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Matthias Ballauff

Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a,
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Abstract: A thermodynamic analysis of the binary complex formation of the highly positively
charged linker histone H1 and the highly negatively charged chaperone prothymosin α (ProTα)
is detailed. ProTα and H1 have large opposite net charges (−44 and +53, respectively) and form
complexes at physiological salt concentrations with high affinities. The data obtained for the binary
complex formation are analyzed by a thermodynamic model that is based on counterion condensation
modulated by hydration effects. The analysis demonstrates that the release of the counterions mainly
bound to ProTα is the main driving force, and effects related to water release play no role within
the limits of error. A strongly negative ∆cp (=−0.87 kJ/(K mol)) is found, which is due to the loss of
conformational degrees of freedom.
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1. Introduction

When positively charged polyelectrolytes interact with negatively charged polyelec-
trolytes in aqueous solution, this will result in a complex formation [1,2]. These “complex
coacervates” have been the subject of intensive research, and surveys of the older literature
may be found in various reviews [3,4]. Recently, this problem has found renewed interest
because of the formation of biocondensates in living cells [5–9]. Here, coacervates are
formed within cells through the interaction of anionic with cationic proteins [10,11]. The
new interest in coacervates has led to a multitude of studies; details may be found in recent
reviews [7,8,12]. Up to now, it was seemingly understood that charge–charge interaction
may played a major role in the formation of biocondensates [7,13–16]. Simulations have
led to a better understanding of the driving forces for biocondensate formation in charged
systems [17–19]. Here, the question arises whether complex formation is driven by en-
thalpic or by entropic factors. Thus, the release of counterions [20,21] balancing the charge
of macroions is expected to contribute to the gain of free energy during complex formation.
In an important paper, Ou and Muthukumar [17] performed a comprehensive study of
polyelectrolyte complexation by Langevin dynamics and found a significant enthalpic con-
tribution at low to medium charge density. The entropic part of the free energy of binding
only prevails at a sufficiently high charge density of the polyelectrolytes, as expressed
through the linear charge density (Γ in ref. [17]). This finding has recently been criticized
by Chen and Wang [22], who showed that a strong entropic contribution follows from the
temperature dependence of the dielectric constant of water. They state that this electrostatic
entropy, which is due to the reorganization of water dipoles, is the main driving force
for complex formation, rather than the entropic contribution due to counterion release.
Counterion release, on the other hand, has been identified as the main driving force for a
number of systems for quite some time [20,21,23–31]. Moreover, the release of counterions
has been observed directly by NMR techniques [32–34]. The work of Wang and cowork-
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ers [22], on the other hand, has underscored the importance of temperature as one of the
decisive variables.

It is important to note that accurate data on the complex formation of flexible poly-
electrolytes of opposite charge had already been obtained by Mascotti and Lohman many
years ago [25–28]. In that work, the interaction of single-stranded RNA with oligolysines
was analyzed by applying fluorescence techniques. The binding constant Kb was measured
at different concentrations of added salt cs at different temperatures. Thus, a full thermo-
dynamic analysis could be carried out, leading to the result that the release of condensed
counterions during complex formation is the main driving force for binding. A quantitative
analysis of the data in terms of the counterion release model [20,35] was presented as
follows: counterions are condensed to the highly charged polyelectrolyte and the fraction of
counterions, thus bound to the macroion, and could be quantitatively modeled in terms of
Manning’s theory [36]. Central to this approach is the definition of the charge parameter ξ:

ξ =
λB
b

(1)

where b denotes the distance between the charge along the chain of the polyelectrolyte
whereas λB is the Bjerrum length (λB = e2/4πε0εkT; e: elementary charge, ε0: permittivity
of vacuum, ε: dielectric constant, k: Boltzmann constant, T: temperature). If ξ > 1, a
fraction 1 − 1/ξ of counterions is condensed onto the polyelectrolyte chain. A part of
these condensed counterions is released when the polyelectrolyte forms a complex with
an oppositely charged protein. The gain of entropy provides a strong driving force for
binding and the model predicts that log Kb should scale with log cs. These predictions of
theory were met with gratifying agreement when compared to the experimental data of
various single-stranded RNAs with oligolysines varying in length [25–28]. Small deviations
could be traced back and described quantitatively by effects due to hydration [25–28].
Hence, these thorough investigations strongly suggested that counterion release is the main
driving force for the first step in biocondensate formation, namely the binary interaction of
a cationic with an anionic polyelectrolyte. This finding is in full agreement with a more
recent study by Priftis et al. using isothermal titration calorimetry [13].

The counterion release model can also explain the formation of complexes of long
linear or branched polyelectrolytes with proteins [21]. Hence, natural polyelectrolytes, e.g.,
DNA or Heparin, can interact with patches of positive charge on the surface of the protein,
which leads to a formation of a binary complex. Again, the log Kb is found to scale linearly
with log cs for many systems, as predicted by the counterion release model [21,29,37–40].
It should be noted that these considerations are directly supported by simulations on
model systems [41,42] and by simulations using coarse-grained proteins interacting with
polyelectrolytes [43]. Hydration effects that lead to slightly nonlinear plots of log Kb vs.
log cs can be incorporated using the fact that the complex formation is usually carried out
at low concentrations of polyelectrolyte and protein [20,27]. Thus, the activity of water
is bound to the activity of the salt ions by the Gibbs–Duhem relation [44]. Changes in
hydration lead to a contribution that scales linearly with salt concentration and can be
modeled [45] in terms of a parameter, ∆w [46–49]. A closed expression could be given,
which comprises both the effect of counterion release as well as of hydration [50]. The
model is based on the solute-partitioning model of Record and coworkers [51,52] which
provides a quantitative treatment of Hofmeister effects. An application of this model [50] to
the interaction of Heparin with lysozyme was recently presented and demonstrated that a
comprehensive thermodynamic analysis of complex formation in solution can distinguish
between the effects of counterion release and hydration [40].

An important experimental contribution to the analysis of biocondensates has been
made by the Schuler group, who demonstrated that fluorescence techniques can be used
for the study of complex formation down to the lowest concentrations [11,53,54]. Thus,
Chowdhury et al. presented a comprehensive study of the formation of biocondensates
using the IDPs prothymosinα (ProTα), carrying 44 negative charges, and linker histone H1,
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with 53 cationic charges [54]. The formation of complexes could be studied at the level of
single molecules, which leads to the unambiguous determination of the binding constant
of binary and ternary complexes. In this way, the binding constant of the binary complex
formation can be obtained without the interference of a concomitant phase separation,
which would set in when working at higher concentrations [13].

Here, the data of Chowdhury et al. [54] for the first step in biocondensate formation,
namely the formation of a binary complex, will be evaluated. Binary complex formation
is characterized by dissociation constants in the nanomolar region and thus provides a
strong driving force for biocondensate formation. The present analysis will be carried out
in terms of a purely thermodynamic model developed recently for the analysis of complex
formation between proteins and polyelectrolytes [50]. Only the following two assumptions
are necessary for this model: the effect of counterion release scales with the log of the
salt concentration, whereas hydration effects scale linearly with salt concentration. The
latter dependence is well established [20] and successfully used to analyze Hofmeister
effects on proteins in solution [51]. It is important to note that the counterion release
model employed here is based on experimental studies on the interaction of highly charged
polyelectrolytes with their counter- and co-ions [55–59]. Hence, the decomposition of the
thermodynamic data employed here is based on a firm experimental basis. The present
analysis is therefore capable of identifying the main driving forces for the interaction of
highly charged IDPs in solution and the parameters derived here provide a firm basis for a
more detailed statistical–mechanical model.

2. Thermodynamic Analysis

All studies carried out so far on complexation rely on the mass action law, and the
strength of binding can be expressed in terms of a measured binding constant Kb, which is
related to the free energy of binding ∆Gb(T,cs) by

∆Gb(T, cs) = −RTlnKb (2)

where the measured binding constant Kb is defined through

Kb =
[PEP]

[PEa][PEc]
(3)

where [PEP], [PEa], and [PEc] denote the concentrations of the complex, the anionic, and
the cationic polyelectrolyte, respectively. Following the procedure devised by Record
et al. [20,35], the derivative of Kb follows as [50]

dlnKb
dln a±

= ∆nci −
pm

55.6
∆w +

dln γPEP
γPEaγPEc

dlna±
(4)

Here, a± is the mean activity of the salt ions and p = 2 for a monovalent salt with
molality m. The first term on the right-hand side is the net number of anions and cations
which either released or taken up during complexation. The second term is due to the
Gibbs–Duhem relation and the hydration parameter ∆w measures the impact of the water
molecules released or taken up when the complex is formed. The third term contains the
activity coefficients of the complex and of both reaction partners. For the linear polyelec-
trolytes under consideration here, this term takes care of the Debye–Hückel contribution
of the free counterions. Since this term is being considered properly (see the discussion
of Equation (5) below), the activity a± can be replaced by the salt concentration cs in the
system with full generality. Hence, all subsequent evaluations can be carried out using the
concentrations of the components.
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Evidently, ∆nci constitutes the leading term in Equation (4), since the hydration term
will only give an appreciable contribution if the molality m of the added salt is high. As a
central step of the counterion release model, ∆nci can now be written as [20,35]

∆nci
∼= Z

(
1 − 1

2ξ

)
(5)

Here, Z denotes the number of charges involved in the binding of the complex. The
expression in the bracket stems from part 1 − 1/ξ of the condensed counterions, plus term
(2ξ)−1, which is due to the Debye–Hückel contribution of the ions (see Equation (4)) [20,35].
For sufficiently high charged polyelectrolytes, ∆nci ~ Z. Then ∆nci becomes a stochiometric
coefficient and the release of the counterions can be described by a simple mass action law:

Kth =
[PEP] [M+]∆nci

[PEa][PEc]
= Kb[M+]∆nci ∼=

[PEP] [M+]Z

[PEa][PEc]
(3a)

where Kth is the thermodynamic binding constant and [M+] denotes the activity of the
counterions [20]. Since the concentration of the polyelectrolyte is very small, [M+] can
be equated to the salt concentration cs in the system. The insertion of Equation (3a) into
Equation (2) then leads to the logarithmic dependence of ∆Gb(T,cs) on cs. This argument
shows that the counterion release model can be traced back in good approximation to the
mass action law when the charge density ξ is high enough.

Equation (5) thus connects the Manning theory, and with this, general knowledge on
the colligative properties of polyelectrolytes, to the problem of complex formation under
consideration here. Hence, the general validity of Equation (5) can be discussed on the
basis of the earlier experimental results on polyelectrolytes in solution as follows:

(i) For small concentrations of the polyelectrolyte, the charge parameter ξ does not
depend on the concentration of added salt cs. This is a basic assumption of the
Manning theory and is well supported by experimental evidence already discussed by
Manning [37]. The osmotic pressure measured in a system of a polyelectrolytes and
added salt is given in very good approximation by the osmotic contributions of the
free counterions of the polyelectrolyte and the salt ions [36] (additivity rule; see also
the discussion by Alexandrowicz [55] and by Blaul et al. [58]). It is thus evident that
the condensed counterions behave much in the way of a chemical bound species that
does not contribute to the osmotic pressure in the system. The released counterions,
on the other hand, do contribute to the osmotic pressure, and the mass action law
applies for them (cf. Equation (3a)). Thus, the logarithmic dependence of the free
energy of binding on salt concentration derives directly from this fact, we only need
to take into account the effect of counterion condensation. As a consequence, ∆nci
does not depend on salt concentration and Equation (4) can be integrated.

(ii) The charge parameter is ξ~(εT)−1 due to the definition of the Bjerrum length (see
Equation (1)). Therefore, the decrease of the dielectric constant ε with temperature
is mostly compensated, and the change in ξ in the usual range of experimental
temperatures (5–50 ◦C) is very small. Thus, in excellent approximation, ∆nci does
not depend on temperature either. This agrees very well with a great number of
experimental observations on, e.g., the interaction of DNA with various proteins [37]
or on the interaction of highly charged systems with proteins in general [21,43,50].
Thus, a given system can be characterized by a single value of ∆nci independent of
temperature. By virtue of argument (i), ∆nci is independent of salt concentration as
well, and presents therefore the central parameter of this analysis.

Given these facts, it is evident that Equation (4) can be integrated and rendered in
presence of monovalent salt ions [20,27,50].

∆Gb(T, cs) = RT ∆ncilncs − RT 0.036∆wcs + ∆Gres (6)
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The quantity ∆Gres describes the remaining part of ∆Gb(T, cs) at a suitably chosen
reference state [50]. Going along these lines, a closed expression that combines both the
effects of counterion release and hydration can be developed [50]. Central to its derivation
is the fact that ∆nci does not depend on temperature.

∆Gb(T, cs) = RT∆ncilncs + ∆H0 − T∆S0 +
(
∆cp,0 + cs

d∆cp

dcs

)[
T − T0 − Tln

(
T
T0

)]
(7)

The change in the specific heat ∆cp is another central parameter (cf. the discussion of
the specific heat in ref. [60]) in this analysis and comprises the following two terms: First,
the intrinsic ∆cp,0, which takes into account the changes in ∆cp due to the gain or loss of
degrees of freedom during binding. Second, a term due to hydration that scales with salt
concentration cs. Previous work devoted to complex formation of rodlike polyelectrolytes
and rigid proteins showed that ∆cp,0 is negligible in these systems [50]. Here, we deal with
highly flexible and disordered protein and ∆cp,0 is expected to be of appreciable magnitude
(cf. also the discussion in ref. [61]).

A new characteristic temperature T0 has been introduced here, which describes the
dependence of hydration on temperature through [50,61]

∆w =

d∆cp
dcs

0.036R

(
ln

T
T0

+
T0

T
− 1

)
(8)

For a positive coefficient d∆cp
dcs

the effect of hydration increases the magnitude of ∆Gb
for temperatures above and below T0. The parameters ∆H0 and ∆S0 denote the enthalpic
and entropic contributions to the free binding at contact [50,62]. The residual free energy
∆Gres follows as [50,62]

∆Gres = ∆H0 − T0∆S0 (9)

It is interesting to note that Equation (7) resembles the well-known generalized van’t
Hoff expression [63]

∆Gb(T) = ∆Hb,re f − T∆Sb,re f + ∆cp

[(
T − Tre f

)
− Tln

( T
Tre f

)]
(10)

which can be re-written by use of Ts as the reference temperature at which ∆Sb = 0 [50,64]

∆Gb(T) = ∆Hb(Ts) + ∆cp

[
(T − Ts)− Tln

( T
Ts

)]
(11)

where ∆Hb(Ts) denotes the enthalpy of binding at Tref = Ts [64]. The characteristic temper-
ature T0 defined through Equation (7) equals Ts if the term due to counterion release is
vanishing. In this way, T0 becomes a parameter that measures the influence of hydration
on complex formation.

The foregoing considerations suggest to analyze the experimental data in the following
two steps: First, the dependence of ∆Gb on cs can be determined by Equation (6) neglecting
the parameter ∆w. In this way, a good estimate of the parameters ∆nci and ∆Gres can
be obtained. Subsequently, the dependence of ∆Gb on T can be analyzed in terms of
Equation (11) to obtain an estimate of ∆cp. Both steps proceed in a fully model-free
fashion. In a second step, Equation (7) can be used to analyze ∆Gb(T, cs) for all data at
once [40,50,64]. In this way, the thermodynamic information embodied in the present set of
data can be assessed in a secure fashion.

3. Results and Discussion

The investigations of Chowdhury et al. [54] lead to the binding constants of the binary
complex formation between the anionic IDP ProTα and the cationic IDP H1. Figure 1
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displays the respective sequences of amino acids of both IDPs. In the case of ProTα, a
highly inhomogeneous distribution is seen, that is, there is a long sequence consisting only
of glutamic acid and aspartic acid, only interrupted by one or at most two uncharged amino
acids. If we approximate the mean length of an amino acid by 0.35 nm, such an interruption
of a charge sequence is smaller than the Debye length, which for high salt concentrations is
still of the order of 0.8 nm and concomitantly larger for a smaller ionic strength. Hence,
both sequences indicated in Figure 1a) can be treated as a single highly charged line that
can be characterized by a local charge parameter ξ = 1.54. (cf. Equation (1)). For these
sequences, the percentage of condensed counterions can be estimated to be 70% according
to Equation (5). Thus, ∆nci (Equation (5)) is expected to be ca. 19, i.e., 19 counterions are
condensed and do not contribute to the osmotic pressure in the system. For the smaller
sequence, ξ = 1.78, which is followed by ∆nci~5. Thus, the arguments expounded in the
section Thermodynamic Analysis can be fully applied here.
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Figure 1. (a) The sequence of amino acids for the unlabeled anionic IDP ProTα, and (b) the sequence
of amino acids of the unlabeled cationic IDP H1. Negatively charged amino acids are labeled in red,
whereas positively charged amino acids are labeled blue. Highly charged sequences in ProTα (a) are
characterized by the charge parameter ξ (cf. Equation (1)). The arrows indicate the continuation of
the peptide chains.

