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Abstract

Background. Advances in medical imaging play a major role in accurate diagnosis of
cancer and treatment planning. Dynamic contrast enhanced (DCE)-MR imaging for ex-
ample can be used to quantitatively analyse tumor and vascular structures in clinical on-
cology. The recent advances in Deep-Learning (DL) techniques had shown great pro-
gress in quantitative parameter estimation. However, quantitative analysis of DCE-MR
images is challenged by the lack of high-quality training data, the need of techniques
robust to noise in the data, and difficulty in interpretation of the quality of the obtained
guantitative parameters. In the DL-process, the intrinsic ambiguity of the data propagates
to the estimated quantitative parameters. Moreover, the training data of the DL-network
may mismatch the application data. These factors lead to uncertain parameter estimates.
Aim. The aim of this work is to develop a DL-framework for a joint estimation of quantita-
tive parameters and their respective uncertainties.

Methods. The work was composed of three tasks: i) Simulation of time-concentration
curves by applying quantitative parameters and arterial input functions extracted from in-
vivo data to a tracer-kinetic model (i.e., extended Tofts (eTofts) model); ii) Training of
Bayesian Neural network (BNN) using the simulated data; and iii) Inference of the param-
eters and uncertainties by application of in-vivo DCE-MR images. The images were ac-
quired for five male patients (56 + 8 years and, 88 + 11kg) with hepatic metastases. The
estimated quantitative parameters by the proposed framework were compared with the
reference method (i.e., non-linear-least-squares fit (NLLS fit)).

Results.The BNN provided more accurate quantitative parameter estimates (for simu-
lated data) and provided parameter estimates more robust to noise of the input concen-
tration curves (for in-vivo data) as compared to the NLLS fitting. The RMSE for the BNN
were smaller than the NLLS fit by 33% + 1.9%, 22% + 6%, 89% + 5% for k;yqns, Ve @nd
v, on overage for 0% to 15% noise levels, respectively. The AIC values for the BNN were
smaller by 28.5% + 7.5%, 12.7% + 6%, 12.2% =+ 2.7% than the NLLS fit for k;4ns, Ve and
v, on overage for 0% to 15% noise levels, respectively. The quantitative parameters
yielded increased aleatoric uncertainties when the noise level in the time-concentration
curves was increased. The epistemic uncertainty increased when there was a mismatch

between the training and application data or less training data.



Conclusion. The proposed framework provided more accurate quantitative parameter
estimates than the NLLS fit, and uncertainty estimates, which explained the intrinsic am-
biguity of the data (aleatoric uncertainty) and inadequacy of the trained DL-network to

characterize the in-vivo data (epistemic uncertainty).

Zusammenfassung

Hintergrund: Fortschritte in der medizinischen Bildgebung spielen eine wichtige Rolle in
der genauen Diagnose von Krebs und in der Behandlungsplanung. So kann die dynami-
sche kontrastmittelbasierte MRT (DCE-MRT) beispielsweise zur quantitativen Analyse
von Tumor- und GefaRRstrukturen in der klinischen Onkologie eingesetzt werden. Jingste
Fortschritte bei den Deep Learning (DL)-Methoden haben zu grof3en Fortschritten bei der
quantitativen Parameterschatzung gefuhrt. Die quantitative Analyse von DCE-MRT-Auf-
nahmen wird jedoch durch den Mangel an qualitativ hochwertigen Trainingsdaten, die
Notwendigkeit von Techniken, die gegeniber Rauschen in Daten robust sind, und die
Schwierigkeiten bei der Interpretation der Qualitat der erhaltenen quantitativen Parameter
erschwert. Bei der DL-Methode Ubertragt sich die inharente Mehrdeutigkeit der Daten auf
die geschatzten quantitativen Parameter. AuRerdem kann es vorkommen, dass die Trai-
ningsdaten nicht mit den Anwendungsdaten Ubereinstimmen. Diese Faktoren fiihren zu
unsicheren Parameterschatzungen.

Ziel: Ziel dieser Arbeit ist es, ein DL-Framework fur die gemeinsame Schatzung quanti-
tativer Parameter und deren Unsicherheiten zu entwickeln.

Verfahren: Die Arbeit bestand aus drei Aufgaben: i) Simulation von Zeit-Konzentrations-
Kurven, indem quantitative Parameter und arterielle Input-Funktionen, die aus in-vivo-
Daten extrahiert wurden, auf ein Tracer-kinetisches Modell (d. h. ein erweitertes Tofts
(eTofts)-Modell) angewendet wurden; ii) Training eines Bayes'schen Neuronalen Netz-
werks (BNN) unter Verwendung der simulierten Daten; und iii) Inferenz der Parameter
und Unsicherheiten mithilfe von in-vivo DCE-MRT-Aufnahmen. Die Aufnahmen wurden
von fuinf mannlichen Patienten (56 + 8 Jahre und 88 + 11 kg) mit Lebermetastasen ge-
macht. Die mittels des vorgeschlagenen Frameworks geschatzten quantitativen Parame-
ter wurden mit der Referenzmethode (d. h. Anpassung durch nichtlineare kleinste Quad-
rate (NLLS-Fit)) verglichen.



Ergebnisse: Das binare neuronale Netzwerk lieferte genauere quantitative Parameter-
schatzungen (fur simulierte Daten) und robustere Parameterschatzungen in Bezug auf
das Rauschen der Input-Konzentrationskurven (fir In-vivo-Daten) im Vergleich zum
NLLS-Fit. Die mittlere quadratische Abweichung (RMSE) fur das BNN war um 33 % +
1,9%,22% + 6%, 89 % + 5 % kleiner als das NLLS-Fit durchschnittlich fir 0 % bis 15 %

Rauschpegel jeweils klei ner als die das NLLS-Fit flr k;yqps, v Und v,. Die AIC-Werte fr

das BNN waren um 28,5 % + 7,5 %, 12,7 % + 6 %, 12,2 % + 2,7 % kleiner als das NLLS-
Fit far k¢yqns, ve Und v, durchschnittlich fiir 0 % bis 15 % Rauschpegel. Die aleatorische
Unsicherheit der quantitativen Parameter nahm mit steigendem Rauschpegel zu, wah-
rend die epistemische Unsicherheit zunahm, wenn es eine Diskrepanz zwischen Trai-
nings- und Anwendungsdaten gab oder weniger Trainingsdaten vorhanden waren.

Fazit: Das vorgeschlagene Framework lieferte genauere quantitative Parameterschat-
zungen als das NLLS-Fit sowie Unsicherheitsschatzungen, die eine Erklarung fur die in-
harente Mehrdeutigkeit der Daten (aleatorische Unsicherheit) und die Unzuléanglichkeit
des trainierten DL-Netzwerks zur Charakterisierung der in vivo-Daten (epistemische Un-

sicherheit) lieferten.
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1 Introduction

Cancer, which is the second leading cause of death, is a global health problem with var-
ying distribution of incidence and death rates around the world [1]. The liver is a common
site for metastasis of solid cancers such as cancers of the breast, prostate, and sarcomas,
because of its physiology which provides tumor cells a favourable environment for growth
[2]. For example, the survival analyses conducted by Zhao et al. [3] indicated that the
median overall survival of patients with breast cancer liver metastasis was 2 to 3 years.
Accurate diagnosis of cancer is essential for providing prognostic information, which has
implications for choosing an appropriate treatment plan [4]. The technological advance-
ments in medical imaging modalities such as magnetic resonance imaging (MRI), com-
puted tomography (CT) and positron emission tomography (PET), allow for the diagnosis

of tumors and treatment planning without the need of invasive procedures such as biopsy.

Dynamic contrast enhanced (DCE)-magnetic resonance imaging can be used for quali-
tative, semi-quantitative, and quantitative analysis, e.g. of the liver, to provide information
for cancer diagnosis or to monitor therapy response. DCE-MR imaging requires the ac-
quisition of T1-weighted images before, during and after the administration of a bolus of
contrast agent (CA). The injected CA changes the MR signal intensity for different tissues
differently depending on its local concentration by reducing the tissue T1 relaxation times.
Different tissues such as tumor and healthy tissues, respond to the arrival of the CA with
different enhancement patterns primarily depending on blood flow. For the qualitative as-
sessment, the signal enhancement curves are visually assessed according to the tem-
poral enhancement patterns. Qualitative analysis is easy to implement, but the visual as-
sessment is subjective and not standardized (e.g. because of different quality of the signal
enhancement curves among image acquisition, which depend on factors such as the
quality of the CA injection) [5]. Semi-quantitative evaluation techniques compute semi-
guantitative parameters, such as initial area under the curve, time to peak, and the slope
of the washout curve, to assess cancer progression and monitor therapy response [6].
These techniques are simple to implement and use. However, the physiological infor-
mation obtained by the semi-quantitative parameters is not specific and suffers from var-
iability [6].
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Quantitative analysis techniques analyse contrast agent time-concentration curves, which
are extracted from each voxel of the T1-weighted images, with tracer-kinetic models to
derive quantitative parameters, such as perfusion rate, vessel permeability, fractional vol-
ume of the plasma and tissue [7], [8]. The derived quantitative parameters can be used
for quantitative analysis of tumor and vascular structures for diagnosis or to monitor ther-
apy response in clinical oncology [6], [9]. These techniques are not subjective, and pro-

vide more accurate physiological information than semi-quantitative techniques [5].

Nevertheless, the acquisition of DCE-MR images in organs such as the liver is challeng-
ing especially because of artifacts emerging from respiratory motion. Motion induces mis-
alignment between DCE time frames, which in turn affects the accurate and reliable esti-
mation of quantitative parameters [10]. To overcome motion-related artifacts, image ac-
quisitions are usually performed during breath hold, using respiratory gating, or free
breathing techniques are applied [10]. Breath holding is challenging because some pa-
tients are unable to hold their breath long enough for the image acquisition period. Res-
piratory gating approaches are not appropriate for DCE-MR images because they do not
fully record the DCE uptake curve [11]. Free breathing techniques such as Golden-angle
RAdial Sparse Parallel (GRASP) have enabled continuous free-breathing data acquisi-
tion. However, GRASP can be prone to motion blurring especially during deep breathing
[10]. These factors limit the acquisition of high-quality data, and, thus, accurate and reli-

able estimation of quantitative parameters.

Traditionally, tracer kinetic models are fitted to the time-concentration curves (TCCs) to
extract quantitative parameters. The traditional non-linear-least-squares (NLLS) fitting
methods are dependent on parameter initializations [12], can converge to a local minima
[13], are prone to biased parameter estimates [8], are not robust to noise-affected TCCs
[12], [13] and are computationally slow [7]. More recently, Deep Learning (DL) networks
have been proposed to overcome the limitations of the NLLS fit due to its increased ac-
curacy, generalization ability and computational speed [7], [8], [12], [13], [14]. Deep
Learning based methods on the other hand are challenged by the lack of high-quality
ground truth data for training of the neural network. Especially in the liver, the large field-
of-view (FOV) and respiratory motion can impair the acquisition of high-quality data. To
generate high quality training data, Zou et al. [14] proposed to train a DL-network based

on simulated data, while Fang et al. [7], Ottens et al. [8] and Herten et al. [13] proposed
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to combine simulated and in-vivo data for DL-network training. However, the application
to in-vivo data is still affected by noise, residual under-sampling artifacts, or imperfection

of coil sensitivities.

The accurate estimation of quantitative parameters from DCE-MRI with DL-networks de-
pends on the inherent ambiguity of the data. Noise-affected input TCCs, which enter the
DL-network data analysis process may vyield inaccurate quantitative perfusion infor-
mation. Hence, definite diagnosis cannot be obtained from the estimated quantitative pa-
rameters alone in some cases, especially when the TCCs are noise-affected, or the in-
vivo data differ from the training data of the DL-network. In such cases, quantification of
the propagated aleatoric uncertainty (i.e. uncertainty in the estimated quantitative param-
eters arising from the intrinsic ambiguity of the TCCs) of the quantitative parameters is
crucial for in vivo images like the liver where for example, the residual under-sampling

artifact is substantial.

The accurate estimation of quantitative parameters from DCE-MRI also depends on the
consistency of training and application data. Quantitative analysis of DCE-MR images
with tracer-kinetic models requires the knowledge of patient-specific CA concentration in
the plasma, i.e., arterial input function (AIF). Deep Learning networks for parameter esti-
mation usually utilize AlFs extracted from several patients [7], [12], [13] or population-
based AlFs [8], [15] as a training data. Arterial input functions extracted from several
patients do not describe the possible variations in AIFs among new patients. Arterial input
function estimation techniques which assume an averaged AIF for all patients suffer from
inter- and intra-subject variations in AlF leading to large potentially errors in estimation of
guantitative parameters [6]. Studies by Huang et al. [16] observed intra-subject variation
of quantitative parameters, e.g. a coefficient of variation of 0.74 for the rate of CA transfer
between plasma and interstitial tissue (i.e. k:-q4ns) fOr unadjusted AlFs. Using an AIF from
one cohort of patients and applying it to a different cohort does not account for alterations
of the AIF caused by for example, the partial volume effect and in-flow effect [16]. Kim et
al. [17] computed the root-mean-square error (RMSE) of each individual AIF from a po-
pulation-based AIF over time. The results showed a RMSE of 0.88 + 0.48 mM of the indi-
vidual AlFs for 18 prostate cancer patients. When out-of-distribution (OD) AlFs, which are
AlFs different from the training data, are applied during inference by DL-networks, it can

lead to inaccuracies in the estimated quantitative parameters [15]. Other than the AIF, in-
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vivo application data may have noise levels (NL), TCC distributions or other intrinsic char-
acteristics of the data different from the training data of the DL-network. Noise levels in
DCE-MR images, for example show variations among patients depending on the patient
size, injected CA dose or imaging artifacts [18], [19], [20]. In other cases, the distribution
of the training data does not match the distribution of the application in-vivo data. In such

cases, the application in-vivo data substantially differs from the training data.

It is challenging to construct a training dataset that ensures the coverage of all possible
NLs, AlFs, or TCC distributions for in-vivo data. Out-of-distribution application data, where
the training data is different from the in-vivo data may yield inaccurate quantitative perfu-
sion information. Hence, the uncertainty that the trained DL-network is limited to describe
the NLs, TCCs or AlFs of in-vivo data, i.e. epistemic uncertainty, must be accounted for
reliable estimation of quantitative parameters. Epistemic uncertainty quantifies uncer-
tainty from applying OD in-vivo data and distinguishes it from other sources of uncertainty,
such as the aleatoric uncertainty. In addition, quantification of the epistemic uncertainty
helps to guide the selection of training data for example in active learning, by providing a

metric on the discrepancy between the training and application data [21].

Bliesener et al. [12] proposed to estimate the quantitative parameters and their aleatoric
uncertainties by computing the standard deviations of the posterior distributions of the
guantitative parameters for each voxel. Uncertainty was underestimated for low noise
levels and overestimated for medium and high noise levels, respectively. In addition, the
propagation of aleatoric uncertainty from the TCCs to each of the estimated quantitative
parameters and the impact on physiological information was not investigated. Epistemic
uncertainty, which arises from a lack of knowledge about the application data leading to
a discrepancy between training and application data, was not investigated. As to our
knowledge, quantification of epistemic uncertainty for DCE-MR physiological parameter

estimation has not been investigated before.

In this work, we implemented a unified Bayesian framework for quantifying both the ale-
atoric and epistemic uncertainty. The aim is to investigate how noise and OD data influ-
ence the quantitative parameter estimates. We quantify the uncertainty of estimated
quantitative parameters when OD-AIF, OD-NL, or OD-bolus arrival time (BAT) is applied

by modelling the epistemic uncertainty. We address the noise in the TCCs and variations
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in noise levels by quantifying the aleatoric uncertainty. We showed that quantifying the

uncertainties helps explaining the outputs of a DL-network and separating the different

sources of uncertainty. This work assesses the proposed framework with simulated data

and applies it to in-vivo patient data.

11

Contributions

The work in this dissertation strives to overcome the aforementioned challenges for quan-

titative analysis of DCE-MR data. A novel unified Bayesian neural network framework

was developed for quantifying the uncertainty of quantitative parameters.

