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Abstract

Volcanic eruptions pose a grave risk to metropolitan areas and the global economy.

Improving the accuracy, reliability, and warning time of eruption forecasts opens av-

enues to make the lives of some 600 million people living at active volcanoes safer.

An effective way of achieving these ends is diversifying current monitoring strate-

gies. This thesis employs changes in the seismic wave propagation velocity (dv/v),

retrieved from the ubiquitous ambient seismic noise, as a new measure to quantify

alterations in the dynamics of the volcanic system.

We explore an easily automatable method to quantify seismic velocity changes

from ambient seismic noise, which we implemented into the software suite SeisMIC.

SeisMIC offers end-to-end processing of ambient seismic noise in an easy-to-use, well-

documented, modular, and adaptable Python software suite. Compared to other am-

bient seismic noise software solutions, SeisMIC offers improved computational per-

formance and is particularly suited to satisfy the extraordinarily variable processing

needs for ambient noise volcano monitoring. We apply this method to two datasets at

active volcanoes: The Klyuchevskoy Volcanic Group (KVG), in Kamchatka, Russia,

and Mount St. Helens (MSH), in the United States of America.

At the KVG, we analyse data recorded during the KISS project, which consists of

one year of seismic data recorded by over 110 stations. On Kamchatka, the constant

volcanic tremor causes fluctuations in the wavefield, violating the assumption of

source stationarity in our method. We address these fluctuations using a hierarchical

clustering algorithm to identify times with stationary noise fields, for which we can

create shorter dv/v time series. Coincident with the first inflation at Bezymianny

volcano and 11 months before its eruption, we observe a dv/v increase. Furthermore,

we find evidence for a higher damage susceptibility of volcanic rock following the M7.2

Zhupanov earthquake and, with the help of a simple empirical model, link changes

in rainfall and snow depth to dv/v changes.
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The long-standing seismic network at MSH has recorded continuous seismic wave-

form data for over 25 years. We use this unique dataset to investigate changes in the

seismic velocity during, before, and after MSH’s 2004-2008 eruption period. Over

time, new seismic stations are deployed, while old ones are removed, destroyed, or

upgraded. This poses a particular challenge when creating long-term dv/v time series

as the normalisations for time series of station combinations recording during dif-

ferent times diverge. We overcome this challenge using an innovative approach that

predicts dv/v at new station combinations from data from pre-existing stations and

their spatial sensitivity kernels. The average dv/v time series exhibits two marked

increases. Together with the first explosions of the 2004-2008 eruption and a GNSS

downward movement, we find a sudden velocity increase caused by the pressure drop

and unplugging of the volcanic conduit. Between 2017 and 2020, we detect a large-

scale velocity increase below the volcanic edifice focused on the location of MSH’s

plumbing system. From the dv/v increase, a temporal gravity anomaly, and the

GNSS observations, we infer a slowing or stopping of MSH’s post-eruptive reinfla-

tion during this interval.

This thesis paves the way towards automated volcanic eruption forecasting using

seismic velocity changes by distributing a software suite well suited to monitor seismic

velocity changes in a breadth of environments in real-time and by demonstrating that

the seismic velocity can be employed to quantify volcanic dynamics at various active

volcanoes, even when technical and environmental conditions are unideal. Future

work should focus on implementing seismic velocity change monitoring at volcano

observatories and strengthening the physical links between various environmental,

tectonic, and volcanic forcings to the seismic velocity.
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Kurzfassung

Vulkanausbrüche stellen eine große Bedrohung für Ballungsräume und die Weltwirtschaft

dar. Die Verbesserung der Genauigkeit, Zuverlässigkeit und Vorwarnzeit von Erup-

tionsvorhersagen eröffnet Möglichkeiten, das Leben von etwa 600 Millionen Men-

schen, die an aktiven Vulkanen leben, sicherer zu machen. Ein wirkungsvoller Weg,

diese Ziele zu erreichen, ist die Diversifizierung der derzeitigen Überwachungsstrate-

gien. Diese Arbeit befasst sich mit Veränderungen der seismischen Wellenausbre-

itungsgeschwindigkeit (dv/v), die aus dem allgegenwärtigen seismischen Umgebungsrauschen

abgeleitet werden, als neues Maß zur Quantifizierung von Veränderungen in der Dy-

namik des vulkanischen Systems.

Eine leicht automatisierbare Methode zur Quantifizierung seismischer Geschwindigkeit-

sänderungen aus seismischem Hintergrundrauschen wird entwickelt und in das Soft-

warepaket SeisMIC integriert. SeisMIC bietet eine Komplettverarbeitung von seis-

mischem Hintergrundrauschen in einer benutzerfreundlichen, gut dokumentierten,

modularen und anpassungsfähigen Python-Software-Suite. Im Vergleich zu anderen

Softwarelösungen zur Prozessierung von seismischem Hintergrundrauschen bietet Seis-

MIC eine bessere Rechenleistung und ist besonders geeignet, um die außerordentlich

variablen Anforderungen bei der Vulkanüberwachung zu erfüllen. Wir wenden diese

Methode auf zwei Datensätze an aktiven Vulkanen an: Die Klyuchevskoy Vulkan-

gruppe (KVG), in Kamtschatka, Russland, und Mount St. Helens (MSH), in den

Vereinigten Staaten von Amerika.

An der KVG analysieren wir Daten, die im Rahmen des KISS-Projekts aufgeze-

ichnet wurden, das aus einem Jahr seismischer Daten besteht, die von über 110 Sta-

tionen aufgezeichnet wurden. Auf Kamtschatka verursacht der konstante vulkanische

Tremor Fluktuationen im Wellenfeld, die die Annahme der Quellenstationarität in

unserer Methode verletzen. Wir gehen auf diese Fluktuationen mit Hilfe eines hi-

erarchischen Clustering-Algorithmus ein, um Zeiten mit stationären Wellenfeldern
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zu identifizieren, für die wir kürzere dv/v-Zeitreihen erstellen können. Zeitgleich

mit der ersten Inflation am Vulkan Bezymianny und 11 Monate vor dessen Aus-

bruch beobachten wir einen dv/v Anstieg. Darüber hinaus finden wir Belege für eine

höhere Schadensanfälligkeit von Vulkangestein nach dem M7,2 Zhupanov Erdbeben

und stellen mit Hilfe eines einfachen empirischen Modells einen Zusammenhang zwis-

chen Änderungen der Niederschlagsmenge und der Schneetiefe und dv/v Änderungen

her.

Das seit langem bestehende seismische Netzwerk am MSH zeichnet seit über 25

Jahren kontinuierliche seismische Wellenformdaten auf. Wir nutzen diesen einzigar-

tigen Datensatz, um die Veränderungen der seismischen Geschwindigkeit während,

vor und nach der Eruptionsperiode des MSH zwischen 2004 und 2008 zu untersuchen.

Im Laufe der Zeit werden zusätzliche seismische Stationen aufgestellt, während alte

Stationen entfernt, beschädigt oder modernisiert werden. Dies stellt eine besondere

Herausforderung bei der Erstellung langfristiger und kontinuierlicher dv/v-Zeitreihen

dar, da die Normalisierungen für Zeitreihen von Stationskombinationen, die zu unter-

schiedlichen Zeiten aufgezeichnet haben, divergieren. Wir überwinden diese Heraus-

forderung mit einem innovativen Ansatz, der dv/v an neuen Stationskombinationen

aus Daten von bereits bestehenden Stationen und deren räumlichen Wahrschein-

lichkeitsdichtekerneln vorhersagt. Die gemittelte dv/v-Zeitreihe weist zwei deutliche

Anstiege auf. Zusammen mit den ersten Explosionen der 2004-2008 Eruption und

einer GNSS Abwärtsbewegung stellen wir einen abrupten Geschwindigkeitsanstieg

fest, der durch den Druckabfall und die Öffnung des vulkanischen Gangsystems verur-

sacht wird. Zwischen 2017 und 2020 stellen wir einen großflächigen Geschwindigkeit-

sanstieg unterhalb des Vulkangebäudes fest, der sich auf MSH Kammernsystem

konzentriert. Der dv/v-Anstieg, eine zeitliche Schwereanomalie und die GNSS-Beobachtungen

lassen auf eine Verlangsamung oder ein Anhalten der post-eruptiven Reinflation in

diesem Zeitraum schließen.
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In dieser Arbeit ebnen wir den Weg für eine automatisierte Prognose von Vulka-

nausbrüchen anhand von seismischen Geschwindigkeitsänderungen, indem wir eine

Software bereitstellen, die geeignet ist, seismische Geschwindigkeitsänderungen in

einer Vielzahl von Umgebungen in Echtzeit zu überwachen, und indem wir zeigen,

dass die seismische Geschwindigkeit dazu verwendet werden kann, die vulkanische

Dynamik an verschiedenen aktiven Vulkanen zu quantifizieren, selbst wenn die tech-

nischen und Umweltbedingungen nicht optimal sind. Künftige Arbeiten sollten

sich darauf konzentrieren, die Echtzeitüberwachung seismischer Geschwindigkeitsän-

derungen in Vulkanobservatorien zu implementieren und die physikalischen Verbindun-

gen zwischen verschiedenen umweltbedingten, tektonischen und vulkanischen Ein-

flüssen auf die seismische Geschwindigkeit zu stärken.
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For an exhaustive description of the parametrisation and the inversion
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4.1 A map view of the study region. (a) The sites of permanent and tem-

porary stations are represented by squares and triangles, respectively.

We use data from station X9.IR1 (cyan) in Figures 4.2 and 4.3. The

epicentre of the M7.2 Zhupanov earthquake is plotted as a magenta-

coloured star. We depict the locations of volcanic centres active during

the Holocene. (b) A zoom on the area marked by the dashed, red box

shown in (a). The locations of the three volcanoes discussed here,

Bezymianny, Klyuchevskoy, and Shiveluch are indicated and labelled. 53
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4.2 (a) Spectrogram of station’s X9.IR1 N component calculated with a

4-hour-window. Volcanic tremors appear as obvious bright (i.e., high

energy) spots between ∼0.5 and 5 Hz (frequency band marked with

magenta dotted lines). We truncated the colour scale at both ends.

In this work, we analyse velocity changes in octave bands between 0.5

and 8 Hz (marked by white dashed lines) (b) Daily self-correlation

functions as calculated from station X9.IR1 between the E and N

component created from preprocessed waveform data between 2 and

4 Hz. Note that the shape of the CFs (i.e., the Green’s function

estimate) changes significantly during the study. The average CF is

plotted in black on top of the heatmap. We muted the daily correlation

functions for −0.5 s ≤ τ ≤ 0.5 s to emphasise the shape of the coda.

The colour scale is truncated to -0.25 and 0.25, respectively. (c) The

velocity change estimated using the trace stretching method with the

data from (b) and a smoothing of 2 days. We indicate the location of

X9.IR1 in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The output of the hierarchical clustering. As input data, we used

one year of self-correlations between station’s X9.IR1 (see Figure 4.1)

east and north component created from waveform data between 2 and

4 Hz. Colours are used to identify the different clusters in the three

panels. (a) A dendrogram that quantifies the similarity between the

different clusters. The vertical distance of the branches scales with the

dissimilarity of the clusters, i.e., their merging cost (see Table B.1). We

show unclustered branches in grey. (b) The distribution of the clusters

over the whole study period. The bars show the bi-weekly occurrence

N of the respective cluster. (c) Averages of the CFs belonging to each

of the five clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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4.4 (a) The output of TheSequencer (Baron & Ménard, 2021). The closer

two data points are in the sequence (i.e., similarly coloured and simi-

larly sized circles) the more similar the algorithm deemed their dv/v

responses as given by the similarity matrices. Note that data points in

the sedimentary basin, on the KVG, and on the ridge in the East tend

to build subgroups. (b) Groups that we use for the spatial stacking.

Based on the results shown in panel (a) and on visual inspection of the

dv/v time series, we divide our dataset into 5 subgroups. Each colour

corresponds to a different subgroup. Inverted triangles represent sta-

tions belonging to the temporary KISS experiment, whereas squares

are the locations of permanent stations. Note that we disregard some

stations due to low data availability. We depict the locations of vol-

canic centres active during the Holocene. KVG: Klyuchevskoy Vol-

canic Group, CKD: Central Kamchatka Depression, ERidge: Eastern

Ridge, KVG_vic: stations in the vicinity of the KVG. . . . . . . . . . 67

xx



LIST OF FIGURES

4.5 Velocity change for the station group CKD (see Figure 4.4) created

from auto- and self-correlations between all components for 4-8 Hz.

We show dv/v estimates as circles with colour scaling dependent upon

the cumulative correlation coefficient (CCC) (see text body for de-

tails). Each point represents a time window of four hours, at two

hours intervals. Red dashed lines mark the origin times of regional

earthquakes with magnitudes≥4.8. The dv/v model is given by the

black dashed line, the corresponding coefficient of determination (R2)

is shown in the upper left corner of the large tile. The time-averaged

lava discharge rate (TADR) for Klyuchevskoy and Bezymianny are

plotted logarithmically at the bottom of the plot in red and blue, re-

spectively (Coppola et al., 2021). In the small tile below, we show

values for snow depth dsnow (grey) and hourly precipitation P (blue)

averaged over the region. Both values are given in water-equivalent.

Note that, particularly for these high frequencies, dv/v shows strong

responses to changes in precipitation and snow load. Our dv/v model

(see Section 4.5.1) is able to reproduce these changes on a first order.

Features 1, 2, and 5 marked with arrows are discussed in the text body. 69

4.6 Velocity change estimates for different station groups and time in-

tervals for 2-4 Hz. Refer to Figure 4.5 for an explanation of the

plot’s details. (a) Region KVG_vic, time window from 2015/12/15

to 2016/02/15. Bold dashed line marks the 2016/01/30 M7.2 Zhu-

panov earthquake. (b) Region CKD, time window from 2016/04/22

to 2016/09/01. (c) Region KVG, time window from 2016/04/01 to

2016/07/01. (d) Region Shiveluch, time window from 2016/04/22 to

2016/09/01. Locations of the stations belonging to each of the regions

can be found in Figure 4.4 (b). . . . . . . . . . . . . . . . . . . . . . . 71
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4.7 (a) Horizontal PGVs recorded during the M7.2 Zhupanov earthquake.

The circles mark stations active on the day of the event, with their di-

ameters scaling with the PGV. We plot the epicentre of the Zhupanov

earthquake as a star. (b) Corresponding (dv/v)
PGV

ratio for the different

groups of stations and the examined frequency bands. The volcanic

regions (Shiveluch and KVG) exhibit particularly high ratios. . . . . . 78

4.8 (a) Definition of the station groupings used in (b). (b) Evolution of

the seismic velocity as computed from auto and self-correlations be-

tween 2016/01/15 and 2016/02/15 close to Bezymianny Volcano at

2-4 Hz. We show dv/v estimates as coloured symbols (matched with

symbols in (a)) with colour scaling dependent upon the CCC. Each

point represents a time window of two hours. Red vertical dashed lines

mark the origin times of regional earthquakes with a magnitude≥4.8.

The bold dashed line marks the 2016/01/30 M7.2 Zhupanov earth-

quake. The time-averaged lava discharge rate (TADR) of Bezymianny

is plotted logarithmically in blue. In the lower panel, we show pre-

cipitation and snow load data in water equivalent averaged over all

locations of the station group KVG_vic. Towards the end of the time

window, we measure an especially strong increase of the seismic veloc-

ity at station D0.BZG (circles). Simultaneously, we see a decorrelation

at all shown groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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4.9 (a) Pixel offset values obtained from a reanalysis of the SAR dataset

by Mania et al. (2019) (plotted as stars). The shown values are means

over a 16x16 pixel area around Bezymmiany’s summit. On average,

one pixel covers an area of about 1 m2. (b) A zoom on (a) as marked

by the red dashed lines. We superimposed dv/v between 2 and 4 Hz

at D0.BZG with the points’ colour scale depending upon the CCC.

The red dashed line labelled “M7.2” marks the origin time of the M7.2

Zhupanov earthquake. In (a) and (b), the red arrow marks the initia-

tion of the observed velocity increase in the evening of 6 February 2016

(UTC). In the bottom row, we show the SAR images with a colour-

scaled pixel offset overlay for the four different times, i-iv, marked in

(a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Locations of the seismic stations, GNSS sites, the weather station,

and the borehole, from which we obtain data for this study. Seis-

mic stations are inverted triangles coloured by the time of their first

continuous recording. Seismic stations with red outlines are used to

create the plot in Figure 5.3. For all other plots, we used data from all

stations. The weather station corresponds to the Swift Creek (1012)

SNOTEL station, for which we show temperature and snow load data

in Figure 5.6. The seismicity shown in this plot occurred between 1998

and 2023. In the map inset in the lower left corner, we depict the lo-

cations of MSH and other active Cascade volcanoes in red and purple,

respectively. The epicentre of the M6.8 2001 Nisqually earthquake is

plotted as a yellow star. . . . . . . . . . . . . . . . . . . . . . . . . . 94
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5.2 Exemplary CFs from channel combinations and their corresponding

0.5-1 Hz dv/v estimates. (a) & (b): Auto-correlation at CC.VALT.BHN.

(c) & (d): Cross-correlation PB.B201.EH1-PB.B201.EHZ, (e) & (f):

Cross-correlation CC.STD.BHE-PB.B203.EH1. Data for up to 4 s is

muted for visualisation. We show the mean of all CFs superimposed
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UW.FL2, UW.HSR, UW.JUN, UW.SOS, and UW.SHW (marked by

red outlines in Figure 5.1). The colour scales with the CCC. The

dashed line shows the low-pass filtered dv/v time series. The dashed

vertical green line indicates the 2001 M6.8 Nisqually earthquake known

to perturb dv/v (Hotovec-Ellis et al., 2014). The salmon-shaded pe-

riod marks MSH’s 2004-2008 eruption. The solid (dashed) red line

shows the (low-pass-filtered) vertical ground motion as recorded by
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5.4 Total accumulated velocity change between 31 May 2007 and 01 June

2023 superimposed onto the regional topography. Total accumulated

velocity change obtained from ambient noise between (a) 0.5 and

1.0 Hz, (b) 1.0 and 2.0 Hz from all available seismic data. The red

inverted triangles mark the locations of seismic stations from which
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to the locations from which we extracted time series in Figures 5.6

and 5.5. Please note that we use different colour scales for the two
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(a) yearly rate of seismic events with M > −1 and hypocentres above
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the curve is five-fold exaggerated. (b) Depth distribution of seismic
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5.6 Annual median velocity changes and median vertical ground motion

(red). (a) Annual median dv/v curve for the study region extracted

from CFs between all components and stations. (b) Annual median

dv/v curve extracted from two grid points with diverging behaviours

in the time-dependent dv/v maps (using data from all stations). These

grid points are marked in Figure 5.4 as black (North) and cyan boxes
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Lake’s relative level are both shown in meter water equivalent. The
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(i.e., the sum of modelled snowmelt and rainfall per hour). We plot

the annual median temperature at the base of MSH as red dot markers.

We emphasise temperatures below freezing by plotting them in cyan
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time window. (c) Result of the spatial inversion using only cross-
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(e) Result of the spatial inversion using only auto-correlations and
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A.2 Examples of the spatial inversion using data from four stations, a

model variance σm = 0.25 km
km2 , and a correlation length λ = 2 km.
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A.4 Examples of the spatial inversion using data from 16 stations, a model

variance σm = 0.02 km
km2 , and a correlation length λ = 2 km. (a) The

synthetic velocity model and station configuration used. (b) Result

of the spatial inversion using only cross-correlations and a single lapse

time window. (c) Result of the spatial inversion using only cross-
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CHAPTER 1

Introduction

1.1 Motivation

Volcanic eruptions are among the most spectacular but also the most hazardous

phenomena in the natural world. Volcanic risk is not only limited to the increas-

ing population of more than 600 million living in the vicinity of active volcanoes

(Chester et al., 2000) but also has a global component due to far-reaching effects

such as tsunamis or ash clouds that can have global impacts for several years af-

ter the eruption (Jenkins et al., 2015, see, e.g., photo in Figure 1.1). A powerful

reminder of such global risk was the 2010 Eyjafjallajökull eruption in Iceland that,

despite its intermediate size, caused significant disruptions in the European air traf-

fic (e.g., Petersen, 2010). Eruption early warning allows for warning, preparation,

and evacuation of the local population and infrastructure, thereby mitigating the

socioeconomic impact of volcanic events (Wilson et al., 2014).
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Figure 1.1: Satellite image of Klyuchevskoy volcano in Kamchatka, Russia, in

November 2023. An ash cloud reaching hundreds of kilometres over the Pacific Ocean

(outlined in black) is visible. Image obtained from the NASA Earth Observatory at

https://earthobservatory.nasa.gov/.

The data used to create eruption forecasts and inform early warning is mostly

of geophysical and geochemical nature. Consequently, geophysical real-time mon-

itoring of volcanoes is at the heart of volcanic risk mitigation. Using continuous

observations, scientists attempt to identify deviations from a baseline behaviour in-

dicating an impending eruption (Tilling, 2008). However, due to drastic individual

variations in plumbing systems and eruption mechanisms, volcanic precursors are of-

ten not transferable from one volcano to another. Especially at explosive volcanoes,

identifying volcanic precursors and, thus, eruption forecasting remains a challenge

(Scarpa & Gasparini, 1996). In addition, remote and difficult-to-access terrain often

complicates volcano monitoring.

To date, geophysical volcano monitoring exploits a multitude of techniques and

2

https://earthobservatory.nasa.gov/


CHAPTER 1. INTRODUCTION

datasets. Ideal monitoring techniques afford a high temporal resolution and sensitiv-

ity to the targeted volcanic processes. On the other hand, they should be insensitive

to signals overlaying the target signal (i.e., noise). Cost efficiency, low maintenance,

and easy installation of the field equipment are desirable qualities, especially in re-

mote areas. Monitoring techniques that at least partially fulfil these requirements are,

for example, satellite-born techniques (Mania et al., 2019; Massonnet et al., 1995) or

tiltmeters (Fontaine et al., 2014; Peltier et al., 2005) used to detect surface deforma-

tion induced by inflation of the volcanic edifice. In many cases, increased seismicity,

recorded with the help of seismometers, also precedes eruptions (e.g., Budi-Santoso

et al., 2013; Chouet, 1996; Droznin et al., 2015; Soubestre et al., 2021). As described

above, the various precursors are differently pronounced from volcano to volcano and

may not occur at all. Therefore, scientists strive to explore new volcanic precursors

(Brenguier, Shapiro, et al., 2008; Brenguier et al., 2016; Tilling, 2008).

All monitoring techniques will inevitably record signals unrelated to volcanic forc-

ing, although their influence can often be mitigated by taking appropriate precau-

tions. Therefore, it is essential to understand which other environmental mechanisms

may introduce additional signals into the geophysical dataset at hand but also quan-

tify their respective contributions. Such quantification requires a deep understanding

of the physical relationships governing those environmental contributions. By unrav-

elling the individual contributions, the volcanic component to the composite signal

may ultimately be isolated and, subsequently, interpreted.

Traditionally, one can broadly divide seismological tools into two categories: (1)

tools that focus on analysing seismic sources and (2) methodologies that allow for

structural imaging of the subsurface. While source-focussed seismology accounts for

time dependency, subsurface structures are mostly assumed to be temporally invari-

ant on non-geological time scales. Consequently, resolving structures temporally was

often neglected - except for 4D active source surveys in exploration seismology (see,
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e.g., Jack, 2017). While this might be reasonable for the Earth’s deeper and less

dynamic parts, its shallower and more active parts can exhibit rapid dynamics on

virtually all time scales.

Over the past decades, the increasing availability of digital storage has enabled the

scientific community to obtain and archive continuous seismic recordings. Simultane-

ously, the ever-growing computational power allowed for more complex exploration

and analysis of such large data amounts. Consequently, seismologists developed new

processing techniques and obtained new derived data products from these continuous

recordings. One family of these methods exploits the energy of the ubiquitous am-

bient seismic noise, a constant background chatter present in all seismic recordings

(e.g., Nakata et al., 2019).

This thesis will focus on the analysis of time-varying structures at volcanoes

using seismological tools. To this end, I will employ a tool called passive image

interferometry (PII), exploiting properties of the ubiquitous ambient seismic field

(Sens-Schönfelder & Wegler, 2006). In addition, I will present auxiliary geophysical

and environmental observables, set them in context to seismological observations,

and, thereby, shed light on the volcanic contribution to the final data product with the

ultimate goal to contribute to establish and consolidate PII as a tool to compliment

existing volcano monitoring techniques.

1.2 Outline

This thesis consists of six chapters, including this introduction. Three of these chap-

ters present individual studies.

Before diving into the details of those studies, I will briefly review the required

background knowledge in Chapter 2. Therein, we will explore signs and phenomena

accompanying volcanic crises and outline the status quo of volcano monitoring (Sec-
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tion 2.1). Section 2.2 examines the properties and origin of the ambient seismic noise,

a background signal present in all seismic recordings. Here, we will also learn about

a technique called passive image interferometry (PII). Finally, Section 2.3 discusses

the measurement of seismic velocity changes in the solid Earth, what they represent,

and the state-of-the-art research employing seismic velocity change time series.

Chapter 3 presents a research software called SeisMIC, which enables end-to-end

processing of seismic velocity change time series. Here, we1 will elaborate on the

finer methodological details concerning PII and show how SeisMIC contributes to

the ambient noise research community. The software’s highlights include fast and

efficient processing routines, an intuitive and easy-to-learn application programming

interface (API), and the ability to map seismic velocity changes in space. We also

include a minimal example supplemented by a software tutorial. This chapter was

published as Makus and Sens-Schönfelder (2024) in SEISMICA.

In Chapter 4, we apply the method described in the preceding chapter to one year

of seismic waveform data recorded by a large seismometer array at the Klyuchevskoy

Volcanic Group (KVG) in Kamchatka, Russia. In this chapter, we demonstrate how

to employ PII in the context of the fluctuating noise field impacted by the quasi-

ubiquitous volcanic tremors prevailing around the KVG. Exploiting these high-energy

tremors, we extract high-resolution velocity change time series dominated by the

impacts of regional weather variations. Following a large regional earthquake, we

infer very heterogeneous damage reactions across the network, which we attribute to

the strongly varying geology at the different sites. Almost one year before an eruption

at Bezymianny volcano initiates and coincident with satellite-observed deformation

of the volcanic edifice, we find a velocity increase, which we link to a pressure change

within the volcano’s magma conduits. This chapter was published as Makus, Sens-

1The first person plural is used to emphasise that the presented research is the product of the

collaboration of several authors rather than attributed to a single person.
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Schönfelder, et al. (2023) in the Journal of Geophysical Research - Solid Earth.

Following the application to a temporary deployment of large spatial extent, we

present a long-term analysis of the evolution of the seismic velocity at Mount St.

Helens (MSH) in Chapter 5. At MSH, continuous seismic data has been recorded

for over 25 years, including during its 2004-2008 eruption cycle. Exploiting this

dataset, we investigate how long-term changes in the magma supply rate influence

the seismic velocity. Coincident with the first explosions in 2004, we find marked

velocity decreases, which we interpret as signs of unplugging associated with pressure

drops within the volcanic plumbing system. After 2008, vertically positive ground

displacement implies a reinflation of magma and gas chambers below the volcanic

system. From the velocity change times series, we infer a slowing or potentially even

an end to this reinflation after 2017. We conclude that groundwater fluctuations

dominate the seasonal cycles of the seismic velocity. Furthermore, we find contrast-

ing responses to environmental forcing on the volcanic edifice compared to its foot,

indicating that ground freezing might inhibit groundwater infiltration at higher al-

titudes. This chapter has been accepted for publication in Seismological Research

Letters.

Finally, in Chapter 6, I will draw some conclusions from the work and outline how

it complements the current understanding of the dynamics of the seismic velocity at

volcanoes. In addition, I will pose open questions and suggest ways in which they

could be addressed by future research.

1.3 Prior Published Work and Contribution State-

ments

This thesis contains chapters based on work published in various scientific journals.

The software description of “SeisMIC” in Chapter 3 has been published as:

6
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Makus, P., & Sens-Schönfelder, C. (2024). SeisMIC - an Open Source

Python Toolset to Compute Velocity Changes from Ambient Seismic

Noise. Seismica, 3 (1). https://doi.org/10.26443/seismica.v3i1.1099

Chapter 4, containing the investigation of medium changes at the Klyuchevskoy

Volcanic Group (KVG), has been published as:

Makus, P., Sens-Schönfelder, C., Illien, L., Walter, T. R., Yates, A., &

Tilmann, F. (2023). Deciphering the Whisper of Volcanoes: Monitoring

Velocity Changes at Kamchatka’s Klyuchevskoy Group With Fluctuat-

ing Noise Fields. Journal of Geophysical Research: Solid Earth, 128 (4),

e2022JB025738. https://doi.org/10.1029/2022JB025738

The analysis of the spatiotemporal evolution of the seismic velocity over 25 years at

Mount St. Helens (MSH) in Chapter 5 has been published as:

Makus, P., Denolle, M. A., Sens-Schönfelder, C., Köpfli, M., & Tilmann,

F. (2024). Analyzing Volcanic, Tectonic, and Environmental Influences

on the Seismic Velocity from 25 Years of Data at Mount St. Helens.

Seismological Research Letters, 95 (5), 2674–2688. https://doi.org/10.

1785/0220240088

For the listed works, Peter Makus wrote the manuscripts and designed, conducted,

and interpreted the data analyses. All accompanying research codes and programmes

were written, tested, and are maintained by Peter Makus. Some of the algorithms

used in Chapter 3 were developed by Christoph Sens-Schönfelder. He also contributed

to the manuscript design. Thomas Walter processed the satellite aperture radar data

in Chapter 4. In the same chapter, Luc Illien contributed to the conceptualisation

of the models describing the environmental impact on the seismic velocity. Finally,

Alexander Yates introduced some of the ideas of the hierarchical clustering of corre-

lation functions (CFs) into the study. Christoph Sens-Schönfelder contributed to the
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overall study and manuscript design. For Chapter 5, Christoph Sens-Schönfelder and

Marine A. Denolle helped design the final study and manuscript. Manuela Köpfli

contributed to the discussion of volcanic and source mechanisms at Mount St. He-

lens (MSH). For Chapter 4 and 5, Frederik Tilmann contributed to the manuscript

designs and proposed ideas towards improving the respective experiments.
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CHAPTER 2

Theory

2.1 Monitoring Volcano Dynamics

Volcanic eruptions result from a pressure imbalance following the upward migration

of magma from the mantle and the deep crust towards the surface. When rising to

shallower depths with lower confining pressures, the magma exsolves gas bubbles,

the so-called volatiles, further increasing the overpressure in the magmatic conduit

and accelerating the speed of the upwards-migration. Finally, the eruption occurs

when the pressure is high enough for the magma to breach the surface. We classify

eruptions as effusive or explosive depending on the rate and violence with which

material extrudes, which is governed by the magma’s chemical composition. Silicic

magmas and those with a large fraction of dissolved fluids produce more explosive

eruptions than basaltic magmas and magmas with a small fluid fraction (e.g., Cassidy

et al., 2018; La Spina et al., 2022; Sparks, 2003; Woods, 1995).
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The upward transport of the magma causes deformation that, above the brittle-

ductile transition, can induce so-called volcano-tectonic earthquakes. While extru-

sion leads to deflation, the accumulation of magma in the conduit may inflate the

volcanic edifice and the surrounding areas. This inflation is expressed as an extension

of the surface, often centripetal to the inflating magma body (see Figure 2.1). The

opening of new dykes and sills fractures the surrounding rock and triggers volcano-

tectonic earthquakes. Besides volcano-tectonic earthquakes, long-period seismicity

or volcanic tremor is commonly observed at active volcanoes. This tremor is as-

sumed to result from resonances within the magmatic plumbing system. Perhaps

unsurprisingly, ground deformation monitoring via ground-based global navigation

satellite system (GNSS), tiltmeters, or space-born satellite system and seismic moni-

toring have evolved to be two of the principal techniques used for short-term volcano

monitoring (McNutt & Roman, 2015; Segall, 2013; Sparks et al., 2012).

While many monitoring methods investigate induced signals like seismicity or

surface deformation, other methods allow for a direct investigation of structural

changes in the volcanic plumbing system. For example, repeated gravimetry sur-

veys can detect mass increases below a volcano (Battaglia et al., 2008; Greco et al.,

2012). Also, repeated electrical resistivity measurements were used to infer struc-

tural changes (e.g., Aizawa et al., 2011; Utada, 2003). Similarly, seismic waves can

measure medium changes. For example, Titzschkau et al. (2010) and Caudron et al.

(2019) observed modifications in the seismic attenuation that preceded eruptions.

Recently, studies that link relative changes in the seismic velocity to volcanic dy-

namics have become more common (e.g., Brenguier, Shapiro, et al., 2008; Donaldson

et al., 2017; Ratdomopurbo & Poupinet, 1995; Rivet et al., 2014; A. S. Yates et

al., 2019). This thesis focuses on analysing seismic velocity changes at volcanoes

retrieved from ambient seismic noise.
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Figure modified from Biggs, J., & Pritchard, M. E. (2017). Global Volcano Monitoring:

What Does It Mean When Volcanoes Deform? Elements, 13 (1), 17–22. https://doi.

org/10.2113/gselements.13.1.17 / Reprinted with permission from the Mineralogical

Society of America.

Figure 2.1: Ground deformation around the inflating Lazufre volcano as measured

by Interferometric Synthetic Aperture Radar (INSAR). The deformation shows a

characteristic concentric pattern around the inflating magma body. Original study

by Fournier et al. (2010).

2.2 Ambient Seismic Noise and Passive Image In-

terferometry

Ambient seismic noise is a ubiquitous background chatter on all seismic recordings

caused by a wide range of natural and artificial phenomena. Physically, it can be con-

sidered the composite sum of signals with amplitudes too small to make them emerge

and stand out from the rest of the recording. As we will see, ambient seismic noise
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can be exploited for many practical applications, often very similar to active (i.e.,

artificial) and natural seismological sources. Hence, nowadays, many seismologists

perceive the term “ambient seismic noise” as a misnomer.

While, as a whole, the ambient seismic field is a composite signal, it is dominated

by different physical mechanisms dependent on frequency, recording location, time of

the day, and season. Particularly in urban environments, shorter periods below one

second are dominated by cultural noise, whereas longer periods contain the natural

secondary and primary microseismic peaks at seven and 14 s, respectively (Ardhuin

et al., 2019). These peaks are due to ocean-wave-induced excitation. Consequently,

long periods contain more energy at seismic stations1 close to coastlines (consult,

e.g., McNamara & Boaz, 2019, for a detailed review of the physics of ocean noise

generation).

Many of the mechanisms constituting the spectrum of the ambient field also have

temporal dependencies and periodicities. For example, in the northern hemisphere,

the signal of ocean-generated noise is more pronounced in the winter months, Novem-

ber to March. This is due to large winter storms. Similarly, cultural noise, as human

activity, has a diurnal pattern. Interestingly, during the CoViD-19 pandemic, a

marked difference in the energy content of urban ambient seismic noise was visible as

compared to pre-pandemic levels (e.g., Lecocq et al., 2020; Piccinini et al., 2020). In

Figure 2.2, I visualise the probability density function of the power spectral density

separately for the summer and winter months at station IU.HRV in Massachusetts,

USA, demonstrating the discussed properties of the ambient seismic noise spectrum.

Since the ambient seismic “noise“ is a deterministic signal, it must be coherent over

different sensors. Indeed, the fact that recordings of seismic noise can be correlated

over several stations had been demonstrated well before any theories concerning its

1For the sake of conciseness, I will from now on refer to these simply as stations, unless the

context requires otherwise.
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daytime

nighttime

cultural noise ocean-generated noise

primary microseism

secondary microseism

Figure 2.2: The probability function of the power spectral density from data

recorded at IU.HRV.BHZ between (a) November and February 2017 and (b) April

and August 2017. In periods<1 s dominated by cultural noise, a clear diurnal divi-

sion is visible. The ocean-wave-dominated energy content in periods>1 s is higher

in the winter (a) than in summer (b).

generation were developed (e.g., Aki, 1957). If ambient noise sources were distributed

homogeneously in space and uniform in time, the resulting correlation functions

(CFs), computed via a cross-correlation (equation 2.1), would correspond to the

Green’s function describing the impulse response of the subsurface between the two

sensors. This is practically never the case. Nonetheless, as we will discover, with the

appropriate preprocessing (Bensen et al., 2007), there are numerous ways to exploit

this property. Figure 2.3 illustrates the coherence of the ambient seismic noise across

time and space.

Mathematically, we can retrieve the CF using a simple cross-correlation:

C1|2(τ) = (s1 ⋆ s2)(τ) =

∫ ∞

−∞
s1(t)s2(t+ τ)dt, (2.1)

where s1(t) and s2(t) are the waveforms recorded at the two stations. The cross-

correlation is a function of the time lag between the two signals τ rather than the
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From Weaver, R. L. (2005). Information from Seismic Noise. Science, 307 (5715),

1568–1569. https://doi.org/10.1126/science.1109834 / Reprinted with permission

from AAAS.

Figure 2.3: Conceptual illustration of the cross-correlation of ambient seismic noise

recordings between two stations (each labelled “Detector“). While the two stations by

themselves record seemingly random waveforms, their recordings can be correlated

to obtain the coherent waveforms travelling from one station to the other.

recording time t. For practical purposes, one usually computes the CFs in the fre-

quency rather than the time domain. In the given example, we would treat station

1, recording s1, as a virtual source. For all but very late lag times τ , the coherent

wavefield between the virtual source and the receiver is dominated by the so-called

surface waves (Obermann, Planès, Larose, Sens-Schönfelder, & Campillo, 2013), a

family of waves that occur at seismic interfaces with high impedance contrasts (e.g.,

Shearer, 2019).

Seismologists exploit the similarity between the CF and the medium’s Green’s
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function to extract information about the medium that the noise’s energy passes on

the way from the virtual source to the receiver. These noise-based interferometric

methodologies are especially useful in seismically quiet regions where seismic events

occur infrequently. Ambient noise tomography (see, e.g., Nicolson et al., 2012) is

an example of this, where seismologists use methods similar to those employed in

earthquake surface wave tomographies to invert for the seismic velocity structure

between the virtual source(s) and receiver(s). They usually obtain data from large

station arrays, allowing for numerous source-receiver combinations. The theoretical

foundation of seismic interferometry is also valid for auto-correlations, for which the

virtual source and receiver are identical. In such cases, the coherent wavefield is

equivalent to the energy portion scattered back to the virtual source’s position.

As the ambient field is ubiquitous through time and space, one can repeatedly

retrieve CFs (or empirical Green’s functions) of the medium and, thereby, quan-

tify potential velocity changes that a region might undergo. In a study using data

recorded at Merapi Volcano, Sens-Schönfelder and Wegler (2006) proposed a method

called passive image interferometry (PII) to retrieve a seismic velocity change (dv/v)

time series from ambient seismic noise. Chapter 3 provides a quantitative descrip-

tion of PII’s algorithm. In the following section, I will discuss the state of the art of

research employing dv/v time series.

2.3 The Impact of External Forcing on the Seismic

Velocity

The fact that the seismic velocity varies over time raises a simple question whose

answer is surprisingly complex: “Why?”. In other words: “Which physical processes

impact the seismic velocities, and what are the material properties they influence?”

To answer this question, let us go back to the basics and examine the propagation
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velocity of shear or S-waves (e.g., Shearer, 2019):

vS =

√
µ

ρ
, (2.2)

where ρ is the mass density of the propagation material and µ is the shear modulus

describing the material’s resistance to shearing. As vS primarily governs the surface

wave phase velocity (or dispersion), all phenomena causing a measurable velocity

change must impact either µ or ρ. Seismological field experiments investigate large

volumes. Consequently, changes in the mean of ρ would have to translate to volume

changes, which are not observed in the expected magnitude. Therefore, the bulk of

velocity changes are due to changes in the shear modulus.

As with seismic tomography, the first studies that investigated changes in the

seismic velocity did not rely on noise interferometry but on the energy emitted by

controlled sources (e.g., De Fazio et al., 1973; Eisler, 1967). Poupinet et al. (1984)

proposed to use the whole waveform, rather than just the first ballistic arrival, of

repeating earthquake doublets to determine dv/v, using a method called coda wave

interferometry (CWI) (see Singh et al., 2019; Snieder et al., 2019), and observed

a decreased seismic velocity following a M5.9 earthquake. Note that, because of

the different nature of the correlated wavefield, CWI tends to be sensitive to deeper

properties with a high-frequency coda dominated by body waves (Sheng et al., 2021),

and PII tends to use lower frequency surface waves (Obermann et al., 2016; Viens

et al., 2022).

Following Poupinet et al. (1984)’s observation, a large number of publications

presented evidence for dv/v decreases shortly after large earthquakes using CWI

or PII (e.g., Brenguier, Campillo, et al., 2008; Hobiger et al., 2012; Hotovec-Ellis

et al., 2014; Minato et al., 2012; Richter et al., 2014; Schaff & Beroza, 2004, and

numerous others). Furthermore, these studies established that these damage-induced

changes can last over many years and only recover slowly following a logarithmic law.

However, while the occurrence of “healing” and damage has been demonstrated, the
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underlying physical processes are still subject to scientific discussion. Recently, Sens-

Schönfelder et al. (2019) proposed that thermal and chemical microscopic healing of

cracks based on contact ageing leads to an overall stiffening following the damage-

induced material softening. Their model appears to deliver accurate predictions for

damage and recovery in laboratory experiments (Simpson et al., 2023).

Another family of mechanisms impacting the seismic velocity can be summarised

as modifications in the confining pressure. For example, snow loads increase the con-

fining pressure and cause increases in the seismic velocity (Donaldson et al., 2019;

Guillemot et al., 2020; Hotovec-Ellis et al., 2014; Q. Y. Wang et al., 2017). Increases

in pore pressure, on the other hand, for example, by refilling of groundwater, leads

to decreases in dv/v (Andajani et al., 2020; Barajas et al., 2021; Sens-Schönfelder

& Wegler, 2006). Many studies found hydrological effects to be the dominant mech-

anism in dv/v time series and controlling seasonal cycles as shown in Figure 2.4.

Therefore, several authors have proposed using dv/v as a proxy for groundwater lev-

els (Clements & Denolle, 2021; Lecocq et al., 2017; Mao et al., 2022). Usually, such

studies invoke the opening and closing of cracks and pores caused by decreasing and

increasing confining pressure, respectively, to explain the velocity changes associated

with changes in the confining pressure (O’Connell & Budiansky, 1974).

Particularly for granular media, the rigidity and shear modulus and, thereby,

vS change significantly with the freezing or thawing of pore waters. This leads to

sudden dv/v jumps at soil-covered sites whenever the temperature falls below 0 ◦C

(Gassenmeier et al., 2015; Steinmann et al., 2021). Conversely, thawing, for example,

associated with permafrost degradation, leads to decreasing seismic velocity (Albaric

et al., 2021; Lindner et al., 2021; Zimmerman & King, 1986).

Along with these very commonly observed factors influencing dv/v, many more

exotic ones were observed. Particularly in arid settings, temperature changes in-

duce thermal strain (e.g., Oakley et al., 2021). For example, in Chile’s Atacama
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This figure was obtained from Mao, S., Lecointre, A., van der Hilst, R. D., & Campillo,

M. (2022). Space-time monitoring of groundwater fluctuations with passive seismic

interferometry. Nature Communications, 13 (1), 4643. https ://doi .org/10 .1038/

s41467-022-32194-3

Figure 2.4: Anti-correlation between dv/v and hydraulic parameters observed in

southern California. a dv/v in comparison to precipitation. b dv/v set in context

to the hydraulic head. Note that dv/v is labelled ∆v/v. For further details, refer to

the original publication.

.

desert, the seismic velocity exhibits patterns that Richter et al. (2014) traced back

to temperature diffusion in the subsurface. Sens-Schönfelder and Larose (2010) even

demonstrated that drastic temperature changes on the lunar surface are responsible

for velocity changes observed in the seismic data collected by the Apollo 17 mission.

Additionally, the impact of solar and lunar tidal stresses was identified in some dv/v

time series (Sens-Schönfelder & Eulenfeld, 2019).
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To monitor active volcanoes, temporally dense and continuous monitoring tech-

niques are particularly desired. Therefore, PII established itself as a suitable mean to

quantify changes in the volcanic edifice and its vicinity before, during, and after an

eruption cycle. However, the physical relationship between volcanic deformation and

dv/v is complex, non-linear, and, as a result, still poorly understood. The complexity

of the relationship also explains the multitude of recorded observations, which reach

from co-eruptive velocity decreases (e.g., Brenguier et al., 2011, 2016; De Plaen et al.,

2016, 2019; Machacca-Puma et al., 2019; Takano et al., 2017) over velocity increases

(e.g., Caudron et al., 2021, 2022; Donaldson et al., 2019; Donaldson et al., 2017;

Hotovec-Ellis et al., 2015; A. S. Yates et al., 2019) to no detected velocity changes.

Overprinting signals from mechanisms with a more significant impact on the seismic

velocity may also obscure volcanic influence on dv/v.

Moreover, ambient noise studies at very active volcanoes suffer from strong con-

taminations of the ambient seismic field by volcanic tremors (Gómez-García et al.,

2018; A. Yates et al., 2023). PII requires a stationary spatio-temporal distribution

of the wavefield as fluctuations alter the shape of the cross-correlation and, thereby,

lead to modulations in the dv/v estimate that do not correspond to any physical

changes in the medium but could be misinterpreted as such (Hadziioannou et al.,

2011).

Due to all these complexities and challenges, volcano observatories do not yet em-

ploy dv/v modulations as precursory signals for imminent volcanic activity. Instead,

all so-far published studies utilise datasets available after a volcanic crisis and aim to

establish links to estimated velocity changes, thereby paving the way towards erup-

tion forecasts using ambient seismic noise (Brenguier, Shapiro, et al., 2008). This

thesis will expand on existing research in a similar spirit. While doing so, we will

explore a manifold of other physical mechanisms impacting dv/v present in complex

volcanic and environmental settings. Understanding and unravelling all physical con-
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tributions to dv/v is crucial to making meaningful quantitative statements about the

volcanic impact on seismic velocity.
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CHAPTER 3

End-to-End Processing of Ambient Seismic Noise:

From Raw Noise Recordings to Time-Dependent Velocity Change Maps

This chapter1 revolves around the methodological aspects of ambient seismic noise

monitoring and, more specifically, passive image interferometry (PII). In it, we

present SeisMIC, a fast, versatile, and adaptable open-source software to estimate

seismic velocity changes (dv/v) from ambient seismic noise. SeisMIC includes a broad

set of tools and functions to facilitate end-to-end processing of ambient noise data,

from data retrieval and raw data analysis via spectrogram computation, over wave-

form coherence analysis, to post-processing of the final velocity change estimates. A

1This chapter has been published as [Makus, P., & Sens-Schönfelder, C. (2024). SeisMIC - an

Open Source Python Toolset to Compute Velocity Changes from Ambient Seismic Noise. Seismica,

3 (1). https ://doi .org/10 .26443/seismica .v3i1 .1099]. This work is licensed under a Creative

Commons Attribution 4.0 International License. Compared to the published article, I replaced

the introduction to fit into the context of this thesis. Minor modifications were introduced to the

remaining text and the mathematical notation to preserve consistency across the thesis.
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particular highlight of the software is its ability to invert velocity change time series

onto a spatial grid, making it possible to create maps of velocity changes. With the

software, we implement new data formats, ensuring uniformity, flexibility, interoper-

ability, and integrity. To tackle the challenge of processing large continuous datasets,

SeisMIC can exploit multithreading at high efficiency with an about five-time im-

provement in compute time compared to MSNoise, probably the most widespread

ambient noise software. In this chapter, we provide a short tutorial and tips for users

on how to employ SeisMIC most effectively. Extensive and up-to-date documentation

is available online. Its broad functionality combined with easy adaptability and high

efficiency make SeisMIC a well-suited tool for studies across all scales. Furthermore,

we will outline and discuss some more theoretical aspects of PII and describe and

derive the assumptions underlying to the method.

As I discussed in Section 2.3, dv/v is used in a host of applications to changes

in the subsurface induced, for example, by environmental, tectonic, or volcanic pro-

cesses. Estimates of dv/v time series can be obtained from the ubiquitous ambient

seismic noise (see Section 2.2). Recordings of ambient seismic noise are only retained

on continuous seismic data, as opposed to triggered data, which, for the sake of stor-

age efficiency, contain only recordings of events such as earthquakes. Nowadays, it

has become common practice to preserve continuous waveform recordings, opening

a path for a focus on noise-based methods.

Processing and analysing continuous waveforms comes with multiple challenges

due to the large amount of raw and derived data, such as the need for efficient pro-

cessing and storage strategies (Arrowsmith et al., 2022). Still today, many authors

use unpublished codes to produce results for later publication and interpretation,

making it difficult for fellow researchers to reproduce or adapt the analyses. Us-

ing community codes published in the spirit of the FAIR principles (Barker et al.,

2022) can facilitate the reproducibility of research, exchange in the community, and
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progress in science. Only a few software solutions exist for ambient noise seismol-

ogy. Perhaps the most popular among these are MSNoise (Lecocq et al., 2014) and

NoisePy (Jiang & Denolle, 2020). However, as we will show and discuss in this chap-

ter, the existing software still leaves a niche to fill. For example, MSNoise is more

specialised for end-to-end workflows and automated monitoring solutions, lending

it more towards applications in large observatories, whereas, recently, NoisePy has

undergone development towards cloud computing. To fill the remaining gap, we in-

troduce SeisMIC (Seismological Monitoring using Interferometric Concepts) (Makus

& Sens-Schönfelder, 2022), a fast, robust, flexible, and easily-adapted Python tool

to compute, process, and analyse dv/v. Due to these attributes, SeisMIC especially

excels in the analysis of campaign data, where both ease of use and flexibility are

crucial.

3.1 Modular Structure

3.1.1 Whom is it for? - The Philosophy behind SeisMIC

As outlined above, monitoring surveys are applied to a broad spectrum of research

scopes resulting in a high diversity of requirements for research software. With that in

mind, we developed SeisMIC to be flexible and adaptable to user needs. As opposed

to working with a black box, users work close to the source code, making it easy to

develop individualised workflows. Modules, submodules, or even single objects and

functions of the code can also be used individually. Yet, the software remains a light

and fast package, in which we avoid overhead due to non-essential functionality. For

example, in contrast to MSNoise, we avoid heavy database management structure for

continuous observatory monitoring, resulting in a significantly faster processing (see

Section 3.1.3) and giving SeisMIC an advantage in the analysis of campaign based

data.
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Learning to use a new code and even only determining whether a code satisfies

one’s need is a large time investment. To guarantee a fast start and a steep learning

curve, we aligned SeisMIC closely with ObsPy (Beyreuther et al., 2010), with whose

syntax almost all seismologists are familiar. In addition, we host tutorials and exten-

sive, regularly-updated documentation at https://petermakus.github.io/SeisMIC/.

All objects, methods, and functions have documentation strings according to the

Sphinx standard.

As developers, we follow the FAIR principles (Barker et al., 2022). That is,

we make SeisMIC findable, accessible, interoperable, and reusable. SeisMIC is a

community code with clearly communicated community standards, and users can

discuss or report issues, suggest changes, or submit pull requests via GitHub. We

distribute SeisMIC under the European Union Public License 1.2.

Lastly, we keep up to high standards regarding functional robustness. We test

functional integrity using a combination of integral and unit tests. To date, Seis-

MIC has successfully been applied to a broad range of applications, such as volcanic

environments (Makus, Denolle, et al., 2023; Makus, Sens-Schönfelder, et al., 2023),

lab-scale applications (Asnar et al., 2023), and cryoseismological analyses (Nanni

et al., 2023).

3.1.2 Implementation

As commonplace in Python, we structure SeisMIC in a modular fashion. We divide

the program into clear modules, which, in turn, are subdivided into submodules.

These modules can either be used separately or connected into a workflow/pipeline,

starting from data retrieval and concluding with the computation, plotting, and post-

processing of dv/v objects. We show a chart with a simplified overview of SeisMIC’s

modular structure in Figure 3.1.

As shown in Figure 3.1, SeisMIC consists of four main modules. seismic.trace_-
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Compute 
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Figure 3.1: A flowchart summarising SeisMIC’s modules and their purposes. A

general workflow starts with data retrieval, continues with the computation of cor-

relation functions, from which a velocity change time series can subsequently be

estimated. We illustrate this with the example given in Section 3.2. The depicted

floppy disk marks database management modules. Operations and processes are

shown in blue, whereas objects and databases are shown in orange. For the sake of

simplicity, we omit non-essential objects and functions, instead, the flowchart focuses

on the core processes.

data hosts the code for reading raw waveform data and station information. Alter-

natively, it can request data from FDSN servers. SeisMIC handles waveform data in

miniseed format in daily chunks, while it saves station information in StationXML

format. Generally, station response information is only necessary if the user opts to

remove the station response before correlating. However, basic station information,

such as the station’s geographic coordinates, is always required.
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All objects and functions to preprocess waveform data and compute correlation

functions (CFs) are located in seismic.correlate. We include commonly used

preprocessing functions such as detrending, tapering, amplitude clipping, sign-bit-

normalisation, or spectral whitening (Bensen et al., 2007). For a complete and up-

to-date list of preprocessing functions, consult SeisMIC’s documentation. Users can

easily import custom processing functions into the workflow. We compute CFs by

transferring traces to matrices, computing the Fourier transform, and then computing

their cross-correlation in the frequency domain. Suppose we want to calculate all

available correlations from a dataset of M waveforms, of which each has N samples

(indices m and n, respectively). Then, the respective mathematical operations can

be expressed as follows:

First, we compute the discrete Fourier transform of the matrix s containing the

waveforms in the time domain:

Sm,k =
N∑

n=1

sm,ne
− i2π

N
kn, (3.1)

where i =
√
−1 and k is the sample index of the signal in the frequency domain.

Secondly, we obtain the correlation matrix C by computing the product of the matrix

with the complex conjugate of itself. We then repeat the operation M times, each

time rolling the complex conjugate matrix by j = {1, 2, ..,M} lines:

Co,k = Sm,kSm+j,k, (3.2)

where the bar indicates the complex conjugate and o indexes the station pair. In the

described scenario, we obtain M2 CFs, which are subsequently transferred back to

the time domain:

Co,n =
1

N

N∑
k=1

Co,ke
i2π
N

kn (3.3)
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The CFs are then stored as special objects with attributes, plotting and post-

processing methods. Finally, SeisMIC writes the CFs to a storage- and computationally-

efficient HDF5 container (Koranne, 2011).

All functionality to estimate velocity changes from the CFs resides in seismic.monitor.

Currently, SeisMIC supports the estimation of velocity changes using the stretching

technique (Sens-Schönfelder & Wegler, 2006) and we are implementing the wavelet-

cross-spectrum analysis (Mao et al., 2020).

The stretching technique compares a reference correlation function C̃n to a CF C l
n

computed from data at an arbitrary subwindow l of the total time series. Note that

we omit the index o indicating the station pair since this operation is independently

executed for each station pair. There are several approaches to obtaining C̃, all with

their unique advantages, SeisMIC supports the use of single or multiple references

(Sens-Schönfelder, Pomponi, & Peltier, 2014). In SeisMIC, we implemented a grid

search, in which we evaluate C̃ at a new time vector τ̃ stretched (or compressed)

with the stretching factor κj:

τ̃j = τe−κj (3.4)

Note that we base the exponential stretching on a Taylor extension for small

velocity changes. This assumption is more accurate than the more common τ̃j ≈

τ(1 + κj) and has the advantage of yielding linearly reversible stretched functions.

In Appendix A, we provide a derivation.

Using our stretched time vector, we obtain a stretched reference correlation matrix

with J lines, where J is the total number of tested stretch factors. Afterwards, we

compute the zero-lag correlation (i.e., the normalised dot product) between each

stretched reference and Cl:
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Rl
j =

N∑
n=1

C̃j
nC

l
n

(
N∑

n=1

(C̃j
n)

2

N∑
n=1

(C l
n)

2

)−1/2

(3.5)

The stretching factor κ̂j = −dv/v resulting in the maximum Rl
j corresponds

to the negative apparent velocity change at time step l. The maximum value of R

measures the velocity change estimate’s stability and is often referred to as coherence.

We then compute Rl
j for all time steps resulting in the similarity matrix R, the final

velocity change time series, and a corresponding coherence time series. Note that R

is usually not computed for the whole coda, but just for a user-defined subset of lag

time samples. In SeisMIC, dv/v can either be jointly inverted from causal (right) and

acausal (left side) or estimated from either side, which might be desirable for active

source experiments or if one side of the CF exhibits a superior signal-to-noise-ratio.

Finally, the computed velocity change time series can be post-processed and plot-

ted using pre-implemented or custom functions. In addition, SeisMIC can invert a

set of velocity change time series from different stations onto a map using the inver-

sion method described by Obermann, Planès, Larose, and Campillo (2013). To our

knowledge, SeisMIC is currently the only publicly available software that supports

spatial inversion of velocity change time series.

The workflow steps outlined above rely entirely on well-known Python libraries,

including NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), ObsPy (Beyreuther

et al., 2010), Matplotlib (Hunter, 2007), and h5py (Collette et al., 2020). To ensure

the best stability, we only utilise the most well-maintained projects and keep the

number of dependencies to a minimum. Some of SeisMIC’s core functionalities are

based on the MIIC software project (Sens-Schönfelder, Flores-Estrella, et al., 2014).

SeisMIC’s latest beta version 0.5.23 is compatible with Python 3.10 and 3.11.
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Data Formats and Standards

At the time of writing, there are no established standards for data handling in ambi-

ent noise seismology that would facilitate the exchange of correlation functions and

subsequent processing with different tools. In the seismological community, excellent

examples of well-designed data representations that developed into quasi-standards

are the ObsPy (Beyreuther et al., 2010) trace and stream classes for waveform data

and the inventories for station metadata. Such successful representations require

some core attributes:

1. Uniformity: Various datasets have the same set of attributes, making them

directly comparable.

2. Easy and flexible I/O (i.e., input/output), where data can be read, modified and

stored later. Reading and writing operations are fast and easy. Modifications

can be stored safely.

3. Interoperability: Data can easily be imported and exported into broadly used

applications or libraries, facilitating data exchange.

4. Integrity: The data format must contain all information required for later

processing, analysis, or cataloguing. No crucial information should be lost.

With SeisMIC, we suggest a representation of noise correlation functions im-

plementing these attributes. For correlation functions, we base our data represen-

tation on the successful ObsPy streams and traces by introducing the CorrTrace

and CorrStream classes that incorporate the specific requirements of CFs to ensure

uniformity and integrity.

For the storage of CFs, the seismological standard for waveform data, MiniSEED,

is not appropriate since it does not allow for the storage of the required meta informa-

tion. The solution provided in SeisMIC stores the data itself in the form of a NumPy
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array complemented with a header containing information about the recording and

correlation computation, such as sample rate, start and duration of the correlated

time windows, minimum and maximum lag times, seed identifiers of the used sta-

tions, and coordinates of these stations. We show an extract of the header fields

for an exemplary dataset in Table 3.1. CorrTrace headers also contain information

about executed processing steps, such as filtering or tapering. The naming of sta-

tions follows the SEED convention. To ensure interoperability, data and header can

easily be converted into NumPy arrays and Python dictionaries, respectively. The

objects come with processing and plotting methods. As outlined above, SeisMIC

saves CorrStreams in hdf5 containers, from which they can later be read, modified,

and saved again.

Table 3.1: Extraction from the header of a correlation function computed in Sec-

tion 3.2.

Field name Value Explanation

network X9-X9 SEED network codes, dash-separated

station IR1-IR1 SEED station codes, dash-separated

channel HHE-HHE SEED channel codes, dash-separated

location - SEED location codes, dash-separated (may be empty)

corr_start 2016-01-25T01... UTC start time of the correlated traces

corr_end 2016-02-25T01... UTC end time of the correlated traces

start_lag -25.0 computed start lag in seconds
...

...
...
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3.1.3 Benchmark and Performance

In ambient noise seismology, it is not uncommon to work with data volumes in the

order of terabytes. We address the arising computational and storage challenges with

efficient and high-performance computing (HPC) compatible code design. To this

end, SeisMIC enables parallel computing of correlations, velocity change estimates

and spatial inversions, where the computation of CFs is the most expensive operation

by a large margin. We implement parallel computing using mpi4py (Dalcin & Fang,

2021), which relies on the message passing interface (MPI). In contrast to other

Python multi-threading solutions, MPI-based solutions work seamlessly on HPC and

cluster solutions.

In SeisMIC, the computationally most expensive parts of the workflow described

in Section 3.1.2 are the calculation of correlation functions, the associated prepro-

cessing, and the estimation of the final velocity change time series. Therefore, an

effective parallelisation scheme matters the most in these steps. For users, it is also

important to understand how memory requirements scale. For the computation of

CFs and the preprocessing of raw data, each core reads different raw data in chunks

of equal length (see Listing 3.3 for details). Subsequently, the same core performs

the preprocessing. For the cross-correlation operation, each core is responsible for

a different component combination. This implementation makes the random access

memory (RAM) usage practically independent of the number of cores used. Thus,

RAM usage will mainly depend on the length of the raw data chunks read in each

step (i.e., a smaller read length will lead to lower memory usage) and its sampling

rate (i.e., a lower sampling rate will lead to lower memory usage). Resulting CFs are

written to h5 files immediately after correlation or stacking and the memory is freed.

In contrast, SeisMIC computes the final dv/v estimate with “1-core per component

combination”. Here, a single core loads all available CFs for one component combina-

tion and executes the stretching algorithm and the associated processing. Therefore,
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for the final dv/v calculation, the memory requirement scales with the number of

employed cores.

Multicore Scaling

To test how SeisMIC’s computational performance scales with the number of used

threads, we compute autocorrelations from three component data on a single cluster

node featuring an Intel Cascadelake CPU structure that is equipped with 2 CPU

sockets, each holding 20 physical cores that can each execute two threads in parallel.

For our test, we compute CFs from 30 days of waveform data. SeisMIC reads daily

chunks of miniseed files, which it subsequently decimates, here to a sampling rate of

25 Hz, after imposing an anti-alias filter. The daily waveforms are then detrended,

tapered, and filtered with a pass band between 0.01 and 12 Hz. The data is then

sliced into hourly traces, which are again linearly detrended, filtered between 2 and

8 Hz, and clipped if the amplitude exceeds a threshold of 2.5 times its standard devi-

ation. Then, SeisMIC computes hourly CFs in the frequency domain and saves them

in a customised HDF5 container after performing an inverse Fourier transform. We

provide the YAML file containing the processing parameters in the digital supple-

ment. We execute this operation using 1, 2, 4, 8, 16, 32, and 64 threads for data from

1, 2, 4, and 8 stations (i.e., 3, 6, 12, and 24 channels and component combinations).

For each configuration, we repeat the computation ten times.

Figure 3.2 shows the mean processing time and standard deviation over the ten

operations per unique nthreads-nstations-combination. We normalise the processing

times by the time required for nthreads = 1 and nstations = 1. While nthreads ≤

nchannels, where, in our case, nchannels = 3nstations, the processing time scales close to

linearly with the number of used threads, indicating an excellent parallel computing

performance. As most of the parallel processing in SeisMIC works on a one-core-

per-channel basis, only very little increase can be expected beyond this threshold.
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Indeed, for nchannels < nthreads, the code reaches a performance plateau. From here

on, the processing time increases with a further increase of nthreads, probably due to

MPI’s communication overhead. Based on the shown results, we would discourage

hyperthreading (i.e., using more threads than available physical cores), which leads to

a significant performance drop. Generally, one should not employ more threads than

the total number of available channels for the computation of correlation functions

or the total number of channel combinations for the dv/v estimation.
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Figure 3.2: Multi-core scaling properties of SeisMIC. We show compute times for

auto-correlations as a function of number of three-component datasets and number

of parallel processing threads. The data points correspond to the mean processing

time and the error bars to its standard deviation for ten operations (mostly too small

to be visible). The processing times are normalised by the time needed to compute

the correlations for one station using only one thread. The shaded area marks the

area where the number of threads exceeds the number of physical cores, 40, i.e., the

area where hyperthreading is employed.
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Comparison with MSNoise

To analyse how SeisMIC’s processing speed compares to the latest release of MSNoise

(Lecocq et al., 2014), 1.6.3, we choose to calculate cross-correlations, which is the

most expensive operation in a standard workflow, taking up more than 95 % of the

total compute time. In this benchmark, we retrieve hourly cross-correlations for

14 days of raw waveform data between eight 3-component broadband seismometers

sampling at 100 Hz. We set the preprocessing to be identical for both programs.

First, the data are decimated to 25 Hz. Subsequently, we detrend, taper, and band-

pass filter the data between 2 and 4 Hz. Before computing the CFs, we apply one-bit

normalisation and spectral whitening. We do not remove the instrument response.

Note, however, that both MSNoise and SeisMIC execute the response removal using

ObsPy (Beyreuther et al., 2010) and will therefore take the same amount of compute

time and resources. Finally, we save the hourly CFs and daily CF stacks for all six

unique component combinations with a length of 50 s. We perform the benchmark

on the same Intel-Cascadelake-based node that we use in Section 3.1.3.

We show the processing times required by MSNoise and SeisMIC for the outlined

operation as a function of employed threads in Figure 3.3. Despite having received a

significant performance boost with the update to version 1.6.x, MSNoise still needs

about five times as long and thrice as much RAM as SeisMIC to execute the cross-

correlation workflow, putting SeisMIC at a similar efficiency level as NoisePy (see

Jiang & Denolle, 2020). In addition, SeisMIC offers a broader range of preprocessing

options than NoisePy or MSNoise. MSNoise creates one miniseed file per CF, re-

sulting in less complex writing operations, which are more evenly distributed across

the cores. For this benchmark, this translates to a slightly better scaling between

the number of cores and the computational time but also in a high number of files,

which can be undesirable for large datasets. SeisMIC, on the other hand, creates one

file per component combination. In every case, MSNoise remains more than twice as
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Figure 3.3: Compute times for a cross-correlation workflow for all six unique com-

ponent combinations between eight seismic stations using MSNoise 1.6.3 (Lecocq et

al., 2014) and SeisMIC 0.5.3. The height of the bars indicates the mean processing

time over five iterations with the error bars representing the standard deviation. For

hardware information and the exact parametrisation of the workflows, consult the

text body.

slow as SeisMIC. Note that the shown times do not include the time that MSNoise

takes to set up a database and scan new data, which can take a significant amount

of time, whereas these operations are practically instantaneous in SeisMIC.

While the presented results are encouraging, we remark that we could decrease

compute times even further by exploiting the potential of modern graphic process-

ing units (GPUs), which can correlate ambient seismic noise with high efficiency

(Clements & Denolle, 2021; Wu et al., 2022). Implementing such algorithms belongs

to the intermediate-term goals of SeisMIC’s development.
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3.2 A Practical Example of a Workflow: From Raw

Waveform Data to a Velocity Change Time Se-

ries

In this section, we demonstrate how to obtain a dv/v time series using a minimal

workflow in SeisMIC. In the digital supplement, we provide two Jupyter notebooks

containing the source code used for this workflow. The exemplary data are recorded

by station X9.IR1 around the date of the M7.2 Zhupanov earthquake in Kamchatka,

Russia. In the following, we investigate the impact of the event on the seismic velocity

in the station’s vicinity. A discussion of the result is performed in Chapter 4. We con-

ducted this analysis using SeisMIC’s implemented workflow, which is parametrised

using a simple YAML file (see digital supplement). In the following, we will take a

step-by-step tour through said workflow and provide some minimal code examples.

For further examples, we advise the reader to consult SeisMIC’s documentation and

our GitHub page.

3.2.1 Data Retrieval

To start, we download data from an FDSN-compatible server. In our case, we down-

load data from station X9.IR1, available over the GEOFON FDSN service (Quinteros

et al., 2021). For conciseness, we restrict this example to 11 days of data from 25

January to 5 February 2016. In Section 3.1.3, we show how SeisMIC performs when

confronted to larger datasets recorded on several stations and how compute time

scales when employing multiple cores. Our exemplary time window comprises the 28

January Zhupanov earthquake, whose coseismic velocity drop we want to investigate.

In SeisMIC, we can initiate the data download using the Store_Client class and its

method download_waveforms_mdl:
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Listing 3.1: Downloading data using SeisMIC

from obspy import UTCDateTime

from s e i sm i c . trace_data . waveform import Store_Cl ient

s t a r t t ime = UTCDateTime(2016 , 1 , 25)

endtime = UTCDateTime(2016 , 2 , 5)

# Decide where data are s t o r ed

sc = Store_Cl ient ( ’GEOFON’ , ’ /path/ to / p r o j e c t ’ , read_only=False )

sc . download_waveforms_mdl (

s ta r t t ime , endtime , c l i e n t s =[ ’GEOFON’ ] , network=’X9 ’ ,

s t a t i o n=’ IR1 ’ , l o c a t i o n=’ ∗ ’ , channel=’HHE’ )

Under the hood, this will initiate ObsPy’s (Beyreuther et al., 2010) MassDownloader

to download continuous waveform data from the specified station if not already

present locally. Here, we will compute autocorrelations using only the east com-

ponent of the seismogram. We can use SeisMIC to get a first idea of the spectral

content of our waveform and to investigate in which frequency bands we might find

stable noise sources suitable for PII. We show a spectrogram computed using Welch

windows (see, e.g., Barbe et al., 2010) as implemented in SeisMIC in Figure 3.4.

3.2.2 Computing Autocorrelations

After downloading the waveforms, we can correlate them to obtain CFs. When

computing correlations, we have ample preprocessing options, which, for brevity, we

will not discuss here in detail. Most fundamentally, we must set the correlation

length, corr_len, (i.e., the duration of the time windows to be correlated), the
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Figure 3.4: Time dependent spectrogram of the raw waveform at X9.IR1. We com-

pute the spectrogram after removing the instrument response using 2-hours Welch

windows. Note the energy spike caused by the Zhupanov earthquake. The energy

amplitude is normalised by its maximum.

increment between these time windows, corr_inc, the correlation method (in our

case, autocorrelation), and the frequency window to be filtered. The user defines

all options in the YAML file, but they can also provide parameters in a Python

dictionary. For this example, we choose a correlation length of one hour and a

frequency band between 2 and 4 Hz. In SeisMIC, the Correlator class handles the

correlation workflow.

Listing 3.2: Downloading data using SeisMIC

from s e i sm i c . c o r r e l a t e . c o r r e l a t e import Cor r e l a t o r

# sc i s the p r e v i o u s l y i n i t a t i e d Store_Cl ient

c = Cor r e l a to r ( sc , opt ions=’ path/ to /params .YAML’ )

s t = c . pxcorr ( )
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To illustrate the syntax of the parameter file, we show an extract of it below. Note

that the keys preProcessing, TDpreProcessing, and FDpreProcessing can also

import custom, external functions as long as input arguments and return objects

follow a predefined syntax.

Listing 3.3: params.YAML

. . .

read_start : ’ 2016−01−25␣ 00 : 0 0 : 0 1 . 0 ’

read_end : ’ 2016−02−05␣ 00 : 0 0 : 0 0 . 0 ’

sampling_rate : 25

remove_response : Fa l se

combination_method : ’ autoComponents ’

p r eProce s s ing : [

{ ’ f unc t i on ’ : ’ s e i sm i c . c o r r e l a t e . preprocess ing_stream . detrend_st ’ ,

’ a rgs ’ : { ’ type ’ : ’ l i n e a r ’ }} ,

{ ’ f unc t i on ’ : ’ s e i sm i c . c o r r e l a t e . preprocess ing_stream . cos_taper_st ’ ,

’ a rgs ’ : { ’ taper_len ’ : 100 ,

’ l o s s l e s s ’ : True }} ,

{ ’ f unc t i on ’ : ’ s e i sm i c . c o r r e l a t e . preprocess ing_stream . s t r e am_f i l t e r ’ ,

’ a rgs ’ : { ’ f type ’ : ’ bandpass ’ ,

’ f i l t e r_op t i o n ’ : { ’ f reqmin ’ : 0 . 0 1 , ’ freqmax ’ : 1 2 . 4 9 } } } ]

s ubd i v i s i on :

corr_inc : 3600

corr_len : 3600

. . .

corr_args : { ’ TDpreProcessing ’ : [

{ ’ f unc t i on ’ : ’ s e i sm i c . c o r r e l a t e . preprocess ing_td . detrend ’ ,

’ a rgs ’ : { ’ type ’ : ’ l i n e a r ’ }} ,
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{ ’ func t i on ’ : ’ s e i sm i c . c o r r e l a t e . preprocess ing_td . TDf i l t e r ’ ,

’ a rgs ’ : { ’ type ’ : ’ bandpass ’ , ’ f reqmin ’ : 2 , ’ freqmax ’ : 4}} ,

] ,

’ lengthToSave ’ : 2 5 ,

’ c en t e r_co r r e l a t i on ’ : True ,

’ no rma l i z e_cor r e l a t i on ’ : True ,

. . .

}

. . .

Its pxcorr method will internally handle preprocessing and correlation. It will also

initiate MPI to enable parallel processing. In Figure 3.5, we plotted the CFs using

SeisMIC’s plotting tools. Due to the high noise level in the chosen time window

and frequency band, a well-defined coda emerges from the CFs (see Makus, Sens-

Schönfelder, et al., 2023, or Chapter 4 for details).

3.2.3 Waveform Coherence

For a first assessment of which frequency bands are well-suited for a velocity change

analysis, we can use a spectrogram like the one we show in Figure 3.4. Addition-

ally, one can use SeisMIC’s waveform coherence function. The waveform coherence

corresponds to the averaged zero-lag cross-correlation between a reference CF and

CFs at time t (Steinmann et al., 2021). In Figure 3.6, we show the waveform co-

herence for our exemplary dataset computed between hourly CFs and the average

CF as a reference. We determine the coherence for 5 s long lapse-time windows and

one-octave-wide frequency bands jointly for positive (causal) and negative (acausal)

lag times. SeisMIC computes waveform coherence using the Monitor class and its

compute_waveform_coherence_bulk() method (see digital supplement).
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Figure 3.5: Hourly autocorrelations of ambient noise recorded by the east compo-

nent of X9.IR1. This plot showcases two styles to plot correlations in SeisMIC. (a)

Autocorrelations plotted as a colour image. The colours scale with the amplitude of

the correlation. We superimpose the average of all shown autocorrelations on top

of the heatmap. (b) Autocorrelations plotted as a section plot. In this plot, each

hourly CF corresponds to one curve. Here, we only show the causal side of the CF.

Figure 3.6 leads us to infer a high stability and energy content between 0.5 and

4 Hz. The coherence remains high until late lag times, e.g. for 3 Hz centre frequency,
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Figure 3.6: The waveform coherence as a function of lag time and frequency for the

dataset from station X9.IR1 and channel HHE. For details, consult the text body.

up to 75 periods. From this, we infer a highly scattering medium paired with a

high energy content in this frequency band originating from the volcanic system (see

Makus, Sens-Schönfelder, et al., 2023, or Chapter 4). Therefore, we henceforth focus

on the analysis of dv/v between 2 and 4 Hz.

3.2.4 Computing Velocity Changes Using the Stretching Method

Using the procedure theoretically outlined in Section 3.1.2, we can estimate the evolu-

tion of the seismic velocity in the study period. Like previously, the parametrisation

is handled over the YAML file (see digital supplement). Before computing dv/v, we

smooth the one-hour CFs with a 4-hour long Hanning window. As reference CF, we

use the mean of all CFs. Then, we compute dv/v for lag times between 3.5 s and 12 s

simultaneously from the causal and acausal parts of the coda. We plot the resulting

velocity change time series using one of SeisMIC’s standard plotting templates in
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Figure 3.7.
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Figure 3.7: Velocity change time series estimated from the CFs shown in Figure 3.5.

The increment between each data point is one hour and the shown dv/v is derived

from CFs that are smoothed over 4 hours. The points’ colour scales with the cor-

relation coefficient (coherence) between the stretched CF and the reference CF. We

plotted the origin time of the M7.2 Zhupanov earthquake, which occurred on 28

January 2016, as a vertical red line. An obvious velocity drop coinciding with the

event can be identified. A subsequent recovery and more subtle differences in seismic

velocity between day- and nighttime are visible.

Even though we do not focus on data interpretation in this article, we should

take a brief look at the presented results. Most notably, we identify a clear velocity

drop coinciding with the regional M7.2 Zhupanov earthquake. Interestingly, the

resolution of the dv/v time series is high enough to identify a diurnal cycle that

could be caused by air temperature and pressure variations, for example, observed

by B. Wang et al. (2020), or might be due to lunar and solar tides as reported by

Yamamura et al. (2003) and Sens-Schönfelder and Eulenfeld (2019). Lastly, we note

that the correlation coefficient is significantly lower before 26 January 2016. We
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link this observation to a transient change in the wavefield as described by (Makus,

Sens-Schönfelder, et al., 2023, Chapter 4) and Steinmann et al. (2023).

3.2.5 Spatial Imaging of Velocity Changes

Velocity change estimates like the one presented in Figure 3.7 show dv/v as a function

of time but do not directly yield insight into the spatial distribution of these velocity

changes. Coda waves, as used in PII, sample the medium at a high spatial extent.

While this allows to detect distributed weak velocity changes or changes located away

from the path of direct waves, it prevents a simple inference of the affected location

along a ray path or Fresnel volume. The affected location can, however, be estimated

using sensitivity kernels that describe the time-dependent energy distribution of the

wavefield for a statistically uniform medium. For a theoretical derivation of the

sensitivity kernels based on the Radiative Transfer Theory, refer to Mayor et al.

(2014), Margerin et al. (2016), and Zhang et al. (2022).

In SeisMIC, we implemented a simplified approach relying on sensitivity kernels

derived from an approximate solution of the Boltzmann equation for a homogeneous

medium (Paasschens, 1997) describing isotropic scattering of acoustic waves. Using

these sensitivity kernels and a linearised inversion scheme proposed by Obermann,

Planès, Larose, and Campillo (2013), we can map a 2-dimensional distribution of

dv/v at a fixed time ti resulting in dv/v(ti, x, y).

In SeisMIC, the module seismic.monitor.spatial contains the necessary func-

tions for the outlined approach. To illustrate the procedure and make our example

easily adaptable and reproducible, we create a synthetic velocity-change model, which

we then forward model onto a random station configuration. After adding noise to

the synthetic data, we try to recover the initial model using the inverse algorithm. In

detail, we proceed as follows: First, we create a synthetic velocity change model with

an extent of 40 km×40 km and a spatial resolution of 1 km (Figures 3.8 (b) and (d)).
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The background medium has a homogeneous velocity of 3 km
s

and a transport mean

free path l0 of 30 km. Then, we place an arbitrary number of stations on random

positions along the grid. Using sensitivity kernels of cross- and autocorrelations, we

solve the forward problem to compute dv/v, as it would be obtained from the CFs in

the presence of the spatial velocity variations. The sensitivity kernels are computed

for lapse time windows between 14 and 34 s. To the dv/v values, we add random

noise. This noise follows a Gaussian distribution around 0 % velocity change with

a standard deviation of 0.1 %. Finally, we invert for the synthetic model employing

the damped linearised inversion (Tarantola & Valette, 1982). We show the results

of this inversion in Figures 3.8(a) and (c) for 4 and 32 stations, respectively. There,

we also indicate the used damping parameters. The optimal damping parameters

minimise both the misfit between the initial and the retrieved model and the model

complexity and can be found using the L-curve criterion, as discussed by Obermann,

Planès, Larose, and Campillo (2013). This inversion relies on two damping param-

eters, the correlation length λ determining how strongly related neighbouring grid

cells are and the model variance σm that the model may assume.

The results demonstrate that increasing the number of stations is the most pow-

erful tool to decrease the misfit between the inversion result and the input model.

While the geometry of the synthetic model is poorly retrieved for a configuration us-

ing only four stations, we can reproduce the model quite accurately with 32 stations.

The digital supplement contains a Jupyter notebook to reproduce or modify these

results with an arbitrary number of stations, velocity change model, and damping

parameters. We also include options to invert for dv/v only utilising data from

auto- or cross-correlations and using sensitivity kernels from split coda windows

(i.e., with lapse time windows sliced into narrow sub-windows). In Appendix A, we

show results that exploit these options. Based on these, we argue that adding dv/v

information from auto- and cross-correlations, improves the accuracy of the result
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Figure 3.8: Two examples of the spatial inversion using different parametrisations

and station configurations. (a) Result of the spatial inversion algorithm using four

stations, a model variance σm = 0.1 km
km2 , and a correlation length λ = 2 km. (b) The

synthetic velocity model and station configuration used to obtain (a). (c) Result of

the spatial inversion algorithm using 32 stations, σm = 0.01 km
km2 , and λ = 2 km.

(d) The synthetic velocity model and station configuration used to obtain (c). For

an exhaustive description of the parametrisation and the inversion steps, consult the

text body.

notably, whereas splitting the coda yields only minor improvements.
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3.3 Conclusion and Outlook

We presented SeisMIC, a software to estimate changes in the seismic propagation

velocity from continuous records of seismic ambient noise. SeisMIC contains func-

tionalities for the end-to-end processing of velocity-change time series, including data

retrieval, the computation of correlation functions, calculating velocity change time

series using the stretching method, and postprocessing as well as inverting dv/v time

series onto a spatial grid. While these functions can be part of a workflow, they

are also intended to be used separately and can easily be altered and adapted to

individual processes. In SeisMIC, we implement a new data format for correla-

tion functions, which provides uniformity, flexibility, interoperability, and integrity.

Thereby, we hope to foster a broader discussion in the community regarding data

standards, which, we believe, would aid data exchange, efficiency, and reproducibility

of ambient noise studies.

In the near future, we will release versions capable of estimating dv/v employing

algorithms other than the stretching method, like the wavelet-cross-spectrum analysis

(Mao et al., 2020). Other future milestones include exploiting the computational

power of GPUs to decrease the compute time of noise correlations even further and

adding solutions that automatically update correlation function databases.

SeisMIC complements existing software to process ambient noise. Highlights

are its broad functionality, high efficiency, and versatility applicable to local small-

scale studies on a laptop computer as well as surveys using large-N arrays processed

on computer clusters. SeisMIC is available on GitHub as a well-documented and

regularly maintained open-source software.
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Data and Code Availability

This chapter is distributed with a supplementary document in Appendix A. Aside

from this appendix, we provide Jupyter notebooks, computing scripts, and the main

program “SeisMIC” as a digital supplement. For SeisMIC, however, we strongly

encourage the reader to obtain the code’s latest version, for example, from GitHub.

The digital supplement includes SeisMIC 0.5.3 and is available at https://doi.org/

10.5281/zenodo.8283683.

The SeisMIC data from the KISS experiment (N. Shapiro et al., 2017) used in

Section 3.2 can be obtained from the GEOFON webservice (Quinteros et al., 2021).

For the benchmarks in 3.1.3, we used data from the Saxony Network (University

of Leipzig, 2001) available from the EIDA FDSN service (Strollo et al., 2021).
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CHAPTER 4

Creating High-Resolution Velocity Change Time Series with

Fluctuating Noise Fields:

An Application to the Klyuchevskoy Volcanic Group

4.1 Introduction

4.1.1 Motivation for Noise Interferometry Studies at Active

Volcanoes

In this chapter1, we will turn towards a first application of PII to data recorded at

active volcanoes. Specifically, we analyse seismic data recorded at the Klyuchevskoy
1This chapter has been published as [Makus, P., Sens-Schönfelder, C., Illien, L., Walter, T. R.,

Yates, A., & Tilmann, F. (2023). Deciphering the Whisper of Volcanoes: Monitoring Velocity

Changes at Kamchatka’s Klyuchevskoy Group With Fluctuating Noise Fields. Journal of Geophys-

ical Research: Solid Earth, 128 (4), e2022JB025738. https://doi.org/10.1029/2022JB025738]. The

article is open access under the terms of the Creative Commons Attribution-NonCommercial Li-
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Volcanic Group (KVG) in Kamchatka, Russia, between the summer of 2015 and the

summer of 2016 to study medium changes related to volcanic activity.

However, PII is not only sensitive to changes in the medium but is also impacted

by fluctuations in the noise wavefield (Hadziioannou et al., 2011). Such fluctuations

are particularly problematic in active volcanic regions as pervasive volcanic tremors

cause constant changes in the spatio-temporal distribution of sources and frequency

content of the noise field. In contrast to other causes of noise field fluctuations, such

as cultural noise, seasonal changes, or weather-induced changes, these fluctuations

are hard to predict and often last for extended periods of days and months.

In this chapter, we propose and demonstrate a technique to mitigate the impact

of these fluctuations that we found particularly effective in the case of ubiquitous vol-

canic tremors. This approach relies on machine learning to find time segments with

temporarily stationary noise fields and describe a non-linear spatial stack that further

reduces uncertainty in the dv/v estimates. In our dv/v results, we find influences

of a multitude of tectonic (e.g. a velocity drop following the M7.2 Zhupanov earth-

quake), environmental (e.g., rain and snow), and volcanic (i.e., a gradual velocity

increase of about 0.3 % at Bezymianny Volcano coinciding with surface deformation

observed using remote sensing techniques) processes. We further analyse these mech-

anisms by evaluating peak ground velocity/velocity change responses, developing a

snow depth and precipitation dv/v coupling model, and discussing volcanic activity

during the experiment. Finally, we draw some concluding remarks concerning our

cense, which permits use, distribution and reproduction in any medium, provided the original work

is properly cited and is not used for commercial purposes. Compared to the original publication,

the introduction has been modified. Figure 4.9 was moved from the supplementary material to

the main manuscript. In the interest of conciseness, descriptions of procedures already described

in Chapter 3 were condensed or replaced by references to said chapter. I also introduced minor

changes in the mathematical notation and the text body. To ensure consistency across the thesis,

I adapted the orthography according to the British/Canadian standard.
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work’s methodological novelties and geoscientific implications.

4.1.2 Kamchatka and the Klyuchevskoy Volcanic Group

Kamchatka is a peninsula situated in Russia’s far east, west of the Aleutian Islands

and north of the Kuril Islands. Even though Kamchatka is located at a latitude of

about only 60◦ N, temperatures can reach down to -40◦ C and remain low around the

year. On Kamchatka’s east coast, the annual precipitation can be up to 2700 mm/yr.

Together, these effects lead to thick snow covers for over six months per year, espe-

cially at higher altitudes (Hersbach et al., 2020).

The subduction of the Pacific Plate under the Okhotsk Microplate at a rate of

about 80 mm/yr (Bürgmann et al., 2005) regularly causes large earthquakes, among

them the magnitude 7.2 Zhupanov earthquake that struck on 30 January 2016 south

of the study region (see Figure 4.1). The magmatic activity under Kamchatka has

also been associated with this subduction. Despite its extraordinarily high produc-

tivity and almost constant activity, most of the volcanism on Kamchatka does not

pose an immediate threat as the peninsula is only sparsely populated (Koulakov,

2021). However, eruptions may impact important aviation routes in the Western

Pacific (Girina et al., 2019), and effects like ash clouds or tsunamis (Belousov et al.,

2000) could reach far beyond Kamchatka’s borders. Furthermore, knowledge gained

from Kamchatka can be transferred to other volcanic systems posing threads for

densely populated areas such as in Japan or Central and South America.

The Klyuchevskoy Volcanic Group (KVG) lies within the Central Kamchatka

Depression (CKD) in central-east Kamchatka. While the KVG consists of dozens

of volcanoes (see Figure 4.1), currently, only three of them are active: Bezymianny,

Klyuchevskoy, and Tolbachik (Fedotov et al., 2010). During our study period, be-

tween the summer of 2015 and the summer of 2016, Klyuchevskoy exhibited high

seismic activity with intermittent eruptions. In addition, Bezymianny showed signs
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(a) (b)

Figure 4.1: A map view of the study region. (a) The sites of permanent and

temporary stations are represented by squares and triangles, respectively. We use

data from station X9.IR1 (cyan) in Figures 4.2 and 4.3. The epicentre of the M7.2

Zhupanov earthquake is plotted as a magenta-coloured star. We depict the locations

of volcanic centres active during the Holocene. (b) A zoom on the area marked by

the dashed, red box shown in (a). The locations of the three volcanoes discussed

here, Bezymianny, Klyuchevskoy, and Shiveluch are indicated and labelled.
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of the initiation of an eruptive cycle, whereas Tolbachik remained inactive (Coppola

et al., 2021; Journeau et al., 2022; Mania et al., 2021). Evidence from geophysi-

cal and petrological data suggests the existence of a common magma reservoir at

about 30 km depth (Fedotov et al., 2010; Ozerov et al., 1997). However, the iso-

tope composition of the magmas seems to contradict these findings (Dorendorf et

al., 2000; Kayzar et al., 2014). The deeper magma reservoir feeds several complex

systems of smaller shallow magma chambers at about 5 km depth and, in the case

of Klyuchevskoy, directly into the volcano (Green et al., 2020; Journeau et al., 2022;

Koulakov et al., 2017; N. Shapiro et al., 2017). Koulakov et al. (2021) proposed

the existence of a separate gas-filled chamber responsible for Bezymianny’s explo-

sive activity. Recently, Coppola et al. (2021) showed that activities of Bezymianny

and Klyuchevskoy are correlated, whereas activity at Tolbachik seems to reduce the

output at the two other volcanoes, indicating a complex, interconnected volcanic

plumbing system.

A number of publications focused on the spatio-temporal evolution of volcanic

tremors and volcano-tectonic events at the KVG. Volcanic tremors are thought to

result from fluid movements and pressure variations in the volcanic plumbing system

(Chouet, 1996). For Kamchatka, Soubestre et al. (2019) and Journeau et al. (2022)

show that tremors occurring below several active volcanoes migrate periodically be-

tween shallow and deep locations. These tremors dominate the noise field above

∼0.5 Hz (Gómez-García et al., 2018). As we will discuss later, this observation has

important implications for noise interferometry studies.

Other studies have investigated the time-dependent variations of the subsurface

properties. Koulakov et al. (2013) found velocity changes in the upper crust below

the KVG using repeated 3D seismic tomography. They interpreted these changes

as signs of magma migration preceding eruptive periods. However, due to its coarse

temporal resolution, 4D earthquake tomography is only of limited use for eruption
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early warning. Gómez-García et al. (2018) applied PII to data collected at the KVG.

While they recovered long-term velocity changes from frequencies below 0.7 Hz, their

algorithm showed limitations for higher frequencies due to strong fluctuations in the

regional noise wavefield. dv/v time series retrieved from these lower frequencies are

usually limited in their temporal resolution due to the high variability of the ocean-

generated microseismic signals (e.g., weather and particularly storm dependence).

Additionally, they are ill-suited to study shallow variations. In this chapter, we

retrieve stable dv/v estimates for four one-octave-wide frequency bands between 0.5

and 8 Hz during shorter time segments by exploiting uniform noise fields that are

temporarily stable and, thereby, obtain high-resolution dv/v time series that reveal

fast-acting, shallow medium changes and their accurate timing.

4.2 Data and Preprocessing

4.2.1 Seismic Data

For this study, we use one year of seismic data from 101 broadband and short-period

stations (Figure 4.1). Of these, 77 are part of the temporary KISS deployment (N.

Shapiro et al., 2017) between summer 2015 and summer 2016. The remaining 24 sta-

tions are permanent stations operated by the Kamchatka Branch of the Geophysical

Survey of the Russian Academy of Sciences (KBGS).

Before computing cross- (i.e., inter-station), self- (i.e., inter-component, see Ho-

biger et al. (2014)), and auto-correlations, we apply some common preprocessing

steps to the seismic data: First, we load daily chunks of data that we subsequently

downsample to 25 Hz, detrend, taper, and filter in octave wide passbands. For cross-

and self-correlations, but not for auto-correlations, we whiten the spectrum in the

frequency domain (i.e., dividing the traces’ spectra by their amplitude spectra). We

discard the traces’ amplitude information while only keeping its sign (i.e., one-bit
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or sign-bit normalisation), which we found to be the most effective way to mitigate

the impact of high amplitude sources for our data. Afterwards, we slice the data

into one-hour-long windows and compute correlation functions (CFs) as described in

Chapter 3.1.2.

We retrieve our velocity change estimates by applying the trace stretching tech-

nique (Sens-Schönfelder & Wegler, 2006; Sens-Schönfelder & Brenguier, 2019). First,

we select N subsets of all CFs (for details, see Section 4.3.3). From these subsets,

we stack four-hourly noise correlations Ci every two hours (i.e., we smooth with a

moving mean) to reduce random noise in the CFs. The stretching technique is de-

scribed in greater detail in Chapter 3.1.2. We perform the stretching grid search

for −0.025 ≤ κ ≤ 0.025 (i.e., up to 2.5 % deviation from the reference velocity)

and coda times where the lag time is between τ1 = 7.5T1 and τ2 = 17.5T1 relative

to the theoretical time of arrival, on both causal and acausal parts of the CF. T1

corresponds to the long period corner period of the applied bandpass filter (Hobiger

et al., 2014); for auto- and self-correlations, the reference time is accordingly 0. Ul-

timately, we retrieve N similarity matrices (see eq. 3.5) of the size J × In that relate

the correlation coefficient R to the four-hour-long time sample i and the stretching

factor κ. For each similarity matrix, we thus obtain a velocity change estimate time

series (dv/v)i.

To execute these steps, we employ SeisMIC (Makus & Sens-Schönfelder, 2022),

a freely available open-source software suite written in Python. SeisMIC is available

on GitHub and discussed in Chapter 3.

4.2.2 Complementary Data

To set our results in context to potential environmental and volcanological forcing, we

retrieve snow load, precipitation, and temperature data from ERA5, a global climate

reanalysis dataset. ERA5 is sampled every hour and is resolved on a 9× 9 km grid
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(Hersbach et al., 2020). While the precipitation data shows degraded accuracy on

an hourly time scale (Tang et al., 2020), its performance is still sufficient for our

purposes. For Kamchatka, ERA5 is exclusively based on satellite data.

We rely on infrared satellite measurements (Coppola et al., 2021) to compare the

determined velocity changes to the lava output of the volcanoes.

The magnitudes and origin times for regional earthquakes were obtained from the

USGS FDSN web service.

4.3 Stabilising Velocity Change Estimates

4.3.1 The Limitations of Passive Image Interferometry in Fluc-

tuating Noise Fields

Ideally, each of our I CFs would correspond to a Green’s function approximation at

the time ti. In practically all cases, however, non-uniform noise fields violate this

assumption. While noise interferometry does not require an actual Green’s function

approximation, a stationary noise field is necessary for the study to succeed (Hadzi-

ioannou et al., 2011). Commonly, researchers apply a set of standard preprocessing

techniques such as those described in Section 4.2 to mitigate the impact of this non-

stationarity directly in the data (Fichtner & Tsai, 2019). Another standard approach

is the temporal smoothing of CFs, which results in a trade-off between stability and

temporal resolution. This approach assumes that rapid fluctuations between CFs

retrieved from the noise of consecutive times are due to the stochastic character of

the noise and, hence, can be reduced by temporal smoothing. Processing the dv/v

observations can improve the monitoring further. Even though these steps aim to

reduce the measurement noise, we try to avoid the term denoising as we find it am-

biguous in the context of ambient noise seismology. Instead, we prefer the broader
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term stabilisation of CFs and dv/v estimates.

For data from Kamchatka, Gómez-García et al. (2018) have already shown that

standard preprocessing does not suffice to retrieve stable dv/v estimates. They pro-

posed a different algorithm that exploits a Bayesian framework to estimate dv/v.

However, their algorithm shows limitations for higher frequencies severely impacted

by the pervasive fluctuation of volcanic tremors (see power spectrum in Figure 4.2

(a)). In addition, the proposed method is not suited to retrieve reliable long-term

trends when properly parametrised for changing noise fields (Gómez-García et al.,

2018). To illustrate the non-stationarity of the CFs, we show the east-north com-

ponent of the self-correlation matrix of station X9.IR1 in Figure 4.2 (b). When the

energy is high (e.g. December 2015), the corresponding CFs differ from other times.

Journeau et al. (2022) showed that the intensity of the tremors fluctuates simulta-

neously, confirming that volcanic sources cause the changes in noise amplitudes and

CFs. For illustrative purposes, we show a velocity change estimate using the standard

trace stretching approach in Figure 4.2 (c). The resulting dv/v fluctuates strongly

with abrupt changes in the associated correlation coefficient (i.e., the coherence),

indicating that this measurement does not reflect physical changes in the subsurface

and cannot be interpreted. Interestingly, the dv/v estimate has the highest correla-

tion coefficient when volcanic tremors dominate the noise field. Hence, it seems as if

phases that emerge in the CFs due to the high-energy tremor dominate the reference

CF, which is a mean of all CFs.

4.3.2 Previous Approaches

Aside from standard preprocessing and Bayesian-type inversions (Gómez-García et

al., 2018), several methods have been proposed to avoid instabilities due to non-

stationary wavefields. Hadziioannou et al. (2011) utilised an adaptive filter to re-

move incoherent phases from CFs. Moreau et al. (2017) combined singular value
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Figure 4.2: (a) Spectrogram of station’s X9.IR1 N component calculated with a

4-hour-window. Volcanic tremors appear as obvious bright (i.e., high energy) spots

between ∼0.5 and 5 Hz (frequency band marked with magenta dotted lines). We

truncated the colour scale at both ends. In this work, we analyse velocity changes

in octave bands between 0.5 and 8 Hz (marked by white dashed lines) (b) Daily

self-correlation functions as calculated from station X9.IR1 between the E and N

component created from preprocessed waveform data between 2 and 4 Hz. Note that

the shape of the CFs (i.e., the Green’s function estimate) changes significantly during

the study. The average CF is plotted in black on top of the heatmap. We muted

the daily correlation functions for −0.5 s ≤ τ ≤ 0.5 s to emphasise the shape of the

coda. The colour scale is truncated to -0.25 and 0.25, respectively. (c) The velocity

change estimated using the trace stretching method with the data from (b) and a

smoothing of 2 days. We indicate the location of X9.IR1 in Figure 4.1.
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decomposition with a Wiener filter to remove statistically and linearly independent

components from the CFs. Schimmel et al. (2011) computed CFs using a phase

cross-correlation rather than a conventional cross-correlation to suppress the impact

of non-coherent high-amplitude phases. Viens and Van Houtte (2020) implemented

an approach that employs deep learning to remove incoherences from CFs. Most

of these solutions yield good results for noise that remains constant over the whole

study period and distorts all CFs more or less equally. However, when the ambi-

ent wavefield changes entirely due to a shift of dominant sources over long periods,

they become ineffective. In Kamchatka, volcanic tremors can last and remain stable

for several months (Journeau et al., 2022; Soubestre et al., 2019), so we require a

different approach to achieve stable dv/v estimates from ambient noise.

Recently, there has been a shift from more traditional filtering methods to meth-

ods using machine learning algorithms. Arguably the most popular choices among

these are unsupervised clustering algorithms and unsupervised de-mixing algorithms.

Both are particularly well-suited for large amounts of continuous data as they occur in

ambient noise seismology. For example, Seydoux et al. (2020) clustered raw waveform

data to differentiate ambient noise from earthquake signals. Similarly, Steinmann,

Seydoux, Beaucé, and Campillo (2022) combined independent component analysis

(ICA), a dimensionality reduction algorithm that separates statistically independent

features, with hierarchical clustering. Thereby, they succeeded to discriminate time

windows with different dominant sources. In another approach, they analysed the

output features of the independent component analysis (ICA) and found a feature

that closely resembles the velocity change of the medium (Steinmann, Seydoux, &

Campillo, 2022). While this approach seems to retrieve very accurate and highly

resolving dv/v estimates for their dataset, one must have successfully retrieved a

low-resolution baseline estimate of dv/v using a conventional algorithm. Only then

it is possible to evaluate that a feature of the decomposition corresponds to dv/v
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and provide quantitative estimates of the velocity change, as the amplitude of the

ICA coefficients is physically meaningless. These limitations reduce the applicability

of the ICA-based method. In addition, in more complex datasets, like our datasets,

dv/v does not seem to be confined to a single feature of the ICA decomposition ren-

dering the output practically uninterpretable. A more general issue with approaches

that rely entirely on machine learning is that the related physical processes remain

elusive, often making a correct interpretation of the results challenging. In the follow-

ing section, we will describe an approach that combines the advantages of machine

learning and conventional noise interferometry to retrieve velocity change estimates

for the Kamchatka dataset.

4.3.3 Clustering Noise Correlations

We address the varying noise conditions by splitting the experimental period into

segments during which the ambient field is sufficiently stationary to observe tempo-

ral changes in the subsurface material. By clustering the CFs, we identify moments

of change in the noise field that naturally separate the different segments. We use an

agglomerative hierarchical clustering algorithm employing Ward’s linkage algorithm

with a Euclidean distance metric that minimises the variance in each cluster (Ward,

1963) to find CFs that are sufficiently similar to be used in the same interferomet-

ric analysis. For many clustering algorithms, such as K-means clustering, the user

determines the number of clusters before assigning the data to these clusters. Hier-

archical clustering, in contrast, returns a dendrogram representing possible clusters

and subclusters and their respective (dis-)similarities (Müllner, 2013). Thereby, it

helps avoiding an unsuitable choice of cluster numbers that would result in poorly

defined clusters or too few clusters lumping together members with large differences.

For a detailed discussion of hierarchical clustering of noise correlations, refer to A.

Yates et al. (2023).
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Similar to A. Yates et al. (2023), we cluster preprocessed CFs instead of raw

waveform data to disregard factors such as amplitude variations in the ambient noise

irrelevant to our study. Additionally, the cross-correlation serves as a dimensionality

reduction that reduces the computational cost of the clustering. Instead of clus-

tering CFs from all stations, we only use self-correlations from station X9.IR1 and

component combination N-E that is sensitive to body, Love, and Rayleigh waves. As

changes in the wavefield are regional, we do not obtain markedly different clusters for

other stations and combinations (see Figure B.7). Also, using separate clusters would

unnecessarily complicate the comparability of results between different stations.

We show the hierarchical dendrogram for data between 2 and 4 Hz in Fig-

ure 4.3 (a). As a compromise between stability and length of the dv/v time series, we

split the dataset into five clusters. For 2-4 Hz, all clusters are highly dissimilar with a

minimum cluster merging cost of about 9 (see Table B.1 for a merging cost-frequency

overview).

We can assess the nature of each cluster by examining its temporal occurrence

(see Figure 4.3 (b)) and the shape of its average CF (Figure 4.3 (c)). Most average

CFs share some common features at early lag times, but their peaks differ later

in the coda, confirming that they are ill-suited for an interferometry study based

on a single reference trace and time window. Remarkably different from all other

average CFs is group number 2 (green), which dominates during times of low volcanic

activity. When comparing the temporal distribution of the clusters (Figure 4.3 (b))

to the volcanic tremor activity found by Journeau et al. (2022), it becomes evident

that they directly correspond to the different dominating sources. During periods

of low volcanic activity, cluster 2 (green) dominates. Clusters 3 and 4 correspond

to periods at which volcanic tremors prevail. During the eruption at Klyuchevskoy

volcano starting in April 2016, cluster 0 becomes active.

For the clustering, we focus on CFs created from the frequency band between 2
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Figure 4.3: The output of the hierarchical clustering. As input data, we used one

year of self-correlations between station’s X9.IR1 (see Figure 4.1) east and north

component created from waveform data between 2 and 4 Hz. Colours are used to

identify the different clusters in the three panels. (a) A dendrogram that quantifies

the similarity between the different clusters. The vertical distance of the branches

scales with the dissimilarity of the clusters, i.e., their merging cost (see Table B.1).

We show unclustered branches in grey. (b) The distribution of the clusters over the

whole study period. The bars show the bi-weekly occurrence N of the respective

cluster. (c) Averages of the CFs belonging to each of the five clusters.
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and 4 Hz, which shows the greatest impact of volcanic tremors (see Figure 4.2 (a)).

However, we remark that almost all frequency bands, particularly above 2 Hz, show

similar patterns as the one under discussion, albeit not always as pronounced. Below

0.25 Hz, we find no temporal patterns attributed to volcanic activity. We provide

additional clustering results in Figures B.1-B.7

To retrieve stable dv/v estimates for shorter periods, we apply the trace stretch-

ing algorithm to all CFs in time periods dominated by one (e.g., August 2015 to

November 2015, April 2016 to July 2016, see Figure 4.3 (b)) or, in some cases, two

clusters (time windows at the turn of the year, see Figure 4.3 (b)). Thus, instead

of using CFs from only one cluster per dv/v estimation, we use all CFs for a given

period. Applying interferometry to only one cluster could introduce a bias if the

clustering algorithm splits the dataset due to changes in the medium (i.e., stretch-

ing of the CF), which we want to retain and analyse in PII, rather than changes in

noise characteristics. For a much longer continuous dataset at Piton de la Fournaise,

A. Yates et al. (2023) show that changes in the medium alter the dominant cluster

permanently, whereas changes in the noise wavefield only lead to temporary varia-

tions. However, for the times available to us at KVG, making such an evaluation

is challenging since varying tremors, which commence in late November 2015, last

throughout the whole study period (Journeau et al., 2022).

For each period, we use the average CF as reference correlation function to mea-

sure changes in wave velocity. The same segments are chosen for all stations and

station groups. In the following, we will refer to our described method as time-

segmented passive image interferometry (TSPII). We provide a complete overview of

the chosen time segments in Table B.2.

An obvious drawback of TSPII is that it fails to track long-term changes of dv/v.

Gómez-García et al. (2018) used data from lower, less tremor-affected frequencies to

compute long-term velocity changes. For higher frequencies, however, the modifica-
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tions in the noise wavefield will induce changes in the spatial sensitivity between the

subsequent time segments. Therefore, the time segments quantify dv/v in different

locations and they cannot be set in context to each other.

4.3.4 Spatial Stacking of Sequenced dv/v Time Series

Applying passive image interferometry to the selected time windows yields several

dv/v time series, of which many show a significant amount of fluctuations that we

regard as measurement noise. One strategy to stabilise the measurements is to

apply smoothing in the time domain, as is commonplace in PII studies. In our

case, however, this would degrade the time resolution and limit the usefulness of the

already relatively short dv/v time series resulting from the time segmentation.

Statistical noise in dv/v measurements can be reduced by applying spatial stack-

ing over results from several stations (Illien et al., 2023). We stack the similarity

matrices that the trace stretching algorithm yields (see equation 3.5). Subsequently,

we pick the location of the maxima on the stacked similarity matrix to find the ap-

parent homogeneous velocity change. In comparison to directly averaging the dv/v

time series, this strategy has the advantage that unstable estimates with low corre-

lation coefficients are down-weighted. On the flip side, the non-linear nature of the

stack makes it challenging to quantify uncertainties and the contribution of different

areas to the obtained velocity changes. Due to the ergodic nature of ambient seismic

noise, one faces a decision between temporal and spatial resolution by opting for a

more aggressive smoothing in either domain to reach the same stability (Illien et al.,

2023). As we are looking for rapid responses of the subsurface to volcanic processes

in rather short dv/v time series, we opt for a high resolution in time rather than in

space with two-hour increments and four-hour smoothing windows. We point out

that the stacked correlation coefficient will almost always be lower than the correla-

tion coefficient found from individual stations. To make a clear distinction between
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the two, we refer to the stacked correlation coefficient as the cumulative correlation

coefficient (CCC).

When stacking similarity matrices, we need to find sites with similar velocity

changes. Due to significant variations in topography and geology from site to site,

these are not necessarily stations that are laterally closest to each other. To identify

such stations, we employ an approach that combines visual inspection of the indi-

vidual dv/v time series and a sequencing algorithm. Visually, we find that stations

with a similar elevation and similar geology have similar dv/v curves for all examined

frequencies (i.e., 0.5-8 Hz). To confirm this impression with an AI approach free of

human bias, we use the TheSequencer algorithm (Baron & Ménard, 2021), which,

in contrast to Ward’s linkage algorithm, can quantify the distance between multi-

dimensional data points (i.e., matrices). We chose the similarity matrices of each

self-correlation from time segment 2015/07/01-2015/12/01 as our input data points.

The algorithm then uses the Kullback-Leibler divergence and the Euclidean distance

between the data points to find how the data is distributed in an N-dimensional space

and sorts them by their respective distance. The closer two given data points are in

said sequence, the more similar they are. We visualise the output of the algorithm

in Figure 4.4 (a). As one should expect, results from correlations from different

component combinations of the same station are close in the sequence in almost all

cases (in the plot, circles on top of each other). Furthermore, the algorithm reveals

a very similar pattern to our qualitative evaluation; it evaluates responses of sta-

tions around the KVG with high elevation as similar, whereas stations in the Central

Kamchatka Depression (CKD), the regional sedimentary basin, and on the eastern

ridge (ERidge) plot in different groups. Based on the resulting sequence, we decided

to stack similarity matrices in the five groups shown in Figure 4.4 (b).
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(a) (b)

NaN

Figure 4.4: (a) The output of TheSequencer (Baron & Ménard, 2021). The closer

two data points are in the sequence (i.e., similarly coloured and similarly sized circles)

the more similar the algorithm deemed their dv/v responses as given by the similarity

matrices. Note that data points in the sedimentary basin, on the KVG, and on the

ridge in the East tend to build subgroups. (b) Groups that we use for the spatial

stacking. Based on the results shown in panel (a) and on visual inspection of the dv/v

time series, we divide our dataset into 5 subgroups. Each colour corresponds to a

different subgroup. Inverted triangles represent stations belonging to the temporary

KISS experiment, whereas squares are the locations of permanent stations. Note

that we disregard some stations due to low data availability. We depict the locations

of volcanic centres active during the Holocene. KVG: Klyuchevskoy Volcanic Group,

CKD: Central Kamchatka Depression, ERidge: Eastern Ridge, KVG_vic: stations

in the vicinity of the KVG.
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4.4 Velocity Changes at the KVG

Using the method outlined above, we compute dv/v time series stacks for frequencies

above 0.5 Hz, where volcanic tremor energy is generally very high (see Figure 4.2 (a)).

For frequencies below 0.5 Hz, the statistical variation exceeds the amplitude of phys-

ical velocity changes over one year, even after introducing an aggressive temporal

smoothing with a window length of 30 days. To remove these statistical variations

and obtain interpretable results from these frequencies, we would require a longer

continuous dataset. The most stable results were obtained from the averages of auto-

and self-correlations of all components from the stations of each of the groups shown

in Figure 4.4.

Figure 4.5 shows the estimated velocity variation for the station group CKD from

July 2015 to December 2015 for 4-8 Hz. We set these in context to precipitation, snow

depth, and large regional earthquakes. In addition, we provide the time-averaged

lava discharge rate (TADR) for Klyuchevskoy and Bezymianny that Coppola et al.

(2021) estimated from satellite data. Most notably, we can see a significant temporal

correlation between precipitation events and drops in seismic velocity (e.g., in early

September), followed by periods of velocity recovery. When precipitation comes

in the form of snow (i.e., is accompanied by an increase in snow load) as on 19

October (feature 1, marked by an arrow), decorrelations (i.e., decreases in the CCC)

occur. From late October, the temperatures remain below freezing and the snow

load increases. Simultaneously, dv/v exhibits an almost monotonously increasing

trend. For most earthquakes, we identify no correlated changes in dv/v - except for

an event on 18 September that seems to be accompanied by a slight velocity increase

(feature 2, cf. Section 4.5.2 for a thorough discussion of the impact of seismic events

on dv/v). We do not identify any correlation between the seismic velocity and the

TADR in Figure 4.5 or any of the following figures.

Similarly to Figure 4.5, we show a selection of dv/v results, climatological, and
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Figure 4.5: Velocity change for the station group CKD (see Figure 4.4) created

from auto- and self-correlations between all components for 4-8 Hz. We show dv/v

estimates as circles with colour scaling dependent upon the cumulative correlation

coefficient (CCC) (see text body for details). Each point represents a time window of

four hours, at two hours intervals. Red dashed lines mark the origin times of regional

earthquakes with magnitudes≥4.8. The dv/v model is given by the black dashed line,

the corresponding coefficient of determination (R2) is shown in the upper left corner

of the large tile. The time-averaged lava discharge rate (TADR) for Klyuchevskoy

and Bezymianny are plotted logarithmically at the bottom of the plot in red and

blue, respectively (Coppola et al., 2021). In the small tile below, we show values for

snow depth dsnow (grey) and hourly precipitation P (blue) averaged over the region.

Both values are given in water-equivalent. Note that, particularly for these high

frequencies, dv/v shows strong responses to changes in precipitation and snow load.

Our dv/v model (see Section 4.5.1) is able to reproduce these changes on a first order.

Features 1, 2, and 5 marked with arrows are discussed in the text body.
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volcanological data from a set of groups and time windows in Figure 4.6, but for

2-4 Hz. As before, we note velocity reductions at times with high precipitation (e.g.,

Figure 4.6 (d) feature 3). In Figures 4.6 (b), (c), and (d), we find that the velocity

reductions over the respective periods coincide with a decrease in snow load, whereas,

in Figure 4.6 (a), both snow load and velocity show an increasing trend. While

these weather-driven effects are less obvious on inter-station correlations, they are

nonetheless visible (see Figures B.27-B.44). In Figure 4.6 (c), we see a low correlation

coefficient at the beginning of the time window, which coincides with the change in

noise source dominance reflected by a shift from cluster 1 to 0. Consequently, we

attribute it to an effect introduced by a change in wavefield properties. On 30

January 2016, the Magnitude 7.2 Zhupanov earthquake struck Kamchatka south

of the network. Simultaneously, a sharp velocity decrease occurred at almost all

station groups and frequencies (see Figure 4.6 (a) feature 4). We show a more

extensive selection of dv/v results for various time windows, frequencies, and regions

in Figures B.9-B.44, including results from cross-correlations (i.e., inter-station). In

the following section, we elaborate on the hydrological, meteorological, seismic, and

volcanic forcing that causes velocity changes and discuss the impact of each respective

mechanism on the different study sites.
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Figure 4.6: Velocity change estimates for different station groups and time intervals

for 2-4 Hz. Refer to Figure 4.5 for an explanation of the plot’s details. (a) Region

KVG_vic, time window from 2015/12/15 to 2016/02/15. Bold dashed line marks

the 2016/01/30 M7.2 Zhupanov earthquake. (b) Region CKD, time window from

2016/04/22 to 2016/09/01. (c) Region KVG, time window from 2016/04/01 to

2016/07/01. (d) Region Shiveluch, time window from 2016/04/22 to 2016/09/01.

Locations of the stations belonging to each of the regions can be found in Figure 4.4

(b).
71



CHAPTER 4. THE KLYUCHEVSKOY VOLCANIC GROUP

4.5 Discussion of Physical Mechanisms Causing Ve-

locity Changes

After demonstrating how velocity changes can be computed from data with challeng-

ing noise conditions and noting that the dv/v variations exhibit strong correlations

to weather data, we discuss physical mechanisms related to meteorological events,

seismic events, and volcanic events that induce or could induce the observed dv/v

variations and, in particular, have a closer look at velocity changes that do not co-

incide with precipitation or changes in the snow cover. The impact on dv/v of these

mechanisms has been reported by other studies before. Observing them with our

method gives confidence that the dv/v time series resulting from TSPII are suffi-

ciently robust to contribute to environmental and volcanological monitoring.

Since we focus on velocity changes obtained from frequencies > 2 Hz and examine

earlier parts in the coda, we mainly interpret velocity changes down to about 350 m

(Obermann, Planès, Larose, Sens-Schönfelder, & Campillo, 2013; Obermann et al.,

2016), assuming a surface wave velocity of 1 km
s

(Green et al., 2020). Surface waves

of the lowest analysed frequency of 0.5 Hz are sensitive to velocity changes down to

about 1300 m.

4.5.1 Climatic and Meteorological Variations on Kamchatka

In Section 4.4, we already denoted a clear anti-correlation between precipitation and

dv/v. Such an anti-correlation has been observed since the dawn of PII and was

explained by an increased pore pressure resulting in a reduction of the shear wave

velocity vS (e.g., Andajani et al., 2020; Donaldson et al., 2019; Feng et al., 2021; Q. Y.

Wang et al., 2017). As we examine high frequencies, we are particularly sensitive

to changes in the shallow subsurface (Obermann, Planès, Larose, Sens-Schönfelder,

& Campillo, 2013), which contains the vadose zone that is constantly subject to
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groundwater recharge and drainage cycles resulting in the observed velocity drop

and recovery patterns.

However, in our case and for other observations in temperate and cold environ-

ments, this mechanism can only explain precipitation in the form of rain. In large

parts of the year (i.e., approximately between October and May), temperatures are

below freezing. Consequently, precipitation occurs as snowfall, leading to the accu-

mulation of a compacting snow layer. This added layer would alter the scattering

properties of the medium in addition to the induced shear wave velocity change and,

consequently, introduce a decorrelation (Guillemot et al., 2021; Obermann, Planès,

Larose, & Campillo, 2013) as observed after periods of heavy snowfall (e.g., Figure 4.5

feature 1).

Guillemot et al. (2021) observed velocity drops, which they attributed to the

build-up of a low-density and low-rigidity snow layer. In contrast to them, we see

clear signs of a positive long-term correlation of overall snow load with dv/v (c.f.

Hotovec-Ellis et al., 2014; Q. Y. Wang et al., 2017). In our case, the relationship

appears remarkably linear aside from previously discussed immediate effects of snow-

fall. We explain the relationship by invoking a loading mechanism, i.e., an increased

surface loading due to the snow mass (Heki, 2001; Silver et al., 2007) that results in a

pore space reduction and closure of cracks leading to compaction of the snow and soil

layers. In addition, the snow and ground frost might act as a seal that blocks ground-

water recharge. Conversely, during spring, the seismic velocity decreases rapidly due

to a decrease in load and groundwater recharge from meltwater and an associated

opening of cracks (Gassenmeier et al., 2015; Guillemot et al., 2021). While most

studies find that the velocity increases with increasing snow load, Taira and Bren-

guier (2016) observed a velocity decrease, which they explain by an increase in pore

fluid diffusion.
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Modelling dv/v

We use snow load and precipitation to create a simple model for the evolution of the

seismic velocity at the various sites. In our model, dv/v depends bilinearly on the

two environmental parameters. We express dv/v as:

dv

v syn
= aP ∗ f(τ) + bdsnow + γ (4.1)

where P is the precipitation in m (water equivalent), dsnow is the snow thickness

in m (water equivalent), and a, b, and γ are constants that we determine for each

of the four octave frequency bands between 0.5-8 Hz and each station group. Akin

to Sens-Schönfelder and Wegler (2006) and Hillers et al. (2014), we define a filter

function f(τ) that we convolve (denoted as ∗) with the precipitation to model the

drainage after each precipitation event. We define f(τ) in agreement with Darcy’s

law as a decaying exponential function that varies between 1 and 0:

f(τ) =

0 ∀τ ∈ (−∞, 0)

exp−τ/λ ∀τ ∈ [0,∞)

(4.2)

where τ is the lag time (i.e., the time that has passed since the precipitation event)

and λ is the decay.

To invert for a, b, γ, and λ, we employ a least-squares inversion that optimises

a cost function to minimise the misfit between dv/vsyn and dv/v. For a and b,

we jointly invert for all time windows using data from one station group and each

octave frequency band. For the offset γ, we perform a separate inversion for each

time window. We determine λ to be optimal for the whole dataset at λ=10 days. As

expected, the magnitudes of a and b are higher for 2-8 Hz than for lower frequencies

indicating that precipitation and snow load have a higher impact on the velocity of

shallower layers. We do not identify clear trends in a and b for the different station

groups (see Figure B.8).
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We show dv/vsyn as a black dashed line in Figures 4.5 and 4.6. Additionally,

we provide the coefficient of determination R2 for each time window as an objective

measure to evaluate the fit of our model. R2 reaches a value of 1 for a perfect fit,

R2 = 0 implies that the model has the same fit as the mean of the data points,

and values below 0 have a fit worse than the mean. We achieve the highest R2

values for times dominated by strong precipitation and changes in snow load (e.g.,

Figure 4.6 (a), (b), and (c), whereas, for dv/v curves that are strongly affected by

mechanisms that our model does not take into account (e.g., earthquake damage,

Figure 4.6), we obtain lower R2 values.

Despite its simplicity, our model reproduces first-order trends of the dataset re-

liably. For lower frequencies between 0.5 and 2 Hz, it generally performs worse with

R2 values around 0 than for the higher frequencies, probably due to higher scatter

in the dv/v data points in those low-frequency velocity change estimates (see Fig-

ures B.9-B.44). In addition, estimates from lower frequencies are not affected much

by environmental mechanisms. Instead, lower frequencies sample deeper parts of

the medium (Obermann, Planès, Larose, Sens-Schönfelder, & Campillo, 2013) whose

velocity is not as strongly influenced by meteorological events (Donaldson et al.,

2019). During times with relatively constant snow load, the model underestimates

the velocity increase leading to lower R2 values (see Figures 4.6 (a) and B.9-B.44)

potentially because we do not model snow compaction.

We could increase the fit of our model by adding the influence of non-environmental

effects such as ground shaking, employing separate models for rain and snowfall,

adding the influence of snow compaction, utilising a more complex model for snow

layer thawing that accounts for the sudden availability of melt water, or taking ther-

mal stress into account (Hillers et al., 2015). However, the model accuracy is limited

by (1) the limited spatial resolution of satellite weather data (Tang et al., 2020) as

ground measurements are unavailable to us and (2) the fact that we compare lin-
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ear stacks of environmental data with non-linear stacks of dv/v measurements. The

latter factor becomes especially important when the temperature is close to freezing

or thawing so that freezing, snowfall, rain, and thawing could occur out of phase at

stations belonging to one group of stations.

4.5.2 Impact of the 2016/01/30 Zhupanov Earthquake

Due to the subduction of the Pacific Plate below Kamchatka (Yogodzinski et al.,

2001), the region is regularly shaken by large earthquakes, which are generally known

to induce velocity changes (e.g., Brenguier, Campillo, et al., 2008). In our results

(Figures 4.5, 4.6, and S10-S45), we show the origin times of regional earthquakes

with magnitudes larger than 4.8. For most of these events, the impact on dv/v

remains either unclear due to coincident events of precipitation (e.g., Figure 4.5 -

feature 5 or feature 6 in Figure 4.6 (c)) or vanishes below the noise level (feature 7 in

Figure 4.6 (d)). The seismic event marked as feature 8 in Figure 4.6 (c) illustrates the

importance of examining all potential parameters that might influence dv/v. Shortly,

though not immediately, after the earthquake, we measure an abrupt velocity drop

of almost 1 % that, on first look, seems to be associated to the earthquake. However,

the velocity decrease has a higher temporal correlation to the precipitation event

occurring about 12 hours after the earthquake. Due to the high temporal resolution

of the dv/v estimates, we can observe a few unaffected values after the earthquake

and a rather sudden decrease coincident with the onset of a strong precipitation

event. Therefore, we consider it the likelier cause for the observed velocity drop.

The largest seismic event during our study period is the M7.2 Zhupanov earth-

quake that struck on 30 January 2016 in the South of the peninsula about 250 km

from Klyuchevskoy with a hypocentral depth of 177 km (see Figure 4.7). The

earthquake-induced sudden velocity drops range between 0.1 and 0.5 % across our

network (Figure 4.6(a) feature 4 and Figures B.15-B.17). We determined the peak
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ground velocity (PGV) from the horizontal components of all active stations and

show the result in Figure 4.7 (a). As expected, we find a higher PGV in the CKD

due to low shear wave velocities and its location closer to the epicentre (i.e., in the

South). We then computed the ratio of the PGV and observed velocity drop, which

we define as the difference between the average of the five data points (i.e., 12 h) prior

to and after the event’s origin time, respectively (see Figure 4.7 (b)). Most notably,

station groups KVG and Shiveluch exhibit remarkably high dv/v
PGV

ratios, indicating a

high sensitivity to the co-seismic shaking. These two station groups correspond to the

stations located high up on the volcanic edifices of the Klyuchevskoy/Bezymianny

massif and Shiveluch, respectively. ERidge, combining stations on the mountain

range in the East, on the other hand, shows the lowest dv/v
PGV

ratios.

Previous studies have observed dv/v drops in volcanic areas that exceed these

in neighbouring areas by two or three times (Brenguier et al., 2014; Lesage et al.,

2014). Lesage et al. (2014) observed a marked velocity drop at Volcán de Colima

induced by the M7.4 Tecomán earthquake that struck about 140 km from the volcano.

Regarding the magnitude and epicentral distance of the earthquake, their case is very

similar to the one we observe in Kamchatka. They invoke material softening due to

the pronounced non-linear elastic response of rocks with high porosity and pore

space saturation - such as unconsolidated volcanic material (Johnson & Jia, 2005;

Van Den Abeele, 2002). Brenguier et al. (2014) found that the M9.0 Tohoku-Oki

earthquake induced higher velocity changes in active volcanic regions and ascribed

this observation to the presence of pressurised fluids in the pore space amplifying the

non-linear response even under increased confining pressure at depth.

For Kamchatka, tomography revealed high vP
vS

ratios in shallow regions below the

KVG, indicating a high water content in sediments of the CKD and in the volcanic

edifices (Green et al., 2020; Ivanov et al., 2016; Koulakov et al., 2017, 2021). Also, the

presence of hydrothermal reservoirs is well documented (e.g., Kiryukhin et al., 2012;
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Figure 4.7: (a) Horizontal PGVs recorded during the M7.2 Zhupanov earthquake.

The circles mark stations active on the day of the event, with their diameters scaling

with the PGV. We plot the epicentre of the Zhupanov earthquake as a star. (b)

Corresponding (dv/v)
PGV

ratio for the different groups of stations and the examined fre-

quency bands. The volcanic regions (Shiveluch and KVG) exhibit particularly high

ratios.
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Taran, 2009), for which a higher sensitivity to ground shaking was observed (e.g.,

Caudron et al., 2022; Chaves & Schwartz, 2016; Taira & Brenguier, 2016). However,

Shiveluch is not equally well studied and only few images exists that, contrary to

the implication of the higher dv/v
PGV

ratio at the highest frequencies, show a high vP
vS

zone that is slightly deeper than the one under the KVG (Koulakov et al., 2020;

Koulakov, 2021). This could either be an indication that additional seismic data

around Shiveluch are required to improve our understanding of the crustal structure

below Shiveluch or simply be within the uncertainty of our data - particularly around

Shiveluch, where the station coverage is lower.

Generally, the non-linear stress-strain behaviour of rocks appears to depend on

material inhomogeneities, such as pores, cracks, or matrix/clast distribution that lead

to the formation of force chains and a concentration of stress at “stability bridges”

in the material (Sens-Schönfelder et al., 2019) . Volcanic rocks are highly hetero-

geneous (Schaefer et al., 2015), therefore, we expect a significant contribution of

non-linear elasticity to the observed dv/v response. However, based on this discus-

sion, we suspect that both elastic non-linearity and the presence of fluids in the

pore space contribute to the pronounced velocity reduction at the KVG and Shiv-

eluch. We expect that the magnitude of the contribution of each of these factors

depends on the pore space saturation (or pressurisation) at the time of shaking. In

practice, that could mean that volcanoes with higher pressurisation are more sus-

ceptible to ground shaking (as proposed by Brenguier et al., 2014). In the present

case, we neither observe nor expect significant differences in pressurisation between

Shiveluch, Klyuchevskoy, and Bezymianny because they are fed by the same magma

system (e.g., Koulakov, 2021) and had recent eruptions (i.e., < 10 yrs before the

data collection).
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4.5.3 Influence of Volcanic Activity

A previous study by Coppola et al. (2021) has revealed a complex relationship be-

tween the major volcanoes of the KVG and a potential modulation by tectonic trig-

gers. At Klyuchevskoy and Bezymianny, a period of unrest commenced in 2016,

accompanied by eruptive activity (Journeau et al., 2022; Mania et al., 2019, 2021).

For Bezymianny Volcano, Mania et al. (2019) found signs of an extrusion onset in

early 2016, which is why we focus on stations in Bezymianny’s vicinity. Unfortu-

nately, stations D0.BZM, D0.BZW, X9.B07, X9.B08, X9.SV8, and X9.SV9 on the

volcanic edifice failed in late 2015 and early 2016 leading to a lower spatial sensi-

tivity, but permanent station D0.BZG near the summit was fortunately operational

throughout this episode and delivers stable dv/v estimates.

Satellite synthetic aperture RADAR (SAR) offset tracking reveals the first evi-

dence of a starting plug extrusion at Bezymianny between January and April 2016

(see Figure 4.9, and Mania et al., 2019). With an intermittent uplift but almost con-

tinuously increasing uplift rate, the average crater offset reached about 1.5 meters

on 16 February 2016. With 4 hours, the dv/v time series presented in Figure 4.8 af-

fords a significantly higher time resolution than the SAR data provided in Figure 4.9,

which has a maximum resolution of 11 days. From the dv/v time series, we estimate

a gradual velocity increase of about 0.3 % at D0.BZG initiating around 6-7 Febru-

ary, which we interpret as an expression of deeper medium changes associated with

the surface deformation estimated by pixel offset. In conjunction with the velocity

increase at BZG, we find a decorrelation (i.e., a decreasing CCC) at several stations

surrounding Bezymianny (see Figure 4.8). The velocity increase at BZG exceeds the

effects of snow compaction and damage recovery observed at all the other stations

and is significant with respect to the short-term fluctuations.

Many studies linked volcanic inflation to dv/v decreases rather than increases

(e.g., Brenguier et al., 2011, 2016; De Plaen et al., 2016, 2019; Machacca-Puma et
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al., 2019; Takano et al., 2017). However, local velocity increases could occur if a

shallow magma, gas, or hydrothermal reservoir, as it may exist beneath Bezymianny

(Ivanov et al., 2016; Koulakov et al., 2017, 2021), inflates and, thereby, causes local

compaction through increased pressure (Caudron et al., 2021, 2022; Donaldson et al.,

2019; Donaldson et al., 2017; Hotovec-Ellis et al., 2015; A. S. Yates et al., 2019). Our

hypothesis is further supported by a recently published study by Berezhnev et al.

(2023), who found increasing velocities at Bezymianny immediately before its 2017

eruption. They modelled the mechanical deformation associated with the observed

velocity changes and concluded that an inflating shallow reservoir is the most likely

cause for the changing velocity.

A combination of localised velocity increases and decreases in the vicinity of

Bezymianny, as expected to arise from a shallow pressure source (Donaldson et al.,

2017), would also lead to decreasing correlation. As with any inhomogeneous veloc-

ity change, these decreases and increases would cause the shapes of the correlation

functions (CFs) to alter significantly, resulting in a decorrelation. Alternatively, the

observed decorrelation could have resulted from other modulations of the scatter-

ing properties of the subsurface due to incipient deformation of the volcanic edifice

(Obermann, Planès, Larose, & Campillo, 2013).

The closely spaced occurrences of the Zhupanov earthquake, the detected velocity

increase at BZG, and the proposed initiation of Bezymianny’s eruptive cycle (Ma-

nia et al., 2019) are noteworthy. It raises the question of whether Bezymianny’s

2016/2017 eruption was tectonically triggered as reported in some rare cases (D. P.

Hill et al., 2002; Kennedy, 2017; Seropian et al., 2021; Walter & Amelung, 2007; Watt

et al., 2009). However, based on the currently available data, we would consider such

conclusions speculative.
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(a) (b)

Figure 4.8: (a) Definition of the station groupings used in (b). (b) Evolution of

the seismic velocity as computed from auto and self-correlations between 2016/01/15

and 2016/02/15 close to Bezymianny Volcano at 2-4 Hz. We show dv/v estimates as

coloured symbols (matched with symbols in (a)) with colour scaling dependent upon

the CCC. Each point represents a time window of two hours. Red vertical dashed

lines mark the origin times of regional earthquakes with a magnitude≥4.8. The bold

dashed line marks the 2016/01/30 M7.2 Zhupanov earthquake. The time-averaged

lava discharge rate (TADR) of Bezymianny is plotted logarithmically in blue. In the

lower panel, we show precipitation and snow load data in water equivalent averaged

over all locations of the station group KVG_vic. Towards the end of the time

window, we measure an especially strong increase of the seismic velocity at station

D0.BZG (circles). Simultaneously, we see a decorrelation at all shown groups.
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Figure 4.9: (a) Pixel offset values obtained from a reanalysis of the SAR dataset

by Mania et al. (2019) (plotted as stars). The shown values are means over a 16x16

pixel area around Bezymmiany’s summit. On average, one pixel covers an area of

about 1 m2. (b) A zoom on (a) as marked by the red dashed lines. We superimposed

dv/v between 2 and 4 Hz at D0.BZG with the points’ colour scale depending upon

the CCC. The red dashed line labelled “M7.2” marks the origin time of the M7.2

Zhupanov earthquake. In (a) and (b), the red arrow marks the initiation of the

observed velocity increase in the evening of 6 February 2016 (UTC). In the bottom

row, we show the SAR images with a colour-scaled pixel offset overlay for the four

different times, i-iv, marked in (a) and (b).
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4.6 Conclusions

4.6.1 Time-Segmented Passive Image Interferometry for Fluc-

tuant Noise Fields

For data from the Klyuchevskoy Volcanic Group (KVG), established preprocessing

strategies and passive image interferometry (PII) algorithms were not sufficient to

produce stable velocity change estimates for high frequencies (>∼ 1Hz) and fine

temporal resolutions (<∼1 week) as needed to understand the effect of several forcing

mechanisms operating at these and lower time scales. In this chapter, we demonstrate

that PII is feasible even in the presence of pronounced, long-lasting fluctuations of

the noise wavefield if one applies the time-segmented passive image interferometry

(TSPII) technique, as proposed here. We utilise a hierarchical clustering algorithm

to find time windows with temporarily stationary noise fields suitable for separate

PII surveys. Subsequently, we spatially average the results to increase the temporal

resolution even further.

In its current form, TSPII is best suited for settings where the noise field has

several distinct “modes”, e.g., spatially stable noise sources, which stay active or

inactive over extended periods. Therefore, it is particularly well-suited for volcanic

environments with long-lasting phases of tremor activity. In cases with sporadic,

rapid shifts, approaches based on filters are more likely to be successful.

4.6.2 Evolution of the Seismic Velocity at the Klyuchevskoy

Volcano Group

After applying TSPII and spatial averaging, we present velocity change observations

for Kamchatka from five different regions for five time segments and various fre-

quency bands. When analysing the velocity changes, we find dominant forcing from
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environmental factors. We analyse dv/v time series computed from high-frequency

data (> 2Hz), which exhibits a lower noise level and a higher resolution than the

time series from lower frequencies (< 1Hz). High frequencies are particularly sen-

sitive to pore pressure changes in the shallow subsurface. The pore pressure, in

turn, is strongly impacted by precipitation leading to immediate short-term velocity

decreases following precipitation events. In contrast, increasing snow depth causes

a velocity increase. These findings again emphasise the value of PII in monitoring

the vadose zone, which is a vital component for groundwater recharge and drainage

cycles. Monitoring groundwater levels is especially critical in regions with little pre-

cipitation or strongly pronounced dry seasons. To these ends, PII provides a low-cost,

non-invasive method that probes the vicinity of the station rather than only a sin-

gle spot as a well would. We present a simple model that relates snow load and

precipitation to the seismic velocity reproducing first-order variations in dv/v.

In addition to environmental events, we find impacts of tectonic events - first and

foremost, the M7.2 Zhupanov earthquake, which leads to high-amplitude damage-

induced velocity drops across the network with subsequent recovery. The amplitude

of said velocity drop is not solely dependent on the strength of the ground shaking,

which we quantify by computing the peak ground velocity. Instead, we find that

volcanic regions (i.e., the KVG and Shiveluch) are more sensitive to ground shak-

ing and experience more pronounced velocity drops. For Kamchatka, we explain

this unusually high dv/v response with the non-classical non-linear behaviour of the

volcanic rock, possibly amplified by the high fluid contents in the pore space.

Lastly, we see a marked velocity increase accompanied by a decorrelation of the

noise correlation functions at Bezymianny Volcano commencing 6-7 February 2016,

shortly after the Zhupanov earthquake. The velocity increase occurs together with

a first uplift marking the beginning of the 2016/2017 eruption cycle (Coppola et

al., 2021; Mania et al., 2019, 2021). We argue that the inflation of a shallow gas,
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magma, or hydrothermal reservoir could cause localised velocity increases and de-

creases. This inhomogeneous velocity change combined with the deformation of the

volcanic edifice would lead to the observed apparent homogeneous velocity change

close to the deformation and a net-zero velocity change in the far-field, concurrently

inducing the decorrelation at all locations. Our study, once again, demonstrates that

passive image interferometry is a valuable tool for monitoring volcanic deformation,

possibly in near real-time and with a denser temporal sampling than, for example,

satellite-based techniques could resolve.

4.7 Open Research

The KISS dataset (N. Shapiro et al., 2015, doi:10.14470/K47560642124) is openly

available via the GFZ Data Services. Access to the data recorded by the D0 seis-

mic network is restricted but can be obtained via the GFZ Data Services. The

ERA5 climate data (Hersbach et al., 2020, doi:10.24381/cds.e2161bac) are available

upon registration at https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/

cds.e2161bac?tab=overview. The TADR datasets are provided as supplementary ma-

terial to Coppola et al. (2021). All TerraSAR-X data are available through the Ger-

man Aerospace Centre (DLR). The origin times of the seismic events plotted in Sec-

tions 4.4 and 4.5 can be queried via the USGS FDSN web service. The seismic data

download and the computation of correlations and dv/v were executed using SeisMIC

0.1.28 (Makus & Sens-Schönfelder, 2022, doi:105880/GFZ.2.4.2022.002), available

under the EUPL license agreement at https://github.com/PeterMakus/SeisMIC.

TheSequencer algorithm (Baron & Ménard, 2021) that we used to sort the similarity

matrices of the stations can be executed online at http://sequencer.org, its source

code can be downloaded at https://github.com/dalya/Sequencer. TheSequencer is

licensed under the MIT license agreement. All maps were plotted using PyGMT
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(Uieda et al., 2021). For Figures 4.1(a), 4.4, and 4.7(a), we used the SRTM15+

digital elevation model (DEM) by Tozer et al. (2019). For Figures 4.1(b) and 4.8(a),

we obtained the SRTMGL1 DEM from (Kobrick & Crippen, 2017).
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CHAPTER 5

Long-Term Monitoring of the Spatiotemporal Evolution

of the Seismic Velocity:

An Application to the Mount St. Helens Region

While Chapter 4 revolves around the analysis of a fairly short (i.e., one-year-long)

seismic dataset from a temporary experiment of a large spatial extent, in this chap-

ter1, we will discuss a seismic velocity change (dv/v) time series from 25 years of

1This chapter has been published as Makus, P., Denolle, M. A., Sens-Schönfelder, C., Köpfli, M.,

& Tilmann, F. (2024). Analyzing Volcanic, Tectonic, and Environmental Influences on the Seismic

Velocity from 25 Years of Data at Mount St. Helens. Seismological Research Letters, 95 (5), 2674–

2688. https://doi.org/10.1785/0220240088 The version reprinted in this thesis is a modification of

the author accepted manuscript. Compared to the original version, the introduction was modified.

In the interest of conciseness, descriptions of procedures already described in Chapter 3 were con-

densed or replaced by references to said chapter. In addition, minor changes in the mathematical

notation and text body were introduced. To ensure consistency across the thesis, I adapted the

orthography to comply with the British/Canadian standard.
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ambient seismic noise recorded at Mount St. Helens (MSH).

At MSH, the availability of seismic stations changes frequently due to station

failure and the installation of new stations. It is, therefore, difficult to combine

relative measurements that do not span the same time and space. Here, we tackle

this challenge by developing a spatial imaging algorithm to normalise all ∼1,400 dv/v

time series onto one spatial grid. Thereby, we obtain time-dependent velocity change

maps of the MSH region, which we analyse with the help of auxiliary observations,

such as ground position (i.e., global navigation satellite system (GNSS)), weather

data, environmental observations, and regional seismicity.

Like in Kamchatka, we find evidence for a breadth of dynamics in dv/v caused

by volcanic, tectonic, and environmental forcing. With the initiation of MSH’s 2004-

2008 volcanic crisis, dv/v exhibits a significant increase, which we link to the deflation

of the volcanic plumbing system, also observed on GNSS data. Between 2013 and

2018, when seismicity levels were elevated, we observe lower velocities at depth. This

phase is followed by an episode of relative quiescence, accompanied by significant

dv/v increases close to the St. Helens Seismic Zone (SHZ). We suggest a reinflation

of the magmatic plumbing system after MSH’s 2004-2008 eruption, lasting until

about 2017. Afterwards, the magmatic activity in the subsurface reduces, thereby

decreasing pressure and increasing the seismic velocity. Fluctuating groundwater

levels may dominate the seasonal cycles in the dv/v time series. A contrasting

seasonal response between the high-elevation edifice and foothill valleys may indicate

that surface freezing inhibits subsurface groundwater infiltration at higher altitudes.

5.0.1 Mount St. Helens

MSH is an explosively erupting andesitic volcano in southern Washington, United

States. Its devastating 1980 eruption, accompanied by the dramatic gravitational

failure of its northern flank, caused almost 1 billion US$ in damage (Hunt & Mac-
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Cready, 1980) and claimed 57 casualties. In 2004-2008, a new volcanic activity

started at MSH. Even though the eruption was less dramatic than in 1980, it was

particularly well-instrumented and studied (e.g., Sherrod et al., 2008).

Unlike earthquakes, volcanic eruptions tend to exhibit precursory activity that

can be investigated via geophysical and geochemical data and analysis. Precursors

may, for example, be observed by remote sensing data due to ground deformation

(e.g., Reath et al., 2016), gravity changes (e.g., Rymer & Brown, 1989), and seismicity

associated with the uprising magma or gas (Einarsson, 2018). However, every volcano

shows a unique behaviour, and each of the discussed precursors varies in presence,

strength, and warning time before the eruption. For example, while some volcanoes

exhibit significantly elevated seismicity before eruptions (Chouet & Matoza, 2013;

Power et al., 1994) others may be quasi-aseismic (Lu et al., 2000; Scandone et al.,

2007). Additionally, the eruption style and warning time may also vary at a single

volcano, such as MSH (Malone et al., 1983; Sherrod et al., 2008).

As discussed in Chapter 2.1, there are opportunities to reduce warning times and

uncertainties while improving our understanding of the volcanic system and dynam-

ics with system-level science to evaluate spatial and temporal changes (e.g., Roman

& Cashman, 2018). Motivated by this goal, scientists conducted many studies at-

tempting to constrain the dynamics and structural complexity of MSH, employing

a multitude of geophysical methodologies such as gravity measurements (Battaglia

et al., 2018), electric resistivity surveys (Bedrosian et al., 2018), probing the ground’s

heat flow (Grady et al., 1982), pixel offset monitoring (Salzer et al., 2016), Interfero-

metric Synthetic Aperture Radar (INSAR) (Welch & Schmidt, 2017), or by analysing

magnetotelluric data (G. J. Hill et al., 2009). Probably, the most widely used are

seismic methods, as the volcanic edifice and its surroundings are well-instrumented,

and instrumentation is improving constantly. Seismologists have, for example, stud-

ied the medium’s scattering and attenuation (De Siena et al., 2014; Gabrielli et al.,
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2020), the local velocity structure using local earthquake, teleseismic, or ambient

noise tomography (e.g., Crosbie et al., 2019; Ulberg et al., 2020; Y. Wang et al.,

2017). Numerous publications that focus on seismic source properties and local

earthquakes preceding the eruptions (e.g., Lehto et al., 2010), during the eruption

(e.g., Moran et al., 2008; Sabra et al., 2006; Thelen et al., 2011; Zhang et al., 2022),

and in intereruptive periods (e.g., Glasgow et al., 2018; Hansen & Schmandt, 2015)

complement these structural studies.

Hotovec-Ellis et al. (2014) and Hotovec-Ellis et al. (2015) used local source coda

wave interferometry (CWI) to analyse the temporal modifications in MSH’s local

velocity structure. They find velocity changes associated with seasonal weather vari-

ations, volcanic explosions during the 2004-2008 eruption, and damage following the

2001 Nisqually earthquake.

Here, we apply passive image interferometry (PII) to the considerable amount

of continuous seismic data recorded at MSH to shed light on the velocity changes

and their temporal and spatial evolution at MSH over the past 25 years, building

on the pioneering work of Hotovec-Ellis et al. (2014) and Hotovec-Ellis et al. (2015).

We will discuss challenges that arise from the heterogeneous nature of the data and

present solutions and workarounds. To analyse the evolution of the seismic velocity

in space, we apply an inversion algorithm that models the spatial sensitivity of coda

waves and generates maps of dv/v based on station-pair-wise measurements. Lastly,

we will discuss mechanisms impacting dv/v at MSH and show that a multitude of

complex mechanisms of environmental, MSH, and volcanic nature affect the seismic

velocity. This work focuses on the structural dynamics at MSH as interpreted from

changes in seismic velocities. A companion paper, (Köpfli et al., 2024), complements

this study by exploring aseismic properties (attenuation).
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5.1 Data and Processing

5.1.1 Seismic Data

The analysis of ambient seismic noise requires continuous waveform recordings. At

MSH, continuous data has been collected since 1998, and data are continuously up-

dated. For this study, we obtain data from stations that were active for at least

three years during our study period from 1998 to 2023 (see Figure 5.1), resulting in

a diverse collection of seismic instruments, including broadband, short-period seis-

mometers with a combination of digital and analogue telemetry (cf. Table C.1 and

Figure C.1 for detailed station availability).

The long-standing seismic network at MSH is remote and subject to weather and

volcanic hazards. Because data stability is critical for ambient noise monitoring,

we developed conservative quality control and extensive pre-processing workflows

to mitigate instrumental issues. For instance, the MSH seismic network includes

“analogue stations” that are radio-telemetered seismometers with data digitised at

the Pacific Northwest Seismic Network (PNSN) data centre. These stations are prone

to recording issues, such as data gaps, empty recordings, abnormal amplitudes, and

clock errors. Some stations record single vertical channels (EHZ), while others record

three components. In our quality control, we discard a daily raw recording if (a) the

maximum range of the data amplitudes is less than 500 counts using the values

provided by IRIS’ Mustang service (Casey et al., 2018) or (b) the root mean square

amplitude (Arms) exceeds a threshold of Arms(t0) > 300Ãrms(t), where Ãrms(t) is the

median root mean square amplitude of all available data for the given channel. We

plot the amount of remaining data in Figure C.1 in the supporting information.

Following this initial quality control, we process our data using SeisMIC (Makus

& Sens-Schönfelder, 2024). SeisMIC further identifies data gaps and interpolates

between them if they are exactly one data sample long. For longer gaps, SeisMIC
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Figure 5.1: Locations of the seismic stations, GNSS sites, the weather station, and

the borehole, from which we obtain data for this study. Seismic stations are inverted

triangles coloured by the time of their first continuous recording. Seismic stations

with red outlines are used to create the plot in Figure 5.3. For all other plots, we used

data from all stations. The weather station corresponds to the Swift Creek (1012)

SNOTEL station, for which we show temperature and snow load data in Figure 5.6.

The seismicity shown in this plot occurred between 1998 and 2023. In the map inset

in the lower left corner, we depict the locations of MSH and other active Cascade

volcanoes in red and purple, respectively. The epicentre of the M6.8 2001 Nisqually

earthquake is plotted as a yellow star.
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mutes data chunks shorter than two minutes and tapers the ends of the available

data segments with a 20-second-long cosine taper. We choose standard process-

ing techniques for ambient seismic field monitoring (Bensen et al., 2007): We ap-

ply an anti-alias filter with a low-pass frequency of 2.25 Hz, decimate the data to

5 Hz, detrend, taper, remove the instrumental response from the daily data, and

band-pass filter the data between 0.01 and 2.5 Hz. Then, we slice the data into

one-hour-long windows, detrend, and taper the windows’ ends by 3 %. The data

are then filtered in three one-octave-wide frequency bands: 0.25-0.5 Hz, 0.5-1 Hz,

and 1-2 Hz, resulting in three different datasets. Subsequently, we apply one-bit

normalisation in the time domain. We obtain three groups of correlation functions

(CFs): auto-correlations (single channel pairs), self-correlations (single station, multi-

channel pairs), and cross-correlations (multi-station, multi-channel pairs). For self-

and cross-correlations, we whiten the amplitude spectrum of the data (Bensen et al.,

2007) in the Fourier domain. Finally, we average the resulting CFs over five days to

reduce the amount of data and smooth the stacked CFs with a 60-day-wide moving

Hanning taper, thereby weighing the contributions of particular 5-day stacks.

Visual inspection of the CFs reveals artefacts in the auto-correlations of the single-

component analogue stations (see Figure C.2). To avoid biases in the final velocity

change estimate, we disregard auto-correlations from stations with analogue teleme-

try.

We use the mean of all CFs for each channel pair as reference CF (i.e., the state

at which dv/v = 0). The stacked CFs, therefore, span different periods and are not

valid references across the network. We then estimate velocity change time series

using the stretching method first proposed by Sens-Schönfelder and Wegler (2006).

The algorithm is described in detail in Chapter 3.1.2. We set the increment in our

similarity matrix (eq. 3.5) to κn−κn−1=0.006 %. Because cross-correlation functions

are two-sided, we evaluate the stretch for up to 3 % for the coda of both sides of the
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CF. We apply the algorithm only for a part of the coda of the CFs starting at four

times the lowcut period of the three bands T0 and ending at 50T0 after the theoretical

arrival, assuming a Rayleigh wave velocity of 2.5 km/s (Y. Wang et al., 2017). We

find that using such a long coda window improves the stability of the dv/v estimate.

After executing this step for all data, we obtain one dv/v time series per frequency

band for each auto-, self-, and cross-correlation, totalling about 1,400 dv/v time

series. Their overall stacks are taken as the reference for dv/v and, because these

time series of dv/v start and end at different times, their relative mean is arbitrary.

We show examples of the resulting CFs and dv/v time series in Figure 5.2.

Sudden phase shifts and coherence drops in the cross-correlation may indicate a

clock advance that sites with analogue telemetry may be subject to. We detected

one such event on 17 October 2013 (see Figure C.3).

5.1.2 Auxiliary Data

We obtain snow load and temperature data from the US Department of Agriculture’s

Natural Resources Conservation Service. These data were recorded at Swift Creek

by a weather station that includes a SNOTEL sensor at 1353 m.a.s.l., about 300 m

above the base of the edifice (see Figure 5.1 for the location of the weather station),

which is probably a lower bound estimate as the edifice peaks at 2549 m. To compute

the water supply rate, we obtain rainfall and modelled snowmelt data from the ERA5

reanalysis satellite data set (Hersbach et al., 2020).

Additionally, we collect earthquake hypocentres determined by the PNSN and

the United States Geological Survey (USGS).

To analyse surface deformation and ground movements, we obtained cleaned and

detrended displacement time series for the GNSS stations in the vicinity of MSH

from the USGS (Murray & Svarc, 2017), see Figure 5.1 for locations.
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Figure 5.2: Exemplary CFs from channel combinations and their corresponding

0.5-1 Hz dv/v estimates. (a) & (b): Auto-correlation at CC.VALT.BHN. (c) &

(d): Cross-correlation PB.B201.EH1-PB.B201.EHZ, (e) & (f): Cross-correlation

CC.STD.BHE-PB.B203.EH1. Data for up to 4 s is muted for visualisation. We

show the mean of all CFs superimposed on the heatmap. We stack the CFs in the

heatmap so that each corresponds to 60 days of data. The features observed in the

dv/v estimates are consistent with those seen in the spatial inversion and the station

stacks shown later.
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5.2 Reconciling and Locating Velocity Changes

Direct inspection of the dv/v time series calculated using the steps described above

has several challenges: 1. Their sheer number makes it difficult to keep an overview

and condense them into interpretable results. 2. More importantly, since most of

the dv/v curves describe different periods, they are not directly comparable. This is

due to the nature of the reference CFs. Mathematically, we can describe the relation

between the absolute velocity change and the reference velocity vref as follows (see

appendix A for a more thorough discussion):

dv

vref
=
v(t)− vref

vref
(5.1)

where, in our case, we define the reference:

vref =
1

N

N∑
t=1

v(tn) (5.2)

Note that t1 corresponds to the starting date of the seismic stations shown in Fig-

ure 5.1 and N to the length of the time series, both differ for many of the dv/v series.

Therefore, the different dv/v times series will be offset against each other. We correct

for this offset during the spatial inversion as described in section 5.2.2. Note that

the difference in vref does not only lead to an offset but also to a different scaling.

However, these scaling errors are negligible (e.g., about 0.01 %, if dv/v=1 %).

5.2.1 Locating Velocity Changes in Space

This study uses a linear-least-squares inversion as proposed by Obermann, Planès,

Larose, and Campillo (2013) to obtain a spatial dv/v grid from a large number of

velocity change time series. Using this algorithm, we receive a prediction for dv/v

as a function of space and time. As the problem is ill-posed and underdetermined

(i.e., the number of grid points is usually higher than the number of CFs), it requires
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damping. In the supporting information (section C.4), we describe the algorithm in

detail and the damping parameters that we choose to compensate for the ill-posed

nature of the problem.

5.2.2 Compensating for Clock Shifts and Constant Offsets in

the dv/v Time Series Estimates

We correct for the non-conform references and instrumental clock shifts by leveraging

the dv/v predictions from the spatial inversion. In the spatial inversion, we set the

reference, dv
v
(x, t1) = 0, where t1 is the start time of the spatial inversion. First,

we offset the dv
v

time series available at t1 so that dv
v
(t1) = 0. We then proceed by

inverting for each time step. Whenever a new time series becomes available (e.g., at

t = tn), we predict the velocity change at each “new” observation at tn by solving

the spatial forward problem (eq. C.3) and offset the corresponding time series by the

obtained value. Here, we consider a times series available when the coherence of the

following 5 points satisfies a minimum average value of CC(tn) ≥ 0.5.

A second example is when the PNSN digitisers were restarted in October 2011,

and all analogue stations were advanced by 0.25 s (see section C.1). This reset in

the digitiser at the PNSN created a different clock time for the “analogue stations”

and those with on-site digital telemetry. As we already compensate for changes in

the reference using the approach described above, we opt to compute two dv/v time

series - one before the clock advance and one after - for each of these CFs and feed

them into the spatial inversion as separate dv/v time series.

5.3 Results

In the following, we will show how the seismic velocity at MSH varies spatially and

temporally. First, we discuss long-term trends and changes. Thereafter, we will
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examine repeating seasonal signals.

5.3.1 Long-term dv/v Trends

To build the longest time series of our study, we use cross-correlation data from

the seven stations active between 1998 and 2023: UW.EDM, UW.FL2, UW.HSR,

UW.JUN, UW.SOS, UW.STD, and UW.SHW. To obtain the final network averaged

dv/v time series, we average the similarity matrices resulting from the stretching algo-

rithm and, subsequently, pick a new velocity change corresponding to the best-fitting

stretch and calculate the cumulative correlation coefficient (CCC) as the average of

the cross-correlation coefficients in all contributing similarity matrices along the best-

fit curve (for details, see Illien et al., 2023; Makus, Sens-Schönfelder, et al., 2023,

or Chapter 4). The resulting dv/v time series and the vertical ground movement

recorded at GNSS station JRO1, the only station recording at the time of the erup-

tion, are plotted in Figure 5.3. We also show dv/v and vertical motion for which the

seasonal components were suppressed by applying a two-year Gaussian smoothing.

Following the 2001 M6.8 Nisqually earthquake, which struck the Puget Sound

region on 28 February 2001, dv/v shows a drop in all investigated frequency bands

albeit somewhat subtle between 0.25 and 0.5 Hz (between 0.05 % for 0.25-0.5 Hz and

0.2 % for 1-2 Hz, see Figure 5.3). The drop marks the lowest level of seismic velocity

in the record.

Coinciding with the first explosions of MSH’s 2004-2008 eruption, a vertical down-

ward movement of about 20 mm is measured at the JR01 GNSS station, whereas dv/v

exhibits a rapid increase of 0.1 % and 0.2 % for frequencies between 0.5 and 1.0 Hz

and 1.0-2.0 Hz, respectively. For 0.25-0.5 Hz, dv/v increases temporally by about

0.2 % for around eight months. Afterward, it remains slightly elevated (∼0.05 %).

Following its low level during the eruption, the GNSS signal shows an upward motion

that lasts until about 2013. Thereafter, the GNSS long-term trend remains stable.
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Figure 5.3: Weighted average of the dv/v time series available for the whole study

period for the frequency bands 0.25-0.5 Hz (a), 0.5-1 Hz (b), and 1-2 Hz (c). dv/v

was computed with data from stations UW.EDM, UW.FL2, UW.HSR, UW.JUN,

UW.SOS, and UW.SHW (marked by red outlines in Figure 5.1). The colour scales

with the CCC. The dashed line shows the low-pass filtered dv/v time series. The

dashed vertical green line indicates the 2001 M6.8 Nisqually earthquake known to

perturb dv/v (Hotovec-Ellis et al., 2014). The salmon-shaded period marks MSH’s

2004-2008 eruption. The solid (dashed) red line shows the (low-pass-filtered) vertical

ground motion as recorded by GNSS station JRO1.
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We do not observe any significant trends in dv/v corresponding to this GNSS trend.

From 2017 to 2020, the seismic velocity increased notably by about 0.2 %, which

is particularly clear between 0.5 and 1.0 Hz though seen on all frequency bands,

including the noisier low-frequency band between 0.25 and 0.5 Hz.

Using the spatial imaging algorithm, we compute one time-dependent dv/v map

for each of the investigated frequency bands with a grid spacing of 1 km and a

sampling interval of 5 days. The time-dependent maps are available as GIF files in

the electronic supplement. To avoid drastic changes in spatial resolution over the

investigated time, we exclude times before 2007 when there were significantly fewer

seismic stations available at MSH. To emphasise the long-term change in the seismic

velocity, we plot the accumulated velocity change between 31 May 2007 and 01 June

2023 for all three examined frequency bands in Figure 5.4. For the lowest frequency

band, 0.25-0.5 Hz, the spatial resolution is too low to constrain velocity changes in

space. Therefore, we do not show maps for this frequency range.

We observe seismic velocity changes dominated by increases around the northern

flank of the volcano. For 0.5-1.0 Hz, the velocity increases are highest north of the

volcano along the St. Helens Seismic Zone (SHZ). We find a second velocity peak to

the east of the volcano. For 1.0 to 2.0 Hz, the dv/v increase focuses mainly on the

SHZ. In addition, we find a dv/v minimum to the south of the volcano. However,

this minimum still shows a significant increase of about 0.5 %.

Temporally, a prominent velocity increase is observed in the period between 2017

and 2020 (as seen in Figures 5.3 and 5.5). Before this increase occurs, we observe

a moderate decrease starting in late 2017 that exceeds the amplitude of the usual

seasonal oscillations. While for 0.5-1.0 Hz the strong velocity increase is entirely

focused on the period of late 2017 to 2020, the other two frequency bands show

some additional jumps. For 0.25-0.5 Hz, the seismic velocities across are depressed

by 0.1 % between 2014 and 2017, compared to the previous five years. For 1-2 Hz,
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(b) 1.0-2.0 Hz(a) 0.5-1.0 Hz

Figure 5.4: Total accumulated velocity change between 31 May 2007 and 01 June

2023 superimposed onto the regional topography. Total accumulated velocity change

obtained from ambient noise between (a) 0.5 and 1.0 Hz, (b) 1.0 and 2.0 Hz from

all available seismic data. The red inverted triangles mark the locations of seismic

stations from which we used data for this inversion. The black line corresponds to

the St. Helens Seismic Zone (SHZ). The black and cyan boxes correspond to the

locations from which we extracted time series in Figures 5.6 and 5.5. Please note

that we use different colour scales for the two frequency bands.
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Figure 5.5: Seismic velocity changes set in the context of seismicity at MSH. In

(a) yearly rate of seismic events with M > −1 and hypocentres above 15 km depth

below sea level. Seismic velocity changes extracted from the spatial inversion at

MSH’s summit (cyan box in Figure 5.4) for all investigated frequency bands and

all seismic stations. For 0.25-0.5 Hz, the curve is five-fold exaggerated. (b) Depth

distribution of seismic events with M>-1.

the velocity change rate reaches its maximum in an increase between 2017-2020 (see

Figure 5.5).

5.3.2 Seasonal Variations in the Seismic Velocity

After showing long-term variations in the seismic velocity, we now focus on seasonal

variability. In many cases, such variability is driven by environmental factors, which,

in turn, are strongly affected by the seasons. Therefore, we show dv/v in direct

comparison to environmental parameters. Here, we choose to show dv/v together

with the snow load on the south flank of MSH and the water level of Spirit Lake,

which we assume to be a proxy for groundwater level and pore space saturation.
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Although the water level is also controlled by a drainage tunnel (Grant et al., 2017),

we confirm this assumption by comparing the lake water level to groundwater well

levels available after 2020. Here, we only examine seasonal trends. In Figure C.16,

we show the full-length time series.

To examine the seasonal cycles in dv/v, we extract median seasonal cycles from

our velocity change estimates and the vertical GNSS movements. To this end, we

process the time series as follows. First, we apply a highpass filter with a four-year

corner period to the dv/v and vertical motion time series recorded at the seismic

channel combinations and GNSS stations, respectively. Then, we extract the curve

for each calendar year, remove their means, and calculate a median over all years

to generate station- and channel-combination-specific time series. From these time

series, we extract the total median. We provide the individual annual functions for

each GNSS and seismic channel combination in Figures C.18 and C.17, respectively.

We show the median seasonal evolutions in Figure 5.6(a). The vertical ground motion

displays a simple sinusoidal movement that peaks in early September and exhibits

an annual low in April.

For the medians extracted from the channel combinations, dv/v differs in be-

haviour depending on the frequency band. For 0.5-2 Hz, dv/v has two annual peaks.

The first peak in March occurs between the highest snow load and the lowest temper-

ature, while the second peak coincides with the highest ground displacement (i.e.,

September). The velocity change obtained from the lowest frequency band, 0.25-

0.5 Hz, only exhibits one clear peak in September, while its shape does not follow

the ground displacement curve during the rest of the year, where dv/v decreases

rapidly after the September peak to reach a low in January, followed by a much

more gradual increase, in contrast to the sinusoidal GNSS displacement time series.

To investigate spatial heterogeneities in seasonal behaviour, we compute the me-

dian annual velocity change for each grid point in the time-dependent dv/v maps.
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Figure 5.6: Annual median velocity changes and median vertical ground motion

(red). (a) Annual median dv/v curve for the study region extracted from CFs be-

tween all components and stations. (b) Annual median dv/v curve extracted from

two grid points with diverging behaviours in the time-dependent dv/v maps (using

data from all stations). These grid points are marked in Figure 5.4 as black (North)

and cyan boxes (MSH summit). On both panels, we indicate the frequency band

by varying the curves’ luminance. (c) The annual median snow load extracted from

the SNOTEL station and the annual median of Spirit Lake’s relative level are both

shown in meter water equivalent. The black line represents the smoothed annual

mean water supply rate (i.e., the sum of modelled snowmelt and rainfall per hour).

We plot the annual median temperature at the base of MSH as red dot markers. We

emphasise temperatures below freezing by plotting them in cyan instead of red.
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We find two predominant patterns, for which we plotted exemplary curves in Fig-

ure 5.6 (b). North of the edifice, we find a single and broad peak in the annual dv/v

around September, and the annual minimum is located in winter, January through

March, for all frequency bands. On the volcanic edifice and for higher frequencies

between 0.5 and 2 Hz, the dv/v have a different pattern: They peak in April and

October, whereas the summer is characterised by lower velocities.

Figure 5.6 (c) provides relevant environmental time series to set the context to

the geophysical measurements (GNSS and seismic). We show the annual median

changes in snow load, temperature, and lake levels at Spirit Lake. In addition,

we show the annual mean water supply rate smoothed using a 30-day-wide boxcar

function. We find an approximately anticorrelating pattern between snow load and

vertical ground motion. Furthermore, we observe a peak in dv/v at MSH’s summit,

occurring between the snow load maximum and the temperature minimum. When

the seismic velocity in the north decreases the strongest, the water supply rate peaks.

5.4 Discussion

5.4.1 Spatial Resolution

To evaluate the capabilities of the imaging and the distortions introduced into the

velocity change maps by the station geometry and the chosen damping parameters,

we apply the spatial inversion to various synthetic velocity change models. In ad-

dition, we compute the resolution parameter as defined in Tarantola and Valette

(1982). We provide the results in the supporting Figures C.12-C.15. We find that

the inversion can recover large-scale velocity change patterns. Outside the seismic

network boundaries, the resolution is severely limited, and no shapes can be recov-

ered. In the centre of the grid around MSH’s summit, the test suggests that obtained

dv/v amplitudes might be somewhat exaggerated. The inversion results are generally
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strongly smoothed, probably due to the large sensitivity kernels that we obtain when

using values from the late coda of the CFs. We denote that the results are particu-

larly smooth between 0.25 and 0.5 Hz and, often, fail to recover the models’ shapes.

Therefore, we opted not to interpret spatial variations in dv/v from 0.25-0.5 Hz.

The three frequency bands investigated in this study are sensitive to different

depth ranges. Assuming a wavefield dominated by surface waves, the maximum

depth resolution is about 2/3 of the central wavelength (Obermann, Planès, Larose,

Sens-Schönfelder, & Campillo, 2013; Yin et al., 2014). For a Rayleigh wave velocity

of 2.5 km
s

(Y. Wang et al., 2017), this would correspond to about 6.6, 3.3, and 1.6 km

for results obtained from 0.25-0.5, 0.5-1.0, and 1.0-2.0 Hz, respectively.

5.4.2 Long-term Velocity Changes over 25 Years

Using the long-term dv/v time series shown in Figure 5.3, we can make some initial

assessments about the long-term evolution of the seismic velocity at MSH. From

this dataset, we can also infer how MSH’s 2004-2008 eruption impacted the seismic

velocity, although seasonal variations have a strong imprint on the evolution of dv/v

during the eruption, and the seismic signature of the eruption is the most pronounced

in 2004-2005 (Köpfli et al., 2024).

Probably the easiest to interpret is the seismic velocity drop in late February

2001 coinciding with the M6.8 Nisqually earthquake. Such velocity drops during

large earthquakes have been associated with nonlinear elastic damage to the dy-

namic ground shaking and were observed by a multitude of studies (e.g., Brenguier,

Campillo, et al., 2008; Olivier et al., 2015; Wegler et al., 2009). Our observation

of this coseismic velocity change agrees with findings by Hotovec-Ellis et al. (2014),

who used CWI of repeating earthquakes and found an elevated drop at higher fre-

quencies (1-10 Hz) at UW.SHW and UW.HSR. From the larger velocity drop at

higher frequencies, we infer a larger damage in the shallow subsurface, which is due
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to larger ground acceleration and a higher damage susceptibility of the unconfined

near-surface (e.g., Sheng et al., 2021). Usually, long datasets are well suited to study

the postseismic damage recovery phase, in which the seismic velocity returns to its

previous state following a logarithmic healing law typical of slow dynamics (Sens-

Schönfelder et al., 2019; Snieder et al., 2017). While we see signs of a recovery

process following the Nisqually earthquake, particularly in the dv/v curve obtained

from 0.5-1.0 Hz between 2002 and 2004, its later part is obscured by effects likely

linked to MSH’s eruption.

The arguably most notable event during this time series is MSH’s 2004-2008

volcanic crisis, which caused various structural changes in the subsurface, impacting

the seismic velocity (Hotovec-Ellis et al., 2015). The 1-month-long drop in the dv/v

reported by (Hotovec-Ellis et al., 2015) is absent in our dataset, which could be due

to our post-processing smoothing (30 days), our choice of the frequency band, or an

effect of the different spatial sensitivities of the two methods. The vertical GNSS

motions indicate a sudden deflation (compression) of ∼20 mm, which would explain

the increase in velocity that we see at the lowest frequencies (∼+0.15 %).

While deflation continues at a lower rate until 2007, re-inflation occurs until 2013

to return to the 2000 levels (+15 mm, Figure 5.3). We infer an unplugging followed

by the depressurisation of the volcanic plumbing system caused by the phreatic

explosions in late 2004. This depressurisation likely caused the closure of cracks and

pore space, leading to the observed subsidence accompanied by the velocity increase

driven by the acoustoelastic effect (e.g., Silver et al., 2007). Similar observations were

made, for example, at Piton de la Fournaise (Brenguier, Shapiro, et al., 2008; Rivet

et al., 2014; Sens-Schönfelder, Pomponi, & Peltier, 2014) and Mt. Etna (De Plaen

et al., 2019).

While yielding a higher resolution in times with many similar seismic signals,

CWI cannot be employed when seismic sources are too dissimilar, which is why, in
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contrast to PII, the technique does not allow a direct comparison of seismic velocities

during the eruption to post- and pre-eruptive seismic velocities. Therefore, our ob-

servation of the seismic velocity increase coincident with the initiation of the eruption

is original.

5.4.3 Evolution in dv/v post 2004

In Figure 5.4, we show the total dv/v change between 2007 and 2023. The resulting

pattern appears to be a strong velocity change from the northern flank of the volcanic

edifice and the SHZ. For depths below 3 km, the main velocity change is under the

volcanic edifice (see Figure 5.4 (a). The SHZ is a strongly scattering, seismically

active zone with a high vP
vS
-ratio at depth linked to MSH’s magmatic plumbing system

(Bedrosian et al., 2018; Crosbie et al., 2019; Ulberg et al., 2020; Waite & Moran,

2009). While the frequency bands employed here are too high to be sensitive to

changes in the plumbing system located mostly below 6 km depth (Ulberg et al.,

2020), pressure changes within the plumbing system can induce crack opening and

closing in the surrounding areas and, thereby, alter the seismic velocity and the

scattering properties of the medium in a larger volume (Donaldson et al., 2017). A

dv/v increase east of MSH appears more clearly on results from 0.5-1.0 Hz than for

1-2 Hz. This is in agreement with an eastwards extension of MSH’s magma reservoir

at depth (De Siena et al., 2014; G. J. Hill et al., 2009; Waite & Moran, 2009).

The bulk of the observed dv/v increase occurs in the time range of 2017-2020.

There are no significant changes in vertical displacement (Figure 5.3), neither are

there notable spikes in seismic activity. However, Battaglia et al. (2018) interpreted

additional dense materials below MSH from a gravity survey limited from 2010 to

2016, and they further interpreted this mass addition to be caused by a magma

reservoir recharge. Ground inflation between 2008 and 2012 preceded this mass

addition (see Figure 5.3). From the 2017-2020 velocity increase, we infer a slowing
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or ending of the recharging process, leading to a decreased pressure at depth. While

the seismic activity between 2013 and 2018 was somewhat elevated with 560 events

per year (with M > −1), indicating increased fluid movement at depth, it decreased

to ∼ 350 events per year between late 2018 and early 2022. We conclude that the

increased fluid movement and pressure changes from 2013 to 2018 led to a decreased

seismic velocity at depth (i.e., only seen between 0.25 and 0.5 Hz or down to 6 km

depth). This period was then followed by decreased seismic activity and increased

seismic velocity (see Figure 5.5, late 2017-2020). The observed dv/v increase is

comparable with that at the initiation of the 2004 eruption (see Figure 3), for which

magma ascent rates of 0.005–0.015 m/s were calculated (Rutherford, 2008; Thornber

et al., 2008). We suggest that the cumulative magma removal and, thus, pressure

decrease in the magmatic conduit was of the same order of magnitude as at the

beginning of the eruption. We also note that the 2017-2020 increase is expressed

more strongly in lower frequencies and, hence, larger depths than the increase at

the initiation of the 2004 eruption, which is compatible with our hypothesis that the

2017-2020 increase was caused by an alteration of the magma supply at depth.

5.4.4 Seasonal Velocity Changes

At MSH, the seismic velocity variations are strongly seasonal and, similar to findings

by Hotovec-Ellis et al. (2014), we observe two distinct peaks, one in spring and one

in autumn (see Figure 5.6). Spatial imaging provides insights into the locations of

the perturbations (see Figures C.19 and C.20) The spring peak focuses on the MSH

edifice (i.e., occurring at higher altitudes), and the autumn peak occurs across the

whole study region but is more pronounced in the MSH edifice base.

Changes in seismic velocities are often modelled as a superposition of effects

(Clements & Denolle, 2023; Donaldson et al., 2019). Dilational strains in the non-

linear elastic regime can soften subsurface materials (Ostrovsky & Johnson, 2001).
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Shallow seismic velocities are known to vary due to poroelastic effects of rainfall loads,

rainwater diffusion, groundwater level variations (Barajas et al., 2021; Clements &

Denolle, 2018; Mao et al., 2022; Tsai, 2011), changes in snow load (Caudron et al.,

2022; Q. Y. Wang et al., 2017), thermoelastic stresses (Colombero et al., 2018; Fokker

et al., 2024; Gassenmeier et al., 2016), and ground freezing and thawing (Gassenmeier

et al., 2015; James et al., 2017; Lindner et al., 2021; Steinmann et al., 2021).

The vertical GNSS motion at MSH seems to mainly indicate the elastic effect

of the snow load with a single cycle (Figure 5.6). Downward motions possibly indi-

cate compression and closure of pores and would correspond to an increase in dv/v.

Upward motions likely indicate a dilation and expansion of pores and would corre-

spond to a decrease in dv/v (e.g., Dong et al., 2002; Heki, 2001). Because the dv/v

time series do not anticorrelate with vertical motion, we discuss possible alternative

explanations.

Generally, the northern part of MSH, and likely the base of MSH, does not exhibit

any positive peak in the winter. It has rather the signature of the low-frequency

dv/v with a single peak in autumn. Snow loading and unloading do not seem to

have a significant impact on the seismic velocity. While the snow load at MSH’s

edifice is most likely higher than at the Swift Creek SNOTEL station (1353 m a.s.l.),

where the measurements were taken, a significant snow mass still accumulates in all

parts of the study area with an average altitude of about 1100 m a.s.l.. Autumn is

characterised by the driest period of the year (low rainfall) and the lowest lake level.

The observed positive dv/v peak may correspond to 1) lower pore pressure or 2) a 70

or 80-day phase-shifted thermoelastic effects (Clements & Denolle, 2023), but likely

has contributions from both effects. Following this peak, dv/v decreases probably

due to heavy rainfalls (i.e., pore water refill) and decreasing temperatures in the late

autumn/early winter. The lack of clear negative dv/v after the temperature trough

may indicate some contribution of ground freezing and snow load, although the
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constantly high water supply rate implies that, even in winter, rainfall and melting

events remain common.

At the MSH edifice, we expect larger contributions of ground freezing and elastic

loading effects of the snow cover due to the higher altitudes. In contrast to the

northern part of the study region, on the edifice, dv/v increases in early winter,

indicating that precipitation occurs as snow rather than rainfall. The elastic loading

effect of the snow load leads to a closing of cracks and pores. The response of

the seismic velocity is quasi-instantaneous (e.g., Li et al., 2021). Another factor

positively contributing to increasing the velocity is ground freezing (Gassenmeier et

al., 2015; Steinmann et al., 2021). Snow cover and low temperatures remain until late

spring, likely inhibiting the infiltration of surface water and thus leading to further

increases in dv/v. To explain the secondary peak in early autumn, we invoke similar

mechanisms as for the northern part, i.e., the decrease of groundwater level and soil

moisture combined with thermoelastic effects.

Interpreting why the increased snow load in winter and early spring has no mea-

surable impact on the deeper velocity and the velocity structure north of the volcanic

edifice is more challenging. One potential factor could be a lower stress sensitivity

at depth to load changes at the surface (Heki, 2003). It could also indicate that the

true perturbation of velocity, or stresses, is only in the shallowest layers (Obermann,

Planès, Larose, Sens-Schönfelder, & Campillo, 2013; Yuan et al., 2021), though we

would need to invoke a vertical heterogeneity in stress perturbation.

5.5 Conclusions

In this study, we estimate changes in the seismic velocity from ambient seismic noise

using 25 years of continuous seismic data from MSH and surroundings. Usually, only

data from seismic stations continuously available during the whole study period can
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be used for passive image interferometry studies since dv/v estimates from different

periods are offset by unknown amounts, posing a severe limitation on long-term dv/v

estimations from seismic networks. At MSH, we overcome this limitation by employ-

ing a spatial imaging approach (Obermann, Planès, Larose, & Campillo, 2013) to

estimate the velocity at newly installed station combinations iteratively. We demon-

strate the effectiveness of this approach for data between 2007 and 2023, thereby

creating time-dependent velocity change maps. In addition, we show a network-

averaged dv/v time series for the whole study period from 1998 to 2023.

The various dv/v time series exhibit effects from volcanic and tectonic inter-

actions with the subsurface. Following the 2001 M6.8 Nisqually earthquake, the

velocity drops in all investigated frequency bands. We attribute this velocity drop

to a nonlinear damage reaction to the ground shaking. With the initiation of MSH’s

2004-2008 volcanic crisis, the seismic velocity exhibits a sudden jump by up to 0.2 %,

while GNSS measurements imply deflation. Therefore, we infer a depressurisation

of the volcanic plumbing system, causing cracks and pore space to close, which, in

turn, caused a velocity increase.

Following the eruption, we find dynamics dominated by additional velocity in-

creases. We analyse the spatial distribution of these dynamics and observe that

velocity increases in shallow layers focus on the St. Helens Seismic Zone (SHZ), an

area in which other studies have placed MSH’s plumbing system. We deem the follow-

ing interpretation of the complex dynamics the likeliest: An acceleration of the deep

recharging process between 2013 and 2017, expressed by a surge in volcano-tectonic

activity, led to a decreased seismic velocity at depths below 3 km. This recharging

process is not only inferred from seismic observations but also from GNSS and grav-

ity data. After this period, dv/v shows drastic increases accompanied by a slight

decrease in seismic activity, indicating a slowing or ending of the recharging process

and its associated deformation at depth.
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Finally, we analyse seasonal cycles in the seismic velocity. Snow loading and

ground freezing appear to have limited impacts on the seismic velocity in areas

other than on the volcanic edifice. In these regions, we find that dv/v’s seasonal

cycles can be largely explained by modulations in thermoelastic stress and pore space

saturation. On the edifice, we have to invoke additional mechanisms to produce a

satisfactory explanation. Here, the freezing temperatures (accompanied by snow)

inhibit a pore water refill for most of the year. Additionally, we find evidence for

contributions of the snow mass due to elastic loading and ground freezing in the

winter. In the late summer, all areas show velocity increases due to reduced moisture

by evaporation combined with little water influx and increased thermoelastic stress.

Compared to event-based CWI, PII offers quasi-homogeneous temporal and spa-

tial sampling with the caveat of sampling mostly the shallow structure. During

periods of high and consistent seismic activity, CWI offers a higher temporal resolu-

tion. However, when the sources’ signals become too dissimilar, for instance, when

comparing seismic sources before and after MSH’s eruption, a direct comparison is

no longer possible (see Hotovec-Ellis et al., 2015). Therefore, and because of differ-

ent spatial sensitivities, both techniques can make unique observations and should

be viewed as complementary rather than redundant.

Data and Resources

The waveform data used in this study are collected by the PNSN (University of Wash-

ington, 1963, 10.7914/SN/UW) and the Cascades Volcano Observatory (Cascades

Volcano Observatory/USGS, 2001, 10.7914/SN/CC). The facilities of EarthScope

Consortium were used for access to waveforms, related metadata, and/or derived

products used in this study. These services are funded through the Seismological

Facility for the Advancement of Geoscience (SAGE) Award of the National Sci-
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ence Foundation under Cooperative Agreement EAR-1724509. The ERA5 climate

data (Hersbach et al., 2020) are available upon registration at https://cds.climate.

copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview. The origin

times of the seismic events can be queried via the USGS FDSN web service. The

detrended NA2014 GNSS solutions (Murray & Svarc, 2017) can be downloaded from

the USGS homepage. The seismic data download, the computation of correlations,

velocity change estimates, and spatial imaging were executed using SeisMIC 0.5.22

(Makus & Sens-Schönfelder, 2024). All maps were plotted using PyGMT (Uieda

et al., 2021). For the map plots, we obtained the SRTMGL1 digital elevation

model (Kobrick & Crippen, 2017). For all other plotting tasks, we used Matplotlib

(Hunter, 2007). The full-stack software to reproduce this analysis is available at

https://github.com/Denolle-Lab/Mt-St-Helens. With this manuscript, we provide

a supplementary document containing supporting information, figures, and tables.

Additionally, we provide two animated GIF images showing the temporal evolution

of dv/v for 0.5-1.0 Hz and 1.0-2.0 Hz.

116

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
https://github.com/Denolle-Lab/Mt-St-Helens


CHAPTER 6

Conclusion and Outlook

This thesis explored seismological means to detect time-dependent medium changes

in and around volcanoes. More specifically, we applied the method of passive image

interferometry (PII) to volcanic environments while setting the results into context

to volcanic, tectonic, and environmental data to gain insight into the dynamics at

active volcanoes and evaluate strengths and weaknesses of PII at this task. A sig-

nificant part of the thesis revolved around developing tools and methods to achieve

these goals. In this chapter, I summarise the findings and contributions of each chap-

ter. Afterwards, I will indicate directions for potential further research and ways to

complement the presented studies.

Active volcanoes pose a significant risk to society that can be mitigated by moni-

toring and improving the understanding of their dynamics. All monitoring techniques

currently employed by volcano observatories focus on secondary effects caused by

uprising magma prior to volcanic eruptions (e.g., measuring ground deformation or
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monitoring seismic events) rather than directly measuring changes in the volcanic

plumbing system. In this thesis, I exploit recent advances in ambient noise seis-

mology that allow interrogating changes in the subsurface and, thereby, within the

volcanic plumbing system (see Chapter 1 for details).

The ubiquitous ambient seismic noise is a composite yet deterministic signal pro-

duced by environmental, tectonic, and anthropogenic processes. By correlating its

energy, we can retrieve an approximation of the subsurface Green’s function. Repeat-

ing this process over time allows us to quantify changes in the seismic propagation

velocity (dv/v) - a tool called passive image interferometry (PII). The seismic velocity

is coupled to the shear modulus, which describes the material’s rigidity. Therefore,

PII can be used to monitor many physical processes that deform a material - among

these are also volcanic processes. Chapter 2 describes the theoretical background in

detail.

Chapter 3 discusses the methodology of PII in greater detail and introduces a

software tool, SeisMIC, for end-to-end processing from continuous seismic noise data

to dv/v estimates. After describing the employed algorithms, we show some use

cases, API examples, and benchmarks. We remark that SeisMIC is currently the

only publicly available software solution to map dv/v in space. To this end, we

implemented the algorithm proposed by Obermann, Planès, Larose, and Campillo

(2013). Furthermore, we highlight its ease of use, flexibility, and high computational

efficiency compared to other existing solutions. At the moment, the software’s main

drawback is that the user is limited to computing dv/v using only one of the pos-

sible methods, the stretching method (as described in Sens-Schönfelder & Wegler,

2006, and Chapter 3). With the software, we proposed new ways of standardising

correlation functions and their storage. SeisMIC is being employed by an increasing

number of users and research groups and, looking forward, will obviously require

further updates and support to be future-proof and further establish itself in the
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community.

Relying on this new tool, chapters 4 and 5 present studies on data recorded

at field sites dominated by active volcanism. In Chapter 4, we investigated the

influences on the seismic velocity using a large-N array at the Klyuchevskoy Volcanic

Group (KVG) in Kamchatka, Russia, consisting of more than 100 seismic stations

with only one year recording time. This dataset violates a crucial assumption taken

in Green’s function estimation via noise interferometry: Throughout time, tremors

from different volcanoes dominate the wavefield. It can, thus, not be assumed to

be stationary. We showed a machine learning-assisted approach to circumvent this

issue and obtained temporally finely resolved dv/v estimates. Using these, we found

that the seismic velocity changes are strongly dependent on the geological conditions

at the corresponding station site. ∼10 months before an eruption at Bezymianny

volcano, its surrounding stations register a dv/v increase coinciding with surface

deformation of the volcanic edifice.

In this thesis’ third study, Chapter 5, we analysed data collected at Mount St.

Helens (MSH) in Washington, United States of America. The seismic network at

MSH has been in operation for a remarkably long period and has recorded continuous

seismic waveform data since 1998. However, various equipment changes and upgrades

have been performed over time, requiring us to compensate for in the PII algorithm.

We address the problem using a spatial inversion, quantifying the changing spatial

sensitivity of Rayleigh waves with the addition and removal of further stations. In

the final velocity change estimate, we observed a drop with the initiation of MSH’s

2004-2008 eruption, from which we inferred an unplugging, causing a sudden pressure

decrease in the volcanic conduit. After 2017, dv/v increased above MSH’s plumbing

system. This seismic velocity change, a decreased seismic event rate, the end of the

surface reinflation, and a temporal gravity anomaly (Battaglia et al., 2018) indicate

a slowing of the magma recharging processes at depth.
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6.1 Validity of the Underlying Assumptions in Pas-

sive Image Interferometry

As outlined in Chapter 4, PII grounds on several assumptions concerning the medium

and, more importantly, the temporal and spatial distribution of the ambient seismic

noise sources. Firstly, the correlation function (CF) will only be identical to the

medium’s Green’s function if the noise sources are distributed homogeneously in the

far field (Aki, 1957; Campillo & Paul, 2003). For PII, an actual Green’s function

is strictly not required. Instead, one can investigate changes in a partial Green’s

function, which might overrepresent parts of the medium illuminated more strongly

by unevenly distributed noise sources. However, this noise field should remain stable

(Hadziioannou et al., 2009).

The fluctuating noise field violates this assumption for the dataset presented

in Chapter 4. In the case of Kamchatka, strong volcanic tremors cause the non-

stationarity of the noise field, which may generally cause an issue at several volcanoes.

While we demonstrate that one can circumvent this issue by identifying similar partial

Green’s functions using a clustering algorithm, it somewhat limits the applicability

for volcano monitoring. Firstly, monitoring requires an automation of the method.

However, automating clustering and subsequent PII monitoring poses an additional

hurdle. Secondly, the dv/v time series created from different clusters are not directly

comparable. Hence, velocity changes may remain undetected if they coincide with

the transition between clusters. However, the cluster transition could be used as

a monitoring criterion itself as it indicates changing dynamics within the volcanic

conduit (see A. Yates et al., 2023).

In conclusion, while non-homogeneous and non-stationary noise fields might pose

an additional challenge, they do not prevent employing PII as an additional criterion

in volcano monitoring.

120



CHAPTER 6. CONCLUSION AND OUTLOOK

6.2 Unravelling the Physics Behind Changes in the

Seismic Velocity

In chapters 4 and 5, we found that multiple processes impact the seismic velocity

and the medium’s scattering properties. However, the physical laws governing some

of these mechanisms remain elusive. To unravel the forcing on the seismic velocity,

a deeper understanding of its components is required. Below, I attempt to provide

a short review of the different mechanisms that contribute significantly to dv/v ob-

servations in field data and, in my opinion, would benefit from further investigation.

Still, microscopically damage and healing processes, for example, remain elusive,

and no physical models link observations and theory. Currently, various empirical

models to explain the damage-healing hysteresis have been proposed (e.g., Berjamin

et al., 2017; Lyakhovsky et al., 1997; Niu et al., 2024; Sens-Schönfelder et al., 2019)

and it seems that the nonlinear non-classical effect originates from effects at the

grain boundaries (Darling et al., 2004). Having physical models available would not

only help to illuminate the processes responsible for dv/v variations in geophysical

field surveys but also be a great stride for non-destructive testing, where CWI is

commonly applied (e.g. Diewald et al., 2022; Grabke et al., 2021; Legland et al.,

2017; Xue et al., 2022).

In contrast to the nonlinear non-classical elasticity, the stress-dependent change

of wave propagation velocities, also known as the acoustoelastic effect (see, e.g.,

Pao, 1987), is better understood. This effect results in a wave speed increase with

increasing stress. Acoustoelasticity is a material constant determining the change

of a material’s compliance under stress (Abiza et al., 2012). This relationship is an

extension of Hooke’s law, linking stress and strain (see, e.g., Shearer, 2019), and

consists of a linear and a nonlinear component (Johnson & Rasolofosaon, 1996),

sometimes referred to as the classical linear and nonlinear elasticity. Physically,
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the effect is interpreted as the closing of preexisting (micro)pores and cracks in the

medium. Many studies invoke this effect to explain velocity changes coinciding with

pressure changes in volcanic plumbing systems (e.g., Donaldson et al., 2017, and

chapters 4 and 5).

Variations in pore space saturation and content are the final factors significantly

impacting dv/v in field studies. The pore saturation impacts the seismic velocity due

to the pore pressure-induced change in effective stress. Fokker et al. (2021) quantified

the relationship between dv/v and the pore pressure based on the induced stresses

and the medium-dependent pore pressure diffusion. Recently, Fokker et al. (2023)

extended their method into a theory applicable to 4D problems (i.e., a 3D space

extended into the time domain). Also, the pores’ content can influence the medium’s

wave speed and scattering properties. For example, in Chapter 5, we observed a

dv/v increase during times of ground freezing. Effectively, this is due to the ground’s

overall increased stiffness (i.e., shear modulus, see Chapter 2) due to frozen pore

waters. Simultaneously, the scattering properties of the medium will be affected

when the properties of the pore space are changing. For PII investigations, this

signifies a coherence change at those times (Thery et al., 2020). Further development

of models that quantify the expected frequency (i.e., depth) dependent changes in

the coherence upon changing the pore space content and saturation could yield an

additional tool to investigate changes in ground moisture or, for the case of volcano

monitoring, hydrothermal fluids.

To deepen the understanding of the outlined mechanisms, it would be necessary

to evaluate them separately in controlled laboratory environments. Ultimately, by

linking theory, laboratory-scale, and field data, the scientific community will benefit

by being able to unravel the various influences in complex composite dv/v time series

like the ones presented in chapters 4 and 5 of this thesis.
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6.3 Towards Automated Volcanic Eruption Forecast-

ing with Seismic Velocity Changes

In this thesis, we demonstrated that passive image interferometry (PII) can detect

changes in the subsurface caused by volcanic processes. In contrast to volcano mon-

itoring techniques employing tiltmeters, GNSS, or INSAR, which measure surface

deformation, seismic velocity changes can detect structural changes in the subsur-

face that do not necessarily cause surface effects. PII can also be used for aseismic

processes. In addition, PII exploits the energy of the ubiquitous ambient seismic

noise and does not require any active shots or passive seismicity, making it ideal for

continuous monitoring systems. However, it is crucial to emphasise that the pre-

sented studies and almost all studies in the literature were performed on historical

data after an eruption occurred. To the best of my knowledge, there is currently only

one example of real-time PII monitoring at an active volcano executed at Piton de

La Fournaise (La Reúnion) between 2006 and 2007 (for details, see Duputel et al.,

2009). In future work, I would encourage more real-time ambient noise monitoring

studies at active volcanoes to demonstrate their feasibility and usefulness. Combin-

ing dv/v with established proxies, such as Real-time Seismic-Amplitude Measurement

(RSAM) or ground deformation, will decrease the uncertainty of eruption forecast-

ing and early warning. This thesis paves the way towards real-time monitoring, as

outlined below.

In Chapter 3, we developed a tool easily adaptable to real-time monitoring ap-

plications. Its high computational efficiency will allow for computations of seismic

velocity changes orders of magnitude faster than real-time, even for the very largest

datasets, for example, recorded by fibre optics systems (i.e., distributed acoustic

sensing). Its flexibility makes it easy for individual volcano observatories to intro-

duce custom pre- and post-processing steps that may be required depending on the
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local instrumentation, data quality, and properties of the regional ambient field (as

was necessary for chapters 4 and 5).

In Chapter 4, we showed that seismic velocity changes preceded an eruption at

Bezymianny volcano. Simultaneously, we demonstrated that, when combined with a

clustering approach, PII can also be employed for non-stationary wave fields. This

is of importance since non-stationary wavefields are particularly prevalent at active

volcanoes due to volcanic tremors.

Chapter 5 focuses on seismic velocity changes at Mount St. Helens (MSH). We

found a seismic velocity drop due to a pressure decrease in the volcanic conduit. We

also observed a seismic velocity increase, from which we inferred a decreasing magma

supply rate at depth. In addition, we showed that even with constantly changing

instrumentation PII can to some extent be normalised to yield a continuous velocity

change time series.

Another lesson learned from chapters 4 and 5 is that data from different volcanoes

might require vastly different processing strategies. Also, different volcanoes might

exhibit contrasting dynamics in terms of changes in seismic velocity. Before rolling

out an automated real-time monitoring system, one should tune the required param-

eters by processing historical data recorded at the location of interest, as facilitated

by SeisMIC’s adaptable processing schemes.

124



Declaration

Hiermit versichere ich, dass ich die vorliegende Dissertation ohne unzulässige Hilfe

Dritter und ohne Benutzung anderer als der angegebenen Literatur angefertigt wurde.

Die Stellen der Arbeit, die anderen Werken wörtlich oder inhaltlich entnommen sind,

wurden durch entsprechende Angaben der Quellen kenntlich gemacht. Diese Ar-

beit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Die deutsche Kurzfassung wurde mit Hilfe einer Übersetzungssoftware erstellt. Die

grammatikalische Korrektheit und Rechtschreibung dieser Arbeit wurde von einer au-

tomatisierten Software unterstützt von einer künstlichen Intelligenz (KI) überprüft.

Diese Dissertation enhält keinerlei KI-generierte Inhalte.

I hereby declare that except where specific reference is made to the work of

others, the contents of this dissertation are original and have not been submitted in

whole or in part for consideration for any other degree or qualification in this or any

other university. This dissertation is my own work and contains nothing which is the

outcome of work done in collaboration with others except as declared and specified in

125



CHAPTER 6. CONCLUSION AND OUTLOOK

the text. I created the German Abstract with the help of translation software. The

thesis’ grammar and orthographic soundness were verified using artificial intelligence

(AI) accelerated software. This thesis does not contain any AI-generated content.

Peter Makus

Potsdam, 2024

126



Bibliography

Abiza, Z., Destrade, M., & Ogden, R. W. (2012). Large acoustoelastic effect. Wave

Motion, 49 (2), 364–374. https://doi.org/10.1016/j.wavemoti.2011.12.002

Aizawa, K., Kanda, W., Ogawa, Y., Iguchi, M., Yokoo, A., Yakiwara, H., & Sug-

ano, T. (2011). Temporal changes in electrical resistivity at Sakurajima vol-

cano from continuous magnetotelluric observations. Journal of Volcanology

and Geothermal Research, 199 (1), 165–175. https : / / doi . org / 10 . 1016 / j .

jvolgeores.2010.11.003

Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special

reference to microtremors. Bulletin of the Earthquake Research Institute, 35,

415–456.

Albaric, J., Kühn, D., Ohrnberger, M., Langet, N., Harris, D., Polom, U., Lecomte,

I., & Hillers, G. (2021). Seismic Monitoring of Permafrost in Svalbard, Arctic

Norway. Seismological Research Letters, 92 (5), 2891–2904. https://doi.org/

10.1785/0220200470

127

https://doi.org/10.1016/j.wavemoti.2011.12.002
https://doi.org/10.1016/j.jvolgeores.2010.11.003
https://doi.org/10.1016/j.jvolgeores.2010.11.003
https://doi.org/10.1785/0220200470
https://doi.org/10.1785/0220200470


BIBLIOGRAPHY

Andajani, R. D., Tsuji, T., Snieder, R., & Ikeda, T. (2020). Spatial and temporal

influence of rainfall on crustal pore pressure based on seismic velocity moni-

toring. Earth, Planets and Space, 72 (1), 177. https://doi.org/10.1186/s40623-

020-01311-1

Ardhuin, F., Gualtieri, L., & Stutzmann, E. (2019, April). Physics of Ambient Noise

Generation by Ocean Waves. In N. Nakata, L. Gualtieri, & A. Fichtner (Eds.),

Seismic Ambient Noise (pp. 69–108). Cambridge University Press. https://

doi.org/10.1017/9781108264808

Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., &

Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60 (2),

e2021RG000769. https://doi.org/10.1029/2021RG000769

Asnar, M., Sens-Schönfelder, C., Bonnelye, A., & Dresen, G. (2023, February). Non-

classical, non-linear elasticity in rocks: Experiments in a triaxial cell with pore

pressure control (tech. rep. No. EGU23-8050). Copernicus Meetings. https:

//doi.org/10.5194/egusphere-egu23-8050

Barajas, A., Poli, P., D’Agostino, N., Margerin, L., & Campillo, M. (2021). Separation

of Poroelastic and Elastic Processes of an Aquifer From Tectonic Phenomena

Using Geodetic, Seismic, and Meteorological Data in the Pollino Region, Italy.

Geochemistry, Geophysics, Geosystems, 22 (11), e2021GC009742. https://doi.

org/10.1029/2021GC009742

Barbe, K., Pintelon, R., & Schoukens, J. (2010). Welch Method Revisited: Nonpara-

metric Power Spectrum Estimation Via Circular Overlap. IEEE Transactions

on Signal Processing, 58 (2), 553–565. https://doi.org/10.1109/TSP.2009.

2031724

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L., Martinez-Ortiz, C.,

Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., &

128

https://doi.org/10.1186/s40623-020-01311-1
https://doi.org/10.1186/s40623-020-01311-1
https://doi.org/10.1017/9781108264808
https://doi.org/10.1017/9781108264808
https://doi.org/10.1029/2021RG000769
https://doi.org/10.5194/egusphere-egu23-8050
https://doi.org/10.5194/egusphere-egu23-8050
https://doi.org/10.1029/2021GC009742
https://doi.org/10.1029/2021GC009742
https://doi.org/10.1109/TSP.2009.2031724
https://doi.org/10.1109/TSP.2009.2031724


BIBLIOGRAPHY

Honeyman, T. (2022). Introducing the FAIR Principles for research software.

Scientific Data, 9 (1), 622. https://doi.org/10.1038/s41597-022-01710-x

Baron, D., & Ménard, B. (2021). Extracting the Main Trend in a Data Set: The

Sequencer Algorithm. The Astrophysical Journal, 916 (2), 91. https ://doi .

org/10.3847/1538-4357/abfc4d

Battaglia, M., Lisowski, M., Dzurisin, D., Poland, M. P., Schilling, S., Diefenbach,

A., & Wynn, J. (2018). Mass Addition at Mount St. Helens, Washington,

Inferred From Repeated Gravity Surveys. Journal of Geophysical Research:

Solid Earth, 123 (2), 1856–1874. https://doi.org/10.1002/2017JB014990

Battaglia, M., Gottsmann, J., Carbone, D., & Fernández, J. (2008). 4D volcano

gravimetry. GEOPHYSICS, 73 (6), WA3–WA18. https://doi.org/10.1190/1.

2977792

Bedrosian, P. A., Peacock, J. R., Bowles-Martinez, E., Schultz, A., & Hill, G. J.

(2018). Crustal inheritance and a top-down control on arc magmatism at

Mount St Helens. Nature Geoscience, 11 (11), 865–870. https://doi.org/10.

1038/s41561-018-0217-2

Belousov, A., Voight, B., Belousova, M., & Muravyev, Y. (2000). Tsunamis gener-

ated by subaquatic volcanic explosions: Unique data from 1996 Eruption in

Karymskoye Lake, Kamchatka, Russia. Pure and Applied Geophysics, 157 (6-

8), 1135–1143. https://doi.org/10.1007/s000240050021

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti,

M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise

data to obtain reliable broad-band surface wave dispersion measurements.

Geophysical Journal International, 169 (3), 1239–1260. https://doi.org/10.

1111/j.1365-246X.2007.03374.x

Berezhnev, Y., Belovezhets, N., Shapiro, N., & Koulakov, I. (2023). Temporal changes

of seismic velocities below Bezymianny volcano prior to its explosive eruption

129

https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.3847/1538-4357/abfc4d
https://doi.org/10.3847/1538-4357/abfc4d
https://doi.org/10.1002/2017JB014990
https://doi.org/10.1190/1.2977792
https://doi.org/10.1190/1.2977792
https://doi.org/10.1038/s41561-018-0217-2
https://doi.org/10.1038/s41561-018-0217-2
https://doi.org/10.1007/s000240050021
https://doi.org/10.1111/j.1365-246X.2007.03374.x
https://doi.org/10.1111/j.1365-246X.2007.03374.x


BIBLIOGRAPHY

on 20.12.2017. Journal of Volcanology and Geothermal Research, 433, 107735.

https://doi.org/10.1016/j.jvolgeores.2022.107735

Berjamin, H., Favrie, N., Lombard, B., & Chiavassa, G. (2017). Nonlinear waves

in solids with slow dynamics: An internal-variable model. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 473 (2201),

20170024. https://doi.org/10.1098/rspa.2017.0024

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J.

(2010). ObsPy: A Python Toolbox for Seismology. Seismological Research

Letters, 81 (3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Biggs, J., & Pritchard, M. E. (2017). Global Volcano Monitoring: What Does It Mean

When Volcanoes Deform? Elements, 13 (1), 17–22. https://doi.org/10.2113/

gselements.13.1.17

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., &

Larose, E. (2008). Postseismic Relaxation Along the San Andreas Fault at

Parkfield from Continuous Seismological Observations. Science, 321 (5895),

1478–1481. https://doi.org/10.1126/science.1160943

Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., Emoto,

K., & Miyake, H. (2014). Mapping pressurized volcanic fluids from induced

crustal seismic velocity drops. Science, 345 (6192), 80–82. https://doi.org/10.

1126/science.1254073

Brenguier, F., Clarke, D., Aoki, Y., Shapiro, N. M., Campillo, M., & Ferrazzini,

V. (2011). Monitoring volcanoes using seismic noise correlations. Comptes

Rendus - Geoscience, 343 (8-9), 633–638. https://doi.org/10.1016/j.crte.2010.

12.010

Brenguier, F., Rivet, D., Obermann, A., Nakata, N., Boué, P., Lecocq, T., Campillo,

M., & Shapiro, N. (2016). 4-D noise-based seismology at volcanoes: Ongoing

130

https://doi.org/10.1016/j.jvolgeores.2022.107735
https://doi.org/10.1098/rspa.2017.0024
https://doi.org/10.1785/gssrl.81.3.530
https://doi.org/10.2113/gselements.13.1.17
https://doi.org/10.2113/gselements.13.1.17
https://doi.org/10.1126/science.1160943
https://doi.org/10.1126/science.1254073
https://doi.org/10.1126/science.1254073
https://doi.org/10.1016/j.crte.2010.12.010
https://doi.org/10.1016/j.crte.2010.12.010


BIBLIOGRAPHY

efforts and perspectives. Journal of Volcanology and Geothermal Research,

321, 182–195. https://doi.org/10.1016/j.jvolgeores.2016.04.036

Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O.,

& Nercessian, A. (2008). Towards forecasting volcanic eruptions using seismic

noise. Nature Geoscience, 1 (2), 126–130. https://doi.org/10.1038/ngeo104

Budi-Santoso, A., Lesage, P., Dwiyono, S., Sumarti, S., Subandriyo, Surono, Jous-

set, P., & Metaxian, J. P. (2013). Analysis of the seismic activity associated

with the 2010 eruption of Merapi Volcano, Java. Journal of Volcanology and

Geothermal Research, 261 (November 2010), 153–170. https ://doi .org/10.

1016/j.jvolgeores.2013.03.024

Bürgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., & Apel, E.

(2005). Interseismic coupling and asperity distribution along the Kamchatka

subduction zone. Journal of Geophysical Research: Solid Earth, 110 (7), 1–17.

https://doi.org/10.1029/2005JB003648

Campillo, M., & Paul, A. (2003). Long-Range Correlations in the Diffuse Seismic

Coda. Science, 299 (5606), 547–549. https://doi.org/10.1126/science.1078551

Cascades Volcano Observatory/USGS. (2001). Cascade chain volcano monitoring.

https://doi.org/10.7914/SN/CC

Casey, R., Templeton, M. E., Sharer, G., Keyson, L., Weertman, B. R., & Ahern,

T. (2018). Assuring the Quality of IRIS Data with MUSTANG. Seismological

Research Letters, 89 (2A), 630–639. https://doi.org/10.1785/0220170191

Cassidy, M., Manga, M., Cashman, K., & Bachmann, O. (2018). Controls on explosive-

effusive volcanic eruption styles. Nature Communications, 9 (1), 2839. https:

//doi.org/10.1038/s41467-018-05293-3

Caudron, C., Aoki, Y., Lecocq, T., De Plaen, R., Soubestre, J., Mordret, A., Seydoux,

L., & Terakawa, T. (2022). Hidden pressurized fluids prior to the 2014 phreatic

131

https://doi.org/10.1016/j.jvolgeores.2016.04.036
https://doi.org/10.1038/ngeo104
https://doi.org/10.1016/j.jvolgeores.2013.03.024
https://doi.org/10.1016/j.jvolgeores.2013.03.024
https://doi.org/10.1029/2005JB003648
https://doi.org/10.1126/science.1078551
https://doi.org/10.7914/SN/CC
https://doi.org/10.1785/0220170191
https://doi.org/10.1038/s41467-018-05293-3
https://doi.org/10.1038/s41467-018-05293-3


BIBLIOGRAPHY

eruption at Mt Ontake. Nature Communications, 13 (1), 6145. https://doi.

org/10.1038/s41467-022-32252-w

Caudron, C., Girona, T., Jolly, A., Christenson, B., Savage, M. K., Carniel, R.,

Lecocq, T., Kennedy, B., Lokmer, I., Yates, A., Hamling, I., Park, I., Kilgour,

G., & Mazot, A. (2021). A quest for unrest in multiparameter observations

at Whakaari/White Island volcano, New Zealand 2007–2018. Earth, Planets

and Space, 73 (1), 195. https://doi.org/10.1186/s40623-021-01506-0

Caudron, C., Girona, T., Taisne, B., Suparjan, Gunawan, H., Kristianto, & Kasbani.

(2019). Change in seismic attenuation as a long-term precursor of gas-driven

eruptions. Geology, 47 (7), 632–636. https://doi.org/10.1130/G46107.1

Chaves, E. J., & Schwartz, S. Y. (2016). Monitoring transient changes within over-

pressured regions of subduction zones using ambient seismic noise. Science

Advances, 2 (1), 1–7. https://doi.org/10.1126/sciadv.1501289

Chester, D. K., Degg, M., Duncan, A. M., & Guest, J. E. (2000). The increasing

exposure of cities to the effects of volcanic eruptions: A global survey. Global

Environmental Change Part B: Environmental Hazards, 2 (3), 89–103. https:

//doi.org/10.3763/ehaz.2000.0214

Chouet, B. A. (1996). Long-period volcano seismicity: Its source and use in eruption

forecasting. Nature, 380 (6572), 309–316. https://doi.org/10.1038/380309a0

Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods

for detecting precursors of magma movement and eruption. Journal of Vol-

canology and Geothermal Research, 252, 108–175. https://doi.org/10.1016/j.

jvolgeores.2012.11.013

Clements, T., & Denolle, M. A. (2023). The Seismic Signature of California’s Earth-

quakes, Droughts, and Floods. Journal of Geophysical Research: Solid Earth,

128 (1), e2022JB025553. https://doi.org/10.1029/2022JB025553

132

https://doi.org/10.1038/s41467-022-32252-w
https://doi.org/10.1038/s41467-022-32252-w
https://doi.org/10.1186/s40623-021-01506-0
https://doi.org/10.1130/G46107.1
https://doi.org/10.1126/sciadv.1501289
https://doi.org/10.3763/ehaz.2000.0214
https://doi.org/10.3763/ehaz.2000.0214
https://doi.org/10.1038/380309a0
https://doi.org/10.1016/j.jvolgeores.2012.11.013
https://doi.org/10.1016/j.jvolgeores.2012.11.013
https://doi.org/10.1029/2022JB025553


BIBLIOGRAPHY

Clements, T., & Denolle, M. A. (2018). Tracking Groundwater Levels Using the Am-

bient Seismic Field. Geophysical Research Letters, 45 (13), 6459–6465. https:

//doi.org/10.1029/2018GL077706

Clements, T., & Denolle, M. A. (2021). SeisNoise.jl: Ambient Seismic Noise Cross

Correlation on the CPU and GPU in Julia. Seismological Research Letters,

92 (1), 517–527. https://doi.org/10.1785/0220200192

Collette, A., Kluyver, T., Caswell, T. A., Tocknell, J., Kieffer, J., Scopatz, A., Dale,

D., Chen, Jelenak, A., payno, juliagarriga, VINCENT, T., Sciarelli, P., Valls,

V., Kofoed Pedersen, U., jakirkham, Raspaud, M., Parsons, A., Abbasi, H.,

. . . Hole, L. (2020). H5py/h5py: 3.1.0. Zenodo. https ://doi .org/10.5281/

zenodo.4250762

ADS Bibcode: 2020zndo...4250762C.

Colombero, C., Baillet, L., Comina, C., Jongmans, D., Larose, E., Valentin, J., & Vin-

ciguerra, S. (2018). Integration of ambient seismic noise monitoring, displace-

ment and meteorological measurements to infer the temperature-controlled

long-term evolution of a complex prone-to-fall cliff. Geophysical Journal In-

ternational, 213 (3), 1876–1897. https://doi.org/10.1093/gji/ggy090

Coppola, D., Marco, L., Massimetti, F., Hainzl, S., Shevchenko, A. V., Mania, R.,

M, N., Shapiro, & Walter, T. R. (2021). Thermal remote sensing reveals com-

munication between volcanoes of the Klyuchevskoy Volcanic Group. Scientific

Reports, 11 (1), 1–16. https://doi.org/10.1038/s41598-021-92542-z

Crosbie, K. J., Abers, G. A., Mann, M. E., Janiszewski, H. A., Creager, K. C., Ulberg,

C. W., & Moran, S. C. (2019). Shear Velocity Structure From Ambient Noise

and Teleseismic Surface Wave Tomography in the Cascades Around Mount

St. Helens. Journal of Geophysical Research: Solid Earth, 124 (8), 8358–8375.

https://doi.org/10.1029/2019JB017836

133

https://doi.org/10.1029/2018GL077706
https://doi.org/10.1029/2018GL077706
https://doi.org/10.1785/0220200192
https://doi.org/10.5281/zenodo.4250762
https://doi.org/10.5281/zenodo.4250762
https://doi.org/10.1093/gji/ggy090
https://doi.org/10.1038/s41598-021-92542-z
https://doi.org/10.1029/2019JB017836


BIBLIOGRAPHY

Dalcin, L., & Fang, Y.-L. L. (2021). Mpi4py: Status Update After 12 Years of De-

velopment. Computing in Science & Engineering, 23 (4), 47–54. https://doi.

org/10.1109/MCSE.2021.3083216

Darling, T. W., TenCate, J. A., Brown, D. W., Clausen, B., & Vogel, S. C. (2004).

Neutron diffraction study of the contribution of grain contacts to nonlinear

stress-strain behavior. Geophysical Research Letters, 31 (16). https://doi.org/

10.1029/2004GL020463

De Fazio, T. L., Aki, K., & Alba, J. (1973). Solid earth tide and observed change

in the in situ seismic velocity. Journal of Geophysical Research (1896-1977),

78 (8), 1319–1322. https://doi.org/10.1029/JB078i008p01319

De Plaen, R. S., Cannata, A., Cannavo’, F., Caudron, C., Lecocq, T., & Francis, O.

(2019). Temporal changes of seismic velocity caused by volcanic activity at

Mt. Etna revealed by the autocorrelation of ambient seismic noise. Frontiers

in Earth Science, 6 (January), 1–11. https://doi.org/10.3389/feart.2018.00251

De Plaen, R. S., Lecocq, T., Caudron, C., Ferrazzini, V., & Francis, O. (2016). Single-

station monitoring of volcanoes using seismic ambient noise. Geophysical Re-

search Letters, 43 (16), 8511–8518. https://doi.org/10.1002/2016GL070078

De Siena, L., Thomas, C., Waite, G. P., Moran, S. C., & Klemme, S. (2014). Atten-

uation and scattering tomography of the deep plumbing system of Mount St.

Helens. Journal of Geophysical Research: Solid Earth, 119 (11), 8223–8238.

https://doi.org/10.1002/2014JB011372

Diewald, F., Epple, N., Kraenkel, T., Gehlen, C., & Niederleithinger, E. (2022).

Impact of External Mechanical Loads on Coda Waves in Concrete. Materials,

15 (16), 5482. https://doi.org/10.3390/ma15165482

Donaldson, C., Winder, T., Caudron, C., & White, R. S. (2019). Crustal seismic

velocity responds to a magmatic intrusion and seasonal loading in Iceland’s

134

https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1029/2004GL020463
https://doi.org/10.1029/2004GL020463
https://doi.org/10.1029/JB078i008p01319
https://doi.org/10.3389/feart.2018.00251
https://doi.org/10.1002/2016GL070078
https://doi.org/10.1002/2014JB011372
https://doi.org/10.3390/ma15165482


BIBLIOGRAPHY

Northern Volcanic Zone. Science Advances, 5 (11), eaax6642. https://doi.org/

10.1126/sciadv.aax6642

Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., & White, R. S. (2017).

Relative seismic velocity variations correlate with deformation at Kı̄lauea vol-

cano. Science Advances, 3 (6), 1–12. https://doi.org/10.1126/sciadv.1700219

Dong, D., Fang, P., Bock, Y., Cheng, M. K., & Miyazaki, S. (2002). Anatomy of ap-

parent seasonal variations from GPS-derived site position time series. Journal

of Geophysical Research: Solid Earth, 107 (B4), ETG 9-1-ETG 9–16. https:

//doi.org/10.1029/2001JB000573

Dorendorf, F., Wiechert, U., &Wörner, G. (2000). Hydrated sub-are mantle: A source

for the Kluchevskoy volcano, Kamchatka/Russia. Earth and Planetary Science

Letters, 175 (1-2), 69–86. https://doi.org/10.1016/s0012-821x(99)00288-5

Droznin, D. V., Shapiro, N. M., Droznina, S. Y., Senyukov, S. L., Chebrov, V. N.,

& Gordeev, E. I. (2015). Detecting and locating volcanic tremors on the

Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of con-

tinuous seismic records. Geophysical Journal International, 203 (2), 1001–

1010. https://doi.org/10.1093/gji/ggv342

Duputel, Z., Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M., & Nercessian,

A. (2009). Real time monitoring of relative velocity changes using ambient

seismic noise at the Piton de la Fournaise volcano (La Réunion) from January

2006 to June 2007. Journal of Volcanology and Geothermal Research, 184 (1),

164–173. https://doi.org/10.1016/j.jvolgeores.2008.11.024

Einarsson, P. (2018). Short-Term Seismic Precursors to Icelandic Eruptions 1973–

2014. Frontiers in Earth Science, 6.

Eisler, J. D. (1967). Investigation of a method for determining stress accumulation

at depth. Bulletin of the Seismological Society of America, 57 (5), 891–911.

https://doi.org/10.1785/BSSA0570050891

135

https://doi.org/10.1126/sciadv.aax6642
https://doi.org/10.1126/sciadv.aax6642
https://doi.org/10.1126/sciadv.1700219
https://doi.org/10.1029/2001JB000573
https://doi.org/10.1029/2001JB000573
https://doi.org/10.1016/s0012-821x(99)00288-5
https://doi.org/10.1093/gji/ggv342
https://doi.org/10.1016/j.jvolgeores.2008.11.024
https://doi.org/10.1785/BSSA0570050891


BIBLIOGRAPHY

Fedotov, S. A., Zharinov, N. A., & Gontovaya, L. I. (2010). The magmatic system

of the Klyuchevskaya group of volcanoes inferred from data on its eruptions,

earthquakes, deformation, and deep structure. Journal of Volcanology and

Seismology, 4 (1), 1–33. https://doi.org/10.1134/S074204631001001X

Feng, K.-F., Huang, H.-H., Hsu, Y.-J., & Wu, Y.-M. (2021). Controls on Seasonal

Variations of Crustal Seismic Velocity in Taiwan Using Single-Station Cross-

Component Analysis of Ambient Noise Interferometry. Journal of Geophysical

Research: Solid Earth, 126 (11), e2021JB022650. https://doi.org/10.1029/

2021JB022650

Fichtner, A., & Tsai, V. C. (2019, April). Theoretical Foundations of Noise Inter-

ferometry. In Seismic Ambient Noise (pp. 109–143). Cambridge University

Press. https://doi.org/10.1017/9781108264808.006

Fokker, E., Ruigrok, E., Hawkins, R., & Trampert, J. (2021). Physics-Based Re-

lationship for Pore Pressure and Vertical Stress Monitoring Using Seismic

Velocity Variations. Remote Sensing, 13 (14), 2684. https://doi.org/10.3390/

rs13142684

Fokker, E., Ruigrok, E., Hawkins, R., & Trampert, J. (2023). 4D Physics-Based Pore

Pressure Monitoring Using Passive Image Interferometry. Geophysical Re-

search Letters, 50 (5), e2022GL101254. https://doi.org/10.1029/2022GL101254

Fokker, E., Ruigrok, E., & Trampert, J. (2024). On the temperature sensitivity of

near-surface seismic wave speeds: Application to the Groningen region, the

Netherlands. Geophysical Journal International, 237 (2), 1129–1141. https :

//doi.org/10.1093/gji/ggae102

Fontaine, F. R., Roult, G., Michon, L., Barruol, G., & Muro, A. D. (2014). The

2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La

Réunion Island) from tilt analysis at a single very broadband seismic station.

136

https://doi.org/10.1134/S074204631001001X
https://doi.org/10.1029/2021JB022650
https://doi.org/10.1029/2021JB022650
https://doi.org/10.1017/9781108264808.006
https://doi.org/10.3390/rs13142684
https://doi.org/10.3390/rs13142684
https://doi.org/10.1029/2022GL101254
https://doi.org/10.1093/gji/ggae102
https://doi.org/10.1093/gji/ggae102


BIBLIOGRAPHY

Geophysical Research Letters, 41 (8), 2803–2811. https://doi.org/10.1002/

2014GL059691

Fournier, T. J., Pritchard, M. E., & Riddick, S. N. (2010). Duration, magnitude,

and frequency of subaerial volcano deformation events: New results from

Latin America using InSAR and a global synthesis. Geochemistry, Geophysics,

Geosystems, 11 (1). https://doi.org/10.1029/2009GC002558

Gabrielli, S., De Siena, L., Napolitano, F., & Del Pezzo, E. (2020). Understanding

seismic path biases and magmatic activity at Mount St Helens volcano before

its 2004 eruption. Geophysical Journal International, 222 (1), 169–188. https:

//doi.org/10.1093/gji/ggaa154

Gassenmeier, M., Sens-Schönfelder, C., Delatre, M., & Korn, M. (2015). Monitoring

of environmental influences on seismic velocity at the geological storage site

for CO2 in Ketzin (Germany) with ambient seismic noise. Geophysical Journal

International, 200 (1), 524–533. https://doi.org/10.1093/gji/ggu413

Gassenmeier, M., Sens-Schönfelder, C., Eulenfeld, T., Bartsch, M., Victor, P., Tilmann,

F., & Korn, M. (2016). Field observations of seismic velocity changes caused

by shaking-induced damage and healing due to mesoscopic nonlinearity. Geo-

physical Journal International, 204 (3), 1490–1502. https://doi.org/10.1093/

gji/ggv529

Girina, O. A., Manevich, A. G., Melnikov, D. V., Nuzhdaev, A. A., & Petrova, E. G.

(2019). The 2016 Eruptions in Kamchatka and on the North Kuril Islands:

The Hazard to Aviation. Journal of Volcanology and Seismology, 13 (3), 157–

171. https://doi.org/10.1134/S0742046319030047

Glasgow, M. E., Schmandt, B., & Hansen, S. M. (2018). Upper crustal low-frequency

seismicity at Mount St. Helens detected with a dense geophone array. Journal

of Volcanology and Geothermal Research, 358, 329–341. https://doi.org/10.

1016/j.jvolgeores.2018.06.006

137

https://doi.org/10.1002/2014GL059691
https://doi.org/10.1002/2014GL059691
https://doi.org/10.1029/2009GC002558
https://doi.org/10.1093/gji/ggaa154
https://doi.org/10.1093/gji/ggaa154
https://doi.org/10.1093/gji/ggu413
https://doi.org/10.1093/gji/ggv529
https://doi.org/10.1093/gji/ggv529
https://doi.org/10.1134/S0742046319030047
https://doi.org/10.1016/j.jvolgeores.2018.06.006
https://doi.org/10.1016/j.jvolgeores.2018.06.006


BIBLIOGRAPHY

Gómez-García, C., Brenguier, F., Boué, P., Shapiro, N. M., Droznin, D. V., Droznina,

S. Y., Senyukov, S. L., & Gordeev, E. I. (2018). Retrieving robust noise-based

seismic velocity changes from sparse data sets: Synthetic tests and application

to Klyuchevskoy volcanic group (Kamchatka). Geophysical Journal Interna-

tional, 1218–1236. https://doi.org/10.1093/gji/ggy190

Grabke, S., Clauß, F., Bletzinger, K.-U., Ahrens, M. A., Mark, P., & Wüchner, R.

(2021). Damage Detection at a Reinforced Concrete Specimen with Coda

Wave Interferometry. Materials, 14 (17), 5013. https : / /doi . org/10 . 3390/

ma14175013

Grady, T., Brown, R. L., Adams, E., & Sato, A. (1982). An evaluation of heat

flow and its geological implications on Mt. St. Helens. Geophysical Research

Letters, 9 (4), 377–379. https://doi.org/10.1029/GL009i004p00377

Grant, G. E., Major, J. J., & Lewis, S. L. (2017). The geologic, geomorphic, and

hydrologic context underlying options for long-term management of the Spirit

Lake outlet near Mount St. Helens, Washington. U.S. Department of Agricul-

ture, Forest Service, Pacific Northwest Research Station. https://doi.org/10.

2737/PNW-GTR-954

Greco, F., Currenti, G., D’Agostino, G., Germak, A., Napoli, R., Pistorio, A., &

Del Negro, C. (2012). Combining relative and absolute gravity measurements

to enhance volcano monitoring. Bulletin of Volcanology, 74 (7), 1745–1756.

https://doi.org/10.1007/s00445-012-0630-0

Green, R. G., Sens-Schönfelder, C., Shapiro, N., Koulakov, I., Tilmann, F., Dreiling,

J., Luehr, B., Jakovlev, A., Abkadyrov, I., Droznin, D., & Gordeev, E. (2020).

Magmatic and Sedimentary Structure beneath the Klyuchevskoy Volcanic

Group, Kamchatka, From Ambient Noise Tomography. Journal of Geophysical

Research: Solid Earth, 125 (3). https://doi.org/10.1029/2019JB018900

138

https://doi.org/10.1093/gji/ggy190
https://doi.org/10.3390/ma14175013
https://doi.org/10.3390/ma14175013
https://doi.org/10.1029/GL009i004p00377
https://doi.org/10.2737/PNW-GTR-954
https://doi.org/10.2737/PNW-GTR-954
https://doi.org/10.1007/s00445-012-0630-0
https://doi.org/10.1029/2019JB018900


BIBLIOGRAPHY

Guillemot, A., Helmstetter, A., Larose, É., Baillet, L., Garambois, S., Mayoraz, R.,

& Delaloye, R. (2020). Seismic monitoring in the Gugla rock glacier (Switzer-

land): Ambient noise correlation, microseismicity and modelling. Geophysical

Journal International, 221 (3), 1719–1735. https : / /doi . org /10 . 1093/gji /

ggaa097

Guillemot, A., Van Herwijnen, A., Larose, E., Mayer, S., & Baillet, L. (2021). Effect

of snowfall on changes in relative seismic velocity measured by ambient noise

correlation. Cryosphere, 15 (12), 5805–5817. https://doi.org/10.5194/tc-15-

5805-2021

Hadziioannou, C., Larose, E., Baig, A., Roux, P., & Campillo, M. (2011). Improving

temporal resolution in ambient noise monitoring of seismic wave speed. Jour-

nal of Geophysical Research: Solid Earth, 116 (7), 1–10. https://doi.org/10.

1029/2011JB008200

Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M. (2009). Stability

of monitoring weak changes in multiply scattering media with ambient noise

correlation: Laboratory experiments. The Journal of the Acoustical Society of

America, 125 (6), 3688–3695. https://doi.org/10.1121/1.3125345

Hansen, S. M., & Schmandt, B. (2015). Automated detection and location of micro-

seismicity at Mount St. Helens with a large-N geophone array. Geophysical

Research Letters, 42 (18), 7390–7397. https://doi.org/10.1002/2015GL064848

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-

napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus,

M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F.,

Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array programming with

NumPy. Nature, 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-

2649-2

139

https://doi.org/10.1093/gji/ggaa097
https://doi.org/10.1093/gji/ggaa097
https://doi.org/10.5194/tc-15-5805-2021
https://doi.org/10.5194/tc-15-5805-2021
https://doi.org/10.1029/2011JB008200
https://doi.org/10.1029/2011JB008200
https://doi.org/10.1121/1.3125345
https://doi.org/10.1002/2015GL064848
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


BIBLIOGRAPHY

Heki, K. (2001). Seasonal Modulation of Interseismic Strain Buildup in Northeastern

Japan Driven by Snow Loads. Science, 293 (5527), 89–92. https://doi.org/10.

1126/science.1061056

Heki, K. (2003). Snow load and seasonal variation of earthquake occurrence in Japan.

Earth and Planetary Science Letters, 207 (1), 159–164. https://doi.org/10.

1016/S0012-821X(02)01148-2

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,

J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C.,

Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J.,

Bonavita, M., . . . Thépaut, J. N. (2020). The ERA5 global reanalysis. Quar-

terly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. https:

//doi.org/10.1002/qj.3803

Hill, D. P., Pollitz, F., & Newhall, C. (2002). Earthquake-Volcano Interactions. New

measurements, statistical analyses, and models support can trigger subsequent

long distance times scales. Physics Today, 41–47.

Hill, G. J., Caldwell, T. G., Heise, W., Chertkoff, D. G., Bibby, H. M., Burgess, M. K.,

Cull, J. P., & Cas, R. A. F. (2009). Distribution of melt beneath Mount St

Helens and Mount Adams inferred from magnetotelluric data. Nature Geo-

science, 2 (11), 785–789. https://doi.org/10.1038/ngeo661

Hillers, G., Ben-Zion, Y., Campillo, M., & Zigone, D. (2015). Seasonal variations of

seismic velocities in the San Jacinto fault area observed with ambient seismic

noise. Geophysical Journal International, 202 (2), 920–932. https://doi.org/

10.1093/gji/ggv151

Hillers, G., Campillo, M., & Ma, K. F. (2014). Seismic velocity variations at TCDP

are controlled by MJO driven precipitation pattern and high fluid discharge

properties. Earth and Planetary Science Letters, 391, 121–127. https://doi.

org/10.1016/j.epsl.2014.01.040

140

https://doi.org/10.1126/science.1061056
https://doi.org/10.1126/science.1061056
https://doi.org/10.1016/S0012-821X(02)01148-2
https://doi.org/10.1016/S0012-821X(02)01148-2
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1038/ngeo661
https://doi.org/10.1093/gji/ggv151
https://doi.org/10.1093/gji/ggv151
https://doi.org/10.1016/j.epsl.2014.01.040
https://doi.org/10.1016/j.epsl.2014.01.040


BIBLIOGRAPHY

Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2012). Coseismic and postseis-

mic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku

earthquake, Japan. Journal of Geophysical Research: Solid Earth, 117 (B9).

https://doi.org/10.1029/2012JB009402

Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2014). Single-station cross-

correlation analysis of ambient seismic noise: Application to stations in the

surroundings of the 2008 Iwate-Miyagi Nairiku earthquake. Geophysical Jour-

nal International, 198 (1), 90–109. https://doi.org/10.1093/gji/ggu115

Hotovec-Ellis, A. J., Gomberg, J., Vidale, J. E., & Creager, K. C. (2014). A contin-

uous record of intereruption velocity change at Mount St. Helens from coda

wave interferometry. Journal of Geophysical Research: Solid Earth, 119 (3),

2199–2214. https://doi.org/10.1002/2013JB010742

Hotovec-Ellis, A. J., Vidale, J. E., Gomberg, J., Thelen, W., & Moran, S. C. (2015).

Changes in seismic velocity during the first 14 months of the 2004-2008 erup-

tion of Mount St. Helens, Washington. Journal of Geophysical Research: Solid

Earth, 120 (9), 6226–6240. https://doi.org/10.1002/2015JB012101

Hunt, C. E., & MacCready, J. S. (1980). The Short-term Economic Consequences of

the Mount St. Helens Volcanic Eruptions in May and June, 1980 (tech. rep.).

Washington State, Department of Commerce and Economic Development,

Research Division.

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science

& Engineering, 9 (03), 90–95. https://doi.org/10.1109/MCSE.2007.55

Illien, L., Sens-Schönfelder, C., & Ke, K.-Y. (2023). Resolving minute temporal seis-

mic velocity changes induced by earthquake damage: The more stations, the

merrier? Geophysical Journal International, 234 (1), 124–135. https ://doi .

org/10.1093/gji/ggad038

141

https://doi.org/10.1029/2012JB009402
https://doi.org/10.1093/gji/ggu115
https://doi.org/10.1002/2013JB010742
https://doi.org/10.1002/2015JB012101
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1093/gji/ggad038
https://doi.org/10.1093/gji/ggad038


BIBLIOGRAPHY

Ivanov, A. I., Koulakov, I. Y., West, M., Jakovlev, A. V., Gordeev, E. I., Senyukov, S.,

& Chebrov, V. N. (2016). Magma source beneath the Bezymianny volcano and

its interconnection with Klyuchevskoy inferred from local earthquake seismic

tomography. Journal of Volcanology and Geothermal Research, 323, 62–71.

https://doi.org/10.1016/j.jvolgeores.2016.04.010

Jack, I. (2017). 4D seismic — Past, present, and future. The Leading Edge, 36 (5),

386–392. https://doi.org/10.1190/tle36050386.1

James, S. R., Knox, H. A., Abbott, R. E., & Screaton, E. J. (2017). Improved moving

window cross-spectral analysis for resolving large temporal seismic velocity

changes in permafrost. Geophysical Research Letters, 44 (9), 4018–4026. https:

//doi.org/10.1002/2016GL072468

Jenkins, S. F., Wilson, _., Magill, C., Miller, V., Stewart, C., Blong, R., Marzocchi,

W., Boulton, M., Bonadonna, C., & Costa, A. (2015, July). In S. C. Loughlin,

S. Sparks, S. K. Brown, S. F. Jenkins, & C. Vye-Brown (Eds.), Global Volcanic

Hazards and Risk (1st ed., pp. 173–222). Cambridge University Press. https:

//doi.org/10.1017/CBO9781316276273

Jiang, C., & Denolle, M. A. (2020). Noisepy: A new high-performance python tool for

ambient-noise seismology. Seismological Research Letters, 91 (3), 1853–1866.

https://doi.org/10.1785/0220190364

Johnson, P. A., & Rasolofosaon, P. N. J. (1996). Nonlinear elasticity and stress-

induced anisotropy in rock. Journal of Geophysical Research: Solid Earth,

101 (B2), 3113–3124. https://doi.org/10.1029/95JB02880

Johnson, P. A., & Jia, X. (2005). Nonlinear dynamics, granular media and dynamic

earthquake triggering. Nature, 437 (7060), 871–874. https://doi.org/10.1038/

nature04015

Journeau, C., Shapiro, N. M., Seydoux, L., Soubestre, J., Koulakov, I. Y., Jakovlev,

A. V., Abkadyrov, I., Gordeev, E. I., Chebrov, D. V., Droznin, D. V., Sens-

142

https://doi.org/10.1016/j.jvolgeores.2016.04.010
https://doi.org/10.1190/tle36050386.1
https://doi.org/10.1002/2016GL072468
https://doi.org/10.1002/2016GL072468
https://doi.org/10.1017/CBO9781316276273
https://doi.org/10.1017/CBO9781316276273
https://doi.org/10.1785/0220190364
https://doi.org/10.1029/95JB02880
https://doi.org/10.1038/nature04015
https://doi.org/10.1038/nature04015


BIBLIOGRAPHY

Schönfelder, C., Luehr, B. G., Tong, F., Farge, G., & Jaupart, C. (2022).

Seismic tremor reveals active trans-crustal magmatic system beneath Kam-

chatka volcanoes. Science Advances, 8 (5), 1–12. https://doi.org/10.1126/

sciadv.abj1571

Kayzar, T. M., Nelson, B. K., Bachmann, O., Bauer, A. M., & Izbekov, P. E. (2014).

Deciphering petrogenic processes using Pb isotope ratios from time-series sam-

ples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depres-

sion. Contributions to Mineralogy and Petrology, 168 (4), 1–28. https://doi.

org/10.1007/s00410-014-1067-6

Kennedy, B. (2017). What effects do earthquakes have on volcanoes? Geology, 45 (8),

765–766. https://doi.org/10.1130/focus0820172.1

Kiryukhin, A. V., Rychkova, T. V., & Dubrovskaya, I. K. (2012). Formation of the

hydrothermal system in Geysers Valley (Kronotsky Nature Reserve, Kam-

chatka) and triggers of the Giant Landslide. Applied Geochemistry, 27 (9),

1753–1766. https://doi.org/10.1016/j.apgeochem.2012.02.011

Kobrick, M., & Crippen, R. (2017). Srtmgl1: Nasa shuttle radar topography mission

global 1 arc second v003.

Köpfli, M., Denolle, M. A., Thelen, W. A., Makus, P., & Malone, S. D. (2024).

Examining 22 Years of Ambient Seismic Wavefield at Mount St. Helens. Seis-

mological Research Letters. https://doi.org/10.1785/0220240079

Koranne, S. (2011). Hierarchical Data Format 5 : HDF5. In S. Koranne (Ed.), Hand-

book of Open Source Tools (pp. 191–200). Springer US.

Koulakov, I., Abkadyrov, I., Al Arifi, N., Deev, E., Droznina, S., Gordeev, E. I.,

Jakovlev, A., El Khrepy, S., Kulakov, R. I., Kugaenko, Y., Novgorodova, A.,

Senyukov, S., Shapiro, N., Stupina, T., & West, M. (2017). Three different

types of plumbing system beneath the neighboring active volcanoes of Tol-

bachik, Bezymianny, and Klyuchevskoy in Kamchatka. Journal of Geophys-

143

https://doi.org/10.1126/sciadv.abj1571
https://doi.org/10.1126/sciadv.abj1571
https://doi.org/10.1007/s00410-014-1067-6
https://doi.org/10.1007/s00410-014-1067-6
https://doi.org/10.1130/focus0820172.1
https://doi.org/10.1016/j.apgeochem.2012.02.011
https://doi.org/10.1785/0220240079


BIBLIOGRAPHY

ical Research: Solid Earth, 122 (5), 3852–3874. https : //doi . org/10 .1002/

2017JB014082

Koulakov, I., Gordeev, E. I., Dobretsov, N. L., Vernikovsky, V. A., Senyukov, S.,

Jakovlev, A., & Jaxybulatov, K. (2013). Rapid changes in magma storage

beneath the Klyuchevskoy group of volcanoes inferred from time-dependent

seismic tomography. Journal of Volcanology and Geothermal Research, 263,

75–91. https://doi.org/10.1016/j.jvolgeores.2012.10.014

Koulakov, I., Plechov, P., Mania, R., Walter, T. R., Smirnov, S. Z., Abkadyrov, I.,

Jakovlev, A., Davydova, V., Senyukov, S., Bushenkova, N., Novgorodova, A.,

Stupina, T., & Droznina, S. Y. (2021). Anatomy of the Bezymianny volcano

merely before an explosive eruption on 20.12.2017. Scientific Reports, 11 (1),

1–12. https://doi.org/10.1038/s41598-021-81498-9

Koulakov, I., Shapiro, N. M., Sens-Schönfelder, C., Luehr, B. G., Gordeev, E. I.,

Jakovlev, A., Abkadyrov, I., Chebrov, D. V., Bushenkova, N., Droznina, S. Y.,

Senyukov, S. L., Novgorodova, A., & Stupina, T. (2020). Mantle and Crustal

Sources of Magmatic Activity of Klyuchevskoy and Surrounding Volcanoes in

Kamchatka Inferred From Earthquake Tomography. Journal of Geophysical

Research: Solid Earth, 125 (10), e2020JB020097. https://doi.org/10.1029/

2020JB020097

Koulakov, I. (2021). Seismic Tomography of Kamchatkan Volcanoes. Russian Geology

and Geophysics, 1815, 1–38. https://doi.org/10.2113/rgg20214380

La Spina, G., Arzilli, F., Burton, M. R., Polacci, M., & Clarke, A. B. (2022). Role

of volatiles in highly explosive basaltic eruptions. Communications Earth &

Environment, 3 (1), 1–13. https://doi.org/10.1038/s43247-022-00479-6

Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for

Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismo-

logical Research Letters, 85 (3), 715–726. https://doi.org/10.1785/0220130073

144

https://doi.org/10.1002/2017JB014082
https://doi.org/10.1002/2017JB014082
https://doi.org/10.1016/j.jvolgeores.2012.10.014
https://doi.org/10.1038/s41598-021-81498-9
https://doi.org/10.1029/2020JB020097
https://doi.org/10.1029/2020JB020097
https://doi.org/10.2113/rgg20214380
https://doi.org/10.1038/s43247-022-00479-6
https://doi.org/10.1785/0220130073


BIBLIOGRAPHY

Lecocq, T., Hicks, S. P., Van Noten, K., van Wijk, K., Koelemeijer, P., De Plaen,

R. S. M., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., Arroyo-

Solórzano, M., Assink, J. D., Büyükakpınar, P., Cannata, A., Cannavo, F.,

Carrasco, S., Caudron, C., Chaves, E. J., Cornwell, D. G., . . . Xiao, H. (2020).

Global quieting of high-frequency seismic noise due to COVID-19 pandemic

lockdown measures. Science, 369 (6509), 1338–1343. https://doi.org/10.1126/

science.abd2438

Lecocq, T., Longuevergne, L., Pedersen, H. A., Brenguier, F., & Stammler, K. (2017).

Monitoring ground water storage at mesoscale using seismic noise: 30 years

of continuous observation and thermo-elastic and hydrological modeling. Sci-

entific Reports, 7 (1). https://doi.org/10.1038/s41598-017-14468-9

Legland, J.-B., Zhang, Y., Abraham, O., Durand, O., & Tournat, V. (2017). Eval-

uation of crack status in a meter-size concrete structure using the ultrasonic

nonlinear coda wave interferometry. The Journal of the Acoustical Society of

America, 142 (4), 2233–2241. https://doi.org/10.1121/1.5007832

Lehto, H. L., Roman, D. C., & Moran, S. C. (2010). Temporal changes in stress

preceding the 2004–2008 eruption of Mount St. Helens, Washington. Journal

of Volcanology and Geothermal Research, 198 (1), 129–142. https://doi.org/

10.1016/j.jvolgeores.2010.08.015

Lesage, P., Reyes-Dávila, G., & Arámbula-Mendoza, R. (2014). Large tectonic earth-

quakes induce sharp temporary decreases in seismic velocity in Volcán de

Colima, Mexico. Journal of Geophysical Research: Solid Earth, 119 (5), 4360–

4376. https://doi.org/10.1002/2013JB010884

Li, J., Song, X., Yang, Y., Li, M., Li, J., & Li, Y. (2021). Strong Seasonal Variations

of Seismic Velocity in Eastern Margin of Tibetan Plateau and Sichuan Basin

From Ambient Noise Interferometry. Journal of Geophysical Research: Solid

Earth, 126 (11), e2021JB022600. https://doi.org/10.1029/2021JB022600

145

https://doi.org/10.1126/science.abd2438
https://doi.org/10.1126/science.abd2438
https://doi.org/10.1038/s41598-017-14468-9
https://doi.org/10.1121/1.5007832
https://doi.org/10.1016/j.jvolgeores.2010.08.015
https://doi.org/10.1016/j.jvolgeores.2010.08.015
https://doi.org/10.1002/2013JB010884
https://doi.org/10.1029/2021JB022600


BIBLIOGRAPHY

Lindner, F., Wassermann, J., & Igel, H. (2021). Seasonal Freeze-Thaw Cycles and

Permafrost Degradation on Mt. Zugspitze (German/Austrian Alps) Revealed

by Single-Station Seismic Monitoring. Geophysical Research Letters, 48 (18),

1–11. https://doi.org/10.1029/2021GL094659

Lu, Z., Wicks, C., Dzurisin, D., Thatcher, W., Freymueller, J. T., McNutt, S. R.,

& Mann, D. (2000). Aseismic inflation of Westdahl Volcano, Alaska, revealed

by satellite radar interferometry. Geophysical Research Letters, 27 (11), 1567–

1570. https://doi.org/10.1029/1999GL011283

Lyakhovsky, V., Ben-Zion, Y., & Agnon, A. (1997). Distributed damage, faulting,

and friction. Journal of Geophysical Research: Solid Earth, 102 (B12), 27635–

27649. https://doi.org/10.1029/97JB01896

Machacca-Puma, R., Lesage, P., Larose, E., Lacroix, P., & Anccasi-Figueroa, R. M.

(2019). Detection of pre-eruptive seismic velocity variations at an andesitic

volcano using ambient noise correlation on 3-component stations: Ubinas vol-

cano, Peru, 2014. Journal of Volcanology and Geothermal Research, 381, 83–

100. https://doi.org/10.1016/j.jvolgeores.2019.05.014

Makus, P., Denolle, M., Sens-Schönfelder, C., Köpfli, M., & Tilmann, F. (2023). The

Complex Relationship between Seismic Velocity and Volcanic, Tectonic, and

Environmental Forcings Illustrated by 23 Years of Data at Mt. St. Helens.

EGU23. https://doi.org/10.5194/egusphere-egu23-6757

Makus, P., Denolle, M. A., Sens-Schönfelder, C., Köpfli, M., & Tilmann, F. (2024).

Analyzing Volcanic, Tectonic, and Environmental Influences on the Seismic

Velocity from 25 Years of Data at Mount St. Helens. Seismological Research

Letters, 95 (5), 2674–2688. https://doi.org/10.1785/0220240088

Makus, P., & Sens-Schönfelder, C. (2022). Seismological Monitoring using Interfero-

metric Concepts (SeisMIC). https://doi.org/10.5880/GFZ.2.4.2022.002

146

https://doi.org/10.1029/2021GL094659
https://doi.org/10.1029/1999GL011283
https://doi.org/10.1029/97JB01896
https://doi.org/10.1016/j.jvolgeores.2019.05.014
https://doi.org/10.5194/egusphere-egu23-6757
https://doi.org/10.1785/0220240088
https://doi.org/10.5880/GFZ.2.4.2022.002


BIBLIOGRAPHY

Makus, P., & Sens-Schönfelder, C. (2024). SeisMIC - an Open Source Python Toolset

to Compute Velocity Changes from Ambient Seismic Noise. Seismica, 3 (1).

https://doi.org/10.26443/seismica.v3i1.1099

Makus, P., Sens-Schönfelder, C., Illien, L., Walter, T. R., Yates, A., & Tilmann, F.