The increase in the strength of charge–charge interaction with increasing “blockiness”
is well-borne out from recent simulations [7,30,65]. It should be noted, however, that
the polyelectrolyte must exceed a certain length so that counterion condensation can
take place. These effects related to the termini of the polyelectrolyte chains have been
considered in detail by Manning [66] and seem to describe the experimental data obtained
for short polyelectrolytes very well [67]. Thus, the effective length of a polyelectrolyte in
which counterion condensation may take place follows by subtracting the Debye length
of each end. Hence, ∆nci (Equation (5)) is expected to be slightly smaller than the above
estimate of 19. It should be kept in mind, however, that ∆nci contains not only the release
counterions of the anionic polyelectrolyte but also a number of the counterions of the
cationic polyelectrolyte (see below).

It is interesting to compare this sequence of charged amino acids to the one found
for the cationic IDP H1 (see Figure 1b). Here, it is obvious that there is no long virtually



Biomolecules 2024, 14, 1421 7 of 13

uninterrupted series of cationic amino acids; the charges are far more evenly distributed
than is found for ProTα (Figure 1a). Typically, doublets or at most triplets of lysine are
separated by one or two uncharged and hydrophobic amino acids. Such a sequence has
been found earlier in proteins that interact strongly with Heparin (Cardin–Weintraub
sequences [68,69]; cf. also ref. [70]). Thus, these sequences can interact closely with
highly charged anionic polyelectrolytes. However, the correlation of the counterions to the
macroion will be smaller for H1 than in case of ProTα. This can be estimated from the fact
that the charge parameter ξ (cf. Equation (1)), as calculated for the entire chain, is only 0.58.

Evidently, the interaction of ProTα with H1 can be compared to the well-studied case
of globular proteins binding to highly charged polyelectrolytes [71]. A highly charged
negative polyelectrolyte such as, e.g., DNA or Heparin, with a large number of condensed
counterions, interacts with small cationic patches localized on the surface of a protein
(“Heparin binding site”; cf. ef. [70]). The number of positive charges of H1, however, is very
high, and the question of why H1 exhibits no toxic interaction with cell organelles arises [72].
It has been known for a long time that the charge density of a cationic polyelectrolyte
largely determines its toxicity [73]. This feature has been corroborated by more recent
investigations and surveys of the problem [72,74]. One may speculate that the smaller
correlation of the counterions may mitigate the intrinsic toxicity of H1 by preventing its
unspecific interaction with cell membranes.

In the following, the binding constants obtained by Chowdhury et al. [54] for the
binary complexes ProTα/H1 will analyzed in terms of Equations (6) and (10), as described
above. Figure 2 displays the free energies of binary complex formation of ProTα/H1 as
the function of salt concentration for three temperatures. The lines in this semilogarithmic
diagram run parallel to each other. Similar findings have been made for many other
systems [21,43,50], which directly demonstrate that ∆nci does not depend on temperature.
From the data measured at 295K, this parameter follows as ∆nci = 18.2.
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Figure 2. Semilogarithmic plot of the free energies of binary complex formation at a temperature
of 285 K (black diamonds), 295 K (blue circles) and for 321 K (red quadrangles). Data taken from
Figure 4a of Chowdhury et al. [54]. The solid lines show the fits according to Equation (7).

To the author’s best knowledge, this is the highest value ever measured for this
parameter. It points to a very strong effect of counterion release, which is ultimately
responsible for the huge binding constants measured at the lowest salt concentration for
this system. Indeed, free energies of binding with a magnitude larger than 60 kJ/mol are
enormous, given the fact that a complex formation of polyelectrolytes with proteins is
usually characterized by values between 30 and 40 kJ/mol [21,71].

The results shown in Figure 2B of ref. [54] show two additional points of interest, as
follows: 1. Experiments using different monovalent ions demonstrate the independence of
the counterion release effect on the type of ions used in the experiments. This observation
points to the fact that, here, we deal with purely electrostatic interactions that do not involve
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any specific interaction of the macroion with the monovalent counterions [50]. This finding
points to the absence of hydration effects, and the analysis of the dependence of the free
energy of binding on temperature will fully corroborate this result (see the discussion of
Figure 3 below). 2. Figure 2B of ref. [54] displays data relating to divalent ions. In principle,
such data should allow us to differentiate between the release of cations and anions: If
only monovalent cations condensed to ProTα would be released, then the replacement of
Na+-ions by Mg2+-ions would lead to a slope in plot of ln KD vs. ln a± in Figure 2B, which
is half of the slope found for monovalent salt ions [20]. The slope seen in Figure 2B of
ref. [54], both for experiments with Mg2+-ions as well as in presence of SO4

2− ions, suggests
that approximately 13 ions are released. This finding could be explained by assuming that
an equal number of positive and negative ions are released, which means that the number
of released counterions will be reduced for salts like MgCl2 or K2SO4 by a factor of 0.75, as
already noted by Chowdhury et al. [54]. The experimental accuracy of the data referring
to divalent ions is smaller than the data referring to monovalent ions, however, and the
comparison of theory and experiment is only semi-quantitative for this point. Experiments
using mixtures of Mg2− and Na+-ions would be very helpful in elucidating this point [75].
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The dependence of the free energy of binary complex formation of ProTα/H1 tem-
perature is shown in Figure 3. First, it is important to note that the curvature of these
plots directly point to a negative specific heat of binding ∆cp. A quantitative analysis of
this point by Equation (11) shows that ∆cp~−0.8 kJ/(K mol) for salt concentrations of 0.25
and 0.275 M, whereas a value of −2 kJ/(K mol) follows for 0.208 M. The problems of this
analysis are obvious, however: the application of Equation (10) ultimately amounts to a
numerical differentiation of ∆Gb, and small experimental errors will lead to huge errors in
∆cp. Nevertheless, this analysis clearly reveals that ∆cp is negative.

In the second step, an in-depth analysis of the data displayed in Figures 2 and 3 can
now be carried out with the aid of Equation (7). Here, the entire set of data is analyzed
at once using the MathLab routine cftool; that is, all 31 data points ∆Gb(T,cs) at fitted
by a single set of parameters [40,50,64]. At first, the hydration parameter d∆cp/dcs is
neglected and the data are fitted for a chosen value of the characteristic temperature T0.
For T0 = 290 K, we obtain the following set of parameters: ∆nci = 17.5; ∆H0 = 48.1 kJ/mol;
∆S0 = 0.107 kJ/(K mol), and ∆cp,0 = −0.87. The solid lines in Figures 2 and 3 display
the fit of all data by this set of parameters. The data set would be fully compatible
with d∆cp/dcs ∼= 1 kJ/(K mol M), which points to ∆w~+100, that is, to a release of water
molecules at room temperature. However, the fit neglecting of this parameter, shown by
the solid lines in Figures 2 and 3, is fully sufficient. This is in full agreement with the fact
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that no ion-specific effects are seen (see above), which would point to Hofmeister effects
due to hydration.

The fit of four parameters in total may appear questionable. However, ∆nci is more or
less identical with the value obtained directly from the plot in Figure 2, and ∆cp,0 agrees
with the value estimated from the above analysis by Equation (10). So, we are left with
the two remaining parameters ∆H0 and ∆S0 that lead to ∆Gres = 16.8 kJ/mol according
to Equation (9). The linear extrapolation of the plot shown in Figure 2 to cs = 1 M leads
to ∆Gres = 18.5 kJ/mol, which is nearby. This extrapolation works under the assumption
that ∆w = 0, which seems to be fully supported by the above finding that d∆cp/dcs can be
neglected in good approximation.

The strong positive enthalpy ∆H0 = 48 kJ/mol compares favorably to the values of
37–58 kJ/mol measured directly by calorimetry [54]. In general, the interpretation of the
measured enthalpies, however, should proceed with caution, as already remarked by Ou
and Muthukumar [17]. The enthalpy measured in an ITC experiment may contain many
contributions that are difficult to calculate and which may cancel out each other. In par-
ticular, it should be noted that the enthalpy ∆HITC measured directly by ITC must not be
confounded with the enthalpy of complex formation ∆HB. It is well-known that ∆HITC may
contain additional contributions from linked equilibria as in, e.g., protonation during com-
plex formation. Thus, Baker and Murphy analyzed the binding enthalpies for biomolecular
complex formation by comparison with the enthalpies of buffer ionization [76,77]. They
could demonstrate that the linked equilibrium of buffer ionization can furnish a marked
contribution to the observed enthalpy. Extrapolated to zero heat of buffer ionization, the
measured binding enthalpies may even change their sign. The same observation was made
Hileman et al. [78], or by La et al. more recently in a series of carefully conducted ITC
experiments [79]. In principle, ∆HB can be derived from the measured ∆HITC by extrapola-
tion to a vanishing heat of buffer ionization. It also can be obtained through analysis of
the experimental data with the aid of Equation (7), giving ∆H0 as the enthalpy at T = T0,
or by Equation (11), which yields ∆Hb(Ts). Since the evaluation via Equation (7) used the
entire set of data, the resulting ∆H0 is certainly the more accurate result. The resulting
∆H0 = 48 kJ/mol, hence, can be taken as a reliable result, which indicates that complex for-
mation is accompanied by a strongly positive enthalpic contribution partially balanced by
a marked positive entropic term T0∆S0 = 31 kJ/mol. A similar observation has been made
by Priftis et al. in their studies of complex coacervation of synthetic polyelectrolytes [13].
A possible explanation of these findings may be sought in the disturbance of the water
structure by the released counterions which have formerly condensed onto the negative
polyelectrolyte. A cleavage of hydrogen bonds will hence lead to a loss of enthalpy together
with a concomitant raise of entropy because of the induced disorder. In general, a strongly
positive enthalpic contribution ∆H0 together with a markedly positive entropy ∆S0 points
to a disordering of water molecules upon formation of the complex. A similar situation has
been discussed by Netz and coworkers when considering the hydration repulsion between
biomembranes [80,81]. Here, too, it was found that at close distances a strong enthalpic
repulsion occurs, which is not compensated by a concomitant entropic term. In addition
to this, water polarization effects may enhance these effects [80,81]. The strong positive
enthalpy may have its origin in terms related to the change in the structure of the water
phase during complex formation.

Summarizing the above analysis, it is evident that the counterion release term with
∆nci = 17.5 is dominating ∆Gb. Thus, for the physiological salt concentration of 0.15 M,
the first term on the right-hand side of Equation (7) amounts to −80 kJ/mol at 290 K,
which demonstrates that counterion release is by far the strongest driving force for binary
complex formation. At this point, it is interesting to discuss the entropic contributions in
Equation (7) again and explicitly calculate the contribution to entropy from the dependence
of the dielectric constant ε on temperature [22]. If the part of ∆Gb due to the release of
counterions is defined by

∆Gb,CR(T, cs) = RT ∆ncilncs (12)
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The respective entropy deriving from this part is (cf. Equation (5))

−∆Sb,CR =
(∂∆Gb,CR

∂T

)
= Rln cs

(
∆nci +

T
2ξ

dln λB
dlnT

)
(13)

In order to calculate the dependence of Bjerrum length λB on temperature, we use the
expression furnished for ε(T) by Malmberg and Maryott [82]. From these data, dlnλB/dlnT
follows as 0.3 for a temperature of 300 K. With a charge parameter ξ = 1.5 of ProTα, the
correction to ∆Sb,CR given by the second term in the bracket is 0.1, which is much smaller
than ∆nci = 17.5. This result shows that there is no significant part of the entropy, which is
due to the dependence of the dielectric constant on temperature. It also demonstrates that
the neglect of the dependence of ∆nci on temperature (cf. the discussion of Equations (5)
and (6) above) is fully justified.

Finally, we discuss the change in the specific heat ∆cp. Strong effects from hydration
can be ruled out, since no ion-specific effects are observed for the present system, which
would lead to a term depending on salt concentration (cf. the discussion of this problem
in ref. [40]). The strongly negative ∆cp,0 = −0.87 kJ/(K mol) must therefore be traced
back to the loss of conformational degrees of freedom of both binding partners during
complex formation.

4. Conclusions

A phenomenological thermodynamic analysis of the binary complex formation of the
highly positively charged linker histone H1 and the highly negatively charged chaperone
Prothymosin α (ProTα) has been presented. This analysis is fully based on a model-free
phenomenological approach that is in full accord with the well-known colligative proper-
ties of polyelectrolytes; no additional assumptions need to be invoked. We find that the
release of counterions as expressed through the parameter∆nci (Equations (6) and (7))
is the main driving force for complex formation. In addition to this, a strong addi-
tional entropic term ∆S0 (Equation (7)) supports binding, whereas the enthalpic term
∆H0 (Equation (7)) derived from the above analysis is positive. Moreover, hydration effects
as expressed through the term ∆w in Equation (6) were found to be small. Finally, the
negative ∆cp,0 = −0.87 kJ/(K mol) points to a loss of conformational degrees of freedom of
the IDPs in the complex, as expected. The entire analysis shows that the complex formation
of the IDPs in solution may well be compared to the much-studied problem of proteins
interacting with highly charged polyelectrolytes [21,71].
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