The main contributions of this work are:

)

i)

ii)

A framework to estimate quantitative parameters for liver and liver lesion (patho-)
physiology was implemented;

Aleatoric uncertainty was investigated with respect to noise and various levels of
noise in the time-concentration curves. The implemented DL-network was sensi-
tive to variations of NLs, and aleatoric uncertainties for all quantitative parameters
was estimated properly;

Epistemic uncertainty was investigated by evaluating OD-NLs, OD-AIFs, and OD-
BAT delays and less training data size. The implemented DL-network estimated
the epistemic uncertainty for OD data and less training data properly; and

Clinical applicability of the proposed framework was investigated by applying in-
vivo data to the trained network and estimating quantitative parameters, aleatoric
and epistemic uncertainty without the need of ground truth in-vivo quantitative pa-

rameter values.
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2 Theory

In this chapter, we give a summary of the key concepts used for this work.

2.1 Dynamic Contrast Enhanced (DCE) MR imaging

In DCE-MR imaging, a paramagnetic contrast agent (CA), mostly gadolinium-based, is
injected to measure the signal variation of a tissue dynamically. When an exogenous CA
is administered to the tissue, the relaxation times of the tissue decreases depending on
the distribution of the CA [6]. To acquire DCE-MR images, T1-weighted MRI signal inten-
sity, S(t) is acquired dynamically at different time points: before, during and after injection
of the CA for the three spatial dimensions (X, y, z). The temporal and spatial resolutions
of the data acquisition have to be selected to capture the dynamics of the CA distribution
in time and space.

The S(t) values are converted into time-concentration curves, C(t). The conversion can
be performed by assuming a linear or non-linear relation between S(t) and C(t). The aim
of the conversion is to quantify the kinetics of the CA in the tissue of interest. Here, a
linear conversion method proposed by Medved et al. [22] was used and is also shown in
equation 1. This conversion technigue was applied to calculate the CA concentrations

from the signal intensities for the liver [19], [22].

S(6) — S(0)
cO~= Tty S(0)rer

[1]

where C(t) are the CA concentrations in the tissue, S(0) are the precontrast signal inten-

sities, ris the CA relaxivity and T; ; the native preconstrast T'1 value of a reference tissue

and S(0),.r are signal intensities of the reference tissue.

2.2 Compartmental modelling

When a CA is injected (e.g., with a catheter), the CA distributes in the vasculature first
and then leaks into extravascular space. Compartmental modelling can be used to model

parameters describing the CA movement across different compartments such as the



Theory 10

plasma and extravascular space (EES) [6]. One of the most commonly used two com-

partmental model is the Extended Tofts (eTofts) model.

Extended Tofts (eTofts) Model
Clinically relevant physiological parameters, such as transfer rate of the CA between
plasma and EES, fractional volume of the tissue and plasma are modelled by eTofts

model as shown in equation 2 [23].

k rans !
C(8) = vpCp(t) + Kerans fy Cp(t' — atye~(CE)(e=t'=a0) gy [2]

where C(t) is the tissue CA concentration change over time, C,(t) is the plasma CA con-

centration change over time, k.45 (Minutes™) is the transfer rate of the CA between

plasma and EES, v, is the fractional volume of the EES, v, is the fractional volume of the

plasma and At is the delay in the arrival of the CA at the tissue.

The eTofts model is illustrated hereunder (Figure 2.1.).

Figure 2.1. Extended Tofts (eTofts) model with plasma and EES compartment. The target quantitative parameters are transfer
rate of the CA between plasma and EES (kirans), fractional volume of the EES (v.) and fractional volume of the plasma (v,,) (own
Figure).

Arterial Input Function (AIF)

An accurate estimate of the AIF (C,(¢t) in Equation 2), is required to apply compartmental
models such as the eTofts model. Arterial Input Function can be estimated by an invasive
measurement with a catheter, using a population averaged AIF or obtaining the AIF from
the DCE-MR datasets [6]. Measuring the AlIF by blood sampling with a catheter enables
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an accurate measurement of the AIF [6]. However, the procedure is invasive and with a
poor temporal resolution. Using a population averaged AlF is simple; there is no need for
measuring the AIF for every experimental in-vivo data; and quantitative analysis can be
performed on a common AIF for all the available in-vivo data. However, inter- and intra-
subject variations in AlF are ignored leading to errors in quantitative analysis. Obtaining
the AIF from the DCE-MR images themselves is non-invasive and simple. However, a
large vessel within the FOV is required for manual extraction of the AIF from a set of

voxels within a vessel.

Bolus Arrival Time delay (BAT)

Bolus Arrival Time Delay refers to the time by which the administered contrast agent ar-
rives to a tissue, such as the plasma or the liver tissue. The BAT between the plasma and
liver tissue varies after contrast media injection. For an accurate quantitative parameter
estimation, the time delay (At) between the bolus arrival in the plasma and liver tissue
has to be accounted for (Figure 2.2). The two commonly applied methods [24] to deter-
mine At are: i) incorporate At as a free model parameter in the process of quantitative
parameter estimation, and ii) estimate BAT for the plasma and liver tissue separately.
The time delay (At) is then calculated as the difference between BAT for the plasma and
liver tissue. The advantage of the second approach is that it avoids the need of incorpo-
rating At as a fitting parameter, which would possibly reduce the stability of the fitting.
Overall, inaccurate estimation of At results in an increased uncertainty in the estimated

quantitative parameters [25].
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Figure 2.2. Bolus arrival time delay (At) between the AIF and the liver tissue (Own generated Figure).

2.3 Noise in CA concentration curves

DCE-MR images are affected by noise from various sources. Potential sources of noise
include large Field-Of-View (FOV), residual under-sampling artefacts, imperfection of coil
sensitivities or acquisition noise [18], [19], [17]. Depending on the patient size and amount
of administered CA dose, the noise level varies between patients [18], [19], [17]. When
not properly accounted for, the noise in the time-concentration curves can result in inac-

curate and imprecise quantitative parameter estimates [9].

2.4 Artificial Neural Networks (ANN)

Artificial neural networks are the basis of DL-networks. An artificial neuron, which is a unit
in ANN, functions similarly to the signaling mechanisms of neurons in the brain. A neuron
takes a set of inputs C(t;) with a particular weight w; and an additional bias b [26]. Based
on the sum of the weighted inputs, a neuron applies an activation function f to produce an
output z as shown in equation 3 (see Figure 2.3). Inputs with larger weight have more
influence on the output z. In the case of DCE-MR analysis, the C(t;) are the CA concen-

tration values at time point i.
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Figure 2.3. A representation of an artificial neuron. Given a set of weighted inputs (w;C(t;)) and a bias b, the artificial neuron
produces the output z (Own generated Figure).

A simple neural network architecture is composed of multiple neurons put together in
layers. A DL-network is a neural network consisting of more than two hidden layers. The
hidden layers are found between the input and the final output layer. Example of a DL-

network with three hidden layers is shown hereunder (Figure 2.4).

Input Layer
Hidden Layer
A

1

O Output Layer

O
<. 889

g YYYYY )
0~ 00000

Figure 2.4. A representation of a DL-network with three hidden layers (Own Generated Figure).
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Activation Functions

Activation functions are applied to introduce nonlinearity and learn complex representa-
tions. Non-linear activations enable to learn non-linear relationships between the input
and output neurons [27]. The following functions can be applied as activation functions:
sigmoid, rectified-linear unit (ReLU), leaky ReLU, tanh, logistic, softmax, softplus and

many more.

2.5 DCE Quantitative Analysis

Quantitative analysis of DCE-MR images is accomplished by fitting the DCE-MRI data or
applying DL-networks to extract quantitative information on physiology by using compart-
mental models. Main steps of quantitative DCE-MR data analysis are shown hereunder
(Figure 2.5.).

2.5.1 Conventional Non-Linear-Least-Squares (NLLS) fitting

Non-Linear-Least-Squares fit is the conventional method for tracer-kinetic modelling of
DCE-MR data. A tracer-kinetic model, such as the eTofts model is fitted to the ground
truth CA concentration curves to extract quantitative parameters. The sum of squared
residuals between the ground truth and the predicted time-concentration curves are min-
imized (as shown in equation 4) for each voxel using optimization algorithms (e.g. Nel-
derMead simplex as proposed by Saravanan et al. [28]). When the algorithm converges,

it yields a point estimate of the quantitative parameters (éj) for each voxel.

min Y11 (C;(8) — Ci(t, 6;))? [4]
where C;(t) are the ground truth concentration curves, ;(t, §;) are the predicted concen-

tration curves and §; are the estimated quantitative parameters for voxel j.

2.5.2 Deep Learning (DL) based analysis

Deep Learning-networks provide an alternative approach for quantitative analysis of
DCE-MR images. Deep Learning approaches can be distinguished into three main
groups, namely supervised, unsupervised and semi-supervised learning [29]. In super-

vised learning, a labelled data is required for training of the DL-network. Unsupervised
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learning learns hidden features from the unlabelled data, whereas semi-supervised learn-
ing makes use of some labelled training data. The quantitative analysis applied in this

work is based on a supervised DL approach.
Supervised Deep Learning (DL)

Supervised DL-networks have recently been used for quantitative parameter estimation
[14], [7]. In supervised learning, the ground truth quantitative parameter values are used
in the training process of the DL-network to guide the training.

For a training dataset D = {(Cj (t),Hj)}, a DL-network (¢) learns a mapping of an input
C;i(t) to an output, éj where |, 9] ~ 6; by using the input-output pairs from the training

dataset as shown below:

o(C;(),w) = §; [5]
where (;(t) are the concentration curves, and 67] are the estimated quantitative parame-
ters for each voxel j and w are the weights of the DL-network. The weights are optimized
by minimizing a loss function, which aims to minimize the difference between the ground
truth and estimated quantitative parameters. The formulation of the loss function (L) can

be written as:

L(6,8) = min T L@, 6(GOW) 6]
The loss function can take different forms. The different losses to be used for DL-network

training are discussed in heteroscedastic noise model and Bayesian inference sections

of this chapter.
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Figure 2.5. Main steps of quantitative DCE-MR data analysis with a NLLS fitting and DL-network (Own Generated Figure).
2.6  Uncertainty quantification

A reliable quantification of the uncertainty is one of the desirable feature of DL-networks,
especially for safety-critical applications, such as in medicine [21]. Various sources of
uncertainty occur in DL-problems, and depending on the application the handling of the
uncertainty also varies. In this work, predictive uncertainty in the context of supervised
learning is discussed. The predictive uncertainty is the uncertainty in the estimated quan-
titative parameters @1 given by the DL-network from an input data C;(t). The predictive
uncertainty is decomposed into two types of uncertainty, aleatoric and epistemic [21] as

shown in Figure 2.6.

Aleatoric uncertainty
Aleatoric uncertainty represents variations in an outcome of an experiment (éj) arising
from the intrinsic ambiguity of the data C;(t) [21]. Possible sources of this uncertainty are

for example, noise in the DCE-MR data [18], [19], [17], which propagates to the estimated
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quantitative parameters. Even with having a sufficient training data, the aleatoric uncer-

tainty of the estimated quantitative parameter (éj) can not be reduced.

Epistemic uncertainty

Epistemic uncertainty represents uncertainty arising from lack of knowledge about the
application data and is reduced by increasing the size of the training data [21]. Epistemic
uncertainty describes cases where the training data is insufficient to accurately represent
the data distribution. There are different methods to quantify the epistemic uncertainty
such as Gaussian processes, Ensemble methods, Monte Carlo drop out and Bayesian
neural networks [30]. In section 2.8., the Bayesian networks, which are applied in this

work are discussed.

[ ¢ Training Data —— Ground truth ]
*y
*
High aleatoric Low aleatoric
uncertainty s uncertainty
Lo Jsarlle High epistemic Low epistemic
uncertainty - uncertainty ' | |_uncertainty

Figure 2.6. Aleatoric and epistemic uncertainty with respect to intrinsic ambiguity and size of training data, respectively (Own
GeneratedFigure).

2.7 Heteroscedastic noise model

The heteroscedastic noise model takes into account non-constant noise variance in

space and time [31]. The noise variance (O'aj) is the parameter that has to be estimated

for the quantitative parameter, 6; for each voxel j to get an accurate measure of the noise.

It can be predicted as an output of a DL-network. Several approaches have been pro-
posed in the machine learning community for modeling heteroscedastic noise. Here, we

show the noise model based on Gaussian likelihood function [31]. The heteroscedastic
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noise model, shown in equation 7 can be used as a loss function for training a DL-net-
work. When the error between the reference parameter 6; and estimated parameter 9,-
increases, the impact of the uncertainty 7y becomes large as shown in the first term. The
log (Ga,-) controls 7y from becoming infinitely large, whereas the log(2m) denotes a con-
stant from the Gaussian likelihood function [31].

0;-0;

Ta;

2
L=m¢;n§z;-‘=1( ) + i log (0) +5log @m)  [7]

where 6; are the reference parameters, 9] are the predicted parameters and Ta; is the

standard deviation of the noise for each voxel j. ¢ is the DL-network with layer weights to
be minimized. For the quantitative parameter estimation task, the problem is presented

as a voxel-wise estimation of the uncertainty.

2.8 Bayesian Neural Networks (BNN)

Bayesian networks learn a probability distribution for the weights of neural networks.
The core of any Bayesian approach is the computation of a posterior distribution by using
the Bayes’ rule [32] (equation 8).

C w
p(w|C(t)) = % [8]

where p(w) are the priors for the weights of the Bayesian network and p(C(t)) are the
probabilities of the data (i.e., concentration curves, C(t)) in tracer kinetic modeling of DCE-
MR data. However, the involved numerical integrations for computation of the posterior
distribution, p(w|C (¢)) are intractable [33]. Variational Bayesian methods apply numerical
approximations for the computation of the posterior distribution.

The aim of such variational inference methods is to maximize the agreement between
true p(w)and approximate posterior distribution g(w|pB). B is the distribution (e.g., Gauss-
ian with mean and standard deviation) to be learnt during the learning process of the
Bayesian training.

The distance between the approximate posterior distribution, g(w|fg), and the true
distribution, p(w), can be measured by applying Kullback—Leibler (KL) divergence loss

[33]. The loss function of the Bayesian network training can be written as shown below:
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L(C (), B) = argming KLIqw|B)lIp(W)] = E )3 [log p(C (D) Iw)],
which is approximated as:
L(G(®),B) = Ty log q(w'|B) — log p(w') — log p(C;(D)|w')  [9]

where w! (w! = g(w'|B)) are the network weights sampled from the posterior distribution
of the network weights to perform a Monte Carlo approximation, p(Cj(t)|Wi) is the likeli-
hood function of the data given the weights. This likelihood function can take different
forms (e.g. heteroscedastic noise model) with the aim of minimizing the difference be-
tween the ground truth and estimated quantitative parameters.

In this section we discuss Bayesian layers, activation functions, network training proce-
dure and inference which are required for a successful implementation of a Bayesian
network.

Bayesian Layers

Bayesian Layers are the building blocks of Bayesian Neural Networks (BNN). The weights
of BNN are probability distributions, where each sample from the distribution results in a
different weight configuration (see Figure 2.7.) [33]. A Bayesian Layer extends a deter-
ministic layer into a stochastic layer by including a prior distribution over the weights of
the network and learning an approximate posterior distribution. These layers capture the
uncertainty over the weights. A BNN architecture is composed of multiple neurons
stacked in Bayesian layers.
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Figure 2.7. A representation of a Bayesian neuron. Given a set of weighted inputs (wiC(t;)) and a bias b, the Bayesian neuron
produces the distribution of output z by computing the sum of the weighted inputs first and then adding the bias (Own Generated
Figure).

Network training

To find a minimum for the loss function and parameterize the distribution for the weights,
Bayesian networks compute the gradient of the loss in terms of the network weights. This
process involves two steps (Figure 2.8): i) forward pass: the input C;(t) are forward
passed to the network to compute the output parameters, 67] and the loss for this param-
eter values are computed (L;); and ii) backward pass: gradients of the loss with respect
to the probability distribution of the weights, g = (u, @) are backpropagated (e.g. with sto-
chastic gradient descent or ADAM) from the output to the input layer. These gradients are
used to update the variational parameters of the Gaussian distribution, i.e. § = (i, @),

where u is the mean and « is the standard deviation of the Gaussian distribution .
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Inference

The dataset is split into three parts: training, testing and validation dataset. The training
dataset is used to learn the parameters of the Bayesian network. The testing dataset is
used to evaluate performance of trained network on unseen data. The validation dataset

is used to evaluate if the loss values have reached a stable state. During inference, the
©, 5,

where ¢ is the trained BNN, Cjtest(t) is the concentration curve of the test data for voxel

test dataset is applied to the trained network to infer the outputs as: é} = ¢(C;

Ci(o)

Forward pass, B; = (u;, a;)

— P60 = b (CD)
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Figure 2.8. Supervised Bayesian network training with a backpropagation method (Own Generated Figure).

j, B are the probability distributions of the weights of the BNN.
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3 Methods

We proposed a unified Bayesian framework, which yields uncertainty information in ad-
dition to the quantitative physiological parameter estimates. The proposed framework is
shown hereunder (Figure 3.1) (from Dejene et al., 2023 [20]). In this chapter, we discuss
how the proposed framework was used for tracer-kinetic analysis and uncertainty quan-
tification.

| Data simulation ‘ Network training Loss function | et ]
H i ~ oo patient data H
L(1,0,0,0,00) Ji |

[ 0 =< Kerans) Ve, Vp >, AtJ %Conv1D
H {(1om0) | ﬂ ﬂx

Cp(t) conviD |}

7(5’1) -. ktrans = :
\ | {conviD |} Ve
s Y Hm w |V iy
C;>nv1D 0a — Ktrans i E
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C(t) g B ic@ Jconvip |: . 6q — Vp
P i(51) i
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i i) : Oe — Ve
C(t) = ¢ (6;At; Cp(t)) e — Vp

Figure 3.1. The proposed Bayesian framework for aleatoric and epistemic uncertainty quantification of physiological parameters.
Figure from Dejene et al., 2023 [20].

3.1 Bayesian Tracer-kinetic Analysis

Time-concentration curves were analyzed to obtain tracer-kinetic information in the form
of quantitative parametric maps. The primary goal of applying a BNN was to estimate
uncertainties of the quantitative parameter maps for each voxel. To achieve this, the BNN
combined C,(t) and C(t) as input to yield the parameters specifying the CA uptake kinet-
ics, 0 = {kyrans Ve » Vp}, aleatoric (o, — k¢rans, 0q — Ve » 0q — 1) and epistemic (o, —
ktrans, 0e — Ve , 0, — V) UNcertainties as an output on a voxel level. The BNN architecture
is shown above (Figure 3.1., taken from Dejene et al., 2023 [20]). The quantitative pa-
rameter maps 6 and the aleatoric uncertainties o, were the direct outputs of the BNN,
whereas the epistemic uncertainty o, was computed by executing the trained BNN n
times and computing the standard deviation of the n predictions.

The C,(t) and C(t) were separately convolved by one-dimensional (1D) filters with large,

medium and small sizes to extract low, medium and high temporal resolution information,
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respectively. The filter size and stride length combinations for the large, medium and
small sized filters are [10/10], [5/1] and [3/1], respectively. Outputs of the convolutional
filters for C,(t) and C(t) were concatenated and given to the first layer of the BNN as an
input. The BNN architecture used 6 fully connected Bayesian layers; each layer consisted
of 600, 400, 300, 200 and 100 and 6 neurons. For all the first five layers, Leaky rectified-
linear unit (ReLU) activation functions were applied. For the output layer, a sigmoid acti-
vation function was applied [20]. This activation function was modified before activation
to obtain values between 0 and 2 for k;-,ns 10 keep outputs in the physiology of the liver
[20]. Adam optimizer with 1e® learning rate was used to train the BNN for 200 epochs.
DCE-MRI data was analyzed using python [34]. Bayesian Neural Network was imple-
mented with TensorFlow backend [35] on a Graphics Processing Unit (GPU) workstation
(NVIDIA GeForce RTX 2080).

3.2 Bayesian uncertainty quantification

3.2.1 Aleatoric uncertainty

The noise in the TCCs is likely to propagate through the deep learning training process
required to estimate the eTofts model parameters. This affects the accuracy and precision
of the estimated quantitative parameters [9]. We applied a Gaussian heteroscedastic
noise model to handle the aleatoric uncertainty in the estimated quantitative parameters,
which were propagated from the noise of the input concentration curves to the estimated
parameters. This noise model in equation 7 was applied as a loss function for BNN train-
ing. The aleatoric uncertainty (o, — k¢rans, 04 — Ve and o, — v,,) for each of the quantita-

tive parameters (ky-qns, Ve @nd v,) is the direct output of the BNN for each voxel j.

3.2.2 Epistemic uncertainty

Epistemic uncertainty occurs if a discrepancy between the training and application data
is present [36]. It is the uncertainty arising from the inability of the DL-network to accu-
rately estimate the quantitative parameters because of OD application data (e.g., nhoise
level, AIF or At) or less straining data size, ID (t = 0.04). Bayesian neural networks learn
a Gaussian probability distribution, 8 = (u, a), for the weights to yield a distribution for the
estimated quantitative parameters. The parameter u is the mean and « is the standard

deviation of the Gaussian distribution.
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The BNN were repeated n times (n = 100) to sample estimates for the physiological pa-
rameters from the posterior distribution. The variance was the standard deviation of the
predictions when the same Bayesian network was run n different times for the same input.

The standard deviations of the BNN estimates for the n iterations were used to quantify

2

}1=1(’9\k_#§k)

the epistemic uncertainty (o,) as, o, = , Where g, is the epistemic uncer-

tainty of parameter k, 8, is the estimated parameter k, g, 1s the mean of the estimated
parameter k. The epistemic uncertainty (o, — k¢rqns, 0e — Ve and o, — v,,) for each of the
quantitative parameters (k. qns, ve and v,) was computed during inference by executing

the BNN 100 times and computing the voxel-wise standard deviation of the predictions.

3.2.3 Loss function

To jointly estimate the aleatoric and epistemic uncertainties, a combined loss function
consisting of the heteroscedastic noise model and KL-divergence loss was applied. The

combined loss [20] was written as:

S\ 2
) Ox—0y ) )
L = mm%Zi:l (—"Gk 7) +X3_,log (0gq,) + glog 2m) +X3_,log q(wL|ﬁ) —log p(wl) [10]

where k is the number of physiological parameters, w' is the i weight sample taken from

the approximate posterior distribution of the weights.

3.3 Experiments

3.3.1 Simulated Data

DCE-MRI data were simulated by applying the eTofts model on physiological parameters,

0 = {ktrans, Ve @and v,,}, incorporating BAT delay (At) and addition of a Gaussian noise.

Physiological parameters
Time-concentration curves were simulated using parameter combinations of kipgns,
v, and v, in the following ranges, k¢qns € [0,2], v, € [0,1] and v, € [0,0.3] in step size, 7=

0.02 to confine them within physiological range of the liver [20]. C,(t) from five patients
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were manually extracted from the hepatic artery. For a particular combination of param-

eter values, the C, (t) from five patients were applied during the TCCs simulation process.

A total of 75,000 TCCs were simulated for each C, (t).

Noise levels (NL)

We added Gaussian noise to mimic the noise distribution in the in-vivo data. Variations
of noise levels were added to investigate their effect on the uncertainty. A range of noise
levels with mean zero and standard deviation (A = NL * C(t)q,) [20], were added to the
TCCs. NL was the noise level in percentages and C(t) 4, = 0.59 was the maximum value

of the concentration curves.

Bolus Arrival Time delay (At)

The delay (At) between the time of CA enhancement in the plasma and liver tissue was
accounted for by shifting the AIF in ranges of three discrete time points (i.e., At €
[6s,12s,18s]). These At values were applied to simulate C(t) based on equation 2. For a
particular combination of parameter values and noise levels, the TCCs were simulated
for each At values. The shift time, At was set upto 18s to bound it in the liver physiological
BAT delay ranges [37], [38].

The contrast agent arrives earlier at the hepatic artery than the liver tissue [39]. With At
included in the simulation of TCCs, the time of initial plasma enhancement would shift to
a later time point to be matched with the time of the liver tissue enhancement. During
training, the BNN learns the temporal shifts in the C(t) due to the difference in the bolus
arrival time for different tissues. Hence, At was intrinsically incorporated in the learning
process and the effect of uncorrected BAT delay on the estimated quantitative parame-

ters was corrected.

3.3.2 In-vivo Data

The DCE-MR in-vivo image acquisition was performed by using a 3T Biograph mMR hy-
brid scanner (Siemens Healthcare, Erlangen, Germany) [40]. Imaging data for the liver
were acquired using a 3D golden-radial phase encoding (GRPE) acquisition by applying
a Cartesian sampling scheme [19]. A hepato-specific contrast agent, gadoxeate disodium
with a dose of 0.01 mmol kg~! was administered 1 min after image acquisition had begun
[19]. “The acquisition parameters were: TR/TE = 3.3 ms/1.36 ms, flip angle = 12°, FOV =



Methods 26

345 X 345 mm?, spatial resolution = 1.5 mm?, partial Fourier factor = 5/8.” [20]. Motion
corrected image reconstruction based on iterative kt-SENSE [19] was used to reconstruct
the DCE-MR images for 47 dynamic scan points. The temporal resolution was 6 seconds.
In this work, DCE-MR data from five male patients (56 + 8 years and, 88 + 11kg) with
hepatic metastases were included [19]. The study was approved by the Charité Ethics

Committee and written informed consent was provided by all patients.

3.4 Evaluation on simulated Data

The simulated data was used to train a BNN, investigate accuracy of the proposed un-
certainty estimation framework, compare physiological parameter estimates between the

NLLS fit and BNN and assess uncertainties of physiological parameter estimates.

3.4.1 Parameter estimation

We compared physiological parameters estimated by the standard NLLS fit and the pro-
posed BNN. For assessing the parameter estimation between the two methods, it was

assumed that At = 0.

Non-linear-least-squares (NLLS) fitting

We evaluated the performance of the NLLS fit on different noise levels. NLLS fit optimizes
the physiological parameters so that the eTofts model fits best matched the reference
C(t). For this, the root-mean-squared (RMSE) between the reference C(t) and predicted
C(t) are minimized using the NelderMead Simplex optimization algorithm [28] for each
voxel. This results in a single set of parameter values for each TCC in a deterministic
setting. Gaussian noise with noise levels ranges of NL € [0%, 1%, 5%, 10%, 15%] were
added to the TCCs. The initial values of the fitting for k¢,4ns, Ve, 1, and At were set to
0.8,0.1,0.01 and 0.001, respectively. The lower and upper bounds of the fitting for k;4ns,
v, U, and At were set to [0.001,0.001,0.001,0] and [2,1,1,0.4], respectively [20].

BNN estimation

The performance of the BNN was investigated for different noise levels. BNN optimizes
the physiological parameters so that the estimated parameters, 8 best matched 6. For
this, the combined loss function (Equation 10) is minimized. This results in all probable

sets of estimated parameter values, p(§|C(t)) instead of providing estimates for a single
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set of parameter values. Five BNNs are trained with each of Gaussian noise levels, NL
€ [0%, 1%, 5%, 10%, 15%]. The time-concentration curves with a NL similar to the training

NL were applied during inference for each BNN.

Evaluation metrics

The performance of NLLS fit and BNN for different NLs were compared by using quanti-
tative metrics. Root-mean-squared-errors (RMSE), R? and Akaike information criterion
(AIC) values [41] were calculated between estimated physiological parameters (i.e., by
BNN and NLLS fit) and reference parameters.

3.4.2 Uncertainty evaluation

We used the simulated DCE-MR data to train the BNN and applied it to test datasets
containing ID and OD data.

ID-data (t = 0.02)

The aim of this experiment was to investigate the change in uncertainty for variations of
ID-NLs. In-Distribution (ID) test data are TCCs similar in NL, AlF, At and 7 to the TCCs
applied to the BNN during training. We compared uncertainty estimates at various ID-NLs
(NL € [0%, 1%, 5%, 10%, 15%]). The training and testing data contain similar NLs (NL €
[0%, 1%, 5%, 10%, 15%]). T was set to 0.02. During inference, the BNN with a training

data noise level similar to the testing data noise level was applied.

ID-data (t = 0.04)

The aim of this experiment was to investigate the uncertainty when the training data size
was reduced by half. For this, the training TCCs were simulated with the same AlF, NL
and At as the test data. However, the training data has TCCs generated with 7= 0.04,

whereas the test data contain TCCs generated with 7= 0.02.

OD-data
The aim of this experiment was to investigate the uncertainty when a range of OD appli-
cation data sources (i.e., NL, 7, AIF and At) were considered. OD test data are TCCs

different either in NL, t, AIF, or At to the TCCs applied to the BNN during training. It was
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challenging to construct a training dataset that covered all possible NLs, AIF, t or At,

especially in the in-vivo setting, where the in-vivo data NLs and TCCs distribution or At

are unknown. Here, we investigated three OD application data cases, namely, OD-NL,

OD-AIF, and OD-At and less training data, ID- (z = 0.04). The training and application

data ranges are summarized and tabulated in Error! Reference source not found. (
Adapted from Dejene et al., 2023 [20]).

Table 3.1. ID and OD data experiments performed for simulated and in-vivo data (modified Table from
Dejene et al., 2023 [20])

Data Experiments | Train NL | Test NL Train Test
(Train, Test) (%) (%) (step size) (step size)
Simulated, ID-(r = 0.02) 1,5,10,15,20 | 1,5,10,15,20 0.02 0.02
Simulated ID-(t = 0.04) 5,10 5,10 0.04 0.02
OD-NL 5,10 15,20 0.02 0.02
OD-AIF 5,10 5,10 0.02 0.02
OD-At 5,10 5,10 0.02 0.02
Simulated, ID-(t = 0.02) 10,15,20 - 0.02 -
In vivo ID-(r = 0.04) 10,15,20 - 0.04 —
OD-AIF 10,15,20 - 0.02 -
NL — noise levels, ID — In distribution, OD — Out-of-distribution

. OD-NL

The effect of different NLs on the uncertainties was evaluated. The test data con-
sists of OD-NLs (15% and 20%) different from the training NLs (5% and 10%).

ii. OD-AIF

The effect of different AIF (i.e., different amplitude or BAT delays) on the uncer-

tainty was investigated. The test data consists of OD-AIF (peak amplitude broad-

ened by a factor of 2 and At =36s) different from the training AIF (no change in

amplitude and At =0).

iii. OD-At

The effect of different bolus BAT delays on the uncertainty was investigated. The

test data consists of OD-At (At = 12s) different from the training At (At = 0s).
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3.5 Evaluation of in-vivo Data

We evaluated the proposed framework on DCE-MR images of the liver to demonstrate

its applicability in in-vivo data.

3.5.1 Parameter estimation

Using in-vivo data, we compared parameter estimation by NLLS fit and BNN estimation.

Non-linear-least-squares (NLLS) fitting
We evaluated the performance of the NLLS fit on in-vivo data. The in-vivo TCCs were

fitted to the eTofts model to estimate the quantitative parameters.

BNN estimation

We evaluated the performance of the BNN on in-vivo data. The training data of the BNN
consists of data to construct a training dataset that covers reasonably all combinations of
NLs, AlF, T or At prevalent in in-vivo data. A BNN with simulated training dataset consist-
ing of NL € [10%, 15%, 20%], AlFs (taken from five patients), TCCs (r = 0.02) and At =
[0s, 65,125, 18s] was trained. The in-vivo data was applied to the trained BNN to infer the

guantitative parameters.

Time Cost

The execution time of the BNN to yield the quantitative parameters and the uncertainties
was evaluated for a DCE-MR scan of an in-vivo data with 192 x 192 X 47 voxels utilizing
the Python time module [34] on a GPU. The execution time of the NLLS fit for yielding the
quantitative parameters for this same slice was also evaluated on a CPU.

3.5.2 Uncertainty evaluation

We used the simulated DCE-MR data to train the BNN and apply it to in-vivo data con-
sisting of ID and OD data.

ID in-vivo data (t = 0.02)
The aim of this experiment was to investigate the uncertainty estimates when in-vivo ap-
plication data is applied to a BNN trained with simulated data. In-Distribution in-vivo data

are assumed to be similar in NL, AIF, t and At to the training data of the BNN. The training
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data of the BNN consists of simulated TCCs with NL € [10%, 15%, 20%], AlFs (from five
patients), T = 0.02 and At € [0s, 6s, 125, 18s].

ID in-vivo data (t = 0.04)

The aim of this experiment was to evaluate the effect of decreasing the training data size
on the uncertainty of in-vivo data. The training data of the BNN consists of simulated
TCCs with NL € [10%,15%,20%], AlIFs (from five patients), 7 =0.04 and Ate
[0s, 6s,125,18s]. A step size of T = 0.04 reduces the number of training samples by 50%

as compared to the ID training data with a step size of t = 0.02.

OD in-vivo data

The aim of this experiment was to investigate the uncertainty when OD-AIF in-vivo data
are applied to a BNN trained with simulated data. It is not practical to construct a dataset
that covers all possible combinations of NLs, AlFs, T or At. Especially the true NLs, T and
At in in-vivo data are unknown. OD-in-vivo data are TCCs different in NLs, AlFs, 7 or At
to the training data of the BNN. Since the true At and NLs in in-vivo data are unknown,
we investigate the uncertainty estimates of OD-AIF only. The training data ranges for
these experiments are summarized in tabular form (Error! Reference source not f
ound.) (taken from Dejene et al., 2023 [20]). The training data did not constitute the AIF

of the application in-vivo data.
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4 Results

4.1 Evaluation on simulated Data

4.1.1 Parameter estimation

The BNN demonstrated better performance than the NLLS fit in terms of R?, RMSE and
AIC values. Dejene et al. [20] presented the comparisons of the RMSE and R? values
between the reference and estimated parameters for the NLLS fit and BNN for different
noise levels (Table 4.1.). The RMSE of k;;qns, v and v, deteriorated with increasing NLs
from 0.27 to 0.58, 0.09 to 0.15 and 0.29 to 0.35 when the NL was increased from 1% to
15% for the NLLS fit. The RMSE of kx5, v and v, deteriorated with increasing NLs from
0.19 to 0.38, 0.06 to 0.12 and 0.01 to 0.06 when the NL was increased from 1% to 15%
for the BNN. Overall, the RMSE for the BNN were smaller than the NLLS fit by 33% +
1.9%, 22% + 6% , 89% =+ 5% for kyqns, ve and v, on overage for 0% to 15% noise levels,
respectively. The R? values for the BNN were higher than the NLLS fit. The AIC values
for the BNN were smaller by 28.5% + 7.5%, 12.7% + 6% , 12.2% + 2.7% than the NLLS

fit for k¢yqns, ve @and v, on overage for 0% to 15% noise levels, respectively.

Table 4.1. Comparison of RMSE and R2 between NLLS fit and BNN. Bold results show the lowest RMSE
and highest R2 values (taken from Dejene et al., 2023 [20]).

NLLS BNN
Noise
RMSE R? RMSE R?
k. v Vp ki, v Vp k, v Vp k, v Vy

0% 0.10 0.08 0.27 0.97 0.92 0.18 0.16 0.05 0.01 0.92 0.97 0.99
1% 0.27 0.09 0.29 0.80 0.90 0.15 0.19 0.06 0.01 0.89 0.96 0.98
5% 0.41 0.1 0.31 0.59 0.88 0.14 0.27 0.08 0.03 0.77 0.92 0.88
10% 0.51 0.12 0.33 0.42 0.83 0.10 0.34 0.10 0.05 0.65 0.88 0.70
15% 0.58 0.15 0.35 0.32 0.76 0.07 0.38 0.12 0.06 0.55 0.83 0.56

4.1.2 Uncertainty evaluation

ID-data (t = 0.02)
The aleatoric uncertainty estimates of the quantitative parameters increased with increas-
ing noise levels (Figure 4.1.) (Adapted from Dejene et al., 2023 [20]). The epistemic un-

certainty estimates of the parameters were similar between different NLs, showing very
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small differences on average compared to all NLs (i.e., 0.08 + 2.7%, 0.03 + 3.4%, 0.02 +

5% for k¢pans, Ve @and v, respectively).

0.5

0.4

Ktrans

g |
1151 0.06 /%/1
031 I e ’ I £0.04 l/
02] ' I
o1l2 [ X : b4 4 0.02 | ; -— I
v 2 ® I

0.04

0% 1% 5%  10%  15% 0% 1% 5%  10%  15% 0% 1% 5%  10%  15%
Noise levels Noise levels Noise levels

Figure 4.1. Aleatoric (0.) and epistemic (o.) uncertainty of ID-data for (a) kirans (b) Ve and (c) v, (taken from Dejene et al., 2023
[20]).

ID-data (t = 0.04)

The epistemic uncertainty of the quantitative parameters with less training data signifi-
cantly increased (p<0.001) compared to the ID-data (t = 0.02) (Figure 4.2., taken from
Dejene et al., 2023 [20]).

(a) (b)
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Figure 4.2. k;,4n aleatoric uncertainty (o,) and epistemic (o, ) for ID-data with less training data size (adapted from Dejene e
al., 2023 [20]).

OD-data
The aleatoric and epistemic uncertainty of the quantitative parameters varied because of
applying OD-data to the trained BNN. Dejene et al. [20] showed uncertainty evaluation
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of OD-NL, OD-AIF and OD-At (Figure 4.3., (taken from Dejene et al., 2023 [20])). The
epistemic uncertainty of the quantitative parameters for the OD-data increased signifi-
cantly (p<0.001) compared to the ID-data for all the OD cases. Aleatoric uncertainties
increased for OD-AIF and OD-At and decreased for OD-NLs.

(a) (b) (c)
—— ID- NL —— 0D - NL — ID- AIF —— 0D - AIF — ID-At —— OD- At
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Figure 4.3. kyans aleatoric uncertainty (o,) and epistemic (o) uncertainty for OD-NLs (a), (d), OD-AIFs (b), (e), and OD-At (c), (f)
(taken from Dejene et al., 2023 [20]).

4.2 Evaluation on simulated Data

4.2.1 Parameter estimation

In Figure 4.4. (taken from Dejene et al., 2023 [20]), we presented parameter maps ob-
tained by applying the NLLS-fit and BNN on DCE-MR scans of in-vivo data. Bayesian
Neural Network provided parameter estimates more robust to noise in the input concen-
tration curves for kyqns, v and v, than the NLLS-fit. The region-of-interest (ROI) assess-
ment for the tumor lesion and the healthy region for the two methods are shown in Figure
4.5. (Adapted from Dejene et al., 2023 [20]). Region-of-interest for tumor lesions yielded

high kqns and v, values and low v, values in both the NLLS fit and BNN estimation. For
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NLLS fit, a large variance of the parameters was observed, especially for k;4,s and v, in

the tumor lesion and healthy tissue, respectively.

The parameter estimates for less training data and OD-AIF of in-vivo data showed high
values for k;qns and v, and low v, values for the tumour lesions, similar to the results of
the ID-data (Figure 4.6. (Adapted from Dejene et al., 2023 [20])). For OD-AIF, overesti-
mation of k;,..,,s Was observed, while less training data resulted in parameter maps com-

parable to the ID-data.

Time Cost

The execution time for the BNN to estimate the quantitative parameter maps and the
uncertainties was 0.1 min for a DCE-MR scan with 192 x 192 X 47 voxels, whereas the
execution time for the NLLS fit to yield the quantitative parameter maps was 270 min. The
execution time was considerably improved with the BNN.

(b)

BNN
NLLS (ID)

Ktrans (min~1)

0.00

Figure 4.4. (a) DCE-MR scans of the liver with tumor lesions (b) kirans, Ve and vy estimated by the NLLS fit and BNN
(taken from Dejene et al., 2023 [20]) .
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Figure 4.5.
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(c) (taken from Dejene et al., 2023 [20]).

ROIs in tumor and healthy regions (a), quantitative parameter estimates (kirans, Ve and vp) by the NLLS fit (b) and BNN

Figure 4.6.
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(a) DCE-MR scans of the liver with tumor lesions, (b), quantitative parameter estimates kirans, Ve and v for ID, ID-
data (t = 0.04) and OD-AIFs in-vivo data (taken from Dejene et al., 2023 [20]).
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4.2.2 Uncertainty evaluation

ID in-vivo data (t = 0.02)

Figure 4.7. and Figure 4.8. (both taken from Dejene et al., 2023 [20]) demonstrate the
results for aleatoric and epistemic uncertainties for ID in-vivo data, respectively. ki yqns
and v, showed higher aleatoric uncertainties in tumor lesions, while v, showed smaller
aleatoric uncertainties for tumor lesions. A similar behaviour for the quantitative parame-
ter maps, for aleatoric and epistemic uncertainty patterns were obtained for the sagittal
view (Figure 4.9.). Figure 4.10. (taken from Dejene et al., 2023 [20]) showed uncertainties
of four additional patients with tumor lesions in the liver, estimated using the BNN. These
results also demonstrated similar patterns of aleatoric and epistemic uncertainty maps for

the tumor and healthy regions with the ID data of Figure 4.7.

ID in-vivo data (t = 0.04)

ID in-vivo data with T = 0.04 have nearly the same aleatoric uncertainties as the aleatoric
uncertainty of ID-data (Figure 4.7., taken from Dejene et al., 2023 [20]). The epistemic
uncertainties for the quantitative parameters increased for ID in-vivo data with T = 0.04

compared to the ID in-vivo data (Figure 4.8., taken from Dejene et al., 2023 [20])

OD in-vivo data

The aleatoric and epistemic uncertainties of the quantitative parameters varied because
of applying OD-AIFs to the trained BNN. Figure 4.7. (taken from Dejene et al., 2023 [20])
shows aleatoric uncertainty evaluation of OD-data. OD-AIFs showed an increase in the
aleatoric uncertainty compared to the ID-data.

The results of the epistemic uncertainty evaluations are presented below (Figure 4.8.,
taken from Dejene et al., 2023 [20]). The epistemic uncertainties for the quantitative pa-

rameters increased more for OD-AlFs than for the ID in-vivo data.
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Figure 4.7. Aleatoric uncertainty estimates for ktrans, ve and vp for ID,
ID-data (t = 0.04) and OD-AIFs in-vivo data (taken from Dejene et al. [20], 2023).
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Figure 4.8. Epistemic uncertainty estimates for kirans, Ve and vp
for ID, ID-data (t = 0.04) and OD-AIFs in-vivo data (taken from Dejene et al., 2023 [20]).
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Figure 4.9. (a) DCE-MR scans of the liver with tumor lesions, (b) Quantitative parameters (8), aleatoric uncertainties (g,,), and
epistemic uncertainties estimated for ID data.
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Figure 4.10. DCE images for four patients with hepatic metastasis (a-d), quantitative parameter maps (e-h), aleatoric uncer-
tainty (i-I) and epistemic uncertainty (m-p) estimates for kmans (taken from Dejene et al., 2023 [20]).
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5 Discussion

In this work, we have proposed a unified Bayesian framework for uncertainty quantifica-

tion of quantitative parameters from DCE-MRI scans.

5.1 Short summary of results

For the simulated data, the R?, RMSE and AIC values demonstrated that the proposed
BNN performed better than the NLLS fit for all noise levels. For the in-vivo data, parameter
estimates robust to noise in the input concentration curves (Figure 4.6., from Dejene et
al., 2023 [20]) were obtained for the BNN in contrary to parameter estimates by the NLLS
fit, which were prone to noise (Figure 4.5., from Dejene et al., 2023 [20]). Overall, the
BNN performed better in terms of accuracy of parameters, robustness to noise and com-

putational speed.

The quantitative parameters yielded increased aleatoric uncertainties when the noise
level in the time-concentration curves was increased for ID data, while the effect of noise
on the epistemic uncertainty for ID data was very little. The increase in the epistemic
uncertainty for ID was 0.08% =+ 2.7%, 0.03% + 3.4% and 0.02% % 5% for kqns, v, and v,
on average for 0% to 15% noise levels, respectively. OD-data (i.e., OD-NLs, OD-AIFs,
and OD-At) and less training data (ID-t = 0.04) on the other hand showed a higher epis-
temic uncertainty than the ID-data. OD-AlFs and OD-At showed higher aleatoric uncer-
tainty and OD-NLs lower aleatoric uncertainty than the ID-data. Less training data showed
very similar aleatoric uncertainties for the ID-data of both simulated and in-vivo experi-

ments.

5.2 Interpretation of results

Parameter estimation

The quantitative parameters, k4,5, Ve and v, were able to differentiate between healthy
tissue and tumor lesions (Figure 4.4. and Figure 4.5., taken from Dejene et al., 2023 [20]).
The contrast agent diffuses with a faster rate from the plasma to the EES compartment
for the tumor lesions, which is physiologically accurate for tumor lesions characterized

by massive angiogenesis and abnormal vasculature [42]. The amount of CA passing
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through a plasma voxel is also high for the tumours while, the percentage of contrast
agent in the extravascular extracellular space (v,) is low. Hence, tumour lesions showed
high kqns and v, values and low v, values [43]. The tumor lesions were easily detecta-
ble from the surrounding healthy tissue (Figure 4.5., taken from Dejene et al., 2023 [20]),
especially with the k;,,»s and v, maps. This showed that the obtained quantitative param-
eters characterized the physiology of healthy liver tissue and the pathophysiology of tu-

mor lesions accurately.

Parameter estimation with less training data (r = 0.04) was similar with the ID-data (t =
0.02), while OD-AIF showed overestimation for k;,.q,,s (Figure 4.6., taken from Dejene et
al., 2023 [20]) in case of in-vivo data. The experiment with less training data size had the
same distribution as the training data, whereas OD-AIFs contains AIF outside the distri-
bution of the training data. The application of OD-AIF during inference led to an overesti-
mation of k;..ns, Which was also reflected by an increase in the respecitve aleatoric and
epistemic uncertainty of the in-vivo data. Similar to studies by Huang et al. [16], the AlF-
induced variation were larger for k;..,s than other quantitative parameters. The quantita-
tive parameter map patterns were unaffected by AlF-caused variations as illustrated in
Figure 4.6. (taken from Dejene et al., 2023 [20]). This is also consistent with studies by
Huang et al. [16] where the variations in the AIF did not change the quantitative parameter

map patterns.

Comparison with the reference method

BNN performed better than the NLLS fit because of its higher accuracy (low RMSE, low
AIC and high R?) and robustness to noise (Figure 4.4., taken from Dejene et al., 2023
[20]), generalization ability and faster inference (0.1 min for 192 X 192 X 47 image). The
generalization ability, i.e., BNN’s ability to adapt to unseen in-vivo data was evident from
Figure 4.4. (taken from Dejene et al., 2023 [20]). This indicated that the BNN generalized
the training data, and the simulated training data also mimics in-vivo data [14].
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Uncertainty

ID-data

Figure 4.1. (from Dejene et al., 2023 [20]) showed an increase in the aleatoric uncertain-
ties with increasing noise levels. This demonstrated the sensitivity of the BNN to varia-
tions of noise levels (NL). The BNN learned the training NL (i.e., NL was ID) and was able
to detect various NLs during inference. The sensitivity of the BNN to noise is in particular
important for in-vivo data, in which variations in NLs can occur because of variations in
patient size, amount of injected CA dose, residual under-sampling artifacts, imperfections
of coil sensitivities or acquisition noise [18], [19], [17]. When in-vivo data was applied to
the BNN, the noise propagated from the TCCs to the quantitative parameters was esti-
mated by the aleatoric uncertainty.

The increase in noise levels however showed a very small effect on the epistemic uncer-
tainty. This is expected because the test data NLs was also used for the training of the
BNN, so the epistemic uncertainty did not increase. This is consistent with other studies

in which the epistemic uncertainty remained unaffected for ID data [21], [36] .

OD-data

We investigated situations when less training data or OD-test data was applied to a
trained BNN. The results showed the utility of calculating the epistemic uncertainty for the
task of less training data and OD-data detection originating from different sources (OD-
NLs, OD-AIF and OD-At). This was clearly shown by an increase in the epistemic uncer-
tainty for OD data (Figure 4.3., taken from Dejene et al., 2023 [20]) in simulated and in-
vivo data (Figure 4.8., taken from Dejene et al., 2023 [20]), respectively. The epistemic
uncertainty increased when the training data size was reduced by 50%. This was con-
sistent with other studies, where the epistemic uncertainty increased with OD-data or less
training data size [36], [21] as a result of an increase in the variance of the posterior
distribution.

For ID-data (t = 0.04), although the size of the training data was reduced by half, the
distribution of the application data was the same as the training data. Hence, the BNN
estimated the aleatoric uncertainties for ID-data (t = 0.04) correctly both in simulated
(Figure 4.2., from Dejene et al., 2023 [20]) and in-vivo data (Figure 4.7., from Dejene et
al., 2023 [20]). Aleatoric uncertainties for OD-AIF and OD-At increased, while the aleato-
ric uncertainty for OD-NLs decreased for simulated data. OD-AIFs for in-vivo data also
showed an increased aleatoric uncertainty. This indicates that the aleatoric uncertainty
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could not be estimated properly for the OD-test data. This is because the test data is not
in the distribution of the training data; hence, the aleatoric uncertainty estimates could not
be captured by the BNN. This is also reflected by an increase in the epistemic uncertainty
of the corresponding OD-data.

5.3 Embedding the results into the current state of research

The proposed framework served two main purposes: i) it provided robust quantitative
parameter estimates, especially for noise-affected input concentration curves that re-
sulted in inaccurate and imprecise results when using the standard NLLS fit method; and
ii) it provided uncertainty information for the estimated quantitative parameters. Specifi-
cally, for in-vivo data, the uncertainty estimates provided additional information on the
propagation of noise from the input to the quantitative parameters and the uncertainty of
the trained BNN to describe the in-vivo data.

As a first novelty, the BNN provided parameter estimates more robust to noise in the
DCE-MR data and more accurate as compared to the non-linear-least-squares fitting.
This was validated both in numerical simulations and for in-vivo data, for which an im-

proved performance was obtained both qualitatively and quantitatively.

Poor performance of DL-network on OD data revealed the vulnerability of DL-networks
when dealing with OD data [21]. Uncertainty quantification of quantitative parameters was
the second novelty of this research, which allowed the uncertainty quantification of OD
cases (OD-NLs, OD-At and OD-AIF) for quantitative parameter estimation. Our results
showed that OD-test data could be detected by the epistemic uncertainty. This could as-
sist in clinical decision-making because the clinical decision would not only depend on
the quantitative parameters but also on the uncertainties. By incorporating uncertainty,
the proposed framework provided information on the mismatch between the training and
application data. In the direction of estimating the epistemic uncertainty, Martin et al. [44]
proposed to use the epistemic uncertainty for highlighting areas in the vessel segmenta-
tion, which requires further validation by an expert for x-ray angiograms; Nilsen et al. [45]
proposed a low cost approximation of the Delta method to quantify the epistemic uncer-
tainty for classification tasks of MNIST and CIFAR-10 datasets; Jones et al. [46] proposed

to quantify the epistemic uncertainty for segmentation tasks of T1 brain images. As to our
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knowledge, quantification of epistemic uncertainty for DCE-MR physiological parameter

estimation has not been investigated before.

The third novelty was the quantification of the epistemic uncertainty of the quantitative
parameters when the training data size of the BNN was decreased. In this case, the TCCs
were within the distribution of the training data, but the training data size was insufficient.
This increased the epistemic uncertainty but the aleatoric uncertainty remained unaf-
fected, indicating the ability of the proposed framework to distinguish the uncertainty aris-
ing from unseen application data and uncertainty arising from the intrinsic ambiguity of
the data.

The fourth novelty of the proposed BNN was its ability to capture the propagation of noise
of the input data (i.e., TCCs) to the quantitative parameters by properly estimating the
aleatoric uncertainties. This is crucial to capture the propagation of noise from DCE-MR

in-vivo images to the quantitative parameters.

5.4 Strengths and weaknesses of the study(s)

The proposed framework was found to succeed in providing uncertainty information in
addition to the quantitative parameters. For each estimated parameter (k¢gns, Ve @and vy),
both a voxel-based aleatoric and epistemic uncertainty were estimated. This study was
evaluated by using simulated data and in-vivo data from five patients with hepatic metas-
tasis.

The strengths of the work are:

1. Generation and use of synthetic training DCE-data, which mimic the quantitative
parameter and noise level ranges comparable to the distribution of the in-vivo data.
Particularly, this is relevant in in-vivo cases such as for the liver, where high quality
in-vivo training data are difficult to acquire because of large FOV, residual under-
sampling artefacts, imperfection of coil sensitivities or acquisition noise.

2. Bolus arrival time (BAT) delays between the plasma and the liver tissue was ac-
counted for during the learning process of the DL-network, without the need for

having the time delay as an additional output parameter.
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3. Quantification of the epistemic uncertainty for out-of-distribution cases. One factor
limiting the use of DL-networks is poor performance for unseen data. With epis-
temic uncertainty, we are able to quantify the reliability of quantitative parameters
with respect to OD data to assist clinical decisions.

4. Separation of the predictive uncertainty into aleatoric and epistemic uncertainties.

5. Faster inference time than the conventional NLLS fitting method.

One weakness of the work is that the proposed framework does not handle input with
different acquisition lengths. The training concentration curves, and the AlFs were gen-
erated using dynamic scans at 47 time points and hence, the DL-network takes an input
with only 47 time points. This limits the application of the proposed network to a fixed data
length. Variable input data lengths would improve the generalizability and flexibility of the
proposed framework. Another weakness is that the proposed framework estimates quan-
titative parameters only based on temporal information and does not consider neighbour-
hood spatial information, which may improve the robustness of quantitative parameters
to noise in the input data. Although the epistemic uncertainty was correctly estimated for
OD-data, the aleatoric uncertainty for OD-data was not because the aleatoric uncertainty
was learnt by the DL-network from the training data. Hence, a proper unbiased estimation
of the aleatoric uncertainty for OD-data would assist to determine the contribution of noise
to uncertainty apart from the data being OD. Furthermore, the study requires further test-
ing with more patients of the same pathology to assess the benefits and limitations of the
proposed framework. Further analysis of the effects of alternations in AlF, variations in
noise levels, and bolus arrival time delays among different patients on quantitative pa-
rameters can assist in validating the results and assessing the future clinical applicability
of the proposed method.

5.5 Implications for practice and/or future research

The motivation for this work arose from current challenges in explaining the outputs of
DL-networks as mentioned by Geirhos et al. [47] and Saleem et al. [48]. We will discuss
the utility of the proposed framework in clinical applications from the perspectives of per-
formance, explanation, and computational efficiency.

The proposed BNN is robust to noise when estimating quantitative parameters as tested

for various noise levels for simulated data. For in-vivo data, parameter estimates were
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obtained which were more robust to noise in the input concentration curves for the BNN
as compared to the NLLS fit. This robustness to noise is another crucial aspect to clinical

applicability to noise affected DCE-MR in-vivo patient images.

The performance of DL-networks with out-of-distribution data is one challenge for their
utilization in clinical applications [47], [48]. The distribution of training data of DL-networks
does not always match the distribution of the application data. The proposed framework
provided a measure of the epistemic uncertainty, i.e., uncertainty of the trained network
to characterize the in-vivo data. This uncertainty provided quantitative information on the
performance of the BNN trained with a simulated data, when applied to in-vivo data. In
future work, the application of post-hoc explainable Al (XAl) techniques [48] such as fea-
ture attribution methods, can benefit to visually assess the BNN performance when a
mismatch between the training and application data occurs or, the effect of increasing

noise in the time-concentration curves on the estimated quantitative parameters.

The effective clinical applicability of methods usually requires short execution times and
reasonable amount of computational resources [49]. Given the DCE-MR images and AlF
extracted from the patient as an input, the clinician can easily and quickly (e.g., 0.1 min
for a 192 X192X47 dynamic DCE MR scan) get an estimate of both the quantitative pa-
rameters and the uncertainties by using the proposed BNN.

The training of the DL-network was performed entirely by using simulated data, meaning
that it can be applied to DCE-MR images for organs different from the liver, without the
need for any in-vivo training data. In the future, this framework can be adapted to other
guantitative parameter estimation applications such as quantification of myocardial per-
fusion, blood-brain-barrier perfusion and further settings either by changing the compart-
mental model and/or the (patho)physiological parameter ranges applied to the simulation

of the training concentration curves.

In future work, uncertainty information can be used to analyse cases where the assump-
tion of the eTofts model is not met, e.g. when there is no diffusion of the CA from the
plasma to the EES compartment. Especially in organs, such as the brain, where the

blood-brain-barrier is intact to allow the passage of the CA between the compartments,



Discussion 47

epistemic uncertainty could provide the discrepancies between the training data (with as-
sumptions of eTofts model) and the application data which do not meet the the assump-
tions of eTofts model.

It would be valuable to further investigate the different quantitative parameters for their
ability to differentiate between different tumour types. This would assist in the treatment
of different tumours and development of therapeutic measures with regard to the respec-
tive tumour type [43]. This work however requires further investigation with more patients
for safe clinical applicability. There are prevailing intra-patient and inter-patient variabili-
ties of the quantitative parameters [43] which require a broader basis of in-vivo data; and
the same is true for potentially differentiating different tumour types. Future improve-
ments of this framework may concentrate on the application of a dual input two-compart-
ments eTofts model [38] for simulation of training data. This can assist to obtain more

reliable characterization of the perfusion conditions in the liver [20]
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6 Conclusions

DL-networks have been proposed for quantitative parameter estimation to overcome the
limitations of the conventional NLLS fitting approaches. DL-network training however is
challenged by the lack of high quality DCE-MR images, especially in organs such as the
liver, because of artifacts due to (respiratory) motion, residual under-sampling artifacts,
imperfection of coil sensitivities or acquisition noise. Such noise and artifacts of in-vivo
images, which enter the DL-network data analysis process (e.g. during training or infer-
ence) may yield inaccurate physiological parameter estimation. In addition, it is challeng-
ing to construct an in-distribution (ID) training dataset that ensures the coverage of all
possible NLs, AlFs, or TCC distributions of in-vivo data. Out-of-distribution (OD) data
cases, where the training data is different from the in-vivo data, may yield inaccurate and

uncertain physiological information.

In this research work, we demonstrated a novel unified Bayesian framework for estimat-
ing aleatoric and epistemic uncertainties of physiological parameters calculated from
DCE-MR in-vivo imaging data of the liver for each voxel. Aleatoric uncertainty, which
arises from intrinsic ambiguity of the data, was investigated with respect to noise and
various levels of noise in the time-concentration curves for ID-data. Epistemic uncertainty,
which arises from the discrepancy between training and application data, was investi-
gated with respect to OD-data (OD-NLs, OD-AIFs and OD-At) and less training data size
in comparison to the application data (ID-data (t = 0.04)). In addition, the performance
of NLLS fit and BNN for quantitative parameter estimation were compared, using both

simulated and in-vivo data.

The quantitative parameters yielded increased aleatoric uncertainties when the noise
level in the time-concentration curves was increased for ID data, while the effect of noise
on the epistemic uncertainty for ID-data was very little. Less training data size and the
application of OD-data increased the epistemic uncertainty. However, less training data
had very little effect on the estimation of aleatoric uncertainty, while OD-data substantially
influenced the accurate estimation of the aleatoric uncertainty. Thus, substantial improve-
ment, in accuracy, robustness to noise and computational speed, was obtained by a
Bayesian formulation of tracer-kinetic modelling using the proposed framework in com-
parison to the NLLS fit.
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Development of the hypothesis (Edengenet Dejene, Christoph Kolbitsch): Hy-
pothesis was developed by Edengenet Dejene with the support of Christoph
Kolbitsch. Edengenet Dejene investigated the hypothesis with the analysis of nu-

merical simulations and in-vivo images.
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e Data Interpretation and Analysis (Edengenet Dejene, Christoph Kolbitsch): The
development and implementation of the BNN was performed by Edengenet De-
jene. Christoph Kolbitsch was involved in the design of the experimental setup,
discussions about interpretations and evaluations of the results. The implementa-
tion of the BNN resulted in estimates of physiological parameters and their corre-
sponding uncertainties shown in Figure 4.6., Figure 4.7. and Figure 4.8.
Edengenet Dejene, in close collaboration with Christoph Kolbitsch was able to
demonstrate a link between aleatoric uncertainty and noise inherent to the data
(Figure 4.1.), epistemic uncertainty and less training data size (Figure 4.2.) and
out-of-distribution (OD) data (Figure 4.3.).

e Clinical evaluation (Edengenet Dejene, Christoph Kolbitsch, Winfried Brenner):
Edengenet Dejene, Christoph Kolbitsch and Winfried Brenner were involved in
clinical evaluation of the results.

e Manuscript writing (Edengenet Dejene): The first draft was written by Edengenet
Dejene and revised by Christoph Kolbitsch. All co-authors have revised the final
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s Semie. Abstract

e g Objective. Physiological parameter estimation is affected by intrinsic ambiguity in the data such as

i noise and model inacouracies. The aim of this work is to providea deep learning framework for

‘=l accurate parameter anduncertainty estimates for CE-MEL in the liver. Approach. Concentration

e time curves are simulated to train a Bayesian neural network (BN ). Training of the BNN involves

minimization of aloss function that jointly mimmizes the aleatoric and epistemic uncertainties,
Uncertamty estimation is evaluated for different notse levels and for different out of distmbution (0D
cases, i.e. wherethe data during infer ence differs srongly to the data during training. The acorracy of
parameter estimates are compared toa nonlinear least squares (WLLS) fitting in numerical simulations
and im vive data of a patient suffer ing from hepatic mmor lesions. Main results. BN achieved lower
root-mean -squar ed-errors { EMSE ) than the N LLS for the simulated data. EMSE of BNN wason
overage of all noiselevels lower by 33% £ 1.9% for Ky, 22% =+ 6% for v and 89% + 5% for v, than
the MLLS. The aleatoric uncertaintics of the parameters increased with increasing notse level, whereas
theepistemic uncertaintyincreased when a BNMN was evaluated with O D data. For the in vivo data,
muor e robust parameter estimations were obtained by the BNN than the MLLS fit. In addition, the
differences between estimated parameters for healthy and tumor regions-of- interest were significant
(p =< 0.0001). Signifiance. The proposed framework allowed for acoorate parameter estimates for
quantitative DCE-MRL In addition, the BNN provided uncertainty estimates which highlighted cases
ofhigh noise and in which the training data did not match the data during inference. This is importamt
for clinical application becanseit would indicate cases in whichthe trained modd is inadequate and
additional training with an adapted training data set is required.

L. Introduction

Dynamic cont rast - nhanced ME (DCE-ME) imaging has been used as a non-invasive in wiwimaging modality
for diagnosis and treatment monitoring ofcancer by injection of a gado linium {G=d) based cont rast agent {CA)
{Chovke etal 2003, fackson et al 2007, Gurney-Champion ef al 2020, Dindar ef al 20220, Aseriesofdynamic T1-
weighted images are thenacquired to capture the termporal changes in the CA concentratio nin the tissue.

(uantitative analysis of tem poral changes {concent ration time curves, CTCs) with tracer kinetic modeling
enahlesthe estimation of quantitative physiologcal parameters, such asvascular permeability and tissue
perfusion {(Heye et ol 2016, Fangetal 221, Ottens o af 2022) These parameters have been shown to improve
diagnosisand treatment planning of various diseases { Berks et al 2021, Wang et al 2022} Nonlinear leastsquares
{MLLS) fit { Ahearn et al 2005) i conventional by used for thefitting of tracer kinetic models to the measured

& 203 The Autheon(s). Fublish ed on behalf of Institute of Physcsand Enginesring in Medicine by IOP Publishing Lad
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CTCsto estimate the physiological parameters. NLLS fitting suffers from high com putational ¢ ost{ Fang et al
2021, s strongly dependenton parameter init alization (Blisse ner etal 20207, vields pararmeter estimates with
large variance and bias (Ottens a af 202.2), and the proposed solution can corverge to local minimas leading to
inaccurate results{ Budolf atal 20220 Inaddition, intrinsic noise in the data (Bliesener ef af 20200 and errors
when messuring the arterial input function (ATF ) Klepaczho eral 20207 can introd uc e inaccuracies and degrade
precision of paramete restirmates.

Deep learning (DL hasbeen shown to improve DCE parame ter estimation corm pared to the NLLS method
due to its general ization ability and faster inference (Ottens of af 20220, Several DL-based parameter estimation
methods have been proposed { Ulas er al 2019, Klepaczhko eral 2020, Zoweral 20200, Fang eral 2021, Ottens et al
2022, Rudolf eral 2022}, These approaches only estirnate pointestimates of tracer kinetic parametes and do not
provide amy information about how reliable the parameter estimates are.

Bliesener o al proposed a DL-hased approach to estimate parameters and aleat oric uncertainties, i.e
uncertainties in the estimated parameters due to noise in the data | Bliesener eral 20200, They did notassess
epistemic uncertainties, e, uncertainties which stern from a mizsmate b between data used during trainingand
inference. Epistemnic uncertainties are especially interesting for 30 DCE-MEI in the liver, because high quality
ir wive data for training i mtawﬂahkduetaﬂ:ehtgeﬁdd-af—ﬁmandm tirne limitations due to respiratory
motion. Therefore, only sirmulated data can be used for training. If thedata used for training is very different to
the in W data where the trained modelis applied to, wrong parameter estimates can occur. Therefore, itis
impaortant to have an indicator of the reliability of the outcome of the network to detect such out-of-distribution
{00 cases, Thisindicator can then be used to identify patients where the trained model is not suitable and needs
to beadapted. In addition, estimating the AIF canbechallengingand he nce differences bebween estimated and
the true AIF also need to be detected to ensure reliable param eter estimates.

[nthis paper, we present a Bayvesian neural netwo tk (BNMN) framework foraccurate estimation of perfusion
parameters for 30 DCE-MRI ofthe liver and quant ify the aleatoric and epistemic uncertainties associated with
these parameters on a pixel-by-pixel basis for hepatic umor characterization. We investigate the uncertainty
estimation in two cases: (i) capturing of aleatoric uncertainties related tonoise and vanations of noise levelsin
the data{iijestimation ofe pistemic uncertainty resulting from noiselevels, CT Cs, inaccurate estimation ofthe
AIF or uncomected delays in the bolus arrival, which were OD. The framework is evaluated in numerical
sirmulations and applied to patients suffering from hepatic tumor lesions.

2. Methods

[nthis section, we describe the proposed parameterestination and uncertainty quantification framewaork. The
core afour approach is a BNN that emmplovsan input-de pendent heterosce dastic noise model for parameter
estimationand capturing ofaleatoric uncertainty. A variational approximation techniqueis used for modeling
epistemic uncertainty, The parameters of the BNMN are learned based on sirmulated data, The data s simulated
using an extended Tofts {eToftsh model (Tofts et al 1999) and Al Fsobtained from frvive patients DCEscan The
structure of the framewo tk isshown in figure 1.

2 1. BN M architecture

The BNM takes the ane-dimensio nal CA concentration in the plasma, C () and the CA concentration in the
tissue, C{f) simulated with thecorresponding G160, as inputs. A multiscale teraporal filter bank (Bliesener et al
2020 was applied to each of the inputs C{f and C{f) separately to intrinsically leam the relation hetween Cir)
and C{f). Bach temporal filter bank consists of three 1D convo lutio nal layers with different filter length {ie. 10,5
and 3)and stride length{ 10, 1and 1) to extract low-level, me diurn-level and high-level temporal features,
respectively.

The pre-connected temporal filter banks to the C {6 and Cif) with high, medinm and small filter szes are
intended to extract features with high, mediuwm and low ternpo ral resolution from each of the inputs,
respectively. To observe the fastdynamics of the flow of the CA at the early phase, a filter with the smallest size
and stride combination was used. This providesa high- temporal resolution information to capture the flow
{Cristina 2015, Bliesener eral 202070, With medium ternporal resolution, Le. medium filter size, longer time
scales could be observed. Thisenables theestimation of ve as the backflux of the contrastagents happens on
longer time scales {Cuenod and Balvay 201 3, Hansen eral 2019, Bliesener ot al 20200, On theother hand, the
filterswith the highestfilter and stride size provide a lowtemporal resolution information., Inlow tem poral
resolutions, contrast leakages could not be observed as they require longer time periods. The total tissue
concentration, (), which is calculated as C{f) = wC () + w00 ) becomes O ) = v O {f) when there are no
contrast leakages (Sowbronand Buckley 2013, Bliesener et al 20200, Hence, the ratio of O f) and C(f) for the low
ternpaoral resolution filters allow computation of v, when there are no contrast leakages. The out puts of the

2
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extracted temporal features from each ofthe tem poral filter banks are concatenated to fuse input information of
Colfiand (4 i asshown in figure 1.

The BNM consists of six fully connected layersas shown in ﬁgunz | which have 6, 400, 3060, 200 and 100
and & neuronsineach ofthe lavers. The network architecture in Bliesener ef al {2020) was adopted and
customized into a BRMN with two additional Layvers and output neurons specific to the application of the proposed
appraach. The netwotk depth was increased to six layers to proportional by distribute neurans in the thied, fourth
and fifth layers. Leaky rectified linear units{RELLT activation func tions were used for the first five layers to
introduce nonlinearity into the mapping and the last laver hassigmoid activation function to yield parameters in
physiological rangesofland 1. To ensure that the estimated k., values lay in physiological ranges, the sigmoid
activation function for k. estimation was costomized pre-act ivation to vield parameter values in ranges of O
and 2,

The outputs of the BNM are the posterior distribution of thee parameters.of the e Tofts model @ = {k, . v,
and v} and theiraleatoric uncertainty o, = {4, — kg, 7, — ¥eand o, — v, |, for each voxel. The eTofts model
parameters Hand aleatoric uncertainty (=) are iteratively up dated during the network training to learna
posterior distrib ution afthe parametersand aleatoric uncerainties for 8. A point estirmate of the parametes i
obtained by sam pling from the posterior distribution. In contrast, the epistemic uncertainties o, = {#: — ke,
O — veand o, — v} are notthe direct outputsofthe BNN. Inorderto obtain the epistemic uncertainty, the
trained network isrun s times {1 = 100} and the stand ard deviation of the model prediction is computed. This
quantifies the average variance ofthe model prediction. We therefore estimate, for each input Clfland C, (1), the
mean of the parameters &, the aleatoric (=) and e piste mic {7, uncertainties,

2.2, Extended tofts model

The ¢Tofts model (Tofts 1997) isa two compartmental model, which describes the flow of the contrast agent
between the extavascular extracellular space (EES) and the plasma space (vascular space). The eToftsmodel s
solved to estimat ethree physialogical parameters namely, the transfer constant { &, ..., fractional velume ofthe
EES(v,)and fractional volume of the plasma space (vl Kopm {min—"'}is the rate by which the contrast agent
diffuses from the plasma space to the EES while v and vyare the EES and plasma space volume per unit tissue
volume, respectively. The eTafts model can be written as (Tafts 1997, Heye eral 20161

Cit) = wCplt) + K J'; ' Cplr’ — Ay g B r Aty (n

where (1 1) is the time -dependent CA concentration in the tissue, Ty £) i the concentration ofthe CAin plasma
space over time fand Afis the time delay ofthe arrival of the CAatthe liver tissue.

2.3, Uncertainty quant ificat ion
[ntheproposed framework, two separate sources of uncertainty are modeled. Aleatoric unce rtainty represents
the ambiguity that existsin the data [t cannot be reduced by having more training dataasit & inherent to the

3
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data{Hillermeier and Waegerman 2021, Tanno et af 202 1, Muchen et af 2022). Epistemic uncertainty quantifies
the uncertainties in the trained network thatemerge from limited training data { Klepaczko eral 202070, This
uncertainty describes the presence of features that do not existin the training data, and can be reduced by
adapting the training data { Hollermeier and Waege man 202 [, Tanno & al 2021, Mucheneral 2022). Inthe restof
this section, we explain how these two sournces ofuncertainties are estimated.

230 Alamoric urcertainty and et osedestic nomse modd

Aheteroscedastic noise model (Glang & al 2020), which depends on the input data, is applied to quantify the
aleatoric uncertainties. We applied the heteroscedastic noise model becawse this model describesthe variance as
afunctionaf the value of the input. For the DCE-data used inthis study, the main source of inco herent “naise-
like' artefacts are resid ual unde mampling artetacts, The amplitude of these artefactsis expected to scale with the
overallamplitude of the image at each time point. The loss function of the BNN applies the heterosced astic noise
mode] to optimize the input-depe ndentvarying variance, Le. the aleatoric uncertainty, as a function of the
difference between the reference and estimated parameters. The aleatoric uncertainty is enforced to be large
when the difference between the reference and estimate d parameters is large {equation {2)). Thisersures
robustnes of the network to noise and outliers in the training data { Tannoet al 202 1) and is crucial for a robust
[CE parameter estimation in the presence of noise in the training CTCs,

Thee loss func tion given in equation | 2 uses this noise model to optimize the training o fthe BNN. During the
training process, the parameters of the ¢ Tofts model B and the aleatoric uncetainties () ofeach parameterane
bath optimized through minimization of this loss function. The loss function i asumof three terms The first
term ist.hesquam:lsumat’differeMﬁbmmem‘.hegmundtruﬂ:paramtﬂ'sﬂiandﬁthnmdpammema
divided by the aleatoric uncerainty o foreach voxel £, This denominator enforces o tobe large when the
difference between the reference and estimated parameters is large Le. high uncertainty is given tovoxels with
higherrar. While the second term prevents the spread of o from growing indefinitely, the third term %Ing(lq.-}
represents a constant from the Gawssianlikelibood function (Glang er al 20200,

=11 T

n A x
L=%E ‘9"‘9’} +E|.ug{a-.,.]l+%|u‘g{1w]. (2)
i=1

2.3 2 Episterntic uncertaimty anud bayesian i ference

Caiven the CTCs, BNMare able to quantify the episte mic uncertainties by providing a posterior distribution of
the parameter estimates. [nthis work, Bayesian inference (Mittermeier ef af 201%) is employed for capturing the
epistemic uncertainty due to insufficient training data. The exact Bayesian inference of neural network weights is
intractable. Therefore, a varational ap proximation of the true posterior distribution is required. Variational
approximation technigues represent weightsofneural networks asa probabiity distribution inst ead of point
estimates. Thus, a variational approxdmation ofthe troe posterior is given by glw| &), where ddenotes the
parameters of a Gaussian distribution learned by minimizing the variastional free e nergy shown in equation (2]
{Blundell etal 2001 5).

FIC(e), §) = argmin, KL[q{wiZ)[p{w)] — Eguwia[logp(Cir)|w)) (3)
whichcanbe approximated as
F(Cie), 8) 7 3 logaiw] ) — logpiw!) — logp(C(r)|w). )
=1

The costfunction in equation {2 has two terms, namely, the Kullback-Leibler (KL) divergence and the
likelihood function. The fisst term with the KL divergence isdata independentand is used to compute the
epistemic uncertainty by learning a posterior distribution ot he network weights, giw| 3. The prior piw)
provides information about the distribution of the weights prior to o bserving the CTCs. We have used standard
normal Gaussian priors for the weights of the BNM.

During training, we learn the parameters {mean and standard deviation) of the Gaussian distribation &= (g,
o) by minimizing the KL divergence in equation { 3). We assumed that Ffollowsa Gawssian distribution, The
second term on the other hand determines the data likelihoo d. In order to compute the likelihood function,
Maonte Cado (MC)ap proximation is performed by sampling netwark weighuhd fromm the variational poste rior
distribution (w == giw| ) asexpressed in equation (4) { Blundell etal 2015).

4
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233 Cormbmedloss function
The combined los function, shown inequation | 5), jointly optimizes the aleatoric and epistemnic uncertainties

8 — &
o,

3 : 3 m
L= lZ[ ] + 3 log(a,) + Zlogi2x) + 3 loga(wil) — logp(wh). (5
i i =1 2

=1

1 -]

The first term {a) i the heteroscedastic Gawssian noise model in equation{ 2), which s evaluated at the end of
the forward pass to capture the a eatoric uncertainty. The second term (B) is evaluated layer-wise to reduce the
ELdivergence between the approcimate posterior and prior distributions of the weights to capturethe epistemic
uncertainty (Blundell ef af 200 5),

3. Experiments

The proposed deep learning framewaork was trained on sirmulated data. We evaluated the performance with
simulated and patientdata.

3.1, Simulated DCE-MRIdata
Dhe to respiratory motion and relatively large fiel d-of-view({ FOV) during imaging, high quality 30 DCE-MRI
data of the liverischallenging to acquire. In order to overcome the lack of high quality data, we carried out
numerical simulations of CTCs to create a training data set. The eTofts mode | was applied to generate simulated
CTCa ), wsing different combinations of phamacokinetic parameters, # = (k.. , v.and v, ) and an ATF,
describing CA uptake in healthy tissue and tumaors. For each patient data, Cy(f) wasextracted from manually
placed RODon the hepatic artery. Por each C(f), we simulated 75 (M CTCs with the following parameter ranges:
ko € [0U01, 2] v, € [0.01, 1]and ¥, € [0.00, 0.3] from evenly spaced values in step size of 002 to confine them
within physiological rnges (Sourbronand Buckley 201 1, Citens efal 2022, The temporal resolution of (O f) and
Clf)was Gseconds

Moise level between patients can vary due to variation in patient size, administered contrast agent dose,
residual motion and under-sampling artefacts{ Jiao e af 2020, Ippoliti eral 2021, Pandeyeral 2021). To simulate
the effect of signal noseand residual unde r-sampling artefacts in fr vive patient data (Garpebring efal 20013,
Blieseneretaf 2020, Klepaczko o af 2020, Ottens et ol M022), Gaussian noise (i) wasadded to the CTCs, ie.
Cirhe = C{1) + my. The noise were random samples drawn from a Gawssian distribution with mean (g =),
and standard deviation:

3 = NL*C{Flgg- (6}

NLwas ascaling factor denoting noise levels (ML) in percentages and Cffimax was the maxirmim value of the
CTCs innoise-free tissues, Overall, the simulated data was used to investigate the potential of the proposed
framewaork for accurate phvsiological parameterand uncertainty estimatio non diffe rent scenarios thatmimic
i vive patient data.

3.2 Metwork tralning

The simulated CTCs were split into 80¢%, 10%and 10%% training, testing and validation dataset, respectively. The
testing dataset was used to asses the generalization ofthe model while the validation datasetwas use d to evaluate
the convergence ofthe training algarit hen ( Fang eral 20210, Furthermaore, the network weight s were initialized
with standard normal Gawssian priorsand trained with ADAM optimizer witha learning rate of le~*and mini
batches ofsize 50, The network wasimple mented in Python wsing keraslibrary with Tensorflow backend { Abadi
eral 2016) and was trained for 200iterations with a GPU workstation { NVIDLA GeForce RTX 2080). Figure 2
showed the changes in training and validation lossover epochs fora BN trained with 1 5% noise level The
gradual decrease in the training loss shows the BNN's ability to learn useful features that maps the input CTCs
into physiological parameters(Ulas et al 2009).

3.3. Patient DCE-MEI data

[Drata set from five patients with tumorlesions in the liver were used to assess the performance of the BMM trained
with simulated data DCE data of theliver were acquired usinga 3T Biograph m MR hybrid scanner{Siemens
Healthcare, Edangen, Germany) for a duration of 5 minutes after administering a bolus of 0,01 mmal kg™ of
hepato-specific contrast agent{ gadoweate disodinm). It was a continuous acquisition during free-breathing and
motion-corrected image reconstruction was used to obtain DCE images with a temparal resolution of 6seconds.
The acquisition parameters were: TR/TE= 3.3 ms/'1.36 ms, flipangle = 127, BOV=345 »x 345 mm", spatial
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Figure 2. Trainingand wlidation ks ol nedby training a BNN using CTCswith 15% naise baved.

resolution = 1.5mm?, and partial Fourier factor = 5,8, More details on the patient data acquisition pammeters
canbe found in {Tppolitief al 2019),

3.4, Bvaluation onsimukted data
The peformance of the proposed framework was evaluated by using simulated data.

F.4 1. Accuracy of pararreer estinafion

Weevaluated the accuracy of parameter estimation using the BNN for different noise levels, Ainegquation (&)
was set to (U0, 0.03, .06, 009 and 0.12, which corresponds to noise levelsof 1%, 5%, 10%%, 15% and 20/,
respectively. Arinequation{l) wasset to zero for the evaluationson the simulated data,

Metwork performnane. We quantitatively evaluated the parameterestimation by calculating the root-mean-
squamd--ermrs{B‘.hLREjande{m# 1987 values of the output of thenetworkand the reference parameters for
different noise levels Inaddition, parameter estimation was caried out witha NLLS method for comparison
purpose. MLLS fitting was implement ed using the inbuilt python minimize function. The MelderMead simplex
algorithm { Donald and Hoyd 1975 ) wasapplied to minimize the residual between the predicted and measured
CTCswoxel -wise. The initial parametersof the N LLE-ﬁtting were 08, 0.1, 0,01 and 0001 for ken s ¥ ¥ and AL
respectively. In addition, we set the lowerbounds ofthe ﬁttlngta (0001, 000 1, (e, 0 and upper boundsto [2,
Ly 1, 0 4] for Ry g ¥ ¥ annd 2, respectivelyto constrain the parameters to physiologically plausible ranges. Ar
wasset in minmtes,

We applied Akaike information crite ion (ATC) (Bozdogan 1987) to compare the model performance
between the MLLS fit and the BN on atest data. The AIC for regression models are calculated as(Banks and
Joymer 2007

AIC = nlog(e) + 2k, (7

where n is the total number of samples, £is the mean square error, and kis the total num ber of parameters
estimated by the model. The best performing model would show a lower AIC

3.4 2 Ungertim by eviluation of in-ds tribution (10 data

Wesimulated [D training data by ap plying ML £ [ 1%, 5%, 10f%, 15%, 20%%] and evaluated if thealeatoric
uncertainty wassensitive to different ML in the data. [D data represented the behavior ofthe training data. A
BMNM with ML £ [1%, 5%, 1{0¢, 1 5%, 20%] wastrained. Then, the BNM was applied to test data with a NLof 1%,
3%, 1%, 1 5% and 20¢% separately to investigate the effect of differentnoise levels on the estimated uncertainty.
The training and testing noise levels are shown intable 1. The AIF was the same fortrainingand testing,

3.4 3. Ungertam ty evaluation of out-of-di inbution (OD) data

Weevaluated uncertainty estimate for four different 0D cases (i) training data with noise levels different to the
application data (OD-MNL} i) not having enough training data (OD-CTC) (i) use ofinaccurate AIF {OD-ATF)
{iwiuncorrected delays in the bolus arrival {0D-20) The same AIF was applied for the trainingand testing data
of OD-NLand OD-CTCexperiments. For OD-AIF and OD- A rexperiments, different ALF for training and
testing were ap plied.
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Tahblel . Maoise lewedsand siep sizesapplied in training and testingof independem BNNs. Forall experiments, we have kept the trainingand
testing dataset the same. The di fleren e arethe addad N1, siepsizes and whether the ATFand AurwereIDor 0D The BN for bath the
simalated andin vive test dat were trainad hasedonsimuoloted data In addition to the parameter combing fions, dso thefigure numbersare
given where the resuls o fhe repactive evaluations areshown.

Diaga (Tran, Test) Experi menis Train {H L{% Test{HL (% Train {si=p size) Test{sepsize) Figure {4}

I 1,510, 15,30 1,510, 15,20 (iTird o 3
Limul atad, QDLNL & 10 15,20 e auar sk, i)
Zimul ated QDT 510 5,10 o4 oar b
QDAL 510 5,10 oz o 4 g
Oledur 5,10 5,10 (iTird o Ay, ()
I 10, 15,20 - (iTird - 59
Simulatad, QDT 10, 15,20 - o4 - Q7,8
Tnnvive QDAL 10, 15,20 - e - 67,8

OD-NL We investigated the impactofapplving test data with OD-NLon the uncertainty estirmate, A BNM
was trained with ML € [ 5%, 10%] and tested with individual ML of 15% and 20 (table 1 ). The AIF was the same
fortrainingand testing,

OD-CTC We evaluated how varving the size of training data influenced parameter and uncertainty
estimation. A BNNwas trained with CTCs wsing parameters ko, v and v from evenly spaced values in step
sizme of (04, (U2 and 002, respeactively. The step size for k., was increased to 004 to decrease the training size
by 50, A second BN was trained with CTCs generated from k.., voand v values with step size of(. 02 forall
parameters {ie. 3% more training data). The AIF and NL was the same fortraining and testing {table 1.

OD-AIF. We investigated the impact of applying test data with OD-AIF on the uncertainty estimate. The
reference ALF was modified to a OD-AILF to mimic errors in the estimation of the uptake of a contrast agent ina
patient. We broadened the peakamplitude of the AIF bya factor oftwo and shifted it by sixtime points (i.e. 38
seconds) togeneratean OD-AIF. In the liver, delays ofthe AIF upto 20 seconds are mostlikely considered to be
phvsiological { Mivazaki eral 2008, Chouhan eral 2006). Hence, a delay of36 s represents an OD-AIF since larger
delayare lesslikely tobe physiological The modified AIF represented an 0D or inaccurate AIF. The NL was the
same for training and testing { table 1.

-4t The sensitivity of the uncertainty estimate to the shifting of the CTCs was investigated by applving
test data with OD-Ar, The reference AlFwasshifted by two time points (ie. 12 5) to generate CTCs with OD-4r,
The ML was the same for training and testing (table 1.

344 AnaliEi

Coverage evaluation. We evaluated the use of uncertainty asa metric to measure errors of parameter estimates.
Erms s = |8 — QJDwer-e-mmput-adasﬂ:ea]ﬁa]mdtfﬁzrﬂtehenwmﬂ:eguundtrmh parameters (%) and
BMNM parameter estimates l[@,-j for each voxel i, The erros were a combination of several sourcesof uncertainties,
Hence, we computed the total uncertainty (o, = o3, + o7, ) of eachvosel iasa combination of the aleatoric

{ ) and epistemic uncertainties (o). The association between the estimated uncertainties and errors of
parameter estimates we e evaluated by computing the number of voze ks (%) wit b errors bel ow the %%
confidence interval ofthe total uncertainty, ie. & < z*a-ﬁ,whzmzwasﬂ:ecritim]m]ucaflﬂ.

3.5, Invive application
The BMN trained with simulated data was evaluated by applving it to patients.data set to estimate physiological
parameters and their uncertainties,

3.5 1. Pararater & tration

Parameter estimation was peformed for every voxel within the liver. The liver i most likely characterized by
delays of the AIF upto 20 seconds, which are considered to be physiological { Mivazaki ar af 2008, Chouhan eral
2016} We applied Af values up to 18 seconds in stepsofone time-point { #seconds) and generated CTCswith
the shifted ATFs. First, a network was trained usinga combination o PCTCs simulated with NL £ [10%, 15%,
2], Are [0s 65 125, 18 s]and five AIFs extracted from patient data. Next, physiological parameter maps
{ Ko, ¥e @ v ) were estimiated by applying the trained BNN ona DCE-MR patientdataset. During training
the BNN learns the shifts in the CTCs anising from the delays inthe arrival of the CA. Hence, the inference an
patient data will be non-uniform across differe it voxels of aliver tissue,

7
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3.5 2 Computational ast

Weevaluated the time cost of the BNN toestimate the eTofts mode | parameters, aleatoric and epistemic
uncertainties froma DCE-MR slice with 192 = 192 voxek ona GPUL Inaddition, the time cost of the NLLS
fitting for estimating the ¢ Tofts model parameters was evaluated using the Python time module (Fang & af 2021)
onaCP,

353, Ungertam ty evaluation of ID data

Wesimulated ID training data by apphying ML £ [ 107, 15%, 20%], Are [0s 635, 125, 18 5] and ATFs from five
patients, respectively, Although the trueNL is unknown in patient data, we selected the NLs for training visually
such that CT (s generated with these NL could be regarded as [D noise levels. The AlIFs of the training CTCs were
D aswe applied different & tvalues that mimic the possible ATF shiftsin the in wwdata,

354, Ungertai ty evaluation of OD data
Weevaluated uncertainm v estimates for two different OD cases: (i) not having enough training data (OD-CTC)
and (i) use of inaccurate ATF (OD-AIF).

OD-CTC We simulated an insufficient numberof training samples to investigate the influence of lack of
CTCsinthe training data set on the estimat ed uncertainty. A BNN was trained wit h simulated CT (s using
paramneters ke, ., v, and v, from evenly spaced valuesinstep size of (104, 0.02 and 0.02 and five patients ATF,
respectively. This indicates the case of 50f% less training data as compared to CTCs generated with step size of
002 forall parameters.

OD-AIF We simulated the use ofinaccurate AIFs for genemting the training sam ples and investigated their
effect on the parameters and uncertainty estimate, A BNN was trained with CTCs generated without the testing
data AIF. The patient data with this O'D-ALF for validating the BNN was a unique scan with the same acquisition
parameters asthe training dataas recommended in good machine learning practices (Aggarwal etal 2023),

355, Regions-of-Tnterest [ ROT ) analysis

We rmanually chose two ROIs, with one encompassinga turnor lesion and the ot her healthy liver tissue. The
parameter estimates for the healthyand turmor ROT by the BNN and NLLS method were companed. We
evaluated the statistical significance of difference of each parameter estimate of hoth a healthy and a tumor ROL
Inaddition, the statistical significance of differencesof parameter estimates for the tumorand normal tissue RO
was evaluated.

4, Results

4.1. Evaluation of sinmlated data

4. LI Accurgcy of parameter estirnatizn

Examplesofnoise-free and 5% no e affected reference CTCs from a test data ave shown in figure 3. The
predicted curves approximated the reference noise-free curves very well. In addition, BNN determined &y . v,
and v, parameter values close to the reference. Table I summarized the RMSEand R values for 08, 1% 5%,

Ll and 15% MLs for the NLLS method and the BNN.NLLRacMwadﬂ:ehmtRh-Lﬁ-EandMghei!i’lm]uefar
ko, for(ft noise level Forall other noise levelsand parameters, BNN achieved ].|:|1.|’-erFl:h.-I.'i-Ea=|nn:lh?ghnzrﬁ'l
valuesthan MLLS BMSE o fBNM was on average ofall noise levels by 33% = 1.9% for ke, 22% = 6% fory,
and 8% = M forv, lower than the NLLS method. In addition, NLLS was more sersitive to noise than BNN
witha performance deteriorationalready for a % noise level,

#

67



68

1oP Publsning

Plys. Med Biol 68(2023) 215018 EM Djeneeral
(a) (b) (c)
- o —— c. - o,
0.5 < o, 5 —— O |
.15 | el s
| 40| } /
liﬁ . l }
002! | .’V 1 -
F t-_, — S |
ou % ™ ST T S S TS S T S 1<
- B ot eves Heise bevels
Pigure 4 BNN estimatesof alatoric (0 and epistemic (7,) uncerainges for varying N Ls for (2) kews, v, and(c) v,

Table 2. RMSEand R between referance and estimated parameters far NLLS and BNN. Bestresults (Joneast RMSE and highest R are
shonen in bold.
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The AIC values for the BNN decreased by 28.5% =7.5%, 12.7% =6%and 12.2% =2.7% fork,, v.andv,
onaverage over all noise levels, respectively.

4.1.2. Uneertamty evaluation of ID data
Figure 4 illustrates BNN estimates of aleatoric and epistemic uncertainties for differentNLs.

The aleatoric uncertainties of the test dataincreased (p < 0.001) when NL was increased from 5% to 109,
15% and 20% as presented in figure 4 for ko, ve and v, The network yielded loweraleatoricuncertainties for
lower NLsand higher uncertainties for higher NLs Inaddition, testing a BNN with ID datachanged the
epistemic uncertainty (figure 4) by asmaller value of 0.08 = 27%, 0.03 = 3.4%, 0.02 = 5% for ke, v and v, on
average ofall noise levels, respectively. Overall, the epistemic uncertainties looksimilar forall ID test data.

4. 1.3. Uncertamty evaluation of OD data

Forall OD data, the epistemic uncertainty (figures 5(e), (f), (g) and (h)) increased as expected (p < 0.0001)
whereas the aleatoric uncertainty increased for OD-CTC (figure 5(b)), OD-AIF (figure 5{¢)) and OD- Ar(figure
5(d)). For OD-NL, it decreased significantly (p < 0.0001) asshown in figure 5(a).

4.1.4. Andysts

Coverage evaluation. A BNN tested with ID-NLs had a coverage greater than 94% for all NLs and parameters,
Ky Ve and v, assummarized in table 3. The percentage of voxels with ID-NLs significantly decreased (p < 0.05)
with increasing noise levels. For a BNN tested with OD-NLs, thecoverage decreased for the OD data(p < 0.001).

4.2 Invivo application

4.2 1. Parameter e timation

Anexemplarysliceofthe DCE-MR dataacquired at ¢ = 4.1 minshowingthe anatomy ofthe liver is displayed in
figure &(a). Physiological parameter maps estimated by the NLLS method and the trained BNN are illustrated in
figure 6(b). Tumorlesions showed high k..., and v, and lowv, values. Generally, BNN showed similar parameter
maps with the NLLS giving less noisy estimations, particularly for k.., and v,. For v,, BNN and NLLS showed
large differences. The estimat ed parameter maps for the BNN trained with OD training data isshown in

figure 7(b). Theresults for OD-CTCs and OD-AIFs also showed high k..., and v, and low v, values for tumor
lesions.
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Figure 5. Aleatoric (o) and epsemic({o) unceruintiesof k, , for OD-NL (a), (&), OD-CTC(b), (f, OD-ATF (c).(gand OD-Arid),
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Table 3. Parcentiges of vaxes with error st maeswithin e 9%
confidence intervalof the sotal uncertainty. The coverage was greaser for
DN L{shonen in bald ) ascompared 10 OD-NL.

ID-NL OD-NL
Noise lavel(NL)
0% 9 9 " - -_ -
5% » 9% 9 — — —
10% 97 9 98 - - —
15%: 95 % 2% & 9.2 5
2% ™ - “ 4 L) &%

Moreover, the DCE-MR dice of four more additional patients are llustrated in igures | ((a)—<d). The
corresponding k.., . maps estimated by the BNN for the four patientsare shown in figures | (e }{h). The tumors
showed high ke values.

4.22. Computational wst

The BNN required 0.1 min to estimate the e Tofts model parameters, aleatoric and epistemic uncertainties from
aDCE-MRslice with 192 x 192 voxek ona GPU. In contrast, the NLLS fitting required 270 min to estimate
eTofts model parametersona CPU. The BNN substantially decreased the time cost and was faster than the NLLS
fitting.

4.23. Uncertamty evaluation of ID data

The aleatoric and epistemic uncertainties of the DCE-MR slice in fignre 6(a) are separately shown in figure 8and
figure 9, respectively. Inaddition, the aleatoric and epistemicuncertainties of the four patients in figures 1 0{a)}-
(d)areshown in figures |O0(i{1) and iigures |0(m)—~{p), respectively. Similar to the aleatoric and epistemic
uncertainties of the ID data of figures 8 and ¥, the uncertainties for the four patients were high, especially in the
regions of the tumor.

4.24. Uncertamty evaluation of OD data
Aleatoric uncertainties of parameters estimated by a BNN trained with smaller training datasize (OD-CTC)
showed similar values to the results ofthe ID data asshown in figure 8 On the other hand, the aleatoric
uncertaintiesfor k ., and v, of the OD-AIFs showed increased uncertainty than the ID BNN.

However, epistemic uncertainties ofall parameters, particularly ke and vy increased for the OD data
(figure 9).
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Figure 6.(2) Exemplary shice of the DCE . MR data for a paient with hepatic umorlesons (depicedas darker’ spots in the liver)
aquiredat £ = 4.1 min, (b) Estimased parameter maps using NLLS and BNN for keya, % andv,. Eachrow representsa given
parameter and the avocolumns forech row represent the NILLSand BNN.

(b)
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Figure 7.(a) Exemplary slice of the DCE-MR data for a patient with hepatic mmorlesons (depicedas ‘darker’ spots in the liver)
aquiredat 7 = 4.1 min, (b ) estimated paramerer maps (ke . ¥,and v,) using a test dama setconastng of [D daa, OD-CTCsand OD
AlFs. Each row repreentsa given parameter andthe firg two columns for each row represent helDand OD.CTC s, while the fiird
column presents the OD-ATFs
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Figure 8. Aleatoric uncertiingies (o) ezimated by BNN for D data, OD-CTC and OD- AIF for kewa, v, andv,. Eachrowrepresentsa
gvenpaameerand e first wocalumns foreach row represent the IDand O DCTCx, while the third column presents e OD
AlFs.

4.2 5. Regions-of-interest (ROI} analyss

The RO foratumorlesion and a healthy region are shownin figure | 1(a). For the NLLS{figure 1 1(b)), k..,
and vefor thetumor showed an overlap. Inaddition, ko and v, of the tumor ovedap ped with ke, and vy of
the healthy region. High variance for the parameter estimates was observed in ke for the tumor and v, of the
healthy region. On the contrary, BNN parameter estimates for ke veand vpin the selected ROIs provided a
clear distinction and discrimination between healthy and tumor regions asshownin figure | 1{c). Differences
between healthy and tumor ROIs were significant for all parameters(p < 0.0001). Inaddition, the difference
between each parameter estimate ofboth a healthyand a tumor ROI were significant (p < 0.0001). The
difference between parameter estimates (k... ¥, and v, ) for ahealthyand tumor ROI were also significant

(p < 0.0001). Tumors were characterized by high k..., ,and v, and lowv, valuesinboth BNN and NLLS.

5. Discussion

Weimplemented a deep leaming based framework for both parameterand uncertainty estimation using
simulated data, and showed itsapplication in patients DCE-MRI data. Our proposed framework improved the
performance of parameter estimation and was more robust to noise than the NLLS method assummarized in
table 2. Moreover, BNN was able to assign each voxelits own aleatoric and epistemic uncertainty instead of
assigning global uncertainty values for certain setofsamples. Such voxel-based uncentainties provide more
reliable measurements as compared to global bounds thatareprone toeither over- or under-estimations
(Blieseneret al 2020).

BNN was sensitive to different NLs ifall the NLswere ID of thetraining data (Agure 4). Such sensitivity to
variationsin NLsisimportant when dealing with patientdata because the NLs in DCE-MR varies due to
variation in patient size, administered contrast agent dose, andresidual motion and under-sampling artefacts
(Jiao eral 2020, Ippoliti et al 2021, Pandey e al 2021). Therefore, the BNN could be applied to different NLsand
it could capture the NLs in the data.

As expected, for ID data different NLs had only a very small effect on the epistemic uncertainty with an
average change of 0.08 = 2.7%, 0.03 = 3.4%, 0.02 = 5%, for ky,,,, v. and v, overall noise levels, respectively.
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Figure 9. Epistemic unceriinties (o,) estimated by BNN for [D data, OD.CTC and OD-AlFfar keya, v andv,. Eachrow represensa
Fvenparameterand fe first swocalumns o reach row reprasent the [Dand O D.CTCx, while $he third column presentsghe OD
AlFs

The epistemicuncertainty increased when a BNN was evaluated with OD datasuchas, NLs, CTGs, AIF and Aras
illustrated in figures 5(e), (f), (g) and (h), respectively. Insufficient training data increased the variance of the
posterior distribution, thereby resulting in higher epistemic uncertainty (Tanno et al 2021).

BENN demonstrated higheraleatoric uncertainty for k., with an out-of-distribution test data AIF and Aras
depicted in figures 5(c) and (d), respectively. Thissuggests that OD data alo impacts on the estimation of the
aleatoirc uncertainty. Thenetwork vieldsless reliable output for OD data whichiscomectly reflected ina higher
episte mic uncertainty. In addition, the network cannot estimate the aleatoric uncertainty as well as for [D data
leadingto anapparent increase of the aleatoric uncertainty. Further studies are required to investigate this effect
inmore detail

Overall, our proposed BNN was able to separate the differentsources ofuncertainty which resulted from the
underlying noise or residual under-sampling artefacts (aleatoric uncertainty) or insufficient training data
{epistemic uncertainty).

The RMSE was associated with the total uncertainties and the coverage was greater than 90% for all ID-NL
and greater than 80% for OD-NL experimentasshown in table 3. The association between the errors and
uncertainty estimates were better characterzed with [D-NL because a BNN could capture the variations of NLif
the testing data was 1D of the training data. This indicates the use of uncertainty asa metric to measure errors of
parameter estimates.

Experimentson five patients data set revealed the potential of BNN trained with asimulated datasetin
estimating ks, v. and vy ofeTofts model parameters{ figures &(b) and 10). The results proved thatthe simulated
data wasa good representation of the patient dataand the BNN was well trained and generalized the training
data(Zoueta 202). Consistent to the simulations, k... 0fa patient data setshowed the highest aleat oric
uncertainty followed by v,, For the epistemic uncertainty, v, showed the lowest values. This wasalso consistent
with the results from the simulation.

The analysis with and withoutincorporating the test data AIF showed the utility of epistemic uncertainty in
explaining performance of parameter estimation with respect to insufficient training data. The epistemic
uncertainty of the parameters increased when the test data AIF was nottaken into account. Moreover, the
epistemic uncertainty increased when alarger step size was applied. This demonstrates the feasibility of epistemic

13
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Figure 10.(a)-(d) Exemplary slices of he DCE-MR datafor four pasents with hepatic mmor lesions (depiaead 2 "darker’ spotsin the
Iner), (e)-(h), estimated K, maps foreach padent, (i)-(1), deatark uncertaintias (o ) for k, . . (m){p), epistemic uncerninties (7))
for k- Bach column represent thecarrespand ing estmases fora pagent.
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Figure 11. Comparison of esti mated parameters in haalthy and tumar regions for NLLS and BNN @) ROIs, (b) NLLS and(c) BNN.
" deno e 2 smastical signi ficance Jeved of p < 0.0001.

uncertainty in explaining insufficient training data. On the other hand, aleatoric uncentainties were notaffected
by lack of training dataand could not be decreased with more training data ( Bliesener & al 2020, Tanno
eral2021).
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Parameter estimates for a tumor and a healthy ROl ofa patient data :azt{ﬁgunz L H{ch)indicated BNN's ability
to discriminate between healthyand tumor regions. Due to the cost functions convergence to local minimasand
dependence on parameter initialzation { Bliesener o af 2020, Ottens ef of 2022, Rudaolfer af 2022), parameter
estimation ofthe NLLS of the patientdata showed noisy pr-adjcr.iuns{ﬁgur-e & bl and high variance
{fgur-e L 1{b 7). The lower AICvalues of the BNN for all noise levels showed its superior performance as compared
o the MLLS fit.

In thisstudy, we used asingle input two-compartme nt ¢Tofts model The use of a dual input two-
compartrnent €Tofts model (Y ang etal 2006, Chouhan e al 2007, Livetal 2019, Lietal 20200 which takes the
arterial input function (AlF)and portal input function {(PIF) s an input would also be possible with our netwaork
designand could lead to a more accurat e estimation of perfusion in the liver. Weapplied Arvaluesupto 18 sin
stepsof one time-point {6 s)and generated CTCs with the shifted ATFsto confine it with physiological ranges of
the liver{ Mivazaki & al 2008, Chouban eral 2016), Estimation of A rasan output parameter would also be
possible with our netwark design and could lead to a more accurate estimation of perfusion in the liver. Future
work with the estimation of & ras an output parameter could enhance the reproducibility of liver DCE MR-
based physiological parameters estimation and could be ofclinical inte rest { Chouhan efal 2016). Further studies
are required to investigate the usability o f &t as a diagnostic parameter. The evaluations with five patients
showed the ahility ofthe BNN to estimate physiological parameters better than the NLLS. Mevertheless, larger
studiesare required to carry out a full assessment of the benefitsand imitations of the proposed approach in
clinical practice (Aggarwal eral 2023). One limitation of the BNN i the use ofa ﬁ:ﬂ:lt-empnm] resalution of &
seconds for simulating the training Colf) and C{r). Future workis required to improve the gene ralizability of the
BN to consider varying temporal resolutions.

The epistemic uncertainties indicated how well the BMM performed with respect to less training dataand
cases where the training data differs from the application data. One limitation of this work is, that it does not
utilise XAl methods. The use ofexplinable AL{X AL techniques would give further rationales on the estimated
parameters ofthe BMMN. One possib dity could be the use ofpost-hoc X AL techniques, such as feature attribution
migthods (Jiménez-Luna ef af 2020, Letzgusef al 2022} to investigate the trained BNN parameter estimates by
applying input CTCssimulated with OD-AIF or OD- At This can be used to visually showthe BNN's
performance with OD-data. Inaddition, the resilience ofthe trained BNN to noise in estinuating the
physialogical parameters could be visualized with feature attribution methods. By varying the noise levels inthe
input CTCs, the effect of noise in the input on the trained BNN parameter estimates can bevisualized. Future
wiotk with theapplication of theabove mentioned XAl methods could further improve the interpretability of
thie BN,

6, Conclusion

Inthis work, we were able to estimate aleatoric and e pistemic uncertainties associated with parameter estimation
of DCE-ME data, Our proposed framewaork was evaluated by numerical simulations and applied to data setof
patients suffering from hepatic tumor lesions. The proposed BNN outperformed the standard NLLS method in
accuracy ofparameter estimation and cormputational cost. In addition, BNN wasable to estimate the different
sources ofuncertainty which resulted from theunderlving noise or residual under-sampling artefacts {aleatoric
uncertainty) or insufficient training data (episternic uncertainty)l. Aleatoric uncertainties increase with
increasing NLs while, the epistemic uncertainties increase for AIFs, NLs, Aror CTCs, which were not part ofthe
training data { out -of-distribution ).

Acknowledgmenis

The autho s gratefull y acknowled ge funding from the Cerman Reseanch Poundation (GRE 2260, BIOCIC).

Data availabil ity statement

The data cannot be made publicly available upon publication due tolegal restrictions preventing unrestricted
public distribution. The data that smpar‘tﬂmﬁndingsufﬂ:issmdya re availableupon reasonable request from
thee authors.




75

1oF Putdsring

Pz, Med Biol 68 (2023215018 EM Digjene eral

Ethical statement

Thizwork induded a patientdata who provided a written informed consent and the study was prospectively
approved by and registered with Charité Ethics Committee (Trial Registration Number: EA4,/051 /171 The
reseanh was conducted inaccordance with the principles embodied in the Declaration of Helsinkiand in
acoordance with local statutory requirements.

References

AbhadiM eral 2006 Tensorflow ] arge-scale machine bsarning on heterogeneos distribited sptems Prac aftie 120k USENTY Conf on
Operaring SyreemsDerign and Inplenenration, OS00 18, DSENTX A sackarion pp 253

Aggarwal K, Marina M |, Keerthi SR, Gilberin GandGeesth an ath 5 2028 Develo pingg an d deplo yin g desp kearning maodels in brain MRIa
reviow NMR in Biomedi dnee 5014

Ahearn TE, Staff B T, Redpath T'Wand Semple 812005 The use of the Lavenbang < arquardt curve- fitting algorithm in ph arma.onkinstic
masd llingof TaE-MRT data Pliys Med Biol 508552

Baniks H Tand Jopner ML 2017 AIC undar theframesenrk of last squaresestimatonA gel Mady Lem. 74 3345

Bearles b, Liztle B A, Wasaon¥, Cheung &, Dattn A, O"Connor | P B, Scramuzza D and Parker G ] M 3021 Amodd sdacton frameworkio
quantify miaowsolar eer functian in gudore s te-en hanosd M R application to heatthy ver, dissased tisme, an d hepatoceliular
carcinoma Miggn Reson Med 86 157344

Bliesener Y, Acharya | and Kawk K 5 5000 Bfficient DU E-MRI paramsster and uncertainty estimaion usi nga neural network EEE Trans.
Med Imaging391712-13

Blundell ., Comnehise [, Kavuloo gin K and Wiersra D015 Weight imceriinty in newra network Proc of the 32nd Tnr. Conf o Machine
Lemming, wl 37afCML'15 PMLRpp 161322

Bozdogan H 1957 Miodd seertion and Ak ailee in forma ionc riterion | ATC): the genenal fhanry and its a nalptial estensions Prpdy il
52 M45-T0

ChouhanM D, Bainbridge A, Atkinson [, Pumeanis, Mookerjee R P, Lythgoed Fand Tapor S A 2006 Estimation of contrast agent bolus
arrival ddaysdor improved reprodo b ity o fliver DOE MBI Pliys. Med. Bal 61 690518

ChouhanM D, Bainbridge A, Atkinson [, Pumeanis, Mookerjez RP, Lyt goed Fand Tapars A 2007 Improved hepatic anerial fraction
estimatian using card ia autput correction of arveriali nput fin ction s fo rlver TR MET Plys, Med Biol 62 153348

Choylee P L Dneper A Jand Enapphd ¥ 2003 Functional tumorimaging with dynami cconrast-enhancad magnetic resonance imaging
I Mggn Resn [maging 17 509-10

Coristina L3015 i muLketing the eflect of input errors an the aconracy of Tofs” pharmaoo kinetic mod & para mesters Magn, Reson Imaging 33
IIl=3%

Cuenod O Aand Bdvay D 3003 Perfus on andvascular permeability: Basic aoncsptsand measurement in DR -CT and DR -MRET Diagn.
Tarerven fonal lmeging 94 1 157-704

Dronald M Oand Lopd 5K 1975 The ne der-mead simplex procedure for funcion minimization Tachaemernios 174551

Diindar T T, Cetinkaya B Yurtsewer I, Upsal Qand Aralagmalk A& 2007 Balloweupof high <grade ghal mmaor; differen fiafion of postreatment
enhancement and tumoral enhan cement bydce-mr perfusion Conrae Media Mol fmeging BIZ2E948407

Fang K eral 3021 Cormanlutio nal neural netn ik for acceberating the compuiaion ofthe extended Tofts modd in dynamicoantras-
enhaneedmagnetic resonance imaging [ Mag Reson Inaging 53 183890

Grarpehring A, Brpnalfson P, Yu L Yul, Wirestam B, Johansson A, Askdund Tand Karl son b 2013 Uncertainty estimation in dynamic
con fras-enhanced MRT Magn Reson Med 6359921002

Gilang F, Deshmane A, Prokudin 5, MarsinF, Herz K, Lindig T, Bender B Scheffler Kand Zaiw M3030 Deep CEST 3Tz mobust MR
parameserdserminaton anduncarinty quan tficatonwithneura netwaorks-application 1o CEST imagng of &e humanb rain at 3T
Magn Reson Med 84 £0-68

Gurney-Champian O], Mahmaood F, wn Schie M, Julian R, George B, Philippens M EF,vander HadeU A, Thonears Dand Redd en KR
B Quantitgve imaging for radioh sapy purposez. Radiotherapy and ancology [. Fur. Sor. Therapeutc Radiol Ouenl 148 66-T75

Hanen ME, Tisze A, Haadke 5, Kaldhauge |, Mikkeleen I K, 9sergaard L and M ouri dsen K 2019 Robust et mat on of hemao-dyamic
parameers in tradi gona TR -MRDmaod s PLoS O 142022891

HeyeA K, Thrippleton M|, Armitage P A, ¥akdk Hemindez ), bakin 51, Glat A, Salda B and Ward ke | M 2006 Tracer kinssic
s ellin g fovr DCE- MR quan g fication of subtleh bood-brain harrier permeh ity Mewralmage 125 446- 55

Hillermeier Eand Wasgeman W 2021 Allaioricand spisiemicuncertainty in madhi ne karning:anin roduction to con cepis andmesthads
Mach. Learn 1 10 457=508

Ing=5 H 1987 (in fhei nterpretifionand use of B inregression anahsis Bomemrics 4361-69

Ippoiti b4, Lodeas b4, Brenner W, Schasffter T, Maloseski b4 Band Kolb isch( 20193 nonrigid mo o neormes tion for quoa i twe
aspezsmeen t of hepatic basions in DUE-MRT Mg Ressn Med 82 175366

Ippoliti M, Lukas M, Brenner W, Schatkal, PurthC, Schaeffier T and Fol bitschd 3021 Respirasnry maotion comnaction for enh anosd
quantification of he patic besio ns in simubaneous FET and DCE-M Rimaging Phys. Med Bal &695012

Tacksom A0 "Commar [ B, Parker G | and]aysan G C 0007 Tmaging tumear s b heteragenedty and ang ogenesis using d pnamic o nirast-
enhancedmagnetic resonance imaging [ Am. Asoc Cancer Res. 13 344559

TiaaH, fiang X, Pang Z, Lin X, Huang ¥ and Li L 2020 Dieep oo eo bt onal nen ral netwn ric-hased amamatic breast ssgmen @ tion and mass
detection in DCE-MRT Conpur M, Mlerhiods Mad 2030 215708

Timeéne-Lama [, Giriso ni Fand S o der G 2000 Dirug d iscovery with explaina ble artificialin el ligence Nar. Mach el 2 57584

Elmpazka A, Srzdadd M, Kadalsk M, Biksfjord E and Lund srvald A 2000 Amadti-laper percepiron netwark for perfosion parameeter
estimatoninD{E-M Rl smdiss of hehaalthykidney Appl 8ol 105525

Lemguss, Wagner F, Laderer [, Samec W, Millker K R and Mo ntavon G202 Toward explainah ke artificial intelligencefor regrasion modelds
amethodologica perspective [EEE Signal Processhiag, 39 40-58

Li], XueF, Xu X, Wang () and Zhang X 200 Dymnamds oo ndrast -enh anoed mo— