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Abstract

The field of highly frustrated magnetism harbors a wide variety of exotic phases that sustain

interest in the field with no end in sight. Competing interactions yield models that often re-

main highly fluctuating down to zero temperature, have long-range entangled ground states,

or exhibit fractionalized excitations. The study of these frustrated models presents a chal-

lenge for experimental and theoretical methods alike, driving their development in the process.

As a contribution to the field, this thesis both further develops the pseudo-fermion functional

renormalization group and applies the method in collaborative studies involving complemen-

tary methods to reveal low-temperature properties of a selection of frustrated spin models with

relevance to spin compound families of recent interest.

In the first chapters of the thesis, the pseudo-fermion functional renormalization group is ex-

tended to enable the treatment of spin models with broken time-reversal symmetry. Newly

accessible applications include models with finite magnetic fields in the form of site-dependent

Zeeman terms. While previous formulations of the method could investigate magnetically or-

dered models only in their paramagnetic regime, often achieved by a finite renormalization group

parameter in the model, the new scheme further allows the study of magnetic phases in absence

of this parameter. In an exploratory study across a selection of Heisenberg and XXZ models,

magnetic order parameters and magnetization plateaus will be compared with literature results

to reveal for which newly accessible applications the method is best suited.

In addition to method development, a major emphasis of the thesis is placed on the study of

nearest-neighbor spin models on the pyrochlore lattice. It is argued that the S = 1/2 and S = 1

Heisenberg models assume nematic ground states that break either only C3, or both C3 and lat-

tice inversion symmetry. Quantum and classical phase diagrams of the model with Heisenberg

and Dzyaloshinskii-Moriya interactions, and of non-Kramers pyrochlores are computed as well.

In this context, an in-depth study of the so-called Γ5 phase will resolve subtle order-by-disorder

selections from quantum or thermal fluctuations at both zero and critical temperatures. Further-

more, a model contained in both phase diagrams will be presented that exhibits a temperature-

dependent spin liquid to spin liquid transition driven by entropic selections between ground

state submanifolds in the case of classical spins. While the intermediate-temperature spin liquid

can be described by coexisting vector and matrix gauge fields, spin degrees of freedom associ-

ated with the matrix gauge field depopulate as the temperature is lowered, realizing a spin-ice

phase in the process. Emphasis is put on the study of the corresponding quantum model and

its vicinity in the phase diagrams. This model is found to be best described in analogy to the

intermediate-temperature classical spin liquid.

In the last part of the thesis, the pseudo-fermion functional renormalization group is applied

in collaboration with classical Monte Carlo and inelastic neutron scattering to resolve the low-

temperature behavior and magnetic order of the three-dimensional tetra-trillium compound and

spin liquid candidate K2Ni2(SO4)3. The phase diagram of a Heisenberg model on the tetra-

trillium lattice contextualizes the strongly fluctuating behavior of K2Ni2(SO4)3 by hosting a

large paramagnetic region close to the density functional theory model of K2Ni2(SO4)3. In a

broader scope, this region establishes compounds of the langbeinite family, which are described

by Heisenberg models on the tetra-trillium lattice, as a promising platform in the future search

for three-dimensional quantum spin-liquid phases.





Zusammenfassung

Auf dem Forschungsgebiet des stark frustrierten Magnetismus sorgen eine Vielfalt an exotischer Phasen für

andauerndes Interesse. Durch konkurrierende Wechselwirkungen kommen Modelle zustande, die oft bis

zum Temperaturnullpunkt stark fluktuierend bleiben, weitreichig verschränkte Grundzustände aufweisen

oder fraktionale Anregungen beherbergen. Die Erforschung dieser frustrierten Modelle stellt hohe An-

forderungen an experimentelle und theoretische Methoden gleichermaßen und treibt deren Entwicklung

voran. In dieser Arbeit wird die Pseudofermion-basierte funktionale Renormalisierungsgruppe weiteren-

twickelt und in Kollaboration mit komplementären Methoden angewendet, um die Tieftemperatureigen-

schaften verschiedener frustrierter Spinmodelle, die für Spinmaterialien relevant sind, aufzuklären.

In den ersten Kapiteln der Arbeit wird die Pseudofermion-basierte funktionale Renormalisierungsgruppe

erweitert, um die Behandlung von Spinmodellen mit gebrochener Zeitumkehrsymmetrie zu ermöglichen.

Zu den neu zugänglichen Anwendungen zählt die Behandlung von Modellen mit endlichen Magnetfeldern

in Form von gitterstellenabhängigen Zeeman-Termen. Während frühere Formulierungen der Methode

magnetisch geordnete Modelle nur in ihren paramagnetischen Regimen untersuchen konnten, die häufig

durch einen endlichen Renormierungsgruppenparameter im Modell realisiert wurden, ermöglicht das neue

Schema darüber hinaus die Untersuchung magnetischer Phasen bei Nulltemperatur in Abwesenheit dieses

Parameters. Im Rahmen einer explorativen Studie werden mit der Methode magnetische Ordnungspa-

rameter und Magnetisierungsplateaus für eine Auswahl von Heisenberg- und XXZ-Modellen mit Litera-

turergebnissen verglichen, um zu untersuchen, für welche der neuen Anwendungsgebiete die Methode am

besten geeignet ist.

Neben der Methodenentwicklung liegt ein weiterer Schwerpunkt der Arbeit auf der Untersuchung von

Spinmodellen auf dem Pyrochlor-Gitter mit Wechselwirkungen zwischen nächsten Nachbarn. Es wird ar-

gumentiert, dass die S = 1/2 und S = 1 Heisenberg-Modelle nematische Grundzustände annehmen, die

entweder nur C3 oder sowohl C3 als auch Gitterinversionssymmetrie brechen. Des Weiteren werden

Quanten- und klassische Phasendiagramme des Modells mit Heisenberg- und Dzyaloshinskii-Moriya-

Wechselwirkungen sowie von nicht-Kramers-entarteten Pyrochlore-Verbindungen berechnet. Eine in

diesem Zusammenhang durchgeführte Untersuchung der sogenannten Γ5-Phase wird subtile, durch Quanten-

oder thermische Fluktuationen hervorgerufene Selektionen von Ordnungen sowohl bei Null als auch bei

kritischer Temperatur auflösen. Darüber hinaus wird ein Modell vorgestellt, das in beiden Phasendi-

agrammen enthalten ist und im Falle klassischer Spins einen temperaturabhängigen Phasenübergang

zwischen zwei Spinflüssigkeiten aufweist, der durch die entropische Selektionen zwischen Grundzustands-

mannigfaltigkeiten stabilisiert wird. Während die Spinflüssigkeit bei mittleren Temperaturen durch koex-

istierende Vektor- und Matrix-Eichfelder beschrieben werden kann, depopulieren die dem Matrix-Eichfeld

zugeordneten Spin-Freiheitsgrade mit abnehmender Temperatur. Dies resultiert in der Realisierung einer

Spin-Eis-Phase. Ein Schwerpunkt liegt auf der Untersuchung des entsprechenden Quantenmodells und

seiner Umgebung in den Phasendiagrammen. Die Ergebnisse legen nahe, dass das Modell am besten in

Analogie zur klassischen Spinflüssigkeit bei mittleren Temperaturen beschrieben werden kann.

Im letzten Teil der Arbeit wird die Pseudofermion-basierte funktionale Renormalisierungsgruppe zusam-

men mit klassischen Monte-Carlo-Simulationen und inelastischer Neutronenstreuung angewendet, um das

Tieftemperaturverhalten und die magnetische Ordnung der dreidimensionalen Tetra-Trillium-Verbindung

und des Spinflüssigkeitskandidaten K2Ni2(SO4)3 zu untersuchen. Das Phasendiagramm eines Heisenberg-

Modells auf dem Tetra-Trillium-Gitter kontextualisiert das stark fluktuierende Tieftemperaturverhalten

von K2Ni2(SO4)3, indem es einen großen paramagnetischen Bereich in der Nähe des Dichtefunktionaltheorie-

basierten Modells von K2Ni2(SO4)3 enthüllt. Damit etablieren sich die Verbindungen der Langbeinit-

Familie, die Heisenberg-Modelle auf dem Tetra-Trillium-Gitter realisieren, als vielversprechende Plattform

für die zukünftige Suche nach dreidimensionalen Quantenspinflüssigkeiten.
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Chapter 1

Introduction

Frustration is a major motif that has steadily been guiding research on spin models

throughout the last decades [1]. The term describes the scenario in which multiple local

interactions of a model cannot be minimized simultaneously. Different mechanisms

exist to enforce this competition between interactions. As a starting point for discussing

the phenomenon, one may consider the lattice model

H =
1

2

∑
ij

ST
i JijSj, (1.1)

which contains 3×3 interaction matrices Jij only between pairs of classical spin vectors

Si and Sj located on lattice sites i and j. In the case of so-called geometrical frustra-

tion, competition between interactions Jij on nearest-neighbor lattice bonds ⟨i, j⟩ is

caused by the underlying lattice structure itself. E.g., the energies of nearest-neighbor

antiferromagnetic Heisenberg interactions JSi · Sj, with J > 0, on a square lattice of

spins can classically be minimized on each bond ⟨i, j⟩ by antiferromagnetically aligning

spins, i.e., spins fulfill Si = −Sj for nearest-neighbor bonds ⟨i, j⟩. Thus, the Heisenberg
interactions do not cause frustration by themselves in this example. In contrast, the

same type of nearest-neighbor interaction results in geometrically frustrated spins on a

triangular lattice. In this case, the lattice model assumes a minimum classical energy

by arranging neighboring spin at angles of 120◦. Alternative routes to enforce frustra-

tion consist of including interactions between further neighbors, as is achieved by the

J1-J2 square lattice Heisenberg model that has nearest-neighbor interactions of size J1

and second-nearest-neighbor interactions of size J2 [2], or include anisotropic interac-

tions Jij ̸∝ 1, as done by the Kitaev model, which has nearest-neighbor interactions

S
µij
i S

µij
j , with bond-dependent µij ∈ {x, y, z} [3].

The world of frustration-induced phenomena is rich in exotic phases that harbor in-

1
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triguing properties. As an important prerequisite for these phases, frustration often

results in an accidentally degenerate ground state manifold in classical spin models,

i.e., a degenerate manifold of states that are not related by symmetries of the model.

In cases of strong frustration, the degeneracy can even become extensive and allow

for local spin degrees of freedom within the ground state manifold [4]. However, for

a ground state manifold (and its environment) to serve as a framework for the real-

ization of frustration-induced phenomena, another ingredient is still often required in

addition to frustration: fluctuations. In classical spin models, thermal fluctuations are

induced by a finite temperature, with the size of the temperature tuning the strength

of the fluctuations. Since the degeneracy between states of the ground state mani-

fold is generally accidental, fluctuations distinguish between these states. It follows

that thermal fluctuations entropically favor particular states within the manifold, of-

ten enabling the selection of a magnetic order despite the presence of an accidental

degeneracy in absence of fluctuations, a phenomenon known as order-by-disorder [5].

Alternatively, fluctuations may fail to select a state within the ground state manifold

such that the spins remain strongly fluctuating for any finite temperature. In this case,

the model may remain paramagnetic down to T = 0. However, the low-temperature

liquid-like phase may exhibit a hidden structure that can lead to properties not found in

the freely fluctuating gas-like paramagnetic phase at high temperatures. A prominent

example of such a classical spin-liquid phase is given by the spin-ice phase found in

the nearest-neighbor Ising model on the pyrochlore lattice. In this phase, single spin-

flip excitations fractionalize into deconfined pairs of excitations with characteristics

analogous to magnetic monopoles (see Sec. 5.1.1).

The effect of quantum fluctuations on state selection can often be understood in anal-

ogy to thermal fluctuations. Similar to the thermal order-by-disorder effect, quantum

fluctuations can energetically favor states in the classical ground state manifold, lead-

ing to the selection of a magnetic order from quantum order-by-disorder. However, the

quantum nature of spins can further lead to frustration-induced phenomena with no

classical analogue, as superpositions of states with classical interpretations can result

in non-classical states with favorable energies. A minimalistic example is given by the

ground state of the antiferromagnetic Heisenberg model on a dimer, described by the

Hamiltonian Ĥ = JŜ0 · Ŝ1 with J > 0. In this model, the antiferromagnetic coupling

between two spins yields a singlet ground state. In lattice models, the entanglement

between classical states can assume more sophisticated structures. Resulting param-

agnetic ground states can be nematic by spontaneously breaking lattice symmetries or

spin rotation symmetries, as is achieved in a valence bond crystal by the dimerization

of spins. Alternatively, a long-range entangled quantum spin liquid can be realized,

as is the case in a resonating valence bond spin liquid [1]. Returning to the earlier
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example of spin ice, the highly entangled structure of the quantum spin-ice version,

obtained by allowing tunneling processes between different classical spin-ice ground

states, is reflected by the emergence of additional ground state excitations in compari-

son to classical spin ice. These are described as gapped electric monopole and gapless

photon excitations, and coexist with the magnetic monopole excitations of the classical

model, i.e., the quantum spin-ice phase realizes emergent electromagnetism [4].

In this thesis, we study a variety of frustrated spin models that realize the afore-

mentioned frustration-induced phenomena of order-by-disorder or T = 0 paramagnetic

phases. These models are effective descriptions of recently synthesized spin compounds,

as is the case in the study of Chapter 6 on the three-dimensional spin liquid candidate

K2Ni2(SO4)3, or of high relevance to spin compound families, as is the case for the phase

diagram of non-Kramers pyrochlore compounds studied in Chapter 5. An emphasis is

placed on the study of highly frustrated three-dimensional models on either the py-

rochlore or tetra-trillium lattice. Sites of both lattices are arranged in corner-sharing

tetrahedra, resulting in a strong geometrical frustration. Models on the pyrochlore

lattice will include only interactions between nearest neighbors that can either be of

Heisenberg type or anisotropic, e.g., Dzyaloshinskii-Moriya interactions. In contrast,

models considered on the tetra-trillium lattice will contain competing Heisenberg in-

teractions from first up to fifth-nearest neighbors.

Obtaining a comprehensive understanding of these models and their relevant spin com-

pounds is a challenging endeavor and usually requires close collaboration between ex-

perimental and theoretical approaches. On the theoretical side, methods with diverse

strengths have been developed to access properties of spin models. Approaches such as

mean-field theory, linear spin-wave analysis, and exact diagonalization have successfully

been applied for many decades [1]. More recent approaches can especially benefit from,

or are made possible by, the over the years rapidly increasing magnitude of numeri-

cal resources available. Prominent among these numerically demanding methods are

functional renormalization group (FRG), quantum Monte Carlo, and density matrix

renormalization group (DMRG) approaches. However, all newer and older methods

have in common that they are limited in their range of applicability. E.g., mean-field

approximations are accurate only if fluctuations around the mean-field solution are

weak. Similarly, linear spin-wave theory requires a magnetically ordered ground state

and assumes that quantum fluctuations on top the classical ground state are small [6, 7].

Exact diagonalization suffers from a Hilbert space dimension that grows exponentially

with the number of spins, allowing only for the treatment of small system sizes as a

consequence. DMRG allows for larger system sizes by effectively reducing the Hilbert

space dimension, but often struggles with the treatment of two- and three-dimensional

systems [8, 9]. Quantum Monte Carlo applications are highly limited in their range
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of applications on frustrated models by the infamous sign problem [10]. Finally, FRG

approaches are limited in the observables they can compute. More specifically, the

pseudo-fermion functional renormalization group (PFFRG), a FRG variant formulated

for the treatment of spin models, only allows to access observables that are linear or

quadratic in spin operators [11, 12].

The study of models in this thesis will be centered around the PFFRG approach. To ac-

count for the weaknesses of individual methods as summarized above, and to overcome

limitations of the PFFRG itself, the method will generally be applied in collaboration

with complementary theoretical and experimental techniques. These include DMRG,

classical Monte Carlo, high-temperature series expansion or inelastic neutron scatter-

ing. The collaborative studies of models on the pyrochlore and tetra-trillium lattices

will reveal the diverse underlying properties of the considered systems, not only an-

swering previous questions about their state selection, but also guiding future research

in the field of frustrated magnetism.

In addition to the study of spin models by PFFRG, a second major subject of the

thesis is the further development of the PFFRG method. While the application of the

PFFRG had previously been limited to spin models that do not break time-reversal

symmetry [12], we will extend the method in this thesis to allow for the treatment of

models with broken time-reversal symmetry as well. A generalized method formula-

tion will enable a variety of new applications, such as the treatment of models with

spins coupled to finite magnetic fields via site-dependent Zeeman terms. Furthermore,

the previous methodological formulation only allowed the study of magnetic phases

beyond their critical point in an adjacent paramagnetic regime. In contrast, the ex-

tended method allows to regularize susceptibility divergences at the critical point of a

magnetic phase transition, thereby allowing a model to transition into its magnetically

ordered phase via the flow of a renormalization group parameter, corresponding to a

frequency cutoff. This enables the PFFRG study of magnetic phases in the physically

relevant cutoff-free limit at T = 0. An exploratory study on newly available method

applications will be performed, which uncovers strengths and limitations of the ex-

tended method and provides the groundwork for future applications on models with

broken time-reversal symmetry. Under investigation are capabilities of the method to

qualitatively and quantitatively resolve magnetic order parameters, and to correctly

resolve magnetization curves. In the latter application, an emphasis is placed on the

resolution of magnetization plateaus. Due to the nature of the study, efforts are mostly

restricted to previously studied models with well-known behavior, enabling the com-

parison of PFFRG results with literature values. The considered models are given by

nearest-neighbor Heisenberg models on the square, honeycomb, and triangular lattices.

Magnetization curves are studied on the Heisenberg model on a dimer, on a pyrochlore
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lattice, and on the triangular lattice XXZ model.

The thesis is structured as follows. Chapter 2 introduces field-theoretical concepts

that pose a prerequisite for establishing the functional renormalization group. Chapter

3 treats the methodological contribution of the thesis, namely the extension of the

pseudo-fermion functional renormalization group (PFFRG) to treat spin models with

broken time-reversal symmetry. The derivation of the generalized so-called flow equa-

tions, on which the method is based, will be the highlight of the chapter. A subsequent

discussion and extensive review on the method will be provided. The following Chapter

4 explores the PFFRG extension by applying the method to a variety of spin models

with broken time-reversal symmetry. A comparison with literature results will provide

insight into which newly accessible applications the PFFRG is best suited for. While

the first chapters of the thesis have a methodological focus, the following chapters will

focus on the treatment of frustrated spin models of recent interest. Nearest-neighbor

models on the pyrochlore lattice are treated in Chapter 5. After investigating symme-

try properties of the paramagnetic ground states in the S = 1/2 and S = 1 Heisenberg

models, models with additional anisotropic interactions are considered. In this context,

the quantum and classical phase diagrams of the pyrochlore model with Heisenberg and

Dzyaloshinskii-Moriya interactions are studied with an emphasis on order-by-disorder

selections. The last part of the chapter is centered around a model described by so-

called non-Kramers pyrochlores that realizes a novel entropically-driven spin liquid to

spin liquid transition in case of classical spins. A study of the phase diagram treat-

ing the general nearest-neighbor non-Kramers pyrochlore model will reveal the effect

of quantum fluctuation on the classical model. The study of Chapter 6 is inspired

by the newly synthesized three-dimensional spin-liquid candidate on the tetra-trillium

lattice K2Ni2(SO4)3 [13]. A collaboration between PFFRG, classical Monte Carlo sim-

ulations, inelastic neutron scattering experiments, and density functional theory will

reveal the low-temperature behavior of the compound. A PFFRG study of the closely

related J3-J4-J5 Heisenberg model on the tetra-trillium lattice will discover a param-

agnetic regime that contextualizes the highly fluctuating low-temperature behavior of

K2Ni2(SO4)3 and suggests langbeinite compounds as a future platform in the search for

three-dimensional spin liquids. Finally, we end the thesis with a conclusion in Chapter

7.





Chapter 2

Quantum field theoretical

foundations towards the functional

renormalization group

In the theory of quantum mechanics, the properties of a system are encoded by its

Hamiltonian. Depending on the structure of the Hamiltonian, different strategies for

extracting these properties, which are often expressed via observables, can be successful.

In presence of weak interactions, the behavior of a model may already be captured well

by the noninteracting model or by a perturbative expansion around the noninteracting

model. Such is the conservative approach, generally introduced early in any quantum

mechanics textbook, to determine a model’s energy spectrum and eigenstates, which

in turn can be applied for the computation of observables [14]. For strongly interacting

models, perturbation theory fails and alternative strategies for accessing observables

have to be applied. E.g., the behavior of some models is approximated well by a mean-

field approximation, as is the case with the BCS mean-field theory for conventional

superconductivity [15]. Fundamentally different strategies for accessing observables

compared to those of the early mathematical framework of quantum mechanics are

found in quantum field theory. In the quantum field theoretical framework, observ-

ables are often expressed in terms of Green functions instead, shifting the problem from

finding a quantum state to the problem of determining Green functions. Alternatively,

one can go a step further by expressing the Green functions, and by extension observ-

ables, in terms of vertex functions. A model is then solved by the determination of

vertex functions. This is the approach pursued by FRG methods [16].

FRG methods give a hierarchy of coupled differential equations for vertex functions

[16]. These functions are known in a quantum field theoretical context as being built

7
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from Feynman diagrams that satisfy the properties of being amputated, connected

and one-particle irreducible [17]. It follows that knowledge on some concepts of quan-

tum field theory, such as Green functions, vertex functions or Feynman diagrams, is

recommended before getting involved with the FRG. It is the aim of this chapter to

introduce the quantum field theoretical foundation on which the FRG method is built.

Introduced concepts, including the above-mentioned vertex functions and their rela-

tions to Green functions, will then be applied in the next chapter to further develop

the PFFRG method.

In order to achieve a simple and intuitive introduction of quantum field theoretical

concepts, we will pursue a diagrammatic approach that goes beyond the sole manip-

ulation of analytic formulas. As supplementary material to this chapter, we refer to

quantum field theory textbooks such as Refs. [17, 18]. The chapter is structured as

follows. It will begin by introducing the building blocks of Feynman diagrams in Sec.

2.1, those being single-particle Green functions (commonly known as propagators) and

two-particle interactions. The former objects will also be referred to as particle lines

if they are mentioned in the context of Feynman diagrams. From the classification,

manipulation and structural subdivision of diagrams, vertex functions (including the

self-energy) will arise as a class of diagrams exhibiting characteristic properties. The

diagrammatic structure of vertex functions will then be considered further to derive

relations between Green and vertex functions. The parquet equations will be intro-

duced in Sec. 2.2. Together with the Schwinger-Dyson equation for the self-energy and

the parquet approximation, a fully self-consistent set of equations for the computation

of the self-energy and two-particle vertex will be obtained. From these equations, the

FRG differential equations for the self-energy and two-particle vertex can be derived

[19], as will be shown in the following chapter. The chapter will end with a summary

in Sec. 2.3

2.1 Green and vertex functions

2.1.1 Green functions

We now first aim at introducing Green functions. For this purpose, a general Hamil-

tonian is defined for which the Green functions will be considered. More specifically,

we consider a fermionic lattice Hamiltonian given by

Ĥ = Ĥ0 + V̂ , (2.1)
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which can be subdivided in an exactly solvable term Ĥ0 describing noninteracting

particles, and a term V̂ corresponding to a two-body interaction of the form

V̂ =
1

2

∑
1̄′,2̄′,1̄,2̄

f̂ †
1̄′ f̂

†
2̄′V (1̄′, 2̄′|1̄, 2̄)f̂2̄f̂1̄ (2.2)

=
1

2

∑
αβγδ

∑
rr′

drdr′f̂ †
α(r)f̂

†
β(r

′)Vαβγδ(r, r
′)f̂δ(r

′)f̂γ(r), (2.3)

with arguments such as 1̄ = {α1, r1} being composed of a spin α1 and real space

coordinates r1, and f̂
(†)
α (r) being a fermionic field operator annihilating (creating) a

fermion with spin α at coordinates r. In the Heisenberg or interaction picture, the

imaginary-time-dependent two-body interaction can be written as

V̂(τ) =1

2

∫ 1/T

0

dτ ′
∑
αβγδ

∑
rr′

drdr′f̂ †
α(r, τ)f̂

†
β(r

′, τ ′)Vαβγδ(r, r
′)δ(τ − τ ′)f̂δ(r

′, τ ′)f̂γ(r, τ).

(2.4)

We use the convention of ℏ = kB = 1, with kB being the Boltzmann constant. T cor-

responds to the temperature. Note that the arguments of V (1′, 2′|1, 2) gain an imagi-

nary time dependence τ in the Heisenberg or interaction picture, i.e., 1 = {α1, r1, τ1}.
Note that the two-body interaction matrix elements fulfill the relations V (1′, 2′|1, 2) =
V (2′, 1′|2, 1) and V (1′, 2′|1, 2) = −V (1′, 2′|2, 1).

The model of Eq. (2.1) can be characterized by n-particle Green functions defined as

G(1′, 2′, . . . , n′|1, 2, . . . , n) = ⟨Tτ
[
f̂α1′

(r1′ , τ1′)f̂α2′
(r2′ , τ2′)...f̂αn′ (rn′ , τn′)

f̂ †
αn
(rn, τn)...f̂

†
α2
(r2, τ2)f̂

†
α1
(r1, τ1)

]
⟩,

(2.5)

with the time evolution being given in the Heisenberg picture. Tτ is the time-ordering

operator, which orders the operators to its right-hand side with decreasing imaginary

time arguments from left to right and adds a prefactor (−1)l, with l being the number

of permutations required for this operation [17]. The n-particle Green function is

specified by 2n sets of arguments, one for each fermion operator on the right-hand side

of the equation. Each set of arguments m ∈ {1′, 2′, . . . , n′, n, . . . , 2, 1} is composed of a

spin αm, imaginary time τm and real space coordinates rm. For clarity, Green function

arguments for creation and annihilation operators are separated by a vertical line. This

convention will be applied for the later introduced vertex functions as well. The special

case of a single-particle Green function is given by

G(1′|1) = ⟨Tτ
[
f̂α1′

(r1′ , τ1′)f̂
†
α1
(r1, τ1)

]
⟩. (2.6)
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G0(1
′|1) = 1 1′

(a)

G(1′|1) = 1 1′

(b)

V (1′, 2′|1, 2) =

2

1

2′

1′

(c)

Figure 2.1: Display of building blocks of Feynman diagrams. The free and full single-
particle Green functions G0(1

′|1) and G(1′|1), as well as the two-body interaction
V (1′, 2′|1, 2) are shown. Positions for in and outgoing particle lines are indicated for
the two-body interaction line.

The magnitude of G(1′|1) gives the expectation value of the overlap between the state

to which a fermion (hole), inserted into the system at specified time and state given

by the set of arguments 1 (1′), propagates to at time τ1′ (τ1), and the state specified

by the remaining arguments {r1′ , α1′} ({r1, α1}). The imaginary-time evolution of the

system is performed in the grand canonical ensemble. In the Heisenberg picture, the

imaginary-time-dependence of fermion operators is given by

f̂α(r, τ) = eK̂τ f̂α(r)e
−K̂τ (2.7)

with τ ∈ R and K̂ = Ĥ − µN̂ , involving the chemical potential µ and particle number

operator N̂ . We will only consider the case K̂ = Ĥ, since only the case of a vanishing

chemical potential will be relevant in this thesis.

Green functions can be applied to access properties of a Hamiltonian. They allow the

computation of expectation values of observables, including the thermal average of a

model’s energy [17]. E.g., in case of a general one-body observable Ô, its expectation

value can be reformulated in terms of the equal-time single-particle Green function as

⟨Ô⟩ =
∑
αβ

∑
rr′

Oαβ(r, r
′)⟨f̂ †

α(r)f̂β(r
′)⟩

=
∑
αβ

∑
rr′

Oαβ(r, r
′)G({α, r, τ+}|{β, r′, τ}), (2.8)

with τ+ being infinitesimally larger than τ . I.e., the expectation value of any one-

body observable can be computed once the single-particle Green function G(1′|1) of

a model is determined. The computation of n-body observables with n > 1 usually

requires knowledge of n-particle Green functions with n > 1. For a single-particle

Green function, one distinguishes between a free Green function G0(1
′|1), which is

obtained by evaluating Eq. (2.6) with respect to the free Hamiltonian Ĥ0, and the full

Green function G(1′|1) obtained by using the full Hamiltonian of Eq. (2.1) instead.

While the computation of G0(1
′|1) can be carried out analytically, G(1′|1) generally has
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to be approximated. An approach to such an approximation consists of formulating

a perturbative series about the known solution of G0(1
′|1). This strategy will be

elaborated in the following, leading to the introduction of Feynman diagrams as a

visualization of analytical terms in the perturbative series.

Feynman diagrams

The general inability to analytically compute full Green functions from Eq. (2.5)

is caused by the two-body interaction V̂ , which is implicitly contained in the time-

evolution operator e−τĤ and the Boltzmann weight e−Ĥ/T . While the former operator

gives the time dependence of the fermion creation and annihilation operators [see Eq.

(2.7)], the latter operator is included in the thermal average

⟨. . . ⟩ = tr(e−Ĥ/T . . . )

tr(e−Ĥ/T )
. (2.9)

A perturbative expansion around the exactly solvable noninteracting model Ĥ0, whose

derivation we will briefly sketch here, is accessed by switching to the interaction picture

for time evolution. Such a reformulation can be achieved by rewriting previous time-

evolution operators of the Heisenberg picture as

e−τĤ = e−τĤ0Û(τ, 0). (2.10)

The analogous reformulation, obtained by exchanging τ and 1/T in the above equation,

is applied to the Boltzmann constant e−Ĥ/T . By extending Û(τ, τ ′) in an infinite series

as

Û(τ, τ ′) =
∞∑
i=0

1

i!

∫ τ

τ ′
dτ1· · ·

∫ τ

τ ′
dτiTτ [V̂(τ1) . . . V̂(τi)], (2.11)

the n-particle Green function can be expressed by an infinite series in turn after setting

in Eqs. (2.10) and (2.11) in Eq. (2.5). The resulting expression is given by

G(1′, 2′, . . . , n′|1, 2, . . . , n) =
∞∑
i=0

1

i!

∫ τ

τ ′
dτ1· · ·

∫ τ

τ ′
dτi

× ⟨Tτ
[
V̂(τ1)...V̂(τi)f̂α1′

(r1′ , τ1′)f̂α2′
(r2′ , τ2′)...f̂αn′ (rn′ , τn′)

× f̂ †
αn
(rn, τn)...f̂

†
α2
(r2, τ2)f̂

†
α1
(r1, τ1)

]
⟩0⟨Û(β, 0)⟩−1

0 . (2.12)

The term ⟨Û(β, 0)⟩−1
0 corresponds to the inverse partition sum. Operators in Eqs.

(2.11) and (2.12) are given in the interaction picture, including V̂(τ), which is given

by Eq. (2.4). ⟨. . . ⟩0 are expectation values under Ĥ0. For further information on the

derivation of the perturbative expansions we refer to Sec. 24 of Ref. [18]. For our
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purposes, it is important to emphasize that while each individual term occurring in

Eq. (2.12) can be computed in principle [18], terms of higher order i quickly become

sophisticated in their structure.

The perturbative series Eq. (2.12) becomes more accessible by visualizing its terms

as Feynman diagrams [17], as will be specified later. Each Feynman diagram uniquely

translates to a unique analytical expression. Based on this property, this diagrammatic

approach allows us to treat properties of quantum field theoretical concepts without

bothering with underlying sophisticated analytical expressions. To keep the following

discussions of Green and vertex functions simple and accessible, we will focus on their

diagrammatic properties. Furthermore, connections between Green, connected Green,

and vertex functions will mostly be established through their diagrammatic properties.

The general structure of Feynman diagrams will be explained in the following. Ele-

mental building blocks of Feynman diagrams are free single-particle Green functions

G0(1
′|1) and interaction lines corresponding to two-body interaction matrix elements

V (1′, 2′|1, 2). They are visualized in Feynman diagrams as shown in Fig. 2.1. G0(1
′|1)

is visualized by a thin particle line, orientated by an arrow. The line’s beginning is

associated with the set of arguments 1 for the ingoing particle, whereas the endpoint

corresponds to the set of arguments 1′ of the outgoing particle. In other words, the

direction of the particle line is given such that either the propagating fermion is created

or hole is annihilated at the beginning of the line. In contrast to G0(1
′|1), G(1′|1) is

often visualized by a double line. In some cases, we will omit arrows for propagator

lines if they are not required. Two-body interaction matrix elements V (1′, 2′|1, 2) are
visualized by wiggly lines, as shown in Fig. 2.1(c). At each endpoint of the interaction

line, each one ingoing and outgoing particle line can attach. Arguments 1′ and 1 (2′

and 2) are always located at the same endpoint of the interaction line corresponding to

V (1′, 2′|1, 2). Examples of simple Feynman diagrams that contribute to the full single-

or two-particle Green functions, are shown in Fig. 2.2. Diagrams of Fig. 2.2(a)-(d)

contribute to G(1′|1). Fig. 2.2(a) corresponds to a free single-particle Green function,

Fig. 2.2(b) shows the so-called Hartree diagram, and Fig. 2.2(c) shows the so-called

Fock diagram. Diagrams of Fig. 2.2(e)-(f) contribute to G(1′, 2′|1, 2).

The structure of Feynman diagrams has now been given. Next, we state the rules to

evaluate n-particle Green functions G(1′, 2′, . . . , n′|1, 2, . . . , n) from a series of Feynman

diagrams. The rules will be formulated as done in Ref. [17] and are shown in the

gray box below. Notations and phrasings are adjusted to be in agreement with our

conventions for notations.
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1. Draw all distinct diagrams composed of n external points 1, . . . , n, n exter-

nal points 1′, . . . , n′, and r interaction lines connected by directed particle

lines in which all components are connected to external points. Two di-

agrams are distinct if, holding the external points fixed, vertices of the

Feynman diagrams and internal propagators cannot be deformed so as to

coincide complete1y including the direction of arrows on propagators. The

contribution for each distinct diagram is evaluated as follows:

2. Each external point corresponds to a specified state and imaginary time

given by an argument of the n-particle Green function to which the Feyn-

man diagram contributes. For each particle line running from 1 to 1′, as

shown in Fig. 2.1(a), include the factor G0(1
′|1).

3. For each interaction line with ingoing particle lines of arguments 1 and 2,

and outgoing particle lines of arguments 1′ and 2′, as shown in Fig. 2.1(c),

include the factor V (1′, 2′|1, 2).

4. Sum over all internal single-particle variables (spins and real space coor-

dinates) and integrate the internal imaginary times τi over the interval

[0, 1/T ].

5. Multiply the result by the factor (−1)r+nP+nL where nL is the number of

closed particle line loops and nP is the number of permutations needed

for external Green function arguments 1, . . . , n, 1′, . . . , n′ such that each

particle line originating at the external point j terminates at the external

point j′, with j ∈ {1, . . . , n}.

Note that in our visualizations of Feynman diagrams, we will mark vertices that con-

tain summations over variables by black dots. As expressions for both G0(1
′|1) and

V (1′, 2′|1, 2) are generally known, all Feynman diagrams that they construct can in

principle be computed. However, the evaluation of diagrams with internal loops can

lead to divergences. The reason becomes clear if the diagrams are expressed in fre-

quency space, as will be explained in the following (see Ref. [18] for the rules to

compute Feynman diagrams in frequency and momentum space).

Since previous dependencies have been formulated in imaginary time, frequency de-

pendencies will be given by fermionic Matsubara frequencies ωm = (2m + 1)Tπ, with

m ∈ Z. The frequency-dependent single-particle Green function Ḡ(1′|1) (with argu-

ments 1(′) = {α1(′), r1(′), ω1(′)}) is related to the time-dependent version G(1′|1) (with
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arguments 1(′) = {α1(′), r1(′), τ1(′)}) by the Fourier transformation

G(1′|1) = T
∑
m

e−iω1(τ1−τ1′ )Ḡ(1′|1), (2.13)

with Ḡ(1′|1) ∼ δω1′ω1 . Note that at a later point we will use the simplified notation

G(1′|1) for frequency-dependent Green functions as well, once time-dependent Green

functions will not be applied anymore. Similarly, the imaginary time-dependent two-

body interaction, given in Eq. (2.4), is related to its (frequency-independent) Fourier

transform by

Vαβγδ(r, r
′)δ(τ ′ − τ) = T

∑
m

e−iω(τ
′−τ)Vαβγδ(r, r

′). (2.14)

By inserting Eqs. (2.13) and (2.14) into the analytical expression of any Feynman

diagram, previous imaginary-time integrals at internal vertices are repurposed as fre-

quency conservation laws. More precisely, each internal vertex comes with a factor∫ 1/T

0
dτje

−i(ωm−ωm′+ωm′′ ) = Tδ(ωm−ωm′+ωm′′ )0, with ωm corresponding to the frequency of

the ingoing particle line, ωm′ of the outgoing particle line, and ωm′′ of the interaction

line. Each resulting Kronecker delta δ(ωm−ωm′+ωm′′ )0 allows for the evaluation of one

frequency summation. However, for each closed loop in the diagram, one frequency

summation will remain after the evaluation of all Kronecker deltas. These remain-

ing summations can lead to divergences in the evaluation of Feynman diagrams. The

above argument can be performed analogously for Fourier transformations to momen-

tum space. Note that one strategy to regularize divergent Feynman diagrams consists

of introducing a renormalization group parameter [16].

Connected Green functions

In individual Feynman diagrams of the single-particle Green function, all components

are connected to each other. In contrast, different components of Feynman diagrams

that contribute to n-particle Green functions with n > 1 are often disconnected.

Note that each component still has to be connected to external particle lines. The

simplest example of a Feynman diagram with disconnected components contributing

to G(1′, 2′|1, 2) is given by simply two disconnected particle lines. It can be useful

to separate the fully connected diagrams of a Green function by defining the con-

nected Green functions Gc(1
′, 2′, . . . , n′|1, 2, . . . , n) obtained from the full Green func-

tion G(1′, 2′, . . . , n′|1, 2, . . . , n) by only summing over its connected Feynman diagrams.

In case of the two-particle Green function, the relation between connected and full
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Display of simple Feynman diagrams that contribute to the single- and
two-particle Green functions G(1′|1) and G(1′, 2′|1, 2). Directions of particle lines and
external arguments are omitted for simplicity. Internal vertices are highlighted by black
dots.

Green function is given by [17]

Gc(1
′, 2′|1, 2) = G(1′, 2′|1, 2)−G(1′|1)G(2′|2) +G(2′|1)G(1′|2). (2.15)

A diagrammatic visualization of the equation is given by

Gc(1
′, 2′|1, 2) = Gc

2

1

2′

1′

= G

2

1

2′

1′

−
2

1

2′

1′

+

2

1

1′

2′

,

(2.16)

in which the external arguments are labeled. The equation shows that the disconnected

diagrams of G(1′, 2′|1, 2) can be reorganized in terms of single-particle Green functions.

Note that the last two terms of the equation differ in that two external arguments

are exchanged. This leads to a change in prefactor for one term due to the Pauli

principle. While we have simply stated the relation between the two-particle connected

and full Green functions here, the relations between any n-particle connected and

full Green function can be derived analytically as well by manipulating the so-called

generating functional for connected Green functions, as shown in [17]. Since the given

diagrammatic relation between Gc(1
′, 2′|1, 2) and G(1′, 2′|1, 2) is quite intuitive, and

because we are not interested in connected n-particle Green functions with n > 2, we

do not bother with the analytic derivation of these relations.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Display of simple Feynman diagrams that are single-particle irreducible and
amputated. The shown diagrams contribute to the self-energy Σ(1′|1) and two-particle
vertex function Γ(1′, 2′|1, 2). Directions of particle lines and external arguments are
omitted for simplicity. Internal vertices are highlighted by black dots. In contrast,
vertices that coincide with an external point are absent of a black dot. All diagrams
from Fig. 2.2 that contribute to vertex functions once they are amputated are shown
in (a)-(d).

Σ(1′|1) = 1 1′

(a)

Γ(1′, 2′|1, 2) =

2

1

2′

1′

(b)

Figure 2.4: The Feynman diagrams of the self-energy Σ(1′|1) and two-particle vertex
function Γ(1′, 2′|1, 2) are shown. The position of an argument in Σ(1′|1) and Γ(1′, 2′|1, 2)
uniquely corresponds to a direction from which the corresponding particle line connects
to a Feynman diagram of the corresponding vertex function. Particle lines always
enter the vertex diagrams from the left and leave them to the right. Particle lines of
arguments 1 and 1′ connect to upper corners of Γ(1′, 2′|1, 2) diagrams, whereas particle
lines of arguments 2 and 2′ connects to lower corners.

2.1.2 Vertex functions

We now continue by introducing vertex functions, which will occasionally be referred

to solely as vertices. They are the objects that are computed in FRG methods, and

thus are of central importance to this thesis [16]. An emphasis will be put on the single

and two-particle vertex functions, such as their relation to Green functions. It was

previously argued that full Green functions can be formulated as a sum over Feynman
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diagrams that are build from free single-particle Green functions and two-particle in-

teraction lines. However, different choices for elemental building blocks of the diagrams

can be made as well by summarizing subsets of Feynman diagrams with distinct proper-

ties into novel well-defined objects. The determination of those objects then implicitly

gives the sum over an infinite subset of Feynman diagrams, and consequently, may con-

stitute a more efficient approach to the evaluation of the Green function diagrammatic

perturbation series. One choice of reorganizing Feynman diagrams was already given

previously by the introduction of connected Green functions. A more relevant concept

in the context of the FRG are the so-called vertex functions. In fact, one can argue

that vertex functions are a concept on equal footing as Green functions in the sense

that they can be applied to access the same properties of a model. Accordingly, the

same observables of a model can be accessed by either expressing them through vertex

or Green functions. From a diagrammatic perspective this is clear from the fact that

all Green functions can be reconstructed from only vertex functions and free particle

lines [17]. On the other hand, from an analytical perspective this is apparent by the

fact that generating functionals of connected Green and vertex functions are related

by a Legendre transformation with respect to the source field (see Sec. 2.1.3).

In a diagrammatic approach, the n-particle vertex function is defined by the sum over

all amputated, connected and one-particle irreducible diagrams with each n in and

outgoing particle lines [17]. Amputated diagrams are obtained from Green function

diagrams by removing all particle lines that are attached to external points. External

points of the resulting diagrams directly connect to interaction lines. One-particle

irreducible diagrams cannot become disconnected by removing a single internal particle

line. An example of a one-particle reducible diagram is given by Fig. 2.2(d). All

remaining diagrams of Fig. 2.2 are one-particle irreducible. Examples of diagrams

contributing to single and two-particle vertex functions are given in Fig. 2.3. Diagrams

in Fig. 2.3(a)-(b) contribute to the single-particle vertex function, whereas diagrams

in Fig. 2.3(c)-(f) contribute to the two-particle vertex function. The simplest diagram

in the latter set is given by the bare interaction.

In context of this thesis’ FRG implementation, we will mostly be interested in the

single-particle vertex, corresponding to the self-energy Σ(1′|1), and the two-particle

vertex Γ(1′, 2′|1, 2). These are the only vertex functions that will be determined by the

method. They are visualized as shown in Fig. 2.4. As a convention, further specified

in the same figure, diagrams of vertices will be drawn such that external points will

always be assigned to the same vertex function argument depending on their location.

E.g., particle lines will always enter from the left and leave to the right-hand side of the

diagram. In case of the two-particle vertex Γ(1′, 2′|1, 2), external points of arguments

1(
′) are located on the upper and external points of arguments 2(

′) are located on the
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lower edge of a diagram.

2.1.3 Relating Green and vertex functions

Full Green functions can be constructed from Feynman diagrams whose building ele-

ments are only vertex functions and free single-particle Green functions. The resulting

diagrams do not contain any closed propagator loops and are called tree diagrams be-

cause of this property [17]. Vice versa, all Green function diagrams with internal loops

will be isolated in vertex functions if such a construction is pursued.

Relations between Green and vertex functions can be derived analytically by manipu-

lating generating functionals for Green and vertex functions, as shown in Ref. [17]. We

will skip these derivations in the following and put an emphasis on the diagrammatic

expressions of the relations between single and two-particle Green and vertex functions.

Complementary analytical equations will often be written in matrix notation to keep

them clean and simple. In matrices of G(0)(1
′|1) or Σ(1′|1), arguments 1′ specify the

row and 1 the column. Generating functionals for Green and vertex functions will be

introduced near the end of this section for completeness.

We first consider the relation between Gc(1
′, 2′|1, 2) and Γ(1′, 2′|1, 2). As follows from

the above-mentioned diagrammatic definitions of connected Green and vertex func-

tions, in order to exactly obtain all Feynman diagrams of Γ(1′, 2′|1, 2) from the full

set of Gc(1
′, 2′|1, 2) diagrams, one first has to remove all one-particle reducible dia-

grams. Subsequently, the remaining diagrams have to be amputated. E.g., the latter

operations will transform the diagram of Fig. 2.2(e) into that of Fig. 2.3(c), and the

diagram of Fig. 2.2(f) into that of 2.3(d). Vice versa, all diagrams of Gc(1
′, 2′|1, 2) are

obtained from Γ(1′, 2′|1, 2) by attaching full single-particle Green functions to each of

its external points [17]. Diagrammatically, this relation corresponds to the equation

Gc

2

1

2′

1′

=

2

1

2′

1′

. (2.17)

The corresponding analytic equation is given by

Gc(1
′, 2′|1, 2) =

∑
3′,4′,3,4

G(1′|3′)G(2′|4′)G(3|1)G(4|2)Γ(3′, 4′|3, 4). (2.18)
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Dyson’s equation

To describe single- and two-particle properties of a model via vertex instead of Green

functions, we still need to express G(1′|1) in terms of the self-energy Σ(1′|1). The

sought-after relation is given by Dyson’s equation, which expresses the full single-

particle Green function G via the self-energy Σ and free propagator G0 [17]. The

equation can be derived from simple diagrammatic arguments, as presented in the

following.

The strategy for deriving Dyson’s equation consists of classifying each diagram con-

tributing to G(1′|1) as n-fold one-particle reducible, with n ∈ N giving the maximum

number of times by which a diagram is subsequently one-particle reducible. E.g., the

diagram of Fig. 2.2(d) is one-fold one-particle reducible. Since Σ(1′|1) is given by the

sum over all single-particle irreducible diagrams that are amputated, connected and

have two external points, one obtains all one-particle irreducible diagrams contained

in G(1′|1), except for the diagram of G0(1
′|1), by attaching particle lines on both ends

of the self-energy Feynman diagram. All one-fold one-particle reducible diagrams of

G(1′|1) are generated by connecting two self-energies by a particle line and dressing the

resulting diagram with two particle lines as well. Continuing this construction, each

non-amputated n-fold single-particle reducible connected diagram, except for the bare

free Green function, is obtained by constructing an open chain of n + 1 self-energies,

with each self-energy being dressed and connected by particle lines. By summing up

such chains over all lengths n ≥ 0 and adding the diagram of the bare free propaga-

tor G0(1
′|1), one sums up each connected single-particle Feynman diagram and thus

constructs the full single-particle Green function. The diagrammatic equation reads as

= + + + ...,

(2.19)

or, expressed analytically, as

G =G0 +G0ΣG0 +G0ΣG0ΣG0 + ...

=
∞∑
i=0

(G0Σ)iG0, (2.20)

in which internal summations over vertices are left implicit by writing the Green func-

tions and self-energy as matrices. The full Green function can be identified on the
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right-hand side of the equation by reformulating

G =
∞∑
i=0

(G0Σ)iG0

=G0 +
∞∑
i=0

(G0Σ)iG0ΣG0

(2.20)
= G0 +GΣG0. (2.21)

The equation is solved by matrix inversion, giving Dyson’s equation

G = (G0 −Σ)−1. (2.22)

Generating functionals for Green and vertex functions

In the previous sections, Green functions were established, based on their definition Eq.

(2.5), as a summation over Feynman diagrams. Vertex and connected Green functions

were then introduced and related to Green functions on the basis of their diagrammatic

properties. As an alternative approach, Green, connected Green and vertex functions,

and the relations between them, can be established from their respective generating

functionals. Here, we give a brief introduction on these functionals and state their

relations. The equations will be given in the path integral formulation of quantum

field theory, similar to their formulations in Ref. [17].

The generating functional for n-particle Green functions has a functional dependence

on source fields Jm and J∗
m, with m = {αm, rm, τm}, and is defined as

G[J∗
m, Jm] =

1

Z

∫
D[ϕ∗

m, ϕm]exp
{
iS[ϕ∗

m, ϕm]−
∑
m

[J∗
mϕm + ϕ∗

mJm]
}
, (2.23)

with the grand canonical partition sum Z, and the action being given by

S[ϕ∗
m, ϕm] = i

(∑
m

ϕ∗
m(∂τm − µ)ϕm +H[ϕ∗

m, ϕm]
)
. (2.24)

The definition of G[J∗
m, Jm] involves a functional integral over fields ϕm and ϕ∗

m that

can be understood as a source-field-dependent partition sum

Z[J∗
m, Jm] =

∫
D[ϕ∗

m, ϕm]exp
{
iS[ϕ∗

m, ϕm]−
∑
m

[J∗
mϕm + ϕ∗

mJm]
]}
, (2.25)

with the property Z[J∗
m = 0, Jm = 0] = Z. The notation

∑
m denotes an implicit

imaginary time integral over τm, and summations over spin αm and real space coordi-
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nate variables rm. The involved fields ϕm and Jm act as Grassmann variables fulfilling

ϕmϕn + ϕnϕm = 0. H[ϕ∗
m, ϕm] denotes the Hamiltonian of Eq. (2.1) with fermionic

annihilation operators f̂m replaced by fields ϕm and creation operators f̂ †
m replaced by

conjugated fields ϕ∗
m. Green functions are obtained from G[J∗

m, Jm] by taking deriva-

tives with respect to the source fields and setting all source fields to zero afterwards.

The equation is given by

G(1′, 2′, . . . , n′|1, 2, . . . , n) = (−1)n
δ2nG[J∗

m, Jm]

δJ∗
1′ . . . δJ

∗
n′δJn . . . δJ1

∣∣∣∣∣
Jm=J∗

m=0

. (2.26)

The generating functional for connected Green functions Gc[J∗
m, Jm] is obtained by

taking the logarithm of G[J∗
m, Jm], i.e.,

Gc[J∗
m, Jm] = ln(G[J∗

m, Jm]). (2.27)

Connected Green functions are obtained from Gc[J∗
m, Jm] analogously to Green func-

tions from G[J∗
m, Jm] via the equation

Gc(1
′, 2′, . . . , n′|1, 2, . . . , n) = (−1)n

δ2nGc[J∗
m, Jm]

δJ∗
1′ . . . δJ

∗
n′δJn . . . δJ1

∣∣∣∣∣
Jm=J∗

m=0

. (2.28)

At last, we introduce the generating functional for vertex functions V [ψ∗
m, ψm], which

is obtained from Gc[J∗
m, Jm] via a Legendre transformation with respect to the source

fields. The relation is given by

V [ψ∗
m, ψm] = −GC [J∗

m, Jm]−
∑
m

(ψ∗
mJm + J∗

mψm) +
∑
m′,m

ψ∗
m′(G0)

−1(m′|m)ψm, (2.29)

in which the last term was added in order for the single-particle vertex to be equal to

the self-energy [17]. The new source fields of V [ψ∗
m, ψm] are given by

ψn = − δ

δJ∗
n

GC [J∗
m, Jm] = ⟨f̂n⟩,

ψ∗
n =

δ

δJn
GC [J∗

m, Jm] = ⟨f̂ ∗
n⟩.

(2.30)

Any n-particle vertex function Γ(1′, 2′, . . . , n′|1, 2, . . . , n) is obtained from V [ψ∗
m, ψm]

by taking derivatives with respect to the source fields ψm and ψ∗
m, i.e.,

Γ(1′, 2′, . . . , n′|1, 2, . . . , n) = (−1)n
δ2nV [ψ∗

m, ψm]

δψ∗
1′ . . . δψ

∗
n′δψn . . . δψ1

∣∣∣∣∣
ψm=ψ∗

m=0

. (2.31)
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2.1.4 Schwinger-Dyson equations

The previous sections provided relationships between Green and vertex functions. The

relation between G(1′, 2′|1, 2) and Γ(1′, 2′|1, 2) was expressed diagrammatically in form

of a simple tree diagram, see Eq. (2.17). Furthermore, the relation between G(1′|1)
and Σ(1′|1) was given by Dyson’s equation (2.22), which could be derived from simple

diagrammatic arguments. However, no nonperturbative scheme to either determine

Green or vertex functions has been given at this point. In order to provide equations for

vertex functions, we will introduce the Schwinger-Dyson equations (SDE) and parquet

equations. While the former will be introduced to obtain an expression for Σ(1′|1),
the latter will give access to Γ(1′, 2′|1, 2). If considered together, these equations allow

for a fully self-consistent scheme to determine both Σ(1′|1) and Γ(1′, 2′|1, 2). As will

be argued in the following chapter, the SDE and parquet equations can be utilized to

derive the FRG equations for Σ(1′|1) and Γ(1′, 2′|1, 2).

The Schwinger-Dyson equations can be derived from the assumption that the source-

field-dependent partition sum Z[J∗
m, Jm], as defined in Eq. (2.25), stays invariant under

an infinitesimal transformation of the path integral fields ϕm → ϕm + δϕm, i.e., the

resulting transformation Z[J∗
m, Jm] → Z[J∗

m, Jm] + δZ[J∗
m, Jm] satisfies δZ[J∗

m, Jm] = 0

[20]. This ansatz is closely reminiscent of the classical stationary-action principle,

which states that the fields ϕm of a classical model are arranged such that the ac-

tion is stationary under a derivative with respect to them, i.e., ∂S[ϕm]
∂ϕn

= 0. While

the Euler-Lagrange equations follow from the classical stationary-action principle, the

above ansatz for a quantum path integral leads to an infinite set of coupled differen-

tial equations for n-particle Green functions instead, the so-called Schwinger-Dyson

equations.

