time step
∆(BL)∼ exp(BL) is either mass-updated using the approximate method or explicitly updated
with methods such as NRM [103]. A change the node state is conducted if u ≤ a0,Z/BL;
u∼U (0,1) and a0,Z = ∑ j∈Z a j(V,E).
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4.3 Exact simulation of spreading process: Extrande ap-
proach

Introduced by Voliotis et al. [124], the Extrande algorithm, was initially proposed for
simulating well-stirred chemical systems, where interactions could occur between any pair
of chemical particles – agents. This work extends the algorithmic concepts to dynamic
contact networks, which more accurately represent the interaction patterns among agents
over time. Unlike the well-stirred assumption of universal interaction potential, dynamic
contact networks introduce a realistic element of sparsity and variability, determining which
agents are in contact at specific instances.

The adaptation of the algorithm for dynamic, adaptive contact networks enables the
simulation of systems with changing interaction patterns, facilitating a detailed exploration
of complex behaviours emerging from these evolving dynamics. Moreover, a proposed
concept combines the principles of the Extrande algorithm with mechanisms for efficient and
independent updating of the contact network topology. This update can be performed using
approximate methods, capable of handling multiple contacts simultaneously, significantly
reducing the computational burden associated with individual contact updates in large
systems. Alternatively, the contact structure can be updated using exact stochastic simulation
algorithms, such as the next reaction method. In this case, until the proposed putative time
∆t, contact updates inflict no impact on the process Zt , allowing one to minimise the number
of propensity updates in the priority queue Q impacted by the contact changes.

By merging the Extrande approach with contact dynamics updating techniques, this
method allows efficiency and accuracy to be balanced in simulating spreading processes.
This hybrid approach opens new possibilities for researchers to simulate and analyse complex
systems with evolving contact networks in a computationally manageable way.

4.3.1 Algorithm

The pseudocode of the enveloping SSATAN-X algorithm is presented in the Algorithm 8.
In this outline, line 3 defines the look-ahead time TL. As suggested in [124], a safe choice
for the look-ahead time horizon is TL = TF − t, where TF represents the final time of the
simulation. However, researchers can choose a tighter estimation of the look-ahead time if
necessary for specific modelling needs.

For the time span [t, t + TL], the upper limit B(TL) for the total reaction propensities
associated with the process Zt encompassing both epidemic and vital dynamics, is calculated
in line 4. In other words, B(TL) is selected such that as

0(t +h) ≤ B(TL) for any h ∈ [0,TL].
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Algorithm 8. SSATAN-X envelope algorithm.
Input TF , G(0)

1: t = 0
2: while t < TF do
3: Define look-ahead time TL = TF − t
4: Define propensity upper bound B(TL), as detailed in Section 4.3.2 :
5: Sample ∆t ∼ Exp(B(TL))
6: if ∆t > TL then
7: ▷ reject ◁
8: t = t +TL
9: Update the edges of G(t) for time interval [t, t +TL] if necessary.

10: else
11: Update the contacts of G(t) for time interval [t, t+∆t] using exact or approximate

algorithms.
12: t = t +∆t
13: Compute reaction propensities as

j of the reactions Rs, based on the current net-
work G(t);

14: Compute as
0 = ∑ j as

j
15: Sample u∼U (0,1)
16: if as

0 ≥ B(TL) ·u then
17: ▷ accept: ◁

18: Choose the ℓ-th reaction with probability
aℓ

B(TL)
19: Execute chosen reaction
20: Execute adaptivity step if required
21: else
22: ▷ thin: network remains the same ◁

Here as
0 denotes a total of the reaction propensities within the group Rs. As the parameter

B(TL) provides an upper bound for the sum of all reaction propensities of the reactions from
the subgroup Rs within the specified time interval, this upper bound is specific to the particular
model under consideration. A large upper bound value may lead to an increased number of
"thinning" events (line 22), potentially impacting the efficiency of the algorithm. Maintaining
a balance and selecting an appropriate upper bound is crucial to optimise the algorithm’s
performance and computational efficiency. Section 4.3.2 discusses various approaches, each
with differing levels of accuracy, for selecting an upper bound.

The constant B(TL) is then used to propose the time to the next reaction, denoted as ∆t
in line 5 of the algorithm. Due to B(TL) being an upper bound, the proposed time to the
next reaction event might be shorter than the actual time to the next reaction. This apparent
underestimation is addressed through the subsequent "thinning" step, as outlined in lines
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21–22 of the algorithm. This step ensures that the statistics of the process are preserved. For
more detailed information, please refer to Voliotis et al. [124].

If the proposed time step ∆t falls within the look-ahead horizon TL, the simulation time
t is updated by ∆t in line 12. At this stage, it is necessary to update the actual propensity
functions as

j and their total as
0. As some or all of these reactions depend on the contacts

between individuals, it is necessary also to update the actual contact state. For this purpose,
the contact dynamics (edges) of the network G(t) are updated in line 11 using approaches
further discussed in sections 4.4 and 4.5. Additionally, the next reaction event, which updates
or "thins" the state of the nodes in the epidemic process, is selected in lines 15–22. The
adaptivity step in line 20 accounts for any significant changes to the contact network that
may occur as a result of a change in population dynamics. For example, change in the
epidemic state of the particular individual may lead to them "isolating" (i.e., cutting all
existing contacts immediately).

4.3.2 Estimation of the upper bound

The parameter B(TL) establishes an upper limit on the sum of reaction propensities as
0 of

the reactions in Rs within the time interval [t, t +TL]. Using the terminology of section 4.2,
this upper limit can be represented as B(TL) = ∑R∈Rs BR(TL) = BPi→P j(TL)+B∅→Pi(TL)+

BPi→∅(TL)+ . . .. In simpler terms, the upper bound for the total reaction propensities of all
reactions in Rs is the sum of the upper bounds for the reaction propensities of each reaction
type (transition, death, birth, etc.).

Certain reaction types are independent of the interactions between individuals, meaning
they do not rely on the current state of the contact network at any point in time. For these
types, the propensities upper bound can be straightforwardly calculated, as it is equal to the
propensities total of all individual reactions of that type: aRs

0 = ∑p∈P aRs

p (t).
In contact-dependent reactions, accurate estimation of the upper bound of propensities

relies heavily on the determination of the maximum possible number of edges or contacts
Emax(TL) that could potentially lead to the occurrence of such reactions within the look-ahead
interval [t, t +TL]. To illustrate this concept, let us examine the S-I (i.e., susceptible-infected)
transmission reaction represented as Si + I j→ Ii + I j. On an individual or agent level, this
representation indicates a susceptible individual (Si) became infected (Ii) due to the interaction
with an infected individual (I j). Therefore, to accurately estimate the upper bound for the
total of all the S-I transmission reactions, it is necessary to estimate the maximum number of
edges or contacts between susceptible and infected individuals that could occur during the
duration of TL.
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Several approaches for estimating the quantity Emax(TL) are described below. For the
purpose of simplicity, these approaches are explained using the above example of pathogen
transmission Si + I j→ Ii + I j where an infected individual (I j) transmits the pathogen to a
susceptible individual (Si).

Naive approaches. Though simplistic, one initial approach rests on the understanding
that the maximum number of contacts Cmax

j an individual (node) v j can have at any given
time-point t is constrained by the maximum size of the population, N, and is calculated
as N−1. Nevertheless, the actual limitation on contacts varies depending on the specific
phenomenon being modelled. For instance, Kretzschmar et al. [35] has demonstrated that the
number of sexual partnership contacts an individual has is considerably lower than the overall
population size. Knowing this, a rough estimation of Emax(TL) can be achieved by summing
the maximum number of contacts for each infected individual: Emax(TL) =∑vk∈I Cmax

k , where
the summation is performed over the subset of infected individuals, denoted by I.

However, this estimation overlooks the size of the susceptible population, which can
provide valuable information for refining the upper bound estimation. The overall population
size imposes constraints on the number of susceptible individuals and, consequently, the
number of potential transmission edges in the network. Thus, an improvement can be
made by considering Emax(TL) = min

(
∑vk∈I Cmax

k ,∑vk∈SCmax
k

)
. This approach considers

the minimum value between the total possible number of edges originating from infected
individuals and the total possible number of edges directed toward susceptible individuals. By
considering both population compartments, a more accurate estimation of the upper bound
for potential contacts between susceptible and infected individuals during the look-ahead
time TL can be obtained.

Another approach to estimating the upper bound of potential contacts is to calculate it as
Emax(TL) = NI ·NS, where NI represents the number of infected individuals and NS represents
the number of susceptible individuals. This approach calculates the maximum possible
number of contacts between infected and susceptible populations. Notably, this estimation
may provide acceptable results for models where Cmax

k is comparable to the population size N.
However, for scenarios where Cmax

k ≪N, this approach tends to significantly overestimate the
maximum number of potential contacts Emax(TL), yielding the upper bound of the reaction
rate B(TL). This means B(TL)≫ a0, resulting in numerous "thinning" events (referring to
line 22 in Algorithm 8) during the algorithm’s execution. Consequently, the efficiency of the
algorithm can be compromised.

Tighter estimates of B(TL). This work introduces more precise estimations for Emax(TL)

and consequently for B(TL). When considering each node independently, the individual
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contact dynamics of a node – edge gaining and losing – can be described as follows:

∅
λ̂
+
j (C

max
j −C j)

−−−−−−−−→C j, C j
λ̂
−
j−−→∅, j = 1 . . .N,

where C j denotes the existing contacts of the node v j, rates λ̂
+
j = ⟨λ+

i j ⟩, for all vi not
connected to v j and λ̂

−
j = ⟨λ−i j ⟩ for all vi connected to v j denote the average rates of gaining

and losing an edge respectively for the node v j.
The evolution equation for the expected number of edges of the node v j is then given as

such:
dE[C j(t)]

dt
= λ̂

+
j (C

max
j −E[C j(t)])− λ̂

−
j E[C j(t)], (4.1)

with initial condition E[C j(t0)] =C j(t0).
For readability, equation (4.1) can be re-written as follows:

dE[C j(t)]
dt

= λ̂
+
j Cmax

j − (λ̂+
j + λ̂

−
j )E[C j(t)]. (4.2)

This linear ODE, describing the evolution of the expected number of edges of the node v j,
can be solved analytically for the time interval t ∈ [t0, t0 +TL]:

E[C j(t)] =
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−

(
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−C j(t0)

)
· exp

(
−(λ̂+

j + λ̂
−
j )t
)

(4.3)

However, to predict the upper bound of the number of contacts, it is crucial to consider
fluctuations around this expectation. Given that the standard deviation is the square root of
the variance of the number of edges of the node v j, ±

√
V[C j(t)], it becomes necessary to

also establish a time-evolution equation for the variance V[C j(t)]. The variance V[C j(t)] can
be described with the following equation:

V[C j(t)] = E[C2
j (t)]−E2[C j(t)]. (4.4)

The time-evolution equation of the expectation E[C j(t)] was derived in (4.3). However,
the E[C2

j (t)] remains unknown. As presented in the [12], the equation for the variance can
also be represented using the equation of the second moment V [C j(t)]. Using the knowledge
that second moment can be represented with the equation

V [C j(t)] = E[C2
j (t)]−E[C j(t)], (4.5)
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equation (4.4) of the variance V[C j(t)] can be rewritten as follows:

V[C j(t)] =V [C j(t)]+E[C j(t)]−E2[C j(t)]. (4.6)

ODE for the second moment V [C j(t)], according to [12], takes the following form:

dV [C j(t)]
dt

=−2(λ̂+
j + λ̂

−
j )V [C j(t)]+2λ̂

+
j Cmax

j E[C j(t)]. (4.7)

Upon substituting equation (4.3) for the expectation E[C j(t)] into equation (4.7), the
following equation is derived:

dV [C j(t)]
dt

=−2(λ̂+
j + λ̂

−
j )V [C j(t)]+

+2λ̂
+
j Cmax

j

(
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−

(
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−C j(t0)

)
· exp

(
−(λ̂+

j + λ̂
−
j )t
))

,

which can be re-ordered:

dV [C j(t)]
dt

=−2(λ̂+
j + λ̂

−
j )V [C j(t)]+

2(λ̂+
j )

2(Cmax
j )2

λ̂
+
j + λ̂

−
j

−

−2λ̂
+
j Cmax

j

(
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−C j(t0)

)
· exp

(
−(λ̂+

j + λ̂
−
j )t
)
.

(4.8)

Next, the initial condition V [C j(t0)] must be formulated. It is known that V[C j(t0)] = 0
and E[C j(t0)] =C j(t0). Substituting these values into equation (4.6), it can be derived that
V [C j(t0)] = C2

j (t0)−C j(t0). Given these initial condition, equation (4.8) can be solved
analytically for the time interval t ∈ [t0, t0 +TL]:

V [C j(t)] =
(λ̂+

j Cmax
j )2

(λ̂+
j + λ̂

−
j )

2
−

2λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

(
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−C j(t0)

)
· exp

(
−(λ̂+

j + λ̂
−
j )t
)
+

+

(
C2

j (t0)−C j(t0)+
(λ̂+

j Cmax
j )2

(λ̂+
j + λ̂

−
j )

2
−

2λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

C j(t0)

)
· exp

(
−2(λ̂+

j + λ̂
−
j )t
)
.

(4.9)
Resubstituting equations (4.3) and (4.9) into equation (4.6), the following equation for the
time-evolution of the variance V[C j(t)] of the expected number of edges of the node v j can
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be derived:

V[C j(t)] =
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−

(
λ̂
+
j Cmax

j

λ̂
+
j + λ̂

−
j

−C j(t0)

)
· exp

(
−(λ̂+

j + λ̂
−
j )t
)
−

−C j(t0) · exp
(
−2(λ̂+

j + λ̂
−
j )t
)
.

(4.10)

Comparing this equation with equation (4.3), it can be seen that

V[C j(t)] = E[C j(t)]−C j(t0) · exp
(
−2(λ̂+

j + λ̂
−
j )t
)
. (4.11)

In this example, the assumption is made that the edge-assembling and -disassembling
process for each node is a linear Poisson process, similar to the birth-death process. Con-
sequently, the number of edges for a single node v j is governed by a Poisson distribution
P(α)[127] with α = λ

+
j Cmax

j /(λ+
j + ˆλ− j). From Chebyshev’s Inequality [128], it can

be derived that for non-normally distributed variables at least 88.8% of values of the C j(t)
– the number of contacts of node v j at a given timepoint t – will fall within the interval
E[C j(t)]±3

√
V[C j(t)]. However, the Poisson distribution P(α) is primarily unimodal,

albeit certain parameter values lead to two adjacent values having equal probability. In
such cases, the Vysochanskij–Petunin inequality, which extends Chebyshev’s Inequality to
unimodal distributions, can be more appropriate [129]. Applying this inequality suggests that
the likelihood of values C j(t) falling within the interval E[C j(t)]±3

√
V[C j(t)] is at least

95%.
Because the main focus is on finding the upper bound for the number of contacts C j(t),

the interval of interest can be described as
[
0,E[C j(t)]+3

√
V[C j(t)]

]
. The observations

made during this study (Fig. 4.2) allow for the conclusion that at least 95% of values C j(t)

are falling within an even tighter interval of
[
0,E[C j(t)]+2

√
V[C j(t)]

]
. To find the exact

probability of a value C j(t) from a Poisson distribution with mean α falls within a given
interval, the cumulative distribution function (CDF) is used:

Pr
(

C j(t)≤ E[C j(t)]+2
√

V[C j(t)]
)
= exp(−α)

E[C j(t)]+2
√

V[C j(t)]

∑
k=0

αk

k!
. (4.12)

As t increases, V[C j(t)]→ E[C j(t)] and E[C j(t)]→ α , and (4.12) takes form:

Pr
(
C j ≤ α +2

√
α
)
= exp(−α)

α+2
√

α

∑
k=0

αk

k!
.
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For smaller values of α the Poisson distribution P(α) is notably skewed towards the left,
concentrating around 0. This makes the considered interval more likely to include these
high-probability values. For larger values of α (typically α > 20), the Poisson distribution
P(α) can be approximated with a normal distribution N (α,α). This approximation
allows the application of the "two sigma rule" suggesting that about 95% of the values
fall within E[C j(t)]±2

√
V[C j(t)]. Since the focus is on the upper bound, considering⌈

E[C j(t)]+2
√

V[C j(t)]
⌉

, it can be expected to cover > 95% of values by looking at the

approximate 97.5th percentile in the time interval t ∈ [t0, t0 +TL]. The time evolution of the
upper border of this approximate percentile is,

Fj(t) =E[C j(t)]+2
√

V[C j(t)] =

=E[C j(t)]+2
√

E[C j(t)]−C j(t0) · exp
(
−2(λ̂+

j + λ̂
−
j )t
)
,

(4.13)

where E[C j(t)] is given by equation (4.3).
Knowing that, the maximum number of contacts C∗j for a particular node v j during

look-ahead time can be estimated:

C∗j = max
t∈[t0,t0+TL]

(⌈
Fj(t)

⌉)
. (4.14)

Fj(t) has one point of extremum:

t∗ =

ln

(B jK j−A j)
√

4B2
jK j +(A j−B jK j)2 + |A2

j −B2
jK

2
j |

2B jK j

√
4B2

jK j +(A j−B jK j)2


−B j

, (4.15)

where A j = λ̂
+
j Cmax

j , B j = λ̂
+
j + λ̂

−
j and K j =C j(t0).

