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Abstract 
Intra-tumor heterogeneity describes the coexistence of multiple genetically distinct 

subclones within the tumor of a patient resulting from somatic evolution, clonal diversification, 

and selection. It is a main causal driver of therapy resistance in the clinic by already containing 

subclones that are resistant to therapy or by subclones acquiring resistance to therapy. 

Therefore, the understanding of intra-tumor heterogeneity and tumor development may lead to 

new approaches and targets for treatment. In this thesis, I developed a method for the integrated 

analysis of bulk and single-cell DNA sequencing data of core-binding factor acute myeloid 

leukemia patients, which is defined by the presence of a RUNX1-RUNX1T1 or CBFB-MYH11 

fusion gene. I generated a combined bulk and single-cell dataset of 9 core-binding factor acute 

myeloid leukemia patients with samples at diagnosis, complete remission and relapse. Using 

this method, I was able to reconstruct tumor development including somatic variants, somatic 

copy-number alterations and fusion genes from a single tumor sample and, if available, from 

merged diagnosis and relapse samples showing tumor evolution under the pressure of 

chemotherapy. I performed an in-depth analysis of small-scale and large-scale genomic 

alterations of leukemia patients and, moreover, demonstrate that my developed method can 

detect subclonal copy-number alterations with a higher resolution as compared to current 

methods. 
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I Background 
In Germany almost 500,000 people are newly diagnosed with cancer every year and alone 

in 2020 approximately 13,560 people (i.e., 5,640 women and 7,920 men) have been diagnosed 

with leukemia (ICD-10: C91–C95) with 4% of them being younger than 15 years [1,2]. The 

German Centre for Cancer Registry Data of the Robert Koch Institute reported that the 

incidence rate per 100,000 people for leukemias is with 12.9 in contrast to 8.0 higher in men 

than in women [1]. Figure 1 shows the age-specific incidence rates for women and men of 

12,723 leukemia cases reported in 2019. Approximately 23% of them are diagnosed with acute 

myeloid leukemia (AML) which is the second most common type of leukemia after chronic 

lymphocytic leukemia (CLL) with 37% of newly diagnosed cases. The data shows that the 

incidence rate declines for children and minors, but then increases with age.  

 

 
Figure 1: Age-specific incidence rates of leukemias (C91-C95) grouped by sex for Germany in 2019. Data 
derived from the German Centre for Cancer Registry Data of the Robert Koch Institute. [1] 

1 Acute myeloid leukemia 

AML is the most common acute leukemia and characterized by infiltration of the bone 

marrow by proliferative, clonal, abnormally differentiated and occasionally poor differentiated 

cells of the hematopoietic system [3]. During normal hematopoiesis mutational events (founder 

mutations) in hematopoietic stem cells (HSCs) primarily affecting genes involved in epigenetic 

regulation, such as DNA methylation (e.g., DNMT3A, IDH1/2 and TET2) or chromatin 

modification (e.g., ASXL1), lead to a preleukemic state that by acquiring additional mutations 

(driver mutations) leads to leukemia [4,5]. This process is called leukemogenesis. AML is 

diagnosed if ³20% myeloid blasts, including myeloblasts, monoblasts, and megakaryoblasts 

are detected in peripheral blood (PB) samples or bone marrow (BM) aspirates [6]. AML is 

classified according to the World Health Organization (WHO) by their 5th revised classification 
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of hematolymphoid tumors based on clinical parameters, phenotypic features and molecular 

genetic markers (e.g., cytogenetics and mutation profiles) [7]. The circus plot, as shown in 

Figure 2, from Chen et al., [8] visualizes common genetic events leading to pathogenesis of 

AML grouped by their functional categories. Some common genetic events, such as 

transcription factor fusions (e.g., MYH11-CBFB), define distinct AML entities or subtypes (see 

Table 1) and are further used as guidance for risk stratification and treatment.  

 
Figure 2: Most common genetic events leading to pathogenesis of acute myeloid leukemia (AML). Circos 
plot from Chen et al., [8] visualizes by length of segment the proportion of gene alterations found in AML patients 
from one functional category. Bands connecting functional categories illustrate association between mutations in 
different pathways. Partial tandem duplication (PTD) 

AML classification follows a hierarchy so that AML-defining recurrent genetic 

abnormalities (e.g., t(8;21)(q22;q22.1)/RUNX1-RUNX1T1) outvote TP53 mutations, followed 

by myelodysplasia-related gene mutations that supersede myelodysplasia-related cytogenetic 

abnormalities. Except for AML with recurrent genetic abnormalities, patients with 10-19% 

myeloid blasts are classified as myelodysplastic syndromes (MDS)/AML. Table 1 adapted from 

Döhner et al., [6] and Juskevicius et al., [9] lists common AML subtypes categorized by their 

2022 European LeukemiaNet (ELN) risk classification (i.e., favorable, intermediate and 

adverse) with genes that harbor frequent co-occurring mutations.  

Decision-making for treating AML patients depends on patient fitness (e.g., age, Eastern 

Cooperative Oncology Group (ECOG) performance status and pre-existing conditions) 

allowing them to undergo intensive chemotherapy or not and, thereafter, AML characteristics 

(e.g., morphology and cytogenetics) for selection of induction therapy [10]. Furthermore, it is 
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necessary to use next-generation sequencing methods to get a comprehensive understanding of 

mutational status of AML specific genes (see Table 1 “Frequent co-occurring mutations”) so 

that, if applicable, patients can be treated using targeted therapy approaches such as tyrosine 

kinase inhibitors (e.g., FLT3-inhibitiors in FLT3 mutated AML patients [11]) [9]. 

Table 1: Risk classification of acute myeloid leukemias. 2022 European LeukemiaNet (ELN) risk classification 
of acute myeloid leukemia (AML) by genetic abnormalities at initial diagnosis with frequent co-occurring 
mutations. Adapted from Döhner et al., [6] and Juskevicius et al., [9]. 

 

1.1 Core-binding factor AML 

The core-binding factors (CBF), a class of hematopoietic transcription factors consist of 

DNA-binding CBFa with three subunits (i.e., Runt-related transcription factor 1-3, RUNX1-3) 

and non-DNA-binding, but binding affinity increasing, CBFb encoded by CBFB [12]. CBF 

AML is cytogenetically defined by the presence of t(8;21)(q22;q22) or inv(16)(p13.1q22) 

resulting in RUNX1-RUNX1T1 or CBFB-MYH11 fusion gene, respectively (hereafter referred 

to as AML t(8;21) and AML inv(16)) [13]. For both CBF AML entities the protein fusions 

RUNX1-RUNX1T1 (see Figure 3a) and CBFb-SMMHC (see Figure 3b) convert RUNX1 from 

an activator of transcription to a repressor of transcription by acting as a negative inhibitor for 

RUNX1 during development [12].  
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Figure 3: Structure of core-binding factor (CBF) fusion genes for AML with t(8;21) and inv(16). a) AML 
with t(8;21) is defined by the RUNX1-RUNX1T1 fusion gene encoding for RUNX1-RUNX1T1 protein fusion and 
(b) AML with inv(16) is defined by the CBFB-MYH11 fusion gene encoding for CBFb-SMMHC protein fusion. 
Adapted from Speck et al., [12] and Christen et al., [14].  

Both CBF AML entities have according to the 2022 European LeukemiaNet (ELN) risk 

classification a favorable prognosis as listed in Table 1 [6]. Jahn et al., [5] and Opatz et al., 

[15], have shown in 350 adult CBF AML patients that in both entities the most common mutated 

genes are genes involved in receptor tyrosine kinase (RTK)/RAS signaling, such as NRAS, KIT 

and FLT3. In this study, patients with t(8;21) show a more complex mutational landscape with 

somatic variants frequently found in genes involved in chromatin modification (e.g., ASXL1 

and ASXL2) and DNA methylation (e.g., TET2 and DNMT3A), and in genes encoding for 

members of the cohesin complex (e.g., RAD21 and SMC1A). In comparison, they found that 

WT1, a transcription factor, and BCORL1, a transcriptional corepressor, were frequently 

mutated in inv(16) AML and mutations in genes involved in chromatin modification or 

belonging to the cohesin complex were very rare. CEBPA mutations improve overall survival 

(OS) for both CBF AML entities, whereas KIT mutations, which are frequent in both CBF AML 

entities, show a reduced OS only for patient with t(8;21) [16]. Recurrent secondary 

chromosomal abnormalities in CBF AML are trisomies of chromsomes 8, 21 and 22, with 

trisomy of chromosome 22 being the most common in inv(16). Deletions of chromosomes 9, X 

(for female patients) and Y (for male patients) are more frequent in t(8;21)  [5,17].  

1.2 Clonal hematopoiesis of indeterminate potential 

Clonal hematopoiesis (CH) is defined by the presence of somatically acquired, cancer-

associated mutations in hematopoietic cells without a history of a hematological malignancy 

and CH of indeterminate potential (CHIP) is defined by somatic mutations with a variant allele 

frequency (VAF) of at least 2%, resulting in at least 4% nucleated blood cells for heterozygous 

mutations.[18,19]. These somatic variants provide a fitness advantage to hematopoietic stem 

cells (HSCs) leading to accumulation of these cells [20]. Large sequencing studies have found 

that CHIP is associated with increased age and that at least 10% of persons older than 65 years 

[21] or older than 70 years [22] are carrying CHIP mutations. In sequencing data of blood 

derived samples from the Cancer Genome Atlas (TCGA), Xie et al., [23] found that 5-6% of 

individuals over 70 years harbor somatic variants in genes involved in hematologic 

malignances.  
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The most commonly mutated genes in CHIP are epigenetic regulator genes, such as 

DNMT3A, TET2 and ASXL1, also referred to as DTA mutations that are frequently mutated in 

leukemia [20]. It has also been shown in vitro that all DTA-mutations have effects on the self-

renewal capacity of the HSC compartment and, especially, mutations in TET2 show enhanced 

self-renewal capacities and age-related myeloid lineage predisposition [14,24,25]. CHIP can be 

further classified into myeloid (M-CHIP) and lymphoid CHIP (L-CHIP) depending if a 

mutation is located in a gene recurrently mutated in myeloid (e.g., DTA mutations) or lymphoid 

malignancies (e.g., DUSP22, FAT1 and KMT2D) [26]. Here, mutations in SRCAP have shown 

a lymphoid bias and also an increase in DNA damage repair [27]. 

CHIP is associated with an increased risk for developing hematological malignancies and 

an increased risk for cardiovascular diseases (CVD) and coronary artery disease (CAD) 

([20,26]. In AML patients, persistent CH-mutations with at least two mutations in more than 

0.4% of the cells is strongly associated with lower leukemia-free survival and overall survival 

[28]. 

2 Cancer development and intra-tumor heterogeneity 

In 1976 Peter C. Nowell [29] published “The Clonal Evolution of Tumor Cell 

Populations” proposing that most neoplasms arise from a single cell of origin that acquired a 

genetic variability leading to a proliferation advantage. Intra-tumor heterogeneity (ITH) 

describes the coexistence of multiple genetically distinct subclones within the tumor of a patient 

resulting from somatic evolution, clonal diversification, and selection [30]. Figure 4, adapted 

from Alessandro Lagana, 2022 [30], shows the different models of tumor development that 

results from cells acquiring somatic events. The clone harboring the somatic event that leads to 

tumor development is defined as founding clone. Linear evolution (Figure 4a) is the sequential 

acquisition of somatic events from one subclone to the next without a branching event. In the 

branching evolution (Figure 4b), the subclones acquire somatic events independently. Using 

targeted single-cell DNA sequencing (scDNA-Seq) it has been shown that linear and branching 

evolution exists in AML patients with branching evolution also showing convergent patterns 

defined by the independent acquisition of redundant somatic variants in subclones [31]. ITH is 

a main causal driver of therapy resistance in the clinic and the understanding of ITH and tumor 

development may lead to new targets for treatment [32]. Here, small subclones that are already 

present at a low cancer cell fraction prior to therapy or somatic variants acquired during therapy 

can drive resistance to therapy [33]. Figure 4c illustrates and example where two subclones are 

eradicated through therapy, but one subclone with acquired therapy resistance gave rise to new 
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clones after therapy. Furthermore, it has been shown that some genes have a specific clearance 

pattern and somatic variants in DNMT3A,TET2, IDH1/2 and KRAS are persisting with a VAF 

>2.5% more than 30 days [34]. Early identification of subclones that potentially drive therapy 

resistance appears promising for treating patients, because if a patient harbors two somatic 

events that could be targets of therapy it is necessary to know which one has been acquired first 

to intervene in the hierarchical tumor development as early as possible [35].  

 
Figure 4: Models of tumor evolution. All models start with initiating somatic event E1 (e.g., somatic variants) 
in the founding clone and subsequently, acquire additional somatic events E2-E6. (a) Linear evolution means that 
every subclone acquires somatic events E2-E4 subsequently. (b) Branching evolution means that during 
development subclones acquire somatic events independently. (c) Example of tumor evolution under the pressure 
of therapy with therapy resistant clone. Adapted from Alessandro Lagana, 2022 [30]. 

3 Reconstructing the history of somatic DNA alterations 

Reconstructing the history of somatic DNA alteration allows for inferences on which 

mutations are in the same clone, to estimate the size of each clone and reconstruct the tumor 

phylogeny including common ancestors of clones or temporal order of clones [32]. In the 

following section information on methods and limitations of reconstructing ITH from bulk 

sequencing data (section 3.1) and single-cell DNA sequencing data (section 3.2) is presented. 

3.1 Bulk sequencing  

In general, bulk sequencing methods for reconstructing subclonal architecture of tumors 

try to estimate for somatic variants and/or copy-number alterations the fraction of cancer cells 
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harboring the variant referred to as cancer cell fraction (CCF) [36]. Copy-number alterations 

(CNAs) affect the VAF of mutations located in them (e.g., a deletion increases the VAF of a 

mutation if the wild-type allele is lost) and, therefore, need to be considered when inferring 

CCF [37]. Here, some methods for CCFs are limited to SNVs only in copy-neutral regions (e.g., 

sciClone [38]), whereas others can include SNVs in regions affected by copy-number 

alterations (e.g., PyClone [39], PyClone-VI [40] and PhyloWGS [41]). Fu et al., [42] developed 

a method that infers phylogeny from SNVs, structural variants (SVs) and CNAs using multi-

regional tumor samples from one patient. 

In Christen et al., [14], we used targeted deep sequencing of somatic variants detected in 

patients with t(8;21) AML to reconstruct clonal evolution throughout therapy and multiple 

timepoints (e.g., diagnosis, complete remission, relapse) using a pipeline of sciClone [38], 

ClonEvol [43] and Fishplot [44]. Here, only the use of targeted deep sequencing and multiple 

timepoints allowed us to infer the founding clone and the temporal order of subclones.  

Bulk sequencing can hardly distinguish low level VAF mutations from sequencing library 

and sequencing error artefacts, so the information if somatic events are present in the same cell 

is lost [45]. It has been shown that relapse is often driven by clones which were only subclonally 

present at diagnosis and expanded thereafter, but bulk sequencing technologies failed to define 

its exact phylogeny [14,46]. Furthermore, reconstructing tumor phylogeny in bulk sequencing 

has its limitations with low VAF mutations where often multiple phylogenetic trees are possible 

precluding a generalizable conclusion. Here, the use of multiple samples – either collected at 

various timepoints or different anatomical sites - can improve the bioinformatical analysis and 

prediction strength [47,48]. 

3.2 Single-cell DNA sequencing 

Lähnemann et al., [49] specified eleven grand challenges in single-cell data science and, 

specifically, for single-cell genomics following challenges: (i) dealing with errors and missing 

data, (ii) scaling phylogenetic models to work with many cells and (iii) integrating multiple 

types of genomic variation (e.g., SNVs and SCNAs) into phylogenetic models.  

scDNA-Seq methods can be classified into whole-genome scDNA-Seq methods with 

shallow coverage throughout the genome suitable for detecting copy-number alterations and 

targeted scDNA-Seq methods with high coverage for specific cancer related regions suitable 

for accurate identification of SNVs [50]. Technical errors in single-cell data, as shown in Figure 

5, are false positive errors with (a) erroneous bases that are introduced during amplification or 
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sequencing, and false negative errors, such as dropouts of (b) the whole locus or (c) one allele 

and (d) an imbalance amplification of one alle [51,52].  

 
Figure 5: False positive and false negative calls in single-cell data. a) False positive call with amplification of 
sequencing error and introduction of erroneous base. False negative calls can be introduced by (b) a complete locus 
drop-out leading to no call at all, (c) allelic drop-out leading to wild-type or homozygous call depending on the 
allele that is lost and (c) imbalanced amplification leading also to misclassification of somatic variant. Adapted 
from Gawad et al., [51] and Navin et al., [52]. 

Recently developed methods for reconstructing phylogenies from scDNA-seq data are (i) 

the infinite-sites model, (ii) the k-Dollo model and (iii) the finite-sites model [53]. The infinite-

sites model, which is used in SCITE [54], ∞SCITE [55], B-SCITE [56] OncoNEM [57] and  

Sciφ [58], and is the simplest phylogenetic model that allows variant to be gained once, but 

never to be lost. The (k-)Dollo model, which is used in SPhyR [59], SASC [60], PyDollo [61] 

and ConDoR [50], adds to the infinite-sites model the ability that a variant can be lost multiple 

or for the parameterized version k (=user defined integer) times. The finite-sites model, which 

is used in SiFit [62] and PhiSCS [63], lifts the limitation on losses and allows gains and losses 

multiple times. Additionally, COMPASS [64] uses a probabilistic model and SCARLET [53] 

uses a loss-supported phylogeny model to reconstruct tumor phylogenies. 

Most of the tools were developed for inferring tumor phylogeny from approximately 100-

1,000 cells, which is feasible for whole-genome scDNA-Seq, but not for targeted scDNA-Seq 

where cell numbers can go up to a few thousands cells per sample [64]. Only ∞SCITE [55], 

ConDoR [50] and COMPASS [64] are able to reconstruct tumor phylogeny in a reasonable 

amount of time for up to 10,000 cells, with ConDoR [50] and COMPASS [64] allowing for 

inferring tumor development using copy-number alterations and somatic variants. ConDoR [50] 

utilizes a constrained k-Dollo model with the assumption that SNVs and single-nucleotide 

polymorphisms (SNPs) can be lost only due to an overlapping copy-number alteration that 

happens only once in the phylogenetic tree. Copy-number clusters of cells used are needed in 
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advance to infer tumor phylogeny using ConDoR [50]. In comparison, COMPASS [64] does 

not need any a priori computation and performs a simulated annealing approach at first without 

SCNAs and in a subsequent step adds copy-number events to the phylogenetic tree. 

4 MissionBio Tapestri Platform 

The Tapestri platform (MissionBio) is a targeted scDNA-Seq platform that allows for the 

simultaneous detection of somatic variants (i.e., SNVs and insertion or deletions (INDEL)), 

SCNAs and cell surface proteins. In this thesis, we used the targeted single-cell genomics 

workflow without protein detection [65]. The targeted regions are specified by the panel that is 

used for library preparation. Here, it is possible to use catalogue, published or, as in this thesis, 

custom panels. 

Single-cell libraries are prepared using the Tapestri Instrument (MissionBio) that 

performs a two-step microfluidic approach as following: (i) single-cells are encapsulated in oil 

droplets with protease releasing DNA from histone and DNA binding proteins and (ii) the 

encapsulated cell lysate is again encapsulated with a reagent mix and barcoding beads. These 

barcoding beads consist of a read 1 sequence for Illumina indexes (Illumina), a 9-bp cell 

barcode (individual barcodes >3 Levenshtein distance [66] apart) and a common sequence that 

can bind to the amplified target region. Within each droplet gene specific primers (GSP) are 

used to amplify target regions and the common sequence attached to GSP bind to the barcoding 

beads resulting in DNA fragments with target region and cell barcode. Amplified products 

(single sample) can be pooled with Illumina sequencing chemistry and sequenced on an 

Illumina sequencer targeting approximately 5,000 cells and an average coverage per amplicon 

of 80x.  

Sequencing reads in combination with panel information (e.g., custom panel) are initially 

processed using the Tapestri pipeline (MissionBio). Here, adapter sequences are trimmed from 

raw reads using Cutadapt [67] and subsequently aligned to the reference genome using bwa-

mem [68]. True barcodes are detected if they match a whitelist of known barcodes (exact match) 

and if they do not match exactly barcodes are selected using a Levenshtein distance [66] of 3. 

At first, cells are dropped if they have less than 10 ∗ $_&'()*+,$- total reads. With this subset 

a threshold is calculated using 0.2 ∗ ∑ ∑ $!"#$%&!'()*
"

'+&&*
!  with $!" as the number of reads of 

amplicon j in cell i. If this threshold is <10 then 10 is used as a threshold. The remaining cells 

are dropped if they have <80% of amplicons with reads above the calculated threshold or 10. 

The filtered cells are genotyped using the Genome Analysis Toolkit (GATK) [69] and stored 

as a Loom file [70], which is an efficient file format for large omics data. In case of MissionBio, 
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the Loom file consists of 5 layers (i.e., numerical genotype (NGT), number of reads with 

evidence of mutation (AD), read depth (DP), genotype quality (GQ) and number of reads with 

evidence of no mutation (RO)). I used this file for downstream analysis as explained in section 

IV2. 
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II Overview 

1 Aim of this thesis 

The overall goal of this thesis is to investigate the subclonal architecture and tumor 

development of core-binding factor acute myeloid leukemia at a single-cell resolution. For this, 

I developed and applied a novel algorithm for the systematic integration of single-cell and bulk 

tumor sequencing data. Here the combined analysis of bulk sequencing data, with a high 

genome-wide resolution, and single-cell sequencing data, with a high clonal resolution should 

be used to unravel ITH for both large-scale (e.g., SCNAs) and small-scale (e.g., SNVs and 

INDELs) genetic alterations.  

To achieve this goal, I first prepared a combined bulk and single-cell CBF-AML dataset. 

These two datasets were used to unravel clonal architecture of patients through an integrated 

analysis of bulk and single-cell genome sequencing data. Last, I validated the results of the 

phylogenetic trees using diagnostic information (e.g., karyotype) and bulk sequencing data. 

2 Patient cohort 

The patient cohort for this thesis consists of 2 female and 7 male patients with CBF AML 

and samples at diagnosis (D), complete remission (CR) and relapse (Rel). The age of 

investigated patients at diagnosis ranged from 30 years to 67 years as shown in Table 2. 

According to the French-American-British (FAB) classification (M0-M7), the morphology of 

AML cells were classified as myelomonocytic leukemia (M4) (6/9), acute myeloblastic 

leukemia with maturation (M2) (2/9) and acute myelomonocytic/monocytic leukemia (M4/M5) 

(1/9) [71,72]. All patients reached CR and relapsed within 27 months (range 4 to 27 months). 

Overall survival (OS) is defined as the time between diagnosis and endpoint death (OSstatus=1) 

or alive at last follow-up (OSstatus=0) and ranges from 14 to 104 months. Relapse free survival 

(RFS), according to ELN 2017 [73], is defined for patients reaching CR as time between CR 

and Rel or OS event. In this cohort, 5 patients died (i.e., patients 01, 02, 03, 07 and 09) and 4 

patients (i.e., patients 04, 05, 06 and 08) were censored at last follow-up.  

Induction therapy for patients in this cohort consisted of daunorubicin (DNR) and 

cytarabine (Ara-C) (DA) (4/9), idarubicin-cytarabine-etoposide (ICE) (2/9), idarubicin-

etoposide-(intermediate-dose) cytarabine (IVA) (2/9) and ICE in combination with all-trans 

retinoic acid (ATRA) (1/9). Consolidation treatment consisted of high-dose Ara-c (HD-Ara-c) 

and patient 09 received additionally DNR. In total, 7 patients received salvage treatment 
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consisting of mitoxantrone, topotecan and cytarabine (MTC) (3/7), high-dose cytosine 

arabinoside and mitoxantrone (HAM) (2/7), fludarabine, cytarabine and idarubicin (FLA-IDA) 

(1/7) and Ara-c combined with vosaroxin or placebo (1/7) followed by allogeneic hematopoietic 

stem cell transplantation (allo-SCT). 

Table 2: Overview clinical data. Baseline characteristics are listed for patients with sex, age (in years), Eastern 
Cooperative Oncology Group (ECOG) performance status, French-American-British (FAB) classification, 
induction treatment, consolidation treatment, salvage treatment, relapse-free survival (RFS), overall survival (OS) 
and survival status (OSstatus). RFS and OS are listed in months. If patient was alive at last follow-up OSstatus is 0 
and if patient died OSstatus is 1. (Pat. = Patient, Tx = Treatment) 

 
 

Table 3 lists karyotypes, CBF type, FLT3- internal tandem duplication (ITD) status and 

KIT mutation status for patients in this cohort at diagnosis. Patients 01 and 09 were classified 

as a t(8;21) CBF AML with RUNX1-RUNX1T1 gene fusion and the remaining 7 patients were 

classified as inv(16) CBF AML with CBFB-MYH11 gene fusion. Patient 02 harbored a FLT3-

ITD at diagnosis with an allelic ratio of 13%, which is associated with a poorer outcome in CBF 

AML patients in comparison to those without FLT3-ITD [74]. A c-KIT exon 8 frameshift 

mutation, which has a negative effect on relapse and RFS in CBF AML patients, has been 

detected in patient 03 at diagnosis [75]. Conventional G banding did not detect any secondary 

cytogenetic abnormalities in patients 02, 06 and 09. Secondary cytogenetic abnormalities, as 

defined by Han S. et al. [17], are those events that are present in addition to the CBF AML 

defining inv(16) or t(8;21) detected by conventional G-banding. Furthermore, they defined a 

complex karyotype with two or more secondary cytogenetic events and subclones as those that 

are only present in a fraction of metaphases (e.g., +22 1/49) with the dominant clone as the one 

with the highest number of metaphases [17]. For patients 01 and 03 a trisomy of chromosome 

8 (+8) and for patient 08 a trisomy of chromosome 22 (+22) has been detected by karyotype as 

shown in Table 3. It has been shown that trisomy of chromosomes 8, 21 and 22 are more 

common in patients with inv(16) [17]. Male patient 03 has a complex karyotype with a deletion 

of chromosome 11 and a trisomy of chromosome 8 in addition to inv(16). Cytogenetics in 

patient 04 identified a dominant clone harboring trisomy of chromosomes 13, 14 and 22 in 
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13/49 metaphases and a subclone harboring a trisomy of chromosome 22 in only 1/49 

metaphases. 

Table 3: Overview cytogenetics. Core-binding factor (CBF) acute myeloid leukemia patients listed with either 
an inversion on chromosome 16 (inv 16) or a translocation between chromosome 8 and 21 t(8;21). The number of 
subclones harboring chromosomal abnormalities are indicated with a fraction of metaphases (e.g., 1/49 meaning 
that one metaphase of 49 harbors the chromosomal abnormalities). Amplifications are indicated by “+” and 
deletions are indicated by “del”. For patients 04 and 05 nuclear in situ hybridization (nuc ish) data is available. 
Clinical testing also identified a FLT3 internal tandem duplication (FLT3-ITD) in patient 02 with an allelic ratio 
(AR) of 13%. (Pat. = Patient) 

 
 

Figure 6 visualizes overall survival ranging from 14 to 104 months with endpoints alive 

and dead for each patient. The time of sampling peripheral blood (PB) or bone marrow (BM) 

in reference to time of diagnosis is shown for samples at diagnosis, complete remission and 

relapse. For patients 07 and 08 no complete remission samples and for patient 06 no relapse 

sample were available. Written consent was obtained in accordance with the declaration of 

Helsinki and ethical approval was obtained from the local ethics committees of the cooperating 

institute.  

DNA samples and cells at D, CR and Rel were derived from PB samples or BM aspirates. 

Percentage of blasts and if gene fusion has been detected (pos. = gene fusion has been detected 

and neg. = gene fusion has not been detected) are listed in Table 4. For patient 07 and 08 T-

cells from diagnosis were used as a germline control for bulk analysis.  
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Figure 6: Timeline of disease progression and sample collection. This plot visualizes the survival time of each 
patient starting at diagnosis and ending with status alive or dead. Collection of samples at diagnosis (green), 
complete remission (yellow) and relapse (red) are visualized by triangles. Relapse-free survival (blue line) is 
defined as the time from complete remission to time of relapse. 

Table 4: Overview patient samples. Samples derived from bone marrow (BM) or peripheral blood (PB) are listed 
with percentage of blasts and if gene fusion has been detected (pos. = detected and neg. = not detected). For patients 
without a complete remission sample (i.e., patient 07 and 08) DNA from T-cells at diagnosis was used as a 
germline control. (N.A. = not available) 
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3 Workflow 

To uncover the full complexity of ITH with a targeted single-cell DNA sequencing 

approach, this thesis consists of (i) a bulk and (ii) a single-cell sequencing part as shown in 

Figure 7. For using the Tapestri (MissionBio) targeted single-cell DNA sequencing platform 

patient specific information on somatic variants, SCNAs and breakpoints of CBF specific 

fusion genes (i.e., CBFB-MYH11 and RUNX1-RUNX1T1) needs to be known prior.  

 
Figure 7: General workflow. The thesis consists of (I) a bulk-sequencing and (II) a single-cell sequencing part. 
In part I DNA samples are used for whole-exome sequencing, targeted DNA sequencing and Nanopore sequencing 
for calling somatic variants, somatic copy-number alterations and for identifying patient specific breakpoints of 
the core-binding factor fusion genes, respectively. In part II this information is used for targeted single-cell DNA 
sequencing and an integrated analysis using bulk and single-cell data to uncover the full catalogue of intratumor 
heterogeneity is performed. (CHIP = clonal hematopoiesis of indeterminate potential, D = diagnosis, CR = 
complete remission, Rel = relapse, SCNA = somatic copy number alterations, sc = single-cell) 

In the bulk sequencing part, DNA samples at diagnosis, complete remission and relapse 

was used to generate whole-exome sequencing data. I used the whole exome sequencing data 

for calling somatic variants (i.e., SNVs and INDELs) and SCNAs with the complete remission 

sample or the T-cells from diagnosis as a germline control. Patient specific breakpoints of the 

CBF AML gene fusions were identified using Nanopore (Oxford Nanopore Technologies) 

long-read sequencing data at diagnosis. For a better resolution on genes involved in clonal 

hematopoiesis, targeted DNA sequencing with a 25-gene CHIP panel using error-corrected 

reads, which has been well established in our group [19,76,77], was performed. 

Subsequently, information on somatic variants, SCNAs and fusion gene breakpoints for 

each patient was combined to design custom panels (~200 amplicons per panel) for single-cell 

sequencing. The Tapestri platform (MissionBio) was used for generating single-cell libraries of 

all available samples and after sequencing the reads were initially processed using the Tapestri 

pipeline (MissionBio). Single-cell data was used in combination with prior knowledge from the 
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bulk sequencing part to reconstruct tumor phylogenies. I hypothesized that such integrated 

analysis of both datasets would enable conclusions to be drawn on intra tumor heterogeneity 

and changes in the clonal composition throughout the treatment. 
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III Bulk sequencing 
In this chapter I present methods and results from bulk sequencing that were used as 

prerequisite for targeted single-cell DNA sequencing. I used whole-exome, targeted and 

Nanopore sequencing data to uncover somatic variants (i.e., SNVs, INDELs and FLT3-ITDs), 

SCNAs and CBF AML specific fusion genes in 2 patients with t(8;21) AML and in 7 patients 

with inv(16) AML.  

1 Sequencing file formats 

Raw reads from an Illumina Sequencer are stored in the FASTQ format [78] consisting 

of four lines for each read as shown in Insert 1: (i) first line starting with “@” is a sequence 

identifier and can hold optional description, (ii) second line is the raw sequence, (iii) third line 

begins with “+” and can be optionally followed by the same sequence identifier as line 1 and 

(iv) the fourth line encodes the PHRED quality score of each base call for the sequence of line 

2.  
@A00643:342:HLHTJDRXY:1:2101:7383:1000 1:N:0:GTCTGTCA 
NGTTAGCACATCATAGAGGAGCCAAAGTGATTTCAACAGGATGCAGCCTTGAAGATAAGCAGTGCCTTGAAAGATTCAGACCTCCCATAGGT
GGGTAATATTATGAGCACAGACTTTAAAACAGGAAATTTTGAAGGAAAATCACCTTTAA 
+ 
#FFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

Insert 1: FASTQ example. 

If reads are aligned to a reference sequence or reference genome than those aligned reads 

are stored in a Binary Alignment Map (BAM) file, which is a binarized/compressed version of 

the Sequence Alignment/Map format (SAM) [79]. The SAM format is a tab-delimited text 

format consisting of header lines starting with “@” followed by alignment lines with 11 

mandatory fields (e.g., mapping position) and a variable number of optional fields. These 

optional fields are each labeled with a tag and displayed as TAG:TYPE:VALUE. The type 

explains the format of the value, such as Z for string values.  

2 Variant calling pipeline 

I established a variant calling pipeline in Snakemake (v6.12.3) [80] for reads containing 

unique molecular identifier (UMI) that I used in Arends et al., 2022 [19] and Arends et al., 2023 

[76]. The pipeline was also further developed and has been used by colleagues for Panagiota et 

al., [77]. The pipeline consists of a preprocessing (section 2.1) and a variant calling part (section 
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2.2). The whole pipeline was used for the targeted sequencing data and only the variant calling 

part was used for the whole-exome sequencing data of this thesis.  

Detailed parameters for each step of the pipeline can be found in the supplement. 

2.1 Preprocessing 

In the preprocessing part raw reads are aligned to a reference genome and processed to 

obtain consensus reads that can be used for variant calling.  

At first, I used Picard’s (v2.20.0) [81] ExtractIlluminaBarcodes and 

IlluminaBasecallsToSam to extract unmapped BAM (uBAM) files from Illumina basecalls. The 

uBAM stores the unaligned reads with the UMI sequence (e.g., RX:Z:TTATGATAT) as a RX 

SAM tag. I aligned uBAMs to hg19 [82] reference genome using Picard’s SamToFastq, bwa 

mem (v0.7.17) [68] and Picard’s MergeBamAlignment subsequently. To group the reads based 

on UMIs and further create consensus reads with a minimum of 3 supporting UMIs, I executed 

fgbio’s (v 0.6.1) [83] GroupReadsByUmi and CallMolecularConsensusReads. These error 

corrected reads were again mapped to hg19 [82] as before. For quality filtering, I executed 

fgbio’s FilterConsensusReads with a minimum of 3 supporting UMIs, consensus bases with a 

quality >5 and default parameters.  