In principle SDEs can be formulated for any n-particle Green function. However, we

will solely be interested in the SDE of the self-energy, which is obtained from the SDE

of G(1′|1) by applying Dyson’s equation (2.22) [21]. The SDE of the self-energy is

given by

Σ(1′|1) =−
∑
2′,2

G(2|2′)V (1′, 2′|1, 2)

− 1

2

∑
2′,3′,4′,
2,3,4

G(2|2′)G(3|3′)G(4|4′)V (3′, 4′|1, 2)Γ(1′, 2′|3, 4), (2.32)
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and is visualized diagrammatically as

= − 1

2
. (2.33)

For simplicity, in Eq. (2.33) and for the rest of the thesis we change the conventions

for Feynman diagrams such that G(1′|1) will be visualized by thin lines. The following

Feynman diagrams will not contain any free Green functions such that no ambiguity in

the interpretation of thin lines remains. On the right-hand side of Eq. (2.33), G(1′|1)
can be computed from Σ(1′|1) via Dyson’s equation. The second term reveals that the

self-consistent computation of Σ(1′|1) from a SDE requires a scheme that provides the

two-particle vertex Γ(1′, 2′|1, 2). Different strategies for a self-consistent computation

of Σ(1′|1) from Eq. (2.32) can be pursued. A simple approximation consists of ne-

glecting the second term, which involves Γ(1′, 2′|3, 4). The resulting formula is fully

self-consistent and corresponds to the so-called Hartree-Fock approximation, which

gives a mean-field single-particle potential [17].

A self-energy beyond mean-field approximation is obtained by incorporating Γ(1′, 2′|1, 2)
into the solution of Eq. (2.33). In this case, a scheme for computing Γ(1′, 2′|1, 2) has
to be applied as well. For this purpose, one may consider the SDE for the two-particle

Green function. However, this equation will couple to n-particle Green functions with

n > 2 in turn. In the next section, the parquet equations will be introduced as another

approach of computing Γ(1′, 2′|1, 2). They possess the advantageous property that they

are self-consistent if Σ(1′|1) is known, i.e., the approach does not involve any n-particle

vertices with n > 2.

2.2 Parquet equations

The parquet equations enable the self-consistent computation of Γ(1′, 2′|1, 2) with only

G(1′|1) [or Σ(1′|1) andG0(1
′|1)], and the so-called totally irreducible two-particle vertex

R(1′, 2′|1, 2) as input [22]. We will proceed by deriving the parquet equations from

simple diagrammatic arguments.

Γ(1′, 2′|1, 2) has four sets of arguments. In a diagrammatic visualization, two of these

sets (1 and 2) are associated with each one ingoing particle line, whereas the remaining

sets (1′ and 2′) are associated with each one outgoing particle line. In total, there are
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Figure 2.5: Showcase of the possible pairings for external particle lines in Feynman
diagrams with each two in and outgoing particle lines. Paired-up particle lines are
circled. Choices of pairing specify whether one considers the s, t, or u channel of the
diagram. The subfigures are labeled accordingly. Blank squares represent unspecified
two-particle diagrams.

three possible choices to pair the four sets of arguments up, as visualized in Fig. 2.5.

Depending on the choice of pairing, one can consider different channels through which

Feynman diagrams contributing to Γ(1′, 2′|1, 2) are traversed. The choice of pairing

1 and 2 (or 1′ and 2′) corresponds to entering a diagram through a particle-particle

channel, whereas the two remaining channels are of particle-hole type.

In order to label the different channels, we consider the frequency dependencies of

diagrams that contribute to Γ(1′, 2′|1, 2). As a consequence of energy conservation in

presence of a time-independent Hamiltonian,

ω1′ + ω2′ = ω1 + ω2 (2.34)

is fulfilled for the frequency arguments of each Γ(1′, 2′|1, 2) diagram. It follows that the

frequency dependence of Γ(1′, 2′|1, 2) can alternatively be expressed by three bosonic

so-called transfer frequencies given by

s =ω1′ + ω2′ ,

t =ω1′ − ω1,

u =ω1′ − ω2,

(2.35)

which fulfill Eq. (2.34) for any combination of values they assume. Vice versa, the

frequencies for the individual in and outgoing particle lines are obtained from the

relations

ω1′ =
1

2
(s+ t+ u), ω2′ =

1

2
(s− t− u),

ω1 =
1

2
(s− t+ u), ω2 =

1

2
(s+ t− u).

(2.36)

Depending on through which channel a diagram is traversed, the corresponding in or
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(a) s-channel
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(b) t-channel

1 1′
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(c) u-channel

Figure 2.6: Visualizations of reducible two-particle diagrams with respect to each chan-
nel. Subfigure labels specify the channel in which the shown diagrams are two-particle
reducible. In and outgoing particle lines are indicated by in and outgoing lines. Blank
squares represent unspecified two-particle diagrams.

outgoing paired-up particle lines, either of particle-particle or particle-hole type, allow

for a different single transfer frequency to be determined. The channels are labeled

accordingly in dependence on the choice of pairing as either s-, t- or u-channel. The

allocations are specified in Fig. 2.5. The channels s, t and u introduced here will

be conceptually important in the following to subdivide diagrams of Γ(1′, 2′|1, 2) into
smaller diagrams with distinct properties.

During the derivation of Dyson’s equation, single-particle diagrams that contribute

to G(1′|1) were subdivided into one-particle irreducible sections. The sum over all

one-particle irreducible, amputated and connected single-particle diagrams was then

identified as the self-energy. Analogously, one can subdivide each diagram that con-

tributes to Γ(1′, 2′|1, 2) into sections that are irreducible with respect to removing two

particle lines in a specified channel. Depending on through which channel a diagram

can be cut apart by the removal of a propagator pair, we label the diagram as ei-

ther (two-particle) reducible in the s-, t- or u-channel. E.g., the Feynman diagram of

Fig. 2.3(d) is two-particle reducible in the s-channel. The sum over all one-particle

irreducible, amputated and connected two-particle diagrams that are reducible in the

r-channel, with r ∈ {s, t, u}, gives the two-particle vertex γr(1′, 2′|1, 2) reducible in the

r-channel. Visualizations of reducible diagrams with respect to each channel are shown

in Fig. 2.6. Similarly, there exist diagrams of Γ(1′, 2′|1, 2) that are not reducible in any

channel. The sum of all such diagrams gives the totally irreducible vertex R(1′, 2′|1, 2).
Examples of diagrams contributing to R(1′, 2′|1, 2) are given by Fig. 2.3(c), 2.3(e)

and 2.3(f). Approximating R(1′, 2′|1, 2) as the bare interaction V (1′, 2′|1, 2) [shown in

Fig. 2.3(c)] corresponds to the so-called parquet approximation. Note that the FRG
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implementation of this thesis will not generate vertex function diagrams beyond this

approximation. A profound insight fundamental to the derivation of the parquet equa-

tions is the nonexistence of diagrams contributing to Γ(1′, 2′|1, 2) that are reducible in
more than one channel [22]. In other words, there is no overlap in diagrams between

R(1′, 2′|1, 2) and γr(1′, 2′|1, 2) for different r ∈ {s, t, u}. It follows that one can obtain

the full two-particle vertex by summing over all γr(1
′, 2′|1, 2), with r ∈ {s, t, u}, and

R. The analytic formula in matrix notation is given by

Γ = R+
∑
r=s,t,u

γr. (2.37)

As counterparts to the reducible vertices, one can introduce the in r-channel irreducible

vertex Ir(1
′, 2′|1, 2), whose individual diagrams cannot be disconnected by removing a

single propagator pair in the r-channel. The relations to full and reducible vertices are

given by

Ir = Γ− γr, (2.38)

= R+
∑
r̄ ̸=r

γr̄. (2.39)

2.2.1 Bethe-Salpeter equation

The previous insight, which states that connected and amputated two-particle dia-

grams can only be reducible in one channel, leads to another simple equation that

relates γr(1
′, 2′|1, 2) to the full vertex Γ(1′, 2′|1, 2). The equation is self-consistent un-

der knowledge of R(1′, 2′|1, 2), G0(1
′|1), and Σ(1′|1), and the parquet relations of Eqs.

(2.37)-(2.39). This so-called Bethe-Salpeter equation (BSE) can be considered as the

two-particle vertex-function analogue to Dyson’s equation and is given in different

formulations by

Γ = Ir + Ir ◦Πr ◦ Γ, (2.40)

Γ = (1− Ir ◦Πr)
−1 ◦ Ir, (2.41)

γr = Ir ◦Πr ◦ Γ. (2.42)

Πr is a free propagator pair that connects vertices through the r channel, and ◦ stands

for a matrix multiplication (the formulations of the BSE are chosen similar as in Ref.

[19]). Matrix definitions are dependent on the channel r for which the BSE is formu-
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lated. The explicit versions of Eq. (2.42) are given for each channel by [19]

γs(1
′, 2′|1, 2) = −1

2

∑
3′,4′,3,4

Is(3
′, 4′|1, 2)G(3|3′)G(4|4′)Γ(1′, 2′|3, 4), (2.43)

γt(1
′, 2′|1, 2) =

∑
3′,4′,3,4

It(1
′, 4′|1, 3)G(3|3′)G(4|4′)Γ(3′, 2′|4, 2), (2.44)

γu(1
′, 2′|1, 2) = −

∑
3′,4′,3,4

Iu(3
′, 2′|1, 4)G(3|3′)G(4|4′)Γ(1′, 4′|3, 2). (2.45)

The diagrammatic representation of Eq. (2.40) is given by

= Is − 1

2
Is (2.46)

if r = s is considered. Note that the factor 1
2
in Eq. (2.43) and the second term of Eq.

(2.46) appears due to the double counting of diagrams.

The BSE (2.42) has to be solved for each channel r ∈ {s, t, u} simultaneously in order to

obtain a solution for the full two-particle vertex function Γ(1′, 2′|1, 2). This is typically
done by solving the equation across each channel iteratively until a convergent solution

is achieved in all channels [23, 24]. The classification of the diagrammatic contributions

to Γ into two-particle reducible components γr and two-particle irreducible components

Ir and R [see Eqs. (2.37)-(2.39)], together with the BSE [see Eqs. (2.40)-(2.42)], are

known as the parquet equations [22].

In analogue to Dyson’s equation, one can derive the BSE by classifying diagrams con-

tributing to Γ(1′, 2′|1, 2) into sets of diagrams that are n-fold reducible in the r-channel

[22]. Ir then takes the analogue role of Σ in Dyson’s equation. I.e., all in the r-channel

n-fold reducible two-particle vertex diagrams are obtained by constructing a chain of

r-channel irreducible vertices Ir connected by free propagator pairs Π though the r

channel. In the form of a matrix equation, this statement is formulated as

Γ = Ir + Ir ◦Πr ◦ Ir + Ir ◦Πr ◦ Ir ◦Πr ◦ Ir..., (2.47)

which is of analogue form to Eq. (2.20). Expressed diagrammatically, the same equa-

tion reads as

= Is −1

2
Is Is +

1

4
Is Is Is − ...

(2.48)

if r = s is considered. Identifying the full vertex on the right-hand side of Eq. (2.47)

[or Eq. (2.48)] leads to Eq. (2.40) [or Eq. (2.46)]. Solving this equation via matrix
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inversion gives Eq. (2.41). Alternatively, applying Eq. (2.38) instead leads to Eq.

(2.42).

Crossing symmetries

The crossing symmetries state the behavior of the two-particle vertex under the ex-

change of two in or outgoing particle lines [22]. The symmetries follow from the Pauli

principle and are given by

Γ(1′, 2′; 1, 2) =− Γ(2′, 1′; 1, 2), (2.49)

γs(1
′, 2′; 1, 2) =− γs(2

′, 1′; 1, 2), (2.50)

γt(1
′, 2′; 1, 2) =− γu(2

′, 1′; 1, 2) (2.51)

in case of fermionic particle lines. Note that the symmetry operation of exchanging

external particle lines exchanges the t and u-channel in Eq. (2.51). One can exchange

each both in and outgoing particles as well, which leaves the vertices invariant, i.e.,

Γ(1′, 2′; 1, 2) =Γ(2′, 1′; 2, 1), (2.52)

γs(1
′, 2′; 1, 2) =γs(2

′, 1′; 2, 1), (2.53)

γt(1
′, 2′; 1, 2) =γt(2

′, 1′; 2, 1), (2.54)

γu(1
′, 2′; 1, 2) =γu(2

′, 1′; 2, 1). (2.55)

2.3 Summary

The theoretical foundation for the following treatment of the PFFRG has been provided

in this chapter. Field theoretical concepts, such as Green and vertex functions, were

introduced with an emphasis being put on their diagrammatic properties. Furthermore,

relations between Green and vertex functions were provided. The relation between the

single-particle Green function and self-energy is given by Dyson’s equation. In case of

the two-particle Green function, the relation to the two-particle vertex function can be

presented in form of a tree diagram.

At last, self-consistent schemes for the computation of vertex functions were presented.

The first such scheme involves the Schwinger-Dyson equations, which are fixed-point

equations for any n-particle Green function. An explicit expression of the Schwinger-

Dyson equation for the self-energy was given. As a set of equations for the determina-

tion of the two-particle vertex, the parquet equations were diagrammatically derived
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by utilizing the reducibility properties of two-particle vertex Feynman diagrams with

respect to pairs of particle lines. Together with the Schwinger-Dyson equation for the

self-energy and the parquet approximation, a fully self-consistent scheme for the com-

putation of the self-energy and two-particle vertex is obtained. Numerical solutions of

these equations are difficult to converge. This issue is lifted by the introduction of a

renormalization group parameter, leading to the derivation of the FRG flow equations,

as will be shown in the next chapter.





Chapter 3

The pseudo-fermion functional

renormalization group

The previous chapter established Green and vertex functions as two quantum field the-

oretical concepts through which quantum models can be accessed. Furthermore, two

nonperturbative approaches to compute these functions were presented by introducing

the Schwinger-Dyson and parquet equations. In practice, solving these equations poses

a challenge. Expressions may prevent an evaluation by harboring singular behavior, as

may be the case for the BSE frequency integral, which will be evaluated in mean-field

approximation in Sec. 3.7. In this example, a phenomenological pseudo-fermion life-

time is introduced to the single-particle Green function to regularize the integral. But

even in presence of convergent integrals, obtaining convergent solutions for Green or

vertex functions is not guaranteed. E.g., previous efforts to iteratively solve the parquet

equations (often applied together with the SDE of the self-energy in a self-consistent

solving scheme for the self-energy and two-particle vertex) for variants of the Hubbard

model have failed in obtaining convergent solutions in presence of strong interactions,

whereas solutions were successfully obtained in presence of weak interactions [23, 24].

A regularization of singular expressions and a reliable solution scheme for vertex func-

tions can be obtained from the SDE or parquet equations by introducing a renormal-

ization group parameter Λ to the single-particle Green function that cuts off low-energy

degrees of freedom [21, 19]. The introduction of a cutoff parameter is the approach

pursued by function renormalization group (FRG) methods [16]. As a nonperturbative

approach, the FRG is suited for the study of a wide variety of strongly interacting

models. Previous applications of the FRG include the study of Hubbard models [16],

quantum chromodynamics [25], nonequilibrium systems [26] and spin models [12]. As

a method that fixes the above-mentioned shortcomings of the SDE and parquet equa-

tions, a variant of the FRG will be the main approach applied to study highly frustrated

31
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spin models in this thesis.

The study of spin models by means of the FRG is made possible by a selection of method

variants. The first FRG formulation for spin models, the pseudo-fermion FRG (PF-

FRG), maps spin operators onto pseudo fermions (also known as Abrikosov fermions)

[12]. The mapping yields models of strongly interacting fermions that are treatable by

the standard FRG formalism. As a more recent FRG variant, the pseudo-Majorana

functional renormalization group (PMFRG) applies an alternative pseudo-Majorana

fermion mapping onto the spin operators, which, in contrast to the previous pseudo-

fermion mapping, does not introduce any unphysical states [27, 28]. Another recent

approach, the spin FRG (SFRG), does not rely on a spin mapping at all and applies

the FRG formalism directly to the spin models of interest [29, 30].

Out of these FRG formulations for spin models, the PFFRG is the variant that

will be applied in this thesis and, in its current state, is most well established and

developed in the range of spin models that it can treat [12]. While the PFFRG

had first been formulated in 2010 for the treatment of S = 1/2 Heisenberg models

ĤHeisenberg = 1/2
∑

ij JijŜi · Ŝj at T = 0 [11], with Heisenberg interactions Jij ∈ R and

Ŝi = (Ŝxi , Ŝ
y
i , Ŝ

z
i ) being spin-1/2 vectors acting on a lattice site i, the scope of treatable

spin models has been extended since then, as will be summarized in the following. In the

method’s recent formulation of Ref. [31], spin models Ĥ = 1/2
∑

ij

∑
µ,ν=x,y,z J

µν
ij Ŝ

µ
i Ŝ

ν
j

with any anisotropic bilinear spin interaction Jµνij are treatable. Furthermore, quan-

tum spins of arbitrary spin length S = M/2 with M ∈ N can be considered, with

the method replicating the Luttinger-Tisza approximation in the large-S limit [32].

Similarly, SU(N) spins are treatable for any N ∈ N up to the large-N limit [33, 34].

Since the methodologically inherent mapping from spins to pseudo fermions intro-

duces additional unphysical states with no analogue physical state in the original spin

Hamiltonian for each lattice site, the method is generally applied at T = 0 to keep the

influence of unphysical states to a minimum. However, the recent implementation of

the Popov-Fedotov trick [35] allows to remove the weight of unphysical states from any

thermodynamic average and, as a consequence, opens the door to finite temperature

applications. Efforts to qualitatively improve results of the PFFRG by implement-

ing more advanced approximation schemes have been made as well and resulted in

the implementation of so-called multiloop truncation schemes [36, 37]. The numerical

stability required for such schemes drove further improvements in numerical PFFRG

implementations [36, 38]. Furthermore, to emphasize the range of applicability that the

PFFRG has in the treatment of spin models, it should be noted that methodologically

intrinsic to the PFFRG is the ability to treat models with many frustrated or longer-

range interactions at no additional numerical cost. This property makes the method

suited for the treatment of highly frustrated spin models with many competing inter-
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actions (as will be demonstrated in Chapter 6 by the treatment of a three-dimensional

Heisenberg model with many geometrically frustrated interactions).

While a lot of progress has been made in the development of the PFFRG since its initial

formulation, some desired use cases were still out of reach since recently [39]. One such

use case was the PFFRG application to models with broken time-reversal symmetry

(TRS), which had not been explored previously due to an assumed large numerical

cost and sophistication in numerical implementation [31]. As such, couplings between

spins and external magnetic fields were not treated in previous PFFRG applications.

To fix this blind spot in use cases, a central subject of this thesis is the PFFRG method

extension towards spin models with broken TRS. In this context, a generalized PFFRG

formulation has recently been published in Ref. [39] that allows for the treatment of

spin models with arbitrary interactions linear and bilinear in spin operators, given by

Ĥ =
1

2

∑
ij

∑
µν

Jµνij Ŝ
µ
i Ŝ

ν
j −

∑
i

∑
µ

hµi Ŝ
µ
i . (3.1)

Such models include sites i and j dependent interactions Jµνij with µ, ν ∈ {x, y, z},
which may correspond to Heisenberg or anisotropic interaction interactions, such as

Dzyaloshinskii-Moriya interactions. Additionally, arbitrary site-dependent magnetic

fields hµi can be included that couple linearly to spin operators.

It is the subject of this methodologically focused chapter to introduce and explore the

generalized PFFRG formulation of Ref. [39]. For this purpose, we will begin in Sec. 3.1

by offering a high-level introduction to the FRG method. The so-called truncated flow

equations of the cutoff parameter Λ dependent self-energy ΣΛ(1′|1) and two-particle

vertex ΓΛ(1′, 2′|1, 2) will be presented, and their relations to the self-energy SDE and

parquet equations will be clarified, as was done in Ref. [19], giving straightforward

connections to already known schemes for the computation of Σ(1′|1) and Γ(1′, 2′|1, 2).
The mapping from spins to pseudo fermions will be introduced subsequently in Sec. 3.2

as a prerequisite to the introduction of the PFFRG. The following sections will treat

the resulting general pseudo-fermion model obtained by applying the pseudo-fermion

mapping to the spin model given by Eq. (3.1), and the general T = 0 PFFRG formu-

lation will be derived along a similar path as done in our recent publication Ref. [39].

To this end, symmetries of the pseudo-fermion Hamiltonian will be gathered and their

restrictions on the Green and vertex functions will be derived in Sec. 3.3. Based on

these symmetry restrictions, appropriate Green and vertex function parameterizations

will be introduced in Sec. 3.4 that will allow for a numerically efficient evaluation of the

flow equations. The parameterizations are then inserted into the general truncated flow

equations of ΣΛ(1′|1) and ΓΛ(1′, 2′|1, 2) in Sec. 3.5 to obtain parameterized flow equa-

tions. Due to their complexity, the parameterized flow equations will be presented in
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detail and their characteristic properties and simplifications for models with additional

symmetries, such as TRS or continuous spin rotation symmetries, will be treated. At

this point, we will have covered the PFFRG formulation of Ref. [39]. An alternative

route towards the implementation of magnetic fields in the PFFRG without breaking

TRS will be explored in Sec. 3.6. Subsequently, some general considerations towards

the solution of the parquet equations for a pseudo-fermion Hamiltonian are presented

in Sec. 3.7. Finally, we end the chapter with a summary in Sec. 3.8.

3.1 Approaches to the FRG

The FRG gives an infinite set of coupled differential equations for the exact n-particle

vertex functions [16]. These so-called flow equations can be derived from the generating

functional for Green and vertex functions by taking a derivative with respect to a

frequency or momentum cutoff Λ of choice after introducing it to the free single-particle

Green function, giving it a Λ dependence as G0(1
′|1) → GΛ

0 (1
′|1), such that it vanishes

in the infinite (infrared) cutoff limit, i.e., GΛ→∞
0 (1′|1) = 0 [16]. In this thesis, a sharp

frequency cutoff will be applied that modifies

G0(1
′|1) → θ(|ω1| − Λ)G0(1

′|1) ≡ GΛ
0 (1

′|1), (3.2)

with θ(ω) =

1, ω ≥ 0

0, ω < 0
(3.3)

being the Heaviside step function. Accordingly, n-particle vertex functions

ΓΛ(1′, . . . , n′|1, . . . , n), each obtained from a separate flow equation, obtain an implicit

Λ dependence as well, as can be understood from the fact that their Feynman diagrams

are built from free single-particle Green functions. The flow equations are coupled to

each other since the flow equation for each n-particle vertex function always contains a

term involving the (n+1)-particle vertex. While the solution of the infinite set of flow

equations gives the exact n-particle vertex functions for each n ∈ N, obtaining such a

solution is generally not feasible. Instead, a truncation scheme has to be applied to

obtain a self-consistent finite set of flow equations that is numerically solvable. The

truncation is often applied above the two-particle level, i.e, only flow equations for

ΣΛ(1′|1) and ΓΛ(1′, 2′|1, 2) have to be solved after the truncation is applied. In this

case, the truncation has to handle the term in the flow equation of ΓΛ(1′, 2′|1, 2) that
couples to the unknown three-particle vertex ΓΛ(1′, 2′, 3′|1, 2, 3). A trivial truncation

would consist of neglecting this term completely. More advanced truncation schemes

partially capture Feynman diagrams of this term self-consistently by constructing them

from two-particle vertices. Once the truncated flow equations are obtained, they can
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be solved from the known infrared limit Λ → ∞ towards the physically relevant cutoff-

free limit Λ = 0, giving a cutoff-dependent flow of vertices in the process. Note that

vertices in the limit Λ → ∞ can be determined from the simple argument that single-

particle Green functions vanish in this limit. Since GΛ→∞
0 (1′|1) = 0, the only Feynman

diagram contributing to ΓΛ→∞(1′, 2′|1, 2) is the Feynman diagram of the two-particle

vertex that does not contain any particle lines, corresponding to the bare two-body

interaction, i.e., ΓΛ→∞(1′, 2′|1, 2) = V (1′, 2′|1, 2).

In this thesis, we apply the so-called Katanin truncation scheme. Within this trunca-

tion, the flow equations for self-energy and two-particle vertex are given by

d

dΛ
ΣΛ(1′|1) = −

∑
2′,2

ΓΛ(1′, 2′|1, 2)SΛ(2|2′), (3.4)

d

dΛ
ΓΛ(1′, 2′|1, 2) =

∑
3′,4′,
3,4

[
ΓΛ(1′, 2′|3, 4)ΓΛ(3′, 4′|1, 2)

+ ΓΛ(2′, 4′|1, 3)ΓΛ(3′, 1′|4, 2) + ΓΛ(2′, 3′|1, 4)ΓΛ(4′, 1′|3, 2)
− ΓΛ(1′, 4′|1, 3)ΓΛ(3′, 2′|4, 2)− ΓΛ(1′, 3′|1, 4)ΓΛ(4′, 2′|3, 2)

]
×GΛ(3|3′)S̃Λ(4|4′).

(3.5)

SΛ(1|1′) = − d
dΛ
GΛ(1|1′)|ΣΛ=const is the so-called single-scale propagator. Upgrading the

trivial truncation, corresponding to the full neglection of the three-particle vertex, to a

Katanin truncation amounts to upgrading the single-scale propagator SΛ(1|1′) in the

two-particle vertex flow equation to S̃Λ(1|1′) = − d
dΛ
GΛ(1|1′), i.e., the derivative now

accounts for the implicit Λ dependence of ΣΛ(1′|1). In a diagrammatic visualization,

the flow equations are given by

d

dΛ
1 1′ = −

1 1′

, (3.6)
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d

dΛ

2

1

2′

1′

=

2

1

2′

1′

+

1 1′

2′ 2

+

1 1′

2′ 2

−

1 1′

2 2′

−

1 1′

2 2′

.

(3.7)

Single-scale propagators SΛ(1′|1) in the self-energy flow equation and S̃Λ(1′|1) in the

two-particle vertex flow equation are shown as dashed particle lines.

The general flow equations within Katanin truncation have now been presented. Before

we continue to apply these equations in the PFFRG, we will first take a closer look on

how these equations can be derived. There exist different strategies of deriving the trun-

cated FRG flow equations. As mentioned above, the original derivation, which derives

the infinite hierarchy of flow equations, manipulates generating functionals of Green

and vertex functions [16]. Later, it was shown that the FRG flow equations can be re-

produced from the SDEs by introducing a cutoff dependence in the free single-particle

Green function. The flow equations of ΣΛ(1′|1) and ΓΛ(1′, 2′|1, 2) within Katanin trun-

cation are then replicated from the SDEs of the same functions by neglecting terms

higher than quadratic order in ΓΛ(1′, 2′|1, 2) [21]. A newer approach reveals that the

truncated flow equation of ΓΛ(1′, 2′|1, 2) can be reproduced from the parquet equations

by introducing a cutoff to the free single-particle Green function as well [19]. While

the standard (one-loop) Katanin truncated flow equation of ΓΛ(1′, 2′|1, 2) amounts to

an incomplete replication of two-particle vertex Feynman diagrams generated from

the parquet equations with parquet approximation, a so-called multiloop truncation

scheme allows for an extrapolation towards the full equivalence of the FRG flow equa-

tion for ΓΛ(1′, 2′|1, 2) and parquet equations in the infinite loop limit [19]. Note that

the parquet formalism only involves single-particle and two-particle vertices. Hence,

a replication of n-particle vertex flow equations with n > 2 is not possible by this
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approach. However, this does not pose a problem for our purposes, since the numerical

solution of n-particle vertex flow equations with n > 2 is generally not feasible at the

time of writing due to the large amount of numerical resources required and, as such,

has not been pursued in context of the PFFRG. The same paper of Ref. [19] shows

that the self-energy flow equation can be replicated from the self-energy SDE or from

the functional derivative of the self-energy with respect to the full single-particle Green

function. Both approaches differ from the standard FRG flow equation derivation [16].

We will highlight the connection between the ΣΛ(1′|1) flow equation and self-energy

SDE, such as the ΓΛ(1′, 2′|1, 2) flow equation and parquet equations in the following,

based on the derivations of Ref. [19].

3.1.1 From the parquet equations to the two-particle vertex

flow equation

We begin by following along the argumentation of Ref. [19] to show how the flow

equation of ΓΛ(1′, 2′|1, 2) within Katanin truncation can be obtained from the parquet

equations. The introduction of a cutoff parameter Λ in GΛ
0 (1

′|1) results in an implicit

Λ dependence of vertex and Green functions since GΛ
0 (1

′|1) acts as a building block of

their respective Feynman diagrams. In the parquet formalism, Feynman diagrams of

ΓΛ(1′, 2′|1, 2) are organized with respect to their two-particle reducibility. Accordingly,

ΓΛ(1′, 2′|1, 2) is given by a summation over the reducible vertices γΛr (1
′, 2′|1, 2) and the

totally irreducible vertex R(1′, 2′|1, 2) [see Eq. (2.37)]. Importantly, within parquet

approximation, R(1′, 2′|1, 2) does not exhibit a Λ dependence since it is given by the

bare two-body interaction V (1′, 2′|1, 2) whose Feynman diagram does not include any

Λ-dependent particle lines. The relation of the BSE and two-particle vertex flow equa-

tion is revealed by taking the derivative with respect to Λ in Eq. (2.42), giving an

equation for γ̇Λ
r = dγΛ

r

dΛ
. For the sake of clarity, we apply the previous matrix notation

for vertices. By applying some algebra, one arrives at the equations

γ̇Λ
r =ΓΛ ◦ Π̇Λ

r ◦ ΓΛ + İΛ
r ◦ΠΛ

r ◦ ΓΛ + ΓΛ ◦ΠΛ
r ◦ İΛ

r + ΓΛ ◦ΠΛ
r ◦ İΛ

r ◦ΠΛ
r ◦ ΓΛ, (3.8)

(2.39)
= ΓΛ ◦ Π̇Λ

r ◦ ΓΛ +
∑
r′ ̸=r

(
γ̇Λ
r′ ◦ΠΛ

r ◦ ΓΛ + ΓΛ ◦ΠΛ
r ◦ γ̇Λ

r′ + ΓΛ ◦ΠΛ
r ◦ γ̇Λ

r′ ◦ΠΛ
r ◦ ΓΛ

)
.

(3.9)
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Expressed diagrammatically for the r = s channel, Eq. (3.8) is given by

γ̇s = − 1

2 İs

−1

2 İs +
1

4 İs .

(3.10)

S̃Λ(1|1′), which appears in the first term, is visualized by a dashed particle line. Note

that we applied the crossing symmetry of Eq. (2.50) to arrive at the diagrammatic

expression. Since we will refer to it later, we define the last term of Eq. (3.8) as

γ̇Λ
r(C) = ΓΛ ◦ΠΛ

r ◦ İΛ
r ◦ΠΛ

r ◦ ΓΛ. (3.11)

The standard two-particle vertex flow equation within (one-loop) Katanin truncation

(3.5) is obtained by only considering the first term on the right-hand side of Eq. (3.9)

and then summing up the reducible vertices γ̇Λ
r over each channel r to obtain the

derivative of the full two-particle vertex given by

Γ̇ =
∑
r=s,t,u

γ̇r ≈
∑
r=s,t,u

Γ ◦ Π̇r ◦ Γ. (3.12)

In this step, we applied the parquet approximation, under which Ṙ = 0. Note that

a so-called two-loop truncation scheme of the FRG can be obtained by iteratively

reinserting the one-loop γ̇r = ΓΛ ◦ Π̇Λ
r ◦ ΓΛ on the right-hand side of Eq. (3.9).

Higher loop truncations are obtained analogously by further iterative insertion. Since

multiloop truncations will not be applied in this thesis, we refer for further information

regarding their implementation in the FRG to Ref. [19].

3.1.2 From the self-energy Schwinger-Dyson equation to the

self-energy flow equation

The evaluation of the Green function pair ΠΛ
r in Eq. (3.9) requires knowledge of

ΣΛ(1′|1) [see Dyson’s Eq. (2.22)], which is not covered by the BSE. Among other

approaches, the flow equation of ΣΛ(1′|1) can be replicated from the SDE (2.32) [19].

Again, the derivation can be carried out by introducing an explicit cutoff parameter

dependence Λ to GΛ
0 and subsequently taking a derivative with respect to it in the

SDE of ΣΛ(1′|1). Since the corresponding derivation carried out in Ref. [19] is quite

involved, it will not be replicated here. Instead, the end result that is obtained by
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taking the Λ derivative of the self-energy SDE will be simply stated. Note that the

derivation assumes the parquet approximation at some point. Otherwise, additional

terms would emerge in the final expression given below. Starting from the SDE for the

self-energy given by Eq. (2.32), one arrives at the expression [19]

Σ̇Λ(1′|1) = −
∑
2,2′

ΓΛ(1′, 2′|1, 2)SΛ(2|2′) + Σ̇Λ
t̄ (1

′|1) + Σ̇Λ
t (1

′|1), (3.13)

with

Σ̇Λ
t̄ (1

′|1) = −
∑
2,2′

γ̇Λt̄(C)(1
′, 2′|1, 2)GΛ(2|2′), (3.14)

Σ̇Λ
t (1

′|1) = −
∑

2,2′,3,3′

ΓΛ(1′, 2′|1, 2)GΛ(2|3′)Σ̇Λ
t̄ (3

′|3)GΛ(3|2′), (3.15)

and [see Eq. (3.11)]

γ̇Λt̄(C)(1
′, 2′|1, 2) = γ̇Λs(C)(1

′, 2′|1, 2) + γ̇Λu(C)(1
′, 2′|1, 2). (3.16)

The diagrammatic representation of Eq. (3.13) is given by

d

dΛ
1 1′ =−

1 1′

+ Σ̇Λ
t̄

1 1′ + Σ̇Λ
t1 1′ ,

(3.17)

with SΛ being visualized by a dashed particle line.

The standard self-energy flow equation (3.4) is replicated by only considering the first

term of Eq. (3.13). Note that in absence of any truncation scheme for the infinite

hierarchy of FRG flow equations, the standard flow equation of ΣΛ(1′|1) gives the

exact self-energy. However, because we apply a truncation scheme in the flow equation

of ΓΛ(1′, 2′|1, 2), the insertion of ΓΛ(1′, 2′|1, 2) into the self-energy flow equation no

longer generates all Feynman diagrams of ΣΛ(1′|1), resulting in an approximation of

ΣΛ(1′|1) [19]. In a multiloop truncation scheme, γ̇Λt̄(C)(1
′, 2′|1, 2) is assumed as finite in

Eq. (3.9). In this case, the terms Σ̇t(1
′|1) and Σ̇t̄(1

′|1) have to be taken into account

to correctly generate all multiloop Feynman diagrams of ΣΛ(1′|1) [40]. However, an

implementation of a multiloop truncation is beyond the scope of this thesis.
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3.2 Introducing the pseudo fermion to the FRG

Methods not applicable to spin models may become feasible once a corresponding

fermion or bosonic model is considered. As such, the mapping to fermionic or bosonic

models, while keeping the underlying physics unchanged by conserving the spin algebra,

poses a powerful tool in the study of quantum spin models. E.g., while mean-field

theory is straightforwardly applied to spin models such as that of Eq. (3.1), its solution

becomes trivial in a paramagnetic phase due to the vanishing expectation values of

single-spin operators. A parton approach, which splits spin operators up into pairs of

fermionic (or bosonic) operators, lifts this problem and allows to pair up the resulting

fermion or boson operators into expectation values of finite size. The resulting mean-

field theories and their classification have become a widespread tool in the study of

quantum spin liquids [41].

Relevant to us is the possibility to apply a spin-to-particle mapping in order to apply the

FRG formalism to spin models. Such a mapping will be introduced in the following1.

The PFFRG applies the mapping from spin-1/2 operators to pseudo fermions given by

[42]

Ŝµi → 1

2

∑
α,β=↑,↓

σµαβ f̂
†
iαf̂iβ, (3.18)

or, rewritten, by

Ŝµi → 1

4
tr(F̂ †

i σ
µF̂i), (3.19)

with spin components µ = {x, y, z}, spin quantum numbers α, β = {↑, ↓} and site i

dependent matrices of fermion operators

F̂i :=

(
f̂i↑ f̂ †

i↓

f̂i↓ −f̂ †
i↑

)
. (3.20)

σµαβ are Pauli matrix elements, and f̂ †
i↑ (f̂i↓) creates (annihilates) a fermion on site i

with spin up (down). Applying the pseudo-fermion mapping to the spin Hamiltonian

of Eq. (3.1) results in the fermionic model

ĤPF =
1

8

∑
i,j

∑
µ,ν

Jµνij
∑
α,β,
α′,β′

σµαβσ
ν
α′β′ f̂

†
iαf̂iβ f̂

†
jα′ f̂jβ′ − 1

2

∑
i

∑
µ

hµi
∑
α,β

σµαβ f̂
†
iαf̂iβ. (3.21)

Note that we will often consider the case of vanishing magnetic fields hµi , i.e., the

strongly interacting limit of the model.

1Note that field theoretical approaches, including the FRG framework, can also be applied to spin
models directly without applying a mapping from spin to fermion or boson operators, as is done in
the SFRG [30, 29]. However, the involved formalism might be more difficult to work with.
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The latter expression of the pseudo-fermion mapping, given by Eq. (3.19), reveals

that the mapping introduces a local SU(2) gauge freedom that acts on site i as a

right-multiplication on the matrices F̂i as

F̂i −→ F̂iWi. (3.22)

We will denote the site-dependent unitary symmetry operation matrix as Wi. As is

implied by the local gauge freedom, the pseudo-fermion mapping increases the Hilbert

space dimension of the model. For each site, two unphysical states are created in

addition to pseudo-fermion equivalents of the previous two physical spin-up and spin-

down states. In the pseudo-fermion Hamiltonian, the local unphysical states correspond

to sites j with fermion occupation numbers nj = 0 and nj = 2, whereas the physical

states fulfill nj = 1. In other words, unphysical states of a site are characterized by a

vanishing local spin. Thus, each of them effectively acts as an empty site in the spin

model that neither interacts with spins of other sites via interactions Jµνij nor with an

external magnetic field hµi .

In order for the fermionic system to behave as the original spin system, a constraint of

one fermion per site ∑
α=↑,↓

f̂ †
iαf̂iα

!
= 1 (3.23)

would have to be applied on every site i. The standard PFFRG procedure is to fulfill

only the soft constraint ∑
α=↑,↓

⟨f̂ †
iαf̂iα⟩ = 1 (3.24)

instead. Because both unphysical states of a single site j, which have local fermion

occupation numbers nj = 0 and nj = 2, result in the same energy contributions to the

model due to a vanishing local spin, the soft constraint is fulfilled by default for any Jµνij
and hµi in Eq. (3.1). Generally, the PFFRG is applied at zero temperature to keep the

influence of unphysical states at a minimum. Importantly, hµi only couples to the local

physical spin-1/2 states and energetically favors a ground state with a maximum local

magnetizations |⟨Si⟩|. Since a maximum local magnetization implies the fulfillment of

the strong constraint Eq. (3.23), this constraint is approached in case of large magnetic

fields.

Other strategies to approach the strong constraint within PFFRG exist as well. E.g.,

one can introduce a term in the Hamiltonian that energetically penalizes unphysical

states for each site, as done in Refs. [32, 43]. While one would like to choose the

size of this term and the corresponding energy cost of unphysical states as large as

possible, a stable numerical implementation of the PFFRG flow equations may become
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more difficult in the case where terms of largely different prefactors are present in

the Hamiltonian. A newer approach implements the Popov-Fedotov scheme, which

introduces an imaginary chemical potential in order for the weights of unphysical states

to cancel out in thermodynamic averages [35]. Although this approach is more elegant,

it is not without disadvantages. Its implementation increases the numerical complexity

of the PFFRG fourfold and only allows the method to be applied at finite temperatures.

Finally, it turns out that the truncation of flow equations negates an exact fulfillment

of the strong constraint Eq. (3.23), even with the Popov-Fedotov scheme being applied.

3.3 Symmetries of Green and vertex functions

The PFFRG flow equations conserve symmetries of a Hamiltonian on an exact level

throughout the vertex flow. These symmetries manifest themselves in the Green and

vertex functions, restricting their argument dependencies in turn. Solving the flow

equations is a numerically intensive task. While it is in principle possible to straight-

forwardly solve them for every set of arguments for Σ(1′|1) and Γ(1′, 2′|1, 2), such

an approach is numerically inefficient and would therefore require strong numerical

approximations (e.g., regarding the resolution of continuous frequency dependencies)

due to a limited amount of numerical resources available. In order to solve the flow

equations efficiently, it is crucial to take advantage of each symmetry of ĤPF. The im-

plementation of these symmetries allows to decrease the required numerical resources

for solving the flow equations by a multiple.

In this section, we provide the prerequisite to consider vertex symmetries in the flow

equations by demonstrating how the symmetries of the pseudo-fermion Hamiltonian

ĤPF manifest themselves in the single and two-particle Green and vertex functions. For

this purpose, symmetry-based Green function restrictions will be derived along a path

similar to that taken in Refs. [31, 39, 12]. Green and vertex function symmetries will

be gathered in Table 3.1. Furthermore, Green and vertex functions will be expressed

such that their arguments, such as 1 = {ω1, α1, i1}, consist of a Matsubara frequency

ω1, spin α1 = ±1, and lattice site i1.

Symmetries of ĤPF are twofold in origin. On the one hand, the original spin Hamil-

tonian Ĥ has physical symmetries. On the other hand, we had shown in Sec. 3.2

that the mapping to pseudo fermions introduces a local SU(2) gauge freedom. In addi-

tion to those symmetries, the two-particle Green and vertex functions have additional

symmetries as a consequence of fermion statistics. More precisely, an exchange of in

or outgoing particle lines in G(1′, 2′|1, 2) corresponds to the switching of arguments
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1 ↔ 2, 1′ ↔ 2′, or both, with each pairwise permutation of arguments leading to a

minus sign in front of G(1′, 2′|1, 2). The resulting symmetries are shown in Table 3.1.

In order to derive how symmetries of ĤPF manifest themselves in Green and vertex

functions, we consider a general symmetry operation ŵ, i.e.,

[ĤPF, ŵ] = 0. (3.25)

Inserting this unitary operation in between the fermion operators in the Green function

definition Eq. (2.5) by making use of the property ŵ†ŵ = 1 and applying [e−ĤPF/T , ŵ] =

0 leads to the transformation of fermion operators

f̂
(†)
i (τ) → ŵf̂

(†)
i (τ)ŵ†. (3.26)

The resulting n-particle Green function symmetry restriction is obtained by requiring

the Green function to be invariant under such a transformation. Vertex function sym-

metries can be inferred subsequently by applying the equations that relate Green and

vertex functions. In case of the self-energy, this relation is given by Dyson’s equation

(2.22). In case of the two-particle vertex, one can apply the tree diagram analytically

expressed by Eq. (2.18). Note that an alternative approach to deriving vertex function

symmetries consists of performing an induction proof in which the induction step con-

sists of inserting the assumed vertex symmetry transformation for the vertex on the

left-hand side of the flow equation and verifying that the resulting expression on the

right-hand side can be transformed back to its previous expression under application

of the assumed symmetry transformations (see Appendix B of Ref. [31]). If this is

the case, then the symmetry fulfilled at any finite cutoff Λ is fulfilled at infinitesimally

smaller Λ− δΛ as well and, consequently, for any smaller Λ. In case of ĤPF, n-particle

Green and vertex function symmetry transformations are found not to differ for n = 1

and n = 2, as can be verified by applying Eqs. (2.22) and (2.18). Consequently, we can

discuss only the symmetry restrictions from ĤPF along Green functions, and the vertex

functions symmetries follow trivially. More specifically, we will continue by first treat-

ing the Green function restrictions from gauge symmetries and, subsequently, treat the

restrictions based on symmetries of the spin Hamiltonian.

3.3.1 Gauge symmetries

It was shown in Sec. 3.2 that the local SU(2) gauge freedom on site j acts as a

right-multiplication with a unitary 2× 2 matrix Wj on matrices F̂j of pseudo-fermion

operators defined by Eq. (3.20), and leaves fermion operators of the remaining sites
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Symmetry G(1′|1) G(1′, 2′|1, 2)

Particle exchange Not applicable G(1′, 2′|1, 2) = −G(1′, 2′|2, 1) = −G(2′, 1′|1, 2)

= −G(2′, 1′|1, 2)

W = iσz G(1′|1) ∼ δi1′ i1 G(1′, 2′|1, 2) = G||(1
′, 2′|1, 2)δi1′ i1δi2′ i2

(gauge transformation) +G×(1
′, 2′|1, 2)δi2′ i1δi1′ i2

W = iσx or W = iσy G(1′|1) = −α1α1′G(−1̄| − 1̄′) G||(1
′, 2′|1, 2) = −α1α1′G||(−1̄, 2′| − 1̄′, 2)

(gauge transformation) = −α2α2′G||(1
′,−2̄|1,−2̄′)

Hermiticity G(1′|1) = G(−1| − 1′)∗ G(1′, 2′|1, 2) = G(−1,−2| − 1′,−2′)∗

Time-translational invariance G(1′|1) ∼ δ(ω1′ − ω1) G(1′, 2′|1, 2) ∼ δ(ω1′ + ω2′ − ω1 − ω2)

Time-reversal G(1′|1) = α1′α1G(−1̄′| − 1̄)∗ G(1′, 2′|1, 2) = α1′α2′α1α2G(−1̄′,−2̄′| − 1̄,−2̄)∗

Table 3.1: Symmetry properties of the pseudo-fermion single-particle Green function
G(1′|1) (second column) and two-particle Green function G(1′, 2′|1, 2) (third column)
enforced by the symmetries listed in the first column. Number arguments denote a
set of variables, containing the Matsubara frequency ω, spin α and site i, i.e., 1 =
{ω1, α1, i1}. Spin variables take values α = ±1, which is used interchangeably with
α =↑, ↓. Furthermore, we define −1 = {−ω1, α1, i1} and 1̄ = {ω1,−α1, i1}. The
corresponding symmetry relations for the self-energy Σ and the two-particle vertex Γ
are obtained by simply replacing G↔ Σ and G↔ Γ in the second and third columns,
respectively. The table and its caption are replicated from Ref. [39]

invariant. For the derivation of Green function symmetries, we restrict ourselves to the

cases in which the symmetry operation can be written as Wj = iσµ.

In case Wj = iσz is applied, fermion operators of site j transform as(
f̂jα

f̂ †
jα

)
−→ i

(
f̂jα

−f̂ †
jα

)
. (3.27)

Green functions G(1′, 2′, ..., N ′|1, 2, ..., N) only stay invariant under any choice of suc-

cessively applying such local transformations if the site arguments of incoming fermion

lines {i1, i2,...,iN} are given by a permutation of site arguments of outgoing fermion

lines {i1′ , i2′ ,...,iN ′}. It follows that the n-particle Green function only depends on

n site arguments. In case of the single-particle Green function, this fact is expressed

analytically by G(1′|1) ∝ δi1′ i1 . By construction, the dependence of G(1′, 2′|1, 2) on the

two site arguments i1 and i2 is fulfilled by the parameterization

G(1′, 2′|1, 2) =G||(1
′, 2′|1, 2)δi1′ i1δi2′ i2

+G×(1
′, 2′|1, 2)δi2′ i1δi1′ i2 .

(3.28)
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The application of particle-exchange symmetry reveals the relation

G×(1
′, 2′|1, 2) = −G||(1

′, 2′|2, 1). (3.29)

We continue with the remaining gauge transformations W x
j = iσx and W y

j = iσy,

which transform fermion operators on site j as(
f̂jα

f̂ †
jα

)
−→ i

(
αf̂ †

jᾱ

ᾱf̂jᾱ

)
(3.30)

and (
f̂jα

f̂ †
jα

)
−→ −α

(
f̂ †
jᾱ

f̂jᾱ

)
. (3.31)

Both transformations involve a particle-hole exchange. Note that the equations use the

spin argument as a scalar α = ±1, with ᾱ = −α. The implied single and two-particle

Green function restrictions are equivalent for both transformations and are given in

Table 3.1. They are formulated in terms of G||(1
′, 2′|1, 2), for which it is known that

i1′ = i1 and i2′ = i2. Note that since the gauge transformations are local, they can be

applied either on one or both sites involved as arguments in G||(1
′, 2′|1, 2).

3.3.2 Physical symmetries

The pseudo-fermion Hamiltonian ĤPF exhibits hermiticity and time-translational in-

variance. Hermiticity leads to a Green function invariance under a combined oper-

ation of complex conjugation, exchanging all incoming with outgoing particle lines,

and changing the sign of all Matsubara frequencies (see Table 3.1). Time-translational

invariance leads to energy conservation, which allows to reduce the number of Green

function frequency arguments by one. It follows that G(1′|1) depends on one frequency

argument, whereas G(1′, 2′|1, 2) depends on three. For two-particle Green and vertex

functions, energy conservation will be implemented by expressing their Matsubara fre-

quency dependencies in terms of transfer frequencies s, t and u, given by Eq. (2.35).

Note that the frequency dependencies become nondiscrete at T = 0.

While this chapter is dedicated to presenting the generalized PFFRG method for sys-

tems with broken TRS, the following chapters will mainly consider models with TRS

intact. As such, we here consider the effect of TRS on Green functions as well. Since

TRS flips the spins of a model (Ŝ → −Ŝ), terms of a spin model that are odd in spin

operators break TRS. Within the framework of the PFFRG, only spin Hamiltonians

with terms linear or bilinear in spin operators can be treated due to the truncation of
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flow equations. Hence, we only consider TRS-breaking terms that are linear in spin

operators. These terms can be interpreted as the Zeeman coupling to an external mag-

netic field. In the pseudo-fermion model ĤPF, the analogue to the TRS transformation

of the spin Hamiltonian (
∑

αβ=↑↓ σ
µ
αβ f̂

†
iαf̂iβ → −∑αβ=↑↓ σ

µ
αβ f̂

†
iαf̂iβ instead of Ŝ → −Ŝ)

is achieved by an antiunitary operator ŵ that transforms fermion operators of each site

as (
f̂jα

f̂ †
jα

)
−→

(
eiπα/2f̂jᾱ

e−iπα/2f̂ †
jᾱ

)
(3.32)

and applies complex conjugation to Pauli matrix elements σµαβ. The resulting Green

function symmetries are given in Table 3.1.

Considered models, such as Heisenberg models, may exhibit global spin rotation sym-

metries. Those symmetry transformations solely transform the spin arguments of Green

functions and therefore restrict their spin dependencies. We will go further into the im-

plications of pure spin rotation symmetries on the spin dependencies of vertex functions

in Sec. 3.5.3 once we have formulated vertex parameterizations.

Finally, lattice symmetries can be applied to relate Green functions of different site

arguments. In presence of anisotropic interactions Jµνij or site-dependent finite magnetic

fields hµi , point group symmetries of a lattice generally have to be applied together

with global spin rotations in order to constitute a symmetry operation of Ĥ 2. As

such, the lattice symmetries of a model generally not only transform site arguments

of Green functions but spin arguments as well. Note that in case of broken TRS, the

action of spin rotations on G(1′|1) has to be considered, whereas in presence of TRS

G(1′|1) remains invariant under any spin rotations. This property will be discussed

in more detail in Sec. 3.4. In the simplest symmetry case, all sites of a model are

symmetry equivalent, i.e., translation and combined point group and spin rotation

symmetries allow for each site to be mapped onto every other site. In this case, G(1′|1)
is known for each site argument i1 once it is known for a reference site. Similarly, one

site argument of G||(1
′, 2′|1, 2), e.g., i1, can always be set to a reference site. For a

fixed i1, point group symmetries reduce the set of sites i2 for which G||(1
′, 2′|1, 2) is

independent further. In case a model has multiple symmetry-inequivalent sites (as is

the case in the K2Ni2(SO4)3 compound treated in Chapter 6), Green functions G(1′|1)
and G||(1

′, 2′|1, 2) of each reference site i1 are independent.

2In spin models based on physical systems, this is a consequence of spin-orbit coupling.
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3.4 Parameterization of vertex functions

All single and two-particle Green and vertex function symmetries relevant to ĤPF have

been gathered now. In the following, they will be applied as the foundation for a

numerically efficient vertex parameterization. It will be shown that previous param-

eterizations of Refs. [11, 31] can be extended in order to capture vertex components

that become finite upon breaking TRS. In fact, in the extended parameterization, only

G(1′|1) and Σ(1′, 1) will gain additional components once TRS is broken, whereas the

parameterization of Γ(1′, 2′|1, 2) remains invariant upon breaking TRS. Most impor-

tantly, the introduced parameterizations will make use of the reduced site argument

dependencies of vertex functions, making the solution of flow equations in real space

the numerically most efficient choice. Furthermore, it will follow from the parameteri-

zations that vertices will not be computed for each possible combination of spin-up and

spin-down arguments separately in the parameterized flow equations. Instead, the spin

dependency of vertices will be expressed in a new basis based on Pauli matrices and the

identity matrix. These matrices will be abbreviated as σρ with ρ ∈ {0, x, y, z}, where
σ0 corresponds to the 2× 2 identity matrix and σµ with µ ∈ {x, y, z} corresponds to

Pauli matrices. While Σ(1′|1) will be expressed as a linear combination of σρ matrices,

Γ(1′, 2′|1, 2) will be written in terms bilinear in them. The advantage of this choice

of expression is two-fold: In the new basis for spin arguments, the vertex parameters

will be either purely real or imaginary. Furthermore, if the underlying Hamiltonian

exhibits continuous global spin rotation symmetries or TRS, the vertices will simplify

straightforwardly such that the ρ for which the terms proportional to σρ are finite is

restricted to a reduced set of values. In the following, we will use the convention of

µ, ν ∈ {x, y, z} and ρ, φ ∈ {0, x, y, z}.

3.4.1 Self-energy parameterization

We begin by proposing a parameterization for Σ(1′|1). The presence of a W = iσz

gauge freedom and time-translational invariance reduces the number of independent

site and frequency arguments of the self-energy and therefore allows for a parameteri-

zation given by

Σ(1′|1) = Σi1(ω1, α1′ , α1)δi1′ i1δ(ω1′ − ω1). (3.33)



48 Chapter 3. The pseudo-fermion functional renormalization group

A further expansion of the spin dependence as

Σi1(ω1, α1′ , α1) =
∑
ρ

Σρ
i1
(ω1)σ

ρ
α1′α1

(3.34)

=
(
− iγ0i1(ω1)δα1′α1 +

∑
µ

γµi1(ω1)σ
µ
α1′α1

)
(3.35)

separates the self-energy into components with distinct symmetry properties and or-

ganizes all spin dependencies in matrices σρ. The W = iσx(y) gauge freedom leads to

even and odd frequency dependencies for self-energy components

γ0i (ω) =− γ0i (−ω),
γµi (ω) =γ

µ
i (−ω),

(3.36)

and hermiticity enforces all components to be purely real, i.e.,

γρi (ω) ∈ R. (3.37)

Likewise, one can parameterize G(1′|1) as

G(1′|1) = Gi1(ω1, α1′ , α1)δi1′ i1δ(ω1′ − ω1) (3.38)

=
∑
ρ

Gρ
i1
(ω1)σ

ρ
α1′α1

δi1′ i1δ(ω1′ − ω1) (3.39)

=
(
− ig0i1(ω1)δα1′α1 +

∑
µ

gµi1(ω1)σ
µ
α1′α1

)
δi1′ i1δ(ω1′ − ω1), (3.40)

with gρi (ω) fulfilling the same symmetries as γρi (ω) for equal ρ.

For a pseudo-fermion Hamiltonian ĤPF based on the spin model of Eq. (3.1), Σ(1′|1)
andG(1′|1) are not diagonal in spin arguments. This has to be considered when relating

both functions by applying a matrix inversion in Dyson’s equation (2.22). By inserting

the parameterizations of Eqs. (3.35) and (3.40), the relations between components

g0(ω) =
ω + γ0(ω)

[ω + γ0(ω)]2 +
∑

ν [γ
ν(ω)]2

,

gµ(ω) =
−γµ(ω)

[ω + γ0(ω)]2 +
∑

ν [γ
ν(ω)]2

(3.41)

are obtained.

Under the application of TRS and the symmetry of Eq. (3.36), γµi and gµi solely change

sign, whereas γ0i and g0i remain invariant. It follows that γµi and gµi can only be finite

in case of broken TRS. Components with µ ∈ {x, y, z} and ρ = 0 further differ in their

transformation properties under spin rotations. Components g0i and γ0i transform as a
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scalar, i.e., they remain invariant under spin rotations. In contrast, gµi and γ
µ
i transform

inversely to the Cartesian components of a pseudovector. Under a spin rotation, which

transforms spins by a 3 × 3 rotation matrix R as Ŝµ → ∑
ν R

µνŜν , they transform

as γµi → ∑
ν R

νµγνi and gµi → ∑
ν R

νµgνi . It follows that for a specified µ = x, y, z gµi
(γµi ) can differ on two symmetry-equivalent sites if the symmetry operation relating

both sites involves a spin rotation. It is worth highlighting that in case a model with

TRS is considered, gµi = 0 (γµi = 0). Hence, in this case γρi (gρi ) is always equal on

symmetry-equivalent sites.

3.4.2 Two-particle vertex parameterization

The parameterization of Γ(1′, 2′|1, 2) is carried out in two steps. First, we apply the

property that the vertex only depends on two site arguments by expressing it as

Γ(1′, 2′|1, 2) =
(
Γ||i1i2(1

′, 2′|1, 2)δi1′ i1δi2′ i2
− Γ||i2i1(1

′, 2′|2, 1)δi1′ i2δi2′ i1
)
δ(ω1 + ω2 − ω1′ − ω2′).

(3.42)

As shown in Sec. 3.3, this form follows from particle exchange and the local W = iσz

gauge freedom. Furthermore, energy conservation, following from time-translational

invariance, has been applied by inserting the term δ(ω1+ω2−ω1′ −ω2′). The next step

consists of expressing Γ||i1i2(1
′, 2′|1, 2) in terms that are bilinear in elements of matrices

σρ. The parameterization is given by

Γ||i1i2(1
′, 2′|1, 2) =

∑
ρφ

Γρφi1i2(s, t, u)σ
ρ
α1′α1

σφα2′α2
, (3.43)

in which we transitioned to expressing the frequency dependencies via transfer frequen-

cies, which are defined by Eq. (2.35) and fulfill energy conservation ω1′ +ω2′ = ω1+ω2

by construction. Similar to the parameterization of the self-energy Σ(1′|1), the param-

eterization of ΓΛ
||i1i2(1

′, 2′|1, 2) separates vertex components Γρφi1i2(s, t, u) with distinct

symmetry properties and organizes all spin dependencies in matrices σρ. Note that all

components Γρφ can become finite regardless of whether TRS is present or not. This

is in contrast to the self-energy where the presence of TRS enforces γµ = 0.

The W = iσx(y) gauge freedom together with hermiticity restricts each component in

the complex plane as

Γρφi1i2(s, t, u) ∈

R if ρ, φ = 0 or ρ, φ ̸= 0

iR otherwise.
(3.44)
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Symmetries of Γρφi1i2(s, t, u) that transform frequency arguments are straightforwardly

derived from Table 3.1 by insertion of the vertex parameterizations given by Eqs.

(3.42)-(3.43). The resulting frequency symmetries of the parameterized two-particle

vertex are given by

Γρφi1i2(s, t, u) =Γρφi1i2(−s, t,−u)∗ (3.45)

=Γφρi2i1(s,−t,−u) (3.46)

=(−1)δφ0Γρφi1i2(u, t, s). (3.47)

If TRS is assumed, the additional symmetry

Γρφi1i2(s, t, u) = Γρφi1i2(−s,−t,−u) (3.48)

is present [31]. In this case, the symmetries of Γρφi1i2(s, t, u) can be written as

Γρφi1i2(s, t, u) =Γρφi2i1(−s, t, u) (3.49)

=Γρφi1i2(s,−t, u)∗ (3.50)

=Γρφi2i1(s, t,−u)∗ (3.51)

=(−1)δφ0Γρφi1i2(u, t, s). (3.52)

In this formulation, the first three symmetries each only transform a single transfer

frequency.

To summarize, broken TRS generates additional components Σρ in the self-energy. This

is the main reason for the increase in complexity in solving the flow equations upon

breaking TRS. On the other hand, no additional two-particle vertex components are

generated by broken TRS. Instead, the frequency arguments for which Γρφi1i2(s, t, u) is

independent double. Note that spin rotation symmetries can restrict which components

Σρ and Γρφ can become finite as well. We will return to this property and discuss it in

the next section in context of the flow equations.

3.5 Flow equations

The derivation of vertex symmetries and the subsequent introduction of suitable ver-

tex parameterizations allow us to now write down a numerically efficient formulation

of the flow equations within Katanin truncation for a general pseudo-fermion Hamilto-

nian obtained from the spin model given by Eq. (3.1). In the following, the previously

proposed vertex parameterizations will be inserted into the unparameterized flow equa-
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tions (3.4) and (3.5). Since the resulting equations are quite complex in structure, they

will be discussed in sufficient detail afterwards. Note that the self-energy, two-particle

vertex, single-particle Green function, and single-scale propagator exhibit a Λ depen-

dence in the flow equations that was often omitted in the previous sections for reasons

of simplicity.

The fully parameterized flow equations are obtained in two steps. First, the vertex

parameterizations given by Eqs. (3.33) and (3.42), which state the locality and bilo-

cality of the self-energy and two-particle vertex respectively, are inserted into the flow

equations (3.4) and (3.5). In the second step, spin argument dependencies of vertices

will be taken advantage of by inserting the parameterizations of Eqs. (3.35) and (3.43).

The flow equations will be formulated for models at T = 0. It follows that Matsubara

frequency summations, which are discrete for T ̸= 0, are given by continuous frequency

integrals instead.

The flow equations that apply the local and bilocal parameterizations are given by

d

dΛ
ΣΛ
i1
(ω1, α1′ , α1) =− 1

2π

∫ ∞

−∞
dω2

∑
α2′α2

[∑
j

ΓΛ
||i1j(1

′, 2′|1, 2)SΛ
j (ω2, α2, α2′)

− ΓΛ
||i1i1(1

′, 2′|2, 1)SΛ
i1
(ω2, α2, α2′)

]
× δ(ω1 + ω2 − ω1′ − ω2′),

(3.53)

d

dΛ
ΓΛ
||i1i2(1

′, 2′|1, 2) = 1

2π

∫ ∞

−∞
dω4

∫ ∞

−∞
dω3

∑
α3′α4′
α3α4[

ΓΛ
||i1i2(1

′, 2′|3 , 4 )ΓΛ
||i1i2(3

′, 4′|1, 2)ΠΛ
i1i2

(3, 4|3′, 4′)

−
∑
j

ΓΛ
||i1j(1

′, 4′|1, 3)ΓΛ
||ji2(3

′, 2′|4, 2)ΠΛ
jj(3, 4|3′, 4′)

+ΓΛ
||i1i2(1

′, 4′|1, 3)ΓΛ
||i2i2(3

′, 2′|2, 4)ΠΛ
i1i1

(3, 4|3′, 4′)
+ΓΛ

||i1i1(1
′, 4′|3, 1)ΓΛ

||i1i2(3
′, 2′|4, 2)ΠΛ

i2i2
(3, 4|3′, 4′)

+ΓΛ
||i2i1(2

′, 4′|3, 1)ΓΛ
||i2i1(3

′, 1′|2, 4)ΠΛ
i2i1

(3, 4|3′, 4′)
]

× δ(ω1 + ω2 − ω1′ − ω2′),

with

ΠΛ
i3i4

(3, 4|3′, 4′) = GΛ
i3
(ω3, α3, α3′)S̃Λ

i4
(ω4, α4, α4′)

+GΛ
i4
(ω4, α4, α4′)S̃Λ

i3
(ω3, α3, α3′).

(3.54)

Before the second parameterization step is performed, we discuss aspects of this in-

termediate version of the flow equations first. The frequency-dependent Dirac delta

functions that originate from the vertices on the right-hand side of the equation were

neglected for clarity. They will become obsolete in the next step, in which we express
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the vertex frequency dependencies via transfer frequencies. In the partially parameter-

ized flow equations, terms of different structures emerge. The self-energy flow equation

consists of a Hartree and a Fock term. While the Hartree term contains a site sum-

mation
∑

j, the Fock term is purely local and only contains the site i1 of the left-hand

side self-energy as site argument. In the two-particle vertex flow equation, five terms

emerge. With all these terms being quadratic in two-particle vertices and propagators

[i.e., GΛ(1′|1) and S̃Λ(1′|1)] each, they differ in their internal vertex argument structures

and cannot be transformed into each other under the application of vertex symmetries.

Considering the structure of site arguments, in four of the five flow equation terms,

vertices and propagators contain only site arguments i1 and i2. Only one term involves

an internal site summation
∑

j, which therefore requires by far the most computational

resources to evaluate. This term is known as the random phase approximation (RPA)

channel. Importantly, if one considers a reduced version of the flow equations that only

takes into account the RPA channel and the Hartree term, standard spin mean-field

theory is reproduced [11, 32]. These are exactly the only terms that involve a site sum-

mation. The resulting mean-field ΣΛ(1′|1) is computed within Hartree approximation,

whereas the resulting mean-field ΓΛ(1′, 2′|1, 2) is computed within RPA. However, note

that in presence of TRS, ΣΛ(1′|1) = 0 for these reduced flow equations such that the

RPA channel itself fully replicates mean-field theory. The inclusion of the remaining

terms in the flow equations results in a vertex flow that goes beyond mean-field theory

and captures the effect of quantum fluctuations.

Finally, we set in the parameterizations of Eqs. (3.35) and (3.43), which express the self-

energy and two-particle vertex spin dependencies in terms Σρ and Γρφ. The resulting

flow equations of the general spin lattice Hamiltonian given by Eq. (3.1) read as

d

dΛ
Σρ,Λ
i (ω) =

1

4π

∫
R
dω′
[
− 4

∑
j

∑
a

Γρa,Λij (ω + ω′, 0, ω − ω′)Sa,Λj (ω′)

+
∑
abc

Γab,Λii (ω + ω′, ω − ω′, 0)Sc,Λi (ω′)tr(σaσcσbσρ)
]
,

(3.55)
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d

dΛ
Γρφ,Λi1i2

(s, t, u) =
1

8π

∫
R
dω′

∑
abcdef[

Γab,Λi1i2
(s,−ω′ − ω2′ , ω1′ + ω′)Γcd,Λi1i2

(s, ω2 + ω′, ω1 + ω′)

× [Ge,Λ
i1

(s+ ω′)Sf,Λi2 (ω′)∗ +Gf,Λ
i2

(ω′)∗Se,Λi1 (s+ ω′)]

× tr
(
σaσeσcσρ

)
tr
(
σbσfσdσφ

)
−4
∑
j

Γab,Λi1j
(ω1′ + ω′, t, ω1 − ω′)Γcd,Λji2

(ω2 + ω′, t,−ω2′ + ω′)Πef,Λ
jj (t+ ω′, ω′)

× tr(σbσeσcσf )δaρδdφ

+2Γab,Λi1i2
(ω1′ + ω′, t, ω1 − ω′)Γcd,Λi2i2

(ω2 + ω′,−ω2′ + ω′, t)Πef,Λ
i2i2

(t+ ω′, ω′)

× tr
(
σdσfσbσeσcσφ

)
δaρ

+2Γab,Λi1i1
(ω1′ + ω′, ω1 − ω′, t)Γcd,Λi1i2

(ω2 + ω′, t,−ω2′ + ω′)Πef,Λ
i1i1

(t+ ω′, ω′)

× tr
(
σaσeσcσfσbσρ

)
δdφ

+Γab,Λi1i2
(ω2′ − ω′,−ω1 − ω′, u)Γcd,Λi1i2

(ω2 − ω′, ω1′ + ω′, u)Πef,Λ
i2i1

(u+ ω′, ω′)∗

× tr
(
σcσfσaσρ

)
tr
(
σbσeσdσφ

)]
,

with

Πef,Λ
i3,i4

(ω3, ω4) = Ge,Λ
i3

(ω3)S̃f,Λi4 (ω4) +Gf,Λ
i4

(ω4)S̃e,Λi3 (ω3).

(3.56)

Within the chosen parameterizations, the single-scale propagator within Katanin trun-

cation is given by

S̃ρ,Λi (ω) = −dG
ρ,Λ
i (ω)

dΛ
= Sρ,Λi (ω)− 1

2

∑
abc

Ga,Λ
i (ω)

dΣb,Λ
i (ω)

dΛ
Gc,Λ
i (ω)tr(σaσbσcσρ).

(3.57)

We will explore various aspects of the parameterized flow equations in the following.

On the right-hand side of the flow equations, indices that specify the spin-dependent

vertex components are given roman letters a, . . . , f ∈ {0, x, y, z} if they are summed

over, whereas indices of the left-hand side vertices are given by Greek letters ρ, φ ∈
{0, x, y, z}. Note that the first and last term of the Γρφ,Λi1i2

(s, t, u) flow equation contain

complex conjugations of GΛ(1′|1) or S̃Λ(1′|1). Since the components Gρ,Λ
i and Sρ,Λi are

either purely real or imaginary, the complex conjugation either leaves the components

invariant (Gµ,Λ∗
i = Gµ,Λ

i for µ ∈ {x, y, z}) or alternates their sign (G0,Λ∗
i = −G0,Λ

i for

ρ = 0). The origin of the complex conjugations lies in the fact that besides setting in

the self-energy and vertex parameterizations from Eqs. (3.53)-(3.54) to Eqs. (3.55)-

(3.56), vertex symmetries were applied in order to arrive at the presented expressions

of flow equations.

Previous summations over spin arguments α in the unparameterized flow equations

(3.53)-(3.54) manifest themselves as products of matrices tr(σa1 · · ·σan) once the vertex
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parameterizations are set in and matrix indices a1, . . . , an ∈ {0, x, y, z} are summed

over instead [see Eqs. (3.55)-(3.56)]. In case a trace only contains a product of two

matrices, we write it as a Kronecker delta instead [tr(σa1σa2) = 2δa1a2 ]. Note that each

trace and Kronecker delta vanishes for 3/4 of all summands over its internal matrix

indices a1, . . . , an. Of particular interest is the RPA channel due to its large numerical

complexity and its solution that reproduces mean-field theory. The RPA channel has

one trace and two Kronecker delta. Consequently, 1/43 of its terms do not vanish by

evaluating the summation over indices a, . . . , f . Since the remaining channels each

either contain a total of two traces, or one trance and one Kronecker delta, only 1/42

of their terms vanish instead.

The number of terms in the RPA channel that need to be evaluated can be reduced even

further, as will be explained in the following. Two-particle vertex products in the RPA

channel are of the form Γabi1jΓ
cd
ji2
, in which we neglect the frequency arguments. After

the evaluation of Kronecker deltas and traces, for fixed values of indices a, b, c, d the

same product appears exactly in four terms. Since the site summation over each two-

particle vertex product has to be performed only once, the numerical resources required

to evaluate the RPA channel can be reduced by computing the site summation over each

of the 44 combinations of products Γabi1jΓ
cd
ji2

only once and reusing it in terms needed.

Note that for a model with global U(1) spin rotation symmetry and broken TRS, flow

equations simplify (see Sec. 3.5.3) and each finite product Γabi1jΓ
cd
ji2

with fixed indices

a, b, c, d appears twice. Furthermore, in presence of TRS the flow equations further

simplify such that each finite product only appears once.

3.5.1 Initial conditions

The flow equations can be solved from the known infrared cutoff limit Λ → ∞ down

to smaller Λ. Since GΛ
0 (1

′|1) vanishes in this limit, only Feynman diagrams devoid of

particle lines contribute to the two-particle vertex at Λ → ∞. Only one such diagram

exists, which is given by the bare interaction. It follows that the initial condition of

the two-particle vertex, in case of a general spin Hamiltonian Ĥ given by Eq. (3.1)

[and corresponding to Eq. (3.21) after the pseudo-fermion mapping], is given by

Γµν,Λ→∞
ij (s, t, u) =

1

4
Jµνij . (3.58)

Next, we consider the initial condition of Σµ,Λ
i (ω). Ĥ includes magnetic fields hµi that

couple linearly to spin operators. After the pseudo-fermion mapping, the corresponding

terms are quadratic in fermion operators and thus modify GΛ
0 (1

′|1). This modification
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can be recast as a finite self-energy at Λ → ∞, which will then be given by

Σµ,Λ→∞
i (ω) = −1

2
hµi . (3.59)

Note that in a numerical implementation, the initial cutoff Λ → ∞ for which the

vertices are known is often approximated as large but finite. Alternatively, the parquet

equations and the SDE for the self-energy can be solved at a large Λ to obtain the

initial values for vertices of a PFFRG flow [36].

3.5.2 Observables

Once ΣΛ(1′|1) and ΓΛ(1′, 2′|1, 2) are determined by solving the flow equations, they

can be applied to compute observables of the original spin Hamiltonian such as the

magnetization or spin correlations. Since the PFFRG treats symmetries on an exact

level, the computation of a finite magnetization requires a Hamiltonian that breaks

TRS, as is achieved by including a finite magnetic field. In the spin Hamiltonian, the

µ component of the magnetization on site i is given by

Mµ
i = ⟨Ŝµi ⟩. (3.60)

To compute the corresponding expression in the pseudo-fermion Hamiltonian, we first

apply the pseudo-fermion mapping given by Eq. (3.18) and then apply the Green

function definition Eq. (2.5). The formula

Mµ
i =

1

2π

∫
R
dωgµi (ω). (3.61)

is obtained after inserting the Green function parameterization of Eq. (3.40).

A computation of spin correlations via vertex functions is more involved. The spin

correlation between sites i and j, and depending on imaginary time τ is defined as

χµνij (τ) = ⟨Tτ [Ŝµi (τ)Ŝνj (0)]⟩ − ⟨Ŝµi (τ)⟩⟨Ŝνj (0)⟩. (3.62)

A Fourier transformation at T = 0 leads to the static correlation

χµνij (ω) =

∫ ∞

0

dτeiωτ [⟨Ŝµi (τ)Ŝνj (0)⟩ − ⟨Ŝµi (τ)⟩⟨Ŝνj (0)⟩]. (3.63)

Unless stated otherwise, only the static PFFRG correlations will be studied in this

thesis. After mapping the spin operators onto pseudo fermions, one can rewrite the

resulting expression in terms of single and two-particle Green functions GΛ(1′|1) and



56 Chapter 3. The pseudo-fermion functional renormalization group

GΛ(1′, 2′|1, 2) by applying their definition given by Eqs. (2.5)-(2.6). Afterwards, the

application of Eqs. (2.15) and (2.18) allows the expression of GΛ(1′, 2′|1, 2) via the

GΛ(1′|1) and ΓΛ(1′, 2′|1, 2). Finally, Green and two-particle vertex function parame-

terizations of Eqs. (3.40), (3.42) and (3.43) are applied to arrive at the expression for

spin correlations

χµνij (ω) =− 1

8π
δij
∑
ab

∫
R
dω′Ga

i (ω
′)Gb

i(ω + ω′)tr(σµσaσνσb)

− 1

16π2

∑
abc
dgh

∫
R2

dω′dω′′Ga
i (ω

′)Gb
j(ω + ω′′)Gc

i(ω + ω′)Gd
j (ω

′′)

× [Γghij (ω + ω′ + ω′′, ω, ω′ − ω′′)tr(σµσcσgσa)tr(σνσdσhσb)

− δijΓ
gh
ii (ω + ω′ + ω′′, ω′ − ω′′, ω)tr(σµσcσgσbσνσdσhσa)].

(3.64)

It is apparent that the evaluation of the sum over indices a . . . h in the equation would

generate a lot of terms. Like in the flow equations, TRS and spin rotation symmetries

of the Hamiltonian may reduce the number of finite terms that will be generated by

such an evaluation, as these symmetries allow the restriction of indices µ, ν, and a...h

for which the vertices and single-particle Green function are finite.

Generally more useful than χµνij (ω) in the study of magnetism are magnetic suscep-

tibilities χµν(q, ω). They are obtained straightforwardly from χµνij (ω) by applying a

Fourier transformation in order to introduce a momentum dependence q. To study the

ground states of different spin models, we will often compute the static (i.e., ω = 0)

susceptibility given by

χ̄µν(q) =
1

N

∑
ij

eiq(ri−rj)χµνij (ω = 0), (3.65)

with N being the number of lattice sites and the summation indices i and j going over

all lattice sites, with lattice vectors ri and rj.

Structure factors

We now introduce the magnetic structure factor (SF), which is measured in neutron

scattering experiments [1] and can be computed from spin correlations. It will be-

come relevant in Chapter 5, where PFFRG results on spin models will be linked to

the properties of pyrochlore compounds. In polarized neutron scattering experiments,

two components of the SF can be distinguished by filtering the scattered neutrons

according to their polarization [44]. The so-called spin-flip channel χsf(q, ω) is mea-

sured by neutrons that change their polarization during the scattering process, whereas
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the non-spin-flip channel χnsf(q, ω) is measured by neutrons that do not change their

polarization. The total SF is given by

χtotal(q, ω) = χsf(q, ω) + χnsf(q, ω). (3.66)

The expressions for the static components χ̄sf(q) and χ̄nsf(q) will be formulated simi-

larly as in Ref. [45] in the following. They employ a coordinate frame that is dependent

on the scattering vector q. Its normalized axis vectors are labeled as xs, ys and zs.

Neutrons of a neutron scattering experiment are polarized along the direction zs ⊥ q.

If SFs are measured along a plane in q, zs is orthogonal to that plane. The second

axis vector is given by xs = q/|q|, and the remaining vector is given by ys = zs × xs.

Expressed using the axis vectors, the static SF channels are given by

χ̄sf(q) =
1

N

∑
ij

eiq(ri−rj)
∑
µν

yµs y
ν
s χ

µν
c,ij(ω = 0), (3.67)

χ̄nsf(q) =
1

N

∑
ij

eiq(ri−rj)
∑
µν

zµs z
ν
s χ

µν
c,ij(ω = 0), (3.68)

with the spin correlation

χµνc,ij(ω) =

∫ ∞

0

dτeiωτ ⟨Ŝµi (τ)Ŝνj (0)⟩. (3.69)

While χ̄sf(q) only detects spin components perpendicular to the neutron polarization

axis zs, spin components measured by χ̄nsf(q) are parallel to zs.

The above equations still neglect that the effective spins realized by magnetic com-

pounds possess a g tensor, which quantifies the magnetic moments of spin degrees of

freedom Ŝµi . Furthermore, this tensor gi, with components gµνi , can be dependent on

a lattice site argument i. Under consideration of gi, spin components are replaced by

Ŝµi → ∑
ν g

µν
i Ŝ

ν
i . In this case, Eqs. (3.67)-(3.68) have to be adjusted by substituting

χµνc,ij →
∑

ab g
µa
i g

νb
j χ

ab
c,ij, with a, b ∈ {x, y, z}.

3.5.3 Symmetry-based flow equation simplifications

The flow equations [Eqs. (3.55)-(3.56)], static spin correlation [Eq. (3.64)], and mag-

netization [Eq. (3.61)] have been formulated for a general spin Hamiltonian, given by

Eq. (3.1), without any continuous spin rotation symmetry or TRS. In the following, it

will be discussed how the flow equations simplify once such symmetries are assumed.

Simplifications of expressions for observables follow analogously.
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Interaction TRS Σ Γ

Heisenberg Yes


Σ0

0
0
0



Γd 0 0 0
0 Γs 0 0
0 0 Γs 0
0 0 0 Γs



XYZ Yes


Σ0

0
0
0



Γ00 0 0 0
0 Γxx 0 0
0 0 Γyy 0
0 0 0 Γzz



U(1) symmetric
(about z axis)

Yes


Σ0

0
0
0



Γ00 0 0 Γ0z

0 Γxx Γxy 0
0 −Γxy Γxx 0
Γz0 0 0 Γzz



Unconstrained Yes


Σ0

0
0
0



Γ00 Γ0x Γ0y Γ0z

Γx0 Γxx Γxy Γxz

Γy0 Γyx Γyy Γyz

Γz0 Γzx Γzy Γzz



U(1) symmetric
(about z axis)

No


Σ0

0
0
Σz



Γ00 0 0 Γ0z

0 Γxx Γxy 0
0 −Γxy Γxx 0
Γz0 0 0 Γzz



Unconstrained No


Σ0

Σx

Σy

Σz



Γ00 Γ0x Γ0y Γ0z

Γx0 Γxx Γxy Γxz

Γy0 Γyx Γyy Γyz

Γz0 Γzx Γzy Γzz


Table 3.2: Finite spin components of the self-energy Σρ (third column) and the two-
particle vertex Γρφ (fourth column) for ρ, φ ∈ {0, x, y, z} for different types of spin
models with distinct symmetries. The considered spin models are characterized by
their types of two-body spin interactions or by their spin rotation symmetries (first
column), and whether they possess TRS (second column). An XYZ interaction is of
the form JxŜ

x
i Ŝ

x
j + JyŜ

y
i Ŝ

y
j + JzŜ

z
i Ŝ

z
j . Frequency and site arguments are omitted for

brevity. Components that are equal by symmetry are labeled identically. The table
and its caption are replicated from Ref. [39]

The presence of TRS or continuous spin rotation symmetries restricts the components

Γρφ and Σρ (Gρ) that can be finite [46, 31, 39]. As a consequence, simplified flow

equations can be obtained by restricting the values that the indices ρ, φ, and a, . . . , f

can assume in Eqs. (3.55)-(3.56). Simplified vertex structures for a variety of different

spin models, with and without TRS, are provided in Table 3.2. The expressions are

straightforwardly obtained by applying the assumed symmetry transformations and

using the property that Pauli matrices σµ in the vertex parameterizations of Eqs.
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(3.39) and (3.43) transform in the same ways as the Pauli matrix representations of

corresponding spin components Ŝµ under a spin rotation symmetry, whereas σ0 stays

invariant under spin rotations. Note that while TRS transforms σµ in the same way as

Pauli matrix representations of Ŝµ as well, i.e., σµ → −σµ (and σ0 → σ0) under the

application of TRS, it additionally applies a complex conjugation to vertex components

Σρ(ω) and Γρφi1i2(s, t, u), and changes the sign of their vertex frequency arguments (e.g.,

Σµ(ω1)σ
µ
α1′α1

→ Σµ(−ω1)
∗(−σµα1′α1

) and Σ0(ω1)σ
0
α1′α1

→ Σ0(−ω1)
∗σ0

α1′α1
under the

application of TRS). As argued in Sec. 3.4, this leads to the restriction Σµ(ω) = 0 and

the previously stated symmetry transformation of Eq. (3.48) for Γρφi1i2(s, t, u).

We now continue by discussing some explicit symmetry scenarios as examples. Struc-

tures of the self-energy and the two-particle vertex for the considered scenarios are

summarized in Table 3.2. For the self-energy, a global U(1) spin rotation symmetry

about the z axis enforces vanishing components Σx = Σy = 0. The presence of TRS

always enforces each component Σµ with µ ∈ {x, y, z} to vanish, regardless of whether

any rotation symmetry is present. In contrast, TRS does not restrict any components

Γρφ of the two-particle vertex, whereas rotation symmetries do. In case of a Heisenberg

model (i.e., a global SU(2) spin rotation symmetry exists), the two-particle vertex only

contains two independent components Γ00 and Γxx = Γyy = Γzz, usually labeled as Γd

and Γs [11]. In an XYZ model with TRS, the two-particle vertex contains four finite

and independent components Γρφ, even though the model does generally not contain

any continuous rotation symmetry. A more involved two-particle vertex structure is

obtained for a general model with a global U(1) spin rotation symmetry, which we

again assume about the z axis. In this case, different finite components Γρφ become

dependent on each other, i.e., Γxy = −Γyx and Γxx = Γyy for equal frequency and

site arguments, resulting in a total number of 6 independent two-particle vertex com-

ponents Γρφ [46]. Finally, in absence of any continuous rotation symmetries, all 16

components Γρφ can become finite and independent throughout the PFFRG flow [31].

Since studies on Heisenberg models are frequent, we present the simplified expressions

for flow equations and observables that are obtained if a Heisenberg model is considered

in Appendix A.

Simplified vertex structures in presence of additional symmetries are reflected in the

computational resources required to solve the flow equations. Since the RPA channel

mostly determines the computational resources required to solve the flow equations,

we now consider how vertex structure simplifications affect the number of finite and

independent two-particle vertex products ΓabΓcd for unconstrained indices a, b, c, d ∈
{0, x, y, z} in the RPA channel. The numbers of such independent terms are given

in Table 3.3 for the previously considered models with different symmetry properties.

With the exception of the XYZ model, the number of terms generally increases for each
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Interactions TRS
Relative number of
products ΓabΓcd

Heisenberg Yes 1

XYZ Yes 2

U(1) symmetric Yes 6

Unconstrained Yes 32

U(1) symmetric No 10

Unconstrained No 128

Table 3.3: Relative number of independent and finite two-particle vertex products
ΓabΓcd in the RPA channel for unconstrained indices a, b, c, d ∈ {0, x, y, z} (frequency
and site arguments are kept implicit and differ between Γab and Γcd). The same type of
models as in Table 3.2 are considered, i.e., systems with and without TRS. The table
and its caption are replicated from Ref. [39]

broken spin rotation symmetry. Furthermore, the absence of TRS increases the number

of terms fourfold in absence of any continuous rotation symmetries. In contrast, the

number is less than doubled by breaking TRS in a U(1) symmetric model. Notably,

a U(1) symmetric model without TRS still contains fewer independent terms in the

RPA channel than a model with TRS and without any continuous rotation symmetries.

Note that the vertex frequency symmetry of Eq. (3.48) is not present in case of broken

TRS, doubling the number of frequency arguments for which the two-particle vertex

is independent. It follows that the absence of TRS additionally doubles the number of

frequency arguments for which the flow equation of the two-particle vertex has to be

evaluated. Note that the exact computational complexity of solving the flow equations

is difficult to estimate, since it depends on additional subtle but nevertheless resource-

heavy computational processes, such as efficiently reading out vertex components from

an array.

3.5.4 Cutoff parameter as an effective temperature

We will now explore the analogy between a temperature T and an applied cutoff pa-

rameter Λ, which can be considered to obtain an intuitive understanding of PFFRG

flows. Both the T and Λ flow of a model start in a trivial paramagnetic phase at

T → ∞ or Λ → ∞, and may transition into a magnetically ordered or nontrivial

paramagnetic phase (such as a spin liquid or nematic phase) as the flow parameter is

lowered towards T = 0 or Λ = 0. In presence of a sharp frequency cutoff, given by Eq.

(3.2), the analogy can be made explicit in the mean-field limit. For this cutoff, the RPA

solutions of a model for a finite T and for a finite Λ are related by a simple rescaling

Λ = 2T/π in case no finite magnetic fields are present [32]. However, as will be shown



3.5. Flow equations 61

in the following, the cutoff and temperature analogy should generally be applied with

caution, as it can break apart at small Λ and T . For the analytically solvable model of

a free spin in a magnetic field, it will be shown that the exact expressions of observables

involve qualitatively different functions, depending on whether T or Λ is applied as a

parameter. Additionally, the solutions will inform us which PFFRG flow behavior is

to be expected in spin models exposed to large magnetic fields.

Assuming a magnetic field of size hz along the z axis, the considered model is given by

Ĥ = −hzŜz. (3.70)

Due to the absence of interaction terms, the flow equations become trivial, i.e., all

vertices remain unchanged from their initial conditions throughout the Λ flow. The

single-particle Green function can be solved analytically and is given by

GΛ(1′|1) = GΛ
0 (1

′|1) = θ(|ω1| − Λ)δ(ω1′ − ω1)

(
iω1σ

0 +
h

2
σz

)−1

α1′α1

. (3.71)

The resulting cutoff-dependent magnetization is obtained from Eq. (3.61) and is given

by

MΛ(T = 0) =
1

2
− 1

π
arctan(

2Λ

h
). (3.72)

In contrast, the temperature-dependent magnetization for a single spin in a magnetic

field is straightforwardly obtained as

MΛ=0(T ) =
1

2
tanh(

h

2T
). (3.73)

Both magnetization functions are shown in Fig. 3.1(a), which makes the qualitative

difference of both functions at small T and Λ apparent. While dMΛ=0(T )
dT

vanishes at

T = 0, dM
Λ(T=0)
dΛ

remains finite at Λ = 0, and instead d2MΛ(T=0)
dΛ2 vanishes.

Relevant to the PFFRG are the suseptibility flows as well. They are obtained by

taking the derivative of the magnetization with respect to the global external field, i.e.,
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(a) (b)

Figure 3.1: Analytic flows of the temperature T and sharp frequency cutoff Λ dependent
magnetization MΛ(T ) and susceptibility χµµ,Λ(T ) for a spin-1

2
in a magnetic field of

size h, described by the Hamiltonian of Eq. (3.70). The observables are either shown
in dependence on T or Λ, represented by the variable u, while the remaining parameter
is set as zero. (a) Analytic magnetization flows are shown. The functions are given by
Eqs. (3.72) and (3.73). (b) Static susceptibility flows are shown. The functions are
given by Eqs. (3.75) and (3.74). The subfigures are replicated from Ref. [39].

χµµ,Λ(T ) = ∂Mµ,Λ(T )
∂hµ

. The analytical solutions are given by

χzz,Λ(T = 0) =
1

πh

1

(2Λ
h
) + (2Λ

h
)−1

, (3.74)

χxx,Λ(T = 0) =
1

2h

[
1− 2

π
arctan

(2Λ
h
)
]
, (3.75)

χzz,Λ=0(T ) =
1

4T cosh( h
2T
)2
, (3.76)

χxx,Λ=0(T ) =
1

2h
tanh(

h

2T
). (3.77)

They are shown in Fig. 3.1(b). Note that χzz,Λ(T = 0) has a maximum of χzzmax =

(2πh)−1 at Λ = h/2, and χxx,Λ(T = 0) reaches its maximum value of χxxmax = (2h)−1 at

Λ = 0.

3.5.5 Mean-field approximation

Within the PFFRG, spin models with spins of length S = M
2
> 1

2
, with M ∈ N, are

treated by introducing M copies of spin-1
2
degrees of freedom on each lattice site [32].

As a consequence of this implementation, terms in the flow equation with an internal

site summation
∑

j gain a prefactor M , such that only these terms remain relevant in

the limit S → ∞. Terms with a site summation are given by the Hartree term in the

self-energy flow equation and the RPA term in the two-particle vertex flow equation.

It is known that the PFFRG reproduces the Hartree and RPA approximation if only
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those terms are considered [47]. Hence, PFFRG transitions to mean-field theory in

the limit S → ∞. In the following, we will further investigate the S → ∞ limit of

the PFFRG by solving the Hartree approximation analytically in presence of magnetic

fields and in dependence on a sharp frequency cutoff. In this context, we will highlight

qualitatively different expressions of the Hartree magnetization depending on whether

it is solved as a function of a sharp frequency cutoff Λ or a temperature T .

In the absence of any magnetic field, the Hartree self-energy and local magnetization

remain zero for any Λ. The RPA susceptibility can then be obtained by solving the

two-particle vertex flow equation considering only the RPA channel and treating the

remaining terms as zero, or by solving the BSE self-consistency equation solely con-

sidering the RPA term, which contributes to the reducible vertex γt(1
′, 2′|1, 2) (note

that the RPA flow equation is obtained from the RPA BSE by taking a derivative with

respect to Λ). Note that the latter approach will be demonstrated in Sec. 3.7.

If a model with a finite magnetic field hµ is considered, the Hartree magnetization Mµ

is finite. In this case, one can analytically solve the Hartree magnetization from the cor-

responding Hartree self-consistency equation, as shown below. The RPA susceptibility

is then obtained straightforwardly by taking the derivative with respect to an external

magnetic field, i.e., χµµ,Λ = ∂Mµ,Λ

∂hµ
. It follows that knowledge of the two-particle vertex

is not required to determine the RPA susceptibility if hµ is incorporated into the model.

For simplicity, a nearest-neighbor Heisenberg model in a magnetic field h along the z

axis, given by the Hamiltonian

Ĥ = J
∑
⟨ij⟩

Ŝi · Ŝj − h
∑
i

Ŝzi , (3.78)

will be considered in the following calculation of a Hartree magnetization.

The Hartree self-consistency equation of the self-energy [18] is given by

ΣΛ(1′, 1) =
∑
2,2′

J||(1
′, 2′|1, 2)
4

GΛ(2|2′), (3.79)

with

J||(1
′, 2′|1, 2) = Ji1i2

∑
µ

σµα1′α1
σµα2′α2

δ(ω1′ + ω2′ − ω1 − ω2)δi1′ i1δi2′ i2 . (3.80)

The self-consistent Hartree self-energy is frequency independent. By inserting the self-
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energy and Green function parameterizations of Eqs. (3.35) and (3.40), the equation

γz,Λi =
1

4π

∑
j

Jij

∫ ∞

−∞
dωgz,Λj (ω) (3.81)

is obtained, which can be further simplified to

γz,Λ =
cJMΛ

2
(3.82)

by comparison to the magnetization expression of Eq. (3.61). The constant c is the

coordination number of the lattice. A self-consistency equation for the Hartree magne-

tization is obtained by inserting Eq. (3.82) into the Green function in Eq. (3.61) after

applying Dyson’s Eq. (3.41). An evaluation of the frequency integral leads to

MΛ =
1

2
sgn(h− cJMΛ)− 1

π
arctan(

2Λ

h− cJMΛ
). (3.83)

The equation replicates the exact solution of a free spin in case J = 0, which is given

by Eq. (3.72). At finite h, the Hartree mean-field solution becomes qualitatively

different depending on whether a sharp frequency cutoff or a temperature is considered

as a variable, as is reflected by the respective mean-field self-consistency equations.

While the self-consistency equation of MΛ is characterized by an arctan function, the

temperature-dependent solution M(T ) involves a tanh function.

3.5.6 Cutoff function

The FRG formalism leaves much freedom in the choice of a cutoff parameter. Possible

choices include the parameter to be a momentum, frequency, interaction, or temper-

ature [16]. PFFRG applications generally apply a frequency cutoff function R(Λ, ω)

that modifies the free Green function as

Gµ
0,i(ω) → R(Λ, ω)Gµ

0,i(ω). (3.84)

However, a momentum cutoff had previously been applied as well [34]. As already

mentioned, we only apply a sharp frequency cutoff R(Λ, ω) = θ(|ω| −Λ) in this thesis,

which modifies the free single-particle Green function via the Heaviside step function

θ(ω) =

1, ω ≥ 0

0, ω < 0
. (3.85)
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The cutoff dependencies of the full single-particle Green function and single-scale prop-

agator follow as

Gµ,Λ
i (ω) = θ(|ω| − Λ)Gµ

i (ω), (3.86)

Sµ,Λi (ω) = − d

dΛ
Gµ,Λ
i (ω)|ΣΛ=const = δ(|ω| − Λ)Gµ

i (ω). (3.87)

Note that S̃µ,Λi (ω), given by Eq. (3.57), does not include a Dirac delta dependence.

Instead, S̃µ,Λi (ω) ∝ θ(|ω|−Λ). A sharp cutoff simplifies a numerical PFFRG implemen-

tation as it simplifies the frequency integrals of the flow equations straightforwardly.

While the Dirac delta function of Sµ,Λi (ω) eliminates one frequency integral, the Heav-

iside function of Gµ,Λ
i (ω) changes boundaries of frequency integrals in the two-particle

vertex flow equation. As a disadvantage, the sharp frequency cutoff, combined with

the numerically necessary discretization of vertex frequency dependencies, leads to os-

cillatory numerical artifacts in the frequency resolutions of ΣΛ(1′|1) and ΓΛ(1′, 2′|1, 2)
[36]. Such oscillatory features are often visible in the PFFRG susceptibility flow as

well.

The oscillatory numerical artifacts can be circumvented by more sophisticated numer-

ical implementations of the PFFRG that apply continuous cutoff functions R(Λ, ω)

[38, 36]. Two examples of continuous R(Λ, ω), used in Refs. [36] and [28], are given by

R(ω) =1− e−ω
2/Λ2

,

R(ω) =
ω2

ω2 + Λ2
.

(3.88)

3.5.7 Detection of magnetic phases

We now continue with a discussion on how the PFFRG is applied to investigate T = 0

phases of spin models. Symmetries of a spin model with TRS are spontaneously bro-

ken at a magnetic phase transition. This is reflected by a divergence of the magnetic

susceptibility. Experimentally, a magnetic phase transition typically occurs by low-

ering the temperature of a system. In context of the PFFRG, a magnetic phase is

entered through a Λ flow instead, and the corresponding divergence of the magnetic

susceptibility usually manifests itself as a flow breakdown in the form of a kink at a

critical cutoff Λc in an otherwise smooth susceptibility flow at Λ > Λc. Since the flow

equations are solved from the infrared Λ → ∞ towards the Λ = 0 limit, flows at cutoffs

below a breakdown at Λ < Λc are unphysical. As a consequence, the manifestation of

a flow breakdown at Λc enforces the treatment of a spin model at cutoffs Λ > Λc above

a magnetic phase transition. Properties of a magnetically ordered phase at Λ < Λc can
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partially be inferred from the magnetic susceptibility at cutoffs just above Λc. E.g., the

magnetic Bragg peaks that emerge in the magnetic susceptibility near Λc can often be

identified with a magnetic order. As an alternative scenario, a PFFRG flow may not

encounter any flow breakdown at all down to Λ = 0. This implies the absence of any

spontaneous symmetry breaking that leads to the onset of magnetic order, since these

spontaneously broken symmetries would have resulted in a flow breakdown. If a model

with TRS is considered, such a fully stable flow implies the presence of a nonmagnetic

phase at T = 0 as a consequence. Note that the absence of flow breakdowns is found

in flows into nematic paramagnetic phases as well, even though they spontaneously

break symmetries. In this case, no flow breakdown is detected due to the truncation

of flow equations above the two-particle vertex. To detect a phase transition into a

nematic order, one could employ a truncation scheme that does not truncate the flow

equations of the n-particle vertex functions with n > 2 that are able to detect the

diverging susceptibility of a nematic phase transition. However, at the time of writing,

such a truncation scheme is not feasible with the computational resources available.

A selection of exemplary PFFRG flows is provided in Fig. 3.2. The corresponding

models are treated in Chapters 5 and 6 respectively. The nearest-neighbor antiferro-

magnetic Heisenberg model on the pyrochlore lattice remains paramagnetic down to

T = 0 [48]. Accordingly, the PFFRG flow of the maximum susceptibility χzz,Λmax , shown

in red, remains smooth down to Λ → 0. In contrast, the flow of the ferromagnetic

model on the same lattice, shown in green, experiences a magnetic phase transition

that manifests itself as a clear flow breakdown in form of a sharp susceptibility peak at

Λ ≈ 0.6. A softer flow breakdown is observed in the blue-colored flow corresponding to

the density-functional-theory model of the compound K2Ni2(SO4)3, again caused by a

magnetic phase transition. In this case, the breakdown manifests itself as a kink in the

susceptibility flow. At cutoffs below the breakdown, oscillatory features are observed to

be enhanced. These features are numerical artifacts caused by a sharp frequency cutoff

in combination with finite frequency grids on which vertices are computed. These ar-

tifacts can be cured by an advanced numerical implementation as done in [36]. Softer

flow breakdowns are often observed in highly frustrated models that are close to a

paramagnetic phase transition [49]. Thus, soft flow breakdowns are often associated

with weak magnetic order. E.g., as interactions of a model are continuously changed

for it to transition from a magnetically ordered to a nonmagnetic phase at T = 0, the

PFFRG flow of the model evolves such that the flow breakdown continuously becomes

softer until it disappears completely once the model turns nonmagnetic. This continu-

ous behavior can lead to an uncertainty in the interaction parameter space in question

over which a paramagnetic phase extends in a T = 0 phase diagram.

In order for the PFFRG to access properties of a model within its magnetically ordered



3.5. Flow equations 67

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Λ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

χ
zz
,Λ

m
ax ×0.1

Pyrochlore AFM

Pyrochlore FM

K2Ni2(SO4)3

Figure 3.2: Exemplary PFFRG flows of the maximum static susceptibility χzz,Λmax . Flows
both with and without a flow breakdown caused by a magnetic phase transition are
shown. The flows of the S = 1/2 nearest-neighbor antiferromagnetic (”Pyrochlore
AFM”) and ferromagnetic (”Pyrochlore FM”) Heisenberg model on the pyrochlore lat-
tice, obtained with the PFFRG implementation of Sec. 5.2, are shown in red and green
respectively. The intensity of the latter flow is multiplied by a factor of 0.1. The flow
of the highly geometrically frustrated S = 1 Heisenberg model of the three-dimensional
tetra-trillium compound K2Ni2(SO4)3, with interactions obtained by density functional
theory, is shown in blue. The latter flow is obtained from the PFFRG implementation
of Chapter 6.

phase, the susceptibility divergence at a magnetic phase transition has to be regularized.

This can be achieved by breaking symmetries of a model by the introduction of a

perturbative (possibly site-dependent) magnetic seed field that would otherwise be

broken spontaneously by a magnetic order. Such a strategy was previously used in

the fermionic FRG [50, 51]. The seed field suppresses a susceptibility divergence at Λc.

Instead, a maximum in susceptibility emerges and a smooth susceptibility flow down to

the cutoff-free limit is enabled. Subsequently, properties of the magnetic ground state

can be studied by computing the susceptibility or (site-dependent) magnetization in

the Λ = 0 limit. An in-depth study of PFFRG flows into magnetically ordered phases

will be provided in Chapter 4, which covers contents of our recent paper Ref. [39].

3.5.8 Detection of nematic phases

The previous section discussed how magnetic and paramagnetic phases are detected

within PFFRG. Furthermore, it was argued that the magnetic susceptibility can be

investigated just above Λc to further characterize a magnetically ordered phase. As the
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next step, we now consider the question how PFFRG can be applied to characterize

T = 0 nonmagnetic phases as well. More specifically, we will be interested in the

characterization of nematic phases, i.e., phases that do not spontaneously break TRS

but break spin rotation or lattice rotation symmetries [1]. While nematic phases that

break spin rotation symmetries are referred to as spin nematic phases, those that break

lattice rotation symmetries are referred to as lattice nematic phases [52]. In this thesis,

we will study nonmagnetic phases by PFFRG only with respect to the presence of

lattice nematic order. However, in principle they can be studied by PFFRG with

respect to the presence of spin nematic order as well, as shown in Ref. [52]. It will

turn out that compared to the characterization of magnetic order, the characterization

of nematic phases is challenging within PFFRG.

The susceptibilities that are able to detect nematic phases are often obtained from spin

correlations that are of quartic or higher order in spin operators. E.g., finite long-range

dimer correlations χVB = ⟨(Ŝi · Ŝj)(Ŝk · Ŝl)⟩ − ⟨(Ŝi · Ŝj)⟩⟨(Ŝk · Ŝl)⟩ are expected for

a valence-bond solid that has dimers on bonds ⟨i, j⟩ and ⟨k, l⟩ [53]. A computation

of these correlations would require a flow equation truncation above the four-particle

vertex or higher, which is not numerically feasible at the time of writing. Instead, the

PFFRG is generally applied with a truncation above the two-particle vertex, which

highly limits the capability of the method to detect nematic phases. This limitation

is apparent by the lack of flow breakdowns in nematically ordered models that should

follow from the spontaneously broken symmetries of their nematic phases [52].

Nevertheless, an approach to detecting nematic phases with PFFRG exists, which does

not require the computation of spin correlations that are of higher than quadratic order

in spin operators. The approach measures the response of a model to a perturbation

that breaks the same symmetries as a proposed nematic phase does spontaneously.

Note that this approach introduces an a priori bias, since spontaneously broken sym-

metries that are probed for have to be decided on before the perturbation is applied.

This issue is not present in the detection of ordered phases via susceptibilities. The

PFFRG strategy for detecting nematic phases will be described in the following. We

will first give a general description of the approach before making it mathematically

concrete.

Magnetic orders can be detected via the magnetic susceptibility χ, which can be ac-

cessed theoretically either by evaluating spin correlations [see Eq. (3.62)], or from

the response of a magnetic order parameter M to an infinitesimal magnetic field h

(χ = ∂M
∂h

|h=0). Similarly, one can access the susceptibility to a nematic order either

from spin correlations (given by χVB in case of a valence bond solid) or by consid-

ering the response of a nematic order parameter to a symmetry-breaking perturba-
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tion (the corresponding so-called dimer response function will be introduced at a later

point). E.g., in case of a valence bond solid, an order parameter would be given by

⟨(Ŝi · Ŝj)⟩ − ⟨(Ŝk · Ŝl)⟩, where ⟨i, j⟩ is a bond with a dimer being present and ⟨k, l⟩
is a bond without a dimer [54]. Only the latter approach for detecting nematic order

is applicable within the PFFRG truncation. While the PFFRG is not able to observe

a divergence in the response function of a nematic order, large response values in the

limit Λ → 0 indicate that a model assumes a nematic phase at zero temperature. E.g.,

such an approach was applied in Ref. [52] on the square lattice Heisenberg model with

further-neighbor interactions to investigate the model with respect to nematic ground

states with broken spin rotation symmetry, lattice rotation symmetry, or a combina-

tion of both. In Sec. 5.1 of this thesis, the same strategy to detect nematic phases is

applied to study the paramagnetic ground state of the antiferromagnetic Heisenberg

model on the pyrochlore lattice with respect to lattice symmetry breaking.

We now specify the approach used in the latter study. In order to probe a nearest-

neighbor Heisenberg model

Ĥ = J
∑
⟨ij⟩

ŜiŜj (3.89)

with respect to lattice symmetry breaking, e.g., in form of a valence bond solid ground

state, Heisenberg interactions JŜiŜj will be either strengthened or weakened on differ-

ent bonds by perturbing J → J± δ, with δ ≪ J . Different perturbation patterns allow

one to investigate the responses with respect to different lattice symmetry breaking

scenarios. The responses of the system to the respective perturbations are captured by

the dimer response function χΛ
D,ijkl, which is defined on the bonds ⟨i, j⟩ and ⟨k, l⟩, and

is given by

χΛ
D,ijkl =

∣∣∣J
δ

χΛ
ij − χΛ

kl

χΛ
ij + χΛ

kl

∣∣∣ ,where Jij = J + δ, Jkl = J − δ , (3.90)

with χΛ
ij = χxx,Λij +χyy,Λij +χzz,Λij . In the limit Λ → ∞ the response function is normalized,

i.e., χΛ→∞
D,ijkl = 1. A large increase to values χΛ

D,ijkl ≫ 1 in the cutoff-free limit Λ → 0

hints at a phase in which the lattice symmetry, that maps the two bonds ⟨i, j⟩ and

⟨k, l⟩ onto each other, is broken.

3.6 Alternative implementation of magnetic fields

within PFFRG

This section explores an alternative strategy for accessing observables of models with

broken TRS within PFFRG. Importantly, the presented approach circumvents the

direct treatment of models with broken TRS. Instead, models with TRS will be treated
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for which observables such as spin correlations or local magnetizations can be related to

observables of similar models with broken TRS by taking a partial trace. As such, this

approach is numerically efficient in principle, since the breaking of TRS is associated

with an increase in the numerically required resources for solving the flow equations.

However, upon closer inspection, we will reveal that the approach exhibits properties

that make it impractical for a PFFRG implementation. The technique will be described

in the following. Note that this approach had been formulated before the general

PFFRG formulation for models with broken TRS was derived. At that point, it was

thought that the treatment of models with broken TRS requires high computational

costs [31], which justified the persuasion of this numerically efficient trick.

For the purpose of this section, we aim at solving the S = 1/2 Hamiltonian

Ĥ(h) = J
∑
⟨ij⟩

ST
i Sj − h

∑
i

Ŝzi (3.91)

of a nearest-neighbor Heisenberg model that is coupled to an external magnetic field

h in the following. Broken TRS can be circumvented by considering both Ĥ(h) and

Ĥ(−h), i.e., the Hamiltonian before and after the application of time-reversal, simulta-

neously. The resulting model can be interpreted as a spin model in which each lattice

site i is coupled to an external site iext by an Ising interaction of size 2h. The model is

given by

Ĥh = ĤL + Ĥext = J
∑
⟨ij⟩

Si · Sj − 2h
∑

i∈Lattice

Ŝzi Ŝ
z
iext (3.92)

and does not break TRS. Note that the interactions of Ĥh are treatable within PF-

FRG in principle. The Hamiltonian can be split up into ĤL, which is the Heisenberg

Hamiltonian of the lattice, and Ĥext being the Ising coupling between the lattice and

external spin.

Ĥ(h) is obtained from Ĥh by performing a partial projection onto the up state |↑iext⟩
of the external spin operator Ŝziext , which fulfills Ŝziext |↑iext⟩ = 1

2
|↑iext⟩, i.e.,

Ĥ(h) = ⟨↑iext| Ĥh |↑iext⟩ . (3.93)

Since [Ĥh, Ŝ
z
iext ] = 0, Ŝziext and Ĥh share the same eigenvectors. It is straightforward to

confirm that

⟨↑iext | e−βĤh |↑iext⟩ = e−βĤ(h),

⟨↓iext| e−βĤh |↓iext⟩ = e−βĤ(−h), (3.94)

with Ŝziext |↓iext⟩ = −1
2
|↓iext⟩.
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We now consider a spin correlation ⟨ŜziextŜzi ⟩h of Ĥh between the external spin and a spin

of the lattice and show that the correlation is equal to twice the magnetization ⟨Ŝzi ⟩(h)
of Ĥ(h). For this purpose, an explicit evaluation of the trace over the eigenstates of

Ŝziext will be performed in the following. trh(. . . ) denotes the trace over states of Ĥh

and trL(. . . ) is the trace over states of the lattice Hamiltonian ĤL. Furthermore, Zh

is the partition sum of Ĥh, whereas Z(h) is the partition sum of Ĥ(h).

⟨ŜziextŜzi ⟩h

=
1

Zh
trh
(
e−βĤhŜziextŜ

z
i

)
=

1

Zh
trL
(
⟨↑iext| e−βĤhŜziextŜ

z
i |↑iext⟩

)
+ trL

(
⟨↓iext| e−βĤhŜziextŜ

z
i |↓iext⟩

)
(3.94)
=

1

Z(h) + Z(−h)
1

2

[
trL
(
e−βĤ(h)Ŝzi

)
− trL

(
e−βĤ(−h)Ŝzi

)]
=

1

Z(h) + Z(−h)
1

2

[
⟨Ŝzi ⟩(h)− ⟨Ŝzi ⟩(−h)

]
=
1

2
⟨Ŝzi ⟩(h). (3.95)

Z(h) = Z(−h) and ⟨Ŝzi ⟩(−h) = −⟨Ŝzi ⟩(h) was applied in the last step . Furthermore,

we can compute spin correlations of Ĥh between spins of the lattice and show their

equality to spin correlations of Ĥ(h).

⟨Ŝzi Ŝzj ⟩h

=
1

Zh
trh
(
e−βĤhŜzi Ŝ

z
j

)
=

1

Zh
trL
(
⟨↑iext| e−βĤhŜzi Ŝ

z
j |↑iext⟩

)
+ trL

(
⟨↓iext| e−βĤhŜzi Ŝ

z
j |↓iext⟩

)
(3.94)
=

1

Z(h) + Z(−h)
[
trL
(
e−βĤ(h)Ŝzi Ŝ

z
j

)
+ trL

(
e−βĤ(−h)Ŝzi Ŝ

z
j

)]
=

1

Z(h) + Z(−h)
[
⟨Ŝzi Ŝzj ⟩(h) + ⟨Ŝzi Ŝzj ⟩(−h)

]
=⟨Ŝzi Ŝzj ⟩(h). (3.96)

The last step applies ⟨Ŝzi Ŝzj ⟩(h) = ⟨Ŝzi Ŝzj ⟩(−h).

To summarize, we have shown that by coupling spins of a spin model ĤL to an external

spin Ŝziext via an Ising interaction, we can relate spin correlations of the combined lattice

and external spin model Ĥh to spin correlations and local magnetizations of the lattice

model coupled to a magnetic field Ĥ(h). Once Ĥh is solved, observables of Ĥ(h) can

be calculated straightforwardly. Note that the Ising interaction involving the external

spin is global in contrast to the local interactions within the lattice. Ultimately, this

is the reason why this approach of treating magnetic fields fails within PFFRG. The
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explanation for this failure will be summarized in the following.

The Hartree term of the self-energy flow equation and the RPA term of the two-

particle vertex flow equation both contain a site summation
∑

j. Since Ŝ
z
iext is coupled

nonlocally in Ĥh to each lattice site, these site summations generate a prefactor N ,

being the number of unit cells in the lattice, in front of the Hartree and RPA terms

if site arguments of the computed vertices Σ(1′|1) and Γ(1′, 2′|1, 2) fulfill i1 = iext or

i2 = iext. Since the PFFRG assumes a lattice of infinite extend N → ∞, the two-

particle vertex has to be rescaled if it contains iext at least once as an argument in

order to obtain a convergent PFFRG solution. The rescaling is given by

Γ̃ρρ,Λiextiext
= NΓρρ,Λiextiext

, (3.97)

Γ̃ρρ,ΛiextiL
= NΓρρ,ΛiextiL

, (3.98)

Γ̃ρρ,ΛiLiext
= NΓρρ,ΛiLiext

, (3.99)

with iL being an arbitrary lattice site. This rescaling approach is similar to the approach

that was pursued to compute the large S or large N solution of the PFFRG [32, 33].

At the beginning of the flow, the rescaled vertices are given by

Γ̃ρρ,Λ→∞
iextiext

= 0, (3.100)

Γ̃ρρ,Λ→∞
iextiL

=
Nh

2
δρz, (3.101)

Γ̃ρρ,Λ→∞
iLiext

=
Nh

2
δρz. (3.102)

Since N → ∞, the flow equations can only be solved for infinitesimal magnetic fields

h = h̃/N . However, the response of a system to an infinitesimal magnetic field is already

contained in its magnetic susceptibility at h = 0. One can conclude that the approach

of this section to treat models with broken TRS does not allow the computation of any

observables at finite magnetic fields if a lattice of infinite size is considered.

3.7 Considerations on the pseudo-fermion parquet

equations

It was shown in Sec. 3.1.1 that the truncated FRG flow equation of ΓΛ(1′, 2′|1, 2)
can be understood as a simplification of the parquet equations. It is hence reasonable

to ask whether one can circumvent the FRG scheme altogether and instead compute

the pseudo-fermion self-energy and two-particle vertex at zero cutoff self-consistently to

begin with by using the parquet equations and the self-energy SDE. We will explore this
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question in the following and point out some hurdles that such an approach includes.

In order to compute Σ(1′|1) and Γ(1′, 2′|1, 2) self-consistently, the BSE (2.42) has to be

solved for each reducible vertex γr(1
′, 2′|1, 2), with r ∈ {s, t, u}, and Σ(1′|1) has to be

obtained from another self-consistency equation, e.g., the SDE (2.32), in a combined

scheme. Each, the self-consistency equations of γr and Σ, couple between each other

since γr and Σ are both required as input in the SDE and BSE, i.e., the SDE requires

γr, and the BSE of channel r requires Σ and γr̄, with r̄ ̸= r, as input. A strategy

for obtaining a simultaneous solution for the SDE and BSE is to apply an algorithm

that solves these equations iteratively until convergence is obtained for each solution

[23, 24].

We continue by exploring how a BSE solution of a single channel r ∈ {s, t, u} can be

obtained under the assumption that Σ(1′|1) is known. There are different approaches

to solving the BSE for γr. As an approach, one may choose to iteratively set in γr on

the right-hand side of Eq. (2.42). This leads to a series, as given by Eq. (2.47), which

however may not converge. Alternatively, one can solve the BSE of a single channel

r directly by applying a matrix inversion, starting from the matrix formulation of the

BSE given by Eq. (2.42). This equation can be solved after setting in Γ = γr + Ir as

γr =
Ir ◦Πr ◦ Ir
1 − Ir ◦Πr

. (3.103)

Due to the matrix inversion, the numerical implementation for a solution of Eq. (3.103)

is more involved than the previous iterative approach and requires numerically efficient

matrix definitions for vertices. A trivial matrix notation, e.g., for γt(1
′, 2′|1, 2) in the

t-channel BSE of γt(1
′, 2′|1, 2), would involve assigning a unique row index for each

tuple (1′, 1) of vertex arguments and a unique column index for each tuple (2′, 2) (at

T = 0 the frequency arguments have to be discretized for such a procedure). Note

that valid matrix definitions differ between BSEs of different channels [compare Eq.

(2.42) and Eqs. (2.43)-(2.45)]. More efficient matrix definitions that result in smaller

matrix dimensions exist and make use of energy conservation and conservation of the

transfer frequency r throughout the BSE Feynman diagrams of the r channel [55].

Furthermore, matrices may be defined even more efficiently within PFFRG by making

use of the bilocality of γr.

Even though an implementation of the matrix inversion approach to solving the BSE

is numerically demanding, we show in the following that it can allow for convergent

solutions in cases where the alternative procedure of iteratively inserting γr into the

BSE leads to a divergence. For this purpose, the analytical solution of the sole RPA

channel will be considered.
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RPA solution of the Bethe-Salpeter equation

The RPA self-consistency equation is obtained by only considering the RPA channel

of the BSE and is given by

γρφt,i1i2(s, t, u) =
1

2π

∫ ∞

−∞
dω′

∑
abcdef

×
∑
j

Iabt,i1j(ω1′ + ω′, t, ω1 − ω′)Γcdji2(ω2 + ω′, t,−ω2′ + ω′)

×Ge
j(ω

′ + t)Gf
j (ω

′)tr(σbσeσcσf )δaρδdφ. (3.104)

Since the s and u channels are neglected within the RPA, γs = 0 and γu = 0. The

two-particle vertex solution obtained from Eq. (3.104) only exhibits a t frequency

dependence. For simplicity, we will consider a Heisenberg model at zero magnetic field

in the following. In this case, only diagonal vertex components γρρt , Iρρt and Γρρt are

finite. In case of the single-particle Green function, only the component Gρ=0 is finite

(see Table 3.2). It follows that Eq. (3.104) simplifies to

γρρt,i1i2(t) =
1

π

∫ ∞

−∞
dω
∑
j

Iρρt,i1j(t)Γ
ρρ
ji2
(t) ·G0

j(ω)G
0
j(ω + t), (3.105)

in which we have carried out the summation over indices a, . . . , f and simplified the fre-

quency dependencies. From this expression it is apparent that the self-consistency equa-

tions for two-particle vertices γρρt,i1i2(t) and γφφt,i1i2(t
′) of different frequency arguments

t ̸= t and indices ρ ̸= φ do not couple and hence we are able to continue by solely solv-

ing the equation for the static vertex and simplify the notation as γµµt,i1i2(t = 0) → γt,i1i2 .

In the absence of a magnetic field, the RPA self-energy vanishes. To still obtain a con-

verging frequency integral, one can introduce a finite pseudo-fermion lifetime constant

d to the Green function such that

G0
j(ω) =

1

i[ω + d · sgn(ω)] . (3.106)

We assume d as site-independent for simplicity. The RPA self-consistency equation

now reads as

γt,i1i2 = −
∑
j

Iti1jΓji2 ·
1

π

∫ ∞

−∞
dω[ω + d · sgn(ω)]−2 (3.107)
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A Fourier transformation leads to the momentum q dependent expression

γt(q) = −CI(q)Γ(q),

with C =
1

π

∫ ∞

−∞
dω[ω + d · sgn(ω)]−2 =

2

d
.

(3.108)

Finally, application of the parquet decomposition, given by Eq. (2.37), results in the

equation

γt(q) = −CR(q)[R(q) + γt(q)]. (3.109)

Within parquet approximation, R(q) is given by the momentum-dependent bare two-

body interaction.

We explore the solution of Eq. (3.109) obtained by either ”matrix” inversion or iterative

insertion of γt(q) in the following. Note that due to the reduced argument dependencies

of vertices within RPA, matrix definitions of vertices become diagonal. It follows that

the ”matrix” inversion approach applied to Eq. (3.109) only has to deal with scalars

instead. First, an exact solution obtained by ”matrix” inversion is given by

γt(q) = − CR(q)2

1 + CR(q)

(2.37)
=⇒ Γ(q) =

1

C +R(q)−1
, (3.110)

which results in the static susceptibility

χzz(q) =
1

4[C−1 +R(q)]
(3.111)

by the application of Eq. (3.64). The alternative approach consists of an iterative

reinsertion of γt(q) on the right-hand side of Eq. (3.109). Within RPA, this approach

is equal to evaluating the geometric series

Γ(q) = R(q)
∞∑
n=0

[−CR(q)]n (3.112)

with the solution

Γ(q) =
1

C +R(q)−1
for |CR(q)| < 1. (3.113)

Importantly, the iterative solution approach does not converge for |CR(q)| ≥ 1 whereas

the ”matrix” inversion approach can still give a result. While we have demonstrated

the different solution procedures only within RPA, the results show that iterative and

”matrix” inversion solution strategies can have different advantages. While the iterative

solution procedure is generally easier to numerically implement, one approach may
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achieve a convergent solution in situations where the other does not.

Finally, we end the section with some closing remarks on the application of the parquet

equations for pseudo-fermion models. It has been observed for Hubbard models that

the difficulty in obtaining a simultaneous convergence of the SDE for the self-energy

and the parquet equations increases with the interaction strengths of a model [23, 24].

These results suggest that solutions of the pseudo-fermion Hamiltonian of Eq. (3.21)

may be difficult to converge as well if it is considered in the strongly interacting limit

of small or zero magnetic fields hµi . Indeed, for pseudo-fermion Hamiltonians with

TRS (hµi = 0), the parquet equations were previously observed to converge only in

presence of a finite cutoff Λ. The convergence is achieved easier for larger Λ. For Λ

equal to or below the magnitude of the interactions of a model, convergence becomes

challenging and generally not possible in the limit Λ → 0 [36]. Thus, the parquet

equations themselves are unsuitable for the study of spin models with TRS. However,

in context of the PFFRG, the parquet equations still are useful, as they can be solved

at large Λ to obtain vertices that can be applied as starting conditions of a PFFRG

flow [36]. Furthermore, note that the parquet equations were previously only applied

in the PFFRG for models without magnetic fields. Since the process of convergence for

parquet-equation solutions has been observed to be improved in systems with weaker

interactions [23, 24], it would be reasonable to investigate whether such an effect is

observable in pseudo-fermion models as well upon the inclusion of finite magnetic fields.

3.8 Summary

The chapter began with a general introduction of the FRG method and related it to al-

ternative schemes for the calculation of vertex functions, such as the Schwinger-Dyson

equations and parquet equations. Afterwards, the PFFRG has been introduced as a

FRG variant for the treatment of spin models that maps spins onto pseudo fermions.

The mapping results in pseudo-fermion Hamiltonians that exhibit both physical sym-

metries, which are already present in the original spin model, and gauge symmetries,

which are introduced by the pseudo-fermion mapping. The exploitation of these sym-

metries is crucial to make a numerical solution of the PFFRG flow equations feasible.

Vertex function symmetries were derived for a spin model with arbitrary terms linear

or bilinear in spin operators. Subsequently, suitable vertex parameterizations were pro-

posed based on the resulting constrained vertex structures, allowing for a numerically

efficient evaluation of the flow equations. Most importantly, the presented PFFRG

formulation extends previous formulations to allow for the treatment of models with

linear spin couplings to external magnetic fields.
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The parameterized PFFRG flow equations for ΣΛ(1′|1) and ΓΛ(1′, 2′|1, 2) were pre-

sented and discussed in detail. It was shown that the chosen vertex parameterizations

allow simplified flow equations for models with continuous spin rotation symmetries

or TRS to be obtained by simply constraining the values that summation indices in

the flow equations can assume. The numerical feasibility of the PFFRG for models

with broken TRS will be demonstrated in the next Chapter 4 by considering a variety

of models with broken TRS. Some of these models will be absent of continuous spin

rotation symmetries.

The PFFRG approaches to detect magnetic and nematic orders were discussed. Spon-

taneously broken symmetries were shown to manifest in susceptibility flow breakdowns

at magnetic phase transitions within PFFRG. The type of magnetic order can then

be inferred above the critical cutoff from the magnetic susceptibility. In contrast, due

to the truncation of flow equations, the detection of nematic phases is only possible

by calculating the response of a system to different symmetry breaking perturbations.

It was further mentioned that the methodologically new capability to treat magnetic

fields unlocks the new paradigm of detecting magnetic phases via their order param-

eter directly. This approach will be investigated in Chapter 4 for applications on

two-dimensional Heisenberg models.

Near the end of the chapter, an alternative approach for treating TRS-breaking models

within PFFRG was presented. Ultimately, this approach failed due to the presence of

nonlocal interactions. Furthermore, possible solution strategies for the pseudo-fermion

parquet equations were investigated. Since the truncated FRG flow equations and the

parquet equations are closely related, the PFFRG method extension to treat models

with broken TRS can analogously be applied to the pseudo-fermion parquet equations

at minimum effort. Importantly, it had been observed in earlier studies that solutions

for parquet equations are difficult to converge for strongly interacting models [23, 24].

In agreement with this observation, previous solutions of the pseudo-fermion parquet

equations for models without magnetic fields were only achieved in presence of a finite

frequency cutoff [36]. In future applications, the implementation of finite magnetic

fields may allow to achieve solutions of the pseudo-fermion parquet equations even in

absence of any cutoff.





Chapter 4

PFFRG at finite magnetic fields:

Zero-field magnetizations,

magnetization curves and

magnetization plateaus

The theoretical foundation for the application of the PFFRG was provided in the

previous chapter. In the remaining chapters of the thesis, the method will be applied

to study a variety of spin models. The physical properties of the models considered in

Chapters 5 and 6 are of recent interest. The models considered in these chapters are

of the general form

Ĥ =
1

2

∑
ij

∑
µν

Jµνij Ŝ
µ
i Ŝ

ν
j . (4.1)

They display high geometrical frustration and often have anisotropic interactions.

Moreover, all of them fulfill TRS. Capabilities and limitations of the PFFRG in the

study of such models that are given by Eq. (4.1) are well known, and the method

is well established in their study [12]. In contrast, the PFFRG has been applied to

models with broken TRS that are given by a general Hamiltonian

Ĥ =
1

2

∑
ij

∑
µν

Jµνij Ŝ
µ
i Ŝ

ν
j −

∑
i

∑
µ

hµi Ŝ
µ
i (4.2)

just recently [39]. We presented the PFFRG formulation for the treatment of such

models in the previous Chapter 3. In this chapter, we will shed light on this so far less

explored PFFRG application to models with broken TRS. To this end, the content of

this chapter will follow along our recent paper of Ref. [39], which explores S = 1/2

applications on models with broken TRS for the general PFFRG formulation given

79
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in Chapter 3. More specifically, the regularization of PFFRG flow breakdowns at

magnetic phase transitions will be demonstrated and the resulting flows will be studied.

A subsequent study of magnetic order parameters in the limit Λ → 0 is thus enabled,

allowing for quantitative comparisons with literature values. In addition, the chapter

will provide new insights on finite-field applications as well by investigating whether the

method is suited for the study of magnetization curves and, in particular, magnetization

plateaus.

Throughout the chapter, magnetic fields will be subdivided conceptually into a site-

dependent perturbative seed field δni, which is applied for the regularization of a

susceptibility divergence caused by a magnetic phase transition, and a nonperturbative

global component h oriented along the z axis, which can be interpreted as an external

magnetic field. The Hamiltonians of this chapter are of the general form

Ĥ =
∑
⟨ij⟩

JµµŜµi Ŝ
µ
j − h

∑
i

Ŝzi − δ
∑
i

ni · Ŝi. (4.3)

All models considered only contain nearest-neighbor interactions that are either of

Heisenberg (Jxxij = Jyyij = Jzzij ) or XXZ (Jxxij = Jyyij ̸= Jzzij ) type. We use the simplified

notation Jµµ = J in case a Heisenberg model is considered. The seed field will be

applied with normalized vectors |ni| = 1 and with δ ≪ |Jµµ|. To achieve the regular-

ization of a susceptibility divergence, the seed field is chosen to break all symmetries of

a model that would otherwise be broken spontaneously by a magnetic order. To this

end, δni will always be oriented along the site-dependent magnetization of a predicted

magnetic ground state unless stated otherwise. E.g., it will be applied colinearly and

with an alternating sign in the case of antiferromagnetic order on the square-lattice

antiferromagnetic Heisenberg model, and in angles of 120◦ on the triangular-lattice

antiferromagnetic Heisenberg model, which assumes so-called 120◦ order.

The chapter is structured as follows. Models in absence of global magnetic fields

(h = 0) will be treated first. Sec. 4.1 will treat magnetically ordered phases on the

two-dimensional square, honeycomb and triangular lattices. By applying perturbative

seed fields to nearest-neighbor Heisenberg models, flow breakdowns will be regularized,

which allows a subsequent study of magnetically ordered phases in the physically rele-

vant limit at Λ → 0 and δ → 0. Zero-field magnetizations will be compared to literature

values, and the stability of magnetic orders with respect to different choices of seed

fields will be studied. The following Section 4.2 will investigate PFFRG applications at

finite magnetic fields h beyond the perturbative regime. As a pedagogical example, the

magnetization curve of the antiferromagnetic Heisenberg model on the square lattice

will be resolved and compared to literature results. Note that Sec. 4.1 and 4.2 cover

content of Ref. [39]. In contrast, Sec. 4.3 goes beyond previously published results and
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explores whether the PFFRG can be applied successfully in the study of magnetization

plateaus. Such plateaus are stabilized by quantum fluctuations [1] and are predicted

in the magnetization curves of the S = 1/2 antiferromagnetic Heisenberg models on

a dimer and pyrochlore lattice [56, 57], and the S = 1/2 XXZ model on the triangu-

lar lattice [58, 59]. The conceptually different ground states of these magnetization

plateaus will allow for a more comprehensive study of the extent to which magneti-

zation plateaus are captured by PFFRG. While the plateau state of the latter model

is given by a classical magnetic order exposed to quantum fluctuations, the plateaus

studied in the former two models are not built by states with classical interpretations.

Finally, the chapter will be concluded in Sec. 4.4 with a general discussion on the

PFFRG treatment of spin models with broken TRS.

The PFFRG is applied with the following specifications in this chapter. Two-particle

vertices are computed on a frequency grid with 763 transfer frequencies for models on

the triangular and pyrochlore lattice. This number changes to 923 for the remaining lat-

tice models, and to 2003 for the antiferromagnetic dimer. For any model, the self-energy

is given out for 2000 frequencies. Considered frequencies are distributed exponentially

around the zero frequency. If not explicitly stated otherwise, correlations on square

and triangular lattice models are neglected beyond distances of L = 5 nearest-neighbor

spacings. On the pyrochlore lattice, correlations beyond L = 4 nearest-neighbor spac-

ings are neglected. An explicit embedded Runge-Kutta (2, 3) method with an adaptive

step size, implemented using the library Ref. [60], is applied to solve the flow equations

for any model. The numerical PFFRG implementation used for the computation of

the magnetization curve of the XXZ model on the triangular lattice is made available

in Ref. [61].

4.1 Flow regularization and study of magnetic

ground states

To demonstrate and investigate the regularization of PFFRG flows for magnetically

ordered models with h = 0, the method will be applied to the two-dimensional nearest-

neighbor Heisenberg models on the square, honeycomb and triangular lattices. For

the square lattice, both the ferromagnetic (J < 0) and antiferromagnetic (J > 0)

models will be considered, whereas only the antiferromagnetic case will be considered

for models on the remaining lattices. All models are solved for the quantum case S =

1/2. At first, only the square-lattice Heisenberg model will be studied to investigate

the flow regularization process in detail. Afterwards, all mentioned Heisenberg models

will be considered in a quantitative study of magnetic order parameters in the limit
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Figure 4.1: (a), (c) Magnetization MΛ = |MΛ
i | as a function of Λ for the (a) ferromag-

netic and (c) antiferromagnetic square-lattice Heisenberg model. Full (dotted) lines
correspond to PFFRG (mean-field) results. Different colors correspond to different
strengths of seed fields (δ/|J | = 0, 0.01, 0.02, 0.1 and 0.5), see legend in subfigure (b),
which applies to all subfigures. Seed fields are oriented parallel or antiparallel to the
z axis according to the insets. (b), (d) Longitudinal order parameter susceptibilities
χzz,Λ(q) as a function of Λ for the (b) ferromagnetic and (d) antiferromagnetic square-
lattice Heisenberg model where q = 0 and q = (π, π), respectively. Full lines are PF-
FRG results derived from Eq. (3.64) while dashed lines are derived from χΛ = ∂MΛ/∂δ.
In the latter approach, δ-derivatives are approximated by the variation of MΛ when δ
is varied by 10%. The smaller of these δ values is that of the legend of (b). The figure
and its caption are replicated from Ref. [39].

Λ → 0.

PFFRG magnetization and susceptibility flows for the ferromagnetic and antiferromag-

netic Heisenberg models on the square lattice are shown in Fig. 4.1 for different seed

field sizes δ/|J |. The flows of susceptibilities χzz,Λ(q = 0) and χzz,Λ(q = (π, π)) are

shown in Fig. 4.1(b) and 4.1(d), with q corresponding to the respective position of

the magnetic Bragg peak. Flow breakdowns in the form of a kink are caused by a

magnetic phase transition in case δ/|J | = 0. At cutoffs below the kink, the flows are

unphysical. At finite seed field sizes δ/|J | ≥ 0.01, the flows are regularized and a sus-

ceptibility maximum is formed at the phase transition instead. Consequently, smooth

flows down the Λ → 0 are achieved. At smaller but finite seed field sizes δ/|J | < 0.01

(not shown in the figure), numerical instabilities can cause flow breakdowns to reap-

pear. Simultaneously, seed fields of small sizes δ/|J | are generally desired in the study

of magnetic orders, since seed fields introduce an energetic bias that is proportional to
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δ/|J | and favors spin orientations along ni. For this reason, a numerical implementa-

tion of the PFFRG with a high stability that allows for small δ/|J | is desired. The

PFFRG implementations of this chapter always achieved a successful flow regulariza-

tion in case δ/|J | ≥ 0.02 for the models considered in Sec. 4.1 and 4.2. Similar to the

response of a temperature-dependent susceptibility at a magnetic phase transition to

a finite magnetic field δ/|J |, susceptibility peaks in Figs. 4.1(b) and 4.1(d) are sup-

pressed, broadened and shifted to larger Λ if δ/|J | is increased. However, note that

the two-dimensional models considered exhibit a continuous spin rotation symmetry

even in presence of a finite δ/|J |. It follows from the Mermin-Wagner theorem that

they should not exhibit a magnetic phase transition at finite T or Λ. The presence of

a phase transition at finite Λ in the (T = 0) PFFRG flow is an artifact resulting from

the truncation of flow equations and is therefore inherent to the method.

Flows of the absolute magnetization MΛ = |Mi| are shown in Figs. 4.1(a) and 4.1(c),

again for different sizes of δ/|J |. In the limit δ/|J | → 0, the exact MΛ is expected to

become finite at the critical cutoff Λc of the magnetic phase transition. Indeed, such

a sharp transition appears to be approached with decreasing δ/|J |. Vice versa, with

increasing δ/|J | the absolute curvature |∂2MΛ/∂Λ2| of theMΛ flow at Λc decreases and

the buildup ofMΛ about Λc is extended over a larger interval in Λ. Magnetization flows

within the (mean-field) Hartree approximation are shown as dotted lines. A compar-

ison with the PFFRG flows reveals that the presence of quantum fluctuations, which

is captured by PFFRG, leads to magnetic phase transitions at smaller cutoffs. Fur-

thermore, quantum fluctuations are observed to reduceMΛ→0 in the antiferromagnetic

Heisenberg model from its saturated mean-field value of Mmf = 1/2.

At small Λ, the shown flows exhibit artifacts that stem from the numerical PFFRG

implementation. The magnetization MΛ→0 is expected to increase monotonically with

increasing seed field size δ/|J |. This is not the case in the magnetization flows of

Figs. 4.1(a) and 4.1(c). E.g., in magnetization flows of the antiferromagnetic model, a

larger MΛ→0 = 0.438 is achieved for δ/|J | = 0.01 than for the larger seed field of size

δ/|J | = 0.1, in which case MΛ→0 = 0.426 is obtained. We interpret this unphysical

artifact to be caused by oscillatory artifacts in the frequency dependence of vertex

functions, which generally emerge at small Λ of approximately the size of J . If this

interpretation is correct, the artifact should be cured by an advanced numerical PFFRG

implementation as described in Ref. [36].

While PFFRG applications on models with TRS only allow for the computation of

magnetic susceptibilities χΛ via the two-particle vertex, the consideration of models

with broken TRS enables the computation of χΛ from the self-energy alone. While

the former approach accesses χΛ from spin correlations given by Eq. (3.64), the latter
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approach takes the derivative of the magnetization, obtained from the self-energy via

Eq. (3.61), with respect to a magnetic field. In our case, this field is given by the seed

field δn, which is aligned with the underlying order. The magnetic susceptibility is

then given by χΛ = ∂MΛ/∂δ. Both approaches of computing χΛ are compared in Figs.

4.1(b) and 4.1(d). The respective flows are either shown as solid or dashed lines. For

an exact solution, which would be obtained by solving the untruncated flow equations,

both approaches to computing χΛ should give identical results. The same is true for so-

called conserving approximations such as the Hartree and random-phase approximation

[62, 63]. However, the Katanin truncation scheme applied within PFFRG is not a

conserving approximation. As such, it leads to deviating results depending on the

scheme by which the susceptibility is computed. It can be observed that the agreement

between susceptibility flows improves with increasing δ or Λ, suggesting higher quality

results for larger δ or Λ. Vice versa, at small δ/J , the difference between χΛ values

builds up as Λ flows close to the magnetic phase transition, coming down from large Λ

values. This difference remains large down to Λ → 0. Note that χΛ = ∂MΛ/∂δ becomes

negative at small δ and Λ as a consequence of the previously mentioned nonmonotonic

behavior of MΛ in δ.

4.1.1 Zero-field magnetizations

The previously demonstrated successful regularization of PFFRG flows by seed fields

of size δ enables the computation of T = 0 magnetizations in the limit Λ → 0. Mag-

netizations of this limit will be studied in the following for Heisenberg models on the

square, honeycomb, and triangular lattice. The aim of the study is to investigate

whether PFFRG correctly predicts magnetic order parameters both on a qualitative

and quantitative level.

First, it should be noted that PFFRG captures well the saturated magnetization

MΛ→0 = 1/2 of the ground state of the ferromagnetic Heisenberg model on the square

lattice, as shown in Fig. 4.1(a). Furthermore, magnetization flows of the antifer-

romagnetic model on the same lattice, shown in Fig. 4.1(c), confirm that PFFRG

captures the reduction of the magnetization by quantum fluctuations in the antifer-

romagnetic ground state by measuring a reduced magnetization MΛ→0 < 1/2. This

qualitative observation provides reason to now quantitatively study to which extent

quantum-fluctuation-induced suppressions of magnetizations are captured within PF-

FRG. A systematic study of this subject is provided by Fig. 4.2, which considers

MΛ→0 in dependence on the maximum considered correlation distance L for a vari-

ety of two-dimensional nearest-neighbor Heisenberg models. In addition to Heisenberg

models on the square lattice, antiferromagnetic Heisenberg models on the honeycomb
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Figure 4.2: (a) Néel order on the honeycomb lattice. (b) Three sublattice 120◦ Néel
order. Different sublattices are distinguished by different colors of the spins. (c) Magne-
tizationMΛ→0 in the small-Λ limit as a function of system size L, for the ferromagnetic
Heisenberg model on the square lattice as well as for the antiferromagnetic Heisenberg
models on the square, honeycomb and triangular lattices. Here, L is defined as the
maximum distance of spin-spin correlations (in units of the lattice constant), while
longer distance spin-spin correlations are treated as zero. The magnetizations shown
are obtained at cutoffs Λ/J = 0.02, except for the square lattice ferromagnet where
Λ/J = 0.01 is used. Seed fields are of size δ/J = 0.01 on the square lattice, and of size
δ/J = 0.02 on the honeycomb and triangular lattices. The figure and its caption are
replicated from Ref. [39].

and triangular lattices are considered as well. Both the antiferromagnetic model on

the square and honeycomb lattice realize a colinear Néel ground state due to the bipar-

tite structure of the lattices, as visualized in Figs. 4.1(c) and 4.2(a). In the presence

of finite seed fields, these models still exhibit a global U(1) spin rotation symmetry

about the magnetization axis, which allows for an efficient numerical treatment via

PFFRG. On the other hand, the antiferromagnetic Heisenberg model on the triangular

lattice enforces geometrical frustration. As a consequence, the S = 1/2 model realizes

a coplanar 120◦ magnetic order in which spins are arranged in angles of 120◦ on three

magnetic sublattices, as visualized in Fig. 4.2(b). A regularized PFFRG flow into

this kind of order requires a site-dependent seed field that breaks any continuous spin

rotation symmetry of the pure Heisenberg model. Since no continuous global spin ro-

tation symmetry remains in the resulting model, a numerical treatment requires more

numerical resources at a similar maximum correlation distance L. For this reason, the

point L = 8 has not been computed for the Heisenberg model on the triangular lattice

in Fig. 4.2(c).

Magnetizations are observed to converge already at numerically accessible maximum

correlation distances of L ≈ 5 for all considered Heisenberg models. At the largest

considered correlation distances, a magnetization ofMΛ→0 ≈ 0.436 is found for the an-

tiferromagnetic square lattice, MΛ→0 ≈ 0.411 for the honeycomb lattice, and MΛ→0 ≈



86 Chapter 4. PFFRG at finite magnetic fields

0.442 for the triangular lattice. A comparison with literature values reveals that PF-

FRG magnetizations are systematically overestimated. On the square and honeycomb

lattices, quantum Monte Carlo (qMC) predicts values of M = 0.3075(25) [64] and

M = 0.22(3) [65] respectively. On the triangular lattice, the sign problem prevents

the application of qMC. A magnetization of M = 0.205(15) is provided by variational

Monte Carlo (vMC) and DMRG instead [66, 67, 68]. While the overestimation of

PFFRG magnetizations implies an underestimation of quantum fluctuations, such a

systematic underestimation is generally not observed in PFFRG applications on spin

models with TRS. E.g., paramagnetic regimes obtained by PFFRG show good agree-

ment with competing methods in the Heisenberg-Kitaev model [69], the J1-J2 square-

lattice Heisenberg model [11], the Shastry-Sutherland model [70] and the non-Kramers

nearest-neighbor pyrochlore model [71].

To gain a better understanding of the observed systematic overestimation of MΛ→0

within PFFRG, we take a closer look at the evolution of magnetizations along the PF-

FRG flows. Of major importance for a correct magnetization at Λ → 0 is the correct

buildup of MΛ across the phase transition at Λ ≈ Λc. The magnetic phase transition

causes MΛ to experience a large increase over a relatively short interval in Λ from val-

ues MΛ ≈ 0 (note that MΛ is small but finite at Λ > Λc due to finite seed fields δ > 0)

towards a size close toMΛ→0. Simultaneously, the spin correlations become long-range

at Λ ≈ Λc. The spreading of correlations results in dominant contributions from the

Hartree and RPA channels of the flow equations, since only these terms include a site

summation
∑

j [see Eqs. (3.53)-(3.54)]. As a consequence, the flow at Λ ≈ Λc is mostly

determined by the RPA and Hartree channels. However, these channels are known to

reproduce a mean-field approximation if they are considered by themselves (see Sec.

3.5.5). It follows that PFFRG flows across magnetic phase transitions suffer from a

mean-field bias, which is known to result in systematically overestimated magnetiza-

tions. While the build-in mean-field bias at the phase transition gives a reasonable

explanation for systematically overestimated magnetizations, further study is needed

to confirm whether this explanation actually holds. Note that the incorrect buildup of

MΛ at Λ ≈ Λc is already hinted at by the discrepancies between susceptibility flows in

Figs. 4.1(b) and 4.1(d), either computed from χΛ = ∂MΛ/∂Λ or from spin correlations,

that emerge at Λ ≈ Λc as well.

4.1.2 Robustness of magnetic order under different choices of

seed fields

We now study the robustness of magnetic order under different choices of seed field

configurations δni. In particular, we will consider the robustness of the 120◦ order of
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Figure 4.3: (a), (b) Two choices of seed fields δni deviating from a 120◦ Néel pattern on
the triangular lattice. Red dots indicate vanishing amplitudes δ on this sublattice. On
the other two sublattices with identical δ, the arrows depict the directions of ni, which
either enclose (a) angles of 120◦ or (b) angles of 90◦. (c) MΛ

120◦ defined in Eq. (4.4) as a
function of Λ for the two seed fields of the triangular-lattice Heisenberg antiferromagnet
in (a) and (b) and for the perfect 120◦ seed field in Fig. 4.2(b). (d) ∆Λ

M defined in
Eq. (4.5) as a function of Λ for the same seed fields as considered in (c). The inset in
(d) shows the magnetization MΛ of the triangular-lattice Heisenberg antiferromagnet
as a function of Λ for the ideal seed fields illustrated in Fig. 4.2(b). The figure and its
caption are replicated from Ref. [39].

the antiferromagnetic Heisenberg model on the triangular lattice. In the PFFRG im-

plementation of Fig. 4.2(c), the seed field had been oriented along the spin orientations

of the classical 120◦ order, as visualized in Fig. 4.2(b). However, to regularize flow

breakdowns, seed fields generally only need to fulfill the property that they break all

symmetries of a model that are otherwise broken spontaneously at its magnetic phase

transition. In other words, the regularization of PFFRG flows only requires knowledge

of which symmetries the magnetic order of a model breaks, and not knowledge of the

magnetic order itself.

We investigate this property of the method along the Heisenberg model on the triangu-

lar lattice by applying two alternative seed field choices in Fig. 4.3 that exert a finite

δ on only two magnetic sublattices. The orientations ni on these sublattices either

enclose an angle of 90◦ or 120◦, as visualized in Figs. 4.3(a) and 4.3(b). Note that

these alternative seed fields break more symmetries than the 120◦ magnetic order. The

site-dependent magnetization along the PFFRG flow is studied for each choice of seed

field. For this purpose, two observables are computed that quantify the deviation of the

site-dependent magnetization from an ideal magnetization of a 120◦ order. MΛ
120◦ is the

first such observable and probes the angles between magnetizations MΛ
i∈γ of different
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sublattices γ ∈ {A,B,C}. It is defined by

MΛ
120◦ =

2

3
√
3
|mΛ

A ×mΛ
B +mΛ

B ×mΛ
C +mΛ

C ×mΛ
A|, (4.4)

with the normalized magnetization vector mΛ
γ = MΛ

i∈γ/|MΛ
i∈γ|. The quantity MΛ

120◦

measures how close mΛ
γ are oriented in accordance with an ideal 120◦ order, which

is coplanar and has spins oriented in angles of 120◦ on different sublattices. Only in

case of a perfect agreement of spin orientations with 120◦ order does MΛ
120◦ assume a

maximum value of MΛ
120◦ = 1. ∆Λ

M is the second considered observable and probes

differences in magnitude of MΛ
i∈γ for different γ. It is defined by

∆Λ
M =

MΛ
max −MΛ

min

MΛ
max

, (4.5)

with the maximum magnetization amplitude MΛ
max = max{|MΛ

i∈A|, |MΛ
i∈B|, |MΛ

i∈C |}
and minimum magnetization amplitude MΛ

min = min{|MΛ
i∈A|, |MΛ

i∈B|, |MΛ
i∈C |}. ∆Λ

M is

given by ∆Λ
M = 0 for an ideal 120◦ order with |MΛ

i∈A| = |MΛ
i∈B| = |MΛ

i∈C |. In summary,

a perfect agreement of site-dependent magnetization with an ideal 120◦ order is signified

by MΛ
120◦ = 1 and ∆Λ

M = 0.

PFFRG flows of MΛ
120◦ and ∆Λ

M are shown in Figs. 4.3(c) and 4.3(d) for the different

choices of seed fields. For context, the magnetization flow, which exhibits a magnetic

phase transition at Λ/J ≈ 0.33, is shown as an inset in Fig. 4.3(d). Flows of the models

with seed fields only applied on two sublattices begin at ∆Λ→∞ = 1. At Λc, these flows

exhibits a sharp decrease of ∆Λ as it approaches a value of ∆Λ ≈ 0 in the limit Λ → 0.

For the same models, ideal values of MΛ
120◦ ≈ 1 are already achieved at Λ > Λc in

the flows of MΛ
120◦ . However, intermediate decreases leading to a local minimum in

MΛ
120◦ are observed at the phase transition at smaller Λ = Λc. These observed minima

give another example of error generation at Λc in addition to the previously discussed

systematic error generation inMΛ corresponding to a mean-field bias. However, values

of MΛ
120◦ ≈ 1 are recovered in the limit Λ → 0. Regardless of the applied seed field

choice, flows of MΛ
120◦ and ∆Λ are observed to closely approach values expected for an

ideal 120◦ order in the limit Λ → 0. This observation confirms that in a PFFRG study

the 120◦ order of the Heisenberg model on the triangular lattice is robust under the

application of different seed fields. More generally, the stability of magnetic order with

respect to different seed field choices justifies the application of flow-regularizing seed

fields δn that do not coincide with Mi orientations of an underlying magnetic order.

Instead, the seed fields only have to break the same lattice symmetries as a magnetic

order does, and can optionally break additional symmetries as well.
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Figure 4.4: Blue squares show the magnetization M z,Λ→0 from PFFRG of the antifer-
romagnetic Heisenberg model on the square lattice as a function of the homogeneous
field strength h, linearly extrapolated to zero seed fields, δ → 0. For comparison, red
diamonds are qMC results from Ref. [72]. The dashed black line is the linear classi-
cal magnetization curve. The inset illustrates the magnetization process schematically,
where red and blue arrows depict spins on the two sublattices in a field h that increases
from bottom to top. The figure and its caption are replicated from Ref. [39].

4.2 Magnetization curve of the antiferromagnetic

Heisenberg model on a square lattice

We continue by treating models with finite global magnetic fields of size h > 0, again

described by the Hamiltonian of Eq. (4.3). The conceptually simple magnetization

curve of the nearest-neighbor antiferromagnetic Heisenberg model on the square lattice

will be resolved as a first such PFFRG application. The expected behavior of the

model will be described in the following. The magnetization curve of the square-lattice

Heisenberg model is already well studied [73, 72, 74, 75] and is known to be built by

a ground state with a two-site unit cell. A schematic visualization of the continuous

ground state evolution along the magnetization curve is shown as inset in Fig. 4.4.

At h ≪ J , the spins align antiferromagnetically and perpendicularly to the external

magnetic field h = (0, 0, h). Since we apply the magnetic field along the z axis, the spins

will order in the x-y plane at h ≪ J . The spins then continuously cant towards the

z axis as h increases in magnitude until they are ferromagnetically aligned at h ≥ 4J ,

resulting in a saturated magnetization along the z axis of M z = 1/2. In other words,

the Ŝzi spin components order ferromagnetically, whereas components Ŝxi and Ŝyi order

antiferromagnetically throughout the magnetization curve. WhileM z increases linearly

with h for h ∈ [0, 4J ] in the classical model, being given by M z
cl =

h
8J
, a qualitative

feature of the magnetization curve of the quantum model is an upward curvature that

arises from a gradual suppression of zero-point fluctuations with increasing h [75].
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Since the ground state breaks U(1) spin rotation symmetry about the z axis for

0 < h < 4J , a seed field δni needs to be applied in addition to the global mag-

netic field h to access the magnetically ordered phase within PFFRG. We choose a

staggered seed field perpendicular to the z axis, i.e., ni ⊥ (0, 0, 1), in accordance with

the antiferromagnetic arrangement of spin components in the x-y plane. The obtained

PFFRG magnetization curve is shown in Fig. 4.4 along with data points previously

obtained by qMC in Ref. [72]. The curve will be discussed in the following. The

expected qualitative behavior of the magnetic ground state is successfully resolved by

PFFRG along the full magnetization curve. An upward curvature is observed that,

however, is less pronounced than predicted by qMC. This implied underestimation of

quantum fluctuations by PFFRG had already been observed in Sec. 4.1 in the study of

Heisenberg models at h = 0, where it leads to underestimated reductions of staggered

magnetizationsMΛ→0 from their classical values ofMcl = 1/2. In the Heisenberg model

on the square lattice at h = 0, the resulting difference Mcl −MΛ→0 amounts to only

33% of the reduction predicted by qMC [64]. In comparison, the reduction of M z,Λ→0

in the present magnetization curve from its classical value of M z
cl = 1/4 at h = 2J ,

expressed by M z
cl −M z,Λ→0, amounts to 71% of the value predicted by qMC [72]. At

small J/h, at which a model can be treated by perturbation theory, PFFRG results are

expected to be more precise since the method is known to replicate perturbation theory

up to second order in J/h [12]. Thus, the higher precision of MΛ→0 at h = 2J may be

a consequence of the method already benefitting from this perturbative error control.

In the same context, it is no surprise that PFFRG predicts the saturation of M z at

even larger h/J ≈ 4.0 accurately. As an alternative confirmation of the magnetization

curve’s upper boundary, the spontaneously broken U(1) spin rotation symmetry of the

magnetic ground state is observed to result in a flow breakdown at h/J ≤ 3.8 in case

no flow regularizing seed field is present.

4.3 Detection of magnetization plateaus

The previous application on the square-lattice Heisenberg model at finite h demon-

strated that PFFRG can be applied in the study of magnetization curves. However,

the studied magnetization curve was conceptually quite simple due to the absence of

geometrical frustration in the underlying model. The curve was built by a classical

magnetic order on two sublattices, with its only characteristic feature being an upward

curvature caused by the gradual suppression of quantum fluctuations with increasing

h. In the following, we transition to the study of magnetization curves of (mostly)

geometrically frustrated models in order to investigate whether PFFRG is suited for

the study of magnetization plateaus.
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Magnetization plateaus are a phenomenon realized by frustrated quantum spin mod-

els in which quantum fluctuations create an energy gap that stabilizes a ground state

with constant magnetization M z over a finite interval in external magnetic field size

h [1]. To study the detection of magnetization plateaus within PFFRG, the method

will be applied to the antiferromagnetic dimer, the nearest-neighbor antiferromagnetic

Heisenberg model on the three-dimensional pyrochlore lattice, and the nearest-neighbor

antiferromagnetic XXZ model with interactions Jxx = Jyy > 0 and Jzz > 0 on the tri-

angular lattice. The fundamentally different structures of plateau states in these mod-

els allow for a versatile study of the phenomenon. Note that two of the magnetization

plateaus we study are special in the sense that they are found at zero magnetization

and are built by paramagnetic states. Before the PFFRG magnetization curves are

presented, the predicted magnetization behaviors of these models will be summarized

first, with an emphasis on the magnetization plateaus. For our purposes, we will mostly

neglect aspects of the magnetization curves that are not relevant to the study of the

magnetization plateaus.

The antiferromagnetic dimer in a magnetic field, described by the analytically solvable

model

Ĥ = JŜ0 · Ŝ1 − h(Ŝz0 + Ŝz1), (4.6)

gives a simple realization of a magnetization plateau. In this model, the magnetization

remains constant at M z = 0 until an energy crossing of the singlet ground state and

a triplet state with saturated magnetization M z = 1/2 occurs at h/J = 1. It follows

that the exact magnetization curve M z(h/J) = θ(h/J − 1)/2 can be described by

a Heaviside step function θ(x) and the size of the plateau is given by the triplet gap.

The PFFRG magnetization curve can be computed without the application of any seed

field, since no ground state with spontaneously broken symmetries exists. Note that

the magnetization curve is unaffected by the mapping onto a pseudo-fermion model.

In contrast to the dimer, the antiferromagnetic Heisenberg model on the pyrochlore

lattice in a magnetic field is challenging to treat for many methods. Accordingly, the

magnetization curve of the model is still under debate. Due to strong geometrical

frustration enforced by the pyrochlore lattice structure, the h = 0 model assumes a

quantum paramagnetic phase at T = 0. We refrain from a more detailed discussion

of the h = 0 model at this point, since it will be treated in Chapter 5. The stability

of the paramagnetic ground state under the application of a uniform magnetic field

h manifests a magnetization plateau at M z = 0. Different methods, such as DMRG

[57] or a combination of exact diagonalization (ED) and vMC [56], have been applied

to predict the plateau size, which corresponds to the triplet gap of the h = 0 model.

The predicted sizes of both studies are consistent. DMRG predicts a triplet gap of size



92 Chapter 4. PFFRG at finite magnetic fields

∆/J = 0.42(11) [57] and the combined ED and vMC study predicts a triplet gap of size

∆/J = 0.40(4) [56]. The DMRG study Ref. [57] further resolved the magnetization

curve beyond the M z = 0 plateau and predicts the existence of additional plateaus,

most prominently at M z = 1/4. Unfortunately, the PFFRG study of most predicted

plateaus is hindered by the large magnetic unit cells that their underlying states are

predicted to host [76, 57]. The amount of symmetries that the seed fields would have to

break in order to achieve a flow regularization for these orders would result in too many

required computational resources for the computation of PFFRG flows. To circumvent

this issue, we will mostly restrict our study on the paramagnetic M z = 0 plateau.

Since the ground state of this plateau is paramagnetic, PFFRG flows computed in the

h-dependent regime of the plateau do not experience any flow breakdowns even in the

absence of seed fields.

The M z = 0 plateaus of the above two models are built by quantum paramagnetic

ground states with no classical analogue. In contrast, the magnetization plateau of

the remaining model we consider, the antiferromagnetic XXZ model on the triangular

lattice, is built by a dipolar magnetic order. Notably, the full magnetization curve

of the model is built solely by magnetic orders with a three-site unit cell [58, 59]. It

follows that PFFRG flows throughout the full magnetization curve can be regularized

at moderate computational costs. In fact, PFFRG flows of all occurring magnetic

orders can be regularized with only a single sublattice-dependent choice of seed field

with δni = (1, 0,−1), (0, 1, 1), (0, 0, 0) depending on the sublattice. We will apply this

seed field choice to compute the full magnetization curve via PFFRG. The plateau of

the model is built by an ”up-up-down” state in which spins are aligned colinear and

parallel to the external magnetic field along the z axis. The ordered spins on two

sublattices point along the magnetic field, whereas spins on the remaining sublattice

point in the opposite direction, as shown in the inset of Fig. 4.6. Accordingly, the

plateau is found at a magnetization of M z = 1/6. Note that magnetic moments of the

plateau state are reduced by quantum fluctuations. However, since this reduction is

twice as large on the down spins as on the up spins, the plateau will still be located

at M z = 1/6 [1]. The width of the plateau in h depends on the ratio of interactions

Jxx/Jzz. It is the largest for the Ising model at Jxx = Jyy = 0, where it covers the

entire magnetization curve from h = 0 to saturation at hsat = 3(Jzz + Jxx/2). The

plateau then becomes smaller with increasing Jxx/Jzz until it vanishes beyond the

Heisenberg model at Jxx/Jzz > 1. Note that the plateau width is also expected to be

reduced by the application of the finite seed field δni. In this study, PFFRG is applied

to the model with Jxx/Jzz = 1/2, which is expected to have a pronounced plateau

even in presence of a finite δ. For this model, the DMRG study Ref. [59] predicts the

plateau to be located at h/Jzz ∈ [0.67(1), 2.63(1)].
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Figure 4.5: (a) PFFRG magnetization curve of the antiferromagnetic Heisenberg model
on a dimer. The analytical position of the level crossing between a singlet ground state
1√
2
(|↑↓⟩−|↓↑⟩) and a triplet ground state |↑↑⟩ is indicated by a dashed vertical line. (b)

PFFRG magnetization curve of the pyrochlore antiferromagnetic Heisenberg model in
a magnetic field h. The magnetization M z,Λ→0 is extrapolated to the cutoff-free limit
for data points at any h/J , regardless of whether a flow exhibits a breakdown. Shaded
regions correspond to DMRG predictions from Ref. [57] for the locations of theM z = 0
and M z = 1/4 magnetization plateaus.

Antiferromagnetic Heisenberg model on a dimer

We now continue by presenting the results for the considered models, starting with the

dimer. Note that while the spin Hamiltonian of a dimer is easy to solve analytically,

in the PFFRG framework the flow equations of the corresponding strongly interacting

pseudo-fermion model are highly nontrivial and have to be solved analytically. The

PFFRG magnetization process of an antiferromagnetic dimer is shown in Fig. 4.5(a).

Starting from h = 0, the magnetization M z,Λ→0 increases continuously and strictly

monotonically with h. Accordingly, the analytically predicted M z = 0 plateau at

h/J < 1 or a sharp jump of the magnetization at h/J = 1 are not reproduced. However,

the triplet gap is still indicated by the magnetization curve in the form of a steep

increase of M z,Λ→0 just below h/J = 1. While M z,Λ→0 ≈ 0.45 is close to saturation

at h/J = 1, it slowly converges towards M z,Λ→0 = 1/2 only at h/J > 1. In summary,

while the M z = 0 plateau is not reproduced in the PFFRG magnetization curve, the

plateau size is still indicated by a steep increase of M z,Λ→0 near the predicted plateau

boundary.

Antiferromagnetic Heisenberg model on the pyrochlore lattice

Next, we continue with the discussion of the PFFRG magnetization curve of the anti-

ferromagnetic Heisenberg model on the pyrochlore lattice. Most importantly, we are in-

terested in the question whether PFFRG can be applied to resolve theM z = 0 plateau.
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In principle, the paramagnetic M z = 0 plateau can be detected by two straightforward

approaches. First, while the paramagnetic PFFRG flows located in the plateau should

not exhibit a flow breakdown, flows at larger h beyond the plateau may transition to

magnetic orders with spontaneously broken symmetries. These spontaneously broken

symmetries should manifest flow breakdowns. By measuring the minimum h at which

a flow breakdown occurs, an upper bound hmax for the M z = 0 plateau can be deter-

mined. Second, the presence of the plateau should result in a constant magnetization

of M z,Λ→0 = 0 across a finite range in h. Thus, the size of the plateau should be given

by the magnetic field h/J at which M z,Λ→0 becomes finite. As will be shown below,

the PFFRG detection of the plateau will not be as straightforward as suggested above.

The full PFFRG magnetization curve of the Heisenberg model on the pyrochlore lattice

is shown in Fig. 4.5(b). The predicted regions of the M z = 0 and M z = 1/4 plateaus

are colored gray. M z,Λ→0 is shown for each data point along the curve, beyond the

predicted regime of the M z = 0 plateau and regardless of whether a flow exhibits a

breakdown. It follows that some data points are shown at an unphysical Λ < Λc.

One reason for this choice of presentation is given by the difficulty in identifying the

presence of flow breakdowns for this particular model. In fact, PFFRG flows show

no unambiguous sign of a flow breakdown for the region h/J ≤ 2. This region ex-

ceeds the triplet gap, predicted to be of size ∆/J = 0.42(11) by DMRG [57] and of

size ∆/J = 0.40(4) by a combined ED and vMC study [56], by a multitude. Thus,

magnetic orders may be located in this region, whose presence should generally enforce

a flow breakdown. However, since no unambiguous flow breakdown can be detected,

it follows that PFFRG is incapable to predict an upper limit for the triplet gap by

measuring the magnetic field size h/J above which a flow breakdown occurs. Even if

the paramagnetic M z = 0 plateau cannot be detected indirectly by the appearance of

a flow breakdown at the plateau boundary, one should still be able to detect a con-

stant magnetization M z,Λ→0 = 0 across the plateau in principle. However, like in the

magnetization curve of the antiferromagnetic dimer, M z,Λ→0 is observed by PFFRG to

increase strictly monotonically throughout the predicted region of theM z = 0 plateau.

Unlike the PFFRG magnetization curve of the antiferromagnetic dimer, the PFFRG

magnetization curve of the pyrochlore Heisenberg model is featureless in the predicted

region of the M z = 0 plateau, such that no indication of the triplet gap size can be

detected. In summary, PFFRG is unable to detect the M z = 0 magnetization plateau

of the Heisenberg model on the pyrochlore lattice via the model’s magnetization curve.

Considering the full PFFRG magnetization curve, the found absence of a clear flow

breakdown throughout most of the regime 0 < h/J < 4 is unexpected, since magnetic

orders with spontaneously broken symmetries are predicted by DMRG for most of the

same regime [57]. The two scenarios below may offer explanations for the observation
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Figure 4.6: The dependencies ofM z,Λ→0 andMΛ→0
120◦ [defined in Eq. (4.4)] on an external

magnetic field h are considered for the XXZ model of Eq. (4.2) with interactions
Jxx/Jzz = Jyy/Jzz = 1/2 on a triangular lattice. A seed field of size δ = 0.04Jzz

is applied and the sublattice-dependent seed field orientation vectors are given by
ni = (1, 0,−1), (0, 1, 1), (0, 0, 0). The magnetization M z = 1/6 of the colinear up-up-
down plateau state, shown as an inset, is marked by a horizontal line.

of this apparent contradiction. As a first possible explanation, at magnetic field sizes

h/J just above the triplet gap, quantum fluctuations and geometrical frustration could

realize states that do not spontaneously break any symmetries of the Hamiltonian

but still exhibit a finite magnetization. As a second explanation, many magnetization

plateaus found by the DMRG study Ref. [57] are predicted to be built by ground

states with large magnetic unit cells. However, the present PFFRG implementation

only considers spin correlations of distances up to four nearest-neighbor spacings. The

neglection of longer-range correlations could energetically favor states with smaller unit

cells, or spontaneously broken symmetries of states with larger unit cells may not be

correctly captured by the PFFRG flows, leading to stable flows instead. Interestingly,

we do observe flow breakdowns to occur within the predicted region of the M z = 1/4

magnetization plateau, most prominently at h/J = 2.4. In context of the above possible

explanation of absent flow breakdowns, this observation would be explained by the

fact that out of all predicted magnetically ordered plateaus, the M z = 1/4 plateau is

predicted to have the smallest magnetic unit cell. DMRG predicts the M z = 1/4 state

to be given by a colinear q = 0 order with spins of three sublattices pointing up and

spins of the remaining sublattice pointing down [57].
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XXZ model on the triangular lattice

The PFFRG-based detection of magnetization plateaus was unsuccessful in the two

models considered above. Before we try to understand the reason for this failure, we

next consider the magnetization curve of the antiferromagnetic XXZ model on the

triangular lattice with interactions Jxx/Jzz = 1/2. As will be shown, the detection

of a magnetization plateau will be successful in this model at last. The full PFFRG

magnetization curve is shown in Fig. 4.6. In addition to M z,Λ→0, we consider the

curve of MΛ→0
120◦ /2 as defined in Eq. (4.4). As a reminder, the latter observable assumes

a value of MΛ→0
120◦ /2 = 1/2 for an ideal 120◦ order and assumes MΛ→0

120◦ /2 = 0 for a

colinear order, such as the up-up-down state of the magnetization plateau (see inset of

the figure) or the ferromagnetic state at saturated magnetization M z,Λ→0 = 1/2. As

can be observed along the shown magnetization curve, PFFRG detects the predicted

intermediate magnetization plateau at M z = 1/6 in the region 1.6 ≲ h/Jzz ≲ 2.4. The

finite seed field of size δ = 0.04Jzz is expected to reduce the plateau in size. As such,

the observed plateau region is consistent with the region h/Jzz ∈ [0.67(1), 2.63(1)]

predicted by the DMRG study Ref. [59]. The presence of a colinear plateau ground

state is reflected by a local minimum of MΛ→0
120◦ in the plateau region. However, due to

a finite δ, a perfectly colinear state with MΛ→0
120◦ = 0 is not achieved by the plateau of

the PFFRG magnetization curve.

Interpretation of results

In summary, PFFRG is not able to resolve the magnetization plateaus of the antifer-

romagnetic dimer and pyrochlore-lattice Heisenberg model. While the magnetization

curve of a dimer still indicates the size of its plateau, no remnant of the M z,Λ→0 = 0

plateau is visible in the magnetization curve of the pyrochlore Heisenberg model. In

contrast, the M z = 1/6 magnetization plateau of the XXZ model on the triangular

lattice is pronounced within PFFRG, even in presence of a large seed field of size

δ = 0.04Jzz. The reason why PFFRG reproduces the plateau of one model, while

plateaus of other models are not captured, may be found in the structure of the re-

spective plateau ground states, as will be explained in the following.

The plateau of the triangular-lattice XXZ model is built by a dipolar magnetic order.

This type of order is known to be captured well within PFFRG [12]. On the other hand,

the method is highly limited in the characterization of paramagnetic states due to the

methodologically inherent truncation of flow equations. This is reflected by the fact

that in absence of finite seed fields the spontaneous symmetry breaking of magnetic

orders results in a flow breakdown, whereas the spontaneous symmetry breaking of
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(paramagnetic) nematic states does not. The methodologically insufficient description

of paramagnetic ground states suggests that their excitations may not be captured cor-

rectly as well. Importantly, an energy gap that results in the presence of a paramagnetic

plateau at M z = 0 may not be captured by PFFRG due to this methodological short-

coming, resulting in the absence of a magnetization plateau within PFFRG. In order

to achieve a qualitative improvement in the description of paramagnetic ground states,

and thus paramagnetic magnetization plateaus, a flow equation truncation scheme

above the three-particle vertex or beyond may have to be applied. Such a truncation

scheme has not been formulated for the PFFRG at this point. At last, note that

the magnetically ordered plateau of the XXZ model is found at large h/Jzz, at which

PFFRG is expected to give more precise results. In contrast, the studied plateaus of

the remaining considered models are located near h/J = 0. It follows that, a priori,

without considering the respective plateau states, one would expect the plateau of the

XXZ model on the triangular lattice to be captured more precisely than the plateaus

of the antiferromagnetic dimer and pyrochlore models located at smaller h/Jzz.

4.4 Discussion

A general PFFRG formulation was presented in the previous Chapter 3, which allows

the treatment of spin models with spins coupled to finite magnetic fields. Based on

this formulation, this chapter explored the methodological capabilities and limitations

of the PFFRG in finite-field applications. To this end, the method extension has been

applied to a variety of spin models, so that this chapter provides preliminary work

in cartographing for which kinds of applications the extended method is best suited.

While the present formulation of the PFFRG is in principle able to provide Λ flows for

spin models with arbitrary terms linear or bilinear in spin operators, the phenomena

that can occur in these models are captured by the method with varying success, as

will be discussed in the following.

The successful regularization of flow breakdowns by the application of symmetry-

breaking seed fields has been demonstrated for a variety of Heisenberg and XXZ models

at zero and finite external magnetic fields h. The resulting smooth PFFRG flows allow

for the study of T = 0 spin models within their magnetically ordered phases below the

critical cutoff at Λ < Λc and in the physically relevant cutoff-free limit at Λ → 0. The

implementation of seed fields (and magnetic fields in general) increases the computa-

tional costs necessary to evaluate PFFRG flows, since these fields break time-reversal

symmetry, and, possibly, spin rotation and lattice symmetries of a model. The ad-

ditional costs are particularly high in case continuous spin rotation symmetries are
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broken (see Table 3.3). In this context, we emphasize that the resolution of magnetic

orders without any continuous spin rotation symmetries and with a unit cell of mul-

tiple lattice sites has been found to be achievable at reasonable computational costs,

as shown in this chapter for the Heisenberg and XXZ models on the triangular lat-

tice. On the other hand, the magnetic orders that the method is able to resolve are

limited by the amount of symmetries that individual magnetic orders spontaneously

break, since each symmetry that a seed field has to break adds computational cost to

the computation of a PFFRG flow. As a general rule of thumb, numerical PFFRG

implementations that resolve magnetic orders with smaller magnetic unit cells are eas-

ier to construct and require less computational resources. To keep the computation

of a regularized PFFRG flow efficient and numerically feasible, an applied seed field

should only break the symmetries of a model that the magnetic order of the model

spontaneously breaks. Importantly, this requires a priori knowledge of the ordering

behavior of a model. In the magnetization curve of the pyrochlore Heisenberg model

such knowledge was mostly absent, so that magnetic orders could not be resolved by

the application of appropriate seed fields. However, even if the magnetic orders of

the curve were known, their resolution by PFFRG may still be inaccessible with the

currently available computational resources due to their large magnetic unit cells.

Regarding the quality of PFFRG results, a systematic overestimation of PFFRG mag-

netic order parameters has been observed and attributed to a mean-field bias of the

Λ flow at Λ ≃ Λc. This bias is generated by the Hartree term of the self-energy and

the RPA term of the two-particle vertex flow equation, which give the dominant con-

tributions to the flow equations at Λc. Further investigation is required to find out

whether the error generation at Λc can be reduced by the implementation of a multi-

loop truncation scheme as implemented in Refs. [36] or [37]. On a positive note, spin

arrangements of magnetic orders have been observed to be captured accurately by PF-

FRG and remain stable under different choices of seed fields, whose local orientations

need not coincide with the local magnetization of a model’s magnetic order, as has been

shown for the Heisenberg model on the triangular lattice. Notably, a single seed field

choice was sufficient to resolve all magnetic orders throughout the entire magnetization

curve of the similar triangular lattice XXZ model.

At last, we discuss our results on magnetization curves. Full magnetization curves

and their respective magnetic orders have been resolved by PFFRG on the square-

lattice Heisenberg model and the triangular-lattice XXZ model. On the square lattice,

a comparison of magnetizations with literature values revealed more accurate PFFRG

results at higher magnetic field sizes. This result encourages the application of PFFRG

to models with finite magnetic fields. Furthermore, the study of the triangular-lattice

XXZ model demonstrated the successful resolution of the magnetization plateau at
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M z = 1/6. The computation of magnetization curves was less successful for the an-

tiferromagnetic Heisenberg models on a dimer and on the pyrochlore lattice. The

M z = 0 magnetization plateaus of these models could not be reproduced by PFFRG.

While the PFFRG magnetization curve of the antiferromagnetic dimer still allowed for

an estimation of the plateau size, no sign of a plateau was found in the magnetization

curve of the pyrochlore Heisenberg model. This suggests that the successful resolution

of the M z = 1/6 plateau of the triangular-lattice XXZ model may be caused by the

presence of a magnetically ordered ground state. In contrast, the method appears to be

highly limited in its ability to characterize paramagnetic ground states, as was found

by the study of M z = 0 plateaus. Thus, we expect the method to be better suited for

the study of so-called ’classical’ plateaus [1] with magnetically ordered ground states.





Chapter 5

Order-by-disorder, spin liquids, and

nematic phases in nearest-neighbor

spin models on the pyrochlore

lattice

The previous chapters constitute the method development part of this thesis. In it, the

PFFRG method was extended to treat spin models with broken TRS, and the resulting

newly available method applications were explored along a variety of models with well-

known behavior. In contrast, the next two chapters will apply the PFFRG method

in collaboration with complementary techniques to study a selection of spin models of

recent interest. These applications will not rely on the recent PFFRG extension for

models with broken TRS. Instead, only models with TRS, for which the PFFRG is

already a well-established method [12], will be considered. This chapter will set the

focus on the study of nearest-neighbor spin models on the pyrochlore lattice.

Spin models on the pyrochlore lattice are a popular platform in the study of frustrated

magnetism in three dimensions [77, 78, 4, 1]. The lattice is conceptually simple, be-

ing built by lattice sites arranged in corner-sharing tetrahedra, as shown in Fig. 5.1.

This structure leads to strong geometrical frustration between nearest-neighbor in-

teractions, enabling a multitude of interesting phenomena in nearest-neighbor models

alone. Prominent among them is the classical spin-ice phase of the Ising antiferromag-

net, which, for quantum spins, is known to transition into a U(1) QSL phase upon

the perturbative inclusion of Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j interactions (XY interactions) [4]. Still

under debate is the extent of the QSL phase towards the regime of nonperturbative

XY interaction sizes [56]. In particular, it is of interest whether the paramagnetic

101
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ground state of the antiferromagnetic Heisenberg model is still located in the QSL

phase [79, 48, 43, 80], and whether the QSL remains stable in the presence of other

types of nearest-neighbor interactions allowed by the symmetries of pyrochlore com-

pounds [49], such as Dzyaloshinskii-Moriya interactions (DMI). Both the properties of

the ground state of the Heisenberg model and its stability under the presence of a finite

DMI are treated in this chapter. Progress has been made in the study of the Heisenberg

model ground state in recent years [56, 79, 48, 43, 80], suggesting the realization of

a nematic phase in case of quantum spins. We treat the PFFRG perspective of this

study in Sec. 5.1 by considering the ground state selections of the Heisenberg model

for both the quantum cases S = 1/2 and S = 1, as done in our recent publications

[48, 43], which apply PFFRG-based approaches, DMRG, and vMC.

A particular phenomenon of frustrated magnetism leads to the possibly nematic ground

state selection of the pyrochlore Heisenberg antiferromagnet. In this model, strong ge-

ometrical frustration leads to an extensive classical ground state manifold. However,

states within this manifold are generally not related by any symmetry of the model. A

so-called accidental degeneracy is realized. It is this accidental degeneracy that allows

certain states within this manifold to be preferably chosen by quantum fluctuations,

possibly resulting in a nematic order. The thermal or quantum fluctuation-based tran-

sition into an ordered phase due to the preferential selection of certain states out of a

larger classical ground state manifold is known under the term order-by-disorder (ObD)

[5]. In spin models, this term is usually applied in the context of a magnetic order being

selected out of a larger classical manifold. An in-depth study of the ObD phenomenon

will be provided in Sec. 5.2, where we consider the general symmetry-constrained

nearest-neighbor model on a pyrochlore lattice with a Heisenberg interaction J and

a Dzyaloshinskii-Moriya (DM) interaction D, abbreviated as Heisenberg-DM model.

The content of this section will follow along our publication Ref. [49]. Within the

Heisenberg-DM model, the so-called Γ5 phase, which hosts an accidentally degenerate

classical ground state manifold, will emerge as a prime example of a subtle magnetic

ObD selection. The magnetic order chosen out of the Γ5 phase’s one-dimensional clas-

sical ground state manifold may depend on both whether thermal, quantum, or both

types of fluctuations are present. The subtleties of ObD selections will be further re-

flected by the observation that the ObD selection at critical temperature differs from

that at zero temperature for some interaction regimes D/J . Note that the study of the

Heisenberg-DM model will reveal the stability of the Heisenberg model’s paramagnetic

phase at T = 0 with respect to a finite DMI as well.

As a natural transition to the next Sec. 5.3, the study of the Heisenberg-DM model will

reveal an additional paramagnetic phase in the ferromagnetic Heisenberg interaction

regime J < 0. This phase is only realized for one set of interactions D/J = 2 in case
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of classical spins, but it is stabilized over a finite range of interaction parameters by

quantum fluctuations. In the classical model, it will be shown that the ground state

manifold of the D/J = 2 model includes not only the extensive ground state manifold

of the spin-ice phase, but also the classical ground state manifold of the previously

mentioned Γ5 phase (as well as an additional not yet introduced manifold). Interest-

ingly, the thermal fluctuation-based competition between these manifolds will result

in a temperature-driven crossover between two classical spin-liquid phases [71]. Fur-

thermore, it turns out that the D/J = 2 model is relevant to so-called non-Kramers

pyrochlore compounds and can be found on a critical point in between two quadrupo-

lar magnetic phases and one dipolar paramagnetic phase (named in accordance with

the symmetry properties of the effective spin components involved in these orders)

in the general classical phase diagram for nearest-neighbor models of non-Kramers py-

rochlores. Along an extended study of theD/J = 2 model, we will compute the S = 1/2

quantum version of this phase diagram and reveal the behavior of the D/J = 2 quan-

tum model. The content of Sec. 5.3, which treats the classical and quantum D/J = 2

models and their surrounding non-Kramers phase diagrams, is covered by our recent

publication Ref. [71]. Note that throughout the chapter, only nearest-neighbor models

will be treated. Unless stated otherwise, interactions are assumed to be of this type.

The PFFRG method will be applied with the following specifications throughout the

chapter. In Sec. 5.1 and 5.2, the self-energy and two-particle vertex are computed on

exponential frequency grids with 64 sites for each frequency dependence. In Sec. 5.3,

the exponential frequency grids consist of 2000 sites for the self-energy and of 64 sites

for each transfer frequency of the two-particle vertex. The PFFRG flow equations are

solved with Euler’s method in Sec. 5.1 and 5.2, whereas they are solved by applying

the implementation of Ref. [60] of an explicit embedded Runge-Kutta (2, 3) method

with an adaptive step size in Sec. 5.3. Spin correlations are given out over a maximum

distance of five nearest-neighbor spacings in Sec. 5.1 and 5.2, and over a maximum

distance of four nearest-neighbor spacings in Sec. 5.3. Correlations over longer dis-

tances are treated as zero. The smaller distance chosen in the latter section, for which

the evaluation of PFFRG flows requires less computational resources, is explained by

the computation of a two-dimensional phase diagram whose evaluation requires a lot of

computational resources. PFFRG flows in Sec. 5.2.4 on explicit pyrochlore compounds

are computed with the PFFRG specifications of Sec. 5.3, except for the difference that

spin correlations are given out over a distance of five nearest-neighbor spacings.
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5.1 Could the pyrochlore Heisenberg model host a

nematic ground state? A PFFRG study on the

S = 1/2 and S = 1 quantum models

The classical spin-ice phase, realized by the nearest-neighbor Ising model on the py-

rochlore lattice, is the poster child of a three-dimensional classical spin liquid. Over the

years, the phase has been studied extensively and is well understood at this point [81].

With Ho2Ti2O7 and Dy2Ti2O7, even two rare-earth Ti compounds have been found that

realize a classical spin-ice phase on the pyrochlore lattice [81]. In contrast, the ground

state of the conceptually similar Heisenberg antiferromagnet is still under debate for

the quantum model, but an increasing number of arguments have been gathered in

recent years [56, 79, 48, 43, 80] that support the picture of a lattice symmetry-breaking

nematic ground state in the cases S = 1/2 or S = 1. The aim of this section is to study

the state selection by quantum fluctuations within the classical ground state manifold

of the pyrochlore Heisenberg model. For this purpose, the classical spin-ice phase will

be introduced first in Sec. 5.1.1, and its transition to a U(1) QSL by the introduction

of XY interactions will be touched on briefly. Afterwards, the current predictions of

Refs. [56, 79, 48, 43, 80] on the ground-state selection of the Heisenberg model will

be summarized in Sec. 5.1.2. A PFFRG-based perspective on the selection will be

provided subsequently. It will cover the author’s contributions to the recent publica-

tions Refs. [48] and [43], which treat the S = 1/2 and S = 1 models, respectively.

It should be noted that the PFFRG approach presented in this section has limited

validity in characterizing ground states when considered by itself. For complementary

approaches that also apply a PFFRG-enhanced parton mean-field approach, vMC and

DMRG, we refer to the original publications. Finally, a methodological discussion on

the contribution of unphysical pseudo-fermion states to PFFRG ground states is given

in Sec. 5.1.3.

5.1.1 A basic review of spin ice

The spin-ice phase will occur throughout the chapter and is relevant for understanding

the classical ground state manifold of the antiferromagnetic Heisenberg model on the

pyrochlore lattice. A brief introduction to the spin-ice phase will be provided in the

following.

The pyrochlore lattice is a face-centered cubic lattice with a four-site unit cell. A

more intuitive picture is gained by framing the lattice as being built by corner-sharing

tetrahedra, with the lattice sites being positioned at the corners of the tetrahedra, as
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Figure 5.1: Visualization of the pyrochlore lattice. The lattice is built up from corner-
sharing up and down tetrahedra, colored in red and blue respectively. The four sites
of an up tetrahedron constitute the basis sites of the lattice, which is organised in
a face-centered cubic (fcc) configuration. The corresponding primitive lattice vectors
a1 = (0, 1, 1)/2, a2 = (1, 0, 1)/2 and a3 = (1, 1, 0)/2 are shown in black. The 16 sites
and edges of the larger non-primitive simple cubic unit cell are highlighted in black as
well.

shown in Fig. 5.1. The tetrahedra themselves are arranged in a bipartite diamond

lattice. One can distinguish between up and down tetrahedra, colored red and blue,

respectively, in the figure. Two lattice symmetries that we will consider in this section

are the inversion symmetry about any lattice site and the C3 rotation symmetry about

an axis connecting any lattice site and the center of an adjacent tetrahedron.

We continue by considering pyrochlore spin models in which a single spin is placed on

each lattice site. The classical spin-ice phase is realized in the antiferromagnetic Ising

model, where spins are arranged along the site-dependent z axis pointing towards the

center of the adjacent up (red) tetrahedron. The corner-sharing lattice structure allows

to reformulate the Ising Hamiltonian as a sum over tetrahedra as

H =
∑
⟨ij⟩

Szi S
z
j

=
1

2

∑
t

(Szt0 + Szt1 + Szt2 + Szt3)
2 + C, (5.1)

with C being a constant and the index t labeling tetrahedra of the lattice. From this

expression, it is apparent that the energy of the model is minimized by states in which

the spins of each tetrahedron sum up to zero, i.e., Szt0 + Szt1 + Szt2 + Szt3 = 0 for each

t. This constraint is fulfilled for states in which each two spins of a tetrahedron point
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Figure 5.2: Example of a spin-ice configuration on the pyrochlore lattice. Up and
down tetrahedra are colored in red and blue respectively. Classical spin vectors are
shown in yellow and are oriented along the local z axis of the pyrochlore lattice, which
points towards the center of the adjacent up (red) tetrahedron. A six-site hexagon,
along which spins can be flipped without leaving the spin-ice manifold, is highlighted
in green.

towards and away from its center (a cutout of such a state is shown in Fig. 5.2).

This so-called ice rule owes its name to the fact that the resulting two-in two-out spin

arrangements on single tetrahedra are analogous to the hydrogen atom arrangements

found in the ambient-pressure structure of water ice [82]. The local ice rule constraint

Szt0 + Szt1 + Szt2 + Szt3 = 0 allows for an extensive number of ground states, which

prevents magnetic ordering down to the zero-temperature limit. This extensive ground

state degeneracy is reflected in a T = 0 residual entropy of SP = N ln(3/2), the Pauling

entropy, which scales linearly with the system size N [78].

The spin-ice phase is considered a classical spin liquid and indeed contains fractionalized

excitations, arguably the signature of spin liquids, in the form of magnetic monopoles.

These are obtained in pairs by flipping a single spin, breaking the ice rule for the

two adjacent tetrahedra in the process. Single defect tetrahedra can be moved around

independently and without energy cost by flipping adjacent spins. In other words, we

observe an initial spin-flip excitation being fractionalized into two deconfined defect

tetrahedra, each interpreted as a magnetic monopole [78].

Besides the Pauling entropy, another experimental signature of classical spin ice are

sharp features in the momentum dependence of the magnetic susceptibility that are

of vanishing width, the so-called pinch points, as shown in Fig. 1 of Ref. [83]. They

manifest as a direct consequence of the fulfillment of the ice rule. This rule implies



5.1. Could the pyrochlore Heisenberg model host a nematic ground state? 107

long-range correlations since neighboring lattice layers along the x, y, or z direction

(as defined in Fig. 5.1) will realize exactly opposite magnetizations. In turn, the

perfect correlations between lattice layers give rise to sharp features in the magnetic

susceptibility [1]. An alternative view on pinch points is gained by considering the

classical spin orientations as a site i dependent vector field Bi [78]. By coarse-graining

the Ising model to a continuum theory with a continuous position vector r, the ice rule

transitions into the vector field restriction

∇ ·B(r) = 0, (5.2)

reminiscent of the Gauss law in electromagnetism. In case ∇ ·B(r) ̸= 0, a broken ice

rule is implied and magnetic monopole excitations emerge that act as sources of the

emergent magnetic field B(r). The connection to electromagnetism can be extended

by introducing the gauge field A(r) via

B(r) = ∇×A(r), (5.3)

which satisfies the Gauss law by construction. Many spin-ice configurations exist that

lead to small magnetic field strengths |B|, and fewer exist that lead to larger absolute

sizes. This is captured effectively by the probability distribution

P (B(r)) ∝ e−
κ
2

∫
R3 dr|B(r)|2 , (5.4)

with a constant κ [1]. Importantly, this distribution implies dipolar long-range corre-

lations

⟨Bµ(r)Bν(0)⟩ ∝ rµrν − |r|2δµν
|r|5 , (5.5)

with µ, ν ∈ {x, y, z}. It is this dipolar correlation behavior that manifests pinch points

in the magnetic susceptibility [83].

Quantum spin ice

It has been confirmed by several analytical and numerical approaches, including qMC

[84], that classical spin ice transitions into a U(1) QSL once tunneling between classical

spin-ice configurations is enabled by the perturbative introduction of quantum fluctua-

tions in the form of XY interactions Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j [4]. The tunneling processes become

explicit in a perturbative expansion around the Ising model, with the simplest tunnel-

ing process between two spin-ice configurations corresponding to the local flipping of

spins with alternating sign along a six-site hexagon of the lattice (see Fig. 5.2). The

low-energy structure of the resulting quantum spin-ice phase is described by a U(1) lat-
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tice gauge theory, which effectively realizes electromagnetism [4]. Thus, the emergent

excitations of quantum spin ice include not only the magnetic monopoles of classical

spin ice, but also electric monopoles and photon excitations1. While the monopole

excitations are gapped, photon excitations are gapless and have a linear dispersion [4].

Relevant to the question posed by the title of this section, the antiferromagnetic Heisen-

berg model on the pyrochlore lattice, given by the Hamiltonian

H =J
∑
⟨ij⟩

Si · Sj

=
J

2

∑
t

(St0 + St1 + St2 + St3)
2 +D, (5.6)

with D being a constant and J > 0, is a model that includes the spin-ice manifold

within its classical ground state manifold. Instead of the Ising model’s ice rule Szt0 +

Szt1 + Szt2 + Szt3 = 0, the classical ground state manifold of the Heisenberg model is

given by the states that satisfy St0 + St1 + St2 + St3 = 0 on each tetrahedron t of

the lattice. On first sight, this higher-dimensional generalization of the ice rule raises

the question of whether the ground state of the quantum model can be related to a

quantum spin ice. However, although it is confirmed that the Heisenberg model remains

paramagnetic down to T = 0 [83], ObD from quantum fluctuations could enforce other

types of paramagnetic phases as well.

Revealing the nature of the ground state of the quantum model poses a challenge for

many theoretical approaches. The interactions of the Heisenberg model are located

far away from the classical Ising model. Therefore, a perturbative expansion around

this limit is not justified. Due to geometrical frustration, the treatment of the model

by qMC is prevented by the sign problem [1]. Furthermore, since the lattice is three-

dimensional, the number of lattice sites that have to be treated increases quickly with

the considered system size. The model is located in a methodological niche that is, how-

ever, accessible by PFFRG, a method well suited for the treatment of three-dimensional

models with frustrated interactions.

1The existence of magnetic monopoles can in principle be incorporated into the standard theory
of electromagnetism. However, even in case magnetic monopoles exist, it is questionable whether one
would ever be able to observe any due to their large predicted mass comparable to the ”kinetic energy
of a charging rhinoceros” [85]. Note that the parameters of standard electromagnetism, and hence the
relative energies of involved excitations, are different from those of the emergent electromagnetism of
quantum spin ice [86].
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5.1.2 Symmetry properties of the Heisenberg model ground

states

Before we commence with the PFFRG study on the ground states of the S = 1/2 and

S = 1 Heisenberg models, previously proposed nematic ground states of the quantum

models will be briefly summarized in this paragraph. For the S = 1/2 model, a

lattice inversion or combined inversion and C3 symmetry-breaking ground state had

been proposed on the basis of DMRG computations [79]. The same method finds

enhanced tendencies towards the same scenarios of symmetry breaking in the S = 1

model [43]. The study of Ref. [48] applies vMC and a PFFRG-enhanced parton mean-

field approach, which renormalizes mean-field solutions by taking into account vertex

fluctuations captured by PFFRG. The study suggests inversion or combined inversion

and C3 symmetry breaking for the S = 1/2 model ground state as well. Another vMC

and convolutional neural network study suggests a S = 1/2 model ground state with

both broken inversion and C3 lattice symmetry [56]. A more concrete ground state

for both the S = 1/2 and S = 1 model, consistent with previously predicted scenarios

of symmetry breaking, had been proposed in the more recent study of Ref. [80] in

the form of an inversion and C3 symmetry-breaking valence bond crystal with spin

resonances along six-spin hexagons of the lattice. In summary, previous results point

either to the scenario of a lattice inversion or combined inversion and C3 symmetry

breaking for the ground states of the S = 1/2 and S = 1 models.

We now apply PFFRG to investigate the Heisenberg model towards inversion, C3,

and combined C3 and inversion symmetry breaking. More specifically, the PFFRG

approach to study nematic orders described in Sec. 3.5.8 will be applied, in which

Heisenberg interactions J of the S = 1/2 and S = 1 Heisenberg models will be

strengthened (J → J + δ) and weakened (J → J − δ) by sizes δ ≪ J along different

symmetry-breaking patterns. Dimer response functions χΛ
D, defined as in Eq. (3.90),

are computed for the perturbed models to measure the ground state responses towards

different scenarios of symmetry breaking consistent with the respective perturbation

patterns.

The applied inversion, C3, and inversion and C3 symmetry-breaking perturbation pat-

terns are visualized in Fig. 5.3. Heisenberg interactions of bold bonds are strengthened,

whereas interactions are weakened on the remaining bonds. Dimer response functions

measure the difference between spin correlations χΛ
ij and χΛ

kl on two bonds ⟨i, j⟩ and

⟨k, l⟩ related by a lattice symmetry that is broken by an overlaying perturbation pat-

tern. In presence of the perturbation pattern that breaks only inversion symmetry, χΛ
D,i

is defined on two bonds related by lattice inversion symmetry [see Fig. 5.3(a)]. Thus,

χΛ
D,i probes the response of the system towards sole inversion symmetry breaking. Sim-
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(a) (b) (c) (d)

Figure 5.3: Specifications of dimer responses χD for perturbation patters applied in
the study of the pyrochlore Heisenberg model ground state. Perturbation patterns are
specified by showing them on the adjacent tetrahedra of a reference site, because the
perturbations do not break translation symmetries of the lattice. Heisenberg interac-
tions J on bold bonds are strengthened as J → J + δ, whereas they are weakened
as J → J − δ on the remaining bonds. Nearest-neighbor spin correlations on a pair
of bonds related by a perturbatively broken lattice symmetry are considered for the
computation of dimer responses. Those bonds are highlighted for each χD with the
same color (and pattern) as the dimer response flow of equal χD in Fig. 5.4. The figure
is replicated from Ref. [48].

ilarly, χΛ
D,C3

is defined on two bonds related by C3 lattice symmetry in presence of a

perturbation pattern that breaks only C3 symmetry [see Fig. 5.3(b)]. In case two lattice

symmetries are broken by a single perturbation pattern, two dimer response functions

can be defined, each on a pair of bonds related by one of the broken symmetries. In

our case, a perturbation is applied that breaks both inversion and C3 symmetry. Large

values of χ
Λ,(1)
D,C3,i

and χ
Λ,(2)
D,C3,i

then argue towards a ground state absent of both inversion

and C3 symmetry. While χ
Λ,(1)
D,C3,i

is defined on two bonds related by C3 symmetry [see

Fig. 5.3(c)], χ
Λ,(2)
D,C3,i

is defined on bonds related by inversion symmetry [see Fig. 5.3(d)].

The Λ flows of dimer responses are shown in Fig. 5.4 for both the S = 1/2 and S = 1

Heisenberg model. They mostly agree on a qualitative level between the cases S = 1/2

and S = 1. Interestingly, flows of the S = 1 model exhibit subtle signs of an instability

at low cutoffs Λ ≈ 0.5. However, recent DMRG and PMFRG results suggest that

the S = 1 Heisenberg model is not magnetically ordered [87]. Since PFFRG predicts

magnetic order for pyrochlore Heisenberg models with S > 1 that are still in the

quantum regime of relatively small S [88], we interpret the observed feature not as

a flow breakdown but as a consequence of a nearby critical point. The behavior of

the χΛ
D flows allows to argue towards possible scenarios of symmetry breaking for the

paramagnetic ground states. Not supported by PFFRG is the scenario of a ground

state that only breaks inversion symmetry. This is reflected by the flows of χΛ
D,i, along

which χΛ
D,i decreases monotonically from its initial values of χΛ→∞

D,i = 1 towards its

final values χΛ→0
D,i ≪ 1. In contrast, the remaining response functions χΛ

D,C3
, χ

Λ,(1)
D,C3,i
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Figure 5.4: PFFRG flows of dimer responses χΛ
D for the S = 1/2 and S = 1 antifer-

romagnetic Heisenberg models on the pyrochlore lattice. Dimer responses to different
symmetry-breaking perturbation patterns were considered, which either break lattice
inversion, C3 or both symmetries of the Heisenberg models (see Fig. 5.3). The subfig-
ures are replicated from Refs. [48] and [43].

and χ
Λ,(2)
D,i,C3

exhibit a large increase at small cutoffs Λ ≲ 1 and reach large values of

χΛ
D > 8 at Λ → 0. The largest values are achieved by χΛ

D,C3
and χ

Λ,(1)
D,C3,i

. Note that

values of both response functions are not exactly equal even though it visually appears

to be the case in Fig. 5.4. The large values of χΛ→0
D,C3

suggest ground states that only

break C3 symmetry. Simultaneously, large values of χ
Λ→0,(1)
D,C3,i

and χ
Λ→0,(2)
D,i,C3

suggest that

the ground states break both inversion and C3 symmetry. Unfortunately, the method

cannot distinguish by itself which of the two scenarios applies for the ground states of

the S = 1/2 and S = 1 Heisenberg models. Note that the responses χΛ
D,C3

, χ
Λ,(1)
D,C3,i

and

χ
Λ,(2)
D,i,C3

reach larger values in the cutoff-free limit Λ → 0 for the S = 1 model than for

the S = 1/2 model. This observation is in agreement with the enhanced symmetry

breaking tendency of the S = 1 model found by DMRG in Ref. [43].

5.1.3 Unphysical states

The PFFRG method does not treat spin models directly, but the corresponding pseudo-

fermion models, which hosts unphysical states. The above study of the ground states of

the S = 1/2 and S = 1 Heisenberg models has so far neglected whether the presence of

these unphysical states may affect measured values of χΛ
D. This question will be treated

in the following, since in pseudo-fermion versions of quantum spin models, especially

highly frustrated ones, it can occur that quantum fluctuations incorporate pseudo-

fermion states of the unphysical Hilbert space sector into the ground state to some

extent [35]. While the previous conclusions on the ground-state symmetry properties
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Figure 5.5: Dependencies of dimer responses χD ≡ χΛ→0
D of the S = 1/2 and S = 1

Heisenberg models on the level repulsion strength A/J , as defined in Eq. (5.7). The
data points were fitted by the function (5.8). Fitted values of χD in the limit A→ ∞
are given in Table 5.1. Subfigure (b) is replicated from Ref. [43].

of Heisenberg models will remain unchanged, a quantitative correction of measured

values χΛ
D will be observed. In PFFRG implementations of S > 1/2 models, the origin

of unphysical states is twofold. On the one hand, the pseudo-fermion mapping (see Sec.

3.2) introduces two unphysical states with vanishing local spin S = 0 on each lattice

site. On the other hand, the PFFRG treats models with spin numbers S = M/2

by placing M copies of S = 1/2 degrees of freedom on each lattice site [32]. This

implementation of S > 1/2 models assumes that the M spin-1/2 quantum numbers

are energetically favored to sum up to an effective S =M/2 spin on each site.

We investigate the influence of unphysical states on the measured dimer response func-

tions by adding terms to the Hamiltonian that energetically reward maximum onsite

spin numbers S. The new spin model is given by

H = J
∑
⟨ij⟩

Ŝi · Ŝj − A
∑
i

Ŝ2
i . (5.7)

The dependence of each previously considered dimer response function in the cutoff-

free limit χD ≡ χΛ→0
D on the level repulsion strength A > 0 is shown in Fig. 5.5. We

observe that the sizes of χD change significantly upon the inclusion of a finite A. Their

dependence on A is found to be well fitted by the function

χD(A/J) =
a

(A/J − b)
+ c, (5.8)

with fitting parameters a, b and c. Based on the observation that the data points

are well captured by the fitting function, we use this function to estimate values of
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A/J = 0 A/J → ∞
χD S = 1

2
S = 1 S = 1

2
S = 1

χD,i 0.286 0.156 0.529(3) 0.378(2)
χD,C3 12.1 16.9 6.1(2) 6.8(3)

χ
(1)
D,C3,i

8.2 11.5 4.3(1) 4.7(2)

χ
(2)
D,C3,i

12.2 17.0 6.1(2) 6.8(3)

Table 5.1: Dimer responses χD ≡ χΛ→0
D in the absence of level-repulsion terms and in

the large level-repulsion limit A/J → ∞. Values for the case A/J → ∞ are obtained
by applying a non-linear least squares fit, using the fitting function of Eq. (5.8), to the
data points of χD at different A/J , shown in Fig. 5.5. The table is replicated from
Ref. [43].

the dimer response functions in the A → ∞ limit, in which unphysical states do not

contribute to the exact ground state of the pseudo-fermion Hamiltonian. Estimates of

χD in the limit A → ∞ are given in Table 5.1. Note that the results in the A → ∞
limit should be treated with caution. While unphysical states do not contribute to

the exact ground state in this limit, the flow equation truncation of the PFFRG may

prevent a fulfillment of the strong constraint [given by Eq. (3.23)] even at A→ ∞. A

similar effect is observed in Ref. [35], which instead aims to remove the contributions of

unphysical states to thermodynamic averages by the application of the Popov-Fedotov

trick.

In the limit A → ∞, previously large dimer response functions of the S = 1/2 model

with A = 0 are approximately halved. E.g., for the S = 1/2 model, dimer responses

assume values of χD,C3 = 12.1 at A = 0 and χD,C3 = 6.1(2) at A → ∞ (reduction to

50% of the previous size). For the S = 1 model, the relative size reductions are even

larger, likely due to the twofold origin of unphysical states. In case of the S = 1 model,

we measure χD,C3 = 16.9 at A = 0 and χD,C3 = 6.8(3) at A → ∞ (reduction to 40%

of the previous size). Nevertheless, dimer response functions are observed to remain

much larger than 1 at A → ∞ for both the S = 1/2 and S = 1 model if they already

assume large values at A = 0. Likewise, χD,i remains small for the S = 1/2 and S = 1

models at A → ∞. Hence, while the A → ∞ dimer responses, which are closer to

χD = 1, reduce the significance of the previous PFFRG statement on the ground state

symmetry properties, the conclusion of C3, or combined inversion and C3 symmetry-

breaking ground states remains. The argument against the presence of ground states

that only break lattice inversion symmetry remains as well. Furthermore, the deviation

of dimer responses from χD = 1 is still larger in the S = 1 model than in the S = 1/2

model, which is still in agreement with the DMRG result of an enhanced symmetry

breaking in the S = 1 model [43].
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(a) (b)

(111)

Figure 5.6: Depiction of the pyrochlore lattice. Corner-sharing tetrahedra, built up by
nearest-neighbor bonds, are visualized. Primitive fcc lattice vectors are colored blue.
The four basis sites are labeled. Red vectors that originate from bonds ⟨0, j⟩ depict
the orientations of the corresponding DMI vectors D0j [see Eq. (5.9)] for a direct DMI.
They are oriented coplanar in the (111) plane. (a) 16-site non-primitive simple cubic
unit cell of the pyrochlore lattice. Sites within the unit cell are marked by black dots.
Edges of the unit cell are depicted as black lines. (b) All six nearest neighbors of the
reference site 0 and their adjacent tetrahedra are projected onto the (111) plane.

5.2 Order-by-disorder and suppression of magnetic

order in the phase diagram of the pyrochlore

magnet with Heisenberg and Dzyaloshinskii-

Moriya interactions

We now go beyond the study of the previous section by considering not only a py-

rochlore model with Heisenberg interactions, but additional DMI as well. The phase

diagram of the model will be studied in detail, providing important insights on ObD

selections within pyrochlore compounds and the stability of the Heisenberg model’s

paramagnetic ground state with respect to a finite DMI. The study of ObD will be

performed in the so-called Γ5 phase, in which the model selects a magnetic order within

a one-dimensional ground state manifold of equal name [89]. Two orders within this

manifold are observed to be selected by ObD, depending on the set of interactions, the

temperature and whether quantum fluctuations are present: Either the so-called ψ2 or

ψ3 order [49]. As will be explored in this section, the Γ5 phase represents a paradig-

matic example of the potential subtleties of ObD-driven selections. Furthermore, ObD

selections within this phase are not only of theoretical relevance but also play a crucial

role in the ground state selection of multiple pyrochlore compounds [77].

The Heisenberg-DM model studied in this section can be justified by considering the
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models realizable by pyrochlore compounds. Importantly, not any kind of interaction

can emerge in spin-model realizations of pyrochlore compounds. Instead, the realizable

set of interactions is restricted by the symmetry properties of the lattice and the low-

energy doublet on which an effective spin is defined for each lattice site. Four different

types of interactions can occur between nearest neighbors if the spin doublet transforms

as a magnetic dipole (or a pseudo-vector). They are given by a Heisenberg, Kitaev, Γ

and DM interaction, with each being fully specified by a scalar prefactor in the general

nearest-neighbor Hamiltonian [90] (the symmetry-based constraints on interactions will

be treated further in Sec. 5.2.3). Note that the latter three interaction types are

anisotropic under spin rotations. In this section, we will restrict ourselves to Heisenberg

and DM interactions only, treating the Heisenberg-DM model

Ĥ = J
∑
⟨ij⟩

Ŝi · Ŝj +
∑
⟨ij⟩

Dij · (Ŝi × Ŝj). (5.9)

The orientations of DM vectors Dij are fully constrained by the symmetry properties

of the model, as will be derived in Sec. 5.2.3. The DM vector orientations are specified

in Fig. 5.6. E.g., the DM vector Dij for the bonds between sublattices i = 0 and

j = 1 is given by D01 = D(0,−1, 1). It follows that the general parameterization of

interactions in the Heisenberg-DM model is given by

J = cos(θ),

D = sin(θ),
(5.10)

resulting in a one-dimensional phase diagram parameterized by θ. Even for this sim-

plified model with only two interaction parameters, a rich phase diagram with multiple

T = 0 paramagnetic phases and ObD-driven phases is obtained [49, 91, 71], includ-

ing the aforementioned Γ5 phase. From a material perspective, the consideration of

a finite DMI over other types of anisotropic interactions is justified in that its size is

of linear order in spin-orbit coupling in a perturbative expansion and, as such, the

interaction is more relevant in the limit of small spin-orbit couplings than the Kitaev

and Γ interactions, whose leading contributions are quadratic in a perturbative series

[92].

We will go beyond the previous studies of the Heisenberg-DMmodel of Refs. [93, 94, 95]

by considering both antiferromagnetic and ferromagnetic Heisenberg interactions, and

by considering the S = 1/2 quantum model nonperturbatively beyond the large-S

limit of linear spin-wave theory. Instead, the more sophisticated PFFRG method will

be applied. In addition to PFFRG, multiple complementary methods will be applied as

well to resolve the ObD selections in the Γ5 phase for both the classical and quantum

model in the zero and critical temperature limit.
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To summarize, the Heisenberg-DM model on the pyrochlore lattice will allow us to

study the stability of the paramagnetic phase surrounding the Heisenberg model and

perform an extensive study on the subtleties of ObD in the Γ5 phase. Furthermore,

we will find an additional paramagnetic phase in the ferromagnetic regime J < 0,

which is of finite extent in the phase diagram of the quantum model and will be of

central importance in the following Sec. 5.3. The section will cover results of our

publication Ref. [49] and will especially focus on the PFFRG perspective of the study.

The main contributions of this thesis’ author to Ref. [49] consist of the PFFRG-based

study among other results such as the proof given in Sec. 5.2.4. In order to embed

PFFRG results into the relevant context, results of the paper based on complementary

methods (not produced by the author) will be replicated as well. Results of the study

on the classical model, most importantly obtained by classical Monte Carlo (cMC),

as well as linear spin-wave theory results, were achieved by Daniel Lozano-Gómez.

High-temperature series expansion results were achieved by Rajiv R. P. Singh and

Jaan Oitmaa. All authors of Ref. [49] contributed to interweaving the complementary

results into a multifaceted publication.

The next subsections are organized as follows. An introduction on the phenomenon of

thermal and quantum order-by-disorder will be provided in Sec. 5.2.1. Next, local and

global coordinate systems of the pyrochlore lattice will be introduced in Sec. 5.2.2. As

will be demonstrated later, for some purposes it will be more convenient to describe

pyrochlore models in the local (site-dependent) coordinate system. The symmetry

constraints on the spin model interactions are treated in Sec. 5.2.3. Importantly, the

constraints will vary depending on the symmetry properties of effective spins realized

by different classes of pyrochlore compounds. A classification scheme for ground state

manifolds in pyrochlore nearest-neighbor spin models, previously formulated in Ref.

[90], is given in Sec. 5.2.4. This scheme will provide the complete set of T = 0

classical phases that can occur in symmetry-constrained nearest-neighbor models on

the pyrochlore lattice, and builds the theoretical foundation upon which fluctuation-

based effects of state selection can be studied. Finally, Sec. 5.2.5 treats the results

of Ref. [49]. To this end, the phase diagrams of both the classical and S = 1/2

Heisenberg-DM models will be provided and discussed in detail.

5.2.1 Thermal and quantum order-by-disorder

Because of its relevance to the Heisenberg-DM model, we discuss the phenomenon of

ObD in this subsection as preparation for the study of the model. Previously, we

studied the ground state of the antiferromagnetic Heisenberg model on the pyrochlore

lattice. Although the interactions of the model are quite simple, unraveling its ground
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state proved to be highly nontrivial, such that the exact nature of the state is still un-

der debate. While the S = 1/2 Heisenberg model has long been treated as a U(1) spin

liquid candidate, recent publications have gathered arguments in favor of the selection

of a nematic order that breaks lattice symmetries (see Sec. 5.1 for a more in-depth

discussion). The effect that drives the model to such an ordered state, even though

its ground state manifold is extensive for classical spins, is called order-by-disorder.

The term describes the scenario in which fluctuations, in this case of quantum origin,

drive a model into a long-range order by favoring the selection of certain states out of

a classically degenerate ground state manifold [5]. In this section, we are interested in

the study of ObD that selects magnetically ordered ground states. In case the selec-

tion is driven by quantum fluctuations (quantum ObD), the fluctuations favor these

states energetically. Closely related to quantum ObD is thermal ObD, in which thermal

fluctuations entropically favor certain states of a classical ground state manifold over

others. Thermal ObD selections can be intuitively understood as follows. All ground

states of a classical model have an equal probability to be realized at T = 0. However, a

small but finite T > 0 allows thermal fluctuations into energetically excited states that

are close by. The thermal fluctuations into energetically excited states about a classi-

cal ground state configuration result in an additional entropy contribution associated

with that respective ground state. It follows that a ground state with many low-lying

excitations accessible by thermal fluctuations will be entropically favored in state selec-

tion. In short, the ground state selection at low temperatures depends not only on the

ground state manifold but also on the close-by energy landscape surrounding it. The

ObD effect leads to the seemingly paradoxical situation that while fluctuations may be

necessary for a system to assume a long-range order, fluctuations that are too strong

can have the opposite effect, causing the system to remain in a disordered phase.

Generally, ObD selections of a model need to be distinguished between different scenar-

ios. While the thermal ObD selection near T = 0 may be straightforward to determine,

it does not have to coincide with the selection at higher temperatures below the critical

temperature Tc. In case a model is not classical, quantum and thermal ObD effects

are intertwined. Quantum ObD transforms the energy landscape for classical states

of a model, whereas thermal ObD acts on top of the new landscape2. The complex

interplay between thermal and quantum fluctuations may complicate the ground state

selection, as both types of fluctuations do not necessarily cooperate towards the selec-

tion of the same order [96]. In our study of the Heisenberg-DM model, one can broadly

distinguish between four different cases for which ObD selections may differ. These are

given by selections at infinitesimal temperature T = 0+ or critical temperature T ≈ Tc,

and in presence or absence of quantum fluctuations. The classical model allows the

2Note that this is a simplified picture, as quantum fluctuations can also stabilize states without
any classical analogue.
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straightforward study of purely thermal ObD from the temperature of the phase tran-

sition Tc down to the zero-temperature limit by performing cMC simulations. State

selections found near T = 0 can be solidified by applying low-temperature expansions

about candidate spin configurations [49]. In the S = 1/2 quantum model, the study of

ObD is methodologically more challenging. Predictions of the T = 0 ObD selections

can be obtained by applying linear spin-wave theory. To determine the ObD selections

at T = Tc, we apply both PFFRG and high-temperature series expansions (HTSE).

The selection within PFFRG is inferred from the magnetic susceptibility at the critical

cutoff Λc. Strictly speaking, the cutoff does not correspond to a temperature. However,

due to their similarities (see Sec. 3.5.4), we interpret the order selection at Λc as that

of the quantum model at T = Tc, rather than at T = 0. As will be proven in Sec. 5.2.4,

magnetic susceptibilities are only able to partially resolve the ground state selection

within the ground state manifold of the Γ5 phase. The necessary observables required

to fully resolve state selections within the Γ5 phase are not accessible within PFFRG

due to the truncation of flow equations. However, HTSE will allow for a resolution of

ObD state selections where the PFFRG fails by providing observables that are of up

to sixth order in spin operators.

At last, we note that the strong geometrical frustration present in spin models on

the pyrochlore lattice, realized by the arrangement of lattice sites in corner-sharing

tetrahedra, provides ideal conditions for the realization of ObD. As a general property,

frustration leads to accidental ground state degeneracies in classical spin models [1]. In

case the classical ground state manifold is large, as is the case in the extensive manifold

of the pyrochlore Ising model, any kind of magnetic order can be prevented down to

T = 0, which may lead to the emergence of a spin-liquid phase at low temperatures. In

case of a smaller ground state manifold, thermal or quantum fluctuations are more likely

to drive a model into a magnetically ordered phase. ObD is the guiding principle in

the selection of this symmetry-breaking ground state. Thus, the presence of frustration

enables the ObD phenomenon by creating accidental degeneracies.

5.2.2 Local and global coordinate systems

While spin models are often expressed in a global site-independent coordinate system,

the choice of coordinates is free in principle. On the pyrochlore lattice, it is often

advantageous to assume a local site-dependent coordinate system. E.g., many relevant

magnetic orders of this section simplify if they are expressed in the local coordinate

system. This includes the spin configurations of the Γ5 manifold, which correspond

to ferromagnetic arrangements in the local x-y plane. The sublattice-dependent basis
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vectors of the local coordinate system are given by [97]
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3

−1

1

1

 ,

x2 =
1√
6

 2

1

−1

 , y2 =
1√
2

 0

−1

−1

 , z2 =
1√
3

 1

−1

1

 ,

x3 =
1√
6

 2

−1

1

 , y3 =
1√
2

0

1

1

 , z3 =
1√
3

 1

1

−1

 .

(5.11)

The sublattices are defined in Fig. 5.6. The local z-axis vector zi is oriented towards

(away from) the center of the adjacent up (down) tetrahedra, previously introduced in

Fig. 5.1. Importantly, the full set of local z axis vectors zi remains invariant under the

application of spin model symmetries in pyrochlore compounds, whereas the full set of

local x and y axis vectors, given by xi and yi, generally transforms under the application

of symmetries. It will be shown in the following subsection that in the local coordinate

system pyrochlore compounds can realize interactions Ŝzi Ŝ
z
j of the Ising model given by

Eq. (5.1), as well as a continuous interpolation between the Ising and Heisenberg mod-

els in the form of an XXZ model with interactions α(Ŝxi Ŝ
x
j +Ŝ

y
i Ŝ

y
j )+Ŝ

z
i Ŝ

z
j (with α ∈ R).

In contrast, symmetry properties of pyrochlore compounds do not allow for a realiza-

tion of the Ising model in the global coordinate system. Instead, a Ŝzi Ŝ
z
j interaction on

a nearest-neighbor bond ⟨i, j⟩ implies Kitaev interactions Ŝµi Ŝ
µ
j , with bond-dependent

µ ∈ {x, y, z}, on the full lattice if the model is expressed in the global coordinate

system. Note that while the Heisenberg model in the global coordinate system can be

realized by pyrochlore compounds with small spin-orbit coupling, a Heisenberg model

in the local coordinate system implies strong spin-orbit coupling, since the Heisenberg

interactions in the local coordinate system become strongly anisotropic if they are

expressed in the global coordinate system.

5.2.3 Symmetry-constrained nearest-neighbor models

We now introduce the symmetry-constrained nearest-neighbor spin models realized by

pyrochlore compounds, restricting ourselves to bilinear spin interactions only. The
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Heisenberg-DM model represents a simplification of these models, which have addi-

tional interaction types. The introduced models will further be relevant in Sec. 5.3

when models of non-Kramers pyrochlores are considered. Note that the spin models

considered here are to be understood as low-energy effective models of Mott-insulating

pyrochlore compounds. As such, the spin models and the spin operators themselves,

with the latter being built from local low-energy doublets, have to reflect symmetry

properties of the compounds on which they are based. For simplicity in notation, spin

components will be formulated as being classical in this subsection, i.e., they are given

by scalars Sµ instead of quantum operators Ŝµ.

Underlying the existence of many symmetry-allowed interactions in effective spin mod-

els is spin-orbit coupling. As the name suggests, spin-orbit coupling couples spin de-

grees of freedom to real-space orientations and thereby allows for the emergence of

anisotropic interactions in effective spin models. Vice versa, if no spin-orbit coupling

is present, spin degrees of freedom are not coupled to real space. As a consequence,

they can only interact through isotropic Heisenberg interactions JijSiSj in this case.

In the presence of spin-orbit coupling, the scalar Jij, quantifying the isotropic Heisen-

berg interactions, is promoted to a 3 × 3 matrix Jij. The resulting unconstrained

nearest-neighbor Hamiltonian is then given by

H =
∑
⟨ij⟩

ST
i JijSj. (5.12)

Symmetry transformations of a model constrain the interaction matrices Jij. Start-

ing from unconstrained interaction matrices Jij, we will argue in the following how

symmetries constrain Jij in pyrochlore compounds. The sublattice and lattice vector

conventions specified in Fig. 5.6 will be used.

Trivially, we know that interactions Jij and Jkl of different bonds ⟨i, j⟩ and ⟨k, l⟩ can
be related to each other by finding a symmetry transformation that maps ⟨i, j⟩ onto

⟨k, l⟩. E.g., such a symmetry may be given by a lattice translation. In case of the

pyrochlore lattice, lattice symmetries allow all nearest-neighbor bonds to be mapped

onto one another. It follows that one Jij of a single bond ⟨i, j⟩ specifies all interactions
of the full nearest-neighbor model3,4.

The general form of Jij on a single bond ⟨i, j⟩ in particular can be constrained by

3Likewise, all second-nearest-neighbor bonds can be mapped onto one another under the application
of lattice symmetries. Hence, all their interactions are implied as well by giving Jij for only a single
bond. For third nearest neighbors, however, there exist two symmetry-inequivalent types of bonds. It
follows that there exist two independent third-nearest-neighbor interaction matrices Jij [98].

4Note that we consider spin models on ideal pyrochlore lattices. This case is not to be confused
with that of the similar breathing pyrochlore lattice, in which up and down tetrahedra are not related
by symmetries and exhibit different nearest-neighbor interactions as a consequence [98].
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applying symmetry transformations that map the bond ⟨i, j⟩ onto itself, provided that

the symmetry transformations involve nontrivial spin transformations. The transfor-

mations may apply a combination of lattice rotation, inversion, reflection or translation

symmetries. Importantly, since we are considering the case in which spin components

are coupled to real-space orientations via spin-orbit coupling, lattice symmetry opera-

tions generally transform not only real-space coordinates but spin components as well.

The manner in which the spin components transform depends on the symmetry prop-

erties of the underlying doublets on which the effective spins are defined. Depending

on the pyrochlore compound, different components Sµ of an effective-spin vector S

may even exhibit different transformation properties [77].

In the following, we will first assume the case that the spins transform as magnetic

dipoles, i.e., as pseudo-vectors. If a global SO(3) real-space rotation given by the

matrix U is applied, then a spin transforms as Si → USi. A comparison with Eq.

(5.12) reveals that the spin transformation can always be recast as an interaction

matrix transformation Jij → UTJijU instead. In short, the strategy in deriving the

general form of Jij for a bond ⟨i, j⟩ is to first identify all M symmetry operations

that map the bond ⟨i, j⟩ onto itself, then gathering the rotation matrices Uk, with

k = 1, . . . ,M , associated with these operations, and then solving the set of constraints

Jij = UT
k JijUk. E.g., in case of no spin-orbit coupling, the model exhibits a global

SO(3) spin rotation symmetry, since spin degrees of freedom are not coupled to real

space. Trivially, this pure spin rotation symmetry operation leaves all lattice bonds

invariant and can thus be applied to constrain Jij. Requiring Jij to be invariant under

any transformation Jij → UTJijU , with U being an arbitrary SO(3) spin rotation

matrix, implies a pure Heisenberg interaction Jij = Jij1.

In the general case of dipolar spins on a pyrochlore lattice, the symmetry-constrained

Jij for nearest neighbors contains four different types of interactions. We first state

the explicit matrix expressions and explain them afterwards. In the global coordinate

system, the interaction matrices Jij, coupling spins between sublattices i and j (see

Fig. 5.6), are given by

J01 =

J +K D D

−D J Γ

−D Γ J

 , J02 =

J −D Γ

D J +K D

Γ −D J

 , J03 =

J Γ −D
Γ J −D
D D J +K

 ,

J12 =

 J −Γ D

−Γ J −D
−D D J +K

 ,J23 =

J +K −D D

D J −Γ

−D −Γ J

 ,J31 =

 J −D −Γ

D J +K −D
−Γ D J

 ,

(5.13)
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with J , K, D, Γ being scalars (or a pseudoscalar in the case of D) that quantify the

Heisenberg, Kitaev, Dzyaloshinskii-Moriya, and Γ interactions, respectively [97, 90].

Note that the interactions of bonds depend only on the sublattices involved and not on

whether the bonds lie on an up or down tetrahedron. Hence, we only specify Jij for 6

of the 12 nearest-neighbor bonds unequal by translation symmetries. Also, note that

the order of sublattice indices in Jij matters due to the antisymmetric matrix entries

±D that correspond to a DMI. The interaction matrices satisfy Jµνij = Jνµji .

The relations between the interaction matrices on different bonds are understood from

symmetry operations as follows. Nearest-neighbor bonds ⟨0, 1⟩, ⟨0, 2⟩ and ⟨0, 3⟩ of an up

tetrahedron are mapped onto one another by applying the C3 lattice rotation symmetry

about the [111] axis going through the 0 sublattice. This symmetry operation relates

the respective matrices J01, J02 and J03. Since the spins transform as magnetic dipoles,

the C3 symmetry operation cyclically permutes spin components Sµ (or, similarly,

interaction matrix components Jµνij ). Likewise, the bonds ⟨1, 2⟩, ⟨2, 3⟩ and ⟨3, 1⟩ of

an up tetrahedron are mapped onto one another by applying the same C3 rotation

symmetry, relating the matrices J12, J23 and J31 in the process. Finally, the ⟨0, 1⟩
and ⟨3, 2⟩ bonds of a tetrahedron are mapped onto one another by a C2 rotation about

the global z axis, with the axis going through the midpoints of the ⟨1, 2⟩ and ⟨0, 3⟩
bonds on the same tetrahedron. Such a rotation leaves Sz unaffected and changes the

sign of the remaining spin components (Sx → −Sx and Sy → −Sy). Bonds of up and

down tetrahedra are mapped onto one another by inversion symmetry with respect to

a lattice site. Inversion symmetry leaves the spins (pseudo-vectors) unaffected. Thus,

we have related the interaction matrices Jij of all bonds ⟨i, j⟩ unequal by translation

symmetries.

Symmetry restrictions on the DMI

While we have so far only stated the most general symmetry-constrained interactions

Jij and related their expressions for different ⟨i, j⟩ to symmetry operations, we will

now further consider the constrained Jij for a single bond. Since we are interested in

studying the Heisenberg-DM model, we consider how the DMI is constrained in partic-

ular. The DMI corresponds to the anisotropic component of Jij that is antisymmetric

under the exchange of spins (i ↔ j leads to D ↔ −D in Jij) [92]. If we consider

only a finite DMI and set the remaining interactions to zero, a general unconstrained
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interaction matrix is given by

JDMI,ij =

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

 . (5.14)

Due to its property of being antisymmetric, any DMI can always be expressed by a

vector Dij, such that the interaction reads as

ST
i JDMI,ijSj = Dij · (Si × Sj). (5.15)

In our case, symmetries fully restrict the orientations of Dij to those specified in

Fig. 5.6. The restrictions can be derived from pyrochlore reflection symmetries, as

done in Ref. [93], by applying so-called Moriya’s rules [92]. Alternatively, rotation

and inversion symmetries can be applied to constrain the form of Dij as follows. By

employing inversion symmetry and a C2 symmetry about the [01̄1] axis passing through

the sublattice 0, the ⟨0, 1⟩ nearest-neighbor bond maps onto itself. Spin components

Syi and Szi permute under this operation. The DMI matrix JDMI,01 of Eq. (5.14)

has to remain invariant under the corresponding permutations of matrix entries (e.g.,

JxyDMI,01 = JxzDMI,01 implies Dz
01 = −Dy

01, and JyzDMI,01 = JzyDMI,01 implies Dx
01 = 0). It

follows that the DM vector is fixed as D01 = D(0,−1, 1). One can distinguish between

the two cases of a so-called direct and indirect DMI, corresponding to the cases D > 0

and D < 0 respectively. Each can lead to vastly different ordering behavior [93], as

will be seen in the phase diagram of the Heisenberg-DM model.

Effective spin realizations in pyrochlore compounds

In the previous discussion on the symmetry-constrained interactions, we assumed that

spin components transform as magnetic dipoles. However, this is often not the case

in spin models realized by pyrochlore compounds [77]. Here, we give an overview on

three different effective-spin realizations found in pyrochlores. To better distinguish

the differences between realizable interactions for these different classes of pyrochlores,

we express their symmetry-constrained spin models in the local coordinate system. In

this local frame, the general nearest-neighbor model for dipolar spins is given by [97]

H =
∑
⟨ij⟩

JzzSzi S
z
j − J±(S+

i S
−
j + S−

i S
+
j )

+ J±±(γijS
+
i S

+
j + γ∗ijS

−
i S

−
j )

+ Jz±[Szi (ζijS
+
j + ζ∗ijS

−
j ) + i↔ j], (5.16)
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with

ζ =


0 −1 eiπ/3 e−iπ/3

−1 0 e−iπ/3 eiπ/3

eiπ/3 e−iπ/3 0 −1

e−iπ/3 eiπ/3 −1 0

 ,

γ = −ζ∗.

(5.17)

The matrix entries ζij are determined by the sublattices of lattice sites i and j. The

interactions of the local and global frame are related by

Jzz = −1

3
[J −K + 2(Γ + 2D)],

J± =
1

6
(J −K − Γ− 2D),

J±± =
1

6
[2J +K − 2(Γ +D)],

Jz± =
1

3
√
2
(2J +K + Γ−D).

(5.18)

While pyrochlore compounds like Er2Ti2O7 or Yb2Ti2O7, with effective spins trans-

forming as dipoles, realize Hamiltonians of the form shown in Eq. (5.16), other classes

of compounds enforce simplified versions [77].

In compounds such as Ce2Zr2O7 [99] and Nd2Zr2O7 [100], spins are built from dipolar-

octupolar doublets. While, in the local coordinate system, spin components Sx and

Sz behave as components of a magnetic dipole, Sy transforms like a component of a

magnetic octupole tensor under the application of lattice symmetries (or, alternatively

formulated, S± behave as components of an octupole tensor) [101]. These transforma-

tion properties lead to different symmetry constraints on the interactions compared to

the case of purely dipolar spins, such that the most general nearest-neighbor Hamilto-

nian for dipolar-octupolar pyrochlores is given by

HDO =
∑
⟨ij⟩

JxxSxi S
x
j + JyySyi S

y
j + JzzSzi S

z
j + Jxz(Sxi S

z
j + Szi S

x
j ) (5.19)

in the local coordinate system. Note that the interactions are equal on each nearest-

neighbor bond. An additional spin rotation by an angle of θ = arctan[2Jxz/(Jxx −
Jzz)]/2 to new spin components

Sx̃i = cos(θ)Sx
i + sin(θ)Sz

i ,

S ỹi = Syi ,

S z̃i = cos(θ)Sz
i − sin(θ)Sx

i

(5.20)
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allows to eliminate the Jxz interaction term, simplifying the Hamiltonian to a XYZ

model in the process [102]. The actual effective spin properties in dipolar-octupolar

compounds are actually even a little bit more intricate. While the spin component Sx

transforms as a magnetic dipole under the application of lattice symmetries, it does

not have a finite magnetic dipole moment, i.e., it has a g factor of gxx = 0. To leading

order, Sx actually only contributes to the magnetic octupole moment operator in a

multipole expansion that is projected onto the Hilbert space of the low-energy doublet

on which the effective spin is defined [103, 104]. Since both the Sx and Sy components

do not possess a finite g factor, neutrons, to leading order, only scatter along the local

Sz component.

Another class of pyrochlore compounds realizes non-Kramers doublets and will be

treated in Sec. 5.3. In such compounds, spin components Sx and Sy transform as

components of a magnetic quadrupole moment, whereas the remaining Sz component

transforms as a the component of a magnetic dipole [77]. It follows from these par-

ticular properties that S± is even under time reversal, whereas Sz is odd. As a direct

consequence, the Jz± interaction in Eq. (5.16) has to vanish by the enforcement of

time-reversal symmetry. Apart from a vanishing Jz± = 0, the symmetry-constrained

Hamiltonian of these so-called non-Kramers pyrochlores is given by Eq. (5.16). Like

for dipolar-octupolar compounds, the g tensor of an effective spin in non-Kramers com-

pounds has a finite entry only for the local z spin component [77]. It follows that only

this component is scattered upon in neutron scattering experiments.

Material perspective

Even considering only interactions bilinear in spin operators, the symmetry-constrained

Hamiltonian for dipolar spins on the pyrochlore lattice, given by Eq. (5.12), allows for

three types of different anisotropic interactions, fully specified by the parameters K,

Γ and D. Our aim is not only to consider anisotropic interactions in the perturbative

limit K,Γ, D ≪ J but, in context of the Heisenberg-DM model, to uncover the full

phase diagram spanned by Heisenberg and DM interactions J and D. How justified is

the study of this model over the full regime of D/J in the context of experimentally

available pyrochlore compounds? Some considerations on this question are given in

the following.

As mentioned previously, anisotropic interactions are realized by a finite spin-orbit

coupling. In the perturbative limit of small spin-orbit coupling, it had been shown in

Ref. [92] that anisotropic interactions Jµνij bilinear in spin operators and odd under

spin exchange (Jµνij = −Jµνji ), known as DMI, scale linearly with the size of spin-orbit
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coupling. In contrast, anisotropic interactions that are invariant under spin exchange

(Jµνij = Jµνji ), such as Kitaev or Γ terms, scale quadratically. Hence, the consideration

of a finite DMI over other types of anisotropic interactions is justified in the case of

small spin-orbit coupling.

Since the size of spin-orbit coupling in an atom scales quartically with its nuclear

charge [105], the perturbative limit D ≪ J can be overcome by compounds that feature

magnetic ions of heavier elements. In these systems, the picture of small anisotropic

interactions in the background of an isotropic Heisenberg model generally does not

hold, and effective spin models throughout the entire interaction parameter space D/J

can be realized in principle. Note that the consideration of a finite DMI over a Kitaev

or Γ interaction is no longer justified from a material perspective if the perturbative

picture with K,Γ, D ≪ J has already broken down due to strong spin-orbit coupling.

The perturbative picture of a small D/J can be applied to pyrochlore compounds

based on 3d transition metals as magnetic ions [106, 107]. In contrast, rare-earth

pyrochlore systems with magnetic ions based on heavier 4f transition metals are able

to realize strong anisotropic interactions. Some examples of rare-earth compounds that

are argued to realize effective S = 1/2 models are given by Er2Ti2O7 [108], Er2Sn2O7

[109], Yb2Ge2O7 [110] and Yb2Ti2O7 [111]. See Ref. [77] for a comprehensive review

on the low-energy physics of rare-earth pyrochlores.

5.2.4 Irreducible-representation-based decomposition of states

After having introduced the symmetry-constrained spin model on the pyrochlore lattice

given by Eqs. (5.12)-(5.13), we can now study its low-energy behavior. As a first step,

it will be useful to describe the structure of the model’s classical ground state manifolds.

Generally, determining the classical ground state manifold of a frustrated spin model

is nontrivial. In case of a nearest-neighbor spin model on the pyrochlore lattice, the

problem can be solved elegantly by applying concepts of group theory, as shown in

Ref. [90]. In this subsection, we will follow along the proposed decomposition of the

q = 0 state space, formulated in Ref. [90], that classifies manifolds with respect to

irreducible representations (irreps) of the tetrahedral point group. At a later point, we

will apply the scheme for the Heisenberg-DM model. The presented decomposition of

manifolds will provide the foundation for more advanced studies that investigate the

effects of thermal and quantum fluctuations on state selections.

The first simplification in the description of ground state manifolds consists of the

proof that the classical nearest-neighbor model on the pyrochlore lattice given by Eq.

(5.12) always possesses a q = 0 ground state, i.e., a ground state with a four-site unit
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cell containing only the spins of a single up tetrahedron. This property simplifies the

problem of finding ground states on the pyrochlore lattice to that of finding ground

states on a single tetrahedron, and is a prerequisite for the ground state description via

irreps of the tetrahedral point group. While the proof for the existence of q = 0 ground

states is only valid for classical spins, we will only observe q = 0 ground states in later

applications on the quantum model as well. Therefore, an irrep decomposition of states

is the appropriate framework to study both the classical and quantum model. The proof

of Ref. [90] for the existence of q = 0 ground states goes as follows: The pyrochlore

lattice is built by corner-sharing tetrahedra, with up and down tetrahedra building a

bipartite lattice. Since the tetrahedra are corner-sharing, if each tetrahedron itself is

simultaneously in a ground state configuration, so is the full lattice. One can now find a

four-site ground state configuration for a single up tetrahedron and configure the spins

on every up tetrahedron of the lattice (i.e, every spin of the lattice) in this configuration.

This results in a spin configuration of the lattice in which all up tetrahedra are in their

ground state. It can be proven that all down tetrahedra are then in a ground state

configuration as well by the argument that the lattice inversion symmetry maps each up

on a down tetrahedron and vice versa while leaving interactions and spin configurations

invariant. Thus, the whole lattice is in a ground state, which proves that a classical

q = 0 ground state always exists.

Next, one can consider the interaction-dependent ground state manifolds on a single

tetrahedron. Importantly, classically degenerate state manifolds on a single tetrahedron

t can be characterized by different real order parameters mΨ,t that transform with

nontrivial irreps Ψ of the tetrahedral point group [90]. This is implied by a rewriting of

the full lattice Hamiltonian given by Eq. (5.12) in terms ofmΨ,t, as will be shown below.

The order parameters mΨ,t are built from linear combinations of spin components Sµi ,

involving each site i on a tetrahedron t, and will be specified later. The full lattice

Hamiltonian, rewritten in terms of mΨ,t, is given by [90]

H =
∑
t

aA2m
2
A2,t

+aEm
2
E,t+aT2m

2
T2,t

+aT1||m
2
T1||,t

+aT1⊥,tm
2
T1⊥,t

+aT1||⊥mT1||,t ·mT1⊥,t.

(5.21)

The sum goes over all up and down tetrahedra t of the lattice. Note that the T1 irrep

appears in the two different order parameters mT1||,t and mT1⊥,t. The parameters aΨ

corresponding to the energies associated with different irreps Ψ are given by

aA2 = −J +K − 2(Γ + 2D), aE = −J +K + Γ + 2D,

aT2 = −J −K + Γ− 2D, aT1|| = 3J +K,

aT1⊥ = −J −K − Γ + 2D, aT1||⊥ = −
√
8Γ.

(5.22)
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Alternatively, expressed in terms of the interactions of the local coordinate system,

they are given by

aA2 = 3Jzz,

aE = −6J±,

aT2 = 2(J± − 2J±±),

aT1|| =
1

3
(−Jzz + 4J± + 8J±± + 8

√
2Jz±),

aT1⊥ =
2

3
(−Jzz + J± + 2J±± − 4

√
2Jz±),

aT1||⊥ = −
√
8

3
(−Jzz − 2J± − 4J±± + 2

√
2Jz±).

(5.23)

In the Heisenberg-DM model, aT1||⊥ vanishes since Γ = 0. Otherwise, the last inter-

action term in H, which mixes between the two different order parameters mT1||,t and

mT1⊥,t, can always be eliminated by performing the substitution

mT1,A,t = cos(α)mT1||,t − sin(α)mT1⊥,,t,

mT1,B ,t = sin(α)mT1||,t + cos(α)mT1⊥,t,
(5.24)

with

α =
1

2
arctan(

√
8Γ

4J + 2K + Γ− 2D
). (5.25)

Afterwards, we are left with a Hamiltonian that contains only terms quadratic in a

single irrep order parameter and is given by

H =
∑
t

aA2m
2
A2,t

+ aEm
2
E,t + aT2m

2
T2,t

+ aT1,Am
2
T1,A,t

+ aT1,Bm
2
T1,B ,t

. (5.26)

The q = 0 ground state manifold can be determined straightforwardly from this for-

mulation of the spin model by expressing the spin length constraint in terms of mΨ.

The constraint is given by

m2
A2,t

+m2
E,t +m2

T2,t
+m2

T1,A,t
+m2

1,B,t = 1 (5.27)

on a tetrahedron t. It is now apparent how to identify the classical q = 0 ground state

manifolds of the Hamiltonian given by Eq. (5.26). The combination of Eq. (5.26) and

Eq. (5.27) reveals that the ground state manifold is given by the states that maximize

the absolute order parameters |mΨ,t| with the minimum corresponding prefactor aΨ,

where Ψ ∈ {A2, E, T2, T1,A, T1,B}.

Since tetrahedra of the lattice are corner sharing, specifying the ground state configu-

ration that maximizes |mΨ,t| of a minimum aΨ for a single tetrahedron t restricts the
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ground state configurations that the adjacent tetrahedra can assume. In case only a

single minimum irrep parameter aΨ exists, the system usually has no tiling degrees of

freedom in the sense that specifying the ground state configuration of a single tetra-

hedron uniquely specifies the ground state of the full lattice model. The ground state

degeneracy on a single tetrahedron is then equal to the ground state degeneracy of

the full lattice. However, in case multiple aΨ of minimum value exist, there may exist

a degree of freedom for the ground state configuration of the lattice that allows the

tiling of tetrahedra with different ground state configurations throughout the lattice

[90] (similar to the previous situation of spin ice, where there exist six ground state

configurations on a single tetrahedron, but an extensive ground state manifold on the

full lattice). Examples of nontrivial ground state tilings will emerge in Sec. 5.3.

Order parameters and ground state manifolds

We now present the irrep order parameters mΨ and the classical states that maximize

them. The irrep order parameters, defined on a tetrahedron t and formulated as in

Ref. [39], are given in the global coordinate system by

mA2,t =
1

2

∑
i∈t

zi · Sti,

mE,t :=

(
mψ2

mψ3

)
=

1

2

∑
i∈t

(
xi · Sti
yi · Sti

)
,

mT2,t =

√
3

2
√
2

∑
i∈t

(zi × Sti)
x

(zi × Sti)
y

(zi × Sti)
z

 ,

mT1∥,t =
1

2

∑
i∈t

S
x
ti

Syti
Szti

 ,

mT1⊥,t =

√
3

2

∑
i∈t

z
x
i v

yz
i · Sti

zyi v
xz
i · Sti

zzi v
xy
i · Sti

 ,

(5.28)

with the sums going over the sublattice sites i ∈ {0, 1, 2, 3} of the tetrahedron t. Note

that we have defined order parameters mψ2 and mψ3 , which will become relevant at a

later point, in the second line. xi, yi and zi correspond to normalized vectors along

the site-dependent axes of the local coordinate system and are defined in Eq. (5.11).

vµνi , with µ, ν ∈ {x, y, z}, are normalized bond vectors on an up tetrahedron and point

from a site of sublattice i towards the nearest neighbor lying in the same µ-ν plane.
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They are given by

vxy0 = −vxy3 =
1√
2

1

1

0

 , vxy2 = −vxy1 =
1√
2

−1

1

0

 ,

vxz0 = −vxz2 =
1√
2

1

0

1

 , vxz3 = −vxz1 =
1√
2

−1

0

1

 , (5.29)

vyz0 = −vyz1 =
1√
2

0

1

1

 , vyz3 = −vyz2 =
1√
2

 0

−1

1

 .

From Eq. (5.28), the interpretation of some manifolds of irreps Ψ, built by spin con-

figurations that maximize mΨ,t, becomes straightforward. Their respective spin ar-

rangements will be summarized in the following. The manifolds of irreps A2 and E

are built by ferromagnetic spin arrangements in the local coordinate system. mA2 is

maximized by a pair of states related by TRS for which spins are ordered along the

local z axis. Because this axis points towards (away from) the center of adjacent up

(down) tetrahedra, the resulting q = 0 order, shown in Fig. 5.9(a), is fittingly called

all-in all-out (AIAO) order [90]. In the E irrep manifold, spins are ordered ferromag-

netically in the local x-y plane, with the corresponding one-dimensional manifold being

referred to as Γ5 manifold [90]. While the Γ5 manifold is partially accidental, note that

all orders within it break TRS and C3 symmetry. It follows that each Γ5 state is part

of a set of six degenerate states, all lying within the Γ5 manifold, that are mapped

onto one another by applying symmetries of the spin model. Within the degenerate Γ5

manifold, the so-called ψ2 and ψ3 states are observed to be chosen by ObD selections

[90, 89]. Their corresponding order parameters are denoted as mψ2 and mψ3 in Eq.

(5.28). These orders are shown along the Γ5 manifold in Figs. 5.9(c)-(d). The ψ2

and ψ3 orders include states with spins oriented along the local x axis for the ψ2 and

along the local y axis for the ψ3 order, and they include states with spins oriented

along directions that are equal by symmetries of the model. In the global coordinate

system, all six states of the ψ3 phase are coplanar. Spins of these states are arranged in

either the global x-y, y-z or z-x plane, with pairs of spins being perpendicular to each

other and spins of a single pair being antiferromagnetically aligned [see Fig. 5.9(d)]. In

contrast, the ψ2 phase does not involve coplanar spin arrangements in the global coor-

dinate system. Moving on to the next irrep, the T2 irrep order parameter is maximized

by so-called Palmer-Chalker states, in which spins assume coplanar arrangements in

the global coordinate system as well [90]. These states are obtained from ψ3 states by

flipping colinear pairs of spins on two sublattices. Palmer-Chalker states will not play
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a role in the ground state selection of the Heisenberg-DM model. Not yet discussed

are the states of the order parameters mT1∥,t and mT1⊥,t, which are associated with

the T1 irrep. Of these order parameters, states of the T1|| phase are easily understood,

since they correspond to any ferromagnetic ordering in the global coordinate system.

At last, T1⊥ states arrange spins to be coplanar and oriented along bonds of a tetra-

hedron. E.g., Fig. 5.9(b) shows a spin configuration that contributes only to the last

row of the order parameter mT1⊥,t. The corresponding phase will be referred to as T1⊥

order.

For models with a finite aT1||⊥ in Eq. (5.21), the case α = −arctan( 1√
2
) [see Eq. (5.25)],

given under the condition for interactions

2J +K + Γ−D = 0, (5.30)

or, equivalently,

Jz± = 0, (5.31)

is worth pointing out. The restriction Jz± = 0 implies that this scenario is always given

for non-Kramers pyrochlore compounds. In this case, the aforementioned transforma-

tion given by Eq. (5.24) of irrep order parameters mT1||,t and mT1⊥,t, which results

in the new pair of order parameters mT1,A,t and mT1,B ,t, has to be applied to obtain

a Hamiltonian that is of the easily solvable form given by Eq. (5.26). In the special

case Jz± = 0, T1,B will be renamed as T Ice
1 , since its manifold is then equal to the

spin-ice manifold. The corresponding order parameter in the local coordinate system,

with local spin z components Szi,l = zi · Si, is given by

mT Ice
1 ,t =

1

2

(
− Szt0,l − Szt1,l + Szt2,l + Szt3,l,

− Szt0,l + Szt1,l − Szt2,l + Szt3,l,

− Szt0,l + Szt1,l + Szt2,l − Szt3,l
)
. (5.32)

For the same case Jz± = 0, we rename T1,A as T xy1 , since its order parameter is then

maximized by orders in the local x-y plane. The order parameter is obtained from

mT2,t by performing a spin rotation of π/2 about the local z axis, denoted by the

operator Ui. Hence, it is given by

mTxy
1 ,t =

√
3

2
√
2

∑
i∈t

(zi ×U−1
i StiUi)

x

(zi ×U−1
i StiUi)

y

(zi ×U−1
i StiUi)

z

 . (5.33)
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Application to the Heisenberg-DM model
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Figure 5.7: Irreducible representation’s energy parameter (IEP) aI as a function of θ.
Note that the critical angles θ = 135◦, 243◦ for the phase boundaries between the AIAO
and the colinear ferromagnet (FM), and the latter with the Γ5 phase, correspond to
the ratios D/J = −1 and 2, respectively. Note also that the aI for the E and T1⊥
irreps are degenerate for all values of θ (purple dots and blue line are overlapping).
The figure and its caption are replicated from Ref. [49].

The irrep-based decomposition of classical manifolds will now be applied to the Heisenberg-

DMmodel and its T = 0 classical phase diagram will be discussed. The irrep-dependent

energies aΨ of the Heisenberg-DM model are shown along the classical T = 0 phase

diagram in Fig. 5.7, with the interactions parameterized by an angle θ as in Eq. 5.10.

Irrep parameters aΨ of minimum value determine the ground state manifolds of the

classical model. This leads to different phases depending on θ. It can be observed that

the T2 manifold is irrelevant for the question of ground state selection, except at the

Heisenberg model. Three different ground state regimes of finite extent exist. Their

boundaries are located at D/J = 0,−1, 2 (or, alternatively, θ ≈ 0◦, 135◦, 243◦), with

J > 0 at the former boundary and J < 0 at the latter two boundaries.

The model assumes an AIAO order in the A2 phase, which extends over the finite

range θ ∈ (0◦, 135◦) in presence of a direct DMI D > 0. In the region θ ∈ (135◦, 243◦)

surrounding the ferromagnetic model at θ = 180◦, a T1|| phase is chosen, corresponding

to ferromagnetic order. As a consequence of a finite anisotropic DMI at θ ̸= 180◦,

different choices of the global spin orientation for ferromagnetic order are generally not

related by a rotation symmetry, as is the case for a pure Heisenberg model. It follows

that, while ferromagnetic states of all spin orientations share the same classical energy,

ObD will favor certain orientations. In fact, as shown in the recent publication Ref.

[91], the selection of a ferromagnetic order in the Heisenberg-DM model is special in the

sense that all ferromagnetic product states are still exact eigenstates of the quantum
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model, even in the presence of a finite DMI.

In the presence of an indirect DMI, the E and T1⊥ manifolds build the classical ground

state manifold in the region θ ∈ (243◦, 360◦). We will refer to the manifold of this

phase as Γ5/copl manifold, as will be rationalized in the following. All states of the

manifold break the C3 lattice symmetry and TRS. Therefore, they group up into sets

of six symmetry-related states. The Γ5/copl manifold consists of the one-dimensional

Γ5 manifold and three disconnected one-dimensional manifolds with coplanar spin ar-

rangements in the global coordinate system. The latter coplanar manifolds are each

connected to the Γ5 manifold and are mapped onto each other by the C3 lattice sym-

metry. In contrast, the Γ5 manifold as a whole does not transform under application

of the C3 lattice symmetry. However, the states within it do. The coplanar manifolds

interpolate between states of the E and T1⊥ irreps. Starting from a ψ3 or T1⊥ state,

the coplanar manifolds are covered by global spin rotations about the x, y and z axes

of the global coordinate system. Depending on the state, the axis of rotation depends

on whether the spins are oriented in the y-z, z-x or x-y plane, respectively; see Figs.

5.9(b)-(d), which indicate one such manifold in purple. In contrast, the Γ5 manifold,

shown in turquoise, is covered by rotations about the local z axis. Later, we will ob-

serve that fluctuations only select states of the Γ5 manifold out of the larger Γ5/copl

manifold. For this reason, the phase will be referred to as Γ5 phase.

Order parameter susceptibility

From the classical T = 0 phase diagram we conclude that the ground state selections

in both the ferromagnetic and Γ5 phase are governed by ObD. In this thesis, we will

only treat the state selection in the Γ5 phase and refer to Ref. [91] for a study on the

ObD selection in the ferromagnetic phase. Without considering the methodological

feasibility, the most straightforward approach to determine the ground state selections

within the Γ5 manifold would be to consider the expectation values of the irrep order

parameters mψ2 and mψ3 at temperatures T < Tc. Such an approach was not possible

by PFFRG at the time when the study of the Heisenberg-DM model was performed5,

and is not possible by HTSE, since both methods consider the system only for cutoffs

or temperatures above the phase transition, i.e., at cutoffs or temperatures where the

5Note that this study was done before the PFFRG extension to models that break time-reversal
symmetry was formulated. In principle, the magnetic orders found by PFFRG can also be resolved
by considering the expectation values of the order parameters of the different irreps. However, such
an approach would include some hurdles. Symmetry-breaking seed-field perturbations would have to
be included in the model, increasing the computational complexity of solving the flow equations and
increasing the sophistication of the numerical PFFRG implementation in the process. Additionally,
the seed field perturbations would ideally have to be applied such that they do not energetically favor
any of the candidate orders.
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order parameters are not finite.

Magnetic susceptibilities provide an alternative route to study magnetic phases and

can be computed at T > Tc (or Λ > Λc) to determine the magnetic phases assumed by

the system at T = Tc (or Λ = Λc). However, susceptibility peak patterns of different

magnetic orders are not unique. This is also the case in the Heisenberg-DM model, in

which only q = 0 orders are selected. E.g., the AIAO and Γ5/copl orders share the same

peak positions in the susceptibility χµµ(q), with µ = x, y, z. Note that the symmetry

properties of the model allow different µν components of χµν(q) to be related. All

diagonal components χµµ can be mapped onto one another by the C3 symmetry that

cyclically permutes µ, and all individual off-diagonal components χµν with µ ̸= ν are

related by C2 and C3 lattice symmetries.

To better distinguish magnetic orders by their susceptibilities, we apply PFFRG to

compute static order parameter susceptibilities defined by

χ̄ψ =
1

N

∑
ij

∑
µν

nµψ,iχ̄
µν
ij n

ν
ψ,i, (5.34)

in which N is the number of lattice sites and nµψ,i is the µ component of a normalized

vector nψ,i that corresponds to the orientation of a spin on site i in the given spin

configuration ψ. The T = 0 static susceptibility χ̄µνij is defined as in Eq. (3.63).

The static order parameter susceptibility χ̄ψ allows for a straightforward distinction

between different orders ψ, often in cases where χµµ(q) fails to distinguish magnetic

orders. However, we will show later in this subsection that symmetry-based arguments

lead to the property that χ̄ψ cannot distinguish orders within the Γ5 and T1|| manifold,

respectively. Such a distinction requires observables of higher than quadratic order

in spin operators. In fact, HTSE require sixth-order cumulants C6 to resolve which

magnetic orders are selected in the Γ5 phase [49]. The cumulants are defined as

C6,ψ ≡ ⟨M̂6
ψ⟩ − 15⟨M̂4

ψ⟩⟨M̂2
ψ⟩+ 30⟨M̂2

ψ⟩3, (5.35)

with

M̂ψ =
∑
i

nψ,i · Ŝi. (5.36)

The computation of C6,ψ is not possible by PFFRG, which only allows the computation

of observables that are linear or quadratic in spin operators. Consequently, PFFRG

will not be able to resolve all ObD selections of the Heisenberg-DM model.
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Symmetry constraints on the order parameter susceptibility

It will now be proven that two-spin observables cannot resolve the ObD selection within

the Γ5 manifold and the ObD selection of the T1|| ferromagnetic phase, i.e., each χ̄ψ of

a Γ5 order is equal and each χ̄ψ of a T1|| ferromagnetic order is equal, respectively. To

this end, spin correlations χij will be written as 3×3 matrices obtained by multiplying

a spin column vector Si with a spin row vector ST
j . The correlation matrices are given

by

χij =
⟨SiST

j ⟩ − ⟨Si⟩⟨ST
j ⟩

T
. (5.37)

For the derivation of equal order parameter suceptibilities within the Γ5 manifold, the

spins are given in the local coordinate system. The susceptibility matrix is obtained

from χij by a Fourier transform

χ(q) =
1

N

∑
ij

eiq·(ri−rj)χij, (5.38)

where the sum indices i and j go over all pyrochlore lattice sites with real-space position

vectors ri and rj. We remember that states of the Γ5 manifold, such as ψ2 and ψ3 states

are ferromagnetic in the local coordinate system. To compute their order parameter

susceptibilities we set q = 0 and define χ as

χ := χ(q = 0) =
1

N

∑
ij

χij. (5.39)

For the ψ2 and ψ3 orders, spins are directed along the local x and y axis, respectively.

It follows that their order parameter susceptibilities are given by susceptibility matrix

entries in the local coordinate system. More precisely, χψ2 = χxx and χψ3 = χyy.

To show that these entries are in fact equal, we employ symmetry properties of χ. It

can be seen from Eq. (5.37) that the correlation matrix obeys χij = χT
ji. Applying

this relation in Eq. (5.39) leads to χ = χT . It follows that χ has the general form

χ =

A D E

D B F

E F C

 , (5.40)

with A,B,C,D,E, F ∈ R. Symmetries of the model can be applied to restrict the

general form of χ even further. Applying a lattice rotation symmetry changes site

indices ij → kl and rotates spins via a rotation matrix R. In χ, the rotation of spins

is expressed by the transformation χ → RTχR. If this transformation corresponds to

a symmetry of the Hamiltonian of Eq. (5.12) that is not spontaneously broken, χ has
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to fulfill

χ = RTχR. (5.41)

For the C3 lattice rotation symmetry, R corresponds to a 120◦ rotation about the local

z axis. It follows from Eqs. (5.40) and (5.41) that χ is restricted to the form

χ =

A 0 0

0 A 0

0 0 C

 . (5.42)

Thus, the equivalence χψ2 = χψ3 = χxx = χyy = A is proven. In fact, the restricted

form of χ implies the same order parameter susceptibility for any ferromagnetic order

in the local x-y plane, i.e., for any order of the Γ5 manifold.

The proof of equal order parameter susceptibilities for any T1|| ferromagnetic state is

carried out analogously. Instead of expressing the susceptibility matrix χ in the local

coordinate system, the global coordinate system is chosen. In this case, C3 and C2

lattice symmetries enforce χ ∝ 1A, with A being a constant. It follows that the order

parameter susceptibility of a ferromagnetic order along n, with n being normalized, is

given by

χFM(n) = nTχn = A, (5.43)

Consequently, χFM(n) does not depend on the spin orientation n.

Examples: Flows of order parameter susceptibilities on effective models of

pyrochlore compounds Er2Ti2O7 and Er2Sn2O7

We now demonstrate that the order parameter susceptibility χ̄ψ is well suited for

the identification of magnetic orders in pyrochlore nearest-neighbor models. For this

purpose, we consider effective spin models of the well-studied rare-earth pyrochlores

Er2Ti2O7 and Er2Sn2O7.

Er2Ti2O7 is a rare-earth compound that is known to assume a Γ5 order [108]. A spin

Hamiltonian with interactions {Jzz, J±, Jz±, J±±} = {−2.5 ± 1.8, 6.5 ± 0.75,−0.88 ±
1.5, 4.2± 0.5} · 10−2 meV was proposed in Ref. [108] by fitting spin wave spectra mea-

sured by inelastic neutron scattering measurements. The second rare-earth compound

Er2Sn2O7 assumes a Palmer-Chalker magnetic order [109]. By fitting interactions of

the model on the basis of inelastic neutron scattering experiments and the measured

critical temperature, a nearest-neighbor model with interactions {Jzz, J±, Jz±, J±±} =

{0.0006667, 0.02317, 0.0004714, 0.07183} meV had been proposed for this compound

[109].
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Figure 5.8: PFFRG flows of order parameter susceptibilities χ̄ψ [see Eq. (5.34)] that
are obtained for effective models of rare-earth pyrochlore compounds Er2Ti2O7 and
Er2Sn2O7. Cutoffs are given in units of the respective Heisenberg interaction J . For
each considered irrep manifold, χ̄ψ is given for one or two representative states. ψ2

and ψ3 states represent the Γ5 (E) manifold, AIAO states represent the A2 manifold,
and Palmer-Chalker (PC) states represent the T2 manifold. (a) PFFRG flow of the
Er2Ti2O7 model with interactions {Jzz, J±, Jz±, J±±} = {−2.5±1.8, 6.5±0.75,−0.88±
1.5, 4.2±0.5}·10−2 meV [108]. (b) PFFRG flow of the Er2Sn2O7 model with interactions
{Jzz, J±, Jz±, J±±} = {0.0006667, 0.02317, 0.0004714, 0.07183} meV [109].

To determine the ground state selections of these models within PFFRG, we compute

the static order parameter susceptibilities χ̄ψ for states ψ that are representative of

different irrep manifolds. For simplicity, the irrelevant flows of χ̄T1,A and χ̄T1,B will not

be shown. Order parameter susceptibility flows for the spin models of both compounds

are shown in Fig. 5.8. The chosen magnetic phases can be unambiguously determined

from the dominant χ̄ψ at Λ = Λc. While the flow of Er2Ti2O7, shown in Fig. 5.8(a),

exhibits a magnetic phase transition into a Γ5 phase, the flow of Er2Sn2O7, shown in

Fig. 5.8(b), transitions into a Palmer-Chalker (T2) phase. Note that the flows of χ̄ψ3

and χ̄ψ2 are equal as a consequence of the model’s C3 symmetry, as was proven above.

5.2.5 Phase diagrams of the classical and quantum models

We are now in a position to discuss the phase diagram of the Heisenberg-DM model

under consideration of thermal and quantum fluctuations. The full phase diagram is

shown in Fig. 5.9(e). It is shown for the classical model at T = 0 and at T = Tc, with

results obtained by cMC, and for the S = 1/2 quantum model at T = 0 solved by

PFFRG. For the study of ObD selections, additional methods will be applied. In the

following, we will first discuss the phase diagram of the classical model. Results on the

quantum model will be discussed subsequently.
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Figure 5.9: (a)-(d) Magnetic q = 0 orders for the Hamiltonian in Eq. (5.9), illustrated
for one “up” tetrahedron, where the turquoise (purple) rings in panels (b)-(d) indicate
spin rotations about axes in the local (global) coordinate frame to construct the spin
states defined by the Γ5 manifold (coplanar manifold). Note that only one out of
three coplanar manifolds is shown by the purple rings which is, in the present case,
obtained by rotating an x-y-coplanar ψ3 spin state [red arrows in panel (d)] or a T1⊥
spin state [red arrows in panel (b)] about the perpendicular global z (cubic [001])
axis. In a similar way, the other two coplanar manifolds are defined in the global x-z
and y-z planes, respectively. In panels (b)-(d), the two rings corresponding to the Γ5

(turquoise) and coplanar (purple) manifolds illustrate how these two manifolds only
intersect at a ψ3 spin configuration. This already suggests the importance that ψ3 states
will play, through thermal and quantum fluctuations, in systems defined by interaction
parameters that put them in a regime of competing Γ5 and T1⊥ orders. (e) Phase
diagram of the S = 1/2 Hamiltonian in Eq. (5.9) parameterized by θ with J = cos(θ)
and D = sin(θ). Here, the outermost ring illustrates the T = 0+ order as observed
in classical Monte Carlo (S → ∞), the middle ring represents the selected state at
T = Tc for the classical model (S → ∞), and the inner circle represents the T = 0
quantum phase diagram as obtained by the pseudo-fermion functional renormalization
group (PFFRG, S = 1/2). The white regions in the inner (PFFRG S = 1/2) circle
correspond to regions where the PFFRG method identifies an absence of conventional
long-range magnetic order at T = 0. The figure and its caption are replicated from
Ref. [49].

Classical model

The T = 0 paramagnetic phases of the classical model are of no extend. They are

located at the pure Heisenberg model at D = 0 (θ = 0), and in between the ferromag-

netic and Γ5 phases at D/J = 2 (θ ≈ 243◦) in presence of an indirect DMI D < 0. In

contrast to the Heisenberg model, the paramagnetic model at D/J = 2 is less explored.

This may be partly due to the fact that previous studies of the Heisenberg-DM model
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to Ref. [49] did not treat the latter paramagnetic phase, as they only considered the

case of an antiferromagnetic Heisenberg interaction J > 0 [93, 94, 95]. Note that the

model at D/J = 2 fulfills Jz±ij = 0. It follows that it is relevant for non-Kramers py-

rochlore compounds, in which the restriction Jz±ij = 0 is always enforced by symmetries

of the spin doublet.

While the absence of magnetic order in the Heisenberg model, already treated in Sec.

5.1, is expected due to an extensive classical ground state manifold, the cause of the

absence of magnetic order at D/J = 2 is less apparent at first. The ground state

decomposition in terms of different irreps gives insight into this observed behavior.

As shown in Fig. 5.7, the ground state manifold of the model at D/J = 2 is given

by the irrep manifolds of E, T|| and T⊥ (and states that interpolate between them).

Because the extensive spin-ice manifold is captured by a local order parameter mT Ice
1 ,t

[see Eq. (5.32)] that is obtained from a superposition of the T|| and T⊥ order param-

eters, the spin-ice manifold contributes to the ground state manifold of the D/J = 2

model. However, the situation of the D/J = 2 model is more sophisticated than in

the Ising model (i.e., in classical spin ice), since additional manifolds to T Ice
1 compete

for the fluctuation-based ground state selection. This leads to highly nontrivial finite-

temperature and quantum behaviors of the model. Furthermore, an understanding of

the ground state manifold of the D/J = 2 model is complicated by the fact that the

various ground state configurations on a single tetrahedron allow for nontrivial degrees

of freedom in tiling tetrahedra with different ground state configurations across the

lattice. The D/J = 2 model and its vicinity in interaction parameter space will be

treated in further detail in Sec. 5.3.

We continue with a discussion of the magnetically ordered phases. The positions of

classical phase boundaries between magnetic phases at T = 0+ and T = Tc are un-

changed from the boundary positions of the fluctuation-free phase diagram of Fig. 5.7.

Regarding the bulk of magnetic phases, cMC allows the study of ObD selections in the

Γ5 and ferromagnetic phases. For an in-depth treatment of the state selection in the

ferromagnetic phase, we refer to Ref. [91]. The ObD selection of the Γ5 phase is found

to depend on both the temperature and interactions parameterized by θ. A cMC-based

plot on the Γ5 phase over temperature T and interactions θ, shown in Fig. 5.10, reveals

the classical ObD selection. At T ≈ Tc, the ψ3 phase is found to persist in the region

θ ∈ (243◦, 265◦), whereas ψ2 extends over the region θ ∈ [265◦, 360◦). In the T = 0+

limit, only the ψ3 order is selected by thermal fluctuations. The latter result is further

corroborated by larger entropy contributions associated with ψ3 compared to ψ2, as is

found by classical low-temperature expansions about the respective states [49]. Since

the results on the phase diagram of the classical model are not based on contributions

of the author, we will leave the discussion of the classical phase diagram at this point
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Figure 5.10: Temperature-dependent classical phase diagram for the Γ5 phase, which
is obtained by cMC and illustrates the selection between the ψ2 and ψ3 ordering as a
function of θ. The figure is replicated from Ref. [49] and the caption is amended.

and move on to the quantum model. Further details on the ObD selections of the

classical model are given in Refs. [49, 91].

Quantum model

The T = 0 phase diagram of the quantum model is computed via PFFRG and shown

in Fig. 5.9(e). Inherent to the PFFRG is an uncertainty in the classification of a

magnetic flow breakdowns. Especially at phase boundaries between paramagnetic and

magnetically ordered phases, flow breakdowns can be subtle, such that an unambiguous

identification of a breakdown is not always possible. We visualize the widths of these

regions of uncertainty in the phase diagram by continuous color gradients across phase

boundaries.

Neglecting subtle ObD selections, the phases that appear in the quantum-model phase

diagram do not differ from those found in the classical phase diagram. However, phase

boundaries are shifted and paramagnetic phases are now stabilized over a finite extent

in θ. In the following, we first consider PFFRG results on a representative selection

of models at fixed θ across each of the occurring phases. For these models, the flows

of the maximum static susceptibility χ̄zzmax and susceptibilities χ̄zz(q) at fixed Λ, either

in the Λ → 0 limit for paramagnetic flows or at Λ ≈ Λc just above a flow breakdown,

are shown in Fig. 5.11. The flows of χ̄zzmax in particular are shown in Fig. 5.11(a).

The flows of the paramagnetic phases at θ = 0◦ and θ = 238◦ remain smooth at any

Λ. Subtle oscillatory features at small Λ < 0.5 in the flow at θ = 238◦ are numerical
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Figure 5.11: (a) Selected PFFRG flows of the maximum susceptibility χ̄zzmax and (b)-
(h) examples for momentum resolved susceptibilities χ̄zz(q) over the extended Brillouin
zone at the flow breakdown for magnetically ordered phases [i.e., for (e), (f), (h)] or
in the low-Λ limit for nonmagnetic flows [i.e., for (b), (c), (d), (g)]. The figure and its
caption are replicated from Ref. [49].

artifacts on top of a smooth flow and are caused by a combined application of a sharp

frequency cutoff and a vertex frequency discretization in our PFFRG implementation

[36]. Magnetic ordering in the ferromagnetic or Γ5 phase results in a flow breakdown,

as is observed in the flows shown at θ = 180◦ and θ = 270◦ respectively. Interestingly,

the magnetic phase transition in the flow shown within the AIAO phase at θ = 90◦

realizes an actual divergence of χ̄zzmax instead of a flow breakdown.

The magnetic Bragg peaks that emerge at the magnetic phase transitions are shown
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for all magnetic phases of the phase diagram. They can be observed in the static sus-

ceptibilities χ̄zz(q) of the models at θ = 90◦, 180◦ and 270◦, shown in Figs. 5.11(e),

(f) and (h). AIAO and Γ5 orders, which are both of q = 0 type, share the same peak

positions in χ̄zz(q), with the dominant peak being located at q = (0, 0, 4π). It follows

that for the present model χ̄zz(q) is insufficiently suited for the characterization of mag-

netic phases. An unambiguous distinction between the magnetic orders of the AIAO

and Γ5 phases can be achieved by considering order parameter susceptibilities, given

by Eq. (5.34), of the respective irrep manifolds. Susceptibilities of the paramagnetic

phases are shown in Figs. 5.11(b)-(d) and 5.11(g) at θ = 0◦, θ = ±4◦ and 238◦. In

these phases, strongly fluctuating ground states give rise to broad features across the

extended Brillouin zone.

Figure 5.12: Static zz susceptibility, as defined in Eq. (3.65), of the pure and DMI-
perturbed Heisenberg antiferromagnet, obtained from PFFRG in the low-cutoff limit.
The [hk0] and [hhl] planes are shown in the upper and lower rows, respectively. The
figure and its caption are replicated from Ref. [49].

We now continue with more advanced discussions on the individual phases of the

S = 1/2 Heisenberg-DM model, focusing first on the paramagnetic regimes of the

phase diagram. Quantum fluctuations stabilize the previously paramagnetic points

of the classical phase diagram at θ = 0◦ and θ = 243◦ over finite regions in θ. We

first discuss the paramagnetic phase surrounding the Heisenberg model. It is found

to remain stable in presence of both small direct and indirect DMI within a regime

−9◦ ≲ θ ≲ 8◦. Slightly smaller direct than indirect DMI are required to enforce

a magnetic phase transition. In the static susceptibility χ̄zz(q) of the paramagnetic

phase near the Heisenberg model, shown in Figs. 5.11(b)-(d) at θ = 0◦ and θ = ±4◦,
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Figure 5.13: Normalized line shape of the static zz susceptibility along [hh2], i.e.,
across the pinch point/peak χ̄P at hkl = 002. From left to right, starting from a pure
antiferromagnetic Heisenberg model, the evolution of the line shape with increasing
absolute DMI is shown. The transitions between paramagnetic and ordered phases are
highlighted by bold vertical lines. The figure and its caption are replicated from Ref.
[49].

it is observed that the introduction of a finite DMI redistributes weight towards the

dominant Bragg peak position q = (0, 0, 4π) of the magnetic order that is approached

in the phase diagram. This process is visible even still within the paramagnetic phase

of the phase diagram. To better characterize the weight redistribution processes, one-

and two-dimensional cross sections of χ̄zz(q) are shown in Figs. 5.12 and 5.13. The

static susceptibility across the [hk0] and [hhl] planes is shown in Fig. 5.12, whereas

Fig. 5.13 considers χ̄zz(q) along [hh2], centered around the broadened pinch point

feature of the Heisenberg model at q = (0, 0, 4π).

First, we note the observation of features similar to pinch points, which are a character-

istic feature of spin ice [1], in the [hhℓ] plane of the model θ = 0◦, shown in Fig. 5.12. In

contrast to exact pinch points, the observed features are broadened along [00h], which

is expected due to the following argument. A perfect fulfillment of the ice rule should

result in the presence of pinch points with vanishing width along [00h]. This is the

case for the Ising model at T = 0. Similar to the ice rule, the ground state manifold of

the classical Heisenberg model is characterized by a higher-dimensional generalization

of the ice rule where the spin vectors on a tetrahedron t have to sum up to the zero

vector, i.e., St0 +St1 +St2 +St3 = 0. This constraint includes the ice rule of the Ising

model Szt0+S
z
t1+S

z
t2+S

z
t3 = 0. However, while ground states of the classical Heisenberg

model fulfill the ice rule exactly, ground states of the quantum model do not, due to
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the fact that the sum of spin z components over a tetrahedron Ŝzt0+ Ŝ
z
t1+ Ŝ

z
t2+ Ŝ

z
t3 does

not commute with the full Hamiltonian H, i.e., states that fulfill the ice rule are not

eigenstates of the Heisenberg model. Thus, ⟨(Ŝzt0+Ŝzt1+Ŝzt2+Ŝzt3)2⟩ > 0 for the S = 1/2

Heisenberg model, which results in the presence of broadened pinch points, as is ob-

served in Fig. 5.12. The susceptibility pattern of the Heisenberg model is observed to

deform even further away from exhibiting pinch-point features upon the introduction

of a finite DMI, as observed in Fig. 5.12 as well. Note that the susceptibility patterns

at θ = ±4 hint towards the previously observed higher stability of the paramagnetic

phase towards the introduction of an indirect rather than a direct DMI, since for an

equal absolute |D/J | a direct DMI results in a larger weight redistribution towards

q = (0, 0, 4π) than an indirect DMI does. Another perspective on the pinch point

deformation upon the introduction of a finite DMI is given by Fig. 5.13, which shows

the normalized line shapes of χ̄zz along [hh2] for models about θ = 0◦. In agreement

with Ref. [88], we observe a small local minimum within the broadened pinch point at

hkl = 002 for the Heisenberg model at θ = 0. As |θ| increases, the line shape deforms

slightly differently depending on whether a direct or indirect DMI is present. Small

kink-like features become visible next to the maximum of χ̄zz in presence of a direct

DMI. These features are missing in case of a finite indirect DMI.

Leaving the paramagnetic phase around the Heisenberg model behind us, we now

consider the second paramagnetic region of the phase diagram, which is found near the

model D/J = 2 (or θ ≈ 243◦) and extends mostly in the direction of the ferromagnetic

model (towards smaller θ). PFFRG finds that the paramagnetic phase occupies the

region 237◦ ≲ θ ≲ 241.5◦. Note that the regions of uncertainty across the phase

boundaries include the D/J = 2 model at θ ≈ 243, which is paramagnetic for classical

spins. It is relevant to the location of the phase boundary between paramagnetic and

Γ5 phases that in the general phase diagram for non-Kramers pyrochlore compounds,

which also includes the D/J = 2 model and is treated in Sec. 5.3, we will observe that

quantum fluctuations shift the previously classical boundary of the Γ5 phase such that

the Γ5-ordered region is extended. This observation suggests that the region of the

Γ5 phase is extended by quantum fluctuations in the Heisenberg-DM model as well,

and consequently includes the D/J = 2 model. Taking a closer look at the static

susceptibility within the paramagnetic phase at θ = 238◦, shown in Fig. 5.11(g), we

find a feature reminiscent of the dominant Bragg peak displayed by the Γ5 phase.

However, the smooth PFFRG flow of χ̄zzmax for equal θ = 238◦, shown in Fig. 5.11(a),

indeed reaffirms the paramagnetic nature of the phase.

The magnetically ordered phases of the phase diagram will be discussed next. The

phase boundary between AIAO and ferromagnetic order is the only boundary between

two magnetically ordered phases. Its position is given by θ ≈ 136◦ at which the AIAO
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Figure 5.14: PFFRG flows of the order parameter susceptibility χ̄ψ for ψ2, ψ3 and T1⊥
orders in the pure indirect DMI limit at θ = 270◦. Note that the curves for χ̄ψ2

and
χ̄ψ3

lie on top of each other, see text for details. The kink at Λ ≈ 0.4 signals a flow
breakdown associated with magnetic long-range order. The figure and its caption are
replicated from Ref. [49].

and FM order parameter susceptibilities are of equal size at the critical cutoff. It

follows that quantum fluctuations shift the previously classical boundary from θ ≈ 135◦

towards a slightly larger θ.

ObD selection

The Γ5 phase is the remaining phase to be discussed. The ObD selection of the Γ5 phase

at Tc is studied by both PFFRG and HTSE. First, PFFRG is applied to resolve that

ObD selects a magnetic order in the Γ5 submanifold out of the larger Γ5/copl classical

ground state manifold. Since PFFRG cannot resolve the ObD selection within the Γ5

manifold, as previously proven in Sec. 5.2.4, HTSE is applied to reveal the magnetic

order chosen out of the Γ5 manifold instead. While PFFRG does not strictly consider

the quantum model at finite temperature, the cutoff Λ effectively acts as a temperature.

Hence, the PFFRG ObD selection at Λ = Λc is rather to be interpreted as the selection

of the quantum model at T = Tc than as the selection at T = 0. As will be observed

by PFFRG, the ObD selection of the Γ5 manifold out of the larger Γ5/copl manifold

is unambiguous, such that subtle differences in the description of the Heisenberg-DM

model in terms of Λ or T are not expected to affect this partially resolved ObD selection.

To study the ObD selection with PFFRG, we represent the Γ5/copl ground state man-

ifold by three states and compute their respective order parameter susceptibility flows.

The states are given by a ψ2, ψ3 and T1⊥ state. The full Γ5/copl manifold can be re-
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constructed from these states (and symmetry-equivalent states) as follows. Within the

Γ5 manifold, any state, with classical spin orientations SΓ5
i (α) on site i, can be charac-

terized by a single angle α, because the manifold is one-dimensional. These states can

be built from ψ2 and ψ3 states with spin orientations Sψ2

i = xi and Sψ3

i = yi by linear

combination such that

SΓ5
i (α) = sin(α)Sψ2

i + cos(α)Sψ3

i . (5.44)

Analogously, the coplanar manifold within the x-y plane is fully covered by linear

combinations of T1⊥ and ψ3 states with spin orientations ST1⊥
i and Sψ3

i that are oriented

in the x-y plane. States of this manifold that are oriented in the x-y plane are given

by

Scopl
i (α) = sin(α)ST1⊥

i + cos(α)Sψ3

i . (5.45)

See Figs. 5.9(b)-(d) for the visualizations of the magnetic orders and manifolds given

by Sψ2

i , Sψ3

i , ST1⊥
i , SΓ5

i (α) and Scopl
i (α).

The order parameter flows of the model at θ = 270◦ with an indirect DMI and no

Heisenberg interaction are shown in Fig. 5.14. The ObD selection of this model is

representative of the selection found throughout the full Γ5 phase. The shown PFFRG

flows confirm that symmetries enforce the order parameter susceptibilities of ψ2 and ψ3

states to be equal, as previously proven analytically. However, PFFRG distinguishes

between states of the coplanar manifold, represented by T1⊥ order, and of the Γ5

manifold, represented by ψ2 (ψ3) order. The flow of χ̄ψ2 (χ̄ψ3) is dominant over the

flow of χ̄T1⊥ . Thus, it is clear that ObD favors a state selection within the Γ5 manifold.

Although not shown explicitly, this selection choice is found throughout the entire

appropriately named Γ5 phase.

As shown in more detail in Ref. [49], HTSE is applied to further specify the ObD

selection of the S = 1/2 model within the Γ5 manifold. For this purpose, temperature-

dependent sixth-order cumulants C6,ψ2 and C6,ψ3 of the ψ2 and ψ3 orders [see Eq.

(5.35)] are computed within Padé approximation. Their temperature-dependent differ-

ences C6,ψ2 −C6,ψ3 are then computed to find out which order is chosen by the model.

As the temperature is lowered from above the magnetic phase transition, the absolute

difference of cumulants quickly increases in magnitude at some temperature T > Tc.

Whether this increase occurs towards positive or negative values of C6,ψ2 − C6,ψ3 indi-

cates the phase selected by ObD. Computations are performed at angle differences of

∆θ = 10◦. The method finds ψ3 order to be favored at θ = 250◦ and 260◦. For this

range in θ, the same order is selected in the classical model at T = Tc. From θ = 270◦

up to θ = 300◦, HTSE finds ψ2 order, which is again consistent with the classical

ObD selection at T = Tc. The favored selection at the remaining measured points of
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θ = 310◦ and 320◦ is inconclusive. We conclude that the ObD selections of the quantum

model at T = Tc are mostly equal to the selections of the classical model. It is unclear

whether there is a perfect agreement, because HTSE results become inconclusive at θ

near the Heisenberg model. However, even for models near the Heisenberg limit we

can still state that both the quantum and classical model select orders within the Γ5

manifold.

For the ObD selection study of the quantum model at T = 0+, linear spin-wave theory

is applied to compute energy corrections to the ψ2 and ψ3 states. We keep the discussion

on spin-wave results brief and refer to Ref. [49] for further information. In the region

θ ∈ [344◦, 352◦] of the Γ5 phase, the ObD selection remains inconclusive due to θ-

dependent oscillations of high frequencies in the zero-energy dependencies of the ψ2

and ψ3 orders. These oscillations are inherent to the model and are not caused by

numerical imprecision. Interestingly, the location of the inconclusive region coincides

with the local temperature minimum of the classical ψ2-ψ3 boundary in Fig. 5.10.

Throughout the remaining conclusive region of the Γ5 phase, linear spin-wave theory

finds that ψ3 order is energetically favored by the quantum model at T = 0+. This

ObD selection is, like the selection at T = Tc, in agreement with the selection of the

classical model.

5.3 Entropically-driven spin liquid to spin liquid

transition in the phase diagram of non-Kramers

pyrochlores

The above study of the Heisenberg-DM model revealed a T = 0 paramagnetic phase

realized by the ferromagnetic model at D/J = 2, which is stabilized over a finite extent

in the T = 0 phase diagram upon the inclusion of quantum fluctuations. Similar to the

pure Heisenberg model, the D/J = 2 model was found to realize an extensive classical

ground state manifold; however, its complete ground state manifold is composed by

different irrep manifolds. The classical ground state manifold of the Heisenberg model

is built by the manifolds of irreps E, T2 and A2. Imposing that the order parameters

mΨ of the remaining irreps Ψ vanish leads to the classical constraint that the sums

of spin vectors Si over any tetrahedron t vanish, i.e., St0 + St1 + St2 + St3 = 0 for

sites i = 0, 1, 2, 3 of any tetrahedron. In contrast, the classical ground state manifold

of the D/J = 2 model is built by the manifolds of E, T Ice
1 and T xy1 (or E, T1|| and

T1⊥). While the T Ice
1 manifold contains all spin-ice states, with spins oriented along

the local z axis, states within the manifolds of E and T xy1 orient spins in the local x-y
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plane. In addition to states that lie in single manifolds of Ψ = E, T Ice
1 or T xy1 , the

full ground state manifold of the D/J = 2 model further allows for mixed states that

include finite mΨ,t for Ψ = E, T Ice
1 and T xy1 simultaneously, and different tetrahedra

t of the lattice can be tiled in different ground state configurations. Taking all these

degrees of freedom into consideration, the structure of the full ground state manifold

of the D/J = 2 model becomes highly nontrivial.

It is an aim of this section to unravel the structure of the ground state manifold of

the D/J = 2 model to some degree and to understand the low-temperature behavior

of the model. It will be shown that the classical D/J = 2 model is entropically

driven to undergo a temperature-dependent spin liquid to spin liquid transition at low

temperature T ∗. While the spin liquid at T > T ∗ is governed by fluctuations in the

E, T xy1 and T Ice
1 manifolds, states in the E and T xy1 manifolds depopulate at T < T ∗

such that a spin-ice phase is realized in the limit T → 0+. The phenomenology of the

spin liquid to spin liquid crossover will be understood by formulating the spin model

as an effective theory of competing rank-1 and rank-2 gauge fields [71], with the rank-1

gauge field dominating at T < T ∗ and a combined rank-1 and rank-2 gauge field being

active in the T > T ∗ spin-liquid phase.

In addition to the classical D/J = 2 model, the quantum S = 1/2 model will be studied

as well. In the quantum model, we will find hints that the D/J = 2 model assumes

a magnetically ordered Γ5 phase instead. To better understand this observation, the

general phase diagram for nearest-neighbor models of non-Kramers pyrochlores, which

includes the D/J = 2 model, will be computed. The study of this phase diagram is the

second major subject of this section. In the quantum phase diagram, classical phase

boundaries will be shifted. As a result, the spin model that is phenomenologically most

similar to the classical D/J = 2 model will be found at different interaction strengths.

The quantum model analogue to the classical D/J = 2 model will be found to realize

a paramagnetic ground state that is most similar to the T > T ∗ spin-liquid phase of

the classical D/J = 2 model.

In non-Kramers pyrochlore systems, states of the T Ice
1 manifold involve only the spin

components Szi of the local coordinate system, which transform as dipolar compo-

nents, whereas states of the E and T xy1 manifolds involve only spin components Sxi

and Syi , which transform as quadrupolar components. Since one ground state man-

ifold of the D/J = 2 model (the manifold of T Ice
1 ) is associated with dipolar order

and the remaining two ground state manifolds (the manifolds of E and T xy1 ) are associ-

ated with quadrupolar orders (here, ”dipolar” and ”quadrupolar” denote the symmetry

properties of the spin components involved), the D/J = 2 model will be referred to

as dipolar-quadrupolar-quadrupolar (DQQ) model in the context of non-Kramers py-
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rochlore systems.

The content of this section follows along with our recent publication of Ref. [71] and

is organized as follows. We begin by treating the low-temperature behavior of the

classical DQQ model in Sec. 5.3.1. Afterwards, we broaden the scope of the study by

considering the classical and quantum phase diagrams for the general nearest-neighbor

model of non-Kramers pyrochlore compounds. First, the classical phase diagram will

be treated in Sec. 5.3.2. Then, the phase diagram of the S = 1/2 quantum model will

be resolved in Sec. 5.3.3. The latter section will treat the quantum DQQ model as well.

We refer to Ref. [71] for a more detailed treatment of the classical and quantum DQQ

models. While the paper of Ref. [71] was created in close collaboration, the author of

this thesis mainly contributed to the quantum perspective on the DQQ model provided

by PFFRG, and to the understanding of degrees of freedom in the classical ground

state manifold of the DQQ model. The main contributions to the paper were made

by Daniel Lozano-Gómez, who was the main contributor to the classical perspective

on the DQQ model and derived the coarse-grained effective description of the DQQ

model. High-temperature series expansion results were provided by Jaan Oitmaa and

Rajiv R. P. Singh. For further information on contributions, we refer to the section

”Author contributions” in Ref. [71]. Corresponding to the contributions of this thesis’

author to Ref. [71], this section will rather focus on the quantum behavior of the DQQ

model and the non-Kramers phase diagram. In contrast, some aspects of the classical

DQQ model that are treated in Ref. [71] will be omitted. In this section, energies of

the DQQ model will be given in units of the Heisenberg interaction |J |.

5.3.1 The classical DQQ model

The classical DQQ model will be considered in the following. For this purpose, cMC

results of Ref. [71] will be replicated and discussed. We are interested in the behavior of

the model at low temperatures within the nontrivial paramagnetic regime, i.e., within

the regimes of classical spin liquids. For these temperatures, the manifolds of the irreps

A2 and T2, which do not contribute to the classical ground state manifold, are mostly

depopulated. Consequently, we only need to consider the populations of (ground state)

manifolds associated with T Ice
1 , T xy1 and E.

We first try to understand the selection mechanism between the two classical spin-liquid

phases found at low temperatures. The transition between the spin-liquid phases can

be observed in the temperature-dependent specific heat C of the DQQ model, obtained

by cMC and shown in Fig. 5.15(b). In this plot, the transition manifests in a bump at

T ∗ ∼ 0.03. Further insight on the transition is gained by considering the temperature-
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Figure 5.15: (a) Non-Kramers phase diagram with Jzz = 3 where the DQQ model cor-
responds to the white dot at the boundary between the classical T xy1 , E(ψ3), and T

Ice
1

phases. (b) Specific heat of the DQQ model obtained from Monte Carlo simulations
for various system sizes where a bump at a temperature T ∗ ∼ 0.03 in the specific heat
that signals a crossover between an intermediate-temperature and a low-temperature
regime, further discussed in the main text, is observed. This crossover is characterized
by an entropically driven depopulation of the E and T xy1 irrep modes. Spin structure
factors in the [hhℓ] (c) and [hk0] (d) planes for a temperature just above the crossover
temperature T ∗. Spin structure factors in the [hhℓ] (e) and [hk0] (f) planes for a tem-
perature below the crossover temperature T ∗. The figure and its caption are replicated
from Ref. [71].

dependent selection of irrep manifolds by giving out ⟨mΨ,t⟩ for all irreps Ψ. Such a plot

is given in Ref. [71] and yields the following insights. While at temperatures above T ∗,

the classical model selects states throughout manifolds of all ground state irreps (with

|⟨mT Ice
1 ,t⟩|, |⟨mTxy

1 ,t⟩| and |⟨mE,t⟩| being of equal orders of magnitude), T xy1 and E

manifolds begin to depopulate with decreasing temperature at T ∼ T ∗, and at T < T ∗

the spin-ice manifold of T Ice
1 governs state selection (|⟨mT Ice

1 ,t⟩| ≫ |⟨mTxy
1 ,t⟩|, |⟨mE,t⟩|),

with a pure spin-ice phase being realized in the limit T → 0+ [71]. The selection of the

T Ice
1 manifold at low temperatures is explained by the presence of soft modes about

pure spin-ice configurations. Such modes are not found about randomly selected states

of the remaining ground state manifold, as confirmed by classical low-temperature

expansions on states sampled by the iterative minimization method [71]. The presence

and ratio of soft modes about pure spin-ice states is further confirmed by the specific

heat C at T → 0+. In this temperature limit, cMC finds C/kB ≈ 7/8, which implies

that 1/4 of the modes about pure spin-ice states are of quartic order whereas the

remaining modes are of quadratic order (see Ref. [112]).
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Next, we consider the phenomenology of both spin-liquid phases by discussing SFs of

the DQQ model given by Eqs. (3.67)-(3.68). SFs of cMC in the [hhℓ] and [hk0] planes

are shown in Figs. 5.15(c)-(f). They are computed with an isotropic g factor of g = 1

and are shown both in the spin-liquid phase at T > T ∗ (T = 0.063) and the spin-

liquid phase at T < T ∗ (T = 0.003). We will refer to SFs with an isotropic g factor

as spin SFs. Note that these SFs are not representative of non-Kramers compounds,

which fulfill gxx = gyy = 0 in the local coordinate system. It is apparent from the

Figs. 5.15(c)-(f) that the respective SFs of the two spin-liquid phases exhibit vastly

different features. The SF of the spin-liquid phase at T < T ∗ reproduces the scattering

pattern found in spin ice, including twofold pinch points [78]. The T > T ∗ spin SF

of the other spin-liquid phase exhibits twofold pinch points as well, e.g., at hhℓ = 220

and 002. However, additional features are present as well that hint at the presence of

processes that cannot be described by pure spin-ice physics. These features are given

by pinch lines (i.e., one-dimensional extensions of pinch points, see Ref. [113]), which

can be observed along the [111] and [11̄1̄] directions, and fourfold pinch points, which

are visible in the [hk0] plane at hk0 = 000.

As was shown in Sec. 5.1.1, twofold pinch points can be understood as emerging from

the fulfillment of a Gauss law, formulated for a rank-1 tensor field B(r) analogous

to the magnetic field of electromagnetism. The Gauss law is fulfilled by construction

by introducing a rank-1 gauge field A(r) via B(r) = ∇ × A(r), which is analogous

to an electromagnetic potential. Similarly, fourfold pinch points are associated with

an emergent rank-2 gauge field and the corresponding generalization of the Gauss law

[114, 113]. In context of the DQQ model, the observed twofold and fourfold pinch-point

features of the spin SFs can be understood by formulating an effective long-wavelength

theory for the DQQ model in the spirit of Refs. [114, 113]. One arrives at a theory of

the form

H = E0 +
3

16

∫
d3q

(
|q ·BIce|2 + |q · Mxy|2

)
+ λ

∫
d3q

(
|BIce|2 + tr

[
(Mxy)TMxy

])
+O(q4),

(5.46)

with the rank-1 tensor field BIce and the rank-2 tensor field Mxy (see Ref. [71] for

further information on their properties). The first term E0 gives the ground state

energy of the model, the second term enforces a Gauss laws for the tensor fields BIce

and Mxy in the limit T → 0, and the third term corresponds to the soft spin-length

constraint, where the spin length on each site is fulfilled only on average. The fields of

different ranks represent different irreps, since BIce is given by the order parameter of

spin ice (BIce = mIce
T1
), and Mxy contains only components of order parameters mE

and mxy
T1
. It follows that while the former field describes the dipolar spin components
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Szi in a non-Kramers model, the latter involves the quadrupolar components Sxi and

Syi (expressed in the local coordinate system). Note that BIce and Mxy only couple

via the spin length constraint.

It follows from the effective description of the DQQ model given by Eq. (5.46) that

the intermediate-temperature spin-liquid phase at T > T ∗ is to be understood as a

phase described by competing emergent rank-1 and rank-2 gauge fields. These manifest

themselves in the spin SF in the form of twofold and fourfold pinch points, respectively.

Note that the effective model of Eq. (5.46) only captures the paramagnetic phase at

T > T ∗. At T < T ∗, fourfold pinch points vanish and the quadrupolar spin components

become fully irrelevant at T → 0+, as a spin-ice phase emerges in this limit [71].

Neutron structure factor

Above, the different natures of spin-liquid phases of the DQQ model became apparent

in the spin SF patterns of Figs. 5.15(c)-(d). However, the DQQ model is primarily rele-

vant to non-Kramers pyrochlores. For these systems, spin SFs, which assume isotropic

g tensors g = 1, are inaccessible by experiments. Instead, non-Kramers pyrochlore

systems exhibit an anistropic g tensor that is only finite along the spin z components

of the local coordinate system. We set this g tensor component as gzz = 1. The cor-

responding non-Kramers SFs with gxx = gyy = 0 and gzz = 1 will be referred to as

neutron SFs. Such SFs are shown for the DQQ model in Fig. 5.16, where they are

obtained by cMC. It can be observed that both the neutron SFs within the spin-liquid

phase at T > T ∗ and T < T ∗ exhibit the characteristic pattern of a spin-ice phase.

This is a direct consequence of the anisotropic g tensor. The neutron SFs capture

only the rank-1 gauge field BIce, which is described by the dipolar spin components

Szi with finite gzz = 1, and not the rank-2 gauge field Mxy, which is described by the

quadrupolar spin components Sxi and Syi with vanishing gxx = gyy = 0. Because the

coarse-grained theory of Eq. (5.46) represents an effective description of spin ice if a

vanishing Mxy = 0 is considered, spin-ice SF patterns are obtained as a consequence

in the neutron SFs, which do not capture Mxy. However, a deviation from the pure

spin-ice SF pattern is found in the [hhℓ] plane of the non-spin-flip channel. Here, SFs

of both spin-liquid phases exhibit a periodic variation of weight, with the positions

of maxima coinciding between the SFs of both phases. In contrast, the ideal spin-ice

phase of the Ising model exhibits a flat non-spin-flip neutron SF in the [hhℓ] plane [45].
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Figure 5.16: Polarized neutron structure factors for the DQQ model above T ∗ (a) at
T = 0.063J and below (b) at T = 0.003J . In each panel, the left plot corresponds to
the [hhℓ] plane and the right plot to the [hk0] plane where the first row is the spin-flip
channel and the second row corresponds to the non-spin-flip channel. These structure
factors were obtained for a system size L = 10. The figure and its caption are replicated
from Ref. [71].

Ground state degrees of freedom

In the following, we aim to gain a better understanding of the classical ground state

manifold of the DQQ model and the spin degrees of freedom within it. We already

know that q = 0 ground state configurations of the DQQ model are obtained by

tiling the lattice with a configuration on a tetrahedron that contributes only to order

parameters mT Ice
1 ,t, mTxy

1 ,t and mE,t. However, the degeneracy aT Ice = aTxy
1

= aE of

the DQQ model allows for lattice ground states that tile tetrahedra with different spin

configurations as well. In order to describe the full classical ground state manifold of

the DQQ model, all possible tiling degrees of freedom have to be known. Here, we will

explore tiling degrees of freedom in the DQQ model and, more explicitly, demonstrate

how degeneracies of ground states on a single tetrahedron can lead to subextensive

degeneracies in the lattice model. Two examples of lattice configurations that mix

between multiple irrep manifolds by having different ground state configurations on

different tetrahedra will be given.

It had previously been shown in Ref. [90] that for pyrochlore lattice models an at least

subextensive ground state manifold follows from the degeneracy of two q = 0 ground

state configurations with coinciding spin orientations on one or more sublattice sites.

The corresponding degrees of freedom in tiling the lattice with tetrahedra of different

ground state configurations are summarized by the so-called ”Lego-brick” rules [90],

which will only partially be repeated here. If the spin orientations of two q = 0 ground

state configurations coincide on one sublattice, then, starting from one of the two
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Figure 5.17: Visualization of a (111) domain wall in a classical ground state configu-
ration of the DQQ model. The domain wall is positioned in a lattice plane whose sites
build a triangular lattice and is enclosed by a ferromagnetic (with Si ∥ (111)) and a
spin-ice configuration with shown spin orientations Si on site i. Tetrahedra of both
configurations are colored red and blue, respectively.

q = 0 spin arrangements, there exists a degree of freedom that consists of changing the

spin configurations throughout a kagome plane of the pyrochlore lattice6. It follows

that there exists a degeneracy of at least O(2L), with L being the linear size of the

lattice. The degree of freedom is illustrated in Fig. 5.17, which shows a ground state

configuration of the DQQ model. A (111) domain wall is shown in between a spin-ice

(blue) and a ferromagnetic (red) region. Both spin-ice and ferromagnetic configurations

are ground states of the classical DQQ model, since spin-ice configurations build the

manifold of T Ice
1 , and ferromagnetic configurations build the manifold of T1||. The

domain wall does not have a finite energy cost, because all adjacent tetrahedra are

in a ground state configuration. It is located in a triangular lattice (111) plane of

the pyrochlore lattice and can be moved without energy cost by changing the spin

configurations throughout a full adjacent kagome plane such that a plane of tetrahedra

changes either from a ferromagnetic to spin-ice ground state configuration or vice versa.

A degeneracy of higher order is implied if two q = 0 ground state configurations

coincide on two sublattices. In this case, a degeneracy of at least O(2L
2
) exists. Degrees

of freedom now consist of changing spin configurations along a 1D line throughout the

lattice. In the DQQ model there exists a special case of such a degree of freedom

that is continuous, as will be shown in the following. A subset of q = 0 ground

6Note that the pyrochlore lattice can be considered as being built by alternating triangular and
kagome lattice planes.
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state configurations of the DQQ model are specified by two continuous angles α and

β that each determine the spin orientations on only two sublattices. The sublattice i

dependent spin vectors Si for these configurations are given by

S0 =
(
cos(β), 0, sin(β)

)
,

S1 =
(
cos(β), 0,−sin(β)

)
,

S2 =
(
cos(α), 0, sin(α)

)
,

S3 =
(
cos(α), 0,−sin(α)

)
.

(5.47)

in the local coordinate system. Except for certain angles, the configuration contributes

to all irrep order parameters mT Ice
1 ,t, mTxy

1 ,t, and mE,t. Three exceptions are given by

a pure spin-ice configuration, obtained by setting α = β = π/2, ψ2 order, obtained in

case α = β = 0, and a pure T xy1 state, obtained for α = 0 and β = π. Configurations

of Eq. (5.47) are shown in Fig. 5.18 along a line of tetrahedra for two choices of angles

α and β. A continuous degree of freedom exists that corresponds to rotating spins of

sublattices 2 and 3 (shown in red) along a 1D line. The axis of rotation is oriented

along the local y axis and has opposite sign for sublattices 2 and 3. In addition to

providing a continuous degree of freedom along a 1D line, the spin configurations of

Eq. (5.47) are an example of classical ground state configurations in the DQQ model

that mix between different irrep order parameters.

Note that different spin-ice configurations of T Ice
1 can themselves coincide on two dif-

ferent sites of a tetrahedron and, thus implying a degree of freedom in tiling tetrahedra

of different ground state configurations on the pyrochlore lattice. Notably, the spin-ice

configurations represent a special case in which the tiling degree of freedom is local

and extensive, resulting in the spin-ice physics already covered in Sec. 5.1.1.

5.3.2 Classical phase diagram of non-Kramers pyrochlore mod-

els

It was mentioned earlier that the DQQ model can be realized by non-Kramers py-

rochlore systems. In this context, the general phase diagram of nearest-neighbor mod-

els of non-Kramers pyrochlores will be computed. Here, we first consider the classical

phase diagram. Afterwards, the quantum case will be considered, which will be useful

for interpreting the behavior of the S = 1/2 DQQ model as well.

As argued in Sec. 5.2.3, the general nearest-neighbor spin model of non-Kramers
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β = 0

β = π
2

(a)

(b)

Figure 5.18: The ground state spin configuration of Eq. (5.47) is shown for fixed β = 0
and β = π/2, with α staying constant at α = 0. Spins on sublattices 0 and 1 (2 and
3) are shown in blue (red). The figure and its caption are replicated from Ref. [71].

pyrochlores is given in the local coordinate system by

H =
∑
⟨ij⟩

JzzSzi S
z
j − J±(S+

i S
−
j + S−

i S
+
j )

+ J±±(γijS
+
i S

+
j + γ∗ijS

−
i S

−
j )], (5.48)

with γij being defined in Eq. (5.17). From the dependence on three interaction pa-

rameters Jzz, J± and J±± follows a two-dimensional phase diagram, which we choose

to compute at a constant Jzz = 3. The classical phase diagram at T = 0+ is shown

in Fig. 5.15(a) and will be summarized in the following7. The phase diagram contains

extended phases characterized by the irreps T2, T
xy
1 , T Ice

1 and E. The E phase, which

has a Γ5 classical ground state manifold, is found to realize a different ObD selection

depending on the sign of J±±. A ψ2 order is selected for J±± > 0, whereas a ψ3 order

is selected for J±± < 0.

Surrounding the Ising model at J± = J±± = 0 is a paramagnetic region of triangular

shape that corresponds to a spin-ice phase with ground state irrep T Ice
1 . Each corner

of the triangle is adjacent to three distinct phases characterized by different irreps.

Each model of a single corner is treated in this chapter. The left corner (black dot) at

{Jzz, J±, J±±} = {3,−1.5, 0} realizes the antiferromagnetic Heisenberg model. How-

7Note that the notation for interactions in Fig. 5.15(a) is slightly different, because the figure is
replicated from Ref. [71]
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ever, note that this Heisenberg model is defined in the local coordinate system and cor-

responds to a model with highly anisotropic interactions of {J,K,Γ, D} = {−3, 6, 0, 0}
in the global coordinate system. Conversely, the Heisenberg model with interactions

{J,K,Γ, D} = {3, 0, 0, 0} in the global coordinate system realizes the interactions

{Jzz, J±, J±±, Jz±} = {−1, 0.5,
√
2, 1} in the local coordinate system, which cannot

be realized by non-Kramers models due to Jz± ̸= 0. Thus, the Heisenberg model

in the non-Kramers phase diagram is not the same Heisenberg model realized by the

Heisenberg-DM model. The lower right corner of the triangle, corresponding to the

local interactions {Jzz, J±, J±±} = {3, 0.5,−1}, gives the DQQ model. The model of

the upper right corner is dual to the DQQ model and is referred to as DQQ∗ model.

The duality transformation between the two models is given by a spin rotation of an

angle π/2 about the local z axis, which maps J±± → −J±± and leaves the remaining

interactions invariant. Under this transformation, each the T xy1 and T2 manifolds, and

the ψ2 and ψ3 states exchange. The duality transformation implies that all informa-

tion on the complete phase diagram is already included in the restricted case J±± < 0.

Actually, a subtle fourth triple point at which three phases meet is caused by ObD and

is found for the XXZ model at {Jzz, J±, J±±} = {3, 0, 0.5} in between the T Ice
1 , ψ2 and

ψ3 phases. We will mostly neglect this particular point in our study.

5.3.3 Quantum phase diagram of non-Kramers pyrochlore mod-

els

We now continue with the study of the phase diagram of the S = 1/2 quantum model

for non-Kramers pyrochlores, which will be computed by PFFRG and further com-

plemented by HTSE results. An emphasis will be put on the vicinity of the DQQ

model. While it was shown earlier that the classical DQQ model hosts emergent com-

peting gauge fields of different ranks, which lead to an entropically-driven spin liquid to

spin liquid transition, it is still unanswered at this point whether the quantum model

exhibits the same behavior in state selection. Before addressing this question with

the help of the phase diagram, we consider features of the wider non-Kramers phase

diagram first.

The S = 1/2 non-Kramers phase diagram at T = 0, determined by PFFRG, is shown

in Fig. 5.19(a). We begin by briefly discussing technical details of its computation.

Its content will be discussed afterwards. The computed phase diagram covers most

of the lower half (J±± ≤ 0) of the classical phase diagram shown in Fig. 5.15(a).

Phase boundaries of the upper half (J±± > 0) follow directly from the previously

introduced duality transformation that relates models with different signs of J±±. Like

in the classical phase diagram, the Jzz interaction is kept constant at Jzz = 3, whereas



158 Chapter 5. Pyrochlore spin models

2.0 1.5 1.0 0.5 0.0 0.5 1.0
J±

2.0

1.5

1.0

0.5

0.0
J ±

±

T xy
1

E

(a) (b)

(c) (d)

Figure 5.19: (a) PFFRG phase diagram of the spin-1/2 non-Kramers pyrochlore model
at T = 0 with fixed Jzz = 3 where the gray region denotes an absence of magnetic
long-range order, the yellow and blue regions correspond to the q = 0 quadrupolar
orders T xy1 and E, respectively, and the white regions are of uncertain magnetic behav-
ior. As a guide to the eye, the approximate quantum phase boundaries from PFFRG
are indicated by dashed lines. Solid black lines mark the classical phase boundaries.
HTSE results are shown as points, whose colors correspond to the order parameter
susceptibility dominating in a calculation up to order (1/T )8. The phase boundary be-
tween quantum spin-ice and magnetic E phases, as previously determined by quantum
Monte Carlo on the unfrustrated J±± = 0-line (the so-called XXZ model) is marked
by a red square [84]. (b) Order parameter susceptibilities χ̄ψ from PFFRG at T = 0 as
a function of the renormalization group parameter Λ for the quantum spin-1/2 model
with interactions {Jzz, J±, J±±} = {3.0, 0.3,−1.0}, marked by a red cross in the phase
diagram in (a). (c), (d) Static (zero frequency) spin structure factors from PFFRG at
T = 0 for the same model as in (b) within the [hhℓ] and [hk0] planes in the low-cutoff
limit Λ → 0. The figure and its caption are replicated from Ref. [71].

J±± ≤ 0 and J± are varied. For each model with given interaction values, the presence

of magnetic order is determined by identifying whether the PFFRG susceptibility flow

exhibits a breakdown. This criterion leaves room for ambiguity in phase classification

near phase boundaries of the phase diagram due to subtle flow breakdowns. It follows

that the phase diagram exhibits regions in which the presence of magnetic order is

uncertain. These regions are shown in white. Like in Sec. 5.2, phases are identified

by the irrep-dependent order parameter susceptibility of maximum size at the flow

breakdown or in the low cutoff limit if no flow breakdown is present. The internal

structure of the quantum paramagnetic region will be mostly neglected in this study.

I.e., we will generally not attempt to distinguish paramagnetic regions with different

underlying phases. While the paramagnetic phase is expected to be described by a

quantum spin ice near the Ising model [84], other paramagnetic phases are likely to be

realized further away, as was shown in Sec. 5.1 for the Heisenberg model. Alternative

paramagnetic phases are especially expected in paramagnetic regions where the spin-

ice manifold does not contribute to the classical ground state manifold. We restrict
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the characterization of paramagnetic regimes to the description of competition between

irrep manifolds, quantified by order parameter susceptibilities, and to the computation

of SFs. While order parameter susceptibilities do not strictly measure the contribution

of particular states or irrep manifolds to quantum paramagnetic ground states, we

will interpret the sizes of order parameter susceptibilities as roughly reflecting the

involvement of their respective irrep manifolds in the state selection of a considered

paramagnetic phase.

The quantum-model phase diagram of Fig. 5.19(a) is summarized as follows. Like

in the classical phase diagram, we observe three distinct connected regions for the

case J±± ≤ 0. They correspond to a quantum paramagnetic phase, and magneti-

cally ordered E and T xy1 phases. A quantum fluctuation-based shift of classical phase

boundaries is observed. The E phase extends beyond its classical boundary. In con-

trast, the T xy1 -ordered region shrinks in size. Newly positioned phase boundaries allow

for a paramagnetic corridor to emerge in between the E and T xy1 phases. The corridor

is connected to the paramagnetic region surrounding the spin-ice model. Similarly,

the boundary of the previously classical paramagnetic region extends from the Heisen-

berg model at {Jzz, J±, J±±} = {3,−1.5, 0} towards smaller J± upon the inclusion of

quantum fluctuations, resulting in an even wider paramagnetic corridor along J±± = 0

in between the T xy1 and T2 phases. A comparison between PFFRG and qMC results

is feasible for the XXZ model (J±± = 0) at J± > 0. In agreement with PFFRG, a

shift of the phase boundary between the paramagnetic and E-ordered regions towards

smaller J± > 0 is observed within qMC [84]. The qMC phase boundary at J± = 0.156

is marked in the PFFRG phase diagram by a red square. It falls into the uncertain

region. PFFRG results on the XXZ model will be discussed further at a later point.

HTSE results complement the phase diagram of the quantum model in Fig. 5.19(a) and

state dominant ordering tendencies across the E-T xy1 phase boundary at J±± = −1.0,

−1.5 and−2.0. Small circles of corresponding coloring show which order parameter sus-

ceptibility is dominant at temperatures above an approached phase transition for each

considered model with given interactions. The results argue towards a phase boundary

shift towards smaller J±± in comparison to the classical position. This observation

is supported by the phase boundaries found by PFFRG. Within the paramagnetic

corridor predicted by PFFRG, HTSE finds interaction intervals where neither order

parameter susceptibility of a candidate magnetic phase is found to grow substantially

with decreasing temperature. This observation further hints at the existence of the

paramagnetic corridor.
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(a) (b)

Figure 5.20: Static neutron SFs computed by PFFRG for the model {Jzz, J±, J±±} =
{3.0, 0.1, 0} in the low-cutoff limit, shown for the (a) non-spin-flip channel and (b)
spin-flip channel.

Quantum XXZ model

We now shed some light on the XXZ model (J±± = 0), which is included in the non-

Kramers phase diagram of Fig. 5.19. The expected behavior of the XXZ model will

be summarized first. Afterwards, we investigate the behavior observed by PFFRG and

highlight the PFFRG SF in the predicted quantum spin-ice phase near the Ising model.

The XXZ model is known to realize a quantum spin-ice phase if |J±|/Jzz is sufficiently

small. For a ferromagnetic J± > 0, the S = 1/2 model is treatable by qMC, which finds

that, for the case T = 0, the model undergoes a phase transition from the quantum

spin-ice to the E phase at J± ≈ 0.156 in case Jzz = 3 [84]. This phase boundary differs

from its position for the classical model, which is found at J± = 0.5. Fig. 5.19 shows

that PFFRG reproduces the phase boundary shift towards smaller J±. The boundary

found by qMC lies in the uncertain region of the PFFRG phase diagram. For J± < 0,

the paramagnetic region of the S = 1/2 XXZ model extends beyond the Heisenberg

model. However, as argued in Sec. 5.1, the S = 1/2 (and S = 1) paramagnetic ground

state of the Heisenberg model (found at {Jzz, J±, J±±} = {3,−1.5, 0}) is believed to

assume a nematic order. This implies a phase transition in the phase diagram at

−1.5 < J± < 0 for Jzz = 3 between the quantum spin-ice phase near the Ising model

and the nematic phase of the Heisenberg model if no additional paramagnetic phase is

found in between the two phases.

Next, we consider the spin SF in the quantum spin-ice phase. While the ground state of

the Ising model, which realizes a classical spin ice, possesses sharp pinch-point features

in its SF, it is nontrivial how the inclusion of quantum fluctuations, which allow for

tunneling processes between different spin-ice configurations, affects these features.

Importantly, quantum spin ice has photon excitations, which are gapless (unlike the

electric and magnetic monopole excitations) and are expected to affect the SF at low
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temperatures. It is argued in Ref. [115] that the gaplessness of photon excitations

at the q locations of pinch points causes the pinch points in the spin-flip channel of

the equal-time spin SF to vanish at T = 0 (however, note that they are predicted

to reemerge at finite temperatures). Furthermore, photon excitations are gapless at

q = 0. As a consequence, the intensity in the spin-flip channel of the equal-time spin

SF is predicted to vanish linearly with T at q = 0.

The static PFFRG spin SF for a model in the quantum spin-ice regime at {Jzz, J±, J±±} =

{3.0, 0.1, 0} is shown in Fig. 5.20 in both the spin-flip and non-spin-flip channel. Note

that the predictions of Ref. [115] were made for the equal-time spin SF, whereas we

show the static SF instead8. A priori, it is not clear which predicted features of the

equal-time SF are expected to remain in the static SF. Interestingly, we observe a local

minimum in the spin-flip channel at q = 0, which is also predicted in the equal-time

SF. However, the intensity does not vanish completely at q = 0, like it is predicted in

the T = 0 equal-time SF. Similarly, a vanishing of pinch points is partially reproduced,

e.g., at q = (1, 1, 1) and (0, 0, 2). Note that the PFFRG computation of the SF only

includes maximum correlation distances of four nearest-neighbor spacings, since the

corresponding model was evaluated as part of the non-Kramers phase diagram. As a

consequence of this approximation and additional numerical approximations, such as

the truncation of flow equations, details in the present PFFRG SF should be taken with

a grain of salt, especially in the context that PFFRG is not able to reproduce sharp

pinch points in the Ising model as well (not shown). In order to unravel which observed

features of the SF are a consequence of numerical approximations, an advanced study

would be necessary that investigates the effects of each individual approximation on

the SF. Such an investigation is beyond the scope of this study.

Regarding the non-spin flip channel of the model {Jzz, J±, J±±} = {3.0, 0.1, 0}, shown
in Fig. 5.20(a), we note that the observed pattern of local minima is reminiscent of

the non-spin-flip channel pattern observed in the qMC study of the XXZ model in Ref.

[84], with minima being located at the same positions. However, we observe the subtle

difference that at these positions there exist two types of alternating local minima in

the PFFRG SF, which exhibit different widths and minimum values (e.g., at hhl = 002

and hhl = 111). This is in contrast to Ref. [84], where all local minima, except the

minimum at q = 0, appear to have the same shape.

8The PFFRG is formulated in frequency space, so that generally static SFs are given out. For the
given numerical implementation, a Fourier transform to an equal-time SF had not been implemented.
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The S = 1/2 DQQ model

Previous observations in the phase diagram of the quantum model will now aid in

the following discussion of the S = 1/2 DQQ model. The S = 1/2 DQQ model,

with {Jzz, J±, J±±} = {3, 0.5,−1}, is located in a region of uncertainty in the PFFRG

phase diagram of Fig. 5.19(a). A dominant E order parameter susceptibility and

the previously discussed shift of phase boundaries in the quantum model suggest the

scenario in which the model orders magnetically into an E phase. A good qualitative

agreement with the SFs of the classical DQQ model in the T > T ∗ phase is obtained

by considering a quantum model with reduced J± instead, which is deeper within

the paramagnetic corridor of the phase diagram and near the point {Jzz, J±, J±±} =

{3.0, 0.3,−1.0} (marked by a red cross in the phase diagram). The order parameter

susceptibility flows and spin SFs of this model are shown in Figs. 5.19(b)-(d). Note

that the plot uses a slightly different notation for order parameter susceptibilities χ̄Ψ

from the previous notation χ̄ψ used in the study of the Heisenberg-DM model. χ̄Ψ is

now labeled by the irrep Ψ it represents instead of a spin configuration ψ (within the

irrep Ψ manifold) for which χ̄Ψ is computed. One observes that χ̄Ψ of each classical

ground state irrep is of comparable size in the low cutoff limit9. The T = 0 PFFRG spin

SF exhibits patterns with a close resemblance to those found in the SF of the classical

DQQ model at T > T ∗. In contrast, the T = 0+ spin-ice SF of the classical DQQ model

is not reproduced at all in the quantum-model phase diagram near the DQQ model.

This suggests that the T = 0 quantum model with {Jzz, J±, J±±} = {3.0, 0.3,−1.0}
rather realizes a quantum analogue to the combined rank-1 rank-2 spin-liquid phase of

the classical DQQ model, rather than a phase similar to a spin ice. It is known that

the quantum XXZ model realizes a quantum spin-ice phase for interactions close to the

Ising model [84]. Since the full paramagnetic region of the phase diagram is connected,

a QSL to QSL transition may still be achieved by moving along the quantum-model

phase diagram from the Ising model towards the {Jzz, J±, J±±} = {3.0, 0.3,−1.0}
model.

We show the static neutron SF of the model {Jzz, J±, J±±} = {3.0, 0.3,−1.0} in Fig.

5.21. Since neutrons scatter only on the spin z components of the local coordinate

system, a spin-ice-like pattern is obtained similar to that observed in the classical DQQ

model shown in Fig. 5.16. However, some subtle differences are visible. At scattering

vectors [hhℓ] = [000], [002] and symmetry-related points, a slight local decrease of

intensity is visible in the spin-flip channel. Furthermore, we observe broadened pinch

points. Although broadened pinch points are expected, because the ice rule is not

9Note that a q = 0 spin-ice configuration was chosen for the computation of χ̄T Ice
1

. Hence, the
order parameter susceptibility is not representative of the full spin-ice manifold. I.e., there may exist
q ̸= 0 spin-ice configurations with order parameter susceptibilities of larger values.
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Figure 5.21: Static neutron SFs computed by PFFRG for the model {Jzz, J±, J±±} =
{3.0, 0.3,−1.0} in the low-cutoff limit. The first and second rows correspond to the
spin-flip and non-spin-flip channels respectively. The figure and its caption are repli-
cated from Ref. [71].

fulfilled by the ground state of the quantum model, we note that broadened pinch

points can also arise from numerical approximations involved within PFFRG. Finally,

a qualitatively different pattern than in the classical DQQ model is obtained in the

[hhℓ] plane of the non-spin-flip channel. The observed pattern is reminiscent of the

pattern obtained by qMC in the quantum spin-ice phase of the XXZ model (see Fig.

3(a) in Ref. [84]).

To obtain a better picture of the evolution of SFs across the phase diagram, we plot

spin SFs in the quantum paramagnetic and uncertain regions near the quantum DQQ

model in Fig. 5.22. We point out that we did not claim that the SF of the model

{Jzz, J±, J±±} = {3.0, 0.3,−1.0} exhibits the best qualitative agreement with the SF

of the classical DQQ model at T > T ∗. Instead, it was only stated that a good

agreement is obtained in a region near this model. E.g., SFs of the models with

interactions {Jzz, J±, J±±} = {3.0, 0.3,−0.9} and {Jzz, J±, J±±} = {3.0, 0.4,−1.1}
show close resemblance to SFs of the classical DQQ model as well.

Experimental relevance of the DQQ model

We end the treatment of the DQQ model with a discussion on its experimental rel-

evance. As was mentioned earlier, the DQQ model can be realized by non-Kramers

pyrochlore compounds. The a priori chance of finding a non-Kramers compound that
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J± = 0.5, J±± = −1.2 J± = 0.3, J±± = −1.1

J± = 0.4, J±± = −1.1 J± = 0.5, J±± = −1.1

J± = 0.2, J±± = −1.0 J± = 0.3, J±± = −1.0

J± = 0.4, J±± = −1.0 J± = 0.5, J±± = −1.0

J± = 0.1, J±± = −0.9 J± = 0.2, J±± = −0.9

J± = 0.3, J±± = −0.9 J± = 0.4, J±± = −0.9

Figure 5.22: Static spin SFs computed by PFFRG in the low-cutoff limit. Differ-
ent interactions with constant Jzz ≡ 3, and within the paramagnetic regime of the
quantum-model phase diagram Fig. 5.19(a) near the DQQ model are considered. The
figure and its caption are replicated from Ref. [71].

approximately realizes the DQQ model is greater than for compounds with fully dipo-

lar spins, since nearest-neighbor models of non-Kramers compounds are restricted by

symmetries to have one interaction less (Jz± = 0). In fact, the previously studied non-

Kramers pyrochlore system Tb2Ti2O7 might be a candidate material for the realization
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of a rank-1 rank-2 spin liquid, since it was predicted to be described by a model found

in the vicinity of the DQQ∗ model [116].

However, even if a system is found that is proposed to be well described by the DQQ or

DQQ∗ model, it is unclear at this point how to experimentally capture the underlying

physics of its possible rank-1 rank-2 spin liquid phase. The anisotropic g tensor of

non-Kramers systems allows only for the rank-1 gauge field (the spin-ice component)

to be detected by neutron scattering. Meanwhile, the rank-2 gauge field of the spin

liquid remains hidden. At this point, to the best of the author’s knowledge, a strategy

to experimentally reveal the presence of a rank-2 spin liquid that is realized by the

local x and y spin components of a non-Kramers compound has yet to be proposed.

5.4 Discussion

The pyrochlore lattice represents a prominent platform for the study of frustrated

magnetism [117]. In this chapter, we restricted ourselves to nearest-neighbor spin

models on this lattice and have investigated their various properties. On the basis

of the symmetry-constrained models realized by pyrochlore compounds, classical and

quantum phase diagrams of the Heisenberg-DM model and of non-Kramers pyrochlore

systems were computed and discussed in detail. Due to geometrical frustration, many

occurring phases were characterized by classically degenerate ground state manifolds.

As such, an underlying theme throughout the chapter was the ObD selection within

these manifolds driven by the presence of quantum or thermal fluctuations. Partic-

ular attention was paid to models within the phase diagrams that are positioned on

classical phase boundaries and realize extensive classical ground state manifolds as a

consequence. More specifically, these models are given by the Heisenberg and DQQ

models, in which ObD fails to realize magnetically ordered phases. We use this oppor-

tunity at the end of the chapter to summarize and discuss its most important results.

We first discuss insights on the studied phase diagrams in general, then phases found

within the phase diagrams, and at last the Heisenberg and DQQ models in particular.

Phase diagrams were resolved both for the classical and S = 1/2 quantum models.

Classical phase boundaries were found to be shifted by quantum fluctuations. Gener-

ally, paramagnetic regimes were of larger extent in the quantum models. E.g., while

paramagnetic phases of the Heisenberg-DM model, found near the Heisenberg and

DQQ (D/J = 2) models, were of no finite extent in the T = 0 classical phase diagram,

they were stabilized over a finite region in the phase diagram of the quantum model.

However, not every model that is paramagnetic for classical spins remained paramag-

netic for quantum spins. This was best observed in the non-Kramers phase diagram.
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Here, the E phase extends in the phase diagram of the quantum model beyond its

classical phase boundary towards the neighboring paramagnetic regime with a clas-

sical spin-ice ground state manifold. This behavior was independently confirmed by

qMC for the XXZ model [84]. An unexpected observation regarding the paramagnetic

regime is the emergence of paramagnetic corridors in the S = 1/2 non-Kramers phase

diagram in between the E and T xy1 , and T xy1 and T2 phases. Note that the classical

models on the corresponding classical boundaries are magnetically ordered at T = 0

for the considered interaction ranges of the computed phase diagram (except at the

tricritical end points of the phase boundaries) [71].

The Γ5 phase of the Heisenberg-DM model was found to be a prime example to demon-

strate the potential subtleties of ObD selections. The ObD selection between ψ2 and ψ3

orders out of the Γ5/copl manifold was found to depend on both the interactions of the

model and the temperature. With respect to the latter parameter, a different selection

was found at zero and critical temperatures across most of the Γ5-ordered region in the

phase diagram of the Heisenberg-DM model. In the quantum model, the resolution of

the ObD selection was methodologically challenging. PFFRG was able to only partially

resolve the state selection of the Γ5 phase due to equal order parameter susceptibilities

for all orders of the Γ5 manifold. Note that the property of equal order parameter

susceptibilities is expected to hinder the identification of the state selection in neutron

scattering experiments as well. To determine the ObD selection of the quantum model

within the Γ5 manifold, HTSE was applied. Remarkably, ObD selections were found to

mostly coincide between the classical and quantum models. Beyond the Γ5 phase, we

point out that the ferromagnetic phase of the Heisenberg-DM model realizes an inter-

esting case of ObD as well, since accidentally degenerate ferromagnetic product states

are exact ground states of the Heisenberg-DM quantum model. As such, this phase

allows the study of ObD in a quantum model on a state without quantum zero-point

fluctuations. The ObD selections in the ferromagnetic phase of the Heisenberg-DM

model are studied in Ref. [91].

With the Heisenberg and DQQ models, two particular models with given interactions

have been studied in more detail in this chapter. The Heisenberg and DQQ models

were realized in the phase diagrams of both the Heisenberg-DMmodel and non-Kramers

pyrochlore models. Furthermore, both the Heisenberg and DQQ models remain non-

magnetic down to T = 0 due to their extensive classical ground state manifolds, and

exhibit nontrivial fluctuation-based state selections within their respective ground state

manifold. We first studied the Heisenberg model, which is more prominent in previous

studies of spin models on the pyrochlore lattice (see Sec. 5.1). In agreement with

growing evidence from the literature, we argued in a PFFRG study that the ground

states of the S = 1/2 and S = 1 models realize nematic orders that either break lattice
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C3 or both C3 and inversion symmetry. Unlike the Heisenberg model, the DQQ model

has previously been neglected in the literature. For classical spins, the DQQ model was

revealed to possess a spin liquid to spin liquid transition in its temperature dependence.

In the quantum model, phase boundaries of the T = 0 non-Kramers phase diagram are

shifted compared to the classical boundaries such that the quantum model analogue

to the classical DQQ model was found at different interactions {Jzz, J±, J±±}. This

quantum version of the DQQ model was found to realize a phase that closely resembles

the intermediate-temperature spin-liquid phase of the classical DQQ model, which is

described by a combined rank-1 rank-2 gauge field, in its spin SF.





Chapter 6

K2Ni2(SO4)3 and the

tetra-trillium-lattice Heisenberg

model as a novel three-dimensional

platform of frustrated magnetism

The spin models on the pyrochlore lattice studied in the previous chapter provided in-

sights on state selection mechanisms found in the field of highly frustrated magnetism

and were of relevance to experimentally studied spin compounds. However, there of

course exist many alternative lattice platforms for the study of frustrated magnetism

as well. We will now move beyond pyrochlore lattice applications and study frustrated

magnetism on the three-dimensional tetra-trillium lattice instead. Unlike in applica-

tions of the previous chapter, we will restrict ourselves to Heisenberg models only.

However, the competition between Heisenberg interactions will not be restricted to

nearest-neighbor bonds only, but will include interactions between further neighbors

as well.

Spin models on the interconnected trillium or tetra-trillium lattice, often realized by

langbeinite compounds [118], have recently received attention due to their relevance

in understanding the low-temperature behavior of the novel spin liquid candidates

K2Ni2(SO4)3 [13, 119, 118] and KSrFe2(PO4)3 [120]. Out of these systems, this chap-

ter will treat the K2Ni2(SO4)3 compound. It has been synthesized as both powder

and crystal sample, and has been found experimentally to exhibit a highly dynamical

state down to low temperatures. While the compound exhibits weak magnetic order

near T = 0, it can even be driven into a paramagnetic state by applying an external

magnetic field [13]. The compound is found by density functional theory (DFT) to be

169
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described by a S = 1 Heisenberg model with many competing Heisenberg interactions

spanning from first- to fifth-nearest neighbors. Such a model is well suited to be treated

by the PFFRG method, in which further-neighbor interactions are straightforwardly

implemented by adjusting the initial conditions of the PFFRG flow in the infinite cutoff

limit.

An aim of this chapter is to theoretically understand the experimentally found low-

temperature behavior of K2Ni2(SO4)3. To this end, we will follow along our recent

publication Ref. [118], which builds on our previous study Ref. [13] and applies PF-

FRG, cMC, inelastic neutron scattering (INS) and DFT in a complementary approach

to reveal the magnetic order of K2Ni2(SO4)3. The author of this thesis contributed with

the PFFRG perspective of these publications. Hence, this chapter will emphasize the

PFFRG aspects of the study. The found low-temperature behavior will suggest that

the spin model of K2Ni2(SO4)3 lies in proximity to a T = 0 paramagnetic phase. In

this context, we will show that the two-dimensional T = 0 phase diagram built by the

dominant Heisenberg interactions of K2Ni2(SO4)3 hosts a paramagnetic region of large

extent for the quantum models with S = 1/2 and S = 1. Interestingly, the effective

spin model of K2Ni2(SO4)3, obtained by DFT, lies in proximity to the paramagnetic

region, contextualizing the magnetic order found experimentally in the compound.

Furthermore, the considered parameter space of the phase diagram is assumed to be

relevant for a wide variety of langbeinite compounds [118]. Thus, the discovery of the

large T = 0 paramagnetic region opens up a promising new direction in the research

of quantum spin-liquid phases.

The chapter is organized as follows. The trillium and tetra-trillium lattices, and the

Heisenberg models that they realize, are introduced first in Sec. 6.1. Afterwards,

we present the study of K2Ni2(SO4)3 in Sec. 6.2, which argues along the contents

of the publications of Refs. [13] and [118], to which the author contributed with the

PFFRG perspective. Thus, PFFRG results are treated in detail, whereas we refer to

the publications for further information and discussion on experimental results and

aspects of the classical models. In Sec. 6.3, we consider Heisenberg models on the

tetra-trillium lattice more generally and study the S = 1/2 and S = 1 reduced phase

diagrams that consider only the three dominant Heisenberg interactions of the DFT

model of K2Ni2(SO4)3. Finally, a discussion of the chapter is provided in Sec. 6.4.

In this chapter, the PFFRG will be applied with the following specifications: The

self-energy and the two-particle vertex are discretized on frequency grids, with fre-

quencies being exponentially distributed about the zero frequency. The frequency grid

of the self-energy contains 1000 positive frequencies, and the frequency grid of the two-

particle vertex contains 32 positive frequencies for each of its three transfer frequency
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(a) (b) (c)

Figure 6.1: Crystal and magnetic structure of K2Ni2(SO4)3. (a) Two trillium lattices
of Ni2+ ions in K2Ni2(SO4)3 with the five nearest-neighbour couplings calculated by
DFT energy mappings. (b) J3 and J5 form two independent trillium lattices. (c) J4
couples each ion from one trillium lattice to the nearest triangle of the second trillium
lattice. For J4 = J5, magnetic ions form a network of corner-shared tetrahedra based
on a trillium lattice, a tetra-trillium lattice. The figure and its caption are replicated
from Ref. [118].

arguments. Spin correlations will be neglected if they exceed distances of three under-

lying cubic lattice constants of the tetra-trillium lattice. Hence, the two-particle vertex

is given out for 1842 lattice vectors, or 622 vectors unrelated by lattice symmetries.

For the computation of the J3-J4-J5 model phase diagram, correlations are already

neglected for distances above two cubic lattice constants, which implies 186 vectors

unrelated by symmetry. An explicit embedded Runge-Kutta (2, 3) method with adap-

tive step size is applied to solve the flow equations. For this purpose, the Runge-Kutta

implementation of Ref. [60] is used.

6.1 Trillium and tetra-trillium lattices

The magnetic lattice of the compound K2Ni2(SO4)3 is given by two interconnected

trillium lattices [13] that can alternatively be framed as a so-called tetra-trillium lattice

[119]. In this section, our aim is to introduce these lattices before studying the physics

of K2Ni2(SO4)3 and of Heisenberg models on the tetra-trillium lattice in general. The

trillium lattice is a three-dimensional lattice built by corner-sharing triangles of lattice

sites [121], with each lattice site being shared by three triangles, as shown in Fig.

6.1(b). Lattice sites are arranged in a simple cubic lattice structure with a 4-site unit
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cell. The sublattice vectors bi depend on a real parameter u and are given by

b0 =(u, u, u),

b1 =(
a

2
+ u,

a

2
− u, a− u),

b2 =(a− u,
a

2
+ u,

a

2
− u),

b3 =(
a

2
− u, a− u,

a

2
+ u),

(6.1)

with a being the lattice constant of the simple cubic lattice. Note that the lattice

constant of K2Ni2(SO4)3 is given by a = 9.81866(12)Å at T = 100K [13]. Since u

is a real parameter, the extended Brillouin zone of the lattice is generally of infinite

extent. This is the case for K2Ni2(SO4)3 as well, for which u1 ≈ 0.33554 and u2 ≈
0.59454. Trillium lattice symmetries consist of a C3 rotation about the [111] axis and

a screw symmetry that applies a C2 rotation about [001] followed by a translation by

(a/2, 0, a/2). It follows from these symmetries that all lattice sites and bonds J3 or J5

in Fig. 6.1(b) can be mapped onto one another by applying lattice symmetries.

The tetra-trillium lattice is obtained from the trillium lattice by upgrading its triangles

to tetrahedra. This is achieved by adding a single lattice site to each triangle, as shown

in Fig. 6.1(c). Newly added sites are shown in purple, whereas bonds and sites of the

previous trillium lattice are shown in red. The tetrahedra become visible by considering

the turquoise bonds between newly added sites and sites of the trillium lattice. It is

visible in Fig. 6.1(c) that the tetrahedra are corner-sharing. In total, the change from

trillium to tetra-trillium lattice amounts to four additional sites added per cubic unit

cell. Note that the additional purple sites are not located on any vertices between

tetrahedra of the tetra-trillium lattice, but instead are connected via turquoise bonds

only to sites of a single triangle of the previous trillium lattice. Since the newly added

turquoise bonds are not related to the bonds of the previous trillium lattice by any

symmetry, they are expected to generally carry different interactions in spin models.

In compounds, the length of turquoise bonds will generally differ from the length of

red bonds (bonds within the trillium lattice) as well. It follows that tetra-trillium

realizations are expected to possess irregular tetrahedra. Note that as an alternative

to the framing of the tetra-trillium lattice as being built by corner-sharing tetrahedra,

the tetra-trillium lattice can be understood as two interconnected trillium lattices with

different lattice parameters u, as shown in Fig. 6.1(b).

We can now relate the trillium and tetra-trillium lattices to the magnetic lattice struc-

ture found in K2Ni2(SO4)3, which is shown in Fig. 6.1(a) and contains first- to fifth-

nearest-neighbor bonds with Heisenberg interactions J1 to J5. The third (purple) and

fifth-nearest-neighbor (red) bonds of K2Ni2(SO4)3 correspond to the bonds within each
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of its trillium lattices that build corner-sharing triangles. The fourth-nearest-neighbor

bonds (turquoise) partially build up the tetrahedra of the tetra-trillium lattice [as

shown in Fig. 6.1(c)], connect both trillium lattices and build a bipartite lattice struc-

ture if considered by themselves. A comparison between Figs. 6.1(a) and 6.1(c) reveals

that a model of corner-sharing tetrahedra on the tetra-trillium lattice is obtained from

a spin model of K2Ni2(SO4)3 by only considering finite interactions J4 and J5 between

fourth- and fifth-nearest neighbors. At last, the first- and second-nearest-neighbor

bonds of K2Ni2(SO4)3 connect sites between its two trillium lattices.

Before introducing effective spin models of K2Ni2(SO4)3 in more detail, we draw a con-

nection to Heisenberg models on the previously studied pyrochlore lattice. A connecting

feature that enforces geometrical frustration on each the pyrochlore, trillium, and tetra-

trillium lattice is that spin models on each of these lattices can realize corner-sharing

clusters of interacting spins. These clusters represent tetrahedra on the pyrochlore

and tetra-trillium lattices, and triangles on the trillium lattice. In such corner-sharing

structures, the conditions for classical ground state configurations of Heisenberg mod-

els are straightforward, as explained in the following. For simplicity, one can consider

a nearest-neighbor antiferromagnetic Heisenberg model given by

H = J
∑
⟨ij⟩

Si · Sj, (6.2)

with J > 0, in which spins interact only within corner-sharing clusters c of nearest

neighbors, i.e., each spin Si of a cluster c interacts with each remaining spin Sj of the

same cluster, and two clusters c and c′ can share at most one spin. In this case, the

Hamiltonian can be rewritten as

H =
J

2

∑
c

(
∑
i∈c

Si)
2 +D, (6.3)

with D being a constant [1]. A Hamiltonian of this form already occurred in Eq.

(5.6) of the last chapter in context of the Heisenberg model on the pyrochlore lat-

tice, where the summation index labels tetrahedra of the lattice. It is apparent from

Eq. (6.3) that the classical ground state manifold of H is given by the states that

fulfill the constraint (
∑

i∈c Si)
2 = 0 on each cluster c of the lattice. In case of the

pyrochlore Heisenberg model, the resulting classical ground state manifold is extensive

(see Chapter 5). The extensivity follows from a local ground state degree of freedom

that conserves (
∑

i∈c Si)
2 and, for the classical spin-ice submanifold, consists of flipping

six spins of a hexagon loop along their local z axis. The corner-sharing tetrahedra of

the tetra-trillium lattice build pentagon instead of hexagon loops. Because of the odd

number of sites in these loops, an analogous local degree of freedom that maps between
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two classical ground states does not exist. However, it has been confirmed that a local

operation exists on the tetra-trillium lattice that flips spins on a larger motif involving

18 spins and preserves (
∑

i∈c Si)
2 on each tetrahedron [118]. An extensive classical

ground state manifold follows for Heisenberg models of corner-sharing tetrahedra on

the tetra-trillium lattice as well, which are consequently absent of magnetic order for

both classical and quantum spins down to T = 0.

6.1.1 Spin models of K2Ni2(SO4)3

A brief overview on the proposed spin models of K2Ni2(SO4)3 is provided in the follow-

ing. Two DFT Heisenberg models have been proposed. The chronologically first model,

proposed in Ref. [13], is based on the crystal structure of the compound at room tem-

perature. Later, the model was refined in Ref. [118] by considering the crystal structure

at T = 100K, which was measured by single-crystal x-ray diffraction. The latter S = 1

Heisenberg model is shown in Fig. 6.1. Ni2+ sites are the magnetic ions of the lattice.

Five different Heisenberg interactions have been identified, which are labeled from J1

to J5 and correspond to first to fifth-nearest-neighbor interactions. The interactions

are given by {J1, J2, J3, J4, J5} = {0.364(2),−0.144(1), 0.798(2), 5.545(1), 2.657(1)}K
for the DFT model that applies the crystal structure at T = 100K. Note that the

interactions J4 and J5 are dominant, followed by J3. This will justify the neglection of

J1 and J2 in the later studied phase diagram of the J3-J4-J5 model.

As mentioned earlier, the Heisenberg model of corner-sharing tetrahedra on the tetra-

trillium lattice, visualized in Fig. 6.1(c), is obtained by the simplification J1 =

J2 = J3 = 0. The suggestion that the magnetic behavior of K2Ni2(SO4)3 is well

described by such a model was made in Ref. [119], which estimated the interactions

of K2Ni2(SO4)3 based on single-crystal INS data fitted by calculations based on the

self-consistent Gaussian approximation (SCGA). The corresponding model is given by

{J1, J2, J3, J4, J5} = {−0.3(3), 0.0(2), 0.1(2), 5.5(3), 3.0(2)}K. Due to small J1, J2 and

J3, this model suggests that the spin physics of K2Ni2(SO4)3 is well described by a

model of corner-sharing tetrahedra on the tetra-trillium lattice.

Depending on whether the DFT- or SCGA-based spin model is believed to better

describe the low-temperature behavior of K2Ni2(SO4)3, the physics of the compound

can be framed as being described by different limiting cases. The 100K DFT model

suggests to frame the compound as being described by a simplified J3-J4-J5 model that

describes two separate trillium lattices with interactions J3 and J5 that are coupled

by a finite interaction J4. The previous studies of Refs. [121, 122] found a variant of

120◦ order as the ground state in the case of two noninteracting trillium lattices, i.e.,
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in the case J4 = 0. The introduction of a finite J4 geometrically frustrates the system

by coupling both trillium lattices. However, the system becomes unfrustrated in the

limit J4 → ∞ as a bipartite lattice with an antiferromagnetically ordered ground state

is realized in this limit.

The SCGA-based spin model of Ref. [119] suggests a different framing of K2Ni2(SO4)3.

This model is well approximated by a J4-J5 model instead that describes a tetra-trillium

system built from corner-sharing tetrahedra, which suggests to draw a connection to

the antiferromagnetic Heisenberg model on the pyrochlore lattice. However, while the

corner-sharing arrangements of spins in the tetra-trillium and pyrochlore Heisenberg

models result in paramagnetic phases at T = 0 for both models, the organizations of

tetrahedra on the tetra-trillium and pyrochlore lattices are different and should lead to

different paramagnetic ground states as a consequence. As explained in Sec. 3.5.8 of

the last chapter, the spin liquid of the classical pyrochlore Heisenberg model exhibits

characteristic pinch points in its SF. These pinch points are a signature of the fulfillment

of the ice rule, which implies a spin-ice phase with algebraically decaying correlations

on the pyrochlore lattice [123]. In contrast, the SF of the classical tetra-trillium-lattice

Heisenberg model does not exhibit any pinch points and it is argued in Ref. [118] that

the non-bipartite organization of tetrahedra in the tetra-trillium lattice could lead to

the realization of a Z2 spin liquid with exponentially decaying correlations.

In the following study of K2Ni2(SO4)3, we will generally consider its DFT model.

Especially in the context that a Heisenberg model of the compound requires the fitting

of five Heisenberg interactions J1 to J5, an ab initio DFT approach appears to be more

suitable for the determination of an effective spin model than the fitting of interactions

via SCGA from INS data.

6.2 The quantum spin liquid candidate K2Ni2(SO4)3

The previously established DFT spin model of K2Ni2(SO4)3 will now be investigated

in a combined PFFRG, cMC and INS study to reveal the low-temperature behavior

of K2Ni2(SO4)3. As a starting point, we first briefly summarize the low-temperature

phenomenology of the compound from an experimental perspective, which reflects the

highly frustrated nature of the compound and suggests its proximity to a spin-liquid

phase. K2Ni2(SO4)3 assumes a weak magnetic order at TN ≈ 1.1K, which releases

only 1% of the system’s entropy [13]. Furthermore, within the magnetically ordered

phase at temperatures well below TN , the compound retains a continuum of featureless

spin excitations in its energy spectrum for constant momenta [119, 13, 118]. Such a

feature is often observed in magnetically ordered compounds proximate to predicted
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Figure 6.2: Comparison of experimental and theoretical spin structure factors. Spin
structure factor along different planes in reciprocal space. (a)-(c) correspond to the
experimental data obtained by INS at T = 2 K with the incident energy Ei = 5.0meV,
integrated in the range 0.5meV and 1.0meV. (d)-(f) are results of cMC calculations
at T = 0.35 J4 (T = 1.94K) (left half) and PFFRG calculations for Λc = 0.58 J4(Λc =
3.22K) (right half), using the form factor of Ni2+ ions. (g)-(i) display line cuts along
three principal directions indicated by white dashed lines in the panel (b). The figure
and its caption are replicated from Ref. [118].
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spin-liquid phases [124, 125, 126], in which the continuum of excitations is caused by

the pairwise excitations of spinon quasiparticles. These excitations are in contrast

to the single magnon excitations with sharp dispersions that are usually found in

magnetically ordered states. The proximity of K2Ni2(SO4)3 to a spin-liquid regime is

further corroborated by the observation that the application of an external magnetic

field B drives the system from a magnetically ordered into a field-induced paramagnetic

phase at B ≳ 4T [13]. Regarding the magnetic order of the compound at T < TN , weak

magnetic Bragg peaks at T = 0.01 are observed to be located at hkl = 1
3
00, 1

3
1
3
0 and

1
3
1
3
1
3
[13, 119]. These positions would be consistent with a large L3 = (3a)3 magnetic

unit cell. Note that a magnetic unit cell with a width of L = 3a would contain 216

lattice sites.

With the above experimental features of K2Ni2(SO4)3 being established, we now aim to

understand the behavior of the compound in a combined experimental and theoretical

effort. The first major objective of our study is to determine the magnetic order of

K2Ni2(SO4)3. This will be achieved on the basis of its single crystal INS SF and by ap-

plying PFFRG and cMC to the S = 1 and classical DFTmodel, respectively. To achieve

a better comparison between numerical and experimental results, the magnetic form

factor of Ni2+ ions will be applied in the computation of SFs S(q) =
∑

µ=x,y,z χ
µµ(q)

obtained by PFFRG and cMC. The form factor causes S(q) to slowly fall off with in-

creasing |q| [127]. Note that the shown SFs obtained by PFFRG will be static, whereas

cMC results show equal-time SFs. The equal-time SF obtained by INS Sexp(q), mea-

sured above the ordering temperature at T = 2K, is approximated by integrating the

measured frequency-dependent SF Sexp(q, ω) over a finite frequency interval, i.e.,

Sexp(q) =

∫ ω2

ω1

dωSexp(q, ω). (6.4)

The lower integration limit ω1 ∼ 0.5meV is set at the range in ω above which coherent

scattering is obtained, and the upper integration limit ω2 ∼ 1meV is fixed such that

the signal-to-noise ratio is maximized [118].

Based on the SFs obtained by INS, PFFRG and cMC, the magnetic order of K2Ni2(SO4)3

will be inferred by the following argument. A good fit between the PFFRG and INS

SFs will suggest that the DFT model captures the low-temperature physics of the

compound well. Although PFFRG is able to confirm the magnetic phase transition of

K2Ni2(SO4)3, as is implied by the presence of a flow breakdown, it is unable to deter-

mine the underlying magnetic order from the SF. A good fit between PFFRG and cMC

SFs will be used as an argument to suggest that a quantum-to-classical correspondence

is realized in the DFT model. This correspondence describes the phenomenon where

the behavior of a quantum model at a finite temperature is well captured by the clas-
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sical model at a rescaled temperature [128]. In order to suggest this correspondence,

the PFFRG frequency cutoff will be interpreted as an effective temperature. Under

the assumption that the quantum-to-classical correspondence holds, the cMC results

on the classical model can be utilized to infer the magnetic order of the S = 1 quantum

model and, by extension, of K2Ni2(SO4)3.

The INS SF in the paramagnetic phase at T = 2K is shown in the (001), (11̄0) ([hk0],

[hhl]) and (111) planes in Figs. 6.2(a)-(c). For comparison, SFs of the S = 1 and

classical DFT models, obtained by PFFRG at the critical cutoff Λc = 3.22K and

by cMC at T = 1.94K, are shown in equal planes in Figs. 6.2(d)-(f). The cMC

temperature is chosen such that the best agreement with the PFFRG SF is achieved.

Intensities of cMC and PFFRG SFs are rescaled globally to give equal values if they

are integrated over q. The patterns of PFFRG and cMC SFs are found to be in

excellent agreement, with no qualitative differences being visible. The SFs exhibit

broad features across momentum space, and a spiral-galaxy-like pattern, with arms

emerging from the corners of a hexagonal shape, emerges in the (111) plane. The

agreement between PFFRG and cMC SFs is further highlighted by considering their

intensities along [100], [110] and [111] cuts in momentum space, as done in Figs. 6.2(g)-

(i). We interpret the almost identical SFs of PFFRG and cMC as the realization of a

quantum-to-classical correspondence in the DFT model, i.e., the behavior of the S = 1

quantum model at a finite frequency cutoff, which effectively acts as a temperature, is

well captured by the classical model at finite temperatures. Thus, we are justified to

infer the magnetic order of the quantum model from cMC simulations. A comparison

between INS and PFFRG/cMC SFs reveals matching patterns as well, which suggests

that the DFT model captures the low-energy physics of K2Ni2(SO4)3 well. Together

with the quantum-to-classical correspondence, this enables the application of cMC to

infer the magnetic order of K2Ni2(SO4)3.

Although the agreement between the shown SFs of different methods is good, we point

out some differences found between the numerical and INS SFs as well, which are best

described along the one-dimensional cuts of Figs. 6.2(g)-(i). In these plots, subtle fea-

tures of the INS SF at large |q| > 1Å1 are not captured along the directions [100] and

[110]. Furthermore, relative intensities of the prominent peaks are different in INS and

PFFRG/cMC SFs, and the INS SF features are generally broader than those found

in the PFFRG/cMC SFs. However, some deviations between the INS and cMC (PF-

FRG) SFs are expected even if the DFT model captures the magnetic behavior of the

compound well. Factors that may lead to deviations are that the temperature (cutoff)

at which the cMC (PFFRG) SF was obtained was not fitted for a best agreement with

the INS SF, and that the applied magnetic form factor may not correctly capture the

SF intensity falloff. Additionally, there are some experimental limitations involved.
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E.g., the INS SF can only be measured and thus integrated over a finite energy range

instead of over all energies, as would be required for the computation of the equal-time

SF.

Now that cMC has been established to capture well the low-temperature behavior of

K2Ni2(SO4)3, the magnetic order of the compound can be determined via cMC as a

reasonable next step. For this purpose, cMC was applied in Ref. [118] for different

system sizes L3 with periodic boundary conditions. In the low-temperature limit,

minimum and equal ground state energies were obtained for L = 3an, with n ∈ N.

In the corresponding ground state, spins are oriented in angles close to 120◦, and a

comparison of INS with cMC SFs shows an agreement in Bragg peak positions. Thus,

the low-temperature magnetic phase of K2Ni2(SO4)3 is identified to realize a variant

of 120◦ order with a cubic magnetic unit cell of width L = 3a. Note that the realized

magnetic order of cMC is found to be sensitive with respect to varying Heisenberg

interaction strengths of the model. E.g., the SCGA model of Ref. [119] leads to a

L = 5n magnetic unit cell in cMC [118]. However, such a magnetic order does not

reproduce the experimentally observed Bragg peak positions.

Comparison of DFT and SCGA-based models
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Figure 6.3: PFFRG flows for different S =
1 models. For each case, q∗ corresponds
to the point in reciprocal space for which
the highest value of the spin structure fac-
tor is observed. DFT-1 labels the DFT
room temperature model while DFT-2 cor-
responds to the T = 100K model. The fig-
ure and its caption are replicated from Ref.
[118].

As mentioned earlier, different spin mod-

els have been proposed to describe the

magnetic behavior of K2Ni2(SO4)3. In the

following, their predictions will be com-

pared from a PFFRG perspective. Fig.

6.3 shows PFFRG SF flows for all pro-

posed models of K2Ni2(SO4)3 in addition

to the flow of the tetra-trillium Heisen-

berg model with interactions J1 = J2 =

J3 = 0 and J4 = J5 > 0. The models of

K2Ni2(SO4)3 are given by the two DFT

models, obtained from the K2Ni2(SO4)3

lattice structure at room temperature

(DFT-1 model) [13] and T = 100 (DFT-

2 model) [118], and the model obtained

by fitting INS data by SCGA [119]. All

K2Ni2(SO4)3 models exhibit a clear flow

breakdown at Λc/J4 ∼ 0.5 that signifies

the onset of magnetic order. Due to their
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Å
−

1

PFFRGcMC

S
C

G
A

M
o
d

el

−2 −1 0 1 2
( 1√

2
, 1√

2
, 0) in Å−1
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Figure 6.4: Spin structure factors obtained with cMC (left parts) and PFFRG (right
parts). The first two lines correspond to DFT-1 [13] and SCGA models [119]; and
calculations are at T = 0.3J4 for cMC and at the breaking point of the flow for
PFFRG. The bottom row corresponds to the tetra-trillium lattice, and temperatures
and Λ-cutoffs are indicated in the panels. The figure and its caption are replicated
from Ref. [118].

large magnetic unit cells, the magnetic orders cannot be fully characterized by PFFRG

alone. However, they can be characterized by cMC. Unlike the flows of the models of

K2Ni2(SO4)3, the flow of the tetra-trillium antiferromagnet does not show any sign of

magnetic order, which implies a quantum paramagnetic regime in interaction parame-

ter space near the models of K2Ni2(SO4)3.

PFFRG and cMC SFs of the DFT-1 and SCGA models, i.e., of the models that we

had neglected in the above study of K2Ni2(SO4)3, are shown at critical cutoff and

corresponding temperature in Fig. 6.4. From the comparison with the SFs of Fig. 6.2,

it can be seen that the SF patterns realized by the DFT-1 and SCGA models are similar

to those of the INS SF. However, the SFs of these models do not provide a notably better

match to the INS SF than the SF of the DFT-2 model does. Although all considered

models realize SFs similar to that observed by INS, we still believe the DFT-2 model to

provide the best low-temperature description of K2Ni2(SO4)3 for the following reasons.

Since the fitted interaction parameters of the SCGA-based model are based on the

phenomenology of the INS SF, the model is obtained in ignorance of the underlying

mechanisms that determine the interactions. In contrast, the DFT models are based

on ab initio calculations that make use of the compound’s crystal structure. Of the
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DFT models, the DFT-2 model is obtained from the crystal structure of K2Ni2(SO4)3

at lower temperatures. At last, we note that the DFT-2 model reproduces the magnetic

Bragg peaks measured by neutron diffraction, while the L = 5n order realized by the

SCGA model does not [118].

6.3 The tetra-trillium Heisenberg model

Inspired by various hints towards the existence of a QSL phase near the S = 1 model

of K2Ni2(SO4)3, we next consider the vicinity of the model in interaction parameter

space. Since the DFT model is dominated by the interactions J3, J4 and J5, we ne-

glect the remaining interactions and study the phase diagram of the J3-J4-J5 model.

A reasonable starting point about which to center the phase diagram would be the

tetra-trillium antiferromagnet with J3 = 0 and J4 = J5 > 0. As implied by its smooth

PFFRG flow, shown in Fig. 6.3, the S = 1 model does not order magnetically. This is

explained by the extensive classical ground state manifold of the model, which follows

from the tetra-trillium lattice bond structure of corner-sharing tetrahedra. Accord-

ingly, the model does not order for classical and S = 1/2 spins as well [118]. The

following discussion on the phase diagram of the J3-J4-J5 model will first focus on the

conceptually simpler tetra-trillium Heisenberg model with J3 = 0 and J4 = J5 > 0

before features of the wider phase diagram are considered.

SFs of the S = 1 and classical tetra-trillium Heisenberg models, obtained by cMC and

PFFRG, are shown in the last row of Fig. 6.4. Four scenarios are considered, those

being the S = 1 model in the small cutoff limit Λ = 0.01J4 and at intermediate cutoffs

Λ = 0.70J4, and the classical model near zero temperature at T = 0.001J4 and at inter-

mediate temperatures T = 0.3J4. In the case of intermediate cutoffs and temperatures,

the figure demonstrates the presence of a quantum-to-classical correspondence in the

tetra-trillium Heisenberg model, as is signified by the matching SF patterns between

the classical and quantum models. However, as T and Λ decrease, quantum fluctua-

tions take on a larger role in the state selection of the S = 1 model, and qualitative

differences between SFs of the classical and quantum models emerge. The observed SF

pattern of the S = 1 model at Λ = 0.01 is not reproduced by the thermal fluctuations

of the classical model at any temperature [118]. Thus, the quantum-to-classical cor-

respondence breaks down at smaller temperatures T < 0.3J4. The differing features

between SFs of the classical and quantum models near T = 0 and Λ = 0, respec-

tively, suggest that the ground state of the S = 1 model originates from the quantum

properties of the model, such that a state with a similar SF cannot be reproduced

by the classical model. Thus, the tetra-trillium Heisenberg model may realize a QSL
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Figure 6.5: The ’island of liquidity’ around the tetra-trillium lattice. PFFRG para-
magnetic region of the S = 1/2 (red+blue) and S = 1 (red) J3-J4-J5 model. The
dashed part indicates the region where the existence of a flow breakdown is hard to
determine for the S = 1/2 model. Green and orange stars indicate the DFT model
for K2Ni2(SO4)3 and the tetra-trillium lattice limit, respectively. The figure and its
caption are replicated from Ref. [118].

that is stabilized by local tunneling processes between different classical ground state

configurations. Note that an incapability of the quantum-to-classical correspondence

to persist down to the zero-temperature limit has been observed in Ref. [128] as well.

The recent paper of Ref. [129] provides an explanation on why quantum-to-classical

correspondences generally break down at low temperatures (or cutoffs). By using spin

diagrammatic perturbation theory to expand the static magnetic susceptibility in J/T

(with J being a Heisenberg interaction), it was shown that up to and including order

1/T 3 the static magnetic susceptibility of a finite-S quantum model is equal to the

classical S → ∞ susceptibility of the same model at a rescaled temperature. It follows

that quantum-to-classical correspondences generally break down at an order of 1/T 4.

6.3.1 T = 0 phase diagram of the tetra-trillium J3-J4-J5 model

We now consider the wider T = 0 phase diagram about the tetra-trillium Heisenberg

model of corner-sharing tetrahedra. The S = 1/2 and S = 1 phase diagram of the

J3-J4-J5 model is shown in Fig. 6.5. It includes the tetra-trillium Heisenberg model at

J3 = 0 and J5/J4 = 1, and a version of the K2Ni2(SO4)3 DFT model with approximated

interactions J1 = J2 = 0. As discussed earlier, the model at J3 = 0 and J5/J4 = 1 is

located in a quantum paramagnetic regime. Especially in case S = 1/2 this regime is

found to be of large extent in the parameter space considered here. Furthermore, flow

breakdowns are found to be very subtle for models with J3 > 0 and for this regime

emerge only slowly over wide parameter regimes as one moves across the phase diagram
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from a paramagnetic to a magnetically ordered phase. This behavior results in a large

region in which the existence of a flow breakdown is uncertain. This region is marked

as dashed in Fig. 6.5.

A strong dependence of the paramagnetic region on the spin length S is observed. The

S = 1/2 model remains paramagnetic for finite and mostly positive J3. In the case

S = 1, relevant to K2Ni2(SO4)3, the paramagnetic region is greatly reduced in size,

such that even small sizes |J3/J4| = 0.1 lead to magnetic instabilities. Uncertainties

of the PFFRG method make it difficult to resolve the size of the paramagnetic region

for smaller perturbations of sizes |J3/J4| < 0.1. For the classical phase diagram, cMC

confirms that magnetic order sets in for any finite J3 [118]. In contrast to the quantum

models, the classical spin model remains paramagnetic only upon varying J5/J4 about

the tetra-trillium point at {J3, J4, J5} = {0, 1, 1}, which is marked by an orange star.

On this line of the classical phase diagram, a magnetic phase boundary is found at

0.3 < J5/J4 < 0.4, which exceeds the paramagnetic regions of both the S = 1/2

and S = 1 models. The position of the boundary can be explained as follows [118].

Rewriting the J4-J5 model of corner-sharing tetrahedra as done in Eq. (6.3) leads to

the local constraint for classical ground states given by

J4
J5

St0 + St1 + St2 + St3 = 0, (6.5)

with Sti being a spin on site i ∈ {0, 1, 2, 3} of a tetrahedron t of the lattice. The spins

St0 interact only with spins of a single tetrahedron (via the interaction J4), whereas St1,

St2, and St3 are located on sites shared by three tetrahedra. The constraint of Eq. (6.5)

cannot be fulfilled anymore for J5/J4 < 1/3. In this case, ground states of the model are

given by states that minimize |J4/J5St0 +St1 +St2 +St3| instead, which results in the

magnetic order that fulfills St0 = −St1 = −St2 = −St3 for any t. This magnetic order

corresponds to an antiferromagnetic order where spins within the individual trillium

lattices are ferromagnetically ordered, but with an opposite orientation depending on

the trillium lattice. Starting from {J3, J4, J5} = {0, 1, 1} again and moving in direction

towards the Heisenberg model of the pure trillium lattice at J5/J4 → ∞, no magnetic

order is observed by cMC at least up to J5/J4 = 3.5, which approximately corresponds

to the region in which PFFRG finds that the S = 1 model enters a magnetic order.

For the S = 1/2 model, the paramagnetic region is found to extend to even larger but

finite values of J5/J4 [118].

At last, we consider the DFT model of K2Ni2(SO4)3 in the phase diagram, where

it is marked by a green star. It is positioned in a magnetically ordered region and

has a clear flow breakdown. Simultaneously, the model is located relatively close to

the paramagnetic regime, which contextualizes the experimental features of a weak
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magnetic order [13]. From experiments, we further know that the compound can be

driven into a paramagnetic phase by the application of an external magnetic field

[13]. This suggests that the paramagnetic regime of the phase diagram may increase

in size if an external magnetic field is applied, until the regime includes the DFT

model at intermediate field sizes. Going forward, the magnetic field dependence of

the paramagnetic region could in principle be studied by the recent PFFRG extension

that enables the treatment of finite magnetic fields [39]. Moreover, if more compounds

are realized that are well described within the phase diagram, it will be of interest to

observe their response to finite magnetic fields.

As a closing remark, we note that the phase diagram considered here is of interest to

compounds of the langbeinite family, which realize interconnected trillium lattices [13].

Because PFFRG has found a paramagnetic regime of large extent in the phase diagram

of the J3-J4-J5 model on the same lattice, which is expected to further increase in size

if a finite external magnetic field is applied, the present study establishes spin models

realized by langbeinite compounds as a promising platform for the future search and

study of QSL phases.

6.4 Discussion

In this chapter, we considered the magnetism of systems on interconnected trillium

lattices that can also be framed as a tetra-trillium lattice. In particular, we were

interested in providing a theoretical explanation for the experimentally observed low-

temperature behavior of K2Ni2(SO4)3, which shows signs of strong frustration.

In the study of K2Ni2(SO4)3, an effective DFT spin Hamiltonian with S = 1, based

on the structure of the compound at T = 100K, was proposed to describe the com-

pound well. The validity of the model was corroborated by a good agreement between

experimental and theoretical observations, e.g., in the INS and PFFRG SFs. Further-

more, SFs obtained by PFFRG and cMC of the S = 1 and classical DFT models

were observed to exhibit a striking agreement as well, suggesting the presence of a

quantum-to-classical correspondence between the S = 1 and classical DFT models.

This correspondence was utilized to determine the magnetic order of K2Ni2(SO4)3 by

cMC. The order was revealed to be a near-120◦ order with a 216-site magnetic unit

cell.

The phase diagram of the J3-J4-J5 model on the interconnected trillium lattice was

considered to contextualize the weak magnetic order and the proximate spin liquid

behavior of K2Ni2(SO4)3. Importantly, an extended paramagnetic regime was found
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about the tetra-trillium Heisenberg model with interactions J3 = 0 and J5/J4 = 1, for

which the spatial structure of the interactions simplifies to a network of corner-sharing

tetrahedra. The extent of the paramagnetic region was found to depend strongly on the

spin length S, being especially large at a minimum S = 1/2. On the other hand, the

region becomes one-dimensional in case of classical spins, where it persists only for J3 =

0. The T = 0 paramagnetic regimes of the S = 1/2 and S = 1 models were found to be

in the vicinity of the DFT model of K2Ni2(SO4)3, contextualizing the experimentally

observed proximate spin liquid behavior of the compound. Going forward and beyond

the study of K2Ni2(SO4)3, a new direction in the search of spin-liquid phases in three

dimensions has been opened up by the location of a large paramagnetic region in the

phase diagram of the J3-J4-J5 model, especially in the context that the J3-J4-J5 model

is relevant to compounds of the langbeinite family [13]. Many such compounds are yet

unexplored with respect to their magnetic behavior [13], leaving much territory still to

uncover in the field of langbeinite magnetism.

In conclusion, the study of this chapter has not only explained the low-temperature

behavior of K2Ni2(SO4)3, but also suggested langbeinite compounds as a novel platform

for the future study of frustrated magnetism. Nevertheless, open questions still remain

regarding K2Ni2(SO4)3 and the J3-J4-J5 phase diagram. Future studies may attempt

to further characterize paramagnetic phases in the J3-J4-J5 phase diagram or the field-

induced paramagnetic phase of K2Ni2(SO4)3 at intermediate magnetic fields, e.g., by

proposing spin-liquid ground states with specified gauge fields. Furthermore, we have

so far restricted our theoretical study to models with zero external magnetic fields. A

more versatile interweaving of theoretical and experimental descriptions of K2Ni2(SO4)3

may be achieved by extending the PFFRG and cMC study to the finite-field behavior

of the compound in the future.





Chapter 7

Conclusion

The development and applications of the pseudo-fermion functional renormalization

group are a major theme threading throughout this thesis. In the first part of the

thesis, given by the Chapters 2-4, an emphasis had been put on the introduction and

development of the method. The main methodological advancement consists of a PF-

FRG formulation for spin models with broken time-reversal symmetry that enables

both the study of previously inaccessible models with finite magnetic fields as well as

of previously accessible models within their magnetically ordered phases. After the

extended PFFRG method was introduced, these newly accessible PFFRG applications

were subsequently explored along a large variety of spin models. In the second part

of the thesis, given by the Chapters 5-6, PFFRG was applied in order to answer re-

cent questions in the research of frustrated magnetism. In this context, insights were

gained on the behavior of nearest-neighbor spin models on the pyrochlore lattice and of

Heisenberg models on the tetra-trillium lattice, including the density functional theory

model of the spin-liquid candidate K2Ni2(SO4)3. From a methodological standpoint,

these applications served as a showcase of PFFRG use cases as well, revealing differ-

ent aspects of the method in the process. As such, the conclusion of this thesis is well

suited to reflect on the PFFRG method in general and its prospective role among other

methods in the study of spin models. The following discussion will first be centered

on methodological aspects of the thesis. Afterwards, the focus will be shifted to the

physical insights gained throughout this work.

Prior to this thesis, the PFFRG method was already well developed and established, as

shown by the recent review Ref. [12]. The method extension provided by this work, and

not covered in the previous review, presents an efficient formulation of pseudo-fermion

vertices and flow equations for spin models with broken time-reversal symmetry. The

capability thereby gained to treat such models has profound implications. While previ-

ous PFFRG applications were restricted to spin models with only terms bilinear in spin
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operators, the new formulation allows for the additional treatment of site-dependent

terms linear in spin operators, which are often realized in experiments by the coupling

to an external magnetic field. Since magnetic fields pose a prominent and easily ac-

cessible parameter in experimental studies, further possibilities for the integration of

the PFFRG in collaborative efforts with experiments emerge. Furthermore, the now

accessible study of phenomena at finite magnetic fields, such as magnetization plateaus

or field-induced paramagnetic phases, represents promising future applications. In ad-

dition to these new applications, the extended method allows for a different paradigm

in the study of magnetic phases. In previous applications, the presence of magnetic

order in spin models has been determined by a breakdown in the flow of the cutoff-

dependent magnetic susceptibility [12]. The magnetic order was then further specified

by the study of the magnetic susceptibility above the critical cutoff. The now accessible

application of symmetry-breaking magnetic seed fields allows for the regularization of

flow breakdowns [51, 50]. The resulting flows can be continued into magnetically or-

dered phases and down to the cutoff-free limit. It follows that a detection of magnetic

phases via finite order parameters and a direct study of magnetically ordered phases

at T = 0 is enabled.

While the finite-field PFFRG applications are promising, the exploratory study of

Chapter 4 finds that the accuracy of PFFRG results in these new applications is of

varying degree and highlights the limitations of the method in the study of magnetic

phases at zero cutoff. Nearest-neighbor Heisenberg models on the square, honeycomb,

and triangular lattice suggest that magnetic orders are reproduced accurately on a

qualitative level, whereas sizes of magnetic order parameters are systematically over-

estimated. More accurate quantitative results may only be achieved by the implemen-

tation of more sophisticated and numerically expensive truncation schemes for flow

equations. Applications at finite magnetic fields reveal that the magnetization plateau

of the triangular-lattice XXZ model is resolved consistently with literature results.

However, predicted plateaus are absent in the antiferromagnetic Heisenberg models on

a dimer and pyrochlore lattice. These results suggest that the method is more accu-

rate for models with dipolar ordered ground states. This methodological shortcoming

is again rooted in the methodologically inherent truncation of flow equations. Overall,

we assess that further study would still be beneficial to better interpret PFFRG results

within magnetic phases and to better understand which properties of a model favor an

accurate PFFRG description of its ground state.

Spin models without magnetic fields were treated in Chapters 5 and 6. The capability of

PFFRG to treat three-dimensional and highly frustrated models with many competing

interactions was demonstrated for a selection of nearest-neighbor spin models on the

pyrochlore lattice and Heisenberg models on the tetra-trillium lattice. In particular,
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PFFRG was applied to compute the phase diagrams of the J3-J4-J5 Heisenberg model

on the tetra-trillium lattice and of the general nearest-neighbor model for non-Kramers

pyrochlores. Since PFFRG flows of the same model with different interaction parameter

sizes are computed by merely changing the initial conditions of the vertex flows at

infinite cutoff, phase diagrams can be computed straightforwardly in absence of a priori

knowledge on their realized phases. Together with the capability of the method to treat

three-dimensional and highly frustrated models, the method is thus particularly suited

for these applications.

Complementary application of different numerical methods with PFFRG has been

demonstrated for different spin models. E.g., the versatility of PFFRG in the treatment

of frustrated and complex spin models allows for close collaboration with experimental

studies. In our case, density functional theory was applied to the experimentally stud-

ied compound K2Ni2(SO4)3 to obtain an effective spin model treatable by PFFRG. The

same strategy had already been successfully applied in previous studies [130, 98, 131]

and is promising for future studies on compounds as well. The study of K2Ni2(SO4)3

further revealed a quantum-to-classical correspondence for its effective spin model via

the structure factors obtained by classical Monte Carlo and PFFRG at finite tempera-

tures and cutoffs, respectively. The correspondence was utilized to reveal the magnetic

order of the S = 1 model with classical Monte Carlo by proxy. In the Heisenberg-DM

and non-Kramers model on the pyrochlore lattice, a collaborative study was performed

by employing PFFRG, high-temperature series expansions and classical Monte Carlo,

among other methods. PFFRG predictions on phase boundaries were further corrob-

orated by high-temperature series expansion results. In the magnetically ordered Γ5

phase, PFFRG was able to partially resolve a quantum order-by-disorder selection.

The final selection within the remaining classical Γ5 submanifold was resolved by high-

temperature series expansions. A comparison between the ground state selections in

PFFRG and high-temperature series expansions with classical Monte Carlo allowed a

comparative study of both the classical and quantum order-by-disorder selections at

near-zero and critical temperature.

We now move from the conclusion on methodological aspects of the thesis and shift

the focus to the contributions provided in the field of frustrated magnetism. Although

spin models on the pyrochlore lattice have experienced much popularity as a platform

of frustrated magnetism in the last decades [117, 77], many of their properties still

remain under debate or underexplored. For the nearest-neighbor Heisenberg model,

we advanced the debate on the S = 1/2 model ground state by providing further argu-

ments for the previously claimed ground state [79, 56] that either breaks C3, or C3 and

inversion lattice symmetries. Furthermore, it was shown that PFFRG suggests an en-

hanced symmetry breaking in the S = 1 model in comparison to the case S = 1/2. The
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obtained results on the ground states have been published in Refs. [48, 43]. Beyond the

Heisenberg model, the nearest-neighbor model with both Heisenberg and anisotropic

Dzyaloshinskii-Moriya interactions was considered. While the quantum model had

been studied previously in Refs. [93, 94, 95], these publications only considered the

case of an antiferromagnetic Heisenberg interaction and applied either a perturbative

large-S or mean-field approximation. In a joint study with complementary methods,

treated in this thesis and published in Ref. [49], we resolved the full phase diagram

of the quantum model with PFFRG. In particular, the Γ5 phase of the model was

found to host subtle order-by-disorder selections. Fluctuations were found to select

different magnetic orders within the classically degenerate Γ5 manifold depending on

the interactions and whether the temperature is set near zero or at critical tempera-

ture. Interestingly, order-by-disorder selections of the classical and quantum models

were found to be in good agreement, which is not always the case [96]. By including

ferromagnetic Heisenberg interactions in the phase diagram of the quantum model, an

extended paramagnetic regime was revealed in addition to the paramagnetic regime

centered around the antiferromagnetic Heisenberg model. Further study investigated

a classical spin model within this regime, the dipolar-quadrupolar-quadrupolar (DQQ)

model, that remains paramagnetic down to T = 0 and exhibits an entropically-driven

spin liquid to spin liquid transition under the variation of temperature. These prop-

erties are enabled by an extensive ground state manifold, which includes the spin-ice

manifold. The DQQ model may be relevant to future experimental studies of spin

liquid to spin liquid transitions since it can be realized by non-Kramers pyrochlores

in principle. However, in the analogous S = 1/2 quantum model, PFFRG suggests

that only the intermediate-temperature spin-liquid phase is realized. A PFFRG phase

diagram, complemented by high-temperature series expansion results, for the general

nearest-neighbor Hamiltonian of non-Kramers pyrochlores embedded the DQQ model

within a larger paramagnetic regime. The phase diagram may guide a future search

for compounds near the DQQ model or contextualize magnetic behavior of other non-

Kramers pyrochlore compounds. Insights on the classical DQQ model and the S = 1/2

phase diagram of non-Kramers pyrochlores were published in Ref. [71], where the

author mostly contributed with PFFRG results for quantum models.

Inspired by the preceding studies on the tetra-trillium compound K2Ni2(SO4)3 given

by Refs. [13, 119], the S = 1/2 and S = 1 phase diagrams of the J3-J4-J5 Heisenberg

model on the tetra-trillium lattice were computed by PFFRG. A large so far unexplored

paramagnetic region was found within the phase diagrams. Since the J3-J4-J5 model

is of high relevance to langbeinite compounds, this finding establishes langbeinite com-

pounds as a promising future platform for the search and study of three-dimensional

spin-liquid realizations. The DFT model of K2Ni2(SO4)3 was found by PFFRG to be
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magnetically ordered but located near the paramagnetic regime. This finding contex-

tualized the experimentally observed unstable magnetic order of K2Ni2(SO4)3 under

the application of an external magnetic field [13]. A collaborative study that applied

PFFRG, classical Monte Carlo, and inelastic neutron scattering advanced the under-

standing of the compound by revealing its underlying magnetic order to be given by

a near-120◦ order with a 216-site magnetic unit cell. Findings on K2Ni2(SO4)3 and

the J3-J4-J5 Heisenberg model are published in Refs. [13, 118]. We conclude that

this thesis not only advances the study of frustrated magnetism on pyrochlore and

tetra-trillium systems, but also suggests future directions in their research and pro-

vides new methodological approaches to their study through the further development

of the PFFRG method.





Appendix A

PFFRG flow equations for a general

Heisenberg model

The PFFRG flow equations for a general spin model with terms linear and bilinear

in spin operators are given in Eqs. (3.55)-(3.56). Treatable spin models may not

contain any continuous spin rotation symmetries or time-reversal symmetry. By as-

suming such symmetries, the flow equations simplify. An often considered case is that

of a Heisenberg model, i.e, a model with a global SU(2) spin rotation symmetry and

time-reversal symmetry. Due to its relevancy, we show simplified flow equations for a

general Heisenberg model in the following. Symmetry-imposed simplifications of the

self-energy Σ(1′|1) and two-particle vertex Γ(1′, 2′|1, 2) structures in their spin argu-

ment dependencies have already been given in Table 3.2. It follows from the SU(2)

symmetry that Γ(1′, 2′|1, 2) contains only two finite and independent components Γρφ,

in whose notation we have neglected the frequency and site arguments for simplicity.

These are given by Γd = Γ00 and Γs = Γxx = Γyy = Γzz. Because of time-reversal sym-

metry, Σ(1′|1) contains only one finite component Σρ=0. The simplified flow equations

are obtained by inserting these restrictions into the general flow equations, given in

Eqs. (3.55)-(3.56).

For a Heisenberg model, the self-energy flow equation is given by

d

dΛ
Σ0,Λ
i (ω) =

1

2π

∫
R
dω′{− 2

∑
j

Γd,Λij (ω1 + ω′, 0, ω1 − ω′)S0,Λ
j (ω′)

+ [3Γs,Λii (ω + ω′, ω − ω′, 0) + Γd,Λii (ω + ω′, ω − ω′, 0)]S0,Λ
i (ω′)

}
,

(A.1)
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and the two-particle vertex flow equations are given by

d

dΛ
Γd,Λi1i2(s, t, u) =

1

2π

∫
R
dω′

{
− [3Γs,Λi1i2(s,−ω′ − ω2′ , ω1′ + ω′)Γs,Λi1i2(s, ω2 + ω′, ω1 + ω′)

+ Γd,Λi1i2(s,−ω′ − ω2′ , ω1′ + ω′)Γd,Λi1i2(s, ω2 + ω′, ω1 + ω′)]Π00,Λ
i1i2

(s+ ω′, ω′)

−2
∑
j

Γd,Λi1j (ω1′ + ω′, t, ω1 − ω′)Γd,Λji2 (ω2 + ω′, t,−ω2′ + ω′)Π00,Λ
jj (t+ ω′, ω′)

+[3Γd,Λi1i2(ω1′ + ω′, t, ω1 − ω′)Γs,Λi2i2(ω2 + ω′,−ω2′ + ω′, t)

+ Γd,Λi1i2(ω1′ + ω′, t, ω1 − ω′)Γd,Λi2i2(ω2 + ω′,−ω2′ + ω′, t)]Π00,Λ
i2i2

(t+ ω′, ω′)

+[3Γs,Λi1i1(ω1′ + ω′, ω1 − ω′, t)Γd,Λi1i2(ω2 + ω′, t,−ω2′ + ω′)

+ Γd,Λi1i1(ω1′ + ω′, ω1 − ω′, t)Γd,Λi1i2(ω2 + ω′, t,−ω2′ + ω′)]Π00,Λ
i1i1

(t+ ω′, ω′)

+[3Γs,Λi1i2(ω2′ − ω′,−ω1 − ω′, u)Γs,Λi1i2(ω2 − ω′, ω1′ + ω′, u)

+ Γd,Λi1i2(ω2′ − ω′,−ω1 − ω′, u)Γd,Λi1i2(ω2 − ω′, ω1′ + ω′, u)]Π00,Λ
i2i1

(u+ ω′, ω′)
}
,

d

dΛ
Γs,Λi1i2(s, t, u) =

1

2π

∫
R
dω′

{
[+2Γs,Λi1i2(s,−ω′ − ω2′ , ω1′ + ω′)Γs,Λi1i2(s, ω2 + ω′, ω1 + ω′)

− Γs,Λi1i2(s,−ω′ − ω2′ , ω1′ + ω′)Γd,Λi1i2(s, ω2 + ω′, ω1 + ω′)

− Γd,Λi1i2(s,−ω′ − ω2′ , ω1′ + ω′)Γs,Λi1i2(s, ω2 + ω′, ω1 + ω′)]Π00,Λ
i1i2

(s+ ω′, ω′)

−2
∑
j

Γs,Λi1j (ω1′ + ω′, t, ω1 − ω′)Γs,Λji2 (ω2 + ω′, t,−ω2′ + ω′)Π00,Λ
jj (t+ ω′, ω′)

+[Γs,Λi1i2(ω1′ + ω′, t, ω1 − ω′)Γd,Λi2i2(ω2 + ω′,−ω2′ + ω′, t)

− Γs,Λi1i2(ω1′ + ω′, t, ω1 − ω′)Γs,Λi2i2(ω2 + ω′,−ω2′ + ω′, t)]Π00,Λ
i2i2

(t+ ω′, ω′)

+[Γd,Λi1i1(ω1′ + ω′, ω1 − ω′, t)Γs,Λi1i2(ω2 + ω′, t,−ω2′ + ω′)

− Γs,Λi1i1(ω1′ + ω′, ω1 − ω′, t)Γs,Λi1i2(ω2 + ω′, t,−ω2′ + ω′)]Π00,Λ
i1i1

(t+ ω′, ω′)]

+[2Γs,Λi1i2(ω2′ − ω′,−ω1 − ω′, u)Γs,Λi1i2(ω2 − ω′, ω1′ + ω′, u)

+ Γs,Λi1i2(ω2′ − ω′,−ω1 − ω′, u)Γd,Λi1i2(ω2 − ω′, ω1′ + ω′, u)

+ Γd,Λi1i2(ω2′ − ω′,−ω1 − ω′, u)Γs,Λi1i2(ω2 − ω′, ω1′ + ω′, u)]Π00,Λ
i2i1

(u+ ω′, ω′)
}
,

with Π00,Λ
i3,i4

(ω3, ω4) = G0,Λ
i3

(ω3)S̃0,Λ
i4

(ω4) +G0,Λ
i4

(ω4)S̃0,Λ
i3

(ω3).

(A.2)

In addition to the flow equations, expressions for observables simplify if a Heisenberg

model is treated. Since the pure Heisenberg model fulfills time-reversal symmetry, its

magnetization vanishes. Furthermore, SU(2) spin rotation symmetry imposes that spin

correlations are only finite for diagonal components χxx = χyy = χzz. By inserting the
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simplified vertex structures into the general expression for spin correlations, given by

Eq. (3.64), one obtains the simplified expression for spin correlations. These are given

by

χzzij (ω) =− 1

4π
δij

∫
R
dω′G0

i (ω
′)G0

i (ω + ω′)

− 1

8π2

∫
R2

dω′dω′′G0
i (ω

′)G0
j(ω + ω′′)G0

i (ω + ω′)G0
j(ω

′′)×{
2Γsij(ω + ω′ + ω′′, ω, ω′ − ω′′)

+ δij[Γ
s
ii(ω + ω′ + ω′′, ω′ − ω′′, ω)− Γdii(ω + ω′ + ω′′, ω′ − ω′′, ω)]

}
.
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[8] Román Orús. Tensor networks for complex quantum systems. Nature Reviews

Physics, 1(9):538–550, September 2019.
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