This point t∗ exists if B,K > 0, A≥ 0 and BK > A; therefore,

C∗j = max
(⌈

Fj(t0)
⌉
,
⌈

Fj(t∗)
⌉
,
⌈

F(TL)
⌉)

. (4.16)

Alternatively, if F(t) is assumed to be monotonic:

C∗j ≈max
(⌈

Fj(t0)
⌉
,
⌈

F(TL)
⌉)

. (4.17)

While this above-stated formula can already be used to estimate the upper bound of the
number of contacts, it is logical also to consider the limitation given by the maximum number
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Fig. 4.2. Proportion of random variables smaller than the expected value plus two
standard deviations in a Poisson distribution. The graphic depicts for random variables X ,
drawn from a Poisson distribution with expectation values α , the percentile of values that the
random variable is smaller than

⌈
α +2 ·

√
α

⌉
.

of contacts for each node:

C∗j = min
(
C∗j ,C

max
j
)
= min

(
max

(⌈
Fj(t0)

⌉
,
⌈

Fj(t∗)
⌉
,
⌈

F(TL)
⌉)

,Cmax
j

)
. (4.18)

The estimation of the upper bound of the contact-dependent reaction Si + I j→ Ii + I j can
be calculated as follows:

BS→I(TL) = min

(
∑

vk∈I
C∗k , ∑

vk∈S
C∗k

)
·max(γ), (4.19)

where S denotes the susceptible fraction of the population I denotes the infected fraction and
max(γ) – maximum possible transmission rate.
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4.3.3 Proof of correctness

At a particular time point, given the present system state, it is possible to calculate the
probability distribution for the firing time of a specific reaction from Rs, which results in a
change in the population state. This section, partially adapted from [121], aims to demonstrate
that the distribution of the firing time of such a reaction, as generated by the SSATAN-X
envelope algorithm, is identical to the authentic probability distribution generated by the
system. It is assumed the background contact dynamics are simulated with the required level
of precision.

Proposition 5. The SSATAN-X envelope algorithm (Algorithm 8) is an exact simulation
algorithm of the spreading process Yt with reactions Rs if a constant B(TL) exists, such that
as

0(t)≤ B(TL) for any t ∈ [t0, t0 +TL].

Proof. Without loss of generality, the reaction Rs
1 with propensity as

1 is selected as the target
reaction for this analysis. Denote the CDF of the putative time τ to the next firing of reaction
Rs

1 given the state of the network G(t0) as FRs
1

(
τ | G(t0), t0

)
. Using the property of the CDF

and the definition of the derivative, the probability density function (PDF) fRs
1

(
τ | G(t0), t0

)
can be represented:

fRs
1

(
τ | G(t0), t0

)
=

∂FRs
1

(
τ | G(t0),T0

)
∂τ

= lim
∆τ→0

FRs
1

(
τ +∆τ | G(t0), t0

)
−FRs

1

(
τ | G(t0), t0

)
∆τ

.

(4.20)
The term FRs

1

(
τ +∆τ | G(t0), t0

)
−FRs

1

(
τ | G(t0), t0

)
is the probability that no events of

the populational dynamics Rs occurs in the time interval [t0, t0 + τ] and the first event occurs
in the small interval (t0 + τ, t0 + τ +∆τ]. The probability of no events over the entire interval
[t0, t0 + τ] can be represented as the product of the probabilities of no event in each infinitely
small subinterval of length h and the probability that an Rs

1 event occurs in the small interval
(t0 + τ, t0 + τ +∆τ]:

FRs
1

(
τ +∆τ | G(t0), t0

)
−FRs

1

(
τ | G(t0), t0

)
= lim

h→0

τ/h−1

∏
i=0

(
1−has

0(t0 + ih)
)
·as

1(t0 + τ)∆τ.

(4.21)
Substituting (4.21) into (4.20), the following representation of the density function fRs

1

(
τ |

G(t0), t0
)

is derived:

fRs
1

(
τ | G(t0), t0

)
= lim

∆τ→0
lim
h→0

( τ/h−1

∏
i=0

(
1−has

0(t0 + ih)
))as

1(t0 + τ)∆τ

∆τ
. (4.22)
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Consider

A = lim
h→0

τ/h−1

∏
i=0

(
1−has

0(t0 + ih)
)
.

Taking the natural logarithm on both sides:

lnA = lim
h→0

τ/h−1

∑
i=0

ln
(

1−has
0(t0 + ih)

)
.

For small values of h, has
0(t0 + ih) is also small. Using the Taylor series expansion for

ln(1− x) around x = 0, which is ln(1− x)≈−x:

lnA≈− lim
h→0

τ/h−1

∑
i=0

has
0(t0 + ih).

As h→ 0, the summation becomes an integral:

lnA =−
∫ t0+τ

t0
as

0(t)dt. (4.23)

Substituting A into equation (4.22) gives the desired equation for the PDF of the putative
waiting time τ to the next firing of reaction Rs

1:

fRs
1

(
τ | G(t0), t0

)
= as

1(t0 + τ)exp
(
−
∫ t0+τ

t0
as

0(t)dt
)
. (4.24)

Now consider the probability distribution of the waiting time τ generated by the SSATAN-X
envelope algorithm, denoted further as gRs

1

(
τ | G(t0), t0

)
. The constant B(TL) is chosen such

that it satisfies the condition B(TL)≥ as
0(t) for all t ∈ [t0, t0 +TL].

With the introduction of a look-ahead horizon TL, the next firing time τ for the reaction Rs
1

falls into one of two categories: either τ ≤ TL or τ > TL. In the first case, the rejection, outlined
in lines 6 – 9 is infeasible due to how the next putative time ∆t is generated. Therefore,
there are following possibilities: (i) Time-step ∆t is accepted, and reaction Rs

1 fires with the
probability as

1(t0+∆t)/B(TL). In this scenario it is considered that ∆t ≡ τ , and the probability
of this event is as

1(t0 + τ)/B(TL) ·B(TL)exp(−B(TL) · τ) = as
1(t0 + τ) · exp(−B(TL) · τ). (ii)

Thinning channel fires with probability (B(TL)− as
0(t0 +∆t))/B(TL) ·B(TL)exp(−B(TL) ·

∆t) = (B(TL)−as
0(t0 +∆t)) · exp(−B(TL) ·∆t). Subsequently, the time gets updated on ∆t,

and the PDF of the next firing time gRs
1

(
τ |G(t0), t0

)
becomes gRs

1

(
τ−∆t |G(t0+∆t), t0+∆t

)
.

Notably, after updating time t, a new look-ahead horizon and corresponding value of B(TL) are
recalculated. Thinning implies that ∆t < τ . To account for all possible values of ∆t with limits
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(0,τ), definite integral is employed:
∫

τ

0 (B(TL)−as
0(t0+∆t)) ·exp(−B(TL) ·∆t) ·gRs

1

(
τ−∆t |

G(t0 +∆t), t0 +∆t
)
d∆t.

In the case of τ > TL, time-step ∆t generated in line 5 faces rejection with the proba-
bility exp(−B(TL) ·TL). Consequently, time t advances by TL, and the pdf gRs

1

(
τ | G(t0), t0

)
transforms into gRs

1

(
τ −TL | G(t0 +TL), t0 +TL

)
. If the generated value of ∆t is too small,

the thinning event will fire again. A similar definite integral as in the previous scenario is
employed to account for all possible values of ∆t with limits (0,TL):

∫
τ

0 (B(TL)− as
0(t0 +

∆t)) · exp(−B(TL) ·∆t) ·gRs
1

(
τ−∆t | G(t0 +∆t), t0 +∆t

)
d∆t.

Considering these factors, the recursive equation for the gRs
1

(
τ | G(t0), t0

)
can be formu-

lated:

gRs
1

(
τ | G(t0), t0

)
=



∫
τ

0
(B(TL)−as

0(t0 +∆t)) · exp(−B(TL) ·∆t) ·gRs
1

(
τ−∆t | G(t0 +∆t), t0 +∆t

)
d∆t+

+as
1(t0 + τ) · exp(−B(TL) · τ), if τ ≤ TL,∫ TL

0
(B(TL)−as

0(t0 +∆t)) · exp(−B(TL) ·∆t) ·gRs
1

(
τ−∆t | G(t0 +∆t), t0 +∆t

)
d∆t+

+ exp(−B(TL) ·TL) ·gRs
1

(
τ−TL | G(t0 +TL), t0 +TL

)
, if τ > TL.

(4.25)
To show that fRs

1

(
τ | G(t0), t0

)
= gRs

1

(
τ | G(t0), t0

)
, substitute (4.24) into (4.25). Here,

fRs
1

(
τ−∆t | G(t0 +∆t), t0 +∆t

)
= as

1(t0 + τ)exp
(
−
∫ t0+τ

t0+∆t
as

0(t)dt
)
,

fRs
1

(
τ−TL | G(t0 +TL), t0 +TL

)
= as

1(t0 + τ)exp
(
−
∫ t0+τ

t0+TL

as
0(t)dt

)
.

(4.26)
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Now consider∫
τ

0
(B(TL)−as

0(t0 +∆t)) · exp(−B(TL) ·∆t) · fRs
1

(
τ−∆t | G(t0 +∆t), t0 +∆t

)
d∆t =

=
∫

τ

0
(B(TL)−as

0(t0 +∆t)) · exp(−B(TL) ·∆t) ·as
1(t0 + τ)exp

(
−
∫ t0+τ

t0+∆t
as

0(t)dt
)

d∆t =

= as
1(t0 + τ)

∫
τ

0
(B(TL)−as

0(t0 +∆t)) ·
[
exp(−B(TL) ·∆t) · exp

(
−
∫ t0+τ

t0+∆t
as

0(t)dt
)]

d∆t =

= as
1(t0 + τ)

∫
τ

0
(B(TL)−as

0(t0 +∆t)) · exp
(
−B(TL) ·∆t−

∫ t0+τ

t0+∆t
as

0(t)dt
)

d∆t =

= as
1(t0 + τ)

∫
τ

0
(B(TL)−as

0(t0 +∆t)) · exp
(
−
∫ t0+τ

t0
B(TL)dt +

∫ t0+τ

t0+∆t
(B(TL)−as

0(t))dt
)

d∆t =

= as
1(t0 + τ) · exp(−B(TL) · τ)

∫
τ

0
(B(TL)−as

0(t0 +∆t)) · exp
(∫ t0+τ

t0+∆t
(B(TL)−as

0(t))dt
)

d∆t =

= as
1(t0 + τ) · exp(−B(TL) · τ)

(
exp
(∫ t0+τ

t0
(B(TL)−as

0(t))dt
)
−1
)
.

(4.27)
Similarly,

∫ TL

0
(B(TL)−as

0(t0 +∆t)) · exp(−B(TL) ·∆t) · fRs
1

(
τ−∆t | G(t0 +∆t), t0 +∆t

)
d∆t =

= as
1(t0 + τ) · exp(−B(TL) · τ)

(
exp
(∫ t0+τ

t0
(B(TL)−as

0(t))dt
)
− exp

(∫ t0+τ

t0+TL

(B(TL)−as
0(t))dt

))
.

(4.28)
By substituting (4.26), (4.27), and (4.28) into (4.25), it can be seen that equality holds.

Thus, the distribution of the firing time of the reaction Rs
1 is simulated exactly by the

SSATAN-X envelope algorithm 8. Consequently, the aforementioned conclusion holds for
all reactions Rs. With a mathematical induction, it is easy to prove the equality of the density
function

fSSATAN−X(τ1,Rs
1,τ2,Rs

2, · · · ,τn,Rs
n) = f (τ1,Rs

1,τ2,Rs
2, · · · ,τM,Rs

M),

where fSSATAN−X(τ1,Rs
1,τ2,Rs

2, · · · ,τn,Rs
M), f (τ1,Rs

1,τ2,Rs
2, · · · ,τn,Rs

M) represent the proba-
bility density function of the SSATAN-X envelope algorithm and the network respectively,
that reaction Rs

i fires at τi for all i = 1, · · · ,M. Therefore, the SSATAN-X envelope algorithm
is exact for the population dynamics reactions, given B(TL) is correctly selected and contact
dynamics is correctly simulated.
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4.3.4 Computational complexity

In the context of stochastic simulations, it is most interesting to consider the expected com-
plexity given a set of parameters (e.g., the mean running time of an algorithm averaged over
an ensemble of simulations), not the worst-case complexity usually considered for determin-
istic algorithms. This sections provides detailed estimation of the expected complexity of the
SSATAN-X envelope algorithm.
Lines 3–5. The definition of the look-ahead time-horizon (line 3) and the determination of the
next putative time ∆t (line 4) both can be executed in constant time with a complexity of O(1).
Similarly, calculating the propensity upper bound (line 3) using any of the methods suggested
in the previous section can be accomplished in constant time. One approach to achieve this is
to store the mean edge-addition/deletion rate instead of computing it repetitively for each
calculation.
Line 8. Updating time in case of the ∆t exceeding the look-ahead time-horizon is also a
constant time operation.
Line 9. The complexity associated with updating the network topology for the time interval
[t, t +TL] is determined by the specific algorithm employed for this task. To account for its
general nature, this complexity will be denoted as Φ, where the actual value it takes depends
essentially on the chosen algorithm. The value of Φ for certain algorithms is discussed in the
further sections.
Line 11. As with line 9, the complexity of this operation is denoted as Φ.
Line 12. Advancing the time by a time step ∆t is a constant time operation with a complexity
of O(1).
Lines 13–14. The complexity of the propensities update and calculation of their total is
generally each O(MRs).
Line 18. To identify the reaction channel Rs

ℓ responsible for generating the event, it is
necessary to iterate through approximately half of the list of event rates on average. Conse-
quently, this step requires a time complexity of O(MRs), where MRs denotes a total number
of populational dynamics reactions Rs.
Line 19. The execution of the chosen reaction Rs

ℓ can generally be done in constant time.
Line 20. Performing the adaptivity step, which involves updating the network’s state and
event rates after a triggering event occurs, requires a certain number of operations directly
proportional to the number of reaction channels impacted by the event. In the case of a
network, this number is often proportional to the average node degree. Typically, the average
node degree remains relatively small and does not significantly increase with the number of
nodes. Consequently, this step can be executed in constant time, denoted as O(1). However,
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in dense or heterogeneous networks, where the number of reaction channels affected by an
event may scale with MRs , this step could require a time complexity of O(MRs).
Overall complexity estimation. The anticipated running time of a single iteration of the
envelope SSATAN-X envelope algorithm 8 is O(MRs +Φ). Here, MRs pertains to the count of
reactions within type Rs (encompassing both spreading and vital dynamics), and Φ signifies
the complexity of the algorithm employed to update the contact network. Moreover, the
number of simulation steps required is determined primarily by the quantity and velocity
of "upper level" populational reactions Rs. This approach significantly reduces the number
of simulation steps compared to the SSA, where the number of steps must be adjusted to
both reaction groups Rs and Rc. This is particularly advantageous, considering that contact
dynamics usually unfold more rapidly than spreading dynamics (see sections 5.2.5 and
chapter 7).

4.4 Approximate simulation of contact dynamics: τττ-leaping
approach

This algorithm for the contact dynamics updates is based on the τττ-leaping algorithm, orig-
inally proposed by Cao and Gillespie [107] and later refined by Anderson [115], who
introduced post-leap checks to enhance accuracy.

Specifically, this algorithm applies to a set of reactions describing the contact dynamics,
Rc = {R+,R−}. Within the network, there are two primary types of reactions that alter the
contact structure. The first type R+ = {R+

jk,λ
+
jk} denotes the set of reactions that create new

connections (or edges) between nodes v j and vk ( j ̸= k), occurring at a specified rate λ
+
jk . The

second type R− = {R−jk,λ
−
jk} includes reactions that dissolve existing connections between

nodes v j and vk ( j ̸= k) at a rate λ
−
jk.

Instead of individually simulating each contact-changing event, as is done in methods like
the Gillespie algorithm, the tau-leap algorithm leaps over bigger time intervals, called τττ-leaps
(to prevent confusion with waiting times denoted by τ , the notation will be prominently
displayed in bold), which allows the simulation of multiple reaction events simultaneously
over each time interval. A visual comparison of these two approaches is presented in Fig.
4.3. Although this strategy reduces the computational burden, especially in cases where
there are a large number of contact events to consider, it trades off some accuracy, as the
method assumes that reaction propensities remain constant over each time step, which may
not always be the case.
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Fig. 4.3. Comparative visualisation of exact vs. approximate contact update approaches.
The figure depicts an edge activity plot, illustrating the duration of each edge throughout the
simulation. In the exact approach (A–B) every contact change is explicitly simulated. In the
approximate approach (C–D) multiple edge updates occur within a single time step. While
at a glance the overall patterns appear similar (A, C), a closer examination (B, D) reveals the
difference between the two methods.

4.4.1 Algorithm

Algorithm 9 describes the τττ-leaping algorithm, modified for an approximate update of the
contact dynamics of the network. Aside from the contact graph G(t), the contact dynamics
reactions, and the time horizon, the algorithm requires a few design parameters p, p∗,q and ε

that can, in principle, take many values. In this work the optimal values derived in [115, 130]
was used (e.g., p = 0.75, p∗ = 0.9, q = 0.98, ε = 0.03 and q∗ = 1.02). In addition, the
algorithm utilises supplementary storage structures: T ξ , Cξ , and Sξ . The term T ξ denotes
the current internal time of a specific subprocess ξ . The cumulative number of firings of
reactions of type ξ up to this internal time T ξ are tracked by Cξ . The associated matrix
Sξ is employed to capture data from unsuccessful leaps during the post-leap check and is
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structured with two columns: the first column records the internal times T ξ , while the second
column logs the corresponding Cξ values.

For an approximate network update, there is a limitation on the number of edges that can
be added or removed during one approximation step. The potential for edge deletion is capped
by the number |E(t)| of edges existing in the network at any given time t. Furthermore,
the maximum number of edges in a network is restricted by the size of the population it
represents. For a finite population of N individuals, the upper limit of edges is N(N−1)/2,
if no other stricter constrains are specified. As such, the available slots for adding new edges
at any time can be calculated as N(N− 1)/2−|E(t)|. Notably, this limitation is relevant
only in scenarios where no additional constraints on the number of individual contacts are
imposed. For a more detailed exploration of situations in which such constraints are relevant,
refer to chapter 7.

The process of calculating the limitations on the number of edges that can be added, as
well as the mechanics of adding and deleting edges, is more straightforwardly executed using
the complement graph approach. The contact network G(t) = {V (t),E(t)} is complemented
by the graph G′(t) = {V (t),E ′(t)}. The contact graph and its complement are interlinked: a
deletion of an edge from the contact graph G(t) corresponds to the addition of the same edge
in the complement graph G′(t), and vice versa. This relationship simplifies the simulation of
contact dynamics, as it allows for the implementation of less complex edge-search algorithms.
With this terminology, the processes of constructing and dismantling edges in the network
can be described by the following first-order reactions:

• Edge addition: If reaction R+
jk fires with rate e′jk ·λ

+
jk, set e′jk = 0 and e jk = 1.

• Edge deletion: If reaction R−jk fires with rate e jk ·λ−jk, set e′jk = 1 and e jk = 0.

In this context, e jk and e′jk denote the presence (with a value of 1) or absence (with a value
of 0) of an edge between nodes v j and vk ( j ̸= k) in the corresponding graph.

At a given time t, the time step τττ for the leap is calculated (line 4 of the Algorithm 9)
based on the following formulas:

τττ = min

{
max(ε|E(t)|,1)
|µE(t)|

,

(
max(ε|E(t)|,1)

)2

σ2
E(t)

,
max(ε|E ′(t)|,1)
|µE ′(t)|

,

(
max(ε|E ′(t)|,1)

)2

σ2
E ′(t)

}
.

(4.29)
Here |E(t)|, |E ′(t)| represent the counts of edges in the contact network and its complement
graph at time t respectively, and ε = 0.03 is a preset parameter mentioned above. The
expected change in the number of edges within both the network graph and its complement
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Algorithm 9. Approximate contact dynamics update: τττ-leap approach.
Input TF , G(0)

1: Set T ξ =Cξ = 0 , Sξ = [0,0] for each reaction type ξ = {+,−}
2: t = 0
3: Calculate propensities Rξ

jk for ξ = {+,−} based on the current state of G(t), their totals

Rξ

0 = ∑Rξ

jk, as well as Rc
0 = ∑ξ Rξ

0
4: Calculate τττ according to eq. (4.29)
5: while t < TF do
6: τ = min(τ,TF − t)

7: if τ <
h

R0
then

8: Execute SSA 100 times
9: Return to line 3

10: else
11: for ξ do
12: Hξ = number of rows in Sξ

13: if Rξ

0 τ +T ξ ≥ Sξ [Hξ ,1] then
14: Mξ ∼P

(
Rξ

0 τττ +T ξ −Sξ [Hξ ,1]
)
+Sξ [Hξ ,2]−Cξ

15: rowξ = Hξ

16: else
17: Find Kξ such that Sξ [Kξ −1,1]≤ Rξ

0 τττ +T ξ < Sξ [Kξ ,1]

18: u =
Rξ

0 τττ+T ξ−Sξ [Kξ−1,1]
Sξ [Kξ ,1]−Sξ [Kξ−1,1]

19: Mξ ∼B
(
Sξ [Kξ ,2]−Sξ [Kξ −1,2],u

)
+Sξ [Kξ −1,2]−Cξ

20: rowξ = Kξ −1
21: if leap conditions (4.32) holds then
22: for ξ do
23: Delete all rows from Sξ on the positions less than or equal to rowξ

24: Add new first row [Rξ

0 τττ +T ξ ,Cξ +Mξ ]

25: T ξ = T ξ +Rξ

0 τττ

26: Cξ =Cξ +Mξ

27: t = t + τττ

28: if leap would have failed the leap condition for ε ′ = 0.75ε then
29: τττ = τττ p∗

30: else
31: τττ = τττq if t < 1 and otherwise τττ = τττq∗

32: Update network by executing Mξ reactions using, for example, Alg. 10
33: Recalculate Rξ

jk, Rξ

0 and R0 based on updated network state G(t)
34: else
35: for ξ do
36: Add row [Rξ

0 τ +T ξ ,Cξ +Mξ ] between rowξ and rowξ +1
37: τττ = τττ p
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is calculated as follows:
µE(t) =−R−0 +R+

0 ,

µE ′(t) =−R+
0 +R−0 ,

(4.30)

where R+/−
0 denotes the sum of reaction propensities for addition and deletion of edges

respectively at the current network state G(t). The variance of the edge change is given by

σ
2
E(t) = σ

2
E ′(t) = R−0 +R+

0 . (4.31)

These equations represent a specific case derived from the original formulation found in
[115], considering that both addition and deletion reactions are first-order reactions in the
contact network and its complement graph.

If the chosen τττ is smaller than the ratio h/R0, where h is typically set to 10, a prede-
termined number of steps, usually 100 [106], are executed using the SSA (lines 7–9). It is
important to accurately manage the values T ξ , Cξ and the Sξ during the SSA execution to
maintain precision. Further specifics about this process can be found in the original article
[115].

Alternatively, when the leap is initiated, the algorithm samples the number of executions
M+ and M− for each reaction type, R+ and R− (lines 11–20). This sampling is done using
either a Poisson distribution (line 14) or a binomial distribution (line 19), depending on the
context. The leap is then validated based on a specific condition∣∣∣|E(t + τττ)|− |E(t)|

∣∣∣≤max(ε|E(t)|,1),∣∣∣|E ′(t + τττ)|− |E ′(t)|
∣∣∣≤max(ε|E ′(t)|,1).

(4.32)

If these conditions are met, the leap is accepted (line 21), the storage variables T ξ , Sξ and
Cξ are updated (lines 22–26), the time t is incremented by τττ (line 27), and the value of τττ

is adjusted (lines 28–31). The bulk update (line 32) of the contacts is executed, applying
the chosen values of Mξ . One of the possible variations of the network update algorithm is
detailed in Algorithm 10.

In the case of rejection, the sampled values are recorded (lines 35–36). Subsequently, τττ

is reduced by multiplying it with a design parameter 0 < p < 1. The algorithm then loops
back to line 5 for re-evaluation.
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4.4.2 Network Update

Once the number of contact updates to be performed is determined, the actual execution of
these updates must preserve the computational advantage of the algorithm. Randomly adding
and deleting the predetermined number of edges may adversely affect accuracy, particularly
in highly heterogeneous networks. Therefore, it is equally important to establish the order
in which the edges will be modified. On the other hand, using direct approaches like the
reaction choice step in Gillespie’s algorithm requires recalculation of the propensity sum
each time the reaction is performed.

Algorithm 10 outlines a method to perform the network update while largely preserving
the order of contact modifications. This approach need not recalculate the propensity sum,
resulting in faster performance, although at the possible cost of slight bias.

Algorithm 10. Network Update.

Input Mξ for each reaction type ξ = {+,−}, G(0)
1: Shuffle M− deletion and M+ addition reactions. Save the order in vector A
2: Calculate cumulative sums vectors Λ+ and Λ−, total propensity sums R−0 and R+

0
3: for each contact update event type in A do
4: Sample u∼U (0,1)
5: if deletion then
6: Find first y such as: Λ−y ≥ u ·R−0
7: Remove and edge {v j,vk} corresponding to index y from the network
8: Remove the element Λ−y from Λ−

9: Decrease R−0 to the propensity of chosen reaction: R−0 = R−0 −R−jk
10: Calculate tmp = R+

jk+ value of last element in Λ+

11: Append tmp to the end of Λ+

12: R+
0 = R+

0 +R+
jk

13: else if addition then
14: Find first y such as: Λ+

y ≥ u ·R+
0

15: Add edge {v j,vk} corresponding to index y to the network.
16: Remove the element from Λ+

17: Decrease R+
0 to the propensity of chosen reaction: R+

0 = R+
0 −R+

jk
18: Calculate tmp = R−jk+ value of last element in Λ−

19: Append tmp to the end of Λ−

20: R−0 = R−0 +R−jk

In line 1, the sequence for adding and removing edges is established and recorded in
the vector A. For example, if M+ = 3 and M− = 5 was proposed, necessitating three edge-
addition operations, denoted as {+,+,+}, and five edge-deletion operations, denoted as
{−,−,−,−,−} are to be executed. These operations are randomly mixed, resulting in the
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vector A being structured as A = {−,−,+,+,−,−,−,+}, representing the shuffled order
of these addition and deletion actions.

Then, in line 2, two vectors of cumulative sums are created: Λ− for the edge-deletion
reactions and Λ+ for the edge-addition reactions. These vectors contain cumulative sums of
corresponding reaction propensities, and the last element of each vector always represents an
upper bound for the reaction propensity sum of the corresponding reaction type.

For each reaction in the vector A (lines 3– 20), the algorithm selects an edge to be either
added or deleted. This selection depends on the values in the corresponding cumulative
sum vector Λξ . This selection is done by checking whether the condition Λξ

y ≥ u ·Rξ

0

is met (lines 6, 14), ξ = {+,−}. This step resembles the reaction selection step of the
SSA algorithm and ensures that the probability of particular edge {v j,vk} being modified
is influenced by the propensity of that modification. Based on the outcome of the selection
process, the algorithm performs the corresponding network change – either the addition or
deletion of an edge.

Under the assumptions regarding the contact limitations made in this chapter, each edge
addition in the network introduces a new reaction for edge deletion, and conversely, the
deletion of an edge prompts a reaction for edge addition. To account for such changes
and maintain accuracy, whenever a new edge is added or deleted, the propensity for the
corresponding counterreaction (edge deletion or addition, respectively) is calculated. The
calculated propensity of the new reaction is then added to the current upper bound, which
is the last element of the cumulative sums vector (lines 11, 19). This updated value is
subsequently appended to the end of the cumulative sum vector, ensuring that the vector
reflects the current state. After the execution of each reaction, the corresponding propensity
totals, R−0 and R+

0 (lines 9, 12, 17, 20), must be updated to ensure that the upper bound u ·Rξ

0

is not violated. Failing to update these values could lead to significant inaccuracies in the
simulation, as the probability of reaction selection would not correctly reflect the current
state of the network.

Because vectors of the cumulative propensities sum Λξ are not updated during the
execution of the loop, the algorithm does not achieve exact precision. However, it still offers
a valuable approximation of the contact dynamics while avoiding the need to recalculate the
total propensity sum after each step.

4.4.3 Computational complexity

In this section the expected complexity of the Algorithm 9 is estimated.
Lines 1–2. The initialisation of the algorithm parameters is a constant time operation with a
complexity of O(1) each.
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Lines 3, 33. To update the reaction propensities and calculate their sum, it is necessary
to iterate through the list of event rates. When implemented with care, only one iteration
through the list is needed, making the complexity of the steps described in the lines 3 and 33
O(MRc), where MRc denotes the number of reactions in the subgroup Rc responsible for the
contact dynamics.
Lines 4, 6. Calculation of the leap size τ in line 4, and the subsequent adjustment to the
simulation time in line 6 are both operations with a time complexity of O(1).
Lines 7–9. Although this is a component of the algorithm, transitioning to the SSA algorithm
implies that only a few reactions need to be performed during the chosen leap time interval,
making the SSA algorithm more efficient in such cases. This typically occurs when the
contact dynamics of the modelled system are relatively slow or have a comparable speed to
the transition/vital dynamics Rs. However, the proposed algorithm is specifically designed for
models with relatively fast contact dynamics, which is the case for most real-life spreading
processes. Consequently, the transition described in lines 7–9 occurs infrequently. If it does
occur, the complexity is determined by the SSA Algorithm 1, as discussed in chapter 3, for a
fixed and constant number of runs.
Lines 11–20, 22–26,35–36. Since there are only two possible reaction types, denoted as
ξ =+,−, which correspond to adding and deleting an edge, respectively, all loops described
in lines 11–20, 22–26, and 35–36 can be executed in constant time.
Line 32. The complexity of the network update, which relies on the precalculated numbers of
edge operations Mξ , is contingent upon the specific algorithm employed, and for the general
case will be denoted as Ψ.

For the approach described in Algorithm 10, the complexity of constructing the vector
of reaction order A is linear and depends on the total number of changes to be made. It
is denoted as O(∑ξ Mξ ), where Mξ represents the number of changes for each reaction
type ξ . The complexity of building the cumulative sum vectors, Λ+ and Λ−, is O(MR+)

and O(MR−), respectively. Here, MRξ is the total number of contact-changing reactions of
a particular type, ξ = {+,−}. Since the cumulative sum vectors Λ+ and Λ− are sorted
arrays, the search operation can be performed in O(log(MR−)) or O(log(MR+)), respectively.
As the loop iterates over the array A, the overall complexity of the network update step is
approximately ∑ξ Mξ +MRc + log(∏ξ MRξ ), which can be approximated as O(MRc).
Lines 28–31, 37. The update of the leap size τ can be executed in constant time, resulting in
a complexity of O(1).
Overall complexity estimation. The expected complexity of a single iteration of Algorithm
9 is O(MRc +Ψ), where MRc is the total number of contact dynamics reactions Rc, and Ψ is
a complexity of the actual network update.
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Although this approach still exhibits linear scaling in relation to the number of contact
reactions, the actual number of leaps required is significantly lower than the number of steps
needed in an exact simulation. This reduction in steps allows for a more rapid simulation of
contact events that occur between spreading events Rs.

4.5 Exact simulation of contact dynamics: Next reaction
method approach

Another alternative for simulating the contact dynamics is to utilise the next reaction method
(Algorithm 2), previously described in chapter 3. The putative time ∆t for the reactions of
type Rs, as defined in the SSATAN-X envelope algorithm, is determined based on the upper
bound of the propensities total. This choice of ∆t ensures that contact updates carried out
within this time frame cannot result in an earlier putative time. Hence, there is no need to
update the propensities of contact-dependent reactions in Rs every time a contact change
occurs. Instead, these propensities can be recalculated once the entire network update for the
given time frame is completed. This allows the implementation of the next reaction method
algorithm for the contact dynamics reactions Rc by utilising an indexed priority queue Q,
containing the reactions responsible for edge additions and edge deletions. Within the priority
queue, reactions with smaller putative times are assigned the highest priority. These putative
times are determined by the reaction propensities and sampled according to the principles of
the next reaction method. Furthermore, as earlier discussed, the reactions for edge additions
and deletions are complementary. Hence, there is no need to extract a reaction from the
queue and add its complementary reaction at the end of the queue, which would require
2(log(MRc)) operations. Instead, the reaction type, propensity, putative time, and position
in the queue can all be updated within the log(MRc) operations. Here, MRc denotes the total
number of contact dynamics reactions Rc.

4.5.1 Algorithm

First, a priority queue is constructed to hold all of the contact change reactions along with
their corresponding absolute times (line 2). Subsequently, as long as the simulation time
has not been exceeded, the reactions are executed sequentially (lines 3–11). Upon executing
a reaction, the complementary reaction is introduced into the queue in its place (8). The
propensity for the new reaction is recalculated (line 9), and a new putative time is sampled
for the reaction (line 10). Finally, the position of the reaction in the priority queue is updated
based on its new time value (line 11).
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Algorithm 11. Exact contact dynamics update: next reaction method.
Input TF . G(0)

1: t = 0
2: Sample all putative times τ j ∼ Exp(a j) of all possible reactions Rc ; store absolute times

t j = t + τ j in a priority queue Q
3: while t j of the reaction Q.top ≤ TF do
4: Get the reaction Rµ with the smallest reaction time tµ from Q
5: t = tµ
6: execute reaction Rµ

7: ▷ Update the reaction to the complementary one ◁

8: Change the reaction type of Rµ to the complementary one
9: Set the corresponding reaction propensity aµ

10: Sample new putative time τµ ∼ Exp(aµ) and store times tµ = t + τµ in a priority
queue Q

11: Update the position of the reaction Rµ in the priority queue Q

Importantly, in addition to simulating the network updates, the contact dynamics reactions
can only be affected by the envelope algorithm during the adaptivity step (line 20 in Algo-
rithm 8). Consequently, it is possible to further optimise the algorithm by constructing the
priority queue only once at the beginning of the simulation and updating affected propensities
only when necessary, due to the adaptivity step.

4.5.2 Computational complexity

Line 1. The initialisation of the simulation time is a constant time operation.
Line 2. The formation of the priority queue has a complexity of O(MRc log(MRc)).
Lines 4–5. Accessing the top element of the queue and assigning a new time value are both
constant time operations with a complexity of O(1).
Line 6. It can generally be assumed that executing a unitary contact change takes constant
time, resulting in a complexity of O(1) for this step.
Lines 8–10. Updating the current reaction to a complementary one can also be performed in
constant time, with a complexity of O(1).
Line 11. Updating the position of the reaction in the queue has a complexity of O(log(MRc)).
Overall complexity estimation. The loop defined in lines 3–11 repeats as long as the
simulation time does not exceed the predefined time limit. Assuming that during this time m
simulations are performed, the complexity of the loop is O(m log(MRc)). Thus, the overall
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complexity of Algorithm 11 scales as O(MRc log(MRc))+O(m log(MRc)). As noted above,
if the priority queue is formed only once and updated during the simulation, the complexity
of Algorithm 11 reduces to O(m log(MRc)). However, this approach will introduce the
additional complexity of O(log(MRc)) to Algorithm 8 at the adaptivity step, due to the need
to update specific reactions in the priority queue Q, and the complexity of the initial queue
initialisation performed only once, remains as O(MRc log(MRc)).

4.6 Summary

This chapter introduces a hybrid algorithm designed to simulate the spreading processes
on temporal adaptive networks. It combines exact and approximate simulation methods
to efficiently handle the dynamics of these complex systems. The chapter elaborates on
the assumptions the author made on the generalised model, the application of the Extrande
approach for exact spreading simulation, and both the τττ-leap approach for approximate
contact dynamics and the next reaction method for exact contact dynamics simulation. It
also discusses the computational complexity and effectiveness of these methods, providing a
comprehensive view of their capabilities in simulating dynamic network behaviours.



Chapter 5

Simulation Findings

5.1 Introduction

This chapter presents an analysis of the results from simulations of an abstract but represen-
tative model using the SSATAN-X – hybrid algorithm to simulate spreading processes on
temporal adaptive networks, introduced in Chapter 4. The aim is to demonstrate the algo-
rithm’s effectiveness and robustness under various network conditions. The chapter begins by
describing the genaralised model used for validation. Then the algorithm’s ability to simulate
both contact and spreading dynamics accurately is explored. The chapter also discusses
the influence of network adaptivity on these dynamics, offering important insights into the
interplay between network structure, individual’s behaviour and spreading process. Finally,
this chapter evaluates the computational performance particularly in scenarios where contact
dynamics outpace spreading dynamics, as in many epidemiological diseases. This analysis
not only confirms the algorithm’s theoretical strengths but also showcases its potential to
address real-world challenges in phenomena spreading on various dynamic network, thereby
making a valuable contribution to the field.

5.2 Adaptive model

This chapter evaluates the simulation algorithm SSATAN-X by applying it to a basic spreading
process occurring on a time-varying adaptive contact network. To test the effectiveness of the
proposed algorithm, an illustrative scenario involving adaptivity is considered. Specifically,
this scenario features discontinuous rewiring dynamics, a challenging numerical problem.

Let P = {S,I,D} represent a population comprising susceptible (S), infected (I) and
diagnosed (D) individuals. The number of contacts C j for each individual v j within this
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population changes over time. There are no strict limitations on the number of contacts an
individual can have at any given time. Therefore, it is essentially limited only by the size of
the population. In this scenario, the transmission of a virus, for instance, can occur from an
infected individual to a susceptible individual or from a diagnosed individual to a susceptible
individual, but only when the respective individuals come into contact with each other. For
simplicity, the birth process has been excluded from this model. In general, however, the
birth process can be included as a component of populational dynamics.

Reactions Rs of the population dynamics group can be summarised as follows:

• spreading of the pathogen from the infected individual (I j) to the susceptible (Sk) with

the rate γ j,k : I j +Sk
γ j,k−−→ I j + INI+1 , at rate γ j,k > 0 if corresponding nodes v j and vk

are connected;

• spreading of the pathogen from the diagnosed individual (Di) to the susceptible (Sk)
with the rate γi,k : Di +Sk

γi,k−−→ Di + INI+1 , at rate γi,k > 0 if corresponding nodes vi

and vk are connected;

• diagnosis of the infected individual (I j) with the rate δ j: I j
δ j−−→ DND+1;

• death of the infected individual (I j) with the rate β : I j
β j−−→∅; and

• death of the diagnosed individual (Di) with the rate βi: Di
βi−−→∅.

To describe the contact dynamics within the population, the "contact activity" of each
individual is described by the rates of acquiring and losing contacts over time, represented
as λ

+
j and λ

−
j , respectively. The formation of a new contact between individuals vi and v j

is possible at a rate of λ
+
jk = λ

+
j ·λ

+
k . Similarly, the dissolution of already existing contact

occurs at a rate of λ
−
jk = λ

−
j ·λ

−
k .

When an individual is diagnosed with the infection, they become aware of their status,
leading to a change in their behaviour. This adaptive behaviour is incorporated into the
model, specifically through a discontinuous adjustment. In this example, upon diagnosis, the
individual severs all existing contacts, and their rate of establishing new contacts decreases
to 30% of its value prior to diagnosis. Consequently, this simple model captures the concept
of adaptive dynamics, where the contact dynamics undergo discontinuous changes based on
the epidemic state.

Unless otherwise specified, the following setup will be used in this section: The popula-
tion was initially composed of N = 200 nodes, with the distribution of individuals as follows:
180 susceptible (S), 20 infected (I), and 0 diagnosed (D). Additionally, the initial network
consisted of 3000 randomly created edges.
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Each node v j was assigned two parameters: λ
+
j representing the rate of establishing a

new contact, and λ
−
j representing the rate of losing an existing contact. These parameters

were randomly drawn from uniform distributions within the ranges of (0.5, 2.5) for λ
+
j and

(0.4, 2.0) for λ
−
j .

For the population dynamics, the transmission rate for each I−S edge (contact) was set
to γ jk = γ = 0.004, and it was set to γ/2 for each D−S edge. The death rate for infected
and diagnosed individuals was βi = β = 0.08. The diagnosis rate was set to δ j = δ = 0.5,
indicating the frequency of individuals becoming diagnosed.

To evaluate the system, 103 simulations of each algorithm and parameter set were
performed over the time interval t ∈ [0,5].

The results presented in this section were achieved by employing the approximate network
update approach, as outlined in section 4.4. Since the accuracy of the exact approach is
evident and does not require confirmation, the focus of this analysis was placed on evaluating
the performance and effectiveness of the approximate approach.

The results obtained from utilising the SSATAN-X algorithm are compared and bench-
marked against the results achieved using the SSA algorithm, considered the ground truth in
this context. By comparing the outcomes of both algorithms under the same model settings,
the performance and effectiveness of SSATAN-X can be evaluated and assessed.

5.2.1 Correctness of contact approximation

To evaluate the accuracy and performance of SSATAN-X, initial simulations were performed
with a specific focus on contact dynamics. These simulations aimed to analyse the behaviour
and effectiveness of SSATAN-X in accurately capturing and modelling the dynamics of
contacts within the population.

The exact SSA (Algorithm 1) modifies the contact network by executing each change
one by one, as depicted in Fig. 4.3A,B. In contrast, SSATAN-X employs bulk updates of the
contact network, as outlined in Algorithm 9 and illustrated in Fig. 4.3C, D. It is important
to note SSATAN-X’s main principle is to accurately capture the statistics of the contact
dynamics Rc that are relevant to modelling the population dynamics Rs. The result is that
the statistics of the contact dynamics only need to be precise at the time when a bulk update
occurs, but not in between bulk updates.

To evaluate the accuracy of SSATAN-X in capturing the statistics of the contact dynamics,
dedicated simulations were performed with a specific focus on the pure contact dynamics
aspect. These simulations were designed such that no epidemic transitions occurred. In other
words, the reaction rates aℓ for all epidemic reactions Rs

ℓ ∈ Rs were set to zero. By excluding
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the influence of epidemic transitions, the simulations allowed for a detailed analysis and
evaluation of the contact dynamics in isolation.

Fig. 5.1 illustrates the degree distribution of the contact network at various time points,
comparing the results obtained from SSA and SSATAN-X. The simulation begins with a
deterministic initial network, as indicated by the absence of shaded areas in Fig. 5.1A. As the
simulation progresses, the degree distribution of the temporal network undergoes changes
(Fig. 5.1B–D) until it eventually reaches a stable distribution (Fig. 5.1E–F).
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Fig. 5.1. Degree distributions of contacts within the population during simulation. The
graphic depicts the mean degree distribution of the network during distinct time points within
the simulation time (t ∈ [0,5]). The dashed red and solid blue lines represent mean degree
distribution over 103 simulations using the SSA and SSATAN-X respectively. Shaded areas
represent the corresponding standard deviations for the 103 simulations.

Throughout the entire simulation interval, both the mean degree distribution (solid blue
line for SSA, dashed red line for SSATAN-X) and the standard deviations (blue shading
for SSA, red shading for SSATAN-X) remain visually indistinguishable between the two
algorithms.
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To provide a more quantitative analysis of the differences in the evolving contact network
over time, the Kolmogorov–Smirnov test was employed, and the corresponding statistics
were calculated. This test allowed for a rigorous assessment of the degree of similarity
between the contact network distributions generated by SSA and SSATAN-X simulations.
Fig. 5.2A shows the probability (p-value) that the degree distributions generated by SSA
and SSATAN-X are identical for each time point. It can be observed that the probability is
consistently greater than 0.95, indicating that the degree distributions from both algorithms
are statistically similar.

In Fig. 5.2B, the test statistic of the Kolmogorov–Smirnov test, which represents the
distance between the empirical cumulative distribution functions (ECDFs), is presented.
The test statistic remains below the threshold of 0.0015 for all time points. This result
further reinforces that the observed differences in the degree distribution between SSA and
SSATAN-X are statistically insignificant.

Overall, the results from the Kolmogorov–Smirnov test confirm that there are no substan-
tial differences in the degree distribution of the evolving contact network between SSA and
SSATAN-X simulations.
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Fig. 5.2. Statistical assessment of differences in the simulated contact network. The
Kolmogorov–Smirnov test was used to compare the degree distributions obtained by SSA
and SSATAN-X (represented on Fig. 5.1). (A) The p-value denotes the probability that these
two degree distributions derived from SSA- and SSATAN-X simulations, respectively, are
identical. (B) Statistics of the Kolmogorov–Smirnov test (KST), representing the distance
between the two ECDFs.
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5.2.2 Correctness of spreading process simulation

In section 4.3.3, it was demonstrated that Algorithm 8 guarantees exactness in simulating
the population dynamics Rs when an upper bound BTL for the sum of propensities as

0(h) =

∑ℓ as
ℓ(h) of the reactions Rs

ℓ ∈ Rs,h ∈ [t, t +TL] is existent and chosen correctly. Building
upon this theoretical foundation, the results of applying the SSATAN-X algorithm to the
adaptive susceptible-infected-diagnosed (SID) network model described in the previous
section are now presented.
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Fig. 5.3. Inter-event time distribution. The histogram depicts the frequency of the time-
step sizes to the next epidemic event (infection, diagnosis or death), produced from 103

simulations for each algorithm and normalised over the number of samples (overall 79375
epidemic time steps for SSATAN-X (blue bars) and 79025 for SSA (orange bars)).

First and foremost, the objective was to examine the accuracy of the statistics of the inter-
event times of the population events Rs. In Fig. 5.3, the histogram displays the time steps to
the next event (infection, diagnosis, death) for both the SSA (orange bars) and SSATAN-X
(blue bars) algorithms. Evidently, the statistics of the inter-event times are virtually identical
between the two algorithms, reinforcing the validity of the proposed algorithm.
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Fig. 5.4. Simulated infection dynamics. The graphic depicts the change in the number of
infected (panel A), diagnosed (panel B), and susceptible (panel C) individuals over simulation
time. Dashed red and solid blue lines describe the sample means over 103 simulations
using SSA and SSATAN-X, respectively. Shaded areas represent the corresponding areas
encompassed by the mean ± standard deviation.

Fig. 5.4 illustrates the corresponding simulation outcomes for the population state. The
mean (with ± standard deviation) number of susceptible, infected, and diagnosed individuals
is presented in Fig. 5.4A–C, respectively. Throughout the simulation, there are no discernible
differences in both the mean and standard deviation when comparing the simulations con-
ducted with the SSA (red line and red shading) and SSATAN-X (blue line and blue shading).
This outcome evidences the accuracy of SSATAN-X in simulating the spreading dynamics
on an adaptive contact network, solidifying its reliability and effectiveness.

5.2.3 Impact of contact network adaptivity on the spreading dynamics

The analysed S-I-D model belongs to the class of adaptive network models, where both
the contact dynamics and the populational dynamics mutually influence each other (see
Fig. 2.3C). Specifically, in this model, the event of diagnosis not only affects the contact
network itself by severing all edges of the diagnosed individual, but also influences its future
dynamics by reducing the rate of establishing new contacts to 30% of the pre-diagnosis level.

To investigate the impact of adaptivity on the spreading and contact dynamics, two
representative examples of the contact network model were considered. In the first example,
the diagnosis rate was set to δ = 0, representing a non-adaptive temporal network model
(described in Fig. 2.3B). In the second example, the diagnosis rate was set to δ = 0.5,
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reflecting an adaptive model. In both examples, the transmission rate γ jk is set to equal 0.004
for all I−S and I−D edges, while the death rate β is set to 0, allowing the isolation of the
impacts of adaptivity on the epidemic and on the contact dynamics from the impacts inflicted
by other factors.
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Fig. 5.5. Influence of diagnosis and the behavioural response on the degree distribution
of contacts and of new infections. Blue error bars portray the results from a non-adaptive
model, where we set the diagnosis rate δ = 0. Orange bars depict predictions from an
adaptive model, where the diagnosis rate δ = 0.5. In the adaptive model, a diagnosis of
individual j, leads to a loss of all contacts (self-isolation) and a reduced rate of forming new
contacts λ

+
j = 0.3 ·λ+

j . Both panels depict results from 103 SSATAN-X simulations for each
parameter set. (A) Error bars represent the mean amount ± standard deviation of the number
of edges eligible for transmission of the virus (i.e., number of contacts between infected and
susceptibles and between diagnosed and susceptibles) over time. (B) Error bars represent the
mean amount ± standard deviation of newly infected individuals over time. Annotations on
both panels show the percentage of infected individuals diagnosed (D)/(I + D).

Fig. 5.5A compares the number of edges in the network eligible for transmission in
the non-adaptive temporal network (δ = 0; blue error bars) versus the adaptive network
(δ = 0.5; orange error bars). The annotations indicate the percentage of infectious individuals
diagnosed (e.g., ND/(ND +NI)). Fig. 5.5B compares the infection dynamics between the
non-adaptive and adaptive models (blue vs. orange error bars).

Evidently, the diagnosis event alters the spreading dynamics by reducing the occurrence
of new infections in the adaptive network. This decrease in infection dynamics can be
attributed solely to changes in the contact dynamics within the adaptive networks (Fig.5.5A).
As the percentage of infected individuals being diagnosed increases, the number of edges
eligible for pathogen transmission decreases. Consequently, there are fewer opportunities for
disease spread, decreasing the number of new infections (orange error bar in Fig. 5.5B).
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5.2.4 Runtime performance

The runtime comparison between SSATAN-X and SSA for different population sizes (number
of nodes) was analysed, with simulations starting with a fixed number of infected individuals
(NI = 20). The simulation results, as shown in Fig. 5.6A, indicate that the runtime increases
as the population size grows. However, for the parameter setting used, SSATAN-X exhibits a
runtime approximately 100 times shorter than that of SSA.

Furthermore, the runtime performance was assessed as a function of the specific contact
dynamics simulation parameters. In this analysis, the homogeneous contact dynamics rates
λ
+
i and λ

−
i were set uniformly across the population, meaning all individuals had the same

rates. This setting allowed for an evaluation of how the runtime changes depend on the
probability of transmission occurring on a contact edge before it dissolves. This probability
is determined by γ/(γ +(λ−)2), where γ represents the transmission rate on a contact edge,
and (λ−)2 denotes the rate of losing an existing edge. In this analysis, the λ+ and λ− were
increased proportionally, maintaining the same average number of contacts but shortening
their lifetimes. The value of the transmission rate γ remained unchanged.
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Fig. 5.6. Mean runtime comparison Between SSATAN-X and SSA. (A) Log-log plot
showing the mean (± standard deviation) runtime of SSATAN-X (blue error bars) vs. SSA
(red error bars) for different population sizes (200, 500 and 1000 individuals) over 103

simulations for each parameter set on a single 2x AMD Epyc 7742 64-Core compute node
with a base clock of 2.25 GHz, respectively. (B) Semi-log plot showing mean (± standard
deviation) runtime of SSATAN-X (blue error bars) vs. SSA (red error bars) for different pa-
rameterisations for a network with 200 individuals. The relation γ/(γ +(λ−)2), with γ being
the transmission rate and λ− being the rate of edge disassembly, can be interpreted as the
probability of transmitting an infection before the contact dissolves. The plot is presented for
the following (λ+;λ−) combinations: {(0.025,0.02),(0.25,0.2),(2.5,2.0),(25.0,20.0)}.
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The runtime of both SSA and SSATAN-X for conducting 103 simulations for each
parameter set is depicted in Fig. 5.6B. The figure makes evident when the ratio γ/(γ+(λ−)2)

approaches 1, indicating that transmission always occurs before an edge dissolves, SSA might
be marginally faster than SSATAN-X. This variation arises because the time interval between
two population dynamics events becomes extremely small, causing the network update
algorithm to essentially reduce to SSA. Such models may not require separate modelling of
the contact dynamics at all, rendering this example somewhat artificial (further discussion on
the usefulness of different modelling approaches can be found in section 5.2.5 and in chapter
7).

When the ratio γ/(γ +(λ−)2) decreases, indicating that the contact dynamics are much
faster than the spreading dynamics, the runtime of SSATAN-X becomes superior to that
of SSA. Therefore, with low transmission rates and fast contact dynamics, SSATAN-X
avoids computational overheads associated with contact dynamics simulation by utilising
an approximate contacts update approach, considering only their net effect on spreading
dynamics. In contrast, SSA requires the execution of each contact and population reaction
individually.

As a conclusion, SSATAN-X offers computational efficiency advantages over SSA. Both
algorithms exhibit runtime scaling with population size, and the "boost factor" of SSATAN-X
remains consistent across different population sizes. However, the computational advantage
of SSATAN-X becomes more pronounced when the contact dynamics are faster compared to
the population dynamics.

5.2.5 Advantage for models with fast contact and slow spreading dy-
namics

The efficiency of the SSATAN-X algorithm in hastening computations significantly hinges on
the relationship between the varying speeds of contact dynamics and transmission dynamics.
If contacts rarely lead to transmission, SSATAN-X can greatly increase computational speed.
However, if transmission almost always happens during a contact, the speed increase will be
less significant or non-existent.

Fig. 5.6B shows this relationship using the formula γ/(γ + (λ−)2). Here, (λ−)2

represents the rate at which a contact ends, assuming that the rate of losing a contact, denoted
by λ−, is the same for all involved parties. The parameter γ refers to the rate at which
transmission occurs during a contact.

The transmission rate γ is a comprehensive parameter that can be broken down for more
detailed modelling and realistic parameter setting. For instance, if exposure at a contact
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happens at rate re and the exposures are of the same type, then the transmission rate γ

is simply a scaled version of the exposure rate, calculated as γ = re · ptr|e. Here, ptr|e is
the probability of transmission per exposure event e. This probability is known for many
infectious diseases [131, 132] and exposure types, and the impact of both pharmaceutical
and non-pharmaceutical interventions on ptr|e can be quantified [133–135].

The combined transmission rate γ is determined by both the probability of transmission
per exposure ptr|e and the frequency of exposures re when individuals are in contact. For
many diseases and contact types, the ratio γ/(γ +(λ−)2) is likely to be much less than one,
meaning most brief contacts do not lead to pathogen transmission. Behavioural changes
like social distancing, isolation, or quarantine can further reduce the transmission rate by
decreasing re. Similarly, pharmaceutical interventions (vaccination, prophylaxis, treatment)
and non-pharmaceutical measures (e.g., masks for airborne diseases, condoms for SDIs)
can lower the probability of transmission per exposure, either in a static or time-dependent
manner [136–140]. This illustration further reinforces that the computational benefits of
SSATAN-X are likely to persist when applied to realistic models.

5.3 Summary

This chapter analyses simulation results using a hybrid algorithm for temporal adaptive
networks. It confirms the algorithm’s accuracy in simulating contact dynamics and its exact-
ness in simulating spreading dynamics. It also highlights the impact of network adaptivity
on these processes. The chapter evaluates the computational efficiency of the algorithm,
especially in scenarios with faster contact dynamics than spreading dynamics, relevant to a
large group of epidemiological diseases. This analysis establishes the algorithm’s practicality
and robustness, highlighting its potential for real-world applications in simulating spreading
processes on complex networks.





Chapter 6

adaptiveSpreadX: C++ application and
Python package

6.1 Introduction

This chapter presents adaptiveSpreadx, the software package implementing the discussed
algorithm, rendering it accessible for practical application. This software package consists
of two main components: a core part written in C++ and a Python wrapper. The C++ core
encompasses all the algorithm functionality, ensuring efficient execution of its operations.
Complementing this, the Python wrapper enables users to conduct simulations within a
Python environment and to visualise results, providing an accessible interface to interact
with the algorithm. The package is available at the link https://github.com/nmalysheva/
adaptiveSpreadX/.

This chapter delves deeper into the rationale behind the choice of programming lan-
guages. It also introduces the core components of the software, elucidates the intricacies
of the configuration file, and discusses the limitations inherent in the current iteration of
adaptiveSpreadX.

6.2 Implementation and contribution

In the initial phase of this project, the first version of the C++ implementation was developed
and published by the author of this dissertation [121]. This version included the core
functionalities of the algorithm and laid the foundation for further improvements.

Subsequently, another programmer joined the project to enhance the C++ implementation.
Their contributions included optimizing the code for better performance, fixing bugs, and
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adding new features. These enhancements significantly improved the software’s overall
efficiency and reliability. Further details can be found in the Contributors section of the
repository linked above.

To increase the accessibility and usability of the software package, the author developed a
Python wrapper around the C++ implementation. This wrapper allows users to interact with
the algorithm through Python, facilitating easier integration with other Python-based tools
and workflows. The development process involved addressing compatibility and ensuring
seamless integration between the C++ core and the Python interface.

6.3 Programming language

In deciding on a suitable programming language for this scientific project, the options
between Python and C++ were evaluated. Both Python and C++ hold prominent positions in
scientific computing, each catering to distinct needs and scenarios. adaptiveSpreadX project,
characterised by complex computations and large datasets, necessitates a language where
execution speed is paramount, thereby inclining the decision towards C++.

C++ stands out for its notable performance and generally exhibits faster execution
compared to Python. It offers more direct control over memory management, a critical factor
for optimising performance in resource-intensive scientific applications. As a statically typed
language, C++ catches many errors at compile-time, an attribute invaluable to ensure the
correctness of scientific applications. Moreover, its ease of integration with various languages
and technologies is pivotal for utilising existing software components or interfacing with other
systems. The deterministic object lifecycle in C++, featuring constructors and destructors, is
instrumental for resource management in prolonged scientific simulations and experiments.

Given these considerations, the decision was made to employ C++ for the performance-
critical segments of the project, specifically the direct implementation of the algorithm.
Subsequently, the core algorithm module was integrated into Python module for results
processing and visualisation.

The choice of the C++17 standard was influenced by several factors. C++17 introduced a
host of beneficial features not present in its predecessors, such as std::optional, which
proved advantageous for our project. It also brought about optimisations and enhance-
ments, promising improved performance of the generated code. At the juncture of the
decision-making, full support for C++20 might not have been universally available across
all compilers or development tools, rendering C++17 a more reliable choice for widespread
compatibility and support. Furthermore, the features introduced in C++20 were assessed as
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non-essential for the project requirements, making C++17 a fitting and sufficient choice for
our developmental needs.

In the subsequent development phase of the Python wrapper, the commitment to Python
3 was cemented for several poignant reasons, consciously sidestepping the use of Python
2. Primarily, Python 2 was officially decommissioned as of 1 January 2020, and ceased to
receive updates, including those critical for security. This lack of support not only raises
potential security concerns but also hints at likely compatibility issues, as modern software
libraries and tools progressively withdraw support for Python 2, highlighting Python 3 as the
secure and long-term alternative for the project.

6.4 C++ Core: Code Structure and Design

The implementation of the adaptiveSpreadX is decomposes into the following modules:

1. Configuration module. Extraction and semantic interpretation of model parameter
settings provided in the configuration file.

2. Graph module. Fundamental implementation of an undirected graph, independently
of external graph libraries.

3. Contact Network module. Designed to represent a population, capturing its intricate
contact network as well as interaction rules of the simulated model.

4. Core Algorithm module. Implements the main logic of the algorithm.

5. Types and Utils modules. Contain types definition, helper functions, and utilities.

6.4.1 Configuration module

The configuration module assumes responsibility for processing either a configuration file
or stream, subsequently interpreting it into settings that govern the algorithm, as well as the
modelled population and its contact network changes (interactions, transmissions, etc.). The
principal functionality resides in the Configuration class, encompasses parsing settings
from the file or stream, verifying their validity, and also affording the capability to serialise
configurations into the .json format. Serialisation into the .json format ensures that
configurations are easily transferable, storable, and retrievable in a standardised format.
Meanwhile, ancillary classes like Exception, Helper, and Stream are employed, each
encapsulating their respective functionalities. A single Configuration instance can be
created by calling,
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auto f i l e = s t d : : i f s t r e a m { f i l e n a m e } ;
auto c o n s t c o n f i g = c o n f i g u r a t i o n : : C o n f i g u r a t i o n { f i l e } ;

6.4.2 Graph module

Employing a simple undirected graph to represent the contact network amid the population
fundamentally was principally guided by its inherent simplicity and straightforwardness in
illustrating mutual interactions, thereby facilitating an uncomplicated yet effective, model for
exploring and analysing contact dynamics.

While the current framework utilises a simple undirected graph for its inherent simplicity,
future developments and expansions of the project may warrant the introduction of directed
graphs or even mixed graphs, comprising both directed and undirected edges, to accommodate
more complex interaction dynamics.

While the preceding implementation of the SSATAN-X algorithm (https://github.com/
nmalysheva/SSATAN-X) utilised the external LEMON library (https://lemon.cs.elte.hu/trac/
lemon) for graph representation, the decision to implement a simple graph without employing
extant libraries such as LEMON or Boost is informed by several strategic considerations.
Primarily, the functionality requisite for the current project is relatively trivial, negating
the necessity for the comprehensive (and oftentimes, complex) feature sets offered by
such libraries. Moreover, issues such as discontinued support could challenge the future
sustainability and usability of the project. Nevertheless, contributors do not preclude the
potential incorporation of an external library for graph representation, should future project
development necessitate a more sophisticated structure and functionality.

The Graph module facilitates the structured storage of the contact network using an
adjacency list representation. Its capabilities encompass the addition and deletion of nodes
and the insertion and removal of edges within the graph.

The code architecture for this module employs the Bridge Pattern [141], in which the
abstract class IGraph stands as a pure abstract class, or interface, serving as an abstraction
for a graph. This establishes an interface that all concrete graph implementations must follow,
thus delineating a family of algorithms and encapsulating each as an individual object.

The GraphImpl class, a concrete entity, inherits from IGraph and furnishes a specific
graph implementation. While it utilises IGraph as its interface, the actual implementation
remains distinct and can independently vary from the interface.

Leveraging this design pattern enables future implementation switches, for instance,
adopting an external library, without disrupting the project’s functionality.
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6.4.3 Contact Network module

The core class of this module, ContactNetwork, encapsulates a simulated population, includ-
ing its contact network and the inherent dynamics, interaction protocols, and transmission
guidelines integral to the model. All necessary settings pertinent to the population and
spreading dynamics, such as rates of contact changes, birth and death rates, and transition
rates and distributions, are managed by the Settings class. The network consists of nodes,
portrayed by the Individual structure, whose interconnections (edges) are administered
using Graph<GraphImpl> class, in alignment with the network dynamic rules outlined in
Settings. Additionally, the ContactNetwork manages various events and transitions oc-
curring on the network, including births, deaths, interactions, and state transitions of nodes,
while facilitating necessary adaptation changes.

The structure (or simply struct) Individual represents a member of the population. It
contains information about the individual’s state, the last modification time (the last time it
changed its state), contact rates (indicating how likely this individual is to establish a new
contact or terminate an existing one), and various rates influencing the state transitions of
this specific individual.

The IndividualFactory class adeptly encapsulates the creation of population individu-
als, serving as a distinct entity responsible for generating instances of the Individual struct.
That encapsulation defines the Factory Method pattern [141] and provides an interface for
creating objects in a superclass, but allows subclasses to alter the type of objects that will be
created. This segregation proves immensely useful in isolating object creation logic from
client code, thereby enhancing code reusability and maintainability. Should the creation logic
of Individual instances require modifications or expansions in the future – for example,
introducing additional parameters or varying initialisation processes – such alterations can
be gracefully implemented within IndividualFactory without affecting other parts of the
code. This consolidation streamlines code maintenance and future modifications.

The class IntractionManager oversees all interactions among individuals within a
network, serving as a centralised management point. This encapsulation enables it to
systematically coordinate interactions, abstracting and addressing the associated complexity
while offering simplified interfaces.

Node- and edge-management methods create, remove, and modify nodes and edges
within the ContactNetwork class:

• create(simulation_time, state) – create a new node of a given state and store
the simulation timestamp;

• remove(node) – remove a node from the network;



110 adaptiveSpreadX: C++ application and Python package

• change(simulation_time, node, to_state) – change the state of a given node
and store the simulation timestamp. Changing the state of a node consists of several
steps:

– changing the state of the node and updates its modification time,

– updating possible interactions, and

– performing adaption rules if needed;

• create_edge(node_from, node_to) – create a new edge between given nodes; and

• delete_edge(node_from, node_to) – delete an edge between given nodes.

Other methods retrieve rates of various events and transitions occurring within the
network:

• get_edge_deletion_rates() – returns a collection of two connected nodes and a
rate at which a connection will be removed. The rate is the product of the individual’s
contact removal rates;

• get_edge_creation_rates() – returns a collection of two unconnected nodes and
a rate at which a connection will happen. The rate is the product of the individual’s
connection rates;

• get_deaths() – return a collection of nodes and their death rates;

• get_births() – return a birth rate;

• get_transitions() – returns the collection of triplets "<rate, Node, State>", where
with the given rate, the Node will change to State; and

• get_interactions() – returns the collection of triplets "<rate, NodeA, NodeB>",
where with the given rate, NodeA will interact with NodeB. Interaction here assumes
the reaction between two nodes (transmission)

.json serialisation method:

• to_json() – serialises the network to the .json representation.

An instance of the ContactNetwork can be created by calling the initialising constructor:

auto ne twork = ne twork : : Con tac tNe twork { c o n f i g } ;

where config is a Configuration instance initialised before in 6.4.1.
Explicitly deleted copy constructor and copy assignment operator ensure a single instance of
ContactNetwork per run.
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6.4.4 Core Algorithm module

This module encapsulates the core implementation of the algorithms, introducing three pivotal
components within a network-based simulation framework: Algorithm, SSATAN-X, and SSA.
Each of these classes is geared towards establishing a framework for implementing specific
network algorithms that comply with given settings and operate on defined contact networks.
The module additionally includes the class Settings, tasked with managing pertinent
algorithm-related settings, including simulation time and algorithm design parameters. The
base class Algorithm serves as a base for specific algorithm implementations. The design
leverages the strategy pattern, where different algorithms can be used interchangeably, based
on the provided settings and network context. It defines the following key responsibilities of
all specific algorithms that are intended to be implemented based on it:

• initialization – configures the algorithm using the provided settings and network,
offering a common setup for derivatives;

• run – pure virtual function requires descendants to define their own algorithm execution
logic;

• to_json – converts the algorithm’s data into a .json structure, facilitating easy
logging or data extraction.

The derived from Algorithm, class SSATAN-X implements the specific SSATAN-X
Algorithm 8 in the method run. It oversees the simulation execution, ensuring compliance
with established parameters and conditions. This method also documents the simulation data
in a provided .json object.

The class SSA, another derivative of Algorithm class, encapsulates the implementation
logic for the SSA Algorithm 1 in the method run. This method also allows to log a
resultant data in a .json object. This class was implemented primarily for benchmarking
purposes. Although it generates correct results, using the SSA algorithm for models with a
population size over 100 is not recommended, nor is it advisable for models with significantly
fast dynamics due to its slow-running performance. For more information, please see
https://github.com/nmalysheva/adaptiveSpreadX/tree/cpp_package.

The factory method, make_algorithm, is employed to create and initialise the appropri-
ate algorithm (SSA or SSATAN-X) based on the provided settings, illustrating a use of the
factory pattern [141]. This pattern allows for the encapsulation of the logic that determines
which specific algorithm implementation to use, providing a straightforward API for client
code and ensuring that it does not need to manage the instantiation logic directly.
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The base Algorithm assumes that the resultant data is collected and stored in the .json
format throughout the entirety of the programme execution, which may lead to substantial
memory usage. Thus, memory utilisation and management might be a critical consideration
in the practical deployment of these algorithms.

Both SSATAN-X and SSA assume that the Settings class contains valid data, indicating
that data validation is considered a prerequisite for these algorithms.

The module also features a τττ-leap sub-component of the SSATAN-X algorithm, encap-
sulated within an autonomous class. While it does not inherit from the Algorithm class,
it can be independently invoked, if desired, by supplying the ContactNetwork instance,
simulation parameter epsilon, and specified simulation time constraints:

auto t a u _ l e a p = TauLeap { network , e p s i l o n } ;
t a u _ l e a p . e x e c u t e ( s t a r t _ t i m e , end_ t ime ) ;

The ancillary Action class encapsulates all potential reactions relevant to the simula-
tion, while the ActionsFactory class facilitates expedited access to individual or grouped
Actions (whether spreading, contact, or both). Additionally, it enables the recycling of
memory allocated by all Actions instances.

The recommended approach for invoking an algorithm instance is as follows:

auto a l g o = a l g o r i t h m : : make_a lgo r i t hm ( c o n f i g , ne twork ) ;
a lgo −> run ( j s o n _ s t r i n g ) ;

Here, config and network are previously initialised instances of Configuration and
ContactNetwork, respectively. Additionally, the json_string is initialised before .json
object employed to collect the resultant data.

6.4.5 Types and Utility modules

These modules, which encompass descriptions of user types and assorted functions like
generating random numbers and crafting .json strings, are utilised throughout various
locations and modules within the project. Furthermore, they are designed to be reusable,
serving not only different components within the current project but also possessing the
potential to be integrated into other projects.

6.4.6 Testing and validation

All core modules of the C++ project are subjected to rigorous testing to ensure their individual
performance and reliability in isolation from the entire system. The core of the testing routine
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is the strategic implementation of unit-tests. The essence of utilising unit testing lies in its
ability to validate the precise functionality of each module—spanning functions, classes, and
more—under a variety of conditions and inputs. This method involves testing each component
independently, significantly enhancing the robustness of the application by enabling accurate
localisation and efficient troubleshooting of potential issues and bugs. Moreover, unit-testing
techniques serve a dual purpose: they not only validate the correct functionality of each
system component, but also are crucial to maintaining code quality and ensuring smooth
integration throughout the development process.

6.5 Python wrapper

The linkage between C++ functionality and Python is achieved through the use of the
pybind11 library (https://github.com/pybind/pybind11). As a well-regarded open-source
tool, pybind11 facilitates the binding that enables smooth interoperability between C++ and
Python code. Designed to be a lightweight, header-only library, pybind11 allows developers
to seamlessly expose C++ classes and functions to the Python language, thereby enabling
C++ code to be invoked as if it were native Python code.

After compiling the C++ code with pybind11 and installation of the Python module, it
can be used in Python as follows:

i m p o r t a d a p t i v e S p r e a d X as asx

# C r e a t e a C o n f i g u r a t i o n o b j e c t us ing a f i l e name
c o n f i g = asx . C o n f i g u r a t i o n ( " c o n f i g _ f i l e _ p a t h " )

# C r e a t e a Network o b j e c t us ing t h e C o n f i g u r a t i o n o b j e c t
ne twork = asx . Network ( c o n f i g )

# S i m u l a t e and g e t t h e JSON r e s u l t s
r e s u l t s = asx . run ( c o n f i g , ne twork ) .

The result variable returned after the simulation is the collection of the contact, epi-
demiological and populational states of the simulated system throughout the simulation
time.

Furthermore, the visualization of results implemented on the Python side enables the
generation of several key plots. By invoking the function

asx . p l o t _ s p e c i e s _ c o u n t _ b y _ s t a t e ( r e s u l t ,
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t i m e s t e p s = t imes tepsCompare , s t a t e s _ l i s t =[ " I " , "D" ] )
p l t . show ( )

it is possible to visualise the number of individuals in each state from the states_list at
specified time points defined in timesteps. An example of this plot can be seen in Fig.
6.1A.

Fig. 6.1. adaptiveSpreadX one trajectory visualisation example. A single trajectory of the
model similar to the one outlined in Chapter 5. Plot (A) illustrates the population dynamics of
individuals within the "I" and "D" compartments throughout the simulation. Plot (B) depicts
the number of individuals transitioning to states "I" or "D" at specific intervals throughout the
simulation. For this instance, the simulation duration was set to be 5 units, with visualisations
generated at time points from 0 to 5 with the step size of 0.5 units

Another significant plot illustrates the number of individuals who transitioned to one of
the states listed in states_list between the time points specified by timesteps. This plot
can be generated by invoking the function

asx . p l o t _ n e w _ s t a t e _ c h a n g e s ( r e s u l t ,
t i m e s t e p s = t imes tepsCompare , s t a t e s _ l i s t =[ " I " , "D" ] )

An example of this plot can be seen in Fig. 6.1B. Both functions accept a single results
outcome, thus visualising only one trajectory. However, to formulate a reliable prediction, it
is generally necessary to simulate and analyse not just one, but dozens, hundreds, or even
thousands of trajectories. AdaptiveSpreadX facilitates parallel simulations through the use of
the multiprocessing library. This capability can be used by invoking the function below:

r e s _ l i s t = asx . r u n _ p a r a l l e l ( n _ p r o c e s s e s , n _ s i m u l a t i o n s ,
c o n f i g _ f n a m e )
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Here, n_processes represents the desired number of processes to be employed. For com-
prehensive details, please refer to the documentation of the multiprocessing library.
The parameter n_simulations specifies the number of trajectories to be simulated, while
config_fname is the path to the configuration file as previously described. Currently, it
is not possible to directly pass Network and Configuration entities as arguments of that
function, owing to the complexities involved in serialisation and deserialisation processes.
Instead, the path to the configuration file is provided for each execution, enabling every
process to independently initialise the Network and Configuration entities. Addressing
this limitation is on the agenda for future development by the developers.

After simulating multiple trajectories, adaptiveSpreadX offers a function to depict the
average dynamics of each state from the states_list. This can be achieved by invoking
the following function:

asx . p lo t_mean_dynamics ( r e s _ l i s t , t i m e s t e p s = t i m e s t e p s C o m p a r e )

An example of the plot illustrating these mean dynamics is showcased in Fig 6.2

6.6 Functionality and settings

Both C++ core and Python wrapper components necessitate a configuration file to be provided
to operate correctly. This file, a simple text document, contains various settings relevant to the
simulated model and algorithm, organised into different sections to simplify the navigation
and modification. This section outlines the configuration file’s structure and details the
settings that can be adjusted through this file.

Each section within the configuration files ought to commence with a section header, for-
matted as "[section]". Subsequent lines are interpreted as settings pertinent to that particular
section. It is important to remember each section header should be unique, appearing no
more than once, and refrain from incorporating whitespaces. Each setting in the configuration
file is a line of text, with segments separated by whitespace. These segments can be either
numerical values or sequences of charecters (words), depending on the format specified by
the particular section. Typically, the first segment in a line specifies the name of the parameter,
while the subsequent segments represent the values assigned to that specific setting parameter
(e.g., line " time 5" specifies the simulation time length of 5).
The following sections are obligatory for each simulation:
[Algorithm]. Sets up the algorithm settings. Required parameters for this configuration
section are following:
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Fig. 6.2. adaptiveSpreadX mean trajectories example. Mean population dynamics for the
"I", "D" and "S" states of the model, similar to the one discussed in Chapter 5, are depicted.
The mean plot is for 10 simulated trajectories. This mean dynamics plot is based on 10
simulated trajectories. Solid lines illustrate the count of individuals in each compartment,
while the shaded areas denote the standard deviation around these means.

• use – specifies the algorithm to be utilised, where options include SSA or SSATAN-X;
and

• time – defines the duration of the simulation.

It is also possible to set up following optional parameters for this section:

• output – saves to the result the state of the network at every 10n steps. In the absence
of this parameter, only the initial and final states are saved; and

• epsilon – a design parameter utilised in the τττ-leap algorithm, intrinsic to SSATAN-X.
If omitted, a default value of 0.03 is applied. Note that this parameter is inconsequential
if the SSA is chosen as in use setting.

Example of the algorithm settings:
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[ A lgo r i t hm ]
# use SSATAN−X a l g o r i t h m
use SSATAN−X
# f o r 100 t ime u n i t s
t ime 100
# o u t p u t e v e r y s t e p
o u t p u t 0
# wi th custom e p s i l o n
e p s i l o n 0 . 2 5

[Network]. Sets up the initial population parameters and its contact network rules. Required
parameters for this configuration section are following:

• State_1 number_1 ... State_m number_m – this syntax specifies the states
used and the number of nodes in the initial network. Every state utilised in the
simulation must be delineated here. If no initial node of a particular state is desired, it
should indicate so with a 0; and

• edges – dictates the quantity of randomly generated edges. Absence of this parameter
results in no edge creation, whereas a number larger than the maximum potential edges
implies complete node connectivity.

Additionally, the following optional parameter can be configured for this section:

• seed – employed as a seed for the random number generator when creating the initial
set of edges. If not specified, a random number is utilised as the seed.

Example of the contact network configuration settings:

[ Network ]
# c r e a t e 5 nodes wi th s t a t e A
A 5
# and 1 B
B 1
# no C , b u t needed f o r t r a n s i t i o n s
C 0
# and randomly c o n n e c t 2 nodes
edges 1
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The following sections are optional for each simulation:
[Birth] and [Death]. This section establishes the rules for the creation and removal of nodes.

• State_1 rate_1 ... State_m rate_m – regulates the creation or deletion of a
node of state Statei with the rate ratei. The rate is individually determined for each
node upon its creation, ensuring a distinct rate allocation for every single node in the
network.

Example of the [Birth] and [Death] configuration settings:

[ B i r t h s ]
# c r e a t e S wi th a f i x e d r a t e
S 0 . 1
# and I w i th a r a t e drawn u n i f o r m l y
I U( 0 . 2 , 0 . 4 )

[ Dea ths ]
# remove on ly nodes o f s t a t e I w i th a f i x e d r a t e
I 0 . 9

Importantly, the states used in this section must be present in section [Network]. If section
[Birth] or [Death] does not presented in the configuration file, these types of reactions will be
excluded from simulation.
[AddEdges] and [RemoveEdges]. Rules for creating and removing edges.

• State_1 rate_1 ... State_m rate_m – controls the rate at which nodes of
each state establish or dissolve their connections. Notably, the rate is individually
ascertained for each node at the time of its creation.

The rate of the action – whether a deletion or addition of contact between two nodes
denoted as a and b – is defined by ratea ∗ rateb. This formulation ensures that the interaction
between two distinct nodes is influenced by the characteristic rates of both involved entities.

If section [AddEdges] or [RemoveEdges] does not presented in the configuration file,
these types of reactions will be excluded from contact dynamics during simulation.
Example of the configuration settings for adding and removing edges:

[ AddEdges ]
# S c r e a t e s edges on a h igh r a t e
S 0 . 8
# I w i th a low r a t e
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I 0 . 1

[ RemoveEdges ]
# S keeps i t s c o n t a c t s , so not l i s t e d h e r e
# b u t I d r o p s c o n n e c t i o n s a t a h igh r a t e
I 0 . 9

[Transitions]. This section dictates the rules for altering the state of a node, independent of
its connections.

• from_state to_state rate – a node initially in the from_state transitions to
the to_state at a specified rate. The rate is individually determined for each node
upon its creation.

Example of the transition settings:

[ T r a n s i t i o n s ]
# A t u r n t o B a t r a t e 0 . 5
A B 0 . 5

# B t u r n s t o A wi th r a t e drawn u n i f o r m l y from r a n g e [ 0 , 1 ]
B A U( 0 , 1 )

Avoiding [Transitions] section in the configuration file leads to the excluded of these kind of
reactions from simulation.
[Interactions]. This section details the rules for altering the state of a node based on its
connections.

• from_state contact_with to_state rate – if a node in the from_state has a
connection with another node in the contact_with state, it possesses the capability to
alter its state to the to_state at a specified rate. The rate is individually determined
for each connection (edge) at the time of its creation.

Example of the interactions configuration:

[ I n t e r a c t i o n s ]
# I f A c o n n e c t e d t o B , make i t C a t a r a t e 0 . 1
A B C 0 . 5
# I f B i s c o n n e c t e d t o A, make i t C a t a r a t e drawn
# u n i f o r m l y from t h e r a n g e [ 0 . 1 , 0 . 2 ]
B A C U( 0 . 1 , 0 . 2 )
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If the [Interactions] section is omitted from the configuration file, contact-dependent reactions
will not be considered in the simulation.
[Adaptations]. This section delineates rules for the adaptation of a node or its neighbourhood
when its state undergoes a change. Two kinds of adaptations are available:

• Removal of all edges connected to the node. Utilising the syntax state part to
signify that when a node transitions to the state, part *100% of its contacts will be
removed. If part=0, this adaptation rule is bypassed or ignored. Example of this type
of adaptivity:

[ A d a p t a i o n s ]
A v B
A v B C D E . . .

• Alteration of the state of neighbouring nodes. Employing the syntax A part B <C D
E> indicating that if any node switches its state to A, part *100% of its neighbours
will adjust their state to B. If additional states are provided, they are utilised as a filter.
Consequently, the adaptation applies only to nodes with the state C, D, or E. Example
of this adaptivity type:

[ A d a p t a i o n s ]
# I f t u r n e d t o A t u r n a l l n e i g h b o u r s t o B
A 1 . 0 B
# I f t u r n e d t o A t u r n 50% of t h e n e i g h b o u r s t o B ,
# i f t h e c u r r e n t s t a t e i s C or D
A 0 . 5 B C D
# I g n o r e d : c h a n g i n g a node t o i t s c u r r e n t s t a t e
A 0 . 5 B B
# The " f i l t e r " C has no e f f e c t and w i l l be i g n o r e d
A 0 . 1 C B C D
# The above r u l e w i l l be i n t e r p r e t e d as
A 0 . 1 C B D

Of all rules, only one will happen (e.g., either remove edges OR change neighbours). If
neighbours change and adaption rules can apply, the execution will also performed.

Omitting the [Adaptivity] section from the configuration file means that adaptive behavior
will not be included in the simulation, thereby simplifying the model and removing its
adaptivity.
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For a more detailed description and additional information, refer to the documenta-
tion(https://github.com/nmalysheva/adaptiveSpreadX/blob/cpp_package/README.md).

6.7 Limitations

While the software package adaptiveSpreadX facilitates the simulation of spreading processes
on time-evolving adaptive networks, enabling quick and efficient simulations, it is still in its
early stages and consequently has a number of limitations. The software adheres rigorously
to a specific contact model in which the rate of gaining or losing a contact is determined
by the multiplication of individual rates. For instance, for two nodes i and j with rates of
forming a new contact λ

+
i and λ

+
j respectively, the rate of forming a contact between them

is defined as λ
+
i j = λ

+
i · λ

+
j . This approach may constrain the software’s flexibility and

applicability, particularly in scenarios requiring different contact dynamics or models.
During the initial formation of the contact network, edges are created randomly and

subsequently governed by agent parameters, which may be insufficient for simulations that
demand a particular initial edge pattern or network topology. This limitation could affect the
replicability or accuracy of certain network models that rely on specific initial conditions.

The software lacks the capability for dynamic reduction, which may impede its ability to
efficiently manage large-scale simulations or those that require substantial computational
resources. This limitation could be especially decisive when dealing with intricate or
extensive networks where computational efficiency is paramount.

The requisite of employing a configuration file, instead of allowing model setup directly
within the Python environment, introduces an additional step, potentially complicating the
process and hindering the software’s ease of use and swift implementation.

The parallel simulations for the trajectories is implemented using the multiprocessing
library. This approach necessitates specific conditions for the Network and Configuration
entities to be transmitted as arguments within the parallel framework. Specifically, the
serialisation and deserialisation of these objects must be facilitated, a functionality not
currently available but intended for future development.

Lastly, for various reasons, not all features of the C++ core are accessible in Python.
While some functionalities, like network edge manipulation, are excluded because they are
solely invoked by the algorithm, others require implementation and may be added in future
updates upon user request.

All identified limitations are scheduled to be resolved in order of priority during the
future development iterations of the software.All future developer plans, feature updates, and
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functionality extensions can be found at https://github.com/nmalysheva/adaptiveSpreadX/
issues.

6.8 Summary

This chapter discusses the adaptiveSpreadX software package, which implements the
SSATAN-X algorithm for practical application. This package comprises two main com-
ponents: a core part written in C++ for efficient execution and a Python wrapper for easy
interaction and visualisation. The chapter elaborates the reason for choosing C++ and Python,
the programming languages for the software implementation, the configuration file structure,
and current limitations of the software. It details the structural design of the C++ core,
including modules like Configuration, Graph, Contact Network, and Algorithm. Each mod-
ule’s functionality and design are explained. The linking C++ functionality with Python
using pybind11 is also described. Finally, the chapter outlines the package’s limitations and
potential areas for future development.



Chapter 7

Discussion and outlook

7.1 Contribution

This work has introduced SSATAN-X, an algorithm designed to simulate effective spreading
dynamics on adaptive time-evolving networks with efficiency and precision. This algorithm
capitalises on the observation that, in models where both contact dynamics and epidemic
dynamics are significant, the former tends to occur at a faster pace than the latter (i.e., not
every contact leads to transmission). The algorithm employs a focussed strategy, concen-
trating primarily on the impact of contact dynamics on epidemic trends and vice versa,
rather than delving into the sophisticated details of the contact dynamics itself. This can
be accomplished through approximate mass-updates of the contact structure between major
spreading and vital events, including pathogen transmission, diagnosis, or death. By em-
ploying this approach, SSATAN-X achieves computational efficiency while capturing the
essential interplay between contact patterns and the spread of the epidemic. This allows
for advances in the understanding of dynamic phenomena transmission within an adaptive
time-evolving networks framework. Although various algorithms have been developed in
recent decades to simulate different kinds of complex dynamics and contact networks, there
remains substantial scope for refinement and advancement in this area of research.

In chapter 5, it was demonstrated that the proposed contact-updating method preserves the
statistical properties of the underlying contact network, particularly at time points pertinent
to the spreading dynamics. This preservation of the contact network statistical characteristics,
notably at times crucial to the spreading dynamics, also maintains the statistics associated with
triggering the subsequent spreading event. Additionally, the mass contact updating technique
circumvents computational burdens originating from updating contact edges individually.
Hence, depending on the parameter selection, SSATAN-X can notably accelerate computation
times compared to exact methods like the SSA, all without the significant loss of simulation
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precision. The acceleration factor is crucially dependent on the relationship between the
contacts dynamics and the population, (or spreading) dynamics. For instance, if contacts
generally do not result in transmission, the computational acceleration with SSATAN-X will
be significant, as shown in chapter 5.

7.2 Limitations and recommendations

The enhanced computational performance offered by the SSATAN-X is significant for a
majority of real-life-scenario models. However, this efficiency is subject to certain constraints,
which are explored in detail in this section. Furthermore, the relevance of some outcomes
from this research is predominantly within specific parameter contexts, an aspect that is also
examined in this section.

7.2.1 Time-dependant reaction rates

In the example provided in chapter 5, a simplistic model is utilised to demonstrate the
functionality of the proposed algorithm, serving as a foundational proof-of-principle. Within
the employed model, a distinction is made between (i) population dynamics, which might
encompass reactions that modify the population (e.g., birth or death) or the state of the
considered population (e.g., change in the number of susceptible, infected, diagnosed),
and (ii) contact dynamics, which involve reactions influencing the contact network among
individuals within the populations.

Crucially, the algorithmic concept is applicable to any model that can be configured in this
manner, regardless of which specific reactions are categorised under each type. Regarding
the model under consideration, attention must be directed towards the calculation of the
upper bound B(TL), altering this computation in accordance with the model setup.

In the presented examples, constant reaction rates were assumed for both contact and
spreading processes. Nevertheless, the possibility of considering rates that change with time
is also possible. Take, for example, the transmission rate γ , which might be time-dependent
due to a temporal pharmacokinetic effect from prophylaxis, or may vary based on the duration
an individual has been infected or contagious, as supported by various studies [142–144, 134].
Such time-variant effects can be incorporated while determining the upper bound B(TL) in
Algorithm 8 (see section 4.3.2).
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Fig. 7.1. Spreading process model with the time-varying transmission rate. The models
described in chapter 5 with the time-dependent transmission rate γ(t) = 0.002(sin(2t −
π/2)+1) (panel A ). The graphic depicts the change in the number of infected, diagnosed,
and susceptible (panel B) individuals over simulation time. Solid blue lines describe the
sample means over 103 simulations using SSATAN-X algorithm. The shaded area represents
the mean ± standard deviation.

Fig. 7.1 shows the example model from chapter 5, expanded to include a time-dependent
force of transmission, γ(t) using a sine function as an example, to depict, for example, the
seasonality of the disease. However, any time-variant function can be utilised. As noted above,
one must attend to the following when calculating B(TL), and max(γ) in equation (4.19) is
calculated as max(γ) =maxh∈[t,t+TL] γ(h). After the time step ∆t ∼ Exp(BTL) is sampled, and
the progression t← t+∆t is made, the actual γ(t) needs to be computed, and subsequently, all
reaction propensities as

ℓ(t). This example adeptly illustrates dynamic infection control, which
affects the transmission rate in a time-dependent manner, as observed with interventions
like mask-wearing for airborne infections or for vaccination and prevention initiatives. If a



126 Discussion and outlook

time-variant contact control is implemented, there are two potential approaches: In instances
of abrupt changes (e.g., toggling contact restrictions on/off at a specific time), the approach
is straightforward: the look-ahead time horizon TL aligns with the alteration in contact rates.
After the rejection step (line 6 in Algorithm 8) the rates for forming new contacts adjust
accordingly from rates before to those after contact restrictions. Should the rate of forming
new contacts λ+(t), or the rate of disassembling existing contacts λ−(t) be an arbitrary, time-
continuous deterministic function, adjustments to the computation of BTL are also necessary.
This adaptation can be realised by employing the time-dependent rates in equations (4.1) and
subsequently in equations (4.7). These equations might be numerically solved using standard
ODE solvers to compute all variables in equation (4.19).

In addition, the utilisation of continuous-time functions in the modelling of either contact
or population dynamics reactions introduces a complexity in which the SSA algorithm
suffers degradation of numerical precision, since these algorithms are specifically designed
for simulating homogeneous Markov processes. In such scenarios, it is advisable to employ
the integral-based method instead [9]. Notably, SSATAN-X is also capable of handling these
cases effectively.

7.2.2 Restrictions on population size and contacts capacity

In the presented research, consideration is given to finite populations. Within such popula-
tions, each individual i inherently possesses an upper theoretical limit for potential contacts
of N−1, while a complete graph encompasses N · (N−1)/2 edges. This paradigm facilitates
a direct estimation of the total number of edges available for either deletion or addition at any
given time point t: The number of deletable edges equates to the present number of edges
E(t), whereas the edges available for addition can be calculated as N · (N− 1)/2−E(t),
equivalently, the number of edges within a complement graph. Crucially, in infinite popula-
tions, the quantity of edges that can be deleted remains E(t), while for adding edges, one
might judiciously forgo the ’complement graph’ strategy, thereby enhancing the algorithm’s
efficiency.

Numerous authors have proposed models imposing stricter restrictions on the number of
contacts [35]. Some concepts may derive inspiration from the well-known Dunbar number
[145, 146], which presupposes that individuals cannot sustain stable social relationships with
more than 150 others, although it is crucial to acknowledge that Dunbar’s hypothesis has not
been universally accepted without criticism [147].

Moreover, the existence of contact networks, wherein the maximal number of contacts
for an individual is fewer than the available individuals within the network, is plausible. For
instance, Schmid and Kretzschmar [35] delineate an individual-based model, where each
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individual has a definitive upper-limit capacity concerning the number of concurrent sexual
partnerships. Pair formation and separation are simulated as dynamic processes, with each
individual harbouring unique probabilities of contact formation and separation, derived from
a pertinent distribution. In employing SSATAN-X to model such restrictive contact dynamics,
the number of edges available for deletion remains unaltered, while the estimation of the
number of edges available for addition becomes more intricate: Subject to the order of the
addition and remaining contact capacities, various outcomes may emerge, each with different
possible numbers of edges to be added. For example, in a network where all nodes but one
have exhausted their capacities, no further edges can be added without breaching the contact
constraints. Consequently, it becomes imperative to estimate a ’worst case’ scenario, that
is, a contact bulk update resulting in a minimal overall number of edges. To achieve this,
the "reverse" Havel–Hakimi algorithm, with modifications also considering existing edges
E(t), might be implemented. The original algorithm [148] is traditionally used to determine
whether a sequence of numbers can represent the degree sequence of a simple, undirected
graph and to construct the corresponding graph accordingly. This is achieved by sequentially
connecting nodes with the highest residual degree. If, in the end, all capacities are exhausted,
the result is a simple undirected graph. Contrary to this, the approach outlined in Algorithm
12 proposes to sequentially connect nodes with the lowest residual degree until no further
connections are possible. This method assists in estimating the maximum number of edges
that could be added to the network in a ’worst-case’ scenario.

Algorithm 12. Havel–Hakimi-based inverse approach.
Input TF , G(0)

1: Put all vertices in priority queue Q where lower value of the residual capacity C j has
higher priority

2: nEdges = 0
3: while len(Q)> 0 do
4: a = Q.pop()
5: if Ca > 0 then
6: for i = 1.. min(Ca, len(Q) do
7: if Ci > 0 and vertices a and i not connected then
8: nEdges = nEdges + 1
9: Ci =Ci−1
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7.2.3 Non-adaptive contact dynamics

In instances where the contact dynamics are non-adaptive, they may, in fact, be precomputed
and seamlessly integrated into the original Extrande Algorithm 6. The calculation of the
contact-dependent segment of the upper bound B(TL) may be executed directly, as all contacts
are pre-simulated and known in advance. For instance, in the context of the model utilised in
chapter 5, it might be expressed as BS→I(TL) = max(γ) ·∑i∈I ∑ j∈S

∫ TL
0 δi j(t) dt, where δi j(t)

takes the value of 1 if an edge {vi,v j} is present at time t.

7.2.4 Algorithms used in this work

In this research, the Anderson τττ-leap algorithm [115] was employed to calculate the ap-
proximate contact updates in the intervals between two epidemiological events. Although
alternative tau-leap methodologies, as overviewed in [99], are feasible, the Anderson tau-leap
algorithm was selected due to its assurance of accuracy via adaptive step size adjustment.
The τττ-leaping method, akin to explicit first-order Euler methods in solving systems of ODEs
[106, 149], can be viewed as a stochastic simulation algorithm with particular analogies. An
alternative strategy for the mass updating of the contact dynamics might involve adapting
higher-order schemes with adaptive step sizes, as proposed in ODE contexts [150]. A notable
example might be the utilisation of the Runge-Kutta-Fehlberg method [151] to modulate step
sizes for mass contact updating. The benefit of employing higher-order schemes in mass
contact updating resides in the ability to select larger step sizes while maintaining accuracy
[152]. Subsequent advancements of SSATAN-X are expected to involve the integration of
these higher-order approximation methodologies.

As proposed in chapter 4, the calculation of the putative time for reactions of type Rs

in the SSATAN-X envelope algorithm is informed by the upper bound of total propensities
ensuring that contact updates within this time frame will not necessitate an earlier putative
time. This facilitates the implementation of the next reaction method algorithm for contact
dynamics reactions Rc using an indexed priority queue Q, containing the edge-addition and
edge-deletion reactions, prioritising those with smaller putative times that are shaped by
reaction propensities and sampled via the next reaction method’s principles. This approach
enables the rapid and precise simulation of contact dynamics.

Additionally, some authors also report the observation of inter-contact times not dis-
tributed according to exponential distributions [153–155]. In order to capture these dynamics,
one may look into simulating contact dynamics using, for example, Non-Markovian Gillespie
algorithm proposed by Masuda et al. [156, 97].
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7.3 Outlook

7.3.1 Non-Markovian dynamics

While the SSATAN-X Algorithm is primarily engineered to simulate Markovian processes, it
can be moderately and coherently extended to integrate certain non-Markovian dynamics.
For instance, should certain processes—like recovery or other state transitions—be steered
by a deterministic duration, the look-ahead time TL might be aptly set to reflect this duration.

7.3.2 Model scaling

Simulating agent-based models, particularly during peak spreading stages of phenomena like
epidemics or viral content dissemination on social networks, demands substantial memory
and processing power due to the need to manage numerous agents. Unlike compartmental
modelling approaches, which maintain consistent computation times regardless of population
size, agent-based methods typically require linear or supralinear scaling with population size.
This scaling necessitates the introduction of a "scaling factor," whereby one agent represents
multiple individuals, thereby simplifying calculations.

While implementing this technique, meticulous attention to detail is paramount as it can
compromise result granularity and introduce inaccurate stochastic variations, particularly
when too few agents are used. Although beneficial for conserving computational resources,
this approach can affect the model’s resolution and accuracy, notably for rare events and in
smaller-scale scenarios. The integration of dynamic scaling into the SSATAN-X algorithm
and software is planned for future project development, with a particular focus on precision
and nuanced execution.

7.3.3 Eliminating Absorbing States

When investigating spreading processes on contact networks, the focus is frequently directed
toward the proliferation of phenomena over an extended temporal scale. Consequently, when
any agent enters an absorbing state (e.g., recovery state R in the SIR model), it can be
judiciously excluded from further consideration. Furthermore, given that the transmission
of a pathogen is typically confined to interactions between individuals in two specific states
(e.g., only from I to S in the SIR model, or from I or D to S in the scenario delineated in
chapter 5), it becomes pertinent to sideline all irrelevant edges. The focus should, therefore,
pivot towards exclusively simulating and updating those contacts that remain relevant for the
ongoing transmission of the phenomena. Enhancing SSATAN-X’s performance by tailoring
its focus in this manner represents a promising avenue for future refinement and development.
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7.3.4 Minimising Propensity Updates

An additional refinement to the algorithm, aimed to boost its computational efficiency,
involves minimising updates to the reaction propensities. Although this is already mostly
incorporated in the foundational idea of the SSATAN-X algorithm, which segregates complex
dynamics into two distinct categories – population dynamics Rs and contact dynamics Rc –
room for further enhancement remains. Such improvement could be achieved by carefully
tracking dependencies between reactions. By updating reaction propensities exclusively
when they are likely to be influenced by a specific triggered reaction, computational efficiency
can be significantly improved. For a deeper exploration of the techniques and data structures
that can be employed for this purpose, please refer to [97].

7.3.5 Incorporation of various agents characteristics

In the intricate domain of contact dynamics and disease spreading, behaviours – notably
those related to the establishment and severance of contacts – along with alterations in
susceptibility or contagiousness are subject to an array of influencing factors and processes,
both internal and external to the agents involved. Examples abound, such as how med-
icating infected individuals can reduce their contagiousness or how the implementation
of pandemic countermeasures (e.g., mask mandates in public transit and the enforcement
of social distancing) can truncate the number of relevant contacts for disease propagation,
thereby tempering overall infection rates [133–135]. These multifaceted impacts can be
seamlessly incorporated at both the agent and population levels of the model, providing a
refined perspective for navigating through the complex dynamics of disease dissemination
and containment, as well as connecting pathogen dynamics within a host to the spread of
infection at the population level. The design of the SSATAN-X algorithm allows for these
modifications to be straightforwardly incorporated into the simulation.

7.3.6 Machine learning and AI application

The application of machine learning (ML) techniques is a notable and novel avenue to
possibly enhance agent sophistication and more accurately model human behaviours within
this context [157]. By leveraging ML, agents can ostensibly "learn" from historical data
and modify their behaviours more realistically and adaptively. Such an approach not only
anchors agent actions and decisions in a richer, data-driven context but also furnishes the
model with a capacity for more nuanced and dynamic responses to evolving epidemiological
landscapes, thereby enhancing the predictive and exploratory utility of the simulation frame-



7.3 Outlook 131

work. Incorporating machine learning tools into the adaptiveSpreadX software package has
been part of a sustained, ongoing development plan.
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atiky, 080(4):477–480, 1955.

[54] S Louis Hakimi. On realizability of a set of integers as degrees of the vertices of
a linear graph. i. Journal of the Society for Industrial and Applied Mathematics,
10(3):496–506, 1962.

[55] Fan Chung and Linyuan Lu. Connected components in random graphs with given
expected degree sequences. Annals of combinatorics, 6(2):125–145, 2002.

[56] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[57] Derek J. de Solla Price. Networks of scientific papers. Science, 149(3683):510–515,
1965.

[58] Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering.
Physical review E, 65(2):026107, 2002.

[59] Marc Barthélemy. Crossover from scale-free to spatial networks. Europhysics letters,
63(6):915, 2003.



References 137

[60] Sergey N Dorogovtsev, Alexander V Goltsev, and José Ferreira F Mendes. Pseud-
ofractal scale-free web. Physical review E, 65(6):066122, 2002.

[61] Iaroslav Ispolatov, Pavel L Krapivsky, and Anton Yuryev. Duplication-divergence
model of protein interaction network. Physical review E, 71(6):061911, 2005.

[62] Ove Frank and David Strauss. Markov graphs. Journal of the american Statistical
association, 81(395):832–842, 1986.

[63] David Strauss. On a General Class of Models for Interaction. SIAM Review, 28(4):513–
527, 1986.

[64] Stanley Wasserman and Philippa Pattison. Logit models and logistic regressions
for social networks: I. an introduction to markov graphs and p. Psychometrika,
61(3):401–425, 1996.

[65] Carolyn J Anderson, Stanley Wasserman, and Bradley Crouch. A p* primer: logit
models for social networks. Social Networks, 21(1):37–66, 1999.

[66] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduction to expo-
nential random graph (p*) models for social networks. Social Networks, 29(2):173–
191, 2007.

[67] Dean Lusher, Johan Koskinen, and Garry Robins. Exponential random graph models
for social networks: Theory, methods, and applications. Cambridge University Press,
2013.

[68] Sourav Chatterjee and Persi Diaconis. Estimating and understanding exponential
random graph models. The Annals of Statistics, 41(5):2428–2461, 2013.

[69] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999.

[70] Sanjay Jain and Sandeep Krishna. Autocatalytic sets and the growth of complexity in
an evolutionary model. Physical Review Letters, 81(25):5684, 1998.

[71] Michael Knudsen and Carsten Wiuf. A markov chain approach to randomly grown
graphs. Journal of Applied Mathematics, 2008, 2008.

[72] Lauren Ancel Meyers, M.E.J. Newman, and Babak Pourbohloul. Predicting epidemics
on directed contact networks. Journal of Theoretical Biology, 240(3):400–418, 2006.

[73] Amy C. Kinsley, Gianluigi Rossi, Matthew J. Silk, and Kimberly VanderWaal. Multi-
layer and multiplex networks: An introduction to their use in veterinary epidemiology.
Frontiers in Veterinary Science, 7, 2020.

[74] Cliff C. Kerr, Robyn M. Stuart, Dina Mistry, Romesh G. Abeysuriya, Katherine
Rosenfeld, Gregory R. Hart, Rafael C. Núñez, Jamie A. Cohen, Prashanth Selvaraj,
Brittany Hagedorn, Lauren George, Michał Jastrzębski, Amanda S. Izzo, Greer Fowler,
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Susan Mather, Philip R Dormitzer, Uğur Şahin, Kathrin U Jansen, William C Gruber,
and C4591001 Clinical Trial Group. Safety and efficacy of the bnt162b2 mrna covid-19
vaccine. N Engl J Med, 383(27):2603–2615, 12 2020.

[137] Robert M Grant, Javier R Lama, Peter L Anderson, Vanessa McMahan, Albert Y Liu,
Lorena Vargas, Pedro Goicochea, Martín Casapía, Juan Vicente Guanira-Carranza,
Maria E Ramirez-Cardich, Orlando Montoya-Herrera, Telmo Fernández, Valdilea G
Veloso, Susan P Buchbinder, Suwat Chariyalertsak, Mauro Schechter, Linda-Gail
Bekker, Kenneth H Mayer, Esper Georges Kallás, K Rivet Amico, Kathleen Mulligan,
Lane R Bushman, Robert J Hance, Carmela Ganoza, Patricia Defechereux, Brian
Postle, Furong Wang, J Jeff McConnell, Jia-Hua Zheng, Jeanny Lee, James F Rooney,
Howard S Jaffe, Ana I Martinez, David N Burns, David V Glidden, and iPrEx Study
Team. Preexposure chemoprophylaxis for hiv prevention in men who have sex with
men. N Engl J Med, 363(27):2587–99, Dec 2010.

[138] Myron S Cohen, Ying Q Chen, Marybeth McCauley, Theresa Gamble, Mina C Hos-
seinipour, Nagalingeswaran Kumarasamy, James G Hakim, Johnstone Kumwenda,
Beatriz Grinsztejn, Jose H S Pilotto, Sheela V Godbole, Sanjay Mehendale, Suwat
Chariyalertsak, Breno R Santos, Kenneth H Mayer, Irving F Hoffman, Susan H
Eshleman, Estelle Piwowar-Manning, Lei Wang, Joseph Makhema, Lisa A Mills,
Guy de Bruyn, Ian Sanne, Joseph Eron, Joel Gallant, Diane Havlir, Susan Swindells,
Heather Ribaudo, Vanessa Elharrar, David Burns, Taha E Taha, Karin Nielsen-Saines,



References 143

David Celentano, Max Essex, Thomas R Fleming, and HPTN 052 Study Team. Preven-
tion of hiv-1 infection with early antiretroviral therapy. N Engl J Med, 365(6):493–505,
Aug 2011.

[139] Nancy H L Leung, Daniel K W Chu, Eunice Y C Shiu, Kwok-Hung Chan, James J
McDevitt, Benien J P Hau, Hui-Ling Yen, Yuguo Li, Dennis K M Ip, J S Malik Peiris,
Wing-Hong Seto, Gabriel M Leung, Donald K Milton, and Benjamin J Cowling.
Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med,
26(5):676–680, 05 2020.

[140] S Weller and K Davis. Condom effectiveness in reducing heterosexual hiv transmission.
Cochrane Database Syst Rev, (1):CD003255, 2002.

[141] W.F. Tichy. A catalogue of general-purpose software design patterns. In Proceedings of
TOOLS USA 97. International Conference on Technology of Object Oriented Systems
and Languages, pages 330–339, 1997.

[142] S Duwal, V Sunkara, and M von Kleist. Multiscale systems-pharmacology pipeline
to assess the prophylactic efficacy of nrtis against hiv-1. CPT Pharmacometrics Syst
Pharmacol, 5(7):377–87, 2016.

[143] S Duwal, L Dickinson, S Khoo, and M von Kleist. Hybrid stochastic framework
predicts efficacy of prophylaxis against HIV. PLoS Comput Biol, 14(6):e1006155,
2018.

[144] Lanxin Zhang, Junyu Wang, and Max von Kleist. Numerical approaches for the rapid
analysis of prophylactic efficacy against hiv with arbitrary drug-dosing schemes. PLoS
Comput Biol, 17(12):1009295, Dec 2021.

[145] R.I.M. Dunbar. Grooming, gossip, and the evolution of language. Harvard University
Press, 1998.

[146] R. I. M. Dunbar. Neocortex size as a constraint on group size in primates. Journal of
Human Evolution., 22(6):469–493, 1992.

[147] Patrik Lindenfors, Andreas Wartel, and Johan Lind. ’dunbar’s number’ deconstructed.
Biol Lett, 17(5):20210158, 05 2021.

[148] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear
graph. I. J. Soc. Indust. Appl. Math., 10:496–506, 1962.

[149] JC Butcher. Numerical Methods for Ordinary Differential Equations, Second Edition.
Wiley, 2008.

[150] Pau Rué, Jordi Villà-Freixa, and Kevin Burrage. Simulation methods with extended
stability for stiff biochemical kinetics. BMC Syst Biol, 4:110, Aug 2010.

[151] E. Fehlberg. Classical fifth-, sixth-, seventh-, and eighth-order runge-kutta formulas
with stepsize control. NASA Technical Report (TR), 1968.

[152] David F Anderson, Arnab Ganguly, and Thomas G Kurtz. Error analysis of tau-leap
simulation methods. The Annals of Applied Probability, 21(6):2226–2262, 2011.



144 References

[153] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-
François Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno
Lina, et al. High-resolution measurements of face-to-face contact patterns in a primary
school. PloS one, 6(8):e23176, 2011.

[154] Xuan Zhou, Zhifeng Zhao, Rongpeng Li, Yifan Zhou, Jacques Palicot, and Honggang
Zhang. Human mobility patterns in cellular networks. IEEE Communications Letters,
17(10):1877–1880, 2013.

[155] Elohim Fonseca dos Reis, Aming Li, and Naoki Masuda. Generative models of
simultaneously heavy-tailed distributions of interevent times on nodes and edges.
Physical Review E, 102(5):052303, 2020.

[156] Naoki Masuda and Luis EC Rocha. A gillespie algorithm for non-markovian stochastic
processes. Siam Review, 60(1):95–115, 2018.

[157] Molood Ale Ebrahim Dehkordi, Jonas Lechner, Amineh Ghorbani, Igor Nikolic, Émile
Chappin, and Paulien Herder. Using Machine Learning for Agent Specifications in
Agent-Based Models and Simulations: A Critical Review and Guidelines. Journal of
Artificial Societies and Social Simulation, 26(1), 2023.


