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Abstract 

Background. Advances in medical imaging play a major role in accurate diagnosis of 

cancer and treatment planning. Dynamic contrast enhanced (DCE)-MR imaging for ex-

ample can be used to quantitatively analyse tumor and vascular structures in clinical on-

cology. The recent advances in Deep-Learning (DL) techniques had shown great pro-

gress in quantitative parameter estimation. However, quantitative analysis of DCE-MR 

images is challenged by the lack of high-quality training data, the need of techniques 

robust to noise in the data, and difficulty in interpretation of the quality of the obtained 

quantitative parameters. In the DL-process, the intrinsic ambiguity of the data propagates 

to the estimated quantitative parameters. Moreover, the training data of the DL-network 

may mismatch the application data. These factors lead to uncertain parameter estimates. 

Aim. The aim of this work is to develop a DL-framework for a joint estimation of quantita-

tive parameters and their respective uncertainties.  

Methods. The work was composed of three tasks: i) Simulation of time-concentration 

curves by applying quantitative parameters and arterial input functions extracted from in-

vivo data to a tracer-kinetic model (i.e., extended Tofts (eTofts) model); ii) Training of 

Bayesian Neural network (BNN) using the simulated data; and iii) Inference of the param-

eters and uncertainties by application of in-vivo DCE-MR images. The images were ac-

quired for five male patients (56 ± 8 years and, 88 ± 11kg) with hepatic metastases. The 

estimated quantitative parameters by the proposed framework were compared with the 

reference method (i.e., non-linear-least-squares fit (NLLS fit)).  

Results.The BNN provided more accurate quantitative parameter estimates (for simu-

lated data) and provided parameter estimates more robust to noise of the input concen-

tration curves (for in-vivo data) as compared to the NLLS fitting. The RMSE for the BNN 

were smaller than the NLLS fit by 33% ± 1.9%, 22% ± 6%, 89% ± 5% for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 

𝑣𝑝 on overage for 0% to 15% noise levels, respectively. The AIC values for the BNN were 

smaller by 28.5% ± 7.5%, 12.7% ± 6%, 12.2% ± 2.7% than the NLLS fit for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 

𝑣𝑝 on overage for 0% to 15% noise levels, respectively. The quantitative parameters 

yielded increased aleatoric uncertainties when the noise level in the time-concentration 

curves was increased. The epistemic uncertainty increased when there was a mismatch 

between the training and application data or less training data.  
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Conclusion. The proposed framework provided more accurate quantitative parameter 

estimates than the NLLS fit, and uncertainty estimates, which explained the intrinsic am-

biguity of the data (aleatoric uncertainty) and inadequacy of the trained DL-network to 

characterize the in-vivo data (epistemic uncertainty). 

 

Zusammenfassung 

Hintergrund: Fortschritte in der medizinischen Bildgebung spielen eine wichtige Rolle in 

der genauen Diagnose von Krebs und in der Behandlungsplanung. So kann die dynami-

sche kontrastmittelbasierte MRT (DCE-MRT) beispielsweise zur quantitativen Analyse 

von Tumor- und Gefäßstrukturen in der klinischen Onkologie eingesetzt werden. Jüngste 

Fortschritte bei den Deep Learning (DL)-Methoden haben zu großen Fortschritten bei der 

quantitativen Parameterschätzung geführt. Die quantitative Analyse von DCE-MRT-Auf-

nahmen wird jedoch durch den Mangel an qualitativ hochwertigen Trainingsdaten, die 

Notwendigkeit von Techniken, die gegenüber Rauschen in Daten robust sind, und die 

Schwierigkeiten bei der Interpretation der Qualität der erhaltenen quantitativen Parameter 

erschwert. Bei der DL-Methode überträgt sich die inhärente Mehrdeutigkeit der Daten auf 

die geschätzten quantitativen Parameter. Außerdem kann es vorkommen, dass die Trai-

ningsdaten nicht mit den Anwendungsdaten übereinstimmen. Diese Faktoren führen zu 

unsicheren Parameterschätzungen.  

Ziel: Ziel dieser Arbeit ist es, ein DL-Framework für die gemeinsame Schätzung quanti-

tativer Parameter und deren Unsicherheiten zu entwickeln. 

Verfahren: Die Arbeit bestand aus drei Aufgaben: i) Simulation von Zeit-Konzentrations-

Kurven, indem quantitative Parameter und arterielle Input-Funktionen, die aus in-vivo-

Daten extrahiert wurden, auf ein Tracer-kinetisches Modell (d. h. ein erweitertes Tofts 

(eTofts)-Modell) angewendet wurden; ii) Training eines Bayes'schen Neuronalen Netz-

werks (BNN) unter Verwendung der simulierten Daten; und iii) Inferenz der Parameter 

und Unsicherheiten mithilfe von in-vivo DCE-MRT-Aufnahmen. Die Aufnahmen wurden 

von fünf männlichen Patienten (56 ± 8 Jahre und 88 ± 11 kg) mit Lebermetastasen ge-

macht. Die mittels des vorgeschlagenen Frameworks geschätzten quantitativen Parame-

ter wurden mit der Referenzmethode (d. h. Anpassung durch nichtlineare kleinste Quad-

rate (NLLS-Fit)) verglichen.  
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Ergebnisse: Das binäre neuronale Netzwerk lieferte genauere quantitative Parameter-

schätzungen (für simulierte Daten) und robustere Parameterschätzungen in Bezug auf 

das Rauschen der Input-Konzentrationskurven (für In-vivo-Daten) im Vergleich zum 

NLLS-Fit. Die mittlere quadratische Abweichung (RMSE) für das BNN war um 33 % ±

1,9 %, 22 % ± 6 %,  89 % ± 5 %  kleiner als das NLLS-Fit durchschnittlich für 0 % bis 15 % 

Rauschpegel jeweils klei ner als die das NLLS-Fit für 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 und 𝑣𝑝. Die AIC-Werte für 

das BNN waren um 28,5 % ± 7,5 %, 12,7 % ± 6 %, 12,2 % ± 2,7 % kleiner als das NLLS-

Fit für 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 und 𝑣𝑝 durchschnittlich für 0 % bis 15 % Rauschpegel. Die aleatorische 

Unsicherheit der quantitativen Parameter nahm mit steigendem Rauschpegel zu, wäh-

rend die epistemische Unsicherheit zunahm, wenn es eine Diskrepanz zwischen Trai-

nings- und Anwendungsdaten gab oder weniger Trainingsdaten vorhanden waren.  

Fazit: Das vorgeschlagene Framework lieferte genauere quantitative Parameterschät-

zungen als das NLLS-Fit sowie Unsicherheitsschätzungen, die eine Erklärung für die in-

härente Mehrdeutigkeit der Daten (aleatorische Unsicherheit) und die Unzulänglichkeit 

des trainierten DL-Netzwerks zur Charakterisierung der in vivo-Daten (epistemische Un-

sicherheit) lieferten. 
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1 Introduction 

Cancer, which is the second leading cause of death, is a global health problem with var-

ying distribution of incidence and death rates around the world [1]. The liver is a common 

site for metastasis of solid cancers such as cancers of the breast, prostate, and sarcomas, 

because of its physiology which provides tumor cells a favourable environment for growth 

[2]. For example, the survival analyses conducted by Zhao et al. [3] indicated that the 

median overall survival of patients with breast cancer liver metastasis was 2 to 3 years. 

Accurate diagnosis of cancer is essential for providing prognostic information, which has 

implications for choosing an appropriate treatment plan [4]. The technological advance-

ments in medical imaging modalities such as magnetic resonance imaging (MRI), com-

puted tomography (CT) and positron emission tomography (PET), allow for the diagnosis 

of tumors and treatment planning without the need of invasive procedures such as biopsy.  

 

Dynamic contrast enhanced (DCE)-magnetic resonance imaging can be used for quali-

tative, semi-quantitative, and quantitative analysis, e.g. of the liver, to provide information 

for cancer diagnosis or to monitor therapy response. DCE-MR imaging requires the ac-

quisition of T1-weighted images before, during and after the administration of a bolus of 

contrast agent (CA). The injected CA changes the MR signal intensity for different tissues 

differently depending on its local concentration by reducing the tissue T1 relaxation times. 

Different tissues such as tumor and healthy tissues, respond to the arrival of the CA with 

different enhancement patterns primarily depending on blood flow. For the qualitative as-

sessment, the signal enhancement curves are visually assessed according to the tem-

poral enhancement patterns. Qualitative analysis is easy to implement, but the visual as-

sessment is subjective and not standardized (e.g. because of different quality of the signal 

enhancement curves among image acquisition, which depend on factors such as the 

quality of the CA injection) [5]. Semi-quantitative evaluation techniques compute semi-

quantitative parameters, such as initial area under the curve, time to peak, and the slope 

of the washout curve, to assess cancer progression and monitor therapy response [6]. 

These techniques are simple to implement and use. However, the physiological infor-

mation obtained by the semi-quantitative parameters is not specific and suffers from var-

iability [6].  
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Quantitative analysis techniques analyse contrast agent time-concentration curves, which 

are extracted from each voxel of the T1-weighted images, with tracer-kinetic models to 

derive quantitative parameters, such as perfusion rate, vessel permeability, fractional vol-

ume of the plasma and tissue [7], [8]. The derived quantitative parameters can be used 

for quantitative analysis of tumor and vascular structures for diagnosis or to monitor ther-

apy response in clinical oncology [6], [9]. These techniques are not subjective, and pro-

vide more accurate physiological information than semi-quantitative techniques [5]. 

 

Nevertheless, the acquisition of DCE-MR images in organs such as the liver is challeng-

ing especially because of artifacts emerging from respiratory motion. Motion induces mis-

alignment between DCE time frames, which in turn affects the accurate and reliable esti-

mation of quantitative parameters [10]. To overcome motion-related artifacts, image ac-

quisitions are usually performed during breath hold, using respiratory gating, or free 

breathing techniques are applied [10]. Breath holding is challenging because some pa-

tients are unable to hold their breath long enough for the image acquisition period.  Res-

piratory gating approaches are not appropriate for DCE-MR images because they do not 

fully record the DCE uptake curve [11]. Free breathing techniques such as Golden-angle 

RAdial Sparse Parallel (GRASP) have enabled continuous free-breathing data acquisi-

tion. However, GRASP can be prone to motion blurring especially during deep breathing 

[10]. These factors limit the acquisition of high-quality data, and, thus, accurate and reli-

able estimation of quantitative parameters. 

 

Traditionally, tracer kinetic models are fitted to the time-concentration curves (TCCs) to 

extract quantitative parameters. The traditional non-linear-least-squares (NLLS) fitting 

methods are dependent on parameter initializations [12], can converge to a local minima 

[13], are prone to biased parameter estimates [8], are not robust to noise-affected TCCs 

[12], [13] and are computationally slow [7]. More recently, Deep Learning (DL) networks 

have been proposed to overcome the limitations of the NLLS fit due to its increased ac-

curacy, generalization ability and computational speed [7], [8], [12], [13], [14]. Deep 

Learning based methods on the other hand are challenged by the lack of high-quality 

ground truth data for training of the neural network. Especially in the liver, the large field-

of-view (FOV) and respiratory motion can impair the acquisition of high-quality data. To 

generate high quality training data, Zou et al. [14] proposed to train a DL-network based 

on simulated data, while Fang et al. [7], Ottens et al. [8] and Herten et al. [13] proposed 
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to combine simulated and in-vivo data for DL-network training. However, the application 

to in-vivo data is still affected by noise, residual under-sampling artifacts, or imperfection 

of coil sensitivities. 

 

The accurate estimation of quantitative parameters from DCE-MRI with DL-networks de-

pends on the inherent ambiguity of the data. Noise-affected input TCCs, which enter the 

DL-network data analysis process may yield inaccurate quantitative perfusion infor-

mation. Hence, definite diagnosis cannot be obtained from the estimated quantitative pa-

rameters alone in some cases, especially when the TCCs are noise-affected, or the in-

vivo data differ from the training data of the DL-network. In such cases, quantification of 

the propagated aleatoric uncertainty (i.e. uncertainty in the estimated quantitative param-

eters arising from the intrinsic ambiguity of the TCCs) of the quantitative parameters is 

crucial for in vivo images like the liver where for example, the residual under-sampling 

artifact is substantial. 

 

The accurate estimation of quantitative parameters from DCE-MRI also depends on the 

consistency of training and application data. Quantitative analysis of DCE-MR images 

with tracer-kinetic models requires the knowledge of patient-specific CA concentration in 

the plasma, i.e., arterial input function (AIF). Deep Learning networks for parameter esti-

mation usually utilize AIFs extracted from several patients [7], [12], [13] or population-

based AIFs [8], [15] as a training data. Arterial input functions extracted from several 

patients do not describe the possible variations in AIFs among new patients. Arterial input 

function estimation techniques which assume an averaged AIF for all patients suffer from 

inter- and intra-subject variations in AIF leading to large potentially errors in estimation of 

quantitative parameters [6]. Studies by Huang et al. [16] observed intra-subject variation 

of quantitative parameters, e.g. a coefficient of variation of 0.74 for the rate of CA transfer 

between plasma and interstitial tissue (i.e. 𝑘𝑡𝑟𝑎𝑛𝑠) for unadjusted AIFs. Using an AIF from 

one cohort of patients and applying it to a different cohort does not account for alterations 

of the AIF caused by for example, the partial volume effect and in-flow effect [16]. Kim et 

al. [17] computed the root-mean-square error (RMSE) of each individual AIF from a po-

pulation-based AIF over time. The results showed a RMSE of 0.88 ± 0.48 mM of the indi-

vidual AIFs for 18 prostate cancer patients. When out-of-distribution (OD) AIFs, which are 

AIFs different from the training data, are applied during inference by DL-networks, it can 

lead to inaccuracies in the estimated quantitative parameters [15]. Other than the AIF, in-
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vivo application data may have noise levels (NL), TCC distributions or other intrinsic char-

acteristics of the data different from the training data of the DL-network. Noise levels in 

DCE-MR images, for example show variations among patients depending on the patient 

size, injected CA dose or imaging artifacts [18], [19], [20]. In other cases, the distribution 

of the training data does not match the distribution of the application in-vivo data. In such 

cases, the application in-vivo data substantially differs from the training data. 

 

It is challenging to construct a training dataset that ensures the coverage of all possible 

NLs, AIFs, or TCC distributions for in-vivo data. Out-of-distribution application data, where 

the training data is different from the in-vivo data may yield inaccurate quantitative perfu-

sion information. Hence, the uncertainty that the trained DL-network is limited to describe 

the NLs, TCCs or AIFs of in-vivo data, i.e. epistemic uncertainty, must be accounted for 

reliable estimation of quantitative parameters. Epistemic uncertainty quantifies uncer-

tainty from applying OD in-vivo data and distinguishes it from other sources of uncertainty, 

such as the aleatoric uncertainty. In addition, quantification of the epistemic uncertainty 

helps to guide the selection of training data for example in active learning, by providing a 

metric on the discrepancy between the training and application data [21]. 

 

Bliesener et al. [12] proposed to estimate the quantitative parameters and their aleatoric 

uncertainties by computing the standard deviations of the posterior distributions of the 

quantitative parameters for each voxel. Uncertainty was underestimated for low noise 

levels and overestimated for medium and high noise levels, respectively. In addition, the 

propagation of aleatoric uncertainty from the TCCs to each of the estimated quantitative 

parameters and the impact on physiological information was not investigated. Epistemic 

uncertainty, which arises from a lack of knowledge about the application data leading to 

a discrepancy between training and application data, was not investigated. As to our 

knowledge, quantification of epistemic uncertainty for DCE-MR physiological parameter 

estimation has not been investigated before. 

 

In this work, we implemented a unified Bayesian framework for quantifying both the ale-

atoric and epistemic uncertainty. The aim is to investigate how noise and OD data influ-

ence the quantitative parameter estimates. We quantify the uncertainty of estimated 

quantitative parameters when OD-AIF, OD-NL, or OD-bolus arrival time (BAT) is applied 

by modelling the epistemic uncertainty. We address the noise in the TCCs and variations 
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in noise levels by quantifying the aleatoric uncertainty. We showed that quantifying the 

uncertainties helps explaining the outputs of a DL-network and separating the different 

sources of uncertainty. This work assesses the proposed framework with simulated data 

and applies it to in-vivo patient data. 

1.1  Contributions 

The work in this dissertation strives to overcome the aforementioned challenges for quan-

titative analysis of DCE-MR data. A novel unified Bayesian neural network framework 

was developed for quantifying the uncertainty of quantitative parameters. 

 

The main contributions of this work are: 

i) A framework to estimate quantitative parameters for liver and liver lesion (patho-) 

physiology was implemented;  

ii) Aleatoric uncertainty was investigated with respect to noise and various levels of 

noise in the time-concentration curves. The implemented DL-network was sensi-

tive to variations of NLs, and aleatoric uncertainties for all quantitative parameters 

was estimated properly; 

iii) Epistemic uncertainty was investigated by evaluating OD-NLs, OD-AIFs, and OD-

BAT delays and less training data size. The implemented DL-network estimated 

the epistemic uncertainty for OD data and less training data properly; and 

iv) Clinical applicability of the proposed framework was investigated by applying in-

vivo data to the trained network and estimating quantitative parameters, aleatoric 

and epistemic uncertainty without the need of ground truth in-vivo quantitative pa-

rameter values. 
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2 Theory  

In this chapter, we give a summary of the key concepts used for this work. 

2.1  Dynamic Contrast Enhanced (DCE) MR imaging 

In DCE-MR imaging, a paramagnetic contrast agent (CA), mostly gadolinium-based, is 

injected to measure the signal variation of a tissue dynamically. When an exogenous CA 

is administered to the tissue, the relaxation times of the tissue decreases depending on 

the distribution of the CA [6]. To acquire DCE-MR images, T1-weighted MRI signal inten-

sity, S(t) is acquired dynamically at different time points: before, during and after injection 

of the CA for the three spatial dimensions (x, y, z). The temporal and spatial resolutions 

of the data acquisition have to be selected to capture the dynamics of the CA distribution 

in time and space. 

The S(t) values are converted into time-concentration curves, C(t). The conversion can 

be performed by assuming a linear or non-linear relation between S(t) and C(t). The aim 

of the conversion is to quantify the kinetics of the CA in the tissue of interest.  Here, a 

linear conversion method proposed by Medved et al. [22] was used and is also shown in 

equation 1. This conversion technique was applied to calculate the CA concentrations 

from the signal intensities for the liver [19], [22]. 

 

𝐶(𝑡) ≈
𝑆(𝑡) − 𝑆(0)

𝑟. 𝑇1𝑟𝑒𝑓
. 𝑆(0)𝑟𝑒𝑓

                         [1] 

 

where 𝐶(𝑡) are the CA concentrations in the tissue, 𝑆(0) are the precontrast signal inten-

sities, r is the CA relaxivity and 𝑇1𝑟𝑒𝑓
 the native preconstrast 𝑇1 value of a reference tissue 

and 𝑆(0)𝑟𝑒𝑓 are signal intensities of the reference tissue. 

2.2  Compartmental modelling  

When a CA is injected (e.g., with a catheter), the CA distributes in the vasculature first 

and then leaks into extravascular space.  Compartmental modelling can be used to model 

parameters describing the CA movement across different compartments such as the 
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plasma and extravascular space (EES) [6]. One of the most commonly used two com-

partmental model is the Extended Tofts (eTofts) model. 

 

Extended Tofts (eTofts) Model  

Clinically relevant physiological parameters, such as transfer rate of the CA between 

plasma and EES, fractional volume of the tissue and plasma are modelled by eTofts 

model as shown in equation 2 [23]. 

 

𝐶 (𝑡) = 𝑣𝑝𝐶𝑝(𝑡) + 𝑘𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝(𝑡′ − 𝛥𝑡)𝑒−((
𝑘𝑡𝑟𝑎𝑛𝑠

𝑣𝑒
)(𝑡−𝑡′−𝛥𝑡))𝑑𝑡′              

𝑡

0
[2] 

 

where 𝐶(𝑡) is the tissue CA concentration change over time, 𝐶𝑝(𝑡) is the plasma CA con-

centration change over time, 𝑘𝑡𝑟𝑎𝑛𝑠 (minutes−1) is the transfer rate of the CA between 

plasma and EES, 𝑣𝑒 is the fractional volume of the EES, 𝑣𝑝 is the fractional volume of the 

plasma and Δ𝑡 is the delay in the arrival of the CA at the tissue. 

 

The eTofts model is illustrated hereunder (Figure 2.1.). 

 

Figure 2.1.   Extended Tofts (eTofts) model with plasma and EES compartment. The target quantitative parameters are transfer 
rate of the CA between plasma and EES (ktrans), fractional volume of the EES (ve) and fractional volume of the plasma (vp) (own 

Figure).  