2.2 Variant calling 

In the variant calling part, BAM files are used for variant calling and the calls are 

subsequently annotated using different databases. 

These preprocessed, error-corrected BAM files are used for variant calling with 

VarDictJava (v 1.8.2) [84] in single-sample mode with a minimum VAF of 0.1%, the reference 

genome used in preprocessing, the bed file provided by Twist BioScience and default 

parameters. In case of whole-exome sequencing data, aligned reads with the bed file of the 

library preparation kit were used as input for variant calling. I converted the raw variant calls 

with bcftools’ (v1.11) [85] view, bcftools’ index, bcftools’ norm, and, subsequently, R (v4.0.5) 

[86] to the correct format for downstream tools. I used ANNOVAR (version 2020-06-07 

23:56:37 -0400 (Sun, 7 Jun 2020)) to annotate unfiltered variant calls with the following 

databases: refGene [87], clinvar_2021050 [88], dbnsfp42c [89,90], gnomad_exome [91], 

avsnp150 (dbSNP140) [92], cosmic70 [93], revel [94], nci60, icgc28 [95], snp142 [92] and 

popfreq_all_20150413 (containing frequencies from 1000G, ESP6500, ExAC and CG46). 

I further annotated these variant calls using R with three manually curated lists from our 

group to add information if genes are known AML drivers [96–98] or AML candidate genes 
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[99] and if variants are published CHIP variants [21,22,100–105] or CHIP hotspot mutations 

[106]. A variant was flagged as “important” if the gene is (i) a AML candidate or (ii) a AML 

driver gene, the variant (iii) is a known CHIP mutation or (iv) is associated with hematopoietic 

diseases according to the cosmic database [93]. Additionally, I calculated a measure for strand 

bias, annotated as FisherStrand, based on the Fisher’s Exact Test as used in the Genome 

Analysis Toolkit (GATK) [107].  

3 Detecting somatic variants and copy-number alterations 

3.1 Whole-exome sequencing preparation 

Libraries were generated from DNA samples (see Table 4) using the SureSelect Human 

All Exon v7 XT HS kit (Agilent) and sequenced on the NovaSeq 6000 platform (Illumina; 300 

cycles, paired-end). Raw reads in FASTQ format were provided by the Genomics Platform of 

the Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health at 

Charité (BIH). 

3.2 Preprocessing 

I used Trimmomatic (v0.36) [108] in paired-end mode with “LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36” and default parameters for quality 

trimming of raw reads and, subsequently, bwa mem and samtools sort (v1.11) [85] to align the 

reads to the hg19 [82] reference genome. To remove polymerase chain reaction (PCR) 

duplicates, I executed Picard’s MarkDuplicates.  

These aligned and deduplicated reads in BAM format I used for calling somatic variants 

(section 3.3) and somatic copy-number alterations (section 3.4). 

3.3 Variant calling 

I processed the whole-exome sequencing BAM files using the variant calling part (section 

2.2) of the UMI variant calling pipeline I developed with a VAF threshold of 1%. I removed 

variants for quality criteria in each patient (for patient 06 filtering criteria were applied to 

diagnosis only) as following: 

• VAF >1% at complete remission (i.e., patients 01, 02, 03, 04, 05, 06 and 09) or in 

extracted T-cells from diagnosis (i.e., patients 07 and 08)  

• VAF <4% (VAF <6% for patient 03) at diagnosis and relapse 

• read depth <50 at diagnosis and relapse  
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• variant read count <6 at diagnosis and relapse 

• FisherScore ³20 at diagnosis and relapse 

• StrandBalance1 or StrandBalance2 is 0|1|NA at diagnosis and at relapse (NA = 

not available, which in this case are infinite values, such as divisions by zero) 

Additionally, I removed variants if VAF at diagnosis is >1% and <4% and VAF at relapse 

is <5% or vice versa to reduce noise.  

From the remaining set I removed variants that are annotated in SNP databases (except 

those with an important flag) with a minor allele frequency (MAF) >0.01% in the 

gnomad_exome [91], avsnp150 (dbSNP140) [92] or popfreq_all_20150413 (PopFreqMax) 

[109]. Additionally, synonymous and non-frameshift variants were dropped from the variant 

list. Remaining variants were manually checked and further filtered by visual inspection using 

Integrative Genomics Viewer (IGV) (v 2.11.6 ) [110]. 

Additionally, somatic variants were also called from raw reads by a collaboration partner 

as previously described in Yoshida et al., [111] and Kataoka et al., [112]. I used these variant 

calls to confirm manual filtering criteria.  

For the identification of the FLT3-ITD in patient 02, I used ITDetect (v.1.4) [113] on all 

BAM files of this patient with the chromosomal location of FLT3 (chr13:28608020-28608360) 

and default parameters. 

3.4 Copy-number calling 

I identified SCNAs using refphase (v0.1.1) [114,115] in combination with ASCAT 

(v3.1.0) [116] according to the ”Complete Example Workflow” in the repository. SCNAs are 

identified using the B-allele frequency (BAF) from heterozygous SNPs and the log read-depth 

ratio (LogR), which are calculated based on the read depth information at those positions [115]. 

I downloaded the dbSNP database (build: 151, reference: GRCh37.p13) [92] and used 

bcftools’ view to get position of overlapping SNPs with the bed file from Agilent. Then I used 

bcftools’ mpileup to pile up reads from the deduplicated BAMs at those positions and bcftools’ 

query to obtain the appropriate input format for further analysis. The format is a tab separated 

list with chromosome, chromosomal position, read count for the reference allele and the count 

for the alternative allele. These tables were processed using R and following libraries: ASCAT 

(v3.1.0) [116], refphase (v0.1.1) [114,115], dplyr (v1.1.1) [117], tidyr (v1.3.0) [118], glue 

(v1.6.2) [119], gtools (v3.9.4) [120] and readr (v2.1.4) [121]. At first, I filtered the germline 

sample (i.e., complete remission or T-cells from diagnosis) for positions located only on 

autosomes, without additional calls on the same position and with a minimum read count of 50 
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reads for reference and alternative reads combined. Additionally, I used a sliding window filter 

allowing less than three positions in a range of 150bp. The positions for each tumor sample of 

a patient were filtered for positions in the normal sample and, additionally, a minimum read 

count of 50 reads for reference and alternative reads combined. Then LogR and BAFs are 

calculated for diagnosis and relapse samples with germline samples as reference. Each position 

is classified as following: 

123)(,$#& = 5
< 0.1	89:')*$9	ℎ,',<=8,>-
> 0.9	89:')*$9	ℎ,',<=8,>-
,Aℎ9:-, 89:')*$9	ℎ9A9:,<=8,>-

 

I used ASCAT’s ascat.runAscat with gamma=1 and default parameters, except for the 

diagnosis sample of patient 05 where I additionally set rho_manual = .9 and 

psi_manual = 2.1. I executed refphase according to the example workflow and filtered 

results by visual inspection of LogR and BAF.  

4 Detecting CHIP mutations 

4.1 Targeted DNA sequencing data 

Libraries were prepared using a commercially available library preparation kit (Twist 

BioScience) and a customized targeted sequencing panel (Twist BioScience) covering 45 genes 

recurrently mutated in CH (see Supplemental Table 1), which has been used in recent projects 

of our group [19,76]. These libraries are prepared using a 9 bp long unique molecular identifier 

(UMI) that is used for error correcting and therefore enables the calling of low VAF somatic 

variants. Libraries were sequenced on the NovaSeq 6000 platform (Illumina; 300 cycles paired-

end) with read lengths of 148bp and a read length of 17bp for index i7 and 8bp for index i5.  

4.2 Variant calling 

I processed raw Illumina basecalls using my established variant calling pipeline as 

described in section 2. I filtered annotated variants from the UMI variant calling pipeline using 

the following quality criteria in each patient (for patient 06 filtering criteria were applied to 

diagnosis and for patient 08 to relapse only): 

• VAF >1% at complete remission for patients 01, 02, 03, 04, 05, 06 and 09 

• VAF <2% at diagnosis and relapse 

• read depth <50 at diagnosis and relapse  

• variant read count <4 at diagnosis and relapse 
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• FisherScore ³20 at diagnosis and relapse 

• StrandBalance1 or StrandBalance2 is 0|1|NA at diagnosis and at relapse (NA=not 

available, which in this case are infinite values, such as divisions by zero) 

From the remaining set, I removed variants that are annotated in SNP databases (except 

those with an important flag) with a MAF >0.01% in the gnomad_exome [91], avsnp150 

(dbSNP140) [92] or popfreq_all_20150413 (PopFreqMax) [109]. Additionally, synonymous 

variants, non-frameshift variants and variants already present in the final somatic variant list 

from whole-exome data were dropped from the variant list. Remaining variants were manually 

checked and further filtered by visual inspection using IGV. 

5 Identifying breakpoints of fusion genes 

I aligned Nanopore reads using Vulcan (v1.0.3) [122] to the humanG1Kv37 reference 

genome [123] with --nanopore and default parameters. This reference genome from the 

1000 Genomes Project [123] was used because a reference genome without chr annotation is 

needed for downstream analysis. To identify the patient specific breakpoints of the fusion gene 

I performed NanoFG (v1.0) [124] on the mapped reads with -s ‘CBFB,MYH11’ in case of 

inv(16) (i.e., patient 01 and 09) or -s ‘RUNX1,RUNX1T1’ in case of t(8;21) (i.e., patient 

02, 03, 04, 05, 06, 07 and 08), -pdf 400 to get a FASTA sequence flanking ±400 bp of the 

breakpoint sequence and default parameters. In case of patient 03, I additionally used the do 

not filter option (-df) to get a result. I extracted quality metrices from reads and mapped reads 

using NanoStat (v1.6.0) [125]. 

6 Results 

In this section, I present results from whole-exome, targeted and Nanopore sequencing. I 

called and identified somatic variants (i.e., SNVs, INDELs and FLT3-ITDs), somatic copy-

number alterations and CBF AML gene fusions (i.e., CBFB-MYH11 and RUNX1-RUNX1T1). 

These patient specific results have been used for establishing the custom panels for targeted 

single-cell DNA sequencing.  

6.1  Somatic variants 

I identified a total of 249 somatic variants using WES data of 9 CBF AML patients. Figure 

8 shows the number of variants that are shared between diagnosis and relapse in grey, variants 

that are unique to diagnosis in blue and variants unique to relapse in red. If a variant has been 
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called at diagnosis or relapse according to the filtering criteria listed in section 3.1, the variant 

in the other sample has been added regardless of filtering criteria. In case of patient 06 all 

variants are unique to diagnosis, because there was no relapse sample available for this patient 

(see Table 4).  

 
Figure 8: Overview of somatic variants called in whole-exome sequencing data. Bar plots show for each patient 
the number of detected mutations that are shared between diagnosis and relapse (grey) and those that are either 
unique to diagnosis (blue) or unique to relapse (red). Numbers in brackets are total number of somatic variants 
detected in this patient. For patient 06 all detected variants were unique to diagnosis, because there was no relapse 
sample available. 

According to Christen et al., [14] patient 09 is the only patient in this cohort that can be 

classified as genetically unstable with <40% of shared somatic variants between diagnosis and 

relapse, whereas the others can be classified as genetically stable with ³40% of shared variants. 

For patients 01, 03 and 04 more than 60% of the identified somatic variants are shared between 

diagnosis and relapse. The mean number of somatic variants at diagnosis and relapse are 

comparable with 22.8 and (excluding patient 06) 21.8, respectively. Here, patient 02 with 18 

unique variants has the lowest number and patient 03 with 54 unique variants has the highest 

number of detected somatic variants at both timepoints. It has to be noted that alignments of 

patient 03 did show a poor quality when inspected with IGV [110]. The mean VAF of gene 

mutations located on autosomes is with 25.0% at diagnosis higher than the mean VAF at relapse 

(excluding patient 06) with 13.6%. It is recommended by the onkopedia guidelines from the 

Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. (DGHO) to examine 

patients every 1-3 months within the first two years and every 3-6 months for years 3-5 after 

reaching complete remission to detect a relapse at the earliest possible time [126]. Therefore, 

theVAF should be lower in relapse samples as observed in this cohort. 
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In Section 6.5, I present for each patient detected somatic variants and mutational 

dynamics in detail. 

6.2 Somatic copy-number alterations 

I was able to analyze 8 patients for copy-number alterations with the pipeline described 

in Section 3.4. The complete remission sample or T-cell at diagnosis (i.e., patient 07 and 08) 

was used as a reference to call somatic copy-number alterations at diagnosis or relapse. For 

both samples of patient 03 and the relapse sample of patient 01 the quality was not sufficient 

for copy-number analysis. For patients 02, 04 and 06 no copy-number changes were detected 

using this method. In case of patient 02 and 06 this is consistent with clinical data from 

conventional G-banding as listed in Table 3, but in case of patient 04 the resolution of this 

method might not be sufficient enough to call copy-number alterations in only a small fraction 

(13 of 49 metaphases ~ 27% of cells) of a sample.  

Figure 9 shows copy-number plots for all patients with at least one detected copy-number 

alteration (i.e., patients 01, 05, 07, 08 and 09). Plots show the estimated purity, ploidy and copy-

numbers for major allele in yellow and minor allele in blue within every autosomal chromosome 

for every analyzed sample. If there are no copy-number alterations in a region meaning that 

each allele has a copy-number of one, the section is highlighted in green. Results presented 

have been manually filtered. 

At diagnosis of patient 01 (Figure 9a), I detected an amplification of chromosome 8 

matching the diagnostic karyotype information for this patient listed in Table 3. Figure 9b 

shows both tumor samples of patient 05 with a deletion on chromosome 7 (chr7q34-q36.1) that 

was only subclonally present at diagnosis and becomes more dominant at relapse. Additionally, 

I detected a uniparental disomy (UPD) on the q-arm of chromosome 19 present in both tumor 

samples. A UPD is a copy-neutral loss of heterozygosity (LOH) meaning that one allele is 

absent, and the remaining allele has two copies. In patient 07 (Figure 9c), I identified a deletion 

on chr7 (7q34-q36.3) at diagnosis and relapse and an amplification on chr9 (9q34.3) and 

deletion on chromosome 19q13 at relapse. For patient 08 (Figure 9d) I detected an amplification 

of chromosome 22 only present at diagnosis. This is according to the G-banding results of 

patient 08 with 47 chromosomes in total and additional chromosome 22 (+22) as stated in Table 

3. In the diagnosis sample of patient 09, I detected a UPD on the p-arm of chromosome 17 that 

was lost at relapse (see Figure 9e). 

Detailed information on somatic copy-number alterations and their clinical relevance are 

presented in Section 6.5. 
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Figure 9: Overview somatic copy-number alterations. Genome plots of patients 01 (a), 05 (b), 07 (c), 08 (d) 
and 09 (e) for each analyzed sample purity, ploidy and copy-numbers of the major (yellow) and minor (blue) allele 
within every autosomal chromosome. If both alleles have a copy-number of 1 meaning that there is no copy-
number alteration this section is highlighted in green. An amplification can be detected if the minor allele (blue) 
has a copy-number of 1 and the major allele (yellow) has a copy-number >1. A deletion is present if the major 
allele (yellow) has a copy-number of 1 and the minor allele (blue) a copy-number <1. A uniparental disomy is 
present if the major allele (yellow) has a copy-number of 2 and the minor allele (blue) a copy-number of 0. 
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6.3 CHIP variants 

Using the 45 gene CHIP gene panel and deep sequencing, I detected 27 somatic variants 

in 6 of the 9 CBF AML patients that I did not discover previously using WES data. Table 5 lists 

all the variants that I manually filtered using IGV (v2.11.6) [110] and have been selected to be 

included in the single-cell panel. Due to the higher coverage and error-corrected reads, I was 

able to call variants with a VAF cut-off of 2% instead of 4% as in WES data. In patient 03 

somatic variant SF3B1 p.E903V with a VAF of 12.5% at diagnosis has the highest detected 

VAF. In patient 03, I detected most somatic variants (21/27) as for WES data (n=54) shown in 

Figure 8. For patients 01 and 05 two and for patients 04, 06 and 07 only one additional somatic 

variant was identified with the CHIP panel. 

These variants are included in the detailed description of somatic variants in each patient 

in Section 6.5. 

Table 5: Overview somatic variants called in targeted sequencing data. Detected variants are listed with gene 
and protein change, chromosome (Chr), start position, wild-type allele (Ref), variant allele (Alt) and variant allele 
frequency (VAF) in percent at diagnosis (D) and relapse (Rel). In total, I detected 28 somatic variants that were 
not identified using whole-exome sequencing data. Variants are grouped by patients and sorted alphabetically. 

 

6.4 Fusion gene breakpoints 

I was able to detect CBF AML specific gene fusions (i.e., CBFB-MYH11 and RUNX1-

RUNX1T1) using Nanopore sequencing data for every patient at diagnosis as described in 
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Section 5. Table 6 lists the identified gene fusions including information on the 5’ and 3’ 

location as well as the number of supporting reads. Additional to the location of breakpoints 

NanoFG [124] provides the FASTA sequence ±400 bp around each breakpoint which were used 

to establish the targeted single-cell panel. For patients 01, 05, 06 and 08 two breakpoints within 

less than 50 bp in the opposite direction have been identified.  