(2023). Deciphering the Whisper of Volcanoes: Monitoring Velocity Changes

at Kamchatka’s Klyuchevskoy Group With Fluctuating Noise Fields. Journal

of Geophysical Research: Solid Earth, 128 (4), e2022JB025738. https://doi.

org/10.1029/2022JB025738

Malone, S. D., Boyko, C., & Weaver, C. S. (1983). Seismic Precursors to the Mount

St. Helens Eruptions in 1981 and 1982. Science, 221 (4618), 1376–1378. https:

//doi.org/10.1126/science.221.4618.1376

Mania, R., Cesca, S., Walter, T. R., Koulakov, I., & Senyukov, S. L. (2021). Inflating

Shallow Plumbing System of Bezymianny Volcano, Kamchatka, Studied by

InSAR and Seismicity Data Prior to the 20 December 2017 Eruption. Frontiers

in Earth Science, 9 (December), 1–17. https://doi.org/10.3389/feart.2021.

765668

Mania, R., Walter, T. R., Belousova, M., Belousov, A., & Senyukov, S. L. (2019).

Deformations and morphology changes associated with the 2016-2017 eruption

sequence at Bezymianny volcano, Kamchatka. Remote Sensing, 11 (11). https:

//doi.org/10.3390/rs11111278

Mao, S., Lecointre, A., van der Hilst, R. D., & Campillo, M. (2022). Space-time

monitoring of groundwater fluctuations with passive seismic interferometry.

Nature Communications, 13 (1), 4643. https://doi.org/10.1038/s41467-022-

32194-3

Mao, S., Mordret, A., Campillo, M., Fang, H., & van der Hilst, R. D. (2020). On the

measurement of seismic traveltime changes in the time–frequency domain with

147

https://doi.org/10.26443/seismica.v3i1.1099
https://doi.org/10.1029/2022JB025738
https://doi.org/10.1029/2022JB025738
https://doi.org/10.1126/science.221.4618.1376
https://doi.org/10.1126/science.221.4618.1376
https://doi.org/10.3389/feart.2021.765668
https://doi.org/10.3389/feart.2021.765668
https://doi.org/10.3390/rs11111278
https://doi.org/10.3390/rs11111278
https://doi.org/10.1038/s41467-022-32194-3
https://doi.org/10.1038/s41467-022-32194-3


BIBLIOGRAPHY

wavelet cross-spectrum analysis. Geophysical Journal International, 221 (1),

550–568. https://doi.org/10.1093/gji/ggz495

Margerin, L., Planès, T., Mayor, J., & Calvet, M. (2016). Sensitivity kernels for

coda-wave interferometry and scattering tomography: Theory and numerical

evaluation in two-dimensional anisotropically scattering media. Geophysical

Journal International, 204 (1), 650–666. https://doi.org/10.1093/gji/ggv470

Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored

by spaceborne radar interferometry. Nature, 375 (6532), 567–570. https://doi.

org/10.1038/375567a0

Mayor, J., Margerin, L., & Calvet, M. (2014). Sensitivity of coda waves to spatial

variations of absorption and scattering: Radiative transfer theory and 2-D

examples. Geophysical Journal International, 197 (2), 1117–1137. https://doi.

org/10.1093/gji/ggu046

McNamara, D. E., & Boaz, R. E. (2019, April). Visualization of the Seismic Ambient

Noise Spectrum. In N. Nakata, L. Gualtieri, & A. Fichtner (Eds.), Seismic

Ambient Noise (pp. 1–29). Cambridge University Press. https://doi.org/10.

1017/9781108264808

McNutt, S. R., & Roman, D. C. (2015, January). Chapter 59 - Volcanic Seismic-

ity. In H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (Second Edition)

(pp. 1011–1034). Academic Press. https : //doi . org/10 . 1016/B978 - 0 - 12 -

385938-9.00059-6

Minato, S., Tsuji, T., Ohmi, S., & Matsuoka, T. (2012). Monitoring seismic veloc-

ity change caused by the 2011 Tohoku-oki earthquake using ambient noise

records. Geophysical Research Letters, 39 (9). https : / / doi . org / 10 . 1029 /

2012GL051405

Moran, S. C., Malone, S. D., Qamar, A. I., Thelen, W. A., Wright, A. K., & Caplan-

Auerbach, J. (2008). Seismicity associated with renewed dome building at

148

https://doi.org/10.1093/gji/ggz495
https://doi.org/10.1093/gji/ggv470
https://doi.org/10.1038/375567a0
https://doi.org/10.1038/375567a0
https://doi.org/10.1093/gji/ggu046
https://doi.org/10.1093/gji/ggu046
https://doi.org/10.1017/9781108264808
https://doi.org/10.1017/9781108264808
https://doi.org/10.1016/B978-0-12-385938-9.00059-6
https://doi.org/10.1016/B978-0-12-385938-9.00059-6
https://doi.org/10.1029/2012GL051405
https://doi.org/10.1029/2012GL051405


BIBLIOGRAPHY

Mount St. Helens, 2004-2005. In A volcano Rekindled: The Renewed Eruption

of Mount St. Helens, 2004-2006 (pp. 27–60). U.S. Geological Survey. https:

//doi.org/10.3133/pp17502

Moreau, L., Stehly, L., Boué, P., Lu, Y., Larose, E., & Campillo, M. (2017). Im-

proving ambient noise correlation functions with an SVD-based Wiener filter.

Geophysical Journal International, 211 (1), 418–426. https://doi.org/10.1093/

GJI/GGX306

Müllner, D. (2013). Fastcluster: Fast hierarchical, agglomerative clustering routines

for R and Python. Journal of Statistical Software, 53 (9), 1–18. https://doi.

org/10.18637/jss.v053.i09

Murray, J. R., & Svarc, J. (2017). Global Positioning System Data Collection, Pro-

cessing, and Analysis Conducted by the U.S. Geological Survey Earthquake

Hazards Program. Seismological Research Letters, 88 (3), 916–925. https://

doi.org/10.1785/0220160204

Nakata, N., Gualtieri, L., & Fichtner, A. (Eds.). (2019, April). Seismic Ambient

Noise. Cambridge University Press. https://doi.org/10.1017/9781108264808

Nanni, U., Pauze, T., Goulet, L., Köhler, A., Bouchayer, C., & Schuler, T. (2023).

Study of the structural and dynamic changes of a surging glacier using seismic

observations. IUGG.

Nicolson, H., Curtis, A., Baptie, B., & Galetti, E. (2012). Seismic interferometry and

ambient noise tomography in the British Isles. Proceedings of the Geologists’

Association, 123 (1), 74–86. https://doi.org/10.1016/j.pgeola.2011.04.002

Niu, Z., Gabriel, A.-A., Seelinger, L., & Igel, H. (2024). Modeling and Quantifying

Parameter Uncertainty of Co-Seismic Non-Classical Nonlinearity in Rocks.

Journal of Geophysical Research: Solid Earth, 129 (1), e2023JB027149. https:

//doi.org/10.1029/2023JB027149

149

https://doi.org/10.3133/pp17502
https://doi.org/10.3133/pp17502
https://doi.org/10.1093/GJI/GGX306
https://doi.org/10.1093/GJI/GGX306
https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.1785/0220160204
https://doi.org/10.1785/0220160204
https://doi.org/10.1017/9781108264808
https://doi.org/10.1016/j.pgeola.2011.04.002
https://doi.org/10.1029/2023JB027149
https://doi.org/10.1029/2023JB027149


BIBLIOGRAPHY

Oakley, D. O. S., Forsythe, B., Gu, X., Nyblade, A. A., & Brantley, S. L. (2021).

Seismic Ambient Noise Analyses Reveal Changing Temperature and Water

Signals to 10s of Meters Depth in the Critical Zone. Journal of Geophysical

Research: Earth Surface, 126 (2), e2020JF005823. https://doi.org/10.1029/

2020JF005823

Obermann, A., Planès, T., Larose, E., & Campillo, M. (2013). Imaging preeruptive

and coeruptive structural and mechanical changes of a volcano with ambient

seismic noise. Journal of Geophysical Research: Solid Earth, 118 (12), 6285–

6294. https://doi.org/10.1002/2013JB010399

Obermann, A., Planés, T., Hadziioannou, C., & Campillo, M. (2016). Lapse-time-

dependent coda-wave depth sensitivity to local velocity perturbations in 3-D

heterogeneous elastic media. Geophysical Journal International, 207 (1), 59–

66. https://doi.org/10.1093/gji/ggw264

Obermann, A., Planès, T., Larose, E., Sens-Schönfelder, C., & Campillo, M. (2013).

Depth sensitivity of seismic coda waves to velocity perturbations in an elastic

heterogeneous medium. Geophysical Journal International, 194 (1), 372–382.

https://doi.org/10.1093/gji/ggt043

O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated

cracked solids. Journal of Geophysical Research (1896-1977), 79 (35), 5412–

5426. https://doi.org/10.1029/JB079i035p05412

Olivier, G., Brenguier, F., Campillo, M., Roux, P., Shapiro, N. M., & Lynch, R.

(2015). Investigation of coseismic and postseismic processes using in situ mea-

surements of seismic velocity variations in an underground mine. Geophysical

Research Letters, 42 (21), 9261–9269. https://doi.org/10.1002/2015GL065975

Ostrovsky, L. A., & Johnson, P. A. (2001). Dynamic nonlinear elasticity in geoma-

terials. La Rivista del Nuovo Cimento, 24 (7), 1–46. https://doi.org/10.1007/

BF03548898

150

https://doi.org/10.1029/2020JF005823
https://doi.org/10.1029/2020JF005823
https://doi.org/10.1002/2013JB010399
https://doi.org/10.1093/gji/ggw264
https://doi.org/10.1093/gji/ggt043
https://doi.org/10.1029/JB079i035p05412
https://doi.org/10.1002/2015GL065975
https://doi.org/10.1007/BF03548898
https://doi.org/10.1007/BF03548898


BIBLIOGRAPHY

Ozerov, A. Y., Ariskin, A. A., Kyle, P., Bogoyavlenskaya, G. E., & Karpenko, S. F.

(1997). Petrological-geochemical model for genetic relationships between basaltic

and andesitic magmatism of Klyuchevskoi and Bezymyannyi volcanoes, Kam-

chatka. Petrology, 5 (6), 550–569.

Paasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation.

Physical Review E, 56 (1), 1135–1141. https://doi.org/10.1103/PhysRevE.56.

1135

Pacheco, C., & Snieder, R. (2005). Time-lapse travel time change of multiply scat-

tered acoustic waves. The Journal of the Acoustical Society of America, 118 (3),

1300–1310. https://doi.org/10.1121/1.2000827

Pao, Y.-H. (1987). Theory of Acoustoelasticity and Acoustoplasticity. In J. D. Achen-

bach & Y. Rajapakse (Eds.), Solid mechanics research for quantitative non-

destructive evaluation (pp. 257–273). Springer Netherlands. https://doi.org/

10.1007/978-94-009-3523-5_16

Peltier, A., Ferrazzini, V., Staudacher, T., & Bachèlery, P. (2005). Imaging the dy-

namics of dyke propagation prior to the 2000-2003 flank eruptions at Piton

de la Fournaise, Reunion Island. Geophysical Research Letters, 32 (22), 1–5.

https://doi.org/10.1029/2005GL023720

Petersen, G. N. (2010). A short meteorological overview of the Eyjafjallajökull erup-

tion 14 April–23 May 2010. Weather, 65 (8), 203–207. https://doi.org/10.

1002/wea.634

Piccinini, D., Giunchi, C., Olivieri, M., Frattini, F., Di Giovanni, M., Prodi, G., &

Chiarabba, C. (2020). COVID-19 lockdown and its latency in Northern Italy:

Seismic evidence and socio-economic interpretation. Scientific Reports, 10 (1),

16487. https://doi.org/10.1038/s41598-020-73102-3

Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations

in the crust using earthquake doublets: An application to the Calaveras Fault,

151

https://doi.org/10.1103/PhysRevE.56.1135
https://doi.org/10.1103/PhysRevE.56.1135
https://doi.org/10.1121/1.2000827
https://doi.org/10.1007/978-94-009-3523-5_16
https://doi.org/10.1007/978-94-009-3523-5_16
https://doi.org/10.1029/2005GL023720
https://doi.org/10.1002/wea.634
https://doi.org/10.1002/wea.634
https://doi.org/10.1038/s41598-020-73102-3


BIBLIOGRAPHY

California. Journal of Geophysical Research: Solid Earth, 89 (B7), 5719–5731.

https://doi.org/10.1029/JB089iB07p05719

Power, J. A., Lahr, J. C., Page, R. A., Chouet, B. A., Stephens, C. D., Harlow,

D. H., Murray, T. L., & Davies, J. N. (1994). Seismic evolution of the 1989–

1990 eruption sequence of Redoubt Volcano, Alaska. Journal of Volcanology

and Geothermal Research, 62 (1), 69–94. https : / /doi . org/10 . 1016/0377 -

0273(94)90029-9

Quinteros, J., Strollo, A., Evans, P. L., Hanka, W., Heinloo, A., Hemmleb, S., Hill-

mann, L., Jaeckel, K.-H., Kind, R., Saul, J., Zieke, T., & Tilmann, F. (2021).

The GEOFON Program in 2020. Seismological Research Letters, 92 (3), 1610–

1622. https://doi.org/10.1785/0220200415

Ratdomopurbo, A., & Poupinet, G. (1995). Monitoring a temporal change of seismic

velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (In-

donesia). Geophysical Research Letters, 22 (7), 775–778. https://doi.org/10.

1029/95GL00302

Reath, K. A., Ramsey, M. S., Dehn, J., & Webley, P. W. (2016). Predicting eruptions

from precursory activity using remote sensing data hybridization. Journal of

Volcanology and Geothermal Research, 321, 18–30. https://doi.org/10.1016/

j.jvolgeores.2016.04.027

Richter, T., Sens-Schönfelder, C., Kind, R., & Asch, G. (2014). Comprehensive obser-

vation and modeling of earthquake and temperature-related seismic velocity

changes in northern Chile with passive image interferometry. Journal of Geo-

physical Research: Solid Earth, 119 (6), 4747–4765. https://doi.org/10.1002/

2013JB010695

Rivet, D., Brenguier, F., Clarke, D., Shapiro, N. M., & Peltier, A. (2014). Long-

term dynamics of Piton de la Fournaise volcano from 13 years of seismic

velocity change measurements and GPS observations. Journal of Geophysi-

152

https://doi.org/10.1029/JB089iB07p05719
https://doi.org/10.1016/0377-0273(94)90029-9
https://doi.org/10.1016/0377-0273(94)90029-9
https://doi.org/10.1785/0220200415
https://doi.org/10.1029/95GL00302
https://doi.org/10.1029/95GL00302
https://doi.org/10.1016/j.jvolgeores.2016.04.027
https://doi.org/10.1016/j.jvolgeores.2016.04.027
https://doi.org/10.1002/2013JB010695
https://doi.org/10.1002/2013JB010695


BIBLIOGRAPHY

cal Research: Solid Earth, 119 (10), 7654–7666. https ://doi .org/10 .1002/

2014JB011307

Roman, D. C., & Cashman, K. V. (2018). Top–Down Precursory Volcanic Seismicity:

Implications for ‘Stealth’ Magma Ascent and Long-Term Eruption Forecast-

ing. Frontiers in Earth Science, 6.

Rutherford, M. J. (2008). Magma Ascent Rates. Reviews in Mineralogy and Geo-

chemistry, 69 (1), 241–271. https://doi.org/10.2138/rmg.2008.69.7

Rymer, H., & Brown, G. (1989). Gravity changes as a precursor to volcanic eruption

at Poás volcano, Costa Rica. Nature, 342 (6252), 902–905. https://doi.org/

10.1038/342902a0

Sabra, K. G., Roux, P., Gerstoft, P., Kuperman, W. A., & Fehler, M. C. (2006).

Extracting coherent coda arrivals from cross-correlations of long period seis-

mic waves during the Mount St. Helens 2004 eruption. Geophysical Research

Letters, 33 (6). https://doi.org/10.1029/2005GL025563

Salzer, J. T., Thelen, W. A., James, M. R., Walter, T. R., Moran, S., & Denlinger,

R. (2016). Volcano dome dynamics at Mount St. Helens: Deformation and

intermittent subsidence monitored by seismicity and camera imagery pixel

offsets. Journal of Geophysical Research: Solid Earth, 121 (11), 7882–7902.

https://doi.org/10.1002/2016JB013045

Scandone, R., Cashman, K. V., & Malone, S. D. (2007). Magma supply, magma as-

cent and the style of volcanic eruptions. Earth and Planetary Science Letters,

253 (3), 513–529. https://doi.org/10.1016/j.epsl.2006.11.016

Scarpa, R., & Gasparini, P. (1996). A Review of Volcano Geophysics and Volcano-

Monitoring Methods. In R. Scarpa & R. I. Tilling (Eds.), Monitoring and

Mitigation of Volcano Hazards (pp. 3–22). Springer. https://doi.org/10.1007/

978-3-642-80087-0_1

153

https://doi.org/10.1002/2014JB011307
https://doi.org/10.1002/2014JB011307
https://doi.org/10.2138/rmg.2008.69.7
https://doi.org/10.1038/342902a0
https://doi.org/10.1038/342902a0
https://doi.org/10.1029/2005GL025563
https://doi.org/10.1002/2016JB013045
https://doi.org/10.1016/j.epsl.2006.11.016
https://doi.org/10.1007/978-3-642-80087-0_1
https://doi.org/10.1007/978-3-642-80087-0_1


BIBLIOGRAPHY

Schaefer, L. N., Kendrick, J. E., Oommen, T., Lavallée, Y., & Chigna, G. (2015). Ge-

omechanical rock properties of a basaltic volcano. Frontiers in Earth Science,

3 (June), 1–15. https://doi.org/10.3389/feart.2015.00029

Schaff, D. P., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes

measured by repeating earthquakes. Journal of Geophysical Research: Solid

Earth, 109 (B10). https://doi.org/10.1029/2004JB003011

Schimmel, M., Stutzmann, E., & Gallart, J. (2011). Using instantaneous phase co-

herence for signal extraction from ambient noise data at a local to a global

scale. Geophysical Journal International, 184 (1), 494–506. https://doi.org/

10.1111/j.1365-246X.2010.04861.x

Schippkus, S., Hadziioannou, C., & Safarkhani, M. (2023). Continuous isolated noise

sources induce repeating waves in the coda of ambient noise correlations.

Seismica, 2 (2). https://doi.org/10.26443/seismica.v2i2.499

Segall, P. (2013). Volcano deformation and eruption forecasting. Geological Society,

London, Special Publications, 380 (1), 85–106. https : / / doi . org / 10 . 1144 /

SP380.4

Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferemetry and seasonal

variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Re-

search Letters, 33 (21), 1–5. https://doi.org/10.1029/2006GL027797

Sens-Schönfelder, C., & Brenguier, F. (2019, April). Noise-Based Monitoring. In N.

Nakata, L. Gualtieri, & A. Fichtner (Eds.), Seismic Ambient Noise (pp. 267–

301). Cambridge University Press. https://doi.org/10.1017/9781108264808.

011

Sens-Schönfelder, C., & Eulenfeld, T. (2019). Probing the in situ Elastic Nonlinear-

ity of Rocks with Earth Tides and Seismic Noise. Physical Review Letters,

122 (13), 138501. https://doi.org/10.1103/PhysRevLett.122.138501

154

https://doi.org/10.3389/feart.2015.00029
https://doi.org/10.1029/2004JB003011
https://doi.org/10.1111/j.1365-246X.2010.04861.x
https://doi.org/10.1111/j.1365-246X.2010.04861.x
https://doi.org/10.26443/seismica.v2i2.499
https://doi.org/10.1144/SP380.4
https://doi.org/10.1144/SP380.4
https://doi.org/10.1029/2006GL027797
https://doi.org/10.1017/9781108264808.011
https://doi.org/10.1017/9781108264808.011
https://doi.org/10.1103/PhysRevLett.122.138501


BIBLIOGRAPHY

Sens-Schönfelder, C., Flores-Estrella, H., Gassenmeier, M., Korn, M., Köllner, F.,

Milkereit, C., Niederleithinger, E., Parolai, S., Pilz, M., Pomponi, E., Schuck,

A., Thiemann, K., & Völkel, J. (2014). MIIC: Monitoring and Imaging Based

on Interferometric Concepts. In M. Weber & U. Münch (Eds.), Tomography

of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring:

GEOTECHNOLOGIEN Science Report No. 21 (pp. 43–61). Springer Inter-

national Publishing.

Sens-Schönfelder, C., & Larose, E. (2010). Lunar noise correlation, imaging and mon-

itoring. Earthquake Science, 23 (5), 519–530. https://doi.org/10.1007/s11589-

010-0750-6

Sens-Schönfelder, C., Pomponi, E., & Peltier, A. (2014). Dynamics of Piton de la

Fournaise volcano observed by passive image interferometry with multiple ref-

erences. Journal of Volcanology and Geothermal Research, 276, 32–45. https:

//doi.org/10.1016/j.jvolgeores.2014.02.012

Sens-Schönfelder, C., Snieder, R., & Li, X. (2019). A model for nonlinear elasticity

in rocks based on friction of internal interfaces and contact aging. Geophysical

Journal International, 216 (1), 319–331. https://doi.org/10.1093/gji/ggy414

Seropian, G., Kennedy, B. M., Walter, T. R., Ichihara, M., & Jolly, A. D. (2021).

A review framework of how earthquakes trigger volcanic eruptions. Nature

Communications, 12 (1), 1–13. https://doi.org/10.1038/s41467-021-21166-8

Seydoux, L., Balestriero, R., Poli, P., de Hoop, M., Campillo, M., & Baraniuk, R.

(2020). Clustering earthquake signals and background noises in continuous

seismic data with unsupervised deep learning. Nature Communications, 11 (1).

https://doi.org/10.1038/s41467-020-17841-x

Shapiro, N., Sens-Schönfelder, C., Lühr, B., Weber, M., Abkadyrov, I., Gordeev,

E., Koulakov, I., Jakovlev, A., Kugaenko, Y., & Saltykov, V. (2017). Under-

155

https://doi.org/10.1007/s11589-010-0750-6
https://doi.org/10.1007/s11589-010-0750-6
https://doi.org/10.1016/j.jvolgeores.2014.02.012
https://doi.org/10.1016/j.jvolgeores.2014.02.012
https://doi.org/10.1093/gji/ggy414
https://doi.org/10.1038/s41467-021-21166-8
https://doi.org/10.1038/s41467-020-17841-x


BIBLIOGRAPHY

standing Kamchatka’s Extraordinary Volcano Cluster. Eos. https://doi.org/

10.1029/2017EO071351

Shapiro, N., Sens-Schönfelder, C., Lühr, B., Weber, M., Abkadyrov, I., Gordeev, E.,

Koulakov, I., Jakovlev, A., Kugaenko, Y., & Saltykov, V. (2015). Klyuchevskoy

volcanic group experiment (kiss). https://doi.org/10.14470/K47560642124

Shearer, P. M. (2019, May). Introduction to Seismology. Cambridge University Press.

https://doi.org/10.1017/9781316877111

Sheng, Y., Ellsworth, W. L., Lellouch, A., & Beroza, G. C. (2021). Depth Constraints

on Coseismic Velocity Changes From Frequency-Dependent Measurements of

Repeating Earthquake Waveforms. Journal of Geophysical Research: Solid

Earth, 126 (2), 1–12. https://doi.org/10.1029/2020JB020421

Sherrod, D. R., Scott, W. E., & Stauffer, P. H. (2008). A Volcano Rekindled; The

Renewed Eruption of Mount St. Helens, 2004-2006.

Silver, P. G., Daley, T. M., Niu, F., & Majer, E. L. (2007). Active Source Monitoring

of Cross-Well Seismic Travel Time for Stress-Induced Changes. Bulletin of the

Seismological Society of America, 97 (1B), 281–293. https://doi.org/10.1785/

0120060120

Simpson, J., van Wijk, K., Adam, L., & Esteban, L. (2023). Temperature-Induced

Nonlinear Elastic Behavior in Berea Sandstone Explained by a Modified Sheared

Contacts Model. Journal of Geophysical Research: Solid Earth, 128 (1), e2022JB025452.

https://doi.org/10.1029/2022JB025452

Singh, J., Curtis, A., Zhao, Y., Cartwright-Taylor, A., & Main, I. (2019). Coda

Wave Interferometry for Accurate Simultaneous Monitoring of Velocity and

Acoustic Source Locations in Experimental Rock Physics. Journal of Geo-

physical Research: Solid Earth, 124 (6), 5629–5655. https://doi.org/10.1029/

2019JB017577

156

https://doi.org/10.1029/2017EO071351
https://doi.org/10.1029/2017EO071351
https://doi.org/10.14470/K47560642124
https://doi.org/10.1017/9781316877111
https://doi.org/10.1029/2020JB020421
https://doi.org/10.1785/0120060120
https://doi.org/10.1785/0120060120
https://doi.org/10.1029/2022JB025452
https://doi.org/10.1029/2019JB017577
https://doi.org/10.1029/2019JB017577


BIBLIOGRAPHY

Snieder, R., Sens-Schönfelder, C., & Wu, R. (2017). The time dependence of rock

healing as a universal relaxation process, a tutorial. Geophysical Journal In-

ternational, 208 (1), 1–9. https://doi.org/10.1093/gji/ggw377

Snieder, R., Singh, J., Curtis, A., Zhao, Y., Cartwright-Taylor, A., & Main, I. (2019).

Coda Wave Interferometry for Accurate Simultaneous Monitoring of Veloc-

ity and Acoustic Source Locations in Experimental Rock Physics. Journal of

Geophysical Research: Solid Earth, 124 (6), 5629–5655. https://doi.org/10.

1029/2019JB017577

Soubestre, J., Seydoux, L., Shapiro, N. M., de Rosny, J., Droznin, D. V., Droznina,

S. Y., Senyukov, S. L., & Gordeev, E. I. (2019). Depth Migration of Seismovol-

canic Tremor Sources Below the Klyuchevskoy Volcanic Group (Kamchatka)

Determined From a Network-Based Analysis. Geophysical Research Letters,

46 (14), 8018–8030. https://doi.org/10.1029/2019GL083465

Soubestre, J., Chouet, B., & Dawson, P. (2021). Sources of Volcanic Tremor Associ-

ated With the Summit Caldera Collapse During the 2018 East Rift Eruption

of Kı¯lauea Volcano, Hawaii. Journal of Geophysical Research: Solid Earth,

1–33. https://doi.org/10.1029/2020jb021572

Sparks, R. S. J. (2003). Forecasting volcanic eruptions. Earth and Planetary Science

Letters, 210 (1), 1–15. https://doi.org/10.1016/S0012-821X(03)00124-9

Sparks, R. S. J., Biggs, J., & Neuberg, J. W. (2012). Monitoring Volcanoes. Science,

335 (6074), 1310–1311. https://doi.org/10.1126/science.1219485

Steinmann, R., Hadziioannou, C., & Larose, E. (2021). Effect of centimetric freezing

of the near subsurface on Rayleigh and Love wave velocity in ambient seismic

noise correlations. Geophysical Journal International, 224 (1), 626–636. https:

//doi.org/10.1093/gji/ggaa406

Steinmann, R., Seydoux, L., Journeau, C., Shapiro, N. M., & Campillo, M. (2023,

June). Machine learning analysis of seismograms reveals a continuous plumb-

157

https://doi.org/10.1093/gji/ggw377
https://doi.org/10.1029/2019JB017577
https://doi.org/10.1029/2019JB017577
https://doi.org/10.1029/2019GL083465
https://doi.org/10.1029/2020jb021572
https://doi.org/10.1016/S0012-821X(03)00124-9
https://doi.org/10.1126/science.1219485
https://doi.org/10.1093/gji/ggaa406
https://doi.org/10.1093/gji/ggaa406


BIBLIOGRAPHY

ing system evolution beneath the Klyuchevskoy volcano in Kamchatka, Rus-

sia. https://doi.org/10.22541/essoar.168614505.54607219/v1

Steinmann, R., Seydoux, L., Beaucé, É., & Campillo, M. (2022). Hierarchical Explo-

ration of Continuous Seismograms With Unsupervised Learning. Journal of

Geophysical Research: Solid Earth, 127 (1), 1–21. https://doi.org/10.1029/

2021JB022455

Steinmann, R., Seydoux, L., & Campillo, M. (2022). AI-Based Unmixing of Medium

and Source Signatures From Seismograms: Ground Freezing Patterns. Geo-

physical Research Letters, 49 (15), e2022GL098854. https://doi.org/10.1029/

2022GL098854

Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P., Marmureanu,

A., Ottemöller, L., Pedersen, H., Sleeman, R., Stammler, K., Armbruster, D.,

Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M., Neagoe, C., Heimers,

S., Heinloo, A., Hoffmann, M., . . . Triantafyllis, N. (2021). EIDA: The Eu-

ropean Integrated Data Archive and Service Infrastructure within ORFEUS.

Seismological Research Letters, 92 (3), 1788–1795. https://doi.org/10.1785/

0220200413

Taira, T., & Brenguier, F. (2016). Response of hydrothermal system to stress tran-

sients at Lassen Volcanic Center, California, inferred from seismic interfer-

ometry with ambient noise 4. Seismology. Earth, Planets and Space, 68 (1).

https://doi.org/10.1186/s40623-016-0538-6

Takano, T., Nishimura, T., & Nakahara, H. (2017). Seismic velocity changes con-

centrated at the shallow structure as inferred from correlation analyses of

ambient noise during volcano deformation at Izu-Oshima, Japan. Journal of

Geophysical Research: Solid Earth, 122 (8), 6721–6736. https://doi.org/10.

1002/2017JB014340

158

https://doi.org/10.22541/essoar.168614505.54607219/v1
https://doi.org/10.1029/2021JB022455
https://doi.org/10.1029/2021JB022455
https://doi.org/10.1029/2022GL098854
https://doi.org/10.1029/2022GL098854
https://doi.org/10.1785/0220200413
https://doi.org/10.1785/0220200413
https://doi.org/10.1186/s40623-016-0538-6
https://doi.org/10.1002/2017JB014340
https://doi.org/10.1002/2017JB014340


BIBLIOGRAPHY

Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y. (2020). Have satellite

precipitation products improved over last two decades? A comprehensive com-

parison of GPM IMERG with nine satellite and reanalysis datasets. Remote

Sensing of Environment, 240 (September 2019), 111697. https://doi.org/10.

1016/j.rse.2020.111697

Taran, Y. A. (2009). Geochemistry of volcanic and hydrothermal fluids and volatile

budget of the Kamchatka-Kuril subduction zone. Geochimica et Cosmochim-

ica Acta, 73 (4), 1067–1094. https://doi.org/10.1016/j.gca.2008.11.020

Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved

using the least squares criterion. Reviews of Geophysics, 20 (2), 219–232. https:

//doi.org/10.1029/RG020i002p00219

Thelen, W., Malone, S., & West, M. (2011). Multiplets: Their behavior and utility at

dacitic and andesitic volcanic centers. Journal of Geophysical Research: Solid

Earth, 116 (B8). https://doi.org/10.1029/2010JB007924

Thery, R., Guillemot, A., Abraham, O., & Larose, E. (2020). Tracking fluids in

multiple scattering and highly porous materials: Toward applications in non-

destructive testing and seismic monitoring. Ultrasonics, 102, 106019. https:

//doi.org/10.1016/j.ultras.2019.106019

Thornber, C., Pallister, J., Lowers, H., Rowe, M., Mandeville, C., & Meeker, G.

(2008). Chemistry, mineralogy, and petrology of amphibole in Mount St. He-

lens 2004-2006 dacite. US Geological Survey Professional Paper, 1750, 727–

754.

Tilling, R. I. (2008). The critical role of volcano monitoring in risk reduction. Ad-

vances in Geosciences, 14, 3–11. https://doi.org/10.5194/adgeo-14-3-2008

Titzschkau, T., Savage, M., & Hurst, T. (2010). Changes in attenuation related to

eruptions of Mt. Ruapehu Volcano, New Zealand. Journal of Volcanology and

159

https://doi.org/10.1016/j.rse.2020.111697
https://doi.org/10.1016/j.rse.2020.111697
https://doi.org/10.1016/j.gca.2008.11.020
https://doi.org/10.1029/RG020i002p00219
https://doi.org/10.1029/RG020i002p00219
https://doi.org/10.1029/2010JB007924
https://doi.org/10.1016/j.ultras.2019.106019
https://doi.org/10.1016/j.ultras.2019.106019
https://doi.org/10.5194/adgeo-14-3-2008


BIBLIOGRAPHY

Geothermal Research, 190 (1), 168–178. https://doi.org/10.1016/j.jvolgeores.

2009.07.012

Tozer, B., Sandwell, D. T., Smith, W. H., Olson, C., Beale, J., & Wessel, P. (2019).

Global bathymetry and topography at 15 arc sec: Srtm15+. Earth and Space

Science, 6 (10), 1847–1864. https://doi.org/10.1029/2019EA000658

Tsai, V. C. (2011). A model for seasonal changes in GPS positions and seismic wave

speeds due to thermoelastic and hydrologic variations. Journal of Geophysical

Research: Solid Earth, 116 (B4). https://doi.org/10.1029/2010JB008156

Uieda, L., Tian, D., Leong, W. J., Toney, L., Schlitzer, W., Grund, M., Newton, D.,

Ziebarth, M., Jones, M., & Wessel, P. (2021). Pygmt: A python interface for

the generic mapping tools.

Ulberg, C. W., Creager, K. C., Moran, S. C., Abers, G. A., Thelen, W. A., Levan-

der, A., Kiser, E., Schmandt, B., Hansen, S. M., & Crosson, R. S. (2020).

Local Source Vp and Vs Tomography in the Mount St. Helens Region With

the iMUSH Broadband Array. Geochemistry, Geophysics, Geosystems, 21 (3),

e2019GC008888. https://doi.org/10.1029/2019GC008888

University of Leipzig. (2001). SXNET Saxon Seismic Network. https://doi.org/10.

7914/SN/SX

University of Washington. (1963). Pacific northwest seismic network - university of

washington. https://doi.org/10.7914/SN/UW

Utada, H. (2003). Interpretation of time changes in the apparent resistivity observed

prior to the 1986 eruption of Izu–Oshima volcano, Japan. Journal of Vol-

canology and Geothermal Research, 126 (1), 97–107. https://doi.org/10.1016/

S0377-0273(03)00119-7

Van Den Abeele, K. E.-A. (2002). Influence of water saturation on the nonlinear

elastic mesoscopic response in Earth materials and the implications to the

160

https://doi.org/10.1016/j.jvolgeores.2009.07.012
https://doi.org/10.1016/j.jvolgeores.2009.07.012
https://doi.org/10.1029/2019EA000658
https://doi.org/10.1029/2010JB008156
https://doi.org/10.1029/2019GC008888
https://doi.org/10.7914/SN/SX
https://doi.org/10.7914/SN/SX
https://doi.org/10.7914/SN/UW
https://doi.org/10.1016/S0377-0273(03)00119-7
https://doi.org/10.1016/S0377-0273(03)00119-7


BIBLIOGRAPHY

mechanism of nonlinearity. Journal of Geophysical Research, 107 (B6), 1–11.

https://doi.org/10.1029/2001jb000368

Viens, L., Jiang, C., & Denolle, M. A. (2022). Imaging the Kanto Basin seismic

basement with earthquake and noise autocorrelation functions. Geophysical

Journal International, 230 (2), 1080–1091. https : / /doi . org /10 . 1093/gji /

ggac101

Viens, L., & Van Houtte, C. (2020). Denoising ambient seismic field correlation

functions with convolutional autoencoders. Geophysical Journal International,

220 (3), 1521–1535. https://doi.org/10.1093/gji/ggz509

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J.,

Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones,

E., Kern, R., Larson, E., . . . van Mulbregt, P. (2020). SciPy 1.0: Fundamental

algorithms for scientific computing in Python. Nature Methods, 17 (3), 261–

272. https://doi.org/10.1038/s41592-019-0686-2

Waite, G. P., & Moran, S. C. (2009). VP Structure of Mount St. Helens, Washington,

USA, imaged with local earthquake tomography. Journal of Volcanology and

Geothermal Research, 182 (1), 113–122. https://doi.org/10.1016/j.jvolgeores.

2009.02.009

Walter, T. R., & Amelung, F. (2007). Volcanic eruptions following M 9 megath-

rust earthquakes: Implications of the Sumatra-Andaman volcanoes. Geology,

35 (6), 539–542. https://doi.org/10.1130/G23429A.1

Wang, B., Yang, W., Wang, W., Yang, J., Li, X., & Ye, B. (2020). Diurnal and

Semidiurnal P- and S-Wave Velocity Changes Measured Using an Airgun

Source. Journal of Geophysical Research: Solid Earth, 125 (1), e2019JB018218.

https://doi.org/10.1029/2019JB018218

161

https://doi.org/10.1029/2001jb000368
https://doi.org/10.1093/gji/ggac101
https://doi.org/10.1093/gji/ggac101
https://doi.org/10.1093/gji/ggz509
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.jvolgeores.2009.02.009
https://doi.org/10.1016/j.jvolgeores.2009.02.009
https://doi.org/10.1130/G23429A.1
https://doi.org/10.1029/2019JB018218


BIBLIOGRAPHY

Wang, Q. Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., & Aoki, Y.

(2017). Seasonal Crustal Seismic Velocity Changes Throughout Japan. Jour-

nal of Geophysical Research: Solid Earth, 122 (10), 7987–8002. https://doi.

org/10.1002/2017JB014307

Wang, Y., Lin, F.-C., Schmandt, B., & Farrell, J. (2017). Ambient noise tomography

across Mount St. Helens using a dense seismic array. Journal of Geophys-

ical Research: Solid Earth, 122 (6), 4492–4508. https : //doi . org/10 .1002/

2016JB013769

Ward, J. H. J. (1963). Hierarchical Grouping to Optimize an Objective Function.

Journal of the American Statistical Association, 58 (301), 236–244.

Watt, S. F., Pyle, D. M., & Mather, T. A. (2009). The influence of great earthquakes

on volcanic eruption rate along the Chilean subduction zone. Earth and Plan-

etary Science Letters, 277 (3-4), 399–407. https://doi.org/10.1016/j.epsl .

2008.11.005

Weaver, R. L. (2005). Information from Seismic Noise. Science, 307 (5715), 1568–

1569. https://doi.org/10.1126/science.1109834

Weaver, R. L., Hadziioannou, C., Larose, E., & Campillo, M. (2011). On the precision

of noise correlation interferometry. Geophysical Journal International, 185 (3),

1384–1392. https://doi.org/10.1111/j.1365-246X.2011.05015.x

Wegler, U., Nakahara, H., Sens-Schönfelder, C., Korn, M., & Shiomi, K. (2009).

Sudden drop of seismic velocity after the 2004 Mw 6.6 mid-Niigata earth-

quake, Japan, observed with Passive Image Interferometry B06305. Journal

of Geophysical Research: Solid Earth, 114 (6), 1–11. https://doi.org/10.1029/

2008JB005869

Welch, M. D., & Schmidt, D. A. (2017). Separating volcanic deformation and atmo-

spheric signals at Mount St. Helens using Persistent Scatterer InSAR. Journal

162

https://doi.org/10.1002/2017JB014307
https://doi.org/10.1002/2017JB014307
https://doi.org/10.1002/2016JB013769
https://doi.org/10.1002/2016JB013769
https://doi.org/10.1016/j.epsl.2008.11.005
https://doi.org/10.1016/j.epsl.2008.11.005
https://doi.org/10.1126/science.1109834
https://doi.org/10.1111/j.1365-246X.2011.05015.x
https://doi.org/10.1029/2008JB005869
https://doi.org/10.1029/2008JB005869


BIBLIOGRAPHY

of Volcanology and Geothermal Research, 344, 52–64. https://doi .org/10.

1016/j.jvolgeores.2017.05.015

Wilson, G., Wilson, T. M., Deligne, N. I., & Cole, J. W. (2014). Volcanic hazard im-

pacts to critical infrastructure: A review. Journal of Volcanology and Geother-

mal Research, 286, 148–182. https://doi.org/10.1016/j.jvolgeores.2014.08.030

Woods, A. W. (1995). The dynamics of explosive volcanic eruptions. Reviews of

Geophysics, 33 (4), 495–530. https://doi.org/10.1029/95RG02096

Wu, C., Tan, X., Li, H., & Sun, G. (2022). An Efficient Ambient Noise Cross-

Correlation Algorithm on Heterogeneous CPU-GPU Cluster. 2022 IEEE 13th

International Symposium on Parallel Architectures, Algorithms and Program-

ming (PAAP), 1–5. https://doi.org/10.1109/PAAP56126.2022.10010612

Xue, Q., Larose, E., Moreau, L., Thery, R., Abraham, O., & Henault, J.-M. (2022).

Ultrasonic monitoring of stress and cracks of the 1/3 scale mock-up of nuclear

reactor concrete containment structure. Structural Health Monitoring, 21 (4),

1474–1482. https://doi.org/10.1177/14759217211034729

Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., & Fukao, Y. (2003).

Long-term observation of in situ seismic velocity and attenuation. Journal

of Geophysical Research: Solid Earth, 108 (B6). https ://doi .org/10.1029/

2002JB002005

Yates, A. S., Savage, M. K., Jolly, A. D., Caudron, C., & Hamling, I. J. (2019). Vol-

canic, Coseismic, and Seasonal Changes Detected at White Island (Whakaari)

Volcano, New Zealand, Using Seismic Ambient Noise. Geophysical Research

Letters, 46 (1), 99–108. https://doi.org/10.1029/2018GL080580

Yates, A., Caudron, C., Lesage, P., Mordret, A., Lecocq, T., & Soubestre, J. (2023).

Assessing similarity in continuous seismic cross-correlation functions using

hierarchical clustering: Application to Ruapehu and Piton de la Fournaise

163

https://doi.org/10.1016/j.jvolgeores.2017.05.015
https://doi.org/10.1016/j.jvolgeores.2017.05.015
https://doi.org/10.1016/j.jvolgeores.2014.08.030
https://doi.org/10.1029/95RG02096
https://doi.org/10.1109/PAAP56126.2022.10010612
https://doi.org/10.1177/14759217211034729
https://doi.org/10.1029/2002JB002005
https://doi.org/10.1029/2002JB002005
https://doi.org/10.1029/2018GL080580


BIBLIOGRAPHY

volcanoes. Geophysical Journal International, 233 (1), 472–489. https://doi.

org/10.1093/gji/ggac469

Yin, X., Xia, J., Shen, C., & Xu, H. (2014). Comparative analysis on penetrating

depth of high-frequency Rayleigh and Love waves. Journal of Applied Geo-

physics, 111, 86–94. https://doi.org/10.1016/j.jappgeo.2014.09.022

Yogodzinski, G. M., Lees, J. M., Churikova, T. G., Dorendorf, F., Wöerner, G., &

Volynets, O. N. (2001). Geochemical evidence for the melting of subducting

oceanic lithosphere at plate edges. Nature, 409 (6819), 500–504. https://doi.

org/10.1038/35054039

Yuan, C., Bryan, J., & Denolle, M. (2021). Numerical comparison of time-, frequency-

A nd wavelet-domain methods for coda wave interferometry. Geophysical

Journal International, 226 (2), 828–846. https://doi.org/10.1093/gji/ggab140

Zhang, H., Glasgow, M., Schmandt, B., Thelen, W. A., Moran, S. C., & Thomas,

A. M. (2022). Revisiting the depth distribution of seismicity before and af-

ter the 2004–2008 eruption of Mount St. Helens. Journal of Volcanology and

Geothermal Research, 430, 107629. https://doi.org/10.1016/j.jvolgeores.2022.

107629

Zimmerman, R. W., & King, M. S. (1986). The effect of the extent of freezing on

seismic velocities in unconsolidated permafrost. GEOPHYSICS, 51 (6), 1285–

1290. https://doi.org/10.1190/1.1442181

164

https://doi.org/10.1093/gji/ggac469
https://doi.org/10.1093/gji/ggac469
https://doi.org/10.1016/j.jappgeo.2014.09.022
https://doi.org/10.1038/35054039
https://doi.org/10.1038/35054039
https://doi.org/10.1093/gji/ggab140
https://doi.org/10.1016/j.jvolgeores.2022.107629
https://doi.org/10.1016/j.jvolgeores.2022.107629
https://doi.org/10.1190/1.1442181


APPENDIX A

Supporting Information to Chapter 3

In this supporting information, we elaborate on the approximation of the stretching

factor implemented in SeisMIC. We show a short derivation in Section A.1.

In Section A.2, we present selected results of the spatial inversion procedure to

illustrate the effect of (1) subdividing the coda to obtain several independent velocity

change estimates (hereafter referred to as coda splitting) and (2) adding information

from autocorrelations and cross-station correlations to the analysis. To this end, we

provide several examples using different station configurations and damping param-

eters. For a thorough discussion of the algorithm, please refer to Chapter 3. The

reader can reproduce and extend the shown results using the spatial.ipynb Jupyter

notebook provided in the digital supplement.

For the coda splitting, we split the total of the used coda window into three

equally long subwindows and obtain one sensitivity kernel for each subwindow. That

is when exploiting the coda splitting, we compute separate sensitivity kernels for
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lapse times from 14 to 20.66 s, from 20.66 s to 27.33 s, and from 27.33 s to 34 s,

whereas without coda splitting, we only obtain one sensitivity kernel representing

lag times from 14 s to 34 s. To all forward-modelled dv/v results, we add random

noise from a Gaussian distribution with a standard deviation of only 0.05 % dv/v to

the predicted velocity changes to render the comparison less dependent on the noise

level. Otherwise, the procedure for the spatial inversion remains identical to the one

described in Section 3.2.5.

Apart from this supporting document, we provide Jupyter notebooks, computing

scripts, and the main program, SeisMIC 0.5.3, as a digital supplement. For SeisMIC,

however, we strongly encourage the reader to obtain the code’s latest version, for

example, from GitHub. For details about where to retrieve these additional supple-

ments, please refer to the data and code availability section in Chapter 3.

A.1 Derivation of the Stretching

A problem with the commonly used definition of a velocity change dv/v is that it

is neither additive nor reversible, i.e. dv/vA→B ̸= −dv/vB→A because the reference

velocity of the two measurements may be different and the commonly used equation

dv/v = −dt/t is an approximation for small dv/v. Even though the error is small, we

can reduce it further with a different definition of the velocity change. This defini-

tion is especially useful for smoothing, averaging, or otherwise manipulating velocity

change time series as, in contrast to the common definition, it ensures linearity (see

below).

Assuming infinite frequency (i.e., ray theory), the travel time t(x) of a wave

travelling from point x1 to x2 through any medium is given by:

t(x) =

∫ x2

x1

1

v(x)
dx (A.1)

where v(x) is the velocity at point x. If we assume a medium with a homogeneous

166



APPENDIX A. SUPPORTING INFORMATION TO CHAPTER 3

velocity, i.e., v(x) = v, equation A.1 simplifies to:

t =
∆x

v
(A.2)

where∆x = ||x1 − x2|| is the Euclidean distance which remains constant throughout.

In interferometry, we examine the case where the velocity v(t) is variable with time.

To quantify the change in velocity, we compare the velocity of a reference state

ṽ = ∆x/t̃ with the velocity v′ = ∆x/t′ in a perturbed state. Due to the constant

∆x, we obtain from equation A.2:

t̃

t′
=
v′

ṽ
= ξ (A.3)

defining the stretching factor ξ.

We seek a transformation

S(κ) : t̃ 7→ t′ =
1

ξ
t̃

that maps the original travel times t̃ of the seismic waves through the unperturbed

medium to the travel times t′ through the perturbed medium. This transformation

shall have the following property:

S(κ1)S(κ2) = S(κ1 + κ2)

to ensure that stretching is additive and reversible. We choose

ξ = eκ

to calculate the stretching factor. We satisfy the above requirement for any com-

bination of reference and perturbed states since eκ1 ∗ eκ2 = eκ1+κ2 . In SeisMIC, we

implement ξ = eκ to guarantee the linearity in the processing. To interpret measure-

ments in the usual way as fractional velocity change, we use the approximation

dv

v
=
v′ − ṽ

ṽ
= ξ − 1 ≈ κ

167



APPENDIX A. SUPPORTING INFORMATION TO CHAPTER 3

.

Utilising ξ = 1+ dv
v
for processing introduces nonlinearities and a dependency on

the reference state. We note that this effect is not limited to measurements of the

velocity change with the stretching method. Any manipulation of dv
v
is affected and

can be improved by working with κ = ln(v′/ṽ).

A.2 Additional Results of the Synthetic Spatial Imag-

ing
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Figure A.1: Examples of the spatial inversion using data from two stations, a model

variance σm = 0.5 km
km2 , and a correlation length λ = 2 km. (a) The synthetic velocity

model and station configuration used. (b) Result of the spatial inversion using only

cross-correlations and a single lapse time window. (c) Result of the spatial inversion

using only cross-correlations and three lapse time windows. (d) Result of the spatial

inversion using only auto-correlations and a single lapse time window. (e) Result of

the spatial inversion using only auto-correlations and three lapse time windows. (f)

Result of the spatial inversion from cross-correlations and auto correlations using a

single lapse time window. (g) Result of the spatial inversion from cross-correlations

and auto correlations using a single lapse time window.
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Figure A.2: Examples of the spatial inversion using data from four stations, a

model variance σm = 0.25 km
km2 , and a correlation length λ = 2 km. (a) The synthetic

velocity model and station configuration used. (b) Result of the spatial inversion

using only cross-correlations and a single lapse time window. (c) Result of the

spatial inversion using only cross-correlations and three lapse time windows. (d)

Result of the spatial inversion using only auto-correlations and a single lapse time

window. (e) Result of the spatial inversion using only auto-correlations and three

lapse time windows. (f) Result of the spatial inversion from cross-correlations and

auto correlations using a single lapse time window. (g) Result of the spatial inversion

from cross-correlations and auto correlations using a single lapse time window.
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Figure A.3: Examples of the spatial inversion using data from eight stations, a

model variance σm = 0.05 km
km2 , and a correlation length λ = 2 km. (a) The synthetic

velocity model and station configuration used. (b) Result of the spatial inversion

using only cross-correlations and a single lapse time window. (c) Result of the

spatial inversion using only cross-correlations and three lapse time windows. (d)

Result of the spatial inversion using only auto-correlations and a single lapse time

window. (e) Result of the spatial inversion using only auto-correlations and three

lapse time windows. (f) Result of the spatial inversion from cross-correlations and

auto correlations using a single lapse time window. (g) Result of the spatial inversion

from cross-correlations and auto correlations using a single lapse time window.
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Figure A.4: Examples of the spatial inversion using data from 16 stations, a model

variance σm = 0.02 km
km2 , and a correlation length λ = 2 km. (a) The synthetic

velocity model and station configuration used. (b) Result of the spatial inversion

using only cross-correlations and a single lapse time window. (c) Result of the

spatial inversion using only cross-correlations and three lapse time windows. (d)

Result of the spatial inversion using only auto-correlations and a single lapse time

window. (e) Result of the spatial inversion using only auto-correlations and three

lapse time windows. (f) Result of the spatial inversion from cross-correlations and

auto correlations using a single lapse time window. (g) Result of the spatial inversion

from cross-correlations and auto correlations using a single lapse time window.
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Figure A.5: Examples of the spatial inversion using data from 32 stations a model

variance σm = 0.05 km
km2 and a correlation length λ = 2 km. (a) The synthetic velocity

model and station configuration used. (b) Result of the spatial inversion using only

cross-correlations and a single lapse time window. (c) Result of the spatial inversion

using only cross-correlations and three lapse time windows. (d) Result of the spatial

inversion using only auto-correlations and a single lapse time window. (e) Result of

the spatial inversion using only auto-correlations and three lapse time windows. (f)

Result of the spatial inversion from cross-correlations and auto correlations using a

single lapse time window. (g) Result of the spatial inversion from cross-correlations

and auto correlations using a single lapse time window.
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APPENDIX B

Supporting Information to Chapter 4

Introduction This supporting information includes figures showing the results of the

hierarchical clustering algorithm for different frequency bands (Figures B.1 to B.6)

and station D0.BZG (Figure B.7). Table S1 provides a quantitative measure of the

clusters’ dissimilarity, the so-called merging cost, formally, the hypothetical increase

of the error sum of squares of the Euclidean distances obtained upon merging the two

most similar clusters Ward (1963). Table B.1 shows how the merging cost varies with

the frequency band used to compute the correlation functions. We provide the time

segments we chose based on the clusters in Table B.2. Figure B.8 shows parameters a

and b of the best-fitting dv/v models. In addition, we show relative velocity changes

for all station groups computed from auto-, self-, and cross-correlations for one-

octave-wide frequency bands between 0.5 and 8 Hz (see Figures B.9 to B.44).
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Figure B.1: The output of the hierarchical clustering. As input data, we used one

year of self-correlations between station’s X9.IR1 (see Figure 4.1 in main publica-

tion) east and north component created from waveform data between 0.0625 and

0.125 Hz. Colours are used to identify the different clusters in the three panels.

(a) A dendrogram that quantifies the similarity between the different clusters. The

vertical distance of the branches scales with the merging cost. We show unclustered

branches in grey. (b) The distribution of the clusters over the whole study period.

The bars show the bi-weekly occurrence N of the respective cluster. (c) Averages of

the CFs belonging to each of the five clusters.
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Figure B.2: The result of the hierarchical clustering for station X9.IR1 and the com-

ponent combination HHE-HHN for frequencies between 0.125 and 0.25 Hz. Colours

are used to identify the different clusters in the three panels. (a) A dendrogram

that quantifies the similarity between the different clusters. The vertical distance of

the branches scales with the merging cost. We show unclustered branches in grey.

(b) The distribution of the clusters over the whole study period. The bars show the

bi-weekly occurrence N of the respective cluster. (c) Averages of the CFs belonging

to each of the five clusters.
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Figure B.3: The result of the hierarchical clustering for station X9.IR1 and the

component combination HHE-HHN for frequencies between 0.25 and 0.5 Hz. Colours

are used to identify the different clusters in the three panels. (a) A dendrogram that

quantifies the similarity between the different clusters. The vertical distance of the

branches scales with the merging cost. We show unclustered branches in grey. (b)

The distribution of the clusters over the whole study period. The bars show the

bi-weekly occurrence N of the respective cluster. (c) Averages of the CFs belonging

to each of the five clusters.
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Figure B.4: The result of the hierarchical clustering for station X9.IR1 and the

component combination HHE-HHN for frequencies between 0.5 and 1.0 Hz. Colours

are used to identify the different clusters in the three panels. (a) A dendrogram

that quantifies the similarity between the different clusters. The vertical distance of

the branches scales with the merging cost. We show unclustered branches in grey.

(b) The distribution of the clusters over the whole study period. The bars show the

bi-weekly occurrence N of the respective cluster. (c) Averages of the CFs belonging

to each of the five clusters.
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Figure B.5: The result of the hierarchical clustering for station X9.IR1 and the

component combination HHE-HHN for frequencies between 1.0 and 2.0 Hz. Colours

are used to identify the different clusters in the three panels. (a) A dendrogram

that quantifies the similarity between the different clusters. The vertical distance of

the branches scales with the merging cost. We show unclustered branches in grey.

(b) The distribution of the clusters over the whole study period. The bars show the

bi-weekly occurrence N of the respective cluster. (c) Averages of the CFs belonging

to each of the five clusters.
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Figure B.6: The result of the hierarchical clustering for station X9.IR1 and the

component combination HHE-HHN for frequencies between 4.0 and 8.0 Hz. Colours

are used to identify the different clusters in the three panels. (a) A dendrogram

that quantifies the similarity between the different clusters. The vertical distance of

the branches scales with the merging cost. We show unclustered branches in grey.

(b) The distribution of the clusters over the whole study period. The bars show the

bi-weekly occurrence N of the respective cluster. (c) Averages of the CFs belonging

to each of the five clusters.
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Figure B.7: The result of the hierarchical clustering for station D0.BZG and the

component combination HHE-HHN for frequencies between 2.0 and 4.0 Hz. Colours

are used to identify the different clusters in the three panels. (a) A dendrogram

that quantifies the similarity between the different clusters. The vertical distance of

the branches scales with the merging cost. We show unclustered branches in grey.

(b) The distribution of the clusters over the whole study period. The bars show the

bi-weekly occurrence N of the respective cluster. (c) Averages of the CFs belonging

to each of the five clusters.
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Figure B.8: Values of the modelling parameters a (in panel (a), impact of the

precipitation) and b (in panel (b), impact of the snow thickness) as determined by

the least-squares inversion from data from auto- and self-correlations. The values

are shown for each of the frequency bands and station groups. See Section 4.5.1 and

eq. 4.1 for a detailed description of the model.
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Figure B.9: Velocity change for the station groups CKD and ERidge (see Figure 4.4

for locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2015/07/01 to 2015/12/01.

Refer to Figure 8 in the main paper for a detailed explanation of the figure
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Figure B.10: Velocity change for the station groups KVG and KVG_vic (see

Figure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2015/07/01

to 2015/12/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.11: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2015/07/01 to 2015/12/01.

Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.12: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2015/12/15

to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.13: Velocity change for the station groups KVG and KVG_vic (see

Figure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2015/12/15

to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.14: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2015/12/15 to 2016/02/15.

Refer to Figure 4.8 for a detailed explanation of the figure.

189



APPENDIX B. SUPPORTING INFORMATION TO CHAPTER 4

17
 Ja

n 
16

21
 Ja

n 
16

25
 Ja

n 
16

29
 Ja

n 
16

01
 F

eb
 1

6

05
 F

eb
 1

6

09
 F

eb
 1

6

13
 F

eb
 1

6
0

10

P
[m

m
]

17
 Ja

n 
16

21
 Ja

n 
16

25
 Ja

n 
16

29
 Ja

n 
16

01
 F

eb
 1

6

05
 F

eb
 1

6

09
 F

eb
 1

6

13
 F

eb
 1

6
0.0

0.2

d
s
n
o
w

[m
]

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = 0.347

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

d
v
/v

[%
]

R2 = 0.288

f m
in

=
4
.0

 H
z

f m
in

=
4
.0

 H
z

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = 0.133

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

d
v
/v

[%
]

R2 = 0.261

f m
in

=
2
.0

 H
z

f m
in

=
2
.0

 H
z

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = -0.054

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

d
v
/v

[%
]

f m
in

=
1
.0

 H
z

R2 = 0.118

f m
in

=
1
.0

 H
z

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = -0.055

ERidge

−0.4

−0.2

0.0

0.2

0.4

d
v
/v

[%
]

R2 = -0.183

f m
in

=
0
.5

 H
z

f m
in

=
0
.5

 H
z

CKD

0.0 0.2 0.4 0.6 0.8 1.0
CCC

Figure B.15: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/01/15

to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.16: Velocity change for the station groups KVG and KVG_vic (see

Figure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/01/15

to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.17: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2016/01/15 to 2016/02/15.

Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.18: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/03/15

to 2016/04/21. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.19: Velocity change for the station groups KVG and KVG_vic (see

Figure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/03/15

to 2016/04/21. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.20: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2016/03/15 to 2016/04/21.

Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.21: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/04/01

to 2016/07/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.22: Velocity change for the station groups KVG and KVG_vic (see

Figure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/04/01

to 2016/07/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.23: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2016/04/01 to 2016/07/01.

Refer to Figure 4.8 for a detailed explanation of the figure.

198



APPENDIX B. SUPPORTING INFORMATION TO CHAPTER 4

01
 M

ay
 1

6

15
 M

ay
 1

6

01
 Ju

n 
16

15
 Ju

n 
16

01
 Ju

l 1
6

15
 Ju

l 1
6

01
 A

ug
 1

6
0

20

P
[m

m
]

01
 M

ay
 1

6

15
 M

ay
 1

6

01
 Ju

n 
16

15
 Ju

n 
16

01
 Ju

l 1
6

15
 Ju

l 1
6

01
 A

ug
 1

6
0.0

0.5

d
s
n
o
w

[m
]

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = 0.64

−1.0

−0.5

0.0

0.5

1.0

1.5

d
v
/v

[%
]

R2 = 0.418

f m
in

=
4
.0

 H
z

f m
in

=
4
.0

 H
z

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = -4.099

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

d
v
/v

[%
]

R2 = 0.726

f m
in

=
2
.0

 H
z

f m
in

=
2
.0

 H
z

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = -3.098

−0.4

−0.2

0.0

0.2

0.4

d
v
/v

[%
]

f m
in

=
1
.0

 H
z

R2 = 0.69

f m
in

=
1
.0

 H
z

10−2

100

102

104

T
A

D
R

 [
m

3 s
]

R2 = -0.981

ERidge

−0.4

−0.2

0.0

0.2

0.4

d
v
/v

[%
]

R2 = 0.161

f m
in

=
0
.5

 H
z

f m
in

=
0
.5

 H
z

CKD

0.0 0.2 0.4 0.6 0.8 1.0
CCC

Figure B.24: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/04/22

to 2016/09/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.25: Velocity change for the station groups KVG and KVG_vic (see

Figure 4.4 for locations) created from auto- and self-correlations between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/04/22

to 2016/09/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.26: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from auto- and self-correlations between all components for the

frequencies between fmin and 2fmin for the time between 2016/04/22 to 2016/09/01.

Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.27: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2015/07/01 to 2015/12/05. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.28: Velocity change for the station groups KVG and KVG_vic (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2015/07/01 to 2015/12/01. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.29: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from cross-correlations (i.e., between stations) between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2015/07/01

to 2015/12/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.30: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2015/12/15 to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.31: Velocity change for the station groups KVG and KVG_vic (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2015/12/15 to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.32: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from cross-correlations (i.e., between stations) between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2015/12/15

to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.33: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/01/15 to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.34: Velocity change for the station groups KVG and KVG_vic (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/01/15 to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.35: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from cross-correlations (i.e., between stations) between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/01/15

to 2016/02/15. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.36: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/03/15 to 2016/04/21. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.37: Velocity change for the station groups KVG and KVG_vic (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/03/15 to 2016/04/21. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.38: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from cross-correlations (i.e., between stations) between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/03/15

to 2016/04/21. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.39: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/04/01 to 2016/07/01. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.40: Velocity change for the station groups KVG and KVG_vic (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/04/01 to 2016/07/01. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.41: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from cross-correlations (i.e., between stations) between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/04/01

to 2016/07/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Figure B.42: Velocity change for the station groups CKD and ERidge (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/04/22 to 2016/09/01. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.43: Velocity change for the station groups KVG and KVG_vic (see Fig-

ure 4.4 for locations) created from cross-correlations (i.e., between stations) between

all components for the frequencies between fmin and 2fmin for the time between

2016/04/22 to 2016/09/01. Refer to Figure 4.8 for a detailed explanation of the

figure.
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Figure B.44: Velocity change for the station group Shiveluch (see Figure 4.4 for

locations) created from cross-correlations (i.e., between stations) between all compo-

nents for the frequencies between fmin and 2fmin for the time between 2016/04/22

to 2016/09/01. Refer to Figure 4.8 for a detailed explanation of the figure.
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Table B.1: Minimummerging cost d0 of two clusters needed to divide the correlation

functions into five separate clusters depending on the used frequency band defined

by Ward’s linkage algorithm Ward (1963) using an Euclidean distance measure. f0

and f1 are the high-pass and low-pass frequencies, respectively, that we used for

the bandpass filter in the preprocessing. A lower merging cost corresponds to less

pronounced clusters.

f0(Hz) f1(Hz) d0

0.0625 0.125 6.0

0.125 0.25 1.55

0.25 0.5 1.9

0.5 1.0 4.0

1.0 2.0 4.6

2.0 4.0 8.9

4.0 8.0 3.2

Table B.2: Chosen time segments for the time-segmented passive image interfer-

ometry based on Figure 4.3.

start (yyyy/mm/dd) end (yyyy/mm/dd) Figures

2015/07/01 2015/12/01 B.9-B.11, B.27-B.29

2015/12/15 2016/02/15 B.12-B.14, B.30-B.32

2016/01/15 2016/02/15 B.15-B.17, B.33-B.35

2016/03/15 2016/04/21 B.18-B.20, B.36-B.38

2016/04/01 2016/07/01 B.21-B.23, B.39-B.41

2016/04/22 2016/09/01 B.24-B.26, B.42-B.44
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Supporting Information to Chapter 5

In this supporting information, we provide additional information and data comple-

menting our study.

With the published manuscript, we also provide two animated GIF images show-

ing the evolution of the seismic velocity in the MSH region for 0.5-1.0 and 1.0-2.0 Hz.

In the GIFs, dv/v is shown in a 20-day-interval. We also show vertical ground offset

at each of the GNSS stations that we plot as upward-pointing triangles. Inverted

triangles are seismic stations used in this study. Purple circles are seismic events

that occurred in the prior 20 days.
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C.1 Data Availability and Data Artefacts

Table C.1: List of seismic stations and data periods used in this study. The

question mark in the channel code indicates that the corresponding station is a

three-component seismometer. If the end date is replaced by a dash, the station is

still active.

Network Station Channel Start Date End Date

CC JRO BH? 2004-10-02 -

CC NED EHZ 2004-11-20 2013-05-01

CC REM BH? 2018-07-25 -

CC SEP EH? 2004-11-05 2018-09-01

CC SEP BH? 2019-09-01 -

CC STD BH? 2004-10-05 -

CC SUG EHZ 2009-08-07 -

CC SWF2 BH? 2013-08-29 -

CC SWFL BH? 2006-10-01 2013-08-28

CC VALT BH? 2006-08-01 -

PB B201 EH? 2007-09-12 -

PB B202 EH? 2007-07-25 -

PB B203 EH? 2007-07-18 -

PB B204 EH? 2007-08-01 -

UW EDM EHZ 1998-01-01 -

UW EDM HH? 2021-06-01 -

UW FL2 EHZ 1998-01-01 -

UW HSR EHZ 1998-01-01 -

UW HSR HH? 2021-06-01 -

UW JUN EHZ 1998-01-01 -

UW REM BH? 2019-09-01 -

UW SEP EH? 2005-09-01 2019-09-01

UW SHW EHZ 1998-01-01 -

UW SHW HH? 2021-06-01 -

UW SOS EHZ 1998-01-01 -

UW STD EHZ 1998-01-01 2017-09-14

UW SUG EHZ 1998-01-01 2009-08-07

UW YEL EHZ 1998-01-01 2007-09-18
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Figure C.1: Availability of seismic data during the study. We plot the number of

available channels after quality control as a function of time. In green, we show the

number of resulting CFs as a function of time.
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(a)

(b)

Figure C.2: Examples of artefacts occurring in the autocorrelations of single-

component stations with analogue telemetry. The correlations show repeated signals

at about 13 seconds for (a). The comb-like pattern suggests an instrumental artefact

(Schippkus et al., 2023). We exclude these stations’ autocorrelations from the anal-

ysis. (a) For data from UW.FL2.EHZ. (b) For data from UW.SHW.EHZ. These

examples are taken from frequencies between 0.5 and 1 Hz. However, artefacts are

present on all three frequency bands.
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Clock Shifts After a restart of the digitiser unit in October 2013 (PNSN, pers.

communication), there is evidence of a clock shift in the analogue telemetered data.

We compute the clock shift by estimating the highest coherent shift of continuously

computed cross-correlations between an affected and an unaffected station as imple-

mented in SeisMIC (Makus & Sens-Schönfelder, 2024). The result estimates a clock

shift of 0.25 s, which was reported back to the PNSN. In this work, we avoid using

the data at the time of the clock shift (see Chapter 5). We found no evidence of

clock shifts or drifts in our dataset before October 2013.

Figure C.3: Digitiser clock shift estimated using SeisMIC (Makus & Sens-

Schönfelder, 2024).
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C.2 Stability of the Ambient Seismic Field

In Figure 5.2, we show examples of CFs and velocity change estimates from three

different channel pairs. Here, we would like to point out that the CFs remain stable

over the shown ∼15 years. There are neither strong fluctuations in the shape of the

CFs nor the coherence (or correlation coefficient) of the dv/v estimates. The ambient

seismic field remains relatively stable over the study period (Figures C.4 and C.5).

We show additional examples of time series in Figures C.6-C.8.

Figure C.4: Spectrogram computed from the raw data recorded by the short-period

vertical component of station UW.SHW. The instrumental response was removed.

Strong segmentations in the amplification of the spectrum are due to instrumentation

failures (e.g., empty recordings). While we find some impacts of the MSH 2004-

2008 eruption, overall, the wavefield remains remarkably stable except for a marked

seasonal variation. Vertical high-amplitude stripes correspond to periods of seismic

unrest.
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Figure C.5: Spectrogram computed from the raw data recorded by the broadband

vertical component of station CC.STD. While we find some impacts of MSH 2004-

2008 eruption, overall the wavefield remains remarkably stable except for a marked

seasonal variation. Vertical high-amplitude stripes correspond to periods of seismic

unrest.
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C.3 Examples of Correlation Functions and dv/v Es-

timates

(a)

(b)

(c)

Figure C.6: Examples of autocorrelations and their corresponding dv/v estimates

from data between 0.5 and 1 Hz. From CC.JRO.HHE (a), CC.SEP.BHZ (b), and

CC.SWF2.BHN (c).
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(a)

(b)

(c)

Figure C.7: Examples of self-correlations and their corresponding dv/v estimates

from data between 0.5 and 1 Hz. CC.REM.BHE-CC.REM.BHN (a), CC.SEP.BHE-

CC.SEP.BHN (b), and PB.B202.EH2-PB.B202.EHZ (c).
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(a)

(b)

(c)

Figure C.8: Examples of cross-correlations and their corresponding dv/v estimates

from data between 0.5 and 1 Hz. CC.SUG.EHZ-CC.SWF2.BHN (a), UW.EDM.EHZ-

UW.FL2.EHZ (b), and UW.SHW.EHZ-UW.SOS.EHZ (c).
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C.4 Spatial Inversion

In this work, we use a linear-least-squares inversion to obtain a dv/v grid from a

large number of velocity change time series proposed by Obermann, Planès, Larose,

and Campillo (2013).

C.4.1 The Spatial Sensitivities of Ambient Noise Correlations

We assume that surface waves dominate the coda of the cross-correlations. Conse-

quently, the spatial sensitivity is equal to the sensitivity of surface waves propagating

between stations (or, for single-station correlations, around). This assumption is rea-

sonable since, for lag times up to about seven times the mean free time t∗, the wave-

field is dominated by surface waves (Obermann, Planès, Larose, Sens-Schönfelder,

& Campillo, 2013). At MSH, t∗ = Qs

ω
≈ 37.9s, based on Gabrielli et al. (2020)’s

estimate of the scattering attenuation Qs ≈ 714 at 3 Hz. The probability density

distribution of a wavefield between two stations (or at a single station with s1 = s2)

can then be approximated using a sensitivity kernel K as introduced by Pacheco and

Snieder (2005):

K(s1, s2,x0, τ) =

∫ τ

0
p(∥s1 − x0∥2, u)p(∥x0 − s2∥2, τ − u)du

p(∥s1 − s2∥2, τ)
(C.1)

where we estimate the probability density p in 2D space and (lag) time for the station

locations s1 and s2 and the location of the velocity change x0. ||x||2 represent

the Euclidean norm. In our case, τ is the centre of the lag time window used to

estimate dv/v. Employing the solution of the time-dependent Boltzmann equation

by Paasschens (1997), p is:

p(r, τ) =
e−cτ/l

2πr
δ(cτ − r) +

(c2τ 2 − r2)−
1
2

2πl
e(

√
c2τ2−r2−cτ)/lΘ(cτ − r) (C.2)

where p is a model of the spatial probability distribution of a surface wave travelling
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Figure C.9: An example of a probability density kernel describing the spatial sen-

sitivity of surface waves travelling between two stations (co-located with the prob-

ability peaks). We estimate the probability at each location using the solution of

the Boltzmann equations (Paasschens, 1997) described in the text body. The shown

example is for data from the 0.5-1.0 Hz frequency band. The sensitivity kernels for

the different frequency bands differ since we modify the lag time τ as a function of

the frequency.
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between the station locations s1 and s2 having visited the location of the velocity

change x0. We show an example of such a kernel extracted from the MSH dataset in

Figure C.9. The first term in p corresponds to the impulsive ballistic arrival, whose

contribution is almost negligible for larger lag times τ , whereas the second term is

the contribution of the emergent and diffusive scattered energy making up the bulk

of the coda. From the mean free time and the group velocity c = 2.5 km
s

(Y. Wang

et al., 2017), we can compute the mean free path l = t∗c = 94.75 km. Θ(x) is the

heaviside function.

With these spatial sensitivity kernels, we can now establish a forward relation

between the (dv/v)i = ψi estimated from each station/component combination i and

a 2D spatial dv/v grid (Obermann, Planès, Larose, & Campillo, 2013):

ψi = Gijmj (C.3)

where Gij =
∆s
τ
Kij is a matrix consisting of the sensitivity Kernels weighted by the

pixel area ∆s, which is constant on our grid, and the lag time in the coda τ . m is

the flattened grid containing the velocity change of each pixel j.

C.4.2 Damped Least-Squares Inversion

To determine m, we follow the approach of Obermann, Planès, Larose, and Campillo

(2013) based on the least-squares method as proposed by Tarantola and Valette

(1982):

m = CmGt(GCmGt +Cd)
−1ψ (C.4)

where Cd is a diagonal matrix containing the variance σ2
i of each dv/v estimate and

Gt indicates that matrix G is transposed. Cm is the model’s covariance matrix

that must be tuned to stabilise the inversion. We use Cm in the form proposed by

Obermann, Planès, Larose, and Campillo (2013), where Cm in the shape i × j is

effectively providing smoothing:
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Cm(i, j) = (σm
λ0
λ
)2e−

∆(i,j)
λ (C.5)

and is defined by the correlation length λ and the standard deviation of the model

σm. λ0 is the cell length (in our case, 1 km) and ∆(i, j) is the distance between the

cells i and j. The degree of smoothing and the model variance are usually chosen

to values delivering a compromise between the best fit and the least complex model

using an L-curve criterion (see section C.4.3). We estimate the standard deviation

of the data σd,i as proposed by Weaver et al. (2011):

σd,i =

√
1− CC2

i

2CCi

√
6
√

π
2
T

ω2
c (t

3
2 − t31)

(C.6)

Here, CCi is the correlation coefficient of the optimally stretched CF i, ωc is the

central angular frequency, T is the inverse of the frequency bandwidth, and t1 and

t2 are the beginning and end of the coda window, respectively.

C.4.3 L-curve

In Figure C.10, we show the absolute normalised residuals against the root mean

square value of the resulting model for all three frequencies and the station config-

uration available in April 2023. We quantify the absolute normalised residual using

the definition provided in Obermann, Planès, Larose, and Campillo (2013):

res =

√√√√ 1

N

N∑
i=1

(ψm
i − ψapp

i )2

(σi
d)

2
(C.7)

where ψm and ψapp are the apparent velocity changes measured on the component

combinations and the velocity changes obtained for each component combination

using the forward equation (eq. C.3), respectively. The data points are computed

using logarithmic steps for σm between 5 · 10−4 and 0.128.
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Note that we choose values for the prior model standard deviation σm and cor-

relation length λ that are compatible for all time steps, also the ones with more

sparse station coverage than for the shown time. As we are computing the spatial

distribution of velocity changes from different station configurations, we have to find

appropriate compromises. Here, we tune the damping parameters so that the areas

of largest interest (within the station array and close to MSH) have a resolution of ∼1

(see Figure C.11). For all inversions, we choose the smoothing parameters, λ = 2 km

and σm = 4·10−3 (marked with a red circle), which yield a good compromise between

fit and complexity for all time steps and frequencies.
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Figure C.10: L-curves plotting the misfit (residual res) as a function of the resulting

grid’s root mean square value. The values correspond to an inversion of data in April

2023 (comparable to Figure 5.4). (a) For data from 0.25-0.5 Hz. (b) For data from

0.5-1.0 Hz. (c) For data from 1-2 Hz. As a visual aid, we connect the points computed

using the same correlation length λ.
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C.5 Resolution Tests

To shed light on the impact of the station geometry and the chosen damping pa-

rameters on the resulting image, we provide the spatial distribution of the resolution

parameter as defined by Tarantola and Valette (1982) in Figure C.11. The resolution

matrix R is given as:

R = CmGt(GCmGt +Cd)
−1G (C.8)

Locations, where R is greater than 1, tend to show exaggerated values, whereas

values smaller than 1 indicate that the velocity change is not fully recovered. We

also inverted for synthetic velocity models of different shapes to show how potential

biases may be introduced. For a discussion of the resolution, please consult Chapter 5.
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(a) (b)

(c)

Figure C.11: Resolution parameter for the three frequency bands explored in this

study. Red inverse triangles indicate the locations of the seismic stations. Locations

where R < 0.5 are greyed out. (a) Obtained from 0.25-0.5 Hz. (b) Obtained from

0.5-1 Hz. (c) Obtained from 1-2 Hz.
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(a) (b)

(c) (d)

Figure C.12: Recovery of a noise-free synthetic velocity model using the same

inversion algorithm, station configuration, and correlation coefficients, and thus σd

values as in our actual dataset inversion for late 2021 (as Figure 5.4). (a) Input

velocity model. (b) Recovered velocity model using frequencies between 0.25 and

0.5 Hz. (c) Recovered velocity model using frequencies between 0.5 and 1 Hz. (d)

Recovered velocity model using frequencies between 1 and 2 Hz. Red inverse triangles

indicate the locations of the seismic stations.
241



APPENDIX C. SUPPORTING INFORMATION TO CHAPTER 5

(a) (b)

(c) (d)

Figure C.13: Recovery of a noise-free synthetic velocity model using the same

inversion algorithm, station configuration, and correlation coefficients, and thus σd

values as in our actual dataset inversion for late 2021 (as Figure 5.4). (a) Input

velocity model. (b) Recovered velocity model using frequencies between 0.25 and

0.5 Hz. (c) Recovered velocity model using frequencies between 0.5 and 1 Hz. (d)

Recovered velocity model using frequencies between 1 and 2 Hz. Red inverse triangles

indicate the locations of the seismic stations.
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(a) (b)

(c) (d)

Figure C.14: Recovery of a noise-free synthetic velocity model using the same

inversion algorithm, station configuration, and correlation coefficients, and thus σd

values as in our actual dataset inversion for late 2021 (as Figure 5.4). (a) Input

velocity model. (b) Recovered velocity model using frequencies between 0.25 and

0.5 Hz. (c) Recovered velocity model using frequencies between 0.5 and 1 Hz. (d)

Recovered velocity model using frequencies between 1 and 2 Hz. Red inverse triangles

indicate the locations of the seismic stations.
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(a) (b)

(c) (d)

Figure C.15: Recovery of a noise-free synthetic velocity model using the same

inversion algorithm, station configuration, and correlation coefficients, and thus σd

values as in our actual dataset inversion for late 2021 (as Figure 5.4). (a) Input

velocity model. (b) Recovered velocity model using frequencies between 0.25 and

0.5 Hz. (c) Recovered velocity model using frequencies between 0.5 and 1 Hz. (d)

Recovered velocity model using frequencies between 1 and 2 Hz. Red inverse triangles

indicate the locations of the seismic stations.
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C.6 Environmental Time Series

In Figure C.16, we plot the full-length time series of environmental parameters in

conjunction with the two dv/v time series from Figure 5.3. As expected, we see a

pronounced seasonal variability in all parameters. Perhaps not so surprisingly, the

lake level reaches its peak 20-30 days after the peak in snow load. dv/v is shifted by

approximately π
4
to the the lake level. In 2016, the drainage tunnel of Spirit Lake was

out of order, causing an extraordinarily high lake level (Grant et al., 2017), which

fortuitously provides us with a better insight into the amount of meltwater supply

in the early summer.
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Figure C.16: dv/v time series, Spirit Lake, snow depth, groundwater well level.

The velocity change time series shown in this Figure are identical to the ones from

Figure 5.3. Here, we set them in context to environmental measurements. The

vertical green dash line marks the 2001 Nisqually earthquake.
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C.7 Statistical Distribution of Seasonal Variations

Figure C.17: Seasonal median vertical ground movement for all GNSS stations

used in this study. GNSS stations at high altitudes have seasonal cycles that are

delayed by up to two months compared to those in the valley.

247



APPENDIX C. SUPPORTING INFORMATION TO CHAPTER 5

(a) (b)

(c)

Figure C.18: 2D histograms of median seasonal velocity changes extracted from all

∼1,400 channel combinations. (a) for 0.25-0.5 Hz (b) for 0.5-1 Hz (c) for 1-2 Hz.
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C.8 Spatial Distribution of Seasonal Velocity Peaks

(b) 1.0-2.0 Hz(a) 0.5-1.0 Hz

Figure C.19: Median dv/v changes on 30 March. (a) for 0.5-1 Hz (b) for 1-2 Hz.

Median velocity changes corresponding to the time of the first peak in spring. We

find positive dv/v anomalies at MSH’s peak and negative anomalies in the valley.
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(b) 1.0-2.0 Hz(a) 0.5-1.0 Hz

Figure C.20: Median dv/v changes on 30 September. (a) for 0.5-1 Hz (b) for

1-2 Hz. Median velocity changes corresponding to the time of the second peak in

early autumn. We find increased velocities in the whole study area, but stronger

increases in the valley, particularly north of the summit.
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