 

Arterial Input Function (AIF) 

An accurate estimate of the AIF (𝐶𝑝(𝑡) in Equation 2), is required to apply compartmental 

models such as the eTofts model. Arterial Input Function can be estimated by an invasive 

measurement with a catheter, using a population averaged AIF or obtaining the AIF from 

the DCE-MR datasets [6].  Measuring the AIF by blood sampling with a catheter enables 
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an accurate measurement of the AIF [6]. However, the procedure is invasive and with a 

poor temporal resolution. Using a population averaged AIF is simple; there is no need for 

measuring the AIF for every experimental in-vivo data; and quantitative analysis can be 

performed on a common AIF for all the available in-vivo data. However, inter- and intra-

subject variations in AIF are ignored leading to errors in quantitative analysis. Obtaining 

the AIF from the DCE-MR images themselves is non-invasive and simple. However, a 

large vessel within the FOV is required for manual extraction of the AIF from a set of 

voxels within a vessel. 

 

Bolus Arrival Time delay (BAT) 

Bolus Arrival Time Delay refers to the time by which the administered contrast agent ar-

rives to a tissue, such as the plasma or the liver tissue. The BAT between the plasma and 

liver tissue varies after contrast media injection. For an accurate quantitative parameter 

estimation, the time delay (Δ𝑡) between the bolus arrival in the plasma and liver tissue 

has to be accounted for (Figure 2.2). The two commonly applied methods [24] to deter-

mine Δ𝑡 are: i) incorporate Δ𝑡 as a free model parameter in the process of quantitative 

parameter estimation, and ii) estimate BAT for the plasma and liver tissue separately. 

The time delay (Δ𝑡) is then calculated as the difference between BAT for the plasma and 

liver tissue. The advantage of the second approach is that it avoids the need of incorpo-

rating Δ𝑡 as a fitting parameter, which would possibly reduce the stability of the fitting. 

Overall, inaccurate estimation of Δ𝑡 results in an increased uncertainty in the estimated 

quantitative parameters [25]. 
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Figure 2.2.   Bolus arrival time delay (Δt) between the AIF and the liver tissue (Own generated Figure).  

 

2.3  Noise in CA concentration curves 

DCE-MR images are affected by noise from various sources. Potential sources of noise 

include large Field-Of-View (FOV), residual under-sampling artefacts, imperfection of coil 

sensitivities or acquisition noise [18], [19], [17]. Depending on the patient size and amount 

of administered CA dose, the noise level varies between patients [18], [19], [17]. When 

not properly accounted for, the noise in the time-concentration curves can result in inac-

curate and imprecise quantitative parameter estimates [9]. 

2.4  Artificial Neural Networks (ANN) 

Artificial neural networks are the basis of DL-networks. An artificial neuron, which is a unit 

in ANN, functions similarly to the signaling mechanisms of neurons in the brain. A neuron 

takes a set of inputs 𝐶(𝑡𝑖) with a particular weight 𝑤𝑖 and an additional bias 𝑏 [26]. Based 

on the sum of the weighted inputs, a neuron applies an activation function 𝑓 to produce an 

output 𝑧 as shown in equation 3 (see Figure 2.3). Inputs with larger weight have more 

influence on the output 𝑧.  In the case of DCE-MR analysis, the 𝐶(𝑡𝑖) are the CA concen-

tration values at time point 𝑖. 
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𝑧 = 𝑓 (∑ 𝑤𝑖𝐶(𝑡𝑖) + 𝑏

𝑛

𝑖

)                               [3] 

 

Figure 2.3.   A representation of an artificial neuron. Given a set of weighted inputs (wiC(ti)) and a bias b, the artificial neuron 
produces the output z (Own generated Figure). 

 

A simple neural network architecture is composed of multiple neurons put together in 

layers. A DL-network is a neural network consisting of more than two hidden layers. The 

hidden layers are found between the input and the final output layer. Example of a DL-

network with three hidden layers is shown hereunder (Figure 2.4). 

 

 

 

Figure 2.4.   A representation of a DL-network with three hidden layers (Own Generated Figure). 
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Activation Functions 

 

Activation functions are applied to introduce nonlinearity and learn complex representa-

tions. Non-linear activations enable to learn non-linear relationships between the input 

and output neurons [27]. The following functions can be applied as activation functions: 

sigmoid, rectified-linear unit (ReLU), leaky ReLU, tanh, logistic, softmax, softplus and 

many more. 

2.5  DCE Quantitative Analysis 

Quantitative analysis of DCE-MR images is accomplished by fitting the DCE-MRI data or 

applying DL-networks to extract quantitative information on physiology by using compart-

mental models. Main steps of quantitative DCE-MR data analysis are shown hereunder 

(Figure 2.5.). 

2.5.1 Conventional Non-Linear-Least-Squares (NLLS) fitting 

Non-Linear-Least-Squares fit is the conventional method for tracer-kinetic modelling of 

DCE-MR data. A tracer-kinetic model, such as the eTofts model is fitted to the ground 

truth CA concentration curves to extract quantitative parameters. The sum of squared 

residuals between the ground truth and the predicted time-concentration curves are min-

imized (as shown in equation 4) for each voxel using optimization algorithms (e.g. Nel-

derMead simplex as proposed by Saravanan et al. [28]). When the algorithm converges, 

it yields a point estimate of the quantitative parameters (𝜃𝑗) for each voxel. 

 

𝑚𝑖𝑛
 

∑ (𝐶𝑗(𝑡) − �̂�𝑗(𝑡, 𝜃𝑗))2𝑁
𝑗=1               [4] 

where 𝐶𝑗(𝑡) are the ground truth concentration curves, �̂�𝑗(𝑡, 𝜃𝑗) are the predicted concen-

tration curves and 𝜃𝑗 are the estimated quantitative parameters for voxel 𝑗.  

2.5.2 Deep Learning (DL) based analysis 

Deep Learning-networks provide an alternative approach for quantitative analysis of 

DCE-MR images. Deep Learning approaches can be distinguished into three main 

groups, namely supervised, unsupervised and semi-supervised learning [29]. In super-

vised learning, a labelled data is required for training of the DL-network. Unsupervised 
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learning learns hidden features from the unlabelled data, whereas semi-supervised learn-

ing makes use of some labelled training data. The quantitative analysis applied in this 

work is based on a supervised DL approach. 

 

Supervised Deep Learning (DL) 

 

Supervised DL-networks have recently been used for quantitative parameter estimation 

[14], [7]. In supervised learning, the ground truth quantitative parameter values are used 

in the training process of the DL-network to guide the training. 

For a training dataset 𝐷 = {(𝐶𝑗(𝑡), 𝜃𝑗)}, a DL-network (𝜙) learns a mapping  of an input 

𝐶𝑗(𝑡)  to an output, 𝜃𝑗 where , 𝜃𝑗 ≈ 𝜃𝑗  by using the input-output pairs from the training 

dataset as shown below: 

 

𝜙(𝐶𝑗(𝑡), 𝑤) = 𝜃𝑗                  [5] 

where 𝐶𝑗(𝑡) are the concentration curves, and 𝜃𝑗, are the estimated quantitative parame-

ters for each voxel 𝑗 and 𝑤 are the weights of the DL-network. The weights are optimized 

by minimizing a loss function, which aims to minimize the difference between the ground 

truth and estimated quantitative parameters. The formulation of the loss function (𝐿) can 

be written as: 

 

𝐿(𝜃𝑗 , 𝜃𝑗) = 𝑚𝑖𝑛
𝜙

∑ 𝐿(𝜃𝑗 ,𝑁
𝑗=1 𝜙(𝐶𝑗(𝑡), 𝑤))      [6] 

The loss function can take different forms. The different losses to be used for DL-network 

training are discussed in heteroscedastic noise model and Bayesian inference sections 

of this chapter. 



Theory 16 

 

Figure 2.5.   Main steps of quantitative DCE-MR data analysis with a NLLS fitting and DL-network (Own Generated Figure). 

2.6  Uncertainty quantification  

A reliable quantification of the uncertainty is one of the desirable feature of DL-networks, 

especially for safety-critical applications, such as in medicine [21]. Various sources of 

uncertainty occur in DL-problems, and depending on the application the handling of the 

uncertainty also varies. In this work, predictive uncertainty in the context of supervised 

learning is discussed. The predictive uncertainty is the uncertainty in the estimated quan-

titative parameters 𝜃𝑗 given by the DL-network from an input data 𝐶𝑗(𝑡). The predictive 

uncertainty is decomposed into two types of uncertainty, aleatoric and epistemic [21] as 

shown in Figure 2.6. 

  

Aleatoric uncertainty 

Aleatoric uncertainty represents variations in an outcome of an experiment (𝜃𝑗) arising 

from the intrinsic ambiguity of the data 𝐶𝑗(𝑡) [21]. Possible sources of this uncertainty are 

for example, noise in the DCE-MR data [18], [19], [17], which propagates to the estimated 
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quantitative parameters. Even with having a sufficient training data, the aleatoric uncer-

tainty of the estimated quantitative parameter (𝜃𝑗) can not be reduced. 

  

Epistemic uncertainty 

Epistemic uncertainty represents uncertainty arising from lack of knowledge about the 

application data and is reduced by increasing the size of the training data [21]. Epistemic 

uncertainty describes cases where the training data is insufficient to accurately represent 

the data distribution. There are different methods to quantify the epistemic uncertainty 

such as Gaussian processes, Ensemble methods, Monte Carlo drop out and Bayesian 

neural networks [30]. In section 2.8., the Bayesian networks, which are applied in this 

work are discussed.   

 

 

Figure 2.6.   Aleatoric and epistemic uncertainty with respect to intrinsic ambiguity and size of training data, respectively (Own 
GeneratedFigure). 

 

2.7  Heteroscedastic noise model  

The heteroscedastic noise model takes into account non-constant noise variance in 

space and time [31]. The noise variance (𝜎𝑎𝑗
) is the parameter that has to be estimated 

for the quantitative parameter, 𝜃𝑗  for each voxel 𝑗 to get an accurate measure of the noise. 

It can be predicted as an output of a DL-network. Several approaches have been pro-

posed in the machine learning community for modeling heteroscedastic noise. Here, we 

show the noise model based on Gaussian likelihood function [31]. The heteroscedastic 
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noise model, shown in equation 7 can be used as a loss function for training a DL-net-

work. When the error between the reference parameter 𝜃𝑗 and estimated parameter 𝜃𝑗 

increases, the impact of the uncertainty 𝜎𝑎𝑗
 becomes large as shown in the first term. The 

log (𝜎𝑎𝑗
) controls 𝜎𝑎𝑗

 from becoming infinitely large, whereas the log(2𝜋) denotes a con-

stant from the Gaussian likelihood function [31]. 

𝐿 = 𝑚𝑖𝑛
𝜙

1

2
∑ (

𝜃𝑗−�̂�𝑗

𝜎𝑎𝑗

)

2

+ ∑ 𝑙𝑜𝑔 (𝜎𝑎𝑗

𝑛
𝑗=1

𝑛
𝑗=1 ) +

𝑛

2
𝑙𝑜𝑔 (2𝜋)           [7] 

where 𝜃𝑗 are the reference parameters, 𝜃𝑗 are the predicted parameters and 𝜎𝑎𝑗
 is the 

standard deviation of the noise for each voxel 𝑗. 𝜙 is the DL-network with layer weights to 

be minimized. For the quantitative parameter estimation task, the problem is presented 

as a voxel-wise estimation of the uncertainty.  

2.8  Bayesian Neural Networks (BNN) 

Bayesian networks learn a probability distribution for the weights of neural networks. 

The core of any Bayesian approach is the computation of a posterior distribution by using 

the Bayes’ rule [32] (equation 8). 

𝑝(𝑤|𝐶(𝑡)) =
𝑝(𝐶(𝑡)|𝑤) 𝑝(𝑤)

𝑝(𝐶(𝑡))
              [8] 

where p(w) are the priors for the weights of the Bayesian network and p(C(t)) are the 

probabilities of the data (i.e., concentration curves, C(t)) in tracer kinetic modeling of DCE-

MR data. However, the involved numerical integrations for computation of the posterior 

distribution, 𝑝(𝑤|𝐶(𝑡)) are intractable [33]. Variational Bayesian methods apply numerical 

approximations for the computation of the posterior distribution. 

The aim of such variational inference methods is to maximize the agreement between 

true 𝑝(𝑤)and approximate posterior distribution 𝑞(𝑤|𝛽). 𝛽 is the distribution (e.g., Gauss-

ian with mean and standard deviation) to be learnt during the learning process of the 

Bayesian training.  

The distance between the approximate posterior distribution, 𝑞(𝑤|𝛽), and the true 

distribution, 𝑝(𝑤), can be measured by applying Kullback–Leibler (𝐾𝐿) divergence loss 

[33]. The loss function of the Bayesian network training can be written as shown below:  
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𝐿(𝐶 (𝑡), 𝛽) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 𝐾𝐿[𝑞(𝑤|𝛽)‖𝑝(𝑤)] − 𝐸𝑞(𝑤|𝛽)[log 𝑝(𝐶 (𝑡)|𝑤)], 

which is approximated as: 

𝐿(𝐶𝑗(𝑡), 𝛽) ≈ ∑ 𝑙𝑜𝑔 𝑞(𝑤𝑖|𝛽) − 𝑙𝑜𝑔 𝑝(𝑤𝑖) − 𝑙𝑜𝑔 𝑝(𝐶𝑗(𝑡)|𝑤𝑖) 𝑚
𝑖=1        [9] 

 

where 𝑤𝑖 (𝑤𝑖 ≈ 𝑞(𝑤𝑖|𝛽)) are the network weights sampled from the posterior distribution 

of the network weights to perform a Monte Carlo approximation, 𝑝(𝐶𝑗(𝑡)|𝑤𝑖) is the likeli-

hood function of the data given the weights. This likelihood function can take different 

forms (e.g. heteroscedastic noise model) with the aim of minimizing the difference be-

tween the ground truth and estimated quantitative parameters.  

In this section we discuss Bayesian layers, activation functions, network training proce-

dure and inference which are required for a successful implementation of a Bayesian 

network. 

 

Bayesian Layers  

Bayesian Layers are the building blocks of Bayesian Neural Networks (BNN). The weights 

of BNN are probability distributions, where each sample from the distribution results in a 

different weight configuration (see Figure 2.7.) [33]. A Bayesian Layer extends a deter-

ministic layer into a stochastic layer by including a prior distribution over the weights of 

the network and learning an approximate posterior distribution. These layers capture the 

uncertainty over the weights. A BNN architecture is composed of multiple neurons 

stacked in Bayesian layers. 
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Figure 2.7.   A representation of a Bayesian neuron. Given a set of weighted inputs (wiC(ti)) and a bias b, the Bayesian neuron 
produces the distribution of output z by computing the sum of the weighted inputs first and then adding the bias (Own Generated 
Figure). 

 

Network training  

To find a minimum for the loss function and parameterize the distribution for the weights, 

Bayesian networks compute the gradient of the loss in terms of the network weights. This 

process involves two steps (Figure 2.8): 𝑖) forward pass: the input 𝐶𝑗(𝑡) are forward 

passed to the network to compute the output parameters, 𝜃𝑗 and the loss for this param-

eter values are computed (𝐿𝑗); 𝑎𝑛𝑑 𝑖𝑖) backward pass: gradients of the loss with respect 

to the probability distribution of the weights, 𝛽 = (𝜇, 𝛼) are backpropagated (e.g. with sto-

chastic gradient descent or ADAM) from the output to the input layer. These gradients are 

used to update the variational parameters of the Gaussian distribution, i.e. 𝛽 = (𝜇, 𝛼), 

where 𝜇 is the mean and 𝛼 is the standard deviation of the Gaussian distribution 𝛽. 
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Figure 2.8.   Supervised Bayesian network training with a backpropagation method (Own Generated Figure). 

 

Inference  

The dataset is split into three parts: training, testing and validation dataset. The training 

dataset is used to learn the parameters of the Bayesian network. The testing dataset is 

used to evaluate performance of trained network on unseen data. The validation dataset 

is used to evaluate if the loss values have reached a stable state. During inference, the 

test dataset is applied to the trained network to infer the outputs as: 𝜃𝑗 =  𝜙(𝐶𝑗𝑡𝑒𝑠𝑡
(𝑡), 𝛽), 

where 𝜙 is the trained BNN, 𝐶𝑗𝑡𝑒𝑠𝑡
(𝑡) is the concentration curve of the test data for voxel 

𝑗, 𝛽 are the probability distributions of the weights of the BNN. 
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3 Methods 

We proposed a unified Bayesian framework, which yields uncertainty information in ad-

dition to the quantitative physiological parameter estimates. The proposed framework is 

shown hereunder (Figure 3.1)  (from Dejene et al., 2023 [20]). In this chapter, we discuss 

how the proposed framework was used for tracer-kinetic analysis and uncertainty quan-

tification.  

 

 

Figure 3.1.   The proposed Bayesian framework for aleatoric and epistemic uncertainty quantification of physiological parameters. 
Figure from Dejene et al., 2023 [20]. 

3.1  Bayesian Tracer-kinetic Analysis  

Time-concentration curves were analyzed to obtain tracer-kinetic information in the form 

of quantitative parametric maps. The primary goal of applying a BNN was to estimate 

uncertainties of the quantitative parameter maps for each voxel. To achieve this, the BNN 

combined 𝐶𝑝(𝑡) and 𝐶(𝑡) as input to yield the parameters specifying the CA uptake kinet-

ics, 𝜃 = {𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 , 𝑣𝑝}, aleatoric (𝜎𝑎 − 𝑘𝑡𝑟𝑎𝑛𝑠, 𝜎𝑎 − 𝑣𝑒 , 𝜎𝑎 − 𝑣𝑝) and epistemic (𝜎𝑒 −

𝑘𝑡𝑟𝑎𝑛𝑠, 𝜎𝑒 − 𝑣𝑒  , 𝜎𝑒 − 𝑣𝑝)  uncertainties as an output on a voxel level. The BNN architecture 

is shown above (Figure 3.1., taken from Dejene et al., 2023 [20]). The quantitative pa-

rameter maps 𝜃 and the aleatoric uncertainties 𝜎𝑎 were the direct outputs of the BNN, 

whereas the epistemic uncertainty 𝜎𝑎 was computed by executing the trained BNN 𝑛 

times and computing the standard deviation of the 𝑛 predictions. 

The 𝐶𝑝(𝑡) and 𝐶(𝑡) were separately convolved by one-dimensional (1D) filters with large, 

medium and small sizes to extract low, medium and high temporal resolution information, 
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respectively. The filter size and stride length combinations for the large, medium and 

small sized filters are [10/10], [5/1] and [3/1], respectively. Outputs of the convolutional 

filters for 𝐶𝑝(𝑡) and 𝐶(𝑡) were concatenated and given to the first layer of the BNN as an 

input. The BNN architecture used 6 fully connected Bayesian layers; each layer consisted 

of 600, 400, 300, 200 and 100 and 6 neurons. For all the first five layers, Leaky rectified-

linear unit (ReLU) activation functions were applied. For the output layer, a sigmoid acti-

vation function was applied [20]. This activation function was modified before activation 

to obtain values between 0 and 2 for 𝑘𝑡𝑟𝑎𝑛𝑠 to keep outputs in the physiology of the liver 

[20]. Adam optimizer with 1e-5 learning rate was used to train the BNN for 200 epochs. 

DCE-MRI data was analyzed using python [34]. Bayesian Neural Network was imple-

mented with TensorFlow backend [35] on a Graphics Processing Unit (GPU) workstation 

(NVIDIA GeForce RTX 2080). 

3.2  Bayesian uncertainty quantification  

3.2.1 Aleatoric uncertainty 

The noise in the TCCs is likely to propagate through the deep learning training process 

required to estimate the eTofts model parameters. This affects the accuracy and precision 

of the estimated quantitative parameters [9]. We applied a Gaussian heteroscedastic 

noise model to handle the aleatoric uncertainty in the estimated quantitative parameters, 

which were propagated from the noise of the input concentration curves to the estimated 

parameters. This noise model in equation 7 was applied as a loss function for BNN train-

ing. The aleatoric uncertainty (𝜎𝑎 − 𝑘𝑡𝑟𝑎𝑛𝑠, 𝜎𝑎 − 𝑣𝑒  and 𝜎𝑎 − 𝑣𝑝) for each of the  quantita-

tive parameters (𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and  𝑣𝑝) is the direct output of the BNN for each voxel 𝑗. 

3.2.2 Epistemic uncertainty  

Epistemic uncertainty occurs if a discrepancy between the training and application data 

is present [36]. It is the uncertainty arising from the inability of the DL-network to accu-

rately estimate the quantitative parameters because of OD application data (e.g., noise 

level, AIF or Δ𝑡) or less straining data size, ID (𝜏 = 0.04). Bayesian neural networks learn 

a Gaussian probability distribution, 𝛽 = (𝜇, 𝛼), for the weights to yield a distribution for the 

estimated quantitative parameters. The parameter 𝜇 is the mean and 𝛼 is the standard 

deviation of the Gaussian distribution. 
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The BNN were repeated 𝑛 times (𝑛 = 100) to sample estimates for the physiological pa-

rameters from the posterior distribution. The variance was the standard deviation of the 

predictions when the same Bayesian network was run 𝑛 different times for the same input. 

The standard deviations of the BNN estimates for the n iterations were used to quantify 

the epistemic uncertainty (𝜎𝑒) as, 𝜎𝑒𝑘
= √∑ (�̂�𝑘−𝜇�̂�𝑘

)
2

𝑛
𝑗=1

𝑛
, where 𝜎𝑒𝑘

 is the epistemic uncer-

tainty of parameter 𝑘, 𝜃𝑘 is the estimated parameter 𝑘, 𝜇�̂�𝑘
 is the mean of the estimated 

parameter 𝑘. The epistemic uncertainty (𝜎𝑒 − 𝑘𝑡𝑟𝑎𝑛𝑠, 𝜎𝑒 − 𝑣𝑒 and 𝜎𝑒 − 𝑣𝑝) for each of the  

quantitative parameters (𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝) was computed during inference by executing 

the BNN 100 times and computing the voxel-wise standard deviation of the predictions. 

3.2.3 Loss function  

To jointly estimate the aleatoric and epistemic uncertainties, a combined loss function 

consisting of the heteroscedastic noise model and KL-divergence loss was applied. The 

combined loss [20] was written as: 

 

𝐿 = 𝑚𝑖𝑛
 

1

2
∑ (

𝜃𝑘−�̂�𝑘

𝜎𝑘
)

2

+ ∑ 𝑙𝑜𝑔 (𝜎𝑎𝑘

3
𝑘=1

3
𝑘=1 ) +

𝑛

2
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𝑘=1  [10] 

 

where 𝑘 is the number of physiological parameters, 𝑤𝑖 is the 𝑖 weight sample taken from 

the approximate posterior distribution of the weights.  

3.3  Experiments  

3.3.1 Simulated Data  

DCE-MRI data were simulated by applying the eTofts model on physiological parameters, 

𝜃 = {𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝}, incorporating BAT delay (Δ𝑡) and addition of a Gaussian noise. 

 

Physiological parameters 

Time-concentration curves were simulated using parameter combinations of 𝑘𝑡𝑟𝑎𝑛𝑠, 

𝑣𝑒 and 𝑣𝑝 in the following ranges, 𝑘𝑡𝑟𝑎𝑛𝑠 ∈ [0,2], 𝑣𝑒 ∈ [0,1] 𝑎𝑛𝑑 𝑣𝑝 ∈ [0,0.3] in step size, 𝜏= 

0.02 to confine them within physiological range of the liver [20]. 𝐶𝑝(𝑡) from five patients 
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were manually extracted from the hepatic artery. For a particular combination of param-

eter values, the 𝐶𝑝(𝑡) from five patients were applied during the TCCs simulation process. 

A total of 75,000 TCCs were simulated for each 𝐶𝑝(𝑡).  

 

Noise levels (NL) 

We added Gaussian noise to mimic the noise distribution in the in-vivo data. Variations 

of noise levels were added to investigate their effect on the uncertainty. A range of noise 

levels with mean zero and standard deviation (𝜆 = 𝑁𝐿 ∗ 𝐶(𝑡)𝑚𝑎𝑥) [20], were added to the 

TCCs. NL was the noise level in percentages and 𝐶(𝑡)𝑚𝑎𝑥 = 0.59 was the maximum value 

of the concentration curves. 

 

Bolus Arrival Time delay (𝚫𝒕) 

The delay (Δ𝑡) between the time of CA enhancement in the plasma and liver tissue was 

accounted for by shifting the AIF in ranges of three discrete time points (i.e., 𝛥𝑡 ∈

[6𝑠, 12𝑠, 18𝑠]). These Δt values were applied to simulate 𝐶(𝑡) based on equation 2. For a 

particular combination of parameter values and noise levels, the TCCs were simulated 

for each Δ𝑡 values. The shift time, 𝛥𝑡 was set upto 18𝑠 to bound it in the liver physiological 

BAT delay ranges [37], [38]. 

The contrast agent arrives earlier at the hepatic artery than the liver tissue [39]. With Δ𝑡 

included in the simulation of TCCs, the time of initial plasma enhancement would shift to 

a later time point to be matched with the time of the liver tissue enhancement. During 

training, the BNN learns the temporal shifts in the C(t) due to the difference in the bolus 

arrival time for different tissues. Hence, Δ𝑡 was intrinsically incorporated in the learning 

process and the effect of uncorrected BAT delay on the estimated quantitative parame-

ters was corrected. 

3.3.2 In-vivo Data  

The DCE-MR in-vivo image acquisition was performed by using a 3T Biograph mMR hy-

brid scanner (Siemens Healthcare, Erlangen, Germany) [40]. Imaging data for the liver 

were acquired using a 3D golden-radial phase encoding (GRPE) acquisition by applying 

a Cartesian sampling scheme [19]. A hepato-specific contrast agent, gadoxeate disodium 

with a dose of 0.01 mmol kg−1 was administered 1 min after image acquisition had begun 

[19]. “The acquisition parameters were: TR/TE = 3.3 ms/1.36 ms, flip angle = 12°, FOV = 
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345 X 345 mm2, spatial resolution = 1.5 mm2, partial Fourier factor = 5/8.” [20]. Motion 

corrected image reconstruction based on iterative kt-SENSE [19] was used to reconstruct 

the DCE-MR images for 47 dynamic scan points. The temporal resolution was 6 seconds. 

In this work, DCE-MR data from five male patients (56 ± 8  years and, 88 ± 11kg) with 

hepatic metastases were included [19]. The study was approved by the Charité Ethics 

Committee and written informed consent was provided by all patients. 

3.4  Evaluation on simulated Data  

The simulated data was used to train a BNN, investigate accuracy of the proposed un-

certainty estimation framework, compare physiological parameter estimates between the 

NLLS fit and BNN and assess uncertainties of physiological parameter estimates. 

3.4.1 Parameter estimation 

We compared physiological parameters estimated by the standard NLLS fit and the pro-

posed BNN. For assessing the parameter estimation between the two methods, it was 

assumed that Δ𝑡 = 0. 

 

Non-linear-least-squares (NLLS) fitting 

We evaluated the performance of the NLLS fit on different noise levels. NLLS fit optimizes 

the physiological parameters so that the eTofts model fits best matched the reference 

𝐶(𝑡). For this, the root-mean-squared (RMSE) between the reference 𝐶(𝑡) and predicted 

𝐶(𝑡) are minimized using the NelderMead Simplex optimization algorithm [28] for each 

voxel. This results in a single set of parameter values for each TCC in a deterministic 

setting. Gaussian noise with noise levels ranges of NL ∈ [0%, 1%, 5%, 10%, 15%] were 

added to the TCCs. The initial values of the fitting for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 , 𝑣𝑝 and Δ𝑡 were set to 

0.8, 0.1, 0.01 𝑎𝑛𝑑 0.001, respectively. The lower and upper bounds of the fitting for 𝑘𝑡𝑟𝑎𝑛𝑠, 

𝑣𝑒 , 𝑣𝑝 and Δ𝑡 were set to [0.001,0.001,0.001,0] and [2,1,1,0.4], respectively [20]. 

 

BNN estimation 

The performance of the BNN was investigated for different noise levels. BNN optimizes 

the physiological parameters so that the estimated parameters, 𝜃 best matched 𝜃. For 

this, the combined loss function (Equation 10) is minimized. This results in all probable 

sets of estimated parameter values, 𝑝(𝜃|𝐶(𝑡)) instead of providing estimates for a single 
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set of parameter values. Five BNNs are trained with each of Gaussian noise levels, NL 

∈ [0%, 1%, 5%, 10%, 15%]. The time-concentration curves with a NL similar to the training 

NL were applied during inference for each BNN. 

 

Evaluation metrics  

The performance of NLLS fit and BNN for different NLs were compared by using quanti-

tative metrics. Root-mean-squared-errors (RMSE), R2 and Akaike information criterion 

(AIC) values [41] were calculated between estimated physiological parameters (i.e., by 

BNN and NLLS fit) and reference parameters. 

 

3.4.2 Uncertainty evaluation  

We used the simulated DCE-MR data to train the BNN and applied it to test datasets 

containing ID and OD data. 

 

ID-data (𝝉 = 𝟎. 𝟎𝟐) 

The aim of this experiment was to investigate the change in uncertainty for variations of 

ID-NLs. In-Distribution (ID) test data are TCCs similar in NL, AIF, Δ𝑡 and 𝜏 to the TCCs 

applied to the BNN during training. We compared uncertainty estimates at various ID-NLs 

(𝑁𝐿 ∈ [0%, 1%, 5%, 10%, 15%]). The training and testing data contain similar NLs (𝑁𝐿 ∈

[0%, 1%, 5%, 10%, 15%]). 𝜏 was set to 0.02. During inference, the BNN with a training 

data noise level similar to the testing data noise level was applied. 

 

ID-data (𝝉 = 𝟎. 𝟎𝟒) 

The aim of this experiment was to investigate the uncertainty when the training data size 

was reduced by half. For this, the training TCCs were simulated with the same AIF, NL 

and Δ𝑡 as the test data. However, the training data has TCCs generated with 𝜏= 0.04, 

whereas the test data contain TCCs generated with 𝜏= 0.02. 

 

 

OD-data 

The aim of this experiment was to investigate the uncertainty when a range of OD appli-

cation data sources (i.e., NL, 𝜏, AIF and Δt) were considered. OD test data are TCCs 

different either in NL, 𝜏, AIF, or Δ𝑡 to the TCCs applied to the BNN during training. It was 

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion
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challenging to construct a training dataset that covered all possible NLs, AIF, 𝜏 or Δt, 

especially in the in-vivo setting, where the in-vivo data NLs and TCCs distribution or Δ𝑡 

are unknown. Here, we investigated three OD application data cases, namely, OD-NL, 

OD-AIF, and OD-Δt and less training data, ID- (𝜏 = 0.04). The training and application 

data ranges are summarized and tabulated in Error! Reference source not found. (

Adapted from Dejene et al., 2023 [20]). 

Table 3.1. ID and OD data experiments performed for simulated and in-vivo data (modified Table from 
Dejene et al., 2023 [20]) 

Data 

(Train, Test) 

Experiments Train NL   
(%) 

Test NL 

(%) 

Train 

(step size) 

Test 

(step size) 

Simulated, 

Simulated 

 

ID-(𝜏 = 0.02) 

ID-(𝜏 = 0.04) 

OD-NL 

OD-AIF 

OD-Δ𝑡 

1,5,10,15,20 

5,10 

5,10 

5,10 

5,10 

1,5,10,15,20 

5,10 

15,20 

5,10 

5,10 

0.02 

0.04 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

Simulated, ID-(𝜏 = 0.02) 10,15,20 − 0.02 − 

In vivo ID-(𝜏 = 0.04) 10,15,20 − 0.04 − 

 OD-AIF 10,15,20 − 0.02 − 

NL – noise levels, ID – In distribution, OD – Out-of-distribution 

 

i. OD-NL 

The effect of different NLs on the uncertainties was evaluated. The test data con-

sists of OD-NLs (15% and 20%) different from the training NLs (5% and 10%). 

ii. OD-AIF 

The effect of different AIF (i.e., different amplitude or BAT delays) on the uncer-

tainty was investigated. The test data consists of OD-AIF (peak amplitude broad-

ened by a factor of 2 and Δ𝑡 =36s) different from the training AIF (no change in 

amplitude and Δ𝑡 =0). 

iii. OD-𝚫𝒕 

The effect of different bolus BAT delays on the uncertainty was investigated. The 

test data consists of OD-Δ𝑡 (Δ𝑡 = 12𝑠) different from the training Δ𝑡 (Δ𝑡 = 0𝑠). 
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3.5  Evaluation of in-vivo Data  

We evaluated the proposed framework on DCE-MR images of the liver to demonstrate 

its applicability in in-vivo data. 

3.5.1 Parameter estimation 

Using in-vivo data, we compared parameter estimation by NLLS fit and BNN estimation. 

 

Non-linear-least-squares (NLLS) fitting 

We evaluated the performance of the NLLS fit on in-vivo data. The in-vivo TCCs were 

fitted to the eTofts model to estimate the quantitative parameters. 

 

BNN estimation 

We evaluated the performance of the BNN on in-vivo data. The training data of the BNN 

consists of data to construct a training dataset that covers reasonably all combinations of 

NLs, AIF, 𝜏 or Δt prevalent in in-vivo data. A BNN with simulated training dataset consist-

ing of 𝑁𝐿 ∈ [10%, 15%, 20%], AIFs (taken from five patients), TCCs (𝜏 = 0.02) and Δ𝑡 =

 [0𝑠, 6𝑠, 12𝑠, 18𝑠] was trained. The in-vivo data was applied to the trained BNN to infer the 

quantitative parameters. 

 

Time Cost 

The execution time of the BNN to yield the quantitative parameters and the uncertainties 

was evaluated for a DCE-MR scan of an in-vivo data with 192 × 192 X 47 voxels utilizing 

the Python time module [34] on a GPU. The execution time of the NLLS fit for yielding the 

quantitative parameters for this same slice was also evaluated on a CPU. 

3.5.2 Uncertainty evaluation  

We used the simulated DCE-MR data to train the BNN and apply it to in-vivo data con-

sisting of ID and OD data. 

 

ID in-vivo data (𝝉 = 𝟎. 𝟎𝟐) 

The aim of this experiment was to investigate the uncertainty estimates when in-vivo ap-

plication data is applied to a BNN trained with simulated data. In-Distribution in-vivo data 

are assumed to be similar in NL, AIF, 𝜏 and Δ𝑡 to the training data of the BNN. The training 
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data of the BNN consists of simulated TCCs with 𝑁𝐿 ∈ [10%, 15%, 20%], AIFs (from five 

patients), 𝜏 = 0.02 and 𝛥𝑡 ∈ [0𝑠, 6𝑠, 12𝑠, 18𝑠]. 

 

ID in-vivo data (𝝉 = 𝟎. 𝟎𝟒) 

 

The aim of this experiment was to evaluate the effect of decreasing the training data size 

on the uncertainty of in-vivo data. The training data of the BNN consists of simulated 

TCCs with 𝑁𝐿 ∈ [10%, 15%, 20%], AIFs (from five patients), 𝜏 = 0.04 and 𝛥𝑡 ∈

[0𝑠, 6𝑠, 12𝑠, 18𝑠]. A step size of 𝜏 = 0.04 reduces the number of training samples by 50% 

as compared to the ID training data with a step size of 𝜏 = 0.02. 

 

OD in-vivo data 

The aim of this experiment was to investigate the uncertainty when OD-AIF in-vivo data 

are applied to a BNN trained with simulated data. It is not practical to construct a dataset 

that covers all possible combinations of NLs, AIFs, 𝜏 or Δ𝑡. Especially the true NLs, 𝜏 and 

Δ𝑡 in in-vivo data are unknown. OD-in-vivo data are TCCs different in NLs, AIFs, 𝜏 or Δ𝑡 

to the training data of the BNN. Since the true Δ𝑡 and NLs in in-vivo data are unknown, 

we investigate the uncertainty estimates of OD-AIF only. The training data ranges for 

these experiments are summarized in tabular form (Error! Reference source not f

ound.) (taken from Dejene et al., 2023 [20]). The training data did not constitute the AIF 

of the application in-vivo data. 
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4 Results   

4.1  Evaluation on simulated Data  

4.1.1 Parameter estimation 

The BNN demonstrated better performance than the NLLS fit in terms of R2, RMSE and 

AIC values. Dejene et al. [20] presented the comparisons of the RMSE and R2 values 

between the reference and estimated parameters for the NLLS fit and BNN for different 

noise levels (Table 4.1.). The RMSE of 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝 deteriorated with increasing NLs 

from 0.27 to 0.58, 0.09 to 0.15 and 0.29 to 0.35 when the NL was increased from 1% to 

15% for the NLLS fit. The RMSE of 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝 deteriorated with increasing NLs from 

0.19 to 0.38, 0.06 to 0.12 and 0.01 to 0.06 when the NL was increased from 1% to 15% 

for the BNN. Overall, the RMSE for the BNN were smaller than the NLLS fit by 33% ±

1.9%, 22% ± 6% , 89% ± 5% for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝 on overage for 0% to 15% noise levels, 

respectively. The R2 values for the BNN were higher than the NLLS fit. The AIC values 

for the BNN were smaller by 28.5% ± 7.5%, 12.7% ± 6% , 12.2% ± 2.7% than the NLLS 

fit for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝 on overage for 0% to 15% noise levels, respectively. 

 

Table 4.1.  Comparison of RMSE and R2 between NLLS fit and BNN. Bold results show the lowest RMSE 
and highest R2 values (taken from Dejene et al., 2023 [20]). 

  

4.1.2 Uncertainty evaluation 

ID-data (𝝉 = 𝟎. 𝟎𝟐) 

The aleatoric uncertainty estimates of the quantitative parameters increased with increas-

ing noise levels (Figure 4.1.) (Adapted from Dejene et al., 2023 [20]). The epistemic un-

certainty estimates of the parameters were similar between different NLs, showing very 
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small differences on average compared to all NLs (i.e., 0.08 ± 2.7%, 0.03 ± 3.4%, 0.02 ±

5% for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝, respectively). 

 

 

Figure 4.1.   Aleatoric (σa) and epistemic (σe) uncertainty of ID-data for (a)  ktrans (b) ve  and (c) vp  (taken from Dejene et al., 2023  
[20]). 

 

ID-data (𝝉 = 𝟎. 𝟎𝟒) 

The epistemic uncertainty of the quantitative parameters with less training data signifi-

cantly increased (p<0.001) compared to the ID-data (𝜏 = 0.02) (Figure 4.2., taken from 

Dejene et al., 2023 [20]).  

 

 

Figure 4.2.   𝑘𝑡𝑟𝑎𝑛𝑠 aleatoric uncertainty (𝜎𝑎) and epistemic (𝜎𝑒) for ID-data with less training data size (adapted from Dejene et 
al., 2023 [20]). 

 

 

OD-data 

The aleatoric and epistemic uncertainty of the quantitative parameters varied because of 

applying OD-data to the trained BNN.  Dejene et al. [20]  showed uncertainty evaluation 
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of OD-NL, OD-AIF and OD-Δ𝑡 (Figure 4.3., (taken from Dejene et al., 2023 [20])). The 

epistemic uncertainty of the quantitative parameters for the OD-data increased signifi-

cantly (p<0.001) compared to the ID-data for all the OD cases. Aleatoric uncertainties 

increased for OD-AIF and OD-Δ𝑡 and decreased for OD-NLs. 

 

 

Figure 4.3.   ktrans aleatoric uncertainty (σa) and epistemic (σe) uncertainty for OD-NLs (a), (d), OD-AIFs (b), (e), and  OD-Δt (c), (f) 
(taken from Dejene et al., 2023 [20]). 

 

4.2  Evaluation on simulated Data  

4.2.1 Parameter estimation 

In Figure 4.4. (taken from Dejene et al., 2023 [20]), we presented parameter maps ob-

tained by applying the NLLS-fit and BNN on DCE-MR scans of in-vivo data. Bayesian 

Neural Network provided parameter estimates more robust to noise in the input concen-

tration curves for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝 than the NLLS-fit. The region-of-interest (ROI) assess-

ment for the tumor lesion and the healthy region for the two methods are shown in Figure 

4.5. (Adapted from Dejene et al., 2023 [20]). Region-of-interest for tumor lesions yielded 

high 𝑘𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑝 values and low 𝑣𝑒 values in both the NLLS fit and BNN estimation. For 
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NLLS fit, a large variance of the parameters was observed, especially for 𝑘𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 in 

the tumor lesion and healthy tissue, respectively. 

 

The parameter estimates for less training data and OD-AIF of in-vivo data showed high 

values for  𝑘𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑝 and low 𝑣𝑒 values for the tumour lesions, similar to the results of 

the ID-data (Figure 4.6. (Adapted from Dejene et al., 2023 [20])). For OD-AIF, overesti-

mation of 𝑘𝑡𝑟𝑎𝑛𝑠 was observed, while less training data resulted in parameter maps com-

parable to the ID-data. 

 

Time Cost 

The execution time for the BNN to estimate the quantitative parameter maps and the 

uncertainties was 0.1 min for a DCE-MR scan with 192 ×  192 × 47 voxels, whereas the 

execution time for the NLLS fit to yield the quantitative parameter maps was 270 min. The 

execution time was considerably improved with the BNN. 

 

 

Figure 4.4.   (a) DCE-MR scans of the liver with tumor lesions (b) ktrans, ve and vp estimated by the NLLS fit and BNN 
 (taken from Dejene et al., 2023 [20]) . 
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Figure 4.5.   ROIs in tumor and healthy regions (a), quantitative parameter estimates (ktrans, ve and vp) by the NLLS fit (b) and BNN 
(c) (taken from Dejene et al., 2023 [20]). 

 

 

 

 

Figure 4.6.   (a) DCE-MR scans of the liver with tumor lesions, (b), quantitative parameter estimates ktrans, ve and vp  for ID, ID-
𝑑𝑎𝑡𝑎 (𝜏 = 0.04) and OD-AIFs in-vivo data (taken from Dejene et al., 2023 [20]). 
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4.2.2 Uncertainty evaluation 

ID in-vivo data (𝝉 = 𝟎. 𝟎𝟐) 

Figure 4.7. and Figure 4.8. (both taken from Dejene et al., 2023 [20]) demonstrate the 

results for aleatoric and epistemic uncertainties for ID in-vivo data, respectively. 𝑘𝑡𝑟𝑎𝑛𝑠 

and 𝑣𝑝 showed higher aleatoric uncertainties in tumor lesions, while  𝑣𝑒 showed smaller 

aleatoric uncertainties for tumor lesions. A similar behaviour for the quantitative parame-

ter maps, for aleatoric and epistemic uncertainty patterns were obtained for the sagittal 

view (Figure 4.9.). Figure 4.10. (taken from Dejene et al., 2023 [20]) showed uncertainties 

of four additional patients with tumor lesions in the liver, estimated using the BNN. These 

results also demonstrated similar patterns of aleatoric and epistemic uncertainty maps for 

the tumor and healthy regions with the ID data of Figure 4.7. 

 

 

ID in-vivo data (𝝉 = 𝟎. 𝟎𝟒) 

ID in-vivo data with 𝜏 = 0.04 have nearly the same aleatoric uncertainties as the aleatoric 

uncertainty of ID-data (Figure 4.7., taken from Dejene et al., 2023 [20]). The epistemic 

uncertainties for the quantitative parameters increased for ID in-vivo data with 𝜏 = 0.04 

compared to the ID in-vivo data (Figure 4.8., taken from Dejene et al., 2023 [20]) 

 

OD in-vivo data 

The aleatoric and epistemic uncertainties of the quantitative parameters varied because 

of applying OD-AIFs to the trained BNN. Figure 4.7. (taken from Dejene et al., 2023 [20])  

shows aleatoric uncertainty evaluation of OD-data. OD-AIFs showed an increase in the 

aleatoric uncertainty compared to the ID-data. 

The results of the epistemic uncertainty evaluations are presented below (Figure 4.8., 

taken from  Dejene et al., 2023 [20]). The epistemic uncertainties for the quantitative pa-

rameters increased more for OD-AIFs than for the ID in-vivo data. 
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Figure 4.7. Aleatoric uncertainty estimates for ktrans, ve  and vp  for ID, 
 ID-𝑑𝑎𝑡𝑎 (𝜏 = 0.04) and OD-AIFs in-vivo data (taken from Dejene et al. [20], 2023). 

 

 

 

Figure 4.8. Epistemic uncertainty estimates for ktrans, ve and vp 

  for ID, ID-𝑑𝑎𝑡𝑎 (𝜏 = 0.04) and OD-AIFs in-vivo data (taken from Dejene et al., 2023 [20]). 
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Figure 4.9.  (a) DCE-MR scans of the liver with tumor lesions, (b) Quantitative parameters (𝜃), aleatoric uncertainties (𝜎𝑎), and 
epistemic uncertainties estimated for ID data. 
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Figure 4.10. DCE images for four patients with hepatic metastasis (a-d), quantitative parameter maps (e-h), aleatoric uncer-
tainty (i-l) and epistemic uncertainty (m-p) estimates for ktrans (taken from Dejene et al., 2023 [20]). 
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5 Discussion 

In this work, we have proposed a unified Bayesian framework for uncertainty quantifica-

tion of quantitative parameters from DCE-MRI scans. 

5.1  Short summary of results 

For the simulated data, the R2, RMSE and AIC values demonstrated that the proposed 

BNN performed better than the NLLS fit for all noise levels. For the in-vivo data, parameter 

estimates robust to noise in the input concentration curves (Figure 4.6., from Dejene et 

al., 2023 [20]) were obtained for the BNN in contrary to parameter estimates by the NLLS 

fit, which were prone to noise (Figure 4.5., from Dejene et al., 2023 [20]). Overall, the 

BNN performed better in terms of accuracy of parameters, robustness to noise and com-

putational speed. 

 

The quantitative parameters yielded increased aleatoric uncertainties when the noise 

level in the time-concentration curves was increased for ID data, while the effect of noise 

on the epistemic uncertainty for ID data was very little. The increase in the epistemic 

uncertainty for ID was 0.08% ± 2.7%, 0.03% ± 3.4% and 0.02% ± 5% for 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝 

on average for 0% to 15% noise levels, respectively. OD-data (i.e., OD-NLs, OD-AIFs, 

and OD-Δ𝑡) and less training data (ID-𝜏 = 0.04) on the other hand showed a higher epis-

temic uncertainty than the ID-data. OD-AIFs and OD-Δ𝑡 showed higher aleatoric uncer-

tainty and OD-NLs lower aleatoric uncertainty than the ID-data. Less training data showed 

very similar aleatoric uncertainties for the ID-data of both simulated and in-vivo experi-

ments. 

5.2  Interpretation of results 

Parameter estimation 

The quantitative parameters, 𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝  were able to differentiate between healthy 

tissue and tumor lesions (Figure 4.4. and Figure 4.5., taken from Dejene et al., 2023 [20]). 

The contrast agent diffuses with a faster rate from the plasma to the EES compartment 

for the tumor lesions, which is  physiologically accurate for tumor lesions characterized 

by massive angiogenesis and abnormal vasculature [42]. The amount of CA passing 
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through a plasma voxel is also high for the tumours while, the percentage of contrast 

agent in the extravascular extracellular space (𝑣𝑒) is low. Hence, tumour lesions showed 

high 𝑘𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑝 values  and low 𝑣𝑒 values [43]. The tumor lesions were easily detecta-

ble from the surrounding healthy tissue (Figure 4.5., taken from Dejene et al., 2023 [20]), 

especially with the 𝑘𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 maps. This showed that the obtained quantitative param-

eters characterized the physiology of healthy liver tissue and the pathophysiology of tu-

mor lesions accurately. 

 

Parameter estimation with less training data (𝜏 = 0.04) was similar with the ID-data (𝜏 =

0.02), while OD-AIF showed overestimation for 𝑘𝑡𝑟𝑎𝑛𝑠 (Figure 4.6., taken from Dejene et 

al., 2023 [20]) in case of in-vivo data. The experiment with less training data size had the 

same distribution as the training data, whereas OD-AIFs contains AIF outside the distri-

bution of the training data. The application of OD-AIF during inference led to an overesti-

mation of 𝑘𝑡𝑟𝑎𝑛𝑠, which was also reflected by an increase in the respecitve aleatoric and 

epistemic uncertainty of the in-vivo data. Similar to studies by Huang et al. [16], the AIF-

induced variation were larger for 𝑘𝑡𝑟𝑎𝑛𝑠 than other quantitative parameters. The quantita-

tive parameter map patterns were unaffected by AIF-caused variations as illustrated in 

Figure 4.6. (taken from Dejene et al., 2023 [20]). This is also consistent with studies by 

Huang et al. [16] where the variations in the AIF did not change the quantitative parameter 

map patterns. 

 

Comparison with the reference method 

BNN performed better than the NLLS fit because of its higher accuracy (low RMSE, low 

AIC and high R2) and robustness to noise (Figure 4.4., taken from Dejene et al., 2023 

[20]),  generalization ability and faster inference (0.1 min for 192 X 192 X 47  image). The 

generalization ability, i.e., BNN’s ability to adapt to unseen in-vivo data was evident from 

Figure 4.4. (taken from Dejene et al., 2023 [20]). This indicated that the BNN generalized 

the training data, and the simulated training data also mimics in-vivo data [14]. 
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Uncertainty 

ID-data 

Figure 4.1. (from Dejene et al., 2023 [20]) showed an increase in the aleatoric uncertain-

ties with increasing noise levels. This demonstrated the sensitivity of the BNN to varia-

tions of noise levels (NL). The BNN learned the training NL (i.e., NL was ID) and was able 

to detect various NLs during inference. The sensitivity of the BNN to noise is in particular 

important for in-vivo data, in which variations in NLs can occur because of variations in 

patient size, amount of injected CA dose, residual under-sampling artifacts, imperfections 

of coil sensitivities or acquisition noise [18], [19], [17]. When in-vivo data was applied to 

the BNN, the noise propagated from the TCCs to the quantitative parameters was esti-

mated by the aleatoric uncertainty. 

The increase in noise levels however showed a very small effect on the epistemic uncer-

tainty. This is expected because the test data NLs was also used for the training of the 

BNN, so the epistemic uncertainty did not increase. This is consistent with other studies 

in which the epistemic uncertainty remained unaffected for ID data [21], [36] . 

 

OD-data 

We investigated situations when less training data or OD-test data was applied to a 

trained BNN. The results showed the utility of calculating the epistemic uncertainty for the 

task of less training data and OD-data detection originating from different sources (OD-

NLs, OD-AIF and OD-Δ𝑡). This was clearly shown by an increase in the epistemic uncer-

tainty for OD data (Figure 4.3., taken from Dejene et al., 2023 [20]) in simulated and in-

vivo data (Figure 4.8., taken from Dejene et al., 2023 [20]), respectively. The epistemic 

uncertainty increased when the training data size was reduced by 50%. This was con-

sistent with other studies, where the epistemic uncertainty increased with OD-data or less 

training data size [36], [21] as a result of an increase in the variance of the posterior 

distribution. 

For ID-𝑑𝑎𝑡𝑎 (𝜏 = 0.04), although the size of the training data was reduced by half, the 

distribution of the application data was the same as the training data. Hence, the BNN 

estimated the aleatoric uncertainties for ID-𝑑𝑎𝑡𝑎 (𝜏 = 0.04) correctly both in simulated 

(Figure 4.2., from Dejene et al., 2023 [20]) and in-vivo data (Figure 4.7., from Dejene et 

al., 2023 [20]). Aleatoric uncertainties for OD-AIF and OD-Δ𝑡 increased, while the aleato-

ric uncertainty for OD-NLs decreased for simulated data. OD-AIFs for in-vivo data also 

showed an increased aleatoric uncertainty. This indicates that the aleatoric uncertainty 
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could not be estimated properly for the OD-test data. This is because the test data is not 

in the distribution of the training data; hence, the aleatoric uncertainty estimates could not 

be captured by the BNN. This is also reflected by an increase in the epistemic uncertainty 

of the corresponding OD-data. 

5.3  Embedding the results into the current state of research 

The proposed framework served two main purposes: i) it provided robust quantitative 

parameter estimates, especially for noise-affected input concentration curves that re-

sulted in inaccurate and imprecise results when using the standard NLLS fit method; and 

ii) it provided uncertainty information for the estimated quantitative parameters. Specifi-

cally, for in-vivo data, the uncertainty estimates provided additional information on the 

propagation of noise from the input to the quantitative parameters and the uncertainty of 

the trained BNN to describe the in-vivo data. 

 

As a first novelty, the BNN provided parameter estimates more robust to noise in the 

DCE-MR data and more accurate as compared to the non-linear-least-squares fitting. 

This was validated both in numerical simulations and for in-vivo data, for which an im-

proved performance was obtained both qualitatively and quantitatively.  

 

Poor performance of DL-network on OD data revealed the vulnerability of DL-networks 

when dealing with OD data [21]. Uncertainty quantification of quantitative parameters was 

the second novelty of this research, which allowed the uncertainty quantification of OD 

cases (OD-NLs, OD-Δ𝑡 and OD-AIF) for quantitative parameter estimation. Our results 

showed that OD-test data could be detected by the epistemic uncertainty. This could as-

sist in clinical decision-making because the clinical decision would not only depend on 

the quantitative parameters but also on the uncertainties. By incorporating uncertainty, 

the proposed framework provided information on the mismatch between the training and 

application data. In the direction of estimating the epistemic uncertainty, Martin et al. [44] 

proposed to use the epistemic uncertainty for highlighting areas in the vessel segmenta-

tion, which requires further validation by an expert for x-ray angiograms; Nilsen et al. [45]  

proposed a low cost approximation of the Delta method to quantify the epistemic uncer-

tainty for classification tasks of MNIST and CIFAR-10 datasets; Jones et al. [46] proposed 

to quantify the epistemic uncertainty for segmentation tasks of T1 brain images. As to our 
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knowledge, quantification of epistemic uncertainty for DCE-MR physiological parameter 

estimation has not been investigated before. 

 

The third novelty was the quantification of the epistemic uncertainty of the quantitative 

parameters when the training data size of the BNN was decreased. In this case, the TCCs 

were within the distribution of the training data, but the training data size was insufficient. 

This increased the epistemic uncertainty but the aleatoric uncertainty remained unaf-

fected, indicating the ability of the proposed framework to distinguish the uncertainty aris-

ing from unseen application data and uncertainty arising from the intrinsic ambiguity of 

the data. 

 

The fourth novelty of the proposed BNN was its ability to capture the propagation of noise 

of the input data (i.e., TCCs) to the quantitative parameters by properly estimating the 

aleatoric uncertainties. This is crucial to capture the propagation of noise from DCE-MR 

in-vivo images to the quantitative parameters. 

5.4  Strengths and weaknesses of the study(s) 

The proposed framework was found to succeed in providing uncertainty information in 

addition to the quantitative parameters. For each estimated parameter (𝑘𝑡𝑟𝑎𝑛𝑠, 𝑣𝑒 and 𝑣𝑝), 

both a voxel-based aleatoric and epistemic uncertainty were estimated. This study was 

evaluated by using simulated data and in-vivo data from five patients with hepatic metas-

tasis.  

The strengths of the work are: 

1. Generation and use of synthetic training DCE-data, which mimic the quantitative 

parameter and noise level ranges comparable to the distribution of the in-vivo data. 

Particularly, this is relevant in in-vivo cases such as for the liver, where high quality 

in-vivo training data are difficult to acquire because of large FOV, residual under-

sampling artefacts, imperfection of coil sensitivities or acquisition noise. 

2. Bolus arrival time (BAT) delays between the plasma and the liver tissue was ac-

counted for during the learning process of the DL-network, without the need for 

having the time delay as an additional output parameter. 
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3. Quantification of the epistemic uncertainty for out-of-distribution cases. One factor 

limiting the use of DL-networks is poor performance for unseen data. With epis-

temic uncertainty, we are able to quantify the reliability of quantitative parameters 

with respect to OD data to assist clinical decisions. 

4. Separation of the predictive uncertainty into aleatoric and epistemic uncertainties. 

5. Faster inference time than the conventional NLLS fitting method. 

 

One weakness of the work is that the proposed framework does not handle input with 

different acquisition lengths. The training concentration curves, and the AIFs were gen-

erated using dynamic scans at 47 time points and hence, the DL-network takes an input 

with only 47 time points. This limits the application of the proposed network to a fixed data 

length. Variable input data lengths would improve the generalizability and flexibility of the 

proposed framework. Another weakness is that the proposed framework estimates quan-

titative parameters only based on temporal information and does not consider neighbour-

hood spatial information, which may improve the robustness of quantitative parameters 

to noise in the input data. Although the epistemic uncertainty was correctly estimated for 

OD-data, the aleatoric uncertainty for OD-data was not because the aleatoric uncertainty 

was learnt by the DL-network from the training data. Hence, a proper unbiased estimation 

of the aleatoric uncertainty for OD-data would assist to determine the contribution of noise 

to uncertainty apart from the data being OD. Furthermore, the study requires further test-

ing with more patients of the same pathology to assess the benefits and limitations of the 

proposed framework. Further analysis of the effects of alternations in AIF, variations in 

noise levels, and bolus arrival time delays among different patients on quantitative pa-

rameters can assist in validating the results and assessing the future clinical applicability 

of the proposed method.  

5.5  Implications for practice and/or future research 

The motivation for this work arose from current challenges in explaining the outputs of 

DL-networks as mentioned by Geirhos et al. [47] and Saleem et al. [48]. We will discuss 

the utility of the proposed framework in clinical applications from the perspectives of per-

formance, explanation, and computational efficiency. 

The proposed BNN is robust to noise when estimating quantitative parameters as tested 

for various noise levels for simulated data. For in-vivo data, parameter estimates were 
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obtained which were more robust to noise in the input concentration curves for the BNN 

as compared to the NLLS fit. This robustness to noise is another crucial aspect to clinical 

applicability to noise affected DCE-MR in-vivo patient images. 

 

The performance of DL-networks with out-of-distribution data is one challenge for their 

utilization in clinical applications [47], [48]. The distribution of training data of DL-networks 

does not always match the distribution of the application data. The proposed framework 

provided a measure of the epistemic uncertainty, i.e., uncertainty of the trained network 

to characterize the in-vivo data. This uncertainty provided quantitative information on the 

performance of the BNN trained with a simulated data, when applied to in-vivo data. In 

future work, the application of post-hoc explainable AI (XAI) techniques [48] such as fea-

ture attribution methods, can benefit to visually assess the BNN performance when a 

mismatch between the training and application data occurs or, the effect of increasing 

noise in the time-concentration curves on the estimated quantitative parameters.  

 

The effective clinical applicability of methods usually requires short execution times and 

reasonable amount of computational resources [49]. Given the DCE-MR images and AIF 

extracted from the patient as an input, the clinician can easily and quickly (e.g., 0.1 min 

for a 192 X192X47 dynamic DCE MR scan) get an estimate of both the quantitative pa-

rameters and the uncertainties by using the proposed BNN. 

 

The training of the DL-network was performed entirely by using simulated data, meaning 

that it can be applied to DCE-MR images for organs different from the liver, without the 

need for any in-vivo training data. In the future, this framework can be adapted to other 

quantitative parameter estimation applications such as quantification of myocardial per-

fusion, blood-brain-barrier perfusion and further settings either by changing the compart-

mental model and/or the (patho)physiological parameter ranges applied to the simulation 

of the training concentration curves. 

 

In future work, uncertainty information can be used to analyse cases where the assump-

tion of the eTofts model is not met, e.g. when there is no diffusion of the CA from the 

plasma to the EES compartment. Especially in organs, such as the brain, where the 

blood-brain-barrier is intact to allow the passage of the CA between the compartments, 
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epistemic uncertainty could provide the discrepancies between the training data (with as-

sumptions of eTofts model) and the application data which do not meet the the assump-

tions of eTofts model. 

It would be valuable to further investigate the different quantitative parameters for their 

ability to differentiate between different tumour types. This would assist in the treatment 

of different tumours and development of therapeutic measures with regard to the respec-

tive tumour type [43]. This work however requires further investigation with more patients 

for safe clinical applicability. There are prevailing intra-patient and inter-patient variabili-

ties of the quantitative parameters [43] which require a broader basis of in-vivo data; and 

the same is true for potentially differentiating different tumour types.  Future improve-

ments of this framework may concentrate on the application of a dual input two-compart-

ments eTofts model [38] for simulation of training data. This can assist to obtain more 

reliable characterization of the perfusion conditions in the liver [20]
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6 Conclusions  

DL-networks have been proposed for quantitative parameter estimation to overcome the 

limitations of the conventional NLLS fitting approaches. DL-network training however is 

challenged by the lack of high quality DCE-MR images, especially in organs such as the 

liver, because of artifacts due to (respiratory) motion, residual under-sampling artifacts, 

imperfection of coil sensitivities or acquisition noise. Such noise and artifacts of in-vivo 

images, which enter the DL-network data analysis process (e.g. during training or infer-

ence) may yield inaccurate physiological parameter estimation. In addition, it is challeng-

ing to construct an in-distribution (ID) training dataset that ensures the coverage of all 

possible NLs, AIFs, or TCC distributions of in-vivo data. Out-of-distribution (OD) data 

cases, where the training data is different from the in-vivo data, may yield inaccurate and 

uncertain physiological information. 

 

In this research work, we demonstrated a novel unified Bayesian framework for estimat-

ing aleatoric and epistemic uncertainties of physiological parameters calculated from 

DCE-MR in-vivo imaging data of the liver for each voxel. Aleatoric uncertainty, which 

arises from intrinsic ambiguity of the data, was investigated with respect to noise and 

various levels of noise in the time-concentration curves for ID-data. Epistemic uncertainty, 

which arises from the discrepancy between training and application data, was investi-

gated with respect to OD-data (OD-NLs, OD-AIFs and OD-Δ𝑡) and less training data size 

in comparison to the application data (ID-𝑑𝑎𝑡𝑎 (𝜏 = 0.04)). In addition, the performance 

of NLLS fit and BNN for quantitative parameter estimation were compared, using both 

simulated and in-vivo data. 

 

The quantitative parameters yielded increased aleatoric uncertainties when the noise 

level in the time-concentration curves was increased for ID data, while the effect of noise 

on the epistemic uncertainty for ID-data was very little. Less training data size and the 

application of OD-data increased the epistemic uncertainty. However, less training data 

had very little effect on the estimation of aleatoric uncertainty, while OD-data substantially 

influenced the accurate estimation of the aleatoric uncertainty. Thus, substantial improve-

ment, in accuracy, robustness to noise and computational speed, was obtained by a 

Bayesian formulation of tracer-kinetic modelling using the proposed framework in com-

parison to the NLLS fit. 
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