Table 6: Overview breakpoints in core-binding factor genes. Detected gene fusions with fusion type, 5’ and 3’ 
breakpoints and positions are listed. Number of supporting reads are given as a fraction of total reads. In case of 
patient 02, 03 and 09 one breakpoint has been identified and for the other patients two breakpoints were identified. 
(SR = supporting reads) 

 
 

Figure 10 visualizes the intron-exon CBFB-MYH11 gene fusion detected in patient 02 as 

example. As stated in Table 6, the 5’ breakpoint in CBFB is located intronic between exon 5 

and 6 and the 3’ breakpoint in MYH11 is located on exon 33.  

 
Figure 10: CBFB-MYH11 gene fusion in patient 02. Gene fusion with CBFB (blue) on the positive strand 
harboring the intronic 5’ breakpoint and MYH11 (red) on the negative strand harboring the exonic 3’ breakpoint 
at the bottom. Breakpoints are indicted by black lines. The resulting fusion gene in this patient with a length of 
612 amino acids (aa) is visualized in the center. 
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6.5 Mutational dynamics and patients in detail 

In this section, I present detailed information on somatic variants and copy-numbers for 

patients in this thesis. The information shown here was used for establishing the targeted single-

cell panel. 

6.5.1 Patient 01 
I identified 28 somatic variants in patient 01 with t(8;21) CBF AML using WES and 

targeted sequencing data as listed in Table 7. FLT3 p.D835Y and IDH2 p.R18P have been 

detected using the targeted sequencing approach. Somatic variants in FLT3, which is part of the 

RTK family, can be found in approximately 30% of all AML patients and the most common 

SNV in FLT3 is located on the activation loop D835 residue, as in this patient [127]. This patient 

harbors a mutation in epigenetic modifier IDH2, which has been shown to be associated with 

t(8;21) AML [5,15]. 

Table 7: Identified somatic variants in patient 01. In total I identified 28 somatic variants in patient 01 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. † Somatic variants detected 
using targeted sequencing data. 
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Figure 11a visualizes VAF changes from diagnosis to relapse for all listed somatic 

variants in Table 7. Variants are highlighted if they are unique to diagnosis (blue), unique to 

relapse (red) or if the gene is a known AML driver (yellow). Most of the variants (19/28 ~ 68%) 

detected are shared between diagnosis and relapse. Figure 11b shows the copy-numbers, the 

log read-depth ratio (LogR) and the B-allele frequency (BAF) for chromosomes 1 to 22 at 

diagnosis. Sex chromosomes have been excluded for copy-number calling as described in 

section 3.4. I detected an amplification of chromosome 8 (trisomy 8) visible with the increase 

in LogR and the shift in BAF, which is matching the karyotype of this patient (see Table 3). I 

was not able to analyze the relapse sample due to low quality and the diagnosis sample is also 

of low quality as seen by the noisy LogR plot. Jahn et al., [5] have shown that trisomy 8 and 

FLT3 somatic variants have a negative impact on patient outcomes. The purity for this sample 

has been estimated with 90%, which is also reflected with some VAFs close to 50% when 

assuming heterozygosity and a VAF of 97% for RBM10 p.109X located on chromosome X in 

this male patient at diagnosis. The relapse sample consisted of 30-40% blasts as listed in Table 

4, which matches with the highest VAF of approximately 13% (26% of cells harboring that 

somatic variant) when assuming heterozygosity. 

 
Figure 11: Mutational dynamics and copy-numbers of patient 01. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis of patient 01. Plot shows 
an amplification of chromosome 8. Relapse sample was not included due to poor quality.  
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6.5.2 Patient 02 
I identified 18 somatic variants using whole-exome data in patient 02 as listed in Table 8. 

No additional mutations have been detected using the targeted sequencing approach. I detected 

in this male CBF AML patient with inv(16) somatic variants in FLT3 and KIT which are genes 

involved in the RAS/RTK signaling pathway [14]. In detail, I detected FLT3-ITD, the most 

common genetic aberration in AML, with an AR of 15.5% and a VAF of 12.7% at diagnosis 

confirming clinical results (see Table 3) [128]. AR is defined as alternative read count divided 

by reference read count. It has been shown that somatic variants in FLT3, KIT and RAS of CBF 

AML patients with inv(16) lead to a survival/proliferation advantage of the cells and lead to 

poorer outcome for patients [129]. At relapse I detected a frame-shift mutation in WT1 (i.e., 

WT1 p.R368Afs*5), which are known to be associated with FLT3-ITD in AML patients and 

show poor event-free survival (EFS) and OS in young patients (0-18 years) [130,131]. 

Table 8: Identified somatic variants in patient 02.In total I identified 18 somatic variants in patient 02 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. 

 
 

Figure 12a shows the VAF changes of detected somatic variants of Table 8 from diagnosis 

on the left to relapse on the right with more than 60% (11/18) of them found in both samples. 

No copy-number changes have been detected for patient 02 at diagnosis and relapse as shown 

in Figure 12b. The karyotype of this patient at diagnosis listed in Table 3 confirms this with no 

additional detected cytogenetical abnormalities to inv(16).  



Bulk sequencing  31 

 
Figure 12: Mutational dynamics and copy-numbers of patient 02. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis and relapse of patient 02. 
Samples do not show any copy-number alterations. 
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6.5.3 Patient 03 
I identified in total 75 somatic variants from whole-exome (n=54) and targeted 

sequencing data (n=21) in patient 05 as listed in Table 9. CBF AML specific somatic variants 

were found in genes involved in RTK/RAS signaling (i.e., CBL, KIT and KRAS), chromatin 

modification (i.e., EZH2 and SETD2), methylation (i.e., IDH1 and TET2), cohesin complex 

(i.e., STAG2), transcription (i.e., WT1) and regulating splicing (i.e., SF3B1) [5,132]. 

Furthermore somatic variants were found in tumor suppressors, such as CHEK2, PTPRD 

[133,134]. Multiple variants were detected in KIT (n=2), SETBP1 (n=2), SF3B1 (n=2), STAG2 

(n=3) and TET2 (n=5).  

Table 9: Identified somatic variants in patient 03. In total I identified 75 somatic variants at diagnosis (D) and 
relapse (Rel) in patient 03 using whole-exome and targeted sequencing data. List is sorted in ascending order for 
gene names and contains all variants that were manually filtered and selected to be included in the single-cell 
panel. Variants in known AML driver genes are highlighted. Variant allele frequencies (VAFs) are shown in 
percent. † Somatic variants detected using targeted sequencing data. 
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Figure 13 shows the changes in VAFs from diagnosis to relapse for detected variants 

listed in Table 9. More than 60% (47/75) of the variants are shared between both tumor samples. 

INDEL USP9X p.V853Pfs*13 is the somatic variant with the highest VAF at diagnosis and 

relapse with 78.8% and 64.5%, respectively. For this patient I was not able to perform copy-

number analysis due to the poor sample quality.  

 
Figure 13: Mutational dynamics of patient 03. Changes in variant allele frequencies (VAFs) are shown from 
diagnosis on the left to relapse on the right. Variants are classified as gain if unique to diagnosis, as loss if unique 
to relapse, as driver if known AML driver gene and remaining as others. 
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6.5.4 Patient 04 
I detected 27 somatic variants in patient 04 using whole-exome and targeted sequencing 

data as listed in Table 10. I identified a variant in BCORL1 (i.e., BCORL1 p.A64T) using the 

error-corrected targeted sequencing data that is encoding for a transcriptional corepressor and 

has been associated with inv(16) CBF AML [5,135]. SRCAP is an epigenetic regulator and is 

involved in DNA damage repair [27]. High levels of CHAF1B, which is involved in CEBPA-

mediated differentiation of leukemic cells, are associated with poor prognosis in leukemia 

patients [136]. I detected two variants in NF1 (i.e., NF1 p.R1306X a stop-gain and 

NF1 p.I679Dfs*21 a frame-shift variant), which is involved in RTK/RAS signaling, and it has 

been shown that loss of NF1 elevates RAS-MAPK signaling driving the development of AML 

.  

Table 10: Identified somatic variants in patient 04. In total I identified 27 somatic variants in patient 04 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. † Somatic variants detected 
using targeted sequencing data. 

 
 

Figure 14a shows the VAF changes from diagnosis on the left to relapse on the right for 

listed somatic variants in Table 10. The diagnosis sample contains 70% blasts and the relapse 

sample only 17% as listed in Table 4, which is reflected by the decreasing VAFs for the majority 

of mutations in the relapse sample (14/18 variants that were identified at both timepoints). 
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Despite the small fraction of blasts in the relapse sample, 70% of all somatic variants (18/27) 

are shared between diagnosis and relapse. No copy-number changes have been detected in this 

patient as shown in Figure 14b. In contrast, conventional G-banding show additional 

chromosomal abnormalities such as an amplification of chromosome 22 in 1 out of 49 

metaphases and amplification of chromosomes 13,14 and 22 in 13 out of 49 metaphases. With 

approximately only 27% of all cells in the diagnosis sample harboring those chromosomal 

abnormalities they might be below the detection limit of this method. 

 
Figure 14: Mutational dynamics and copy-numbers of patient 04. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis and relapse of patient 04. 
Samples do not show any copy-number alterations. 
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6.5.5 Patient 05 
I identified 33 somatic variants in patient 05 as listed in Table 11 using whole-exome and 

targeted sequencing data. CEBPA p.A16T and RAD21 p.E157X with VAFs below 4% were 

detected using error-corrected targeted sequencing data enabling the detection of variants with 

a lower VAF. Nearly half of the identified somatic variants (16/33) in this patient are INDELS, 

specifically insertions with one exception. 

Table 11: Identified somatic variants in patient 05. In total I identified 33 somatic variants in patient 05 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. † Somatic variants detected 
using targeted sequencing data. 

 
 

Figure 15a shows the changes in VAF for somatic variants listed in Table 11 between 

diagnosis and relapse. For this patient only two variants were lost during disease and 14 variants 

were acquired at relapse, including somatic variants in AML drivers (i.e., 

NBEAL2 p.V1424Rfs*46, RAD21 p.E157X and WT1 p.S369Lfs*71). Figure 15b shows the 

copy-numbers including LogR and BAF for the diagnosis and relapse sample. Here, I detected 

a deletion on chromosome 7 (chr7q34-q36.1) confirming G-banding (see Table 3) visible by 

the drop in LogR and the shift in BAF that is already visible at diagnosis and is more dominant 

Variant Chr Position Ref Alt VAFDiagnosis VAFRelapse
AAK1 p.V639Sfs*3 2 69736454 C CGTCACTGAGA 15.2
ADAMTSL1 splice-site 9 18661932 G A 44.7 33.1
ADGRL4 p.C688F 1 79356849 C A 35.6 32.0
ALDH8A1 p.F13Lfs*3 6 135271153 G GTC 39.7
ALG1L p.S4L 3 125652507 G A 5.4
ASPSCR1 p.V275Pfs*11 17 79967033 G CC 28.9
BTBD6 p.A432T 14 105716845 G A 0.4 4.1
CEBPA p.A16T† 19 33792918 C T 3.4
CORO1A p.R29 V30insGA 16 30196616 G GGGGGGC 30.1
CRIM1 p.V312 S313insIV 2 36691736 G GCATAGT 49.1 7.2
CRIM1 p.S313Ifs*66 2 36691742 T TCATAGGGATGC 16.2
CX3CL1 p.T187M 16 57416565 C T 4.3
DUSP3 p.H70 V71insGYD 17 41852220 A ACATCATACC 30.4
FMN2 p.A374T 1 240256529 G A 15.7
GAB4 p.A419T 22 17443634 C T 38.2 21.7
ITPR1 p.V33Lfs*31 3 4562710 TG T 39.5 33.9
KLHL8 p.N241H 4 88106447 T G 47.3 43.8
MAP3K21 p.E50Q 1 233463922 G C 41.2 13.8
MLLT6 p.P383S 17 36872730 C T 44.6 34.0
NBEAL2 p.V1424Rfs*46 3 47042543 T TGACGTGGCGGG 33.3
NFATC1 p.H288Rfs*11 18 77171128 C CCGTCCCCG 13.4 23.5
NFE2 p.P246 V247insKIVNLP 12 54686542 C CGGCAAGTTGACAATCTTG 42.9 36.2
NUTM2F p.R242Q 9 97084600 C T 51.8 36.4
OR10G9 p.T13M 11 123893757 C T 3.2 4.4
PAWR p.T267A 12 79990323 T C 44.7 36.9
PTPRZ1 p.S165G 7 121616263 A G 46.1 39.5
RAD21 p.E157X† 8 117870603 C A 2.6
SGTA p.S26Afs*31 19 2768991 A ACGAGAGGCCCCCGTGC 14.5 46.9
SIRT7 p.L347 R348insLPL 17 79870452 C CGCAGGGGAA 16.9
SPATA13 p.V365Gfs*8 13 24798158 G GGGGATCC 13.1
TMEM104 p.R101Lfs*28 17 72786382 T TTCTCATCCTC 20.0
WT1 p.S369Lfs*71 11 32417910 G GAGCGTACA 30.7
XKR4 p.V406I 8 56436049 G A 50.2 41.5
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at relapse. Additionally, this patient harbors a UPD on the q-arm of chromosome 19 visible by 

the shift in BAF and normal LogR. 

 
Figure 15: Mutational dynamics and copy-numbers of patient 05. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis and relapse of patient 05. 
Both samples show a deletion on chromosome 7, which is more dominant at relapse, and a uniparental disomy on 
the q-arm of chromosome 19. 
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6.5.6 Patient 06 
I identified 21 somatic variants at diagnosis in inv(16) CBF AML patient 06 as listed in 

Table 12. For this patient no relapse sample was available. BCORL1 p.R609X was identified 

using the error-corrected targeted sequencing data. Mutations in BCORL1, which is a 

transcriptional corepressor, are more common in inv(16) patients [5,135]. Because from this 

patient only diagnosis and complete remission samples were available, I cannot show 

mutational dynamics.  

Table 12: Identified somatic variants in patient 06. In total I identified 21 somatic variants at diagnosis for 
patient 06 using whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and 
contains all variants that were manually filtered and selected to be included in the single-cell panel. Variants in 
known AML driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. † Somatic 
variants detected using targeted sequencing data. 

 
 

Figure 16 shows copy-numbers including LogR and BAF for diagnosis of patient 06 with 

no detected copy-number alterations. The quality of this sample is poor as can be seen by the 

noisy LogR. 

Variant Chr Position Ref Alt VAFDiagnosis
AZGP1 p.P6S 7 99573628 G A 4.8
BCORL1 p.R609X† X 129148573 C T 3.8
C11orf80 p.G475C 11 66610493 G T 45.8
FDXR p.A152T 17 72861876 C T 50.9
LDHC p.G279R 11 18472510 G A 43.6
LOC101059915 p.G89S X 70887918 G A 7.7
MBD3L2B p.R201Q 19 7051608 G A 6.4
NCAPH2 p.R380W 22 50960444 C T 42.0
NFE2L3 p.F260Lfs*35 7 26223343 CTTCT C 40.8
NRAS p.Q61H 1 115256528 T A 44.7
OR10G8 p.V28I 11 123900411 G A 11.4
OR1M1 p.L55F 19 9204083 C T 4.6
OR1S1 p.I155T 11 57982680 T C 5.2
OR1S2 p.K316E 11 57970708 T C 4.8
OR8I2 p.T278M 11 55861616 C T 8.7
PEG10 p.I171T 7 94293380 T C 46.7
TERB2 p.G175D 15 45270687 G A 6.6
TLE6 p.V236M 19 2989614 G A 52.0
TREML4 p.L37F 6 41196497 C T 6.2
USP48 p.E489X 1 22048240 C A 41.0
ZNF236 p.N479S 18 74606987 A G 32.0
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Figure 16: Copy-numbers of patient 06. Copy-numbers with log read-depth ratio (LogR) and B-allele frequency 
(BAF) for diagnosis of patient 06. This patient does not have copy-number abnormalities. 
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6.5.7 Patient 07 
I detected in total 29 somatic variants at diagnosis and relapse in patient 07 using whole-

exome sequencing and targeted sequencing data as listed in Table 13. TET2 p.N903Tfs*18 with 

a VAF of 3.5% at relapse was identified using error-corrected targeted sequencing. This patient 

harbors multiple variants in genes involved in RTK/RAS signaling (i.e., FLT3 p.D835Y, 

KIT p.D419del, KIT p.D816Y, NF1 p.P2289Sfs*17 and NRAS p.G12A) and all of them have 

been detected exclusively at diagnosis [5]. 

Table 13: Identified somatic variants in patient 07. In total I identified 29 somatic variants in patient 07 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. † Somatic variants detected 
using targeted sequencing data. 

 
 

Figure 17a shows the VAF changes of somatic variants listed in Table 13 between 

diagnosis and relapse of patient 07. For this patient, 12 variants are lost during disease 

development in this patient and only two variants are gained at relapse (i.e., DHX30 p.R864W 

and TET2 p.N903Tfs*18). Despite the small difference in blasts for diagnosis and relapse (90% 

at diagnosis and 80% relapse, see Table 4) the mutational dynamics plot estimates a smaller 

amount of tumor cells at relapse. Figure 17b shows copy-numbers including LogR and BAF 

Variant Chr Position Ref Alt VAFDiagnosis VAFRelapse
ADSL p.E425X 22 40760965 G T 12.1 7.8
ANK3 p.R610W 10 61827747 G A 4.8
CCDC74B p.R308H 2 130897150 C T 6.7
COL6A5 p.R1712L 3 130142716 G T 1.5 8.3
CPZ p.S218R 4 8605893 C A 40.8 27.6
DDI1 p.E322K 11 103908514 G A 44.2 24.2
DHX30 p.R864W 3 47890128 C T 11.1
DNAH11 p.P1626Lfs*24 7 21678611 CT C 42.0 21.4
FAT1 p.V3388I 4 187530381 C T 6.9
FAT2 p.G1883R 5 150925041 C T 2.0 10.6
FEM1A p.A401T 19 4793067 G A 5.0
FLT3 p.D835Y 13 28592642 C A 4.1
KIT p.D419del 4 55589770 TACG T 13.4
KIT p.D816Y 4 55599320 G T 4.0
MYO18B p.A408V 22 26165106 C T 47.3 28.8
NBN p.T599Kfs*58 8 90965520 TG T 31.2 15.4
NEXN p.R61X 1 78383884 C T 42.2 14.0
NF1 p.P2289Sfs*17 17 29667528 G TT 13.9
NRAS p.G12A 1 115258747 C G 3.8
NSD1 p.N1969I 5 176709479 A T 40.4 26.5
PCDHGA2 p.P669S 5 140720543 C T 10.8 2.8
PCLO p.P1151A 7 82595653 G C 9.2
PID1 p.H151Y 2 229890404 G A 4.4
POU4F2 p.T350M 4 147561779 C T 40.7 17.4
SLC22A10 p.S476I 11 63072190 G T 9.8
SRRT p.R414Pfs*5 7 100482916 G GC 34.4 23.3
TET2 p.N903Tfs*18† 4 106157804 GA G 3.5
TEX15 p.D2855E 8 30695235 G T 46.9 20.4
WDR81 p.R437C 17 1637249 C T 1.4 15.2
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for diagnosis and relapse. Here, I identified a deletion on chr7 (7q34-q36.3) visible at diagnosis 

and more dominant at relapse and an amplification on chromosome 17 present at relapse. 

 
Figure 17: Mutational dynamics and copy-numbers of patient 07. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis and relapse of patient 07. 
This plot shows a deletion on chromosome 7 and amplification on chromosome 17 both dominant at relapse. 
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6.5.8 Patient 08  
I identified 22 somatic variants in female inv(16) CBF AML patient 08 using whole-

exome sequencing data (see Table 14). No additional variants have been detected using the 

targeted sequencing approach. Somatic variants were found in genes involved in RTK/RAS 

signaling (i.e., FLT3 p.A680V), transcription (i.e., WT1 p.D355Y) and the Fanconi pathway 

(i.e., FANCM p.A166V) as well as in genes encoding for tumor suppressors (i.e., 

KMT2C p.G908C) and epigenetic regulators (i.e., PHF6 p.G29X).  

Table 14: Identified somatic variants in patient 08. In total I identified 22 somatic variants in patient 08 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. 

 
 

Figure 18a visualizes the VAF changes for somatic variants listed in Table 14 with only 

45% (10/22) variants shared between diagnosis and relapse. Despite the difference in 

percentage of blasts for diagnosis (80%) and relapse (20-25%) as listed in Table 4, there is no 

real difference in VAFs between those two samples. Figure 18b shows copy-numbers with 

LogR and BAF for diagnosis and relapse of patient 08. I identified an amplification of 

chromosome 22 at diagnosis visible by the increase in LogR and shift in BAF. CBF AML 

patients with inv(16) and trisomy 22 show a very high RFS survival rate when compared to 

CBF AML patients without trisomy 22, in contrast this patient has a RFS of only 14 months 

(see Table 2 and Figure 6) [74]. At relapse the amplification of chromosome 22 is not 

detectable. 

Variant Chr Position Ref Alt VAFDiagnosis VAFRelapse
ADAMTSL3 p.G611D 15 84581975 G A 4.8
ALKBH4 p.R179W 7 102098215 G A 8.3
APOB p.R1815W 2 21234297 G A 9.1
BOD1L2 p.L155P 18 54815007 T C 5.5 6.2
COL5A1 p.E1571Rfs*53 9 137716447 G GC 40.3 31.8
CPAMD8 p.R402G 19 17104288 G C 5.1 1.5
FANCM p.A166V 14 45605731 C T 4.6
FLT3 p.A680V 13 28602329 G A 28.1
GATB p.E401K 4 152609912 C T 7.3
HDX p.I369S X 83695565 A C 6.1
KLK9 p.R65H 19 51512445 C T 42.6 35.2
KMT2C p.G908C 7 151932949 C A 11.5 10.0
LAMA2 p.G2629S 6 129807766 G A 37.2 28.7
MAGT1 p.W169L X 77112879 C A 41.0 28.3
PHF6 p.G29X X 133511732 G T 36.8
POPDC2 p.R166H 3 119373455 C T 32.3
PTPN9 p.V292Wfs*37 15 75798109 AC A 31.9 30.0
PTPRZ1 p.S204I 7 121616897 G T 32.6 28.8
RGS9 p.A22V 17 63149547 C T 39.0 28.0
SLC6A15 p.C90F 12 85277804 C A 8.7
WT1 p.D355Y 11 32417953 C A 8.7
XKRX p.R254C X 100169917 G A 8.2
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Figure 18: Mutational dynamics and copy-numbers of patient 08. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis and relapse of patient 08. 
Plot shows an amplification of chromosome 22 at diagnosis. 
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6.5.9 Patient 09 
I identified 24 somatic variants at diagnosis and relapse by whole-exome sequencing data 

for female patient 09 as listed in Table 15. In detail, I detected somatic variants in genes 

involved in RTK/RAS signaling (i.e., KRAS p.G13D) and in the cohesin complex (i.e., 

SMC3 p.L664Q) in this t(8;21) CBF AML patient . Mutations in genes encoding for members 

of the cohesin complex consisting of four core subunits (i.e., SMC1A, SMC3, RAD21, and 

STAG protein) and are observed nearly exclusive for t(8;21) CBF AML . 

Table 15: Identified somatic variants in patient 09. In total I identified 24 somatic variants in patient 09 using 
whole-exome and targeted sequencing data. List is sorted in ascending order for gene names and contains all 
variants that were manually filtered and selected to be included in the single-cell panel. Variants in known AML 
driver genes are highlighted. Variant allele frequencies (VAFs) are shown in percent. 

 
 

Figure 19a shows the VAF changes for patient 09 from diagnosis on the left to relapse on 

the right. For this patient only 9 out of 23 variants from diagnosis have been found at relapse 

and most of them with a VAF below 4%. Despite of 50% of blasts in the relapse sample as 

stated in Table 4 no variants with a VAF above 4.2% have been detected. Figure 19b shows the 

copy-numbers with LogR and BAF for diagnosis and relapse. At relapse I detected a UPD on 

chromosome 17 that is lost at relapse. USP22 p.A252 R253insGPS is in the region of the UPD 

which can be seen by nearly double the VAF of the other variants in this patient, deriving from 

the LOH in this region. 

Variant Chr Position Ref Alt VAFDiagnosis VAFRelapse
ANXA7 p.Y288C 10 75139895 T C 26.4 0.9
ARV1 p.L192F 1 231131633 G C 31.2 3.6
ATP10A p.E911del 15 25947088 ACCT A 22.1
CD207 p.S177N 2 71060812 C T 32.5 1.4
COL6A3 p.P2252L 2 238245167 G A 30.4
CYP8B1 p.M204V 3 42916699 T C 26.9 2.8
EFHD1 splice-site 2 233503196 T - 25.5
EIF2B4 p.R9S 2 27593157 G T 20.7
IFT46 p.Q294L 11 118415665 T A 15.5
KRAS p.G13D 12 25398281 C T 4.4
KRT26 p.A296S 17 38926089 C A 11.2 0.3
LAMB4 p.T571M 7 107720221 G A 34.4 2.4
LRP1B p.G2237V 2 141457908 C A 23.8 0.3
NWD1 p.W87X 19 16855293 G A 22.3
PAX7 p.A395V 1 19062154 C T 25.0
PHIP splice-site 6 79724935 T C 31.4 4.0
SCN1B p.W183X 19 35524743 G A 28.1 2.3
SMC3 p.L664Q 10 112356183 T A 31.8
SORL1 p.R1473X 11 121466379 C T 30.5
STAB1 p.A939V 3 52545694 C T 4.2
STIM2 p.L512P 4 27019378 T C 21.5
TANC2 p.P1886L 17 61499000 C T 7.3
TTN p.E10394K 2 179536842 C T 20.7
USP22 p.A252 R253insGPS 17 20919146 T TCGAAGGACC 54.3



Bulk sequencing  45 

 
Figure 19: Mutational dynamics and copy-numbers of patient 09. (a) Changes in variant allele frequencies 
(VAFs) are shown from diagnosis on the left to relapse on the right. Variants are classified as gain if unique to 
diagnosis, as loss if unique to relapse, as driver if known AML driver gene and remaining as others. (b) Copy-
numbers with log read-depth ratio (LogR) and B-allele frequency (BAF) for diagnosis and relapse of patient 09. 
Plot shows a uniparental disomy on chromosome 17. 
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IV Single-cell sequencing 
In this chapter I present methods and results from the single-cell sequencing part of my 

thesis. Here, I show how I integrated bulk and single-cell data to reconstruct tumor phylogeny 

from CBF AML patients with somatic variants, fusion genes and copy-number alterations.  

1 Custom targeted single-cell DNA-Seq panels 

Three custom panels (see Table 16) were designed with a maximum size of 201 amplicons 

covering somatic variants, regions of copy-number alterations and fusion genes. Single-cell 

libraries were generated on the Mission Bio Tapestri platform using the Tapestri Single-Cell 

DNA Sequencing V2 kit (Mission Bio) and sequenced on the NovaSeq 6000 platform 

(Illumina; 300 cycles paired-end, 15% PhiX). Sequencing reads were processed using the 

Tapestri pipeline (Mission Bio, v2.0.2) with the respective panel and reference genome to 

obtain Loom files for each sample that are used for downstream analysis. For each panel a 

specific reference genome was created with the sequence of ±400 bp around of the patient 

specific breakpoints for each patient in that panel. 

Table 16: Overview custom targeted single-cell DNA-Seq panels. The 9 patients were split on three custom 
panels ranging in size from 180 to 201 amplicons. 

 

2 Identify variants and gene fusion in single-cells 

I used an adapted version of the preprocessing script from COMPASS (v.1.1) [64] to 

obtain information on variants, the CBF gene fusion and the cell barcode for each selected cell 

in a sample (see section I4 for details on how cells are selected). Additionally, I extended the 

list of input parameters with --use_whitelist_only to obtain only variants provided by 

the whitelist and --use_fusion to obtain gene fusion information.  

The first step in the preprocessing script is to identify variants either based on quality 

thresholds or the whitelist and then identify those cells that have at least 40% of those selected 

variants genotyped. For those filtered cells, I retrieved the barcodes and saved them as comma-

separated values (CSV) with the suffix “-barcodes.csv” (see Insert 2). 
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ds.ca["barcode"][filtered_cells].tofile(os.path.join( 
  outdir,basename.replace(".cells", "")+"_barcodes.csv"), sep = ",") 

Insert 2: Barcodes of selected cells are written to a comma-separated file. 

The FLT3-ITD is detected in a cell when the alternative allele in amplicon AMPL135278, 

which is the amplicon designed specifically for FLT3-ITD of patient 02, has a length greater 

than 1. This also changes the variant name to FLT3-ITD. Fusion gene reads are added as variant 

with name "Fusion inv(16): CBFB-MYH11" or "Fusion t(8;21): RUNX1-RUNX1T1" in case 

of patients 01 and 09. If reads were found on the specific fusion gene chromosomes the number 

of reads are annotated as reference and alternative allele count and classified as heterozygous 

[137]. If there were two breakpoints present in a patient the reads on both amplicons were 

summed up.  

The information is written to a CSV file containing the following columns: (i) the 

chromosome (CHR), (ii) the start position (POS), (iii) the reference allele (REF), (iv) the 

alternative allele (ALT), (v) the gene name (REGION), (vi) the variant annotation (NAME), 

(vii) the population frequency from the 1000 genomes project [123] (FREQ) and additional 

columns for each selected cell. A variant in each cell is annotated with reference counting reads, 

alternative counting reads and the genotype (0=wild-type, 1=heterozygous, 2=homozygous or 

3=missing) delimited by colons. Additionally, barcodes (e.g., 'AACAACTGGCCAGTCTCA-

1') and read counts of fusion amplicons for each filtered cell are saved as CSV files for 

further downstream analysis. 

3 Reconstruction of tumor phylogeny 

Many of the available methods for reconstructing tumor phylogeny can only perform on 

approximately 100-1,000 cells in a reasonable amount of time, as described in section I3.2. 

COMPASS [64] and ConDoR [50] are two of the available methods able to infer tumor 

phylogeny with copy-number alterations. In addition to information on variants, ConDoR needs 

clustering information of copy-number profiles of single-cells, which was not possible with my 

samples. Moreover, clone sizes of inferred phylogenies did not match with whole-exome 

results. Figure 20 shows the inferred tumor phylogeny from COMPASS of patient 04 at 

diagnosis with copy-number alterations. COMPASS showed a loss on chromosome 17 for two 

tumor clones but was not able to retrieve known copy-number alterations from karyotype (i.e., 

amplification on chromosome 13,14 and 22 as listed in Table 3). 
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Figure 20: Simplified tumor phylogeny of patient 04 at diagnosis using COMPASS with copy-number 
alterations. Tree starts at the top with the wild-type (WT) cell fraction and 7 tumor clones (C1-C7). Somatic 
variants for each tumor clone are not shown. COMPASS [105] shows a deletion on chromosome 17 for tumor 
clones C5 and C7, but only amplifications of chromosome 13, 14 and 22 have been detected by karyotype.  

Therefore, I developed a 2-step approach to infer the tumor phylogeny for each patient: 

(i) reconstruct tree with COMPASS using only somatic variants and gene fusion information 

and (ii) identify SCNAs in each node with wild-type cells as reference.  

3.1 Step 1: Infer trees based on somatic variants 

For inferring the tumor phylogeny, I used COMPASS (v1.1) [64] in mutation mode (--

CNA 0), the corresponding sex (i.e., for patient 08 and 09 --sex female and --sex male 

for others), with 10 Markov chain Monte Carlo (MCMC) chains in parallel and 20,000 iterations 

in each (--nchains 10 --chainlength 20000), and default parameters. COMPASS 

generates 5 output files (i-v, information from https://github.com/cbg-ethz/COMPASS) with an 

additional custom file (vi): 

(i)&(ii) [sample]_tree.{gv/json}: the inferred tree in graphviz and JavaScript Object 

Notation (json) format 

(iii) [sample]_cellAssignments.tsv: hard assignments of cells to nodes, and whether cell 

was inferred to be a doublet (in which case the node assignment is unreliable). 
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(iv) [sample]_cellAssignmentsProbs.tsv: posterior attachment probabilities of cells to 

nodes 

(v) [sample]_nodes_genotypes.tsv: genotype of each SNV for each node (0: no 

mutation; 1: heterozygous mutation; 2: homozygous mutation) 

(vi) [sample]_data.csv: custom file containing cell numbers and hex color codes for each 

node 

Figure 21a shows the original visualization of phylogenetic trees form COMPASS. For 

better visualization, I modified the code to output trees with events on branches between nodes 

(see Figure 21b) in graphviz format which is converted to PDF with Graphviz’s dot [138].  

 
Figure 21: Visualization of inferred trees. (a) Original visualization of phylogenetic trees from COMPASS [105] 
and (b) modified version with events located on branches between nodes. Phylogenetic tree shown is from patient 
08 at diagnosis with somatic variants and gene fusion only. 

3.2 Step 2: Identify nodes with somatic copy-number alterations 

For the analysis of SCNAs of each tumor clone in an inferred phylogenetic tree I used R 

with following packages: reticulate (v1.28) [139], ggplot2 (v3.4.4) [140], data.table (v1.14.8) 

[141], stringr (v1.5.0) [142], ggpubr (v0.6.0) [143], dplyr (v1.1.1) [117], jsonlite (v1.8.5) [144], 

readxl (v1.4.2) [145] and ggh4x (v0.2.6) [146]. Additionally, I used Python 3 (v3.7.9) [147] 

with mosaic (v2.2) (Mission Bio).  

Each custom panel (i.e., CO-413, CO-414 and CO-415) contains specifically designed 

amplicons for copy-number analysis that are initially grouped by chromosomes (see Figure 22, 
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Grouped amplicons). A region of interest (ROI) is defined as a segment of a known SCNA for 

a patient identified by copy-number calling or karyotype. Regions for copy-number analysis 

are classified into copy-number neutral regions (see Figure 22: R1, R2 and R3) and ROIs (see 

Figure 22: ROI1 and ROI2). If ROI covers a chromosome only partially then amplicons on that 

chromosome are split into regions left and right of the ROI and the ROI itself (see Figure 22: 

Regions for analysis, R2, ROI2 and R3). Amplicons are selected for analysis if more than 75% 

or 50% (for amplicons in ROIs) of cells have a minimum read depth of 30. Copy-number neutral 

regions are excluded from further analysis if they consist of less than 4 amplicons (see Figure 

22: region R3).  

 
Figure 22: Grouping and filtering copy-number amplicons in regions. To obtain regions for the analysis, 
amplicons for copy-number analysis are initially grouped by chromosomes (CHR) and then masked with regions 
of interest (ROIs). ROIs are patient specific segments of known copy-number alterations. 

I merged cell assignments from COMPASS with cell barcodes and, subsequently, 

removed cells that have been marked as doublet. This results in a list of cell barcodes for each 

tumor clone and the wild-type cell fraction. Then I calculated the ploidies pij for each cell j at 

amplicon i using Cnv.compute_ploidy from mosaic (v2.2) (Mission Bio) with cells from 

the wild-type fraction as diploid reference and default parameters. For cells j of each tumor 

clone n I performed following steps: 

• calculate variance Var(pij) for amplicon i of ploidies pij 

• calculate Z-scores Zij for ploidies pij 

• filter cell j of tumor clone n if Zij <2 

• calculate ploidies of copy-neutral regions (R1, R2, …) and ROIs (ROI1, ROI2, …) 

using a weighted mean, where weights are the normalized variance of amplicon i 

from 1 to 0.1 so that higher variance amplicons are adding less to the ploidy 

• (optionally) center ploidies of ROIs by subtracting the mean of the ploidies of 

copy-neutral regions (R1, R2, …) – 2 (=ploidy of copy-neutral region) 

I used the weighted mean for ploidies to allow a less strict filtering of high variance 

amplicons.  
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In patients 05 and 09 I detected UPDs using genotype information of SNPs for cells in 

each without missing data from each cell in regions of known UPDs. I used the fraction of wild-

type, heterozygous and homozygous cells in each node for deciding if a UPD is present or 

absent.  

4 Detecting clones in remission 

For each complete remission sample, I used the preprocessing script as described in 

paragraph 2 to identify variants and the existence of the fusion gene. At first, I selected cells 

that had at least one variant annotated as heterozygous or homozygous or cells where the gene 

fusion is present using R. The infinite-sites model, which is the simplest phylogeny model, 

allows every variant in a phylogenetic tree to change only one time from wild-type to mutated 

(i.e., heterozygous or homozygous) and is never lost [53]. Applying the infinite-sites model, I 

classified every selected cell with the clone that has matching somatic variants and is the 

furthest away from the wild-type fraction. Results were visualized using R with packages 

ggplot2 (v3.4.4) [140] and latex2exp (v0.9.6) [148]. 

5 Results 

In this section I present results from reconstructing the history of DNA alterations using 

somatic variants, the existence of the CBF gene fusion and chromosomal alterations. 

Phylogenetic trees from patients that do not have additional chromosomal alterations are shown 

in section 5.2. Inferred tumor phylogeny from patients with SCNAs including amplifications, 

deletions and UPDs are presented in section 5.3. 

In general, a phylogenetic tree consists of nodes (representing a cell clone) and branches 

connecting those nodes. The trees in this thesis visualize the tumor development starting with 

the wild-type cell fraction from which the tumor clones connected by branches emerge. Events 

listed along those branches (e.g., BCORL1 p.R609X) are acquired from one node to the next. 

This means that every clone in the tree contains all the somatic events that are listed from that 

node back to the wild-type cell fraction. Nodes on two different branches have a common 

ancestor but have acquired additional somatic events independently.  

Cell numbers in this section can differ between results from the Tapestri pipeline (Mission 

Bio, v2.0.2), genotyping and phylogenetic trees due to different thresholds for each analysis. 
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5.1 Tapestri pipeline results 

In total 21 samples from 9 patients were analyzed using the Tapestri pipeline (Mission 

Bio, v2.0.2), representing different timepoints of the disease stage (i.e., diagnosis (D), complete 

remission (CR) or relapse (Rel)), as listed in Table 17. Samples with less than 1,000 detected 

cells (i.e., diagnosis sample of patient 05 and relapse sample of patient 07) and samples with 

no coverage on patient specific fusion amplicons (i.e., patient 03) were removed from further 

downstream analysis. For the remaining samples the number of detected cells ranges from 1,637 

to 7,540 with a mean read/cell/amplicon depth of 35 and 203. 

Table 17: Tapestri pipeline run metrices. In total 21 samples with three different panels with a size ranging from 
180 to 201 amplicons were analyzed using the Tapestri pipeline (Mission Bio, v2.0.2). Samples are available at 
diagnosis (D), complete remission (CR) and relapse (Rel). Fusion is yes, if reads were found on the patient specific 
fusion amplicon and vice versa. Depth is mean reads/cell/amplicon. (Pat. = Patient) 
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5.2 Tumor development without copy-number alterations 

In the following section the tumor development visualized with phylogenetic trees of 

patients without additional copy-number alterations are shown. For those patients I solely used 

somatic variants and the existence of the fusion gene to infer tumor phylogeny. 

5.2.1 Patient 06 
For patient 06 I used 11 of 21 somatic variants and the CBFB-MYH11 fusion for inferring 

the tumor development at diagnosis. Figure 23 shows the percentage of cells classified as wild-

type (WT), heterozygous (HET), homozygous (HOM) or missing for each somatic variant 

detected in bulk sequencing and, additionally, the presence of the CBFB-MYH11 gene fusion 

for (a) diagnosis and (b) remission. A cell is classified as HET if the gene fusion is present (see 

Section 2). I excluded variants if the amplicon is not covered (i.e., LOC101059915 p.G89S and 

TREML4 p.L37F), there was no change between diagnosis and complete remission (i.e., 

OR10G8 p.V28I) or less than 5 cells were mutated at diagnosis (e.g., AZGP1 p.P6S). Bars of 

variants that were excluded from inferring tumor phylogeny are shown in faded colors. 

 
Figure 23: Patient 06 single-cell results. (a) Genotyping information of all 2,687 cells detected at diagnosis. 
Every variant in each cell is classified as wild-type (WT), heterozygous (HET), homozygous (HOM) or missing 
(MISSING). If the gene fusion is detected the cell is classified as HET. Variants that were excluded from further 
analysis are presented in shaded colors. (b) Genotyping information of all 2,459 cells detected at remission. (c) 
Inferred phylogenetic tree of patient 06 at diagnosis consisting of 3 tumor clones with branching event after CBFB-
MYH11 harboring founding clone. 

Figure 23c shows the inferred tree for the diagnosis sample of patient 06 consisting of 3 

tumor clones and the wild-type (WT) cell fraction. From the founding clone which contains the 
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CBFB-MYH11 gene fusion two subclones with a distinct set of variants develop. The 

NRAS p.Q61H is the dominant tumor clone in this sample with 83% of all cells, which is in line 

with the inferred VAF of 44% in bulk sequencing. BCORL1 p.R609X has been detected in bulk 

sequencing with a VAF of 3.8% leading to roughly 7.6% of mutated cells, which matches with 

the size of the BCORL1 clone in the single-cell data as shown in Figure 23c. 

5.2.2 Patient 02 
Figure 24 shows the genotyping results for 18 somatic variants and the CBFB-MYH11 

fusion gene of patient 02 for samples at (a) diagnosis, (b) remission and (c) relapse. I excluded 

variants from further analysis if the amplicon was not covered (i.e., KMT2C p.G908C and 

PTPN20 p.G28E) or there were less than 5 mutated cells in both tumor samples (i.e., 

IL1RAPL1 p.P241S and LRRC74A p.P36S). FLT3-ITD, the most detected genetic aberration in 

AML, was detected in 29.7% of all cells at diagnosis (i.e., 2,011 cells HET and 91 cells with 

HOM) and in 22.5% of all cells at relapse (i.e., 837 cells heterozygous and 84 cells 

homozygous) [128]. The percentage of mutated cells at diagnosis with FLT3-ITD can be 

converted to an allelic ratio of approximately 15% when assuming heterozygosity. This matches 

the allelic ratio of 13% detected with clinical testing as listed in Table 3. In contrast to single 

cell sequencing, the FLT3-ITD was only identified in the diagnosis sample by whole exome 

sequencing (see Table 8), highlighting the difficulty in detecting this aberration in conventional 

bulk sequencing. I used 15 of 18 somatic variants and the information of the CBFB-MYH11 

gene fusion to reconstruct the tumor development of patient 02.  
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Figure 24: Single-cell genotyping information patient 02. Each variant in each cell is classified as wild-type 
(WT), heterozygous (HET), homozygous (HOM) and missing. Genotype information for all cells detected at (a) 
diagnosis (n = 7,076), (b) remission (n = 4,103) and (c) at relapse (n = 4,101). Variants excluded from further 
analysis are presented in shaded colors. 

I merged cells from diagnosis and relapse to infer the tumor pyhlogeny as shown in Figure 

25a. Numbers in each clone represent the number of cells from the diagnosis and relapse sample 

seperated by a slash. The fraction of wild-type cells in this patient is 4% at diagnosis and 64% 

at relapse. From the founding clone with the CBFB-MYH11 gene fusion and a clone size of 26 

cells (i.e., 3 cells at diagnosis and 23 cells at relapse) additional somatic variants are acquired. 

The phylogenetic tree at diagnosis (Figure 25b) consists of a diagnosis specifc branch with 

KIT p.D816V, HIST1H2AG p.V115Rfs*23 and ZNRF4 p.R5H subclones and a second branch 

with a dominant FLT3-ITD clone and a RINT1 p.S304T clone. At relapse, the KIT branch is 

lost and the tumor progresses by acquiring two additional variants (i.e., WT1 p.R368Afs*5 and 

ASAP1 p.N369S). The somatic variants in the diagnosis-specific KIT branch are also not 

detectable in bulk sequencing data of the relapse sample (see Table 8). 
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Figure 25: Inferred phylogenetic tree of patient 02. (a) Inferred tree from merged diagnosis and relapse samples 
with in total 10912 cells (i.e., 6,882 cells from diagnosis and 4,030 cells from relapse), 15 somatic variants and the 
CBFB-MY11 gene fusion. Numbers in each node represent the number of cells from diagnosis and relapse 
separated by a slash. (b) Diagnosis tree with branching event resulting in a FLT3-ITD and a KIT p.D816V branch. 
(c) Relapse tree with a new WT1 clone, but without a branching event. 
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5.3 Tumor development with copy-number alterations 

In this section I present inferred phylogenetic trees from patients that have additional 

copy-number alterations detected by bulk sequencing or conventional G-banding. As described 

in section 3, I first reconstructed the tumor development using only somatic variants and the 

presence of the CBF gene fusion and subsequently use the cells of each clone to call copy-

numbers. Ploidies for each clone are calculated with the cells in the wild-type fraction as 

reference. 

5.3.1 Patient 08 
For patient 08 I used 11 of 21 somatic variants and the CBFB-MYH11 gene fusion as 

highlighted in Figure 26 for inferring the phylogenetic tree at diagnosis. I excluded variants that 

are shaded in Figure 26, because the amplicon was not covered (i.e., CPAMD8 p.R402G, 

HDX p.I369S, KMT2C p.G908C, PHF6 p.G29X, SLC6A15 p.C90F and WT1 p.D355Y) or 

there were less than 5 mutated cells in the sample (i.e., ALKBH4 p.R179W. All the variants that 

have less than 5 mutated cells except for BOD1L2 p.L155P are unique to relapse as listed in 

Table 14. 

 
Figure 26: Single-cell genotyping information patient 08. In total 2,094 cells have been genotyped at diagnosis 
as wild-type (WT), heterozygous (HET), homozygous (HOM) and missing (MISSING) for each somatic variant. 
I excluded variants in faded colors from further downstream analysis because the amplicon did not work (e.g., 
WT1 p.D355Y) or there were less than 5 cells mutated (e.g., ALKBH4 p.R179W). 

Figure 27a shows the inferred phylogenetic tree for patient 08 at diagnosis based on 

somatic variants and the gene fusion only. From the founding clone harboring the CBFB-

MYH11 gene fusion two clones each consisting of two subclones emerge. Here the dominant 

clone with 70% of all cells acquired POPDC2 p.R166H and FLT3 p.A680V additionally to the 

somatic variants in the founding clone. Only the founding clone was detectable in the relapse 

sample with bulk sequencing as listed in Table 14, whereas the dominant clone from diagnosis 
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was absent at the time of relapse sample analysis. No viable cells from relapse were available 

from this patient to confirm this observation via single-cell genotyping. Vice versa, the relapse-

specific variants were below detection threshold in the single-cell analysis, hinting that they 

were not present at diagnosis and acquired later. 

For each tumor clone, I calculated the ploidy as described in section 3.2 by using the wild-

type cells (n = 63) as reference. Figure 27b shows the ploidy for chromosomes 7, 11, 13, 14 

and 22 in each clone of the tree. Here individual dots represent the calculated ploidy of an 

amplicon that has passed quality filtering. The variance of each amplicon is visualized by the 

strength of the black color - a darker color means a smaller variance. Due to using the wild-

type cells as a reference the ploidy of each amplicon in the wild-type clone is exactly 2. For 

smaller clones, the variance of the ploidies of each amplicon is larger than for clones with a 

higher number of cells. This can be seen when comparing the founding clone with 29 cells to 

the 233 cells comprising ADAMTSL3 clone. In the POPDC2 p.R166H clone an increase in 

ploidy on chromosome 22 is already visible, but the amplification on chromosome 22 is clearly 

detectable in the FLT3 p.A680V clone (SCNAs are highlighted in bold). 
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Figure 27: Inferred phylogenetic tree from patient 08 at diagnosis with ploidies for each clone. (a) Inferred 
tree at diagnosis from somatic variants and CBFB-MYH11 gene fusion with the founding clone harboring the CBF 
gene fusion and the FLT3 p.A680V clone harboring an amplification of chromosome 22. (b) Ploidies of amplicons 
and regions in each node using the wild-type cell fraction as reference. Dots show ploidy of an amplicon and, 
additionally, the variance by their shade. 
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5.3.2 Patient 04 
I used 19 of 27 somatic variants and the CBFB-MYH11 gene fusion for reconstructing 

tumor development in patient 04 as highlighted in bold in Figure 28. I excluded variants in 

shaded colors because there were less than 5 mutated cells in the tumor sample or the amplicon 

was not covered (i.e., RGPD8 p.D1388Y and WASHC2C p.D285H). I removed 

ZNF587B p.F207I because it was part of the wild-type cell fraction in the first inferred tree and, 

therefore, it would affect downstream analysis especially detecting remaining clones in 

complete remission.  

 
Figure 28: Single-cell genotyping information patient 04. In total 1,637 cell have been genotyped (a) at 
diagnosis and (b) 5,333 cells at relapse. Variants were excluded from further analysis if there were less than 5 
mutated cells in the tumor sample or the amplicon did not work (i.e., RGPD8 p.D1388Y and 
WASHC2C p.D285H). Additionally, ZNF587B p.F207I has been removed from tree reconstruction because it is 
part of the wild-type clone. Excluded variants are visualized in shaded colors. 

Figure 29a shows the inferred tree for patient 04 at diagnosis consisting of 6 tumor clones 

with the founding clone (n = 59) containing the CBFB-MYH11 gene fusion. The SNV in NF1 

and the frame-shift variant in SRCAP, which are known AML driver genes, form two distinct 

clones. Copy-number calling in bulk sequencing data did not show any SCNAs for patient 08, 

but subclonal amplifications of chromosomes 13, 14 and 22 are present in the karyotype at 

diagnosis (see Table 3). Figure 29b visualizes the ploidy for chromosomes 7, 11 and the 

chromosomes of interest (i.e., chr 13, 14 and 22) in each tumor clone in comparison to the 59 
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wild-type cells. The NF1 clone with 24% of all cells (n = 362) shows amplifications on 

chromosomes 13, 14 and 22. This matches the number of metaphases (13/49 ~27%) with an 

additional chromosome detected by conventional G-banding (see Table 3). This clone seems to 

be lost at relapse, because both variants are unique to diagnosis as listed in Table 10. 

 
Figure 29: Inferred phylogenetic tree from patient 04 at diagnosis with ploidies of tumor clones. (a) Inferred 
phylogenetic tree with in total 6 tumor clones and the founding clone harboring the CBFB-MYH11 gene fusion. 
(b) Ploidies of chromosomes 7, 11, 13, 14 and 22 for every tumor clone in comparison to the wild-type cells. The 
NF1 p.R1306* clone has amplifications on chromosome 13, 14 and 22. For other tumor clones no copy-number 
changes are detected.  
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5.3.3 Patient 07 
In case of patient 07 I used 26 of 29 somatic variants and the CBF-MYH11 gene fusion 

for inferring the tumor phylogeny at diagnosis. Figure 30 shows the genotypes for detected cells 

in the (a) diagnosis and (b) relapse sample. I excluded MYO18B p.A408V and 

NF1 p.P2289Sds*17 because the amplicon was not covered and PCDHGA2 p.P669S, because 

there were less than 5 mutated cells in the diagnosis sample. For this patient I did not merge the 

tumor samples for inferring the phylogenetic tree, because only 711 cells have been detected 

by the Tapestri pipeline for the relapse sample. Only a fraction of the required cell number was 

available as input for Mission Bio single-cell DNA library preparation for the relapse sample 

of this patient, resulting in the low cell output as well as skewed variant allele fractions. 

However, the sample is shown here, to demonstrate which clones were found in the relapse 

sample, independent of cell fractions. 

 
Figure 30: Single-cell genotyping information patient 07. In total 5,884 cells have been genotyped (a) at 
diagnosis and 711 cells (b) at relapse. I excluded variants in shaded colors because there were less than 5 mutated 
cells (PCDHGA2 p.P669S) or the amplicon was not covered (i.e., MYO18B p.A408V and NF1 p.P2289Sds*17). 

Figure 31a shows the simplified phylogenetic tree at diagnosis with a CHIP clone 

harboring TET2 p.N924fs and an AML/tumor clone. I detected this TET2 variant using error-

corrected targeted sequencing as described in section III4. This separation between the CHIP 

clone and the AML clone persists throughout the course of the disease as shown in Figure 31b, 

which is consistent with the bulk data of an increasing CHIP clone at relapse. The complete 
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inferred tumor phylogeny of the diagnosis sample is shown in Figure 31c. The complex 

phylogenetic tree consists of 11 tumor clones with the founding clone harboring the CBFB-

MYH11 gene fusion. Interestingly, from the founding clone the two KIT variants (i.e, 

KIT p.D816Y and KIT p.D418del), NRAS p.G12A and FLT3 p.D835Y evolve into distinct 

subclones, with some of the subclones acquiring additional mutations. 

 
Figure 31: Inferred phylogenetic trees from patient 07. (a) Simplified phylogenetic tree with a dominant AML 
/tumor clone and a small 42 cells comprising clonal hematopoiesis of indeterminate potential (CHIP) clone at 
diagnosis. (b) Simplified tree at relapse with the distinct CHIP clone that persists throughout the course of the 
disease. (c) Complete phylogeny consisting of 11 tumor clones with the founding clone harboring the CBFB-
MYH11 gene fusion and a CHIP clone for patient 07 at diagnosis  
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For each tumor clone in the sample Figure 32 visualizes the ploidies of chromosome 11, 

13 and region of interest 7q31. Here I detected in clones COL6A5 p.R1712L and 

FLT3 p.D835Y a deletion in the region of interest. The deletion in the NRAS p.G12A clone I 

did not consider, because only one amplicon was below a ploidy of 1.5. Also, I did not count 

the NF1 p.P2310Sfs clone as deleted for chr7q31, because it shows a borderline deletion and 

more importantly neither the ancestral nor the descendant clone show a deletion. 

 
Figure 32: Ploidies of tumor clones of patient 07 at diagnosis. For each tumor clone ploidies for chromosomes 
11, 13 and the region of interest on chromosome 7 in comparison to the wild-type cell fraction are shown. The 
deletion on chromosome 7q31 can be detected in the COL6A5 p.R1712L and FLT3 p.835Y clone. 
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5.3.4 Patient 01 
For patient 01 samples at all three timepoints (i.e., diagnosis, remission and relapse) were 

available and I used 15 of 28 variants and the RUNX1-RUNX1T1 gene fusion for reconstructing 

the tumor development. Figure 33 shows the fraction of genotyped cells at (a) diagnosis, (b) 

complete remission and (c) relapse and variants excluded for downstream analysis in faded 

colors. I removed variants if the amplicon was not covered (i.e., IDH2 p.R18P, OR5H1 p.T167S 

and UGT2B7 p.D275E), less than 5 mutated cells have been detected in the tumor samples or 

if the mutation (as for PIK3C2A p.R167K) is part of the wild-type cell fraction. I included 

FLT3 p.D835V that I detected at diagnosis in 129 cells (i.e., 112 heterozygous and 17 

homozygous) accounting for 4% of all cells for downstream analysis, because FLT3 variants 

can be found in approximately 30% and SNVs at the 835 residue of FLT3 are the most common 

[149]. This variant was also detectable in WES (i.e., alternative read count = 2, VAF = 1.2%) 

and targeted sequencing data (i.e., alternative read count = 14, VAF = 1.3%), but was filtered 

out due to the small VAF. ZNF213 p.R147Hfs*28 (chr16:3188459 G>AT) has been called in 

the single cell data as ZNF213 p.R147fs (chr16:3188458 C>CA) and ZNF213 p.R147L 

(chr16:3188459 G>T), because they were in the same clone I merged them in the inferred 

phylogenetic tree (see Figure 34a).  
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Figure 33: Single-cell genotyping information patient 01. Bar plots show amount of wild-type (WT), 
heterozygous (HET), homozygous (HOM) and missing classified cells for each variant in the (a) diagnosis, (b) 
remission and (c) relapse sample. If reads where found in case of the gene fusion RUNX1-RUNX1T1 the cell was 
classified as heterozygous. Variants in bold were further used for downstream analysis. 

Figure 34a shows the already updated inferred phylogenetic tree of the diagnosis and 

relapse sample for patient 01. In this patient the founding clone with only ZBTB17 p.T318M 

does not harbor the RUNX1-RUNX1T1 gene fusion. From the founding clone we can distinguish 

3 subclones that have acquired additional variants and the CBF gene fusion. From the ZNF213 

clone two diagnosis specific subclones emerge that have acquired distinct FLT3 variants each: 

FLT3 p.D835Y and FLT3 p.D835V. Both clones are not detectable at relapse. For each of the 

6 tumor clones, Figure 34b visualizes the ploidy of chromosomes 4, 8 and 11. The cells of the 

founding ZBTB17 clone did not have copy-number changes, but from the RUNX1-RUNX1T1 

clone onwards I detected an amplification of chromosome 8.  
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Figure 34: Inferred phylogenetic tree of patient 01 with ploidies for each tumor clone. (a) Inferred tree with 
in total 7,895 cells (i.e., 3,330 cells from diagnosis sample and 4,565 cells from relapse), 15 variants and fusion 
gene information of patient 01. In each node the number of cells originating from diagnosis and relapse are 
separated by a slash. At diagnosis two distinct subclones with FLT3 somatic variants at the same residue are 
present. (b) Ploidies for chromosomes 4, 8 and 11 for cells in each tumor clone in comparison to the wild-type cell 
fraction. An amplification of the whole chromosome 8 is detected from the RUNX1-RUNX1T1 clone onwards. 
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5.3.5 Patient 09 
I used 22 of 24 somatic variants and the RUNX1-RUNX1T1 gene fusion as highlighted in 

Figure 35 for reconstructing the tumor phylogeny of patient 09 at diagnosis. I excluded 

TANC2 p.P1886L because the amplicon was not covered and STAB1 p.A939V because there 

were less than 5 mutated cells in the tumor sample. 

 
Figure 35: Single-cell genotyping information patient 09. Bar plots show amount of wild-type (WT), 
heterozygous (HET), homozygous (HOM) and as missing classified cells for each variant in the (a) diagnosis 
(4,772 cells) and (b) remission (2,144 cells) sample. I excluded TANC2 p.P1886L because the amplicon did not 
work and STAB1 p.A939V because there were less than 5 cells mutated in the tumor sample. 

This female patient has a UPD on the p-arm of chromosome 17. This means that one 

allele is lost and the other one has two copies resulting in a ploidy of 2, which is the ploidy of 

a normal region. Therefore, I used the gentotype information of two SNPs in that region for 

measuring the fraction of hetorozygous and homozygous variants. Figure 36a shows the 

inferred phylogenetic tree consisting of 7 tumor clones for patient 09 at diagnosis. From the 18 

cells containing founding clone with variants ARV1 p.L192F and SCN1B p.W183*, 4 subclones 

emerge with additionally acquired variants. The LRP1B p.G2237V clone is ancestral to two 

subclones with distinct variants. The first subclone is the largest (30% of all cells) harboring 

STIM2 p.L607P, IFT46 p.Q345L and KRT26 p.A296S mutations, whereas the other subclone 
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with KRAS p.G13D consists of only 64 cells. Barplots in Figure 36b show percentage of cells 

that are classified as wild-type (WT), heterozygous (HET) or homozygous (HOM) for 

USP22 p.252insGPS located in the region of the UPD on chromosome 17 (see Figure 19). I had 

to infer the UPD solely on this somatic variant, because there were no additional somatic 

variants or SNPs covered with this panel. 

 
Figure 36: Inferred phylogenetic tree from patient 09 at diagnosis. (a) Inferred tumor phylogeny from 4,772 
cells resulting in 7 tumor clones and branching event at the LRP1B p.G2237V clone. (b) Barplots show for each 
clone of the phylogenetic tree the percentage of as wild-type (WT), heterozygous (HET) and homozygous (HOM) 
classified cells for USP22 p.252insGPS in each clone. USP22 p.252insGPS is in the region of the uniparental 
disomy (UPD) on chromosome 17 detected using whole-exome sequencing data. 
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5.3.6 Patient 05 
I selected 25 of 33 somatic variants and the CBFB-MYH11 gene fusion to infer the tumor 

phylogeny for patient 05 at relapse as shown in Figure 37. I did not use the diagnosis sample 

for further analysis, because only 14 cells have been detected by the Tapestri pipeline as listed 

in Table 17. I excluded variants if less than 5 mutated cells have been genotyped or the amplicon 

was not covered. INDELs CRIM1 p.V312_S313insIV (chr2:366917336 G>GCATAGT) and 

CRIM1 p.S313Ifs*66 (chr2: 36691742 T> TCATAGGGATGC) listed in Table 11 have been 

called as CRIM1 p.S313fs (chr2:36691738 A>ATAGTCATAGTATCCCC) in the single-cell 

data. ADGRL4 p.C688F is annotated as ELTD1 p.C688F in this analysis. Instead of 

ASPSCR1 p.V275Pfs*11 as listed in Table 11 the Tapestri pipeline (Mission Bio, v2.0.2) called 

ASPSCR1 p.V352fs and ASPSCR1 p.V352L. 

 
Figure 37: Single-cell genotyping information patient 05. Bar plots show amount of wild-type (WT), 
heterozygous (HET), homozygous (HOM) and missing classified cells for each variant in the (a) remission and (c) 
relapse sample. If reads where found in case of the gene fusion CBFB-MYH11 the cell was classified as 
heterozygous. Variants in bold were further used for downstream analysis. 

Figure 38a shows the inferred tree for patient 05 at diagnosis with 8 tumor clones. Here 

the founding clone harbors the CBFB-MYH11 gene fusion. ASPSCR1 p.V352fs and 

ASPSCR1 p.V352L have been called in the same clone and, therefore, I merged them as 

ASPSCR1 p.V275Pfs*11, as the variant was annotated in the whole exome sequencing data. 

The ploidy of each tumor clone and for chromosomes 7, 11, 13, 14 and 15 is visualized in 

Figure 38b. The deletion on chromosome 7 (q34q36) is already present in the founding clone. 

To identify the UPD on the q-arm of chromosome 19, I used the percentage of wild-type versus 
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mutated cells of two SNPs (i.e., rs4254439 and rs8105710) in the region of interest to estimate 

at which node the UPDs starts. Figure 38c shows that already the founding clone harbors the 

UPD at chr19q. 
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Figure 38: Inferred phylogenetic tree of patient 05 at relapse with ploidies for each tumor clone. (a) Inferred 
tumor phylogeny from 25 somatic variants and the CBFB-MYH11 gene fusion. (b) Ploidies for chromosomes 7, 
11, 13, 14 and 22 for cells in each tumor clone in comparison to the wild-type cell fraction. (c) Bar plots showing 
percentages of wild-type cells and mutated cells, which includes cells classified as heterozygous and homozygous, 
for two single nucleotide polymorphisms (SNPs) (i.e., rs4254439 and rs8105710) in region of uniparental disomy 
on chromosome 19. 
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5.3.7 Patient 03 
I selected only 12 of 75 somatic variants in patient 03 to reconstruct the tumor phylogeny 

as shown in Figure 39. For this patient the gene fusion amplicon had no reads and, therefore, 

no information if the gene fusion is present within a cell could be obtained. The bad quality of 

the samples continues in the single-cell data, because for this patient I had problems with 

obtaining high quality variant calls (see section III6.5.3), I was not able to perform copy-number 

anylsis (see section III6.2) and I had problems with detecting the CBFB-MYH11 gene fusion 

breakpoint (see section III6.4).  

 
Figure 39: Single-cell genotyping information patient 03. Bar plots show amount of wild-type (WT), 
heterozygous (HET), homozygous (HOM) and missing classified cells for each variant in the (a) remission and (c) 
relapse sample. Variants in bold were further used for downstream analysis and variants with only as missing 
classified cells in all samples were removed. 

Figure 40a shows the inferred phylogenetic tree for diagnosis and relapse of patient 03 

with 4 tumor clones. Each tumor clone acquires additional somatic variants, but there is no 

branching event with distinct clones. Due to the fact that only a small fraction of variants were 

used to reconstruct the tumor phylogeny the real phylogenetic tree might differ. I detected as 

shown in Figure 40b, a deletion on chromosome 11 that is present from the founding clone 

onwards. The small amplification of chromosome 8 in the founding clone is not reliable due to 
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the small clone size (n=15). At first I was not able to call the deletion on chromsome 11, because 

as stated in the karyotype for this patient (see Table 4) I used the whole chromosome for ploidy 

calling. Some amplicons had a ploidy <2, but only in a specific region. Then I tried to use the 

Nanopore data from fusion gene detection to narrow down the region of interest. Here, I 

executed the “Human variation workflow” (v1.7.1,https://github.com/epi2me-labs) for copy-

number analysis from EPI2ME (Oxford Nanopore Technologies) on the aligned reads from 

section III6.4 using the humanG1Kv37 reference genome [57], --bam_min_coverage 

3, --bin_size 500 and default paramters. With this I identified a deletion on chromsome 

11 (i.e., chr11:25045000-47305000), but no amplification of chromosome 8.  
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Figure 40: Inferred phylogenetic tree of patient 03 with ploidies for each tumor clone. (a) Inferred tumor 
phylogeny from 12 somatic variants show a linear tree with 4 tumor clones. (b) Ploidies for chromosomes 4, 8 and 
11for cells in each tumor clone in comparison to the wild-type cell fraction. 

5.4 Residual tumor clones in complete remission 

I used the complete remission sample of each patient to detect remaining tumor cells. 

Figure 41 shows for each patient with available cells at complete remission (see Table 4) the 

number of wild-type cells (nWT) and the number of cells that harbor at least one as heterozygous 

or homozygous classified variant (nMUT). Due to the small number of mutated cells at complete 

remission it is not possible to reconstruct a clonal hierarchy. Therefore, I matched each mutated 

cells to a tumor clone in the reconstructed tumor phylogeny as shown in section 5.2 or 5.3 

according to the infinite-sites assumption [50]. This means that mutation in a phylogenetic tree 

can only be gained once and not be lost. Here all missing genotypes were set to wild-type to 
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obtain a very conservative assumption of the remaining tumor clones. Furthermore, this skews 

the analysis towards the founding clone, because there are more possibilities (e.g.., more 

somatic variants in the founding clone) for the assignment than to the late tumor clones defined 

by only one additional acquired somatic variant. This can be seen for patients where the 

founding clone harbors ³2 somatic events (i.e., patients 03, 04, 05 and 06) and with more than 

38% (ranging from 38.7% in patient 04 to 94.1% in patient 05) of all detected mutated cells 

assigned to the founding clone. The phylogenetic tree of patient 05 shows more somatic events 

that are acquired from the wild-type cell fraction to the founding clone than at later stages, 

therefore, most mutated cells were assigned to the founding clone. 

The highest number of remaining cells, I detected in patient 05 with 34 mutated cells and 

the lowest number of remaining cells with only 4 mutated cells in patient 06. The remaining 

tumor clone size ranged from 0.16% in patient 06 to 1.54% in patient 09. Interestingly, patient 

05 and 09 with both >1% of mutated cells in complete remission also tested positive for the 

gene fusion in clinical testing at complete remission as shown in Table 4. For patient 01 (Figure 

41a) I detected 25 mutated cells that I was able to assign to tumor clones present at relapse. 

Here, I did not detect any cells harboring diagnosis specific FLT3 mutations (see Figure 34a). 

Patient 02 has the shortest RFS of this cohort with only 4 months. For this patient I detected 

mutated cells that I was able to assign to diagnosis (1/20 cells) and relapse (2/20 cells) specific 

clone. In case of patient 03, I detected mutated cells that were assigned to all tumor clones (n=4) 

of the combined phylogenetic tree (see Figure 40). At complete remission of patient 06 I 

detected only 4 mutated cells. 

 
Figure 41: Detected tumor clones in complete remission. Bar plots show for each patient the number of mutated 
(nMUT) cells and by color their corresponding clone in the phylogenetic tree. Mutated cells are cells that have at 
least one heterozygous or homozygous somatic variant or the specific gene fusion. The number of wild-type (nWT) 
cells is stated at the top of each plot. Numbers in brackets are the percentage of mutated cells in the sample.  
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V Discussion 
Patients with CBF AML, defined by the presence of a RUNX1-RUNX1T1 or a CBFB-

MYH11 fusion gene, have a high relapse rate of 30-40% within 5 years (RFS <5 years) after 

standard induction therapy, despite being classified as AML with favorable risk [150]. ITH is 

a main causal driver of chemotherapy resistance and, furthermore, it has been shown that small 

subclones already present prior to therapy or acquired during therapy can drive chemotherapy 

resistance [32,33]. For a better understanding of ITH, it is necessary to identify and order 

temporally small- and large-scale somatic alterations, which can help to further improve our 

understanding of tumor development and acquired chemotherapy resistance in leukemia 

patients. 

In this thesis, I performed an integrated analysis of bulk and targeted single-cell DNA 

sequencing data to uncover ITH and tumor development in a cohort of 9 relapsed CBF AML 

(i.e., 7 patients with inv(16) AML and 2 patients with t(8;21) AML) patients. To obtain this, I 

initially used the bulk sequencing data to identify somatic variants (i.e., SNVs and INDELs), 

SCNAs and CBF specific gene fusions of each patient. With this information I used to prepare 

targeted panels for generating the scDNA-Seq dataset. For the integrated analysis, I developed 

a novel method capable of reconstructing the clonal architecture of patients in this cohort using 

combined information on somatic variants and cytogenetic abnormalities (i.e., SCNAs and 

fusion genes). To validate the inferred tumor phylogenies, I used information obtained from 

clinical testing, WES and conventional G-banding. 

1 Aim I: Preparation of a combined bulk and single-cell CBF 
AML dataset 

The first aim of this thesis was to generate a comprehensive bulk and single-cell dataset. 

I used three different bulk-sequencing methods (i.e., whole-exome, targeted DNA and 

Nanopore sequencing) to obtain mutation and copy-number profiles as well as specific 

breakpoints of fusion genes for each patient. I developed a pipeline for variant calling that I 

used for whole-exome and targeted sequencing data. This pipeline was additionally used by me 

for two other projects of our group (Arends et al., 2022 [19] and Arends et al., 2023 [76]) and 

was further developed and used by colleagues (Panagiota et al., [77] and Arends et al., 2024 

[151]). This pipeline is now an established workflow in our group for identifying CHIP 

mutations in error-corrected sequencing data of blood derived samples. 



Discussion  78 

I identified 277 somatic variants in total with ranging from 18 to 75 mutations per patient 

from whole-exome and targeted data combined (listed in section III of this thesis). In general, 

the tumor content of samples at relapse is lower than at diagnosis and, therefore, the VAF of 

detected somatic variants (i.e., the mean VAF at diagnosis is 25.0% and the mean VAF at 

relapse (excluding patient 06) is 13.6%), which might result from the tight check-up schedule 

recommended by the DGHO guidelines [126]. This also limits the detection of somatic variants 

and SCNAs in small subclones, due to the smaller fraction of reads carrying the genetic or 

chromosomal abnormality. Of those 9 patients, 4 have died within 5 years from diagnosis and 

the remaining were alive at last follow up, which is for patients 05, 06 and 08 more than 6 years 

after diagnosis.  

Patients harbor at least two somatic variants in regions of known AML driver genes [96–

98]. In 5 patients (i.e., patients 01, 05, 07, 08 and 09) I identified SCNAs, such as amplification, 

deletions and UPDs. The mutational landscape of those 9 patients with mutations in KIT, WT1 

and FLT3 as common AML driver mutations and the detected secondary chromosomal 

abnormalities (e.g., trisomies of chromosome 8 and 22) are comparable with published data 

[5,14,17,74,96]. Although the patient numbers are too low to constitute a representative cohort 

with 2 t(8;21) and 7 inv(16) AML patients, NRAS mutations are underrepresented in this patient 

collection compared to other inv(16) cohorts [5,152]. In the cohort of Jahn et al., [5] NRAS, 

which is part of the RTK/RAS signaling, is the most frequent mutated gene in CBFB-MYH11 

type CBF AML patients with the highest number of events in codon Q61. Here, only patient 06 

carries a mutation in this region (i.e., NRAS p.Q61H) [5]. Fröhling S. et al., [153] have shown 

that in their AML cohort patients with a mutation in CEBPA have a favorable prognosis, which 

is also true for patient 05 CEBPA p.A16T with an OS of 6.6 years. Patient 08 harbors a trisomy 

of chromosome 22, which is associated with a higher RFS in CBF AML patients. This is not 

the case for this patient with a RFS of 14 months, however this patient has the second longest 

OS in this cohort of 6.7years.  

The resolution for detecting subclonal copy-number alterations (e.g., trisomies of 

chromosomes 13, 14 and 22 in patient 04) in whole-exome sequencing data was not sufficient 

and, therefore, I used additional information from cytogenetics for establishing the targeted 

single-cell sequencing panel. In total three custom panels (see Table 16) for the Tapestri 

platform (MissionBio) consisting of approximately 200 amplicons were designed. This was 

done to keep sequencing costs low, because doubling the amplicon doubles also the amount of 

necessary paired-end reads (e.g., 200 amplicons = 80x106 paired-end reads per sample, 400 

amplicons = 160x106 paired-end reads per sample). 
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2 Aim II: Integrated analysis of bulk and single-cell data  

For the second aim, the integrated analysis of bulk and single-cell sequencing data, I 

developed a method that enables the detection of copy-number alterations within small 

subclones of tumor samples. Here, I used parts of COMPASS [64] and further developed it to 

include gene fusions and to detect SCNAs (i.e., amplifications, deletions and UPDs) within a 

phylogenetic tree. For patients with single-cell data from diagnosis and relapse I inferred the 

tumor phylogeny from cells from both samples combined. Initially, I performed the analysis on 

the individual samples of those patients to be able to check if the combined results, resemble 

the sample specific trees. The developed method improves existing methods and more 

importantly enables the detection of SCNAs that were not detected using existing tools (i.e., 

ConDoR [50] and COMPASS [64]). This I managed by using the fraction of wild-type cells of 

each phylogenetic tree to call ploidies of tumor clones.  

Because the data is very sparse and noisy, I reduced the cells for estimating ploidies of a 

region using the Z-score as a measure to remove noisy amplicons of cells within a clone. 

Sashittal et al., [50] cluster cells based on their copy-number profiles prior to inferring tumor 

phylogeny and Zhang et al. [154] place SNVs on a copy-number tree , which was not possible 

for patients in this cohort due to noise in the single-cell data. This might result from the different 

coverage for each amplicon and, moreover, the variability of these amplicons within the cells 

of a sample, as pointed out by Sollier et al., [64]. The panels used in this thesis are custom 

panels and may not be as thoroughly tested and optimized as off-the shelf panels. Here, primers 

were included that might not work, but the possibility to have an amplicon that covers a region 

of a somatic event is more important than perfect amplicons. It has to be noted that a single-cell 

is not a complete single-cell, but rather a snapshot of parts of a single-cell and when combining 

similar cells the power to retrieve information increases [155]. This can be seen throughout 

ploidies of tumor clones with larger clones having less variance in their estimation (e.g., 

ploidies of CBFB-MYH11 clone versus FLT3 p.A680V clone of patient 08 at diagnosis shown 

in Figure 27).  

Morita et al., [31] classified patients based on a linear and branching tumor evolution, in 

contrast, all patient in this cohort (except for patient 03) show a branching phylogenetic tree. 

This might result from using a targeted panel specifically designed for each patient instead of 

an off-the-shelf panel with a limited number of amplicons overlapping patient specific 

mutations. This allows to infer tumor phylogenies from a larger number of somatic events per 

patient and, therefore, lead to a more complex phylogenetic tree. Patient 07 has the most 
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complex phylogenetic tree in this cohort with several distinct clones harboring variants in genes 

involved in RAS/RTK and also the shortest OS.  

For all patients, except for patient 03, I could identify gene fusions in single-cells and, 

further show that in 7 of 8 patients the RUNX1-RUNX1T1 or CBFB-MYH11 gene fusion is 

already present in the founding clone. Patient 03 did show poor quality throughout each bulk 

sequencing method, but due to limited number of patients I did not exclude this patient from 

single-cell analysis. In CBF AML the gene fusion inhibits affected cells to differentiate and 

secondary variants lead to a proliferative advantage and to an accelerated proliferation of blasts, 

confirming these results [150]. That the founding clone harbors the CBF gene fusion supports 

the effectiveness of clinical testing of minimal residual disease using real-time quantitative PCR 

with a sensitivity of 104-105 [126]. Moreover, it is important to identify additional somatic 

variants of the founding clone, because it had been shown that for AML patients with late 

relapse (>5 years) the founding clone persisted and gave rise to relapse [156]. Patients 01, 02 

and 03 with samples at diagnosis and relapse also support this with the founding clone and a 

large portion of the tree persisting throughout the course of the disease. Schwede et al., [35] 

pointed out that it is necessary to investigate the mutational order of chromosomal abnormalities 

in combination with somatic variants in AML patients. They further explained that if using a 

FLT3 inhibitor as therapy for a patient with a FLT3 mutations and inv(16) it is important to 

know which is the initiating event. Furthermore, they pointed out that also for patients with 

IDH1/2 and FLT3 mutations it is important to know the clonal order, due to using a targeted 

therapy that targets the gene with the earlier mutations, so that no clones remain after treatment. 

This would be the case for patient 01 harboring FLT3 and IDH2 mutations (see Table 7), but 

unfortunately the amplicon for IDH2 p.R18P in scDNA-Seq failed. Here, the comparison of 

VAFs between IDH2 p.R18P and FLT3 p.D835Y with 9.4% and 3.7%, respectively, suggests 

the IDH2 variant was acquired earlier or in distinct clones. Due to the limitation of identifying 

ITH from low level VAF mutations in bulk sequencing data, it is not possible to decide for one 

possibility [45]. The advantage of scDNA-Seq can be shown in patient 07, where I detected a 

CHIP clone independently of the AML clone persisting throughout therapy detected at 

diagnosis and relapse. Hirsch et al., [28] also found that in several patients of their cohort 

repeated chemotherapy had no impact on CHIP clones. In line with this finding is the relative 

increase of the CHIP clone in the relapse sample of patient 07 (see Figure 31), which must be 

considered with caution due to the limited number of cells sequenced at relapse. 

The tumor phylogenies of patient 04 and 08 with inv(16) AML show relapse specific WT1 

mutations, which might disrupt the immunogenic potential of WT1 and drive immune escape 
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after allogenic stem cell transplantation [157]. That WT1 mutations are acquired during the 

disease has also been shown in other sequencing studies [158,159]. In patients with multiple 

mutations in genes involved in RAS/RTK they are located in distinct clones, which has been 

shown previously in bulk data [14,17] and was recently confirmed in single-cell data [35]. Here, 

patient 01 harbors two FLT3 variants (i.e., FLT3 p.D835V and FLT3 p.D835Y) and patient 02 

harbors one FLT3-ITD and one KIT p.D816V mutation in two distinct clones. Patient 07 

harbors 5 mutations in genes involved in RAS/RTK signaling genes that are in 4 distinct clones 

(i.e., FLT3 p.D835Y, KIT p.D419del, NRAS p.G12A and KIT p.D816Y with 

NF1 p.P2289Sfs*17 in the same clone). Itzykson et al., [160] have shown that CBF AML 

patients with clonal interference (clonal heterogeneity) of signaling genes (i.e., KIT, NRAS, 

KRAS, FLT3, JAK2 and CBL), which is the case in patients 01, 02 and 07, have a significant 

lower EFS than only a single clone. Here, patients 02 and 07 with a RFS of 4 and 9 months, 

respectively, support this finding. In contrast, patient 01 has with a RFS of 24 months the second 

longest RFS of this cohort.  

For the investigation of remaining tumor cells at complete remission I used the inferred 

tumor phylogeny of each patient (inferred tree from diagnosis, relapse or combined) to assign 

each cell to a tumor clone using the infinite-sites assumption. Due to the small number of 

mutated cells (4-34 cells) and sparse information of single-cell data it was not possible to infer 

a phylogenetic tree at complete remission. Here, I can show that using somatic events additional 

to gene fusion elevates the number of detected mutated cells at complete remission. Patient 05 

and 09 with the highest percentage of mutated cells at complete remission (i.e., 1.45% and 

1.54%) also tested positive in clinical testing for the gene fusion at complete remission as shown 

in Table 4. 

3 Aim III: Validation 

I validated the inferred phylogenetic trees including copy-number alterations using 

existing bulk and clinical information of each patient. Initially, I compared the number of 

mutated cells in the single-cell data and the estimated clone sizes of the inferred phylogenetic 

trees with VAFs from WES. This step was a reason for using COMPASS [64] instead of 

ConDoR [50], because the estimated wild-type cell fraction from ConDoR did not match bulk 

and clinical data. In detail, the estimated fraction of wild-type cells was smaller than what would 

be assumed from WES, which is negatively affecting the estimation of ploidies, because the 

wild-type fraction is used as a reference. Here, I used the somatic variant with the highest VAF 

of a sample or the percentage of blasts for each sample (see Table 4) to estimate the percentage 
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of the wild-type fraction. My developed method is not relying on COMPASS for inferring copy-

number alterations in subclones of a phylogenetic, it is only necessary to have cell barcodes for 

all tumor clones and the wild-type fraction of a phylogenetic tree. 

The FLT3-ITD at diagnosis of patient 02 was estimated by clinical testing with an AR of 

13% (see Table 3), in WES data I identified it with a VAF of 12.7% (see Table 8) and the 

fraction of mutated cells versus total cells of single-cell genotyping is approximately 29.7% 

(see Figure 24). The single-cell estimation is higher than just doubling the VAF from bulk 

because cells are counted as heterozygous if the VAF within a cell is >20%. This shows that 

the single-cell data is comparable with bulk and clinical data. In case, of patient 04 I identified 

a tumor clone harboring a trisomy of chromosomes 13, 14 and 22 with a clone size of 24% 

matching the metaphases with this abnormality by karyotype (13/49 ~27%). This highlights the 

capability of my developed method to return reliable results and, as represented by these 

SCNAs in patient 04, the possibility to detect SCNAs that were not detected by existing 

methods [64].  

4 Conclusion 

To conclude, I developed a method that improves our understanding of ITH in AML 

patients by uncovering copy-number alterations in small subclones that current methods were 

not able to detect. Moreover, establishing and analyzing patients with targeted panels that cover 

the mutation and copy-number landscape including the possibility to track CBF gene fusions in 

single-cell for each patient in this cohort has never been done before. For patients with cells at 

diagnosis and relapse (i.e., 01, 02 and 03) I performed a combined analysis showing the change 

in clonal composition under the pressure of intensive chemotherapy.  

The developed method in this thesis uncovers tumor development and improves available 

methods in a reproducible manner. Additionally, it can be easily applied with any tool that 

infers tumor phylogeny by only using R and Python. Furthermore, this method can be applied 

on available datasets with a priori information on copy-numbers.  

Additionally, a larger patient cohort would help to better understand inter-tumor 

heterogeneity of CBF AML and, further, help to understand acquired chemotherapy resistance. 

When using T-cells as a germline reference, as I did for patient 07 and 08, information could 

be drawn already from the diagnosis sample. Copy-number and fusion gene breakpoints could 

be retrieved also from Nanopore sequencing with higher depth. Here, maybe targeted panels 

from patient specific driver, leukemia related mutations and, if diagnosis and relapse samples 

are available, from somatic variants present at two timepoints can be used to establish a targeted 
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panel. This might limit the number of mutations per patient and make this a more labor- and 

cost-effective approach for future studies with larger patient cohorts. A limitation of this study 

is the missing information on cell types within a sample. Here, studies using surface protein 

markers or gene expression as an additional data layer would be helpful to gain further insights 

on tumor development. Especially, when investigating preleukemic mutations and therapy 

resistance the cell type information would be of high interest. 
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Zusammenfassung 
Intratumorale Heterogenität beschreibt die Koexistenz mehrerer genetisch 

unterschiedlicher Subklone innerhalb des Tumors eines Patienten, die durch somatische 

Evolution, klonale Diversifizierung und Selektion entstehen. Intratumorale Heterogenität ist 

eine der Hauptursachen für Therapieversagen und Therapieresistenz in der Behandlung. Das 

Verstehen der intratumoralen Heterogenität und der Tumorevolution kann zu neuen 

Therapieansätzen führen. In dieser Arbeit habe ich eine Methode zur integrierten Analyse von 

Bulk- und Einzelzell-DNA-Sequenzierungsdaten von Patienten mit Core-Binding-Factor 

akuter myeloischer Leukämie entwickelt. Diese definiert sich durch das Vorhandensein eines 

RUNX1-RUNX1T1 oder CBFB-MYH11-Fusionsgens. Ich habe einen Datensatz aus Bulk- und 

Einzelzell-DNA-Sequenzierungsdaten mit Proben zum Zeitpunkt der Diagnose, der Remission 

und des Rezidivs von insgesamt 9 Patienten mit Core-Binding-Factor akuter myeloischer 

Leukämie generiert. Mit der von mir entwickelten Methode konnte ich die Tumorevolution 

einzelner Tumorproben oder, wenn vorhanden, von Proben der Diagnose und des Rezidivs 

unter dem Einfluss der Chemotherapie anhand somatischer Varianten, somatischer 

Kopienzahlveränderungen und von Fusionsgenen rekonstruieren. Mit dieser Methode konnte 

ich bei Leukämiepatienten die klonale Komposition analysieren und darüber hinaus habe ich 

gezeigt, dass die von mir entwickelte Methode subklonale Kopienzahlveränderungen mit einer 

größeren Genauigkeit als derzeitige Methoden erkennen kann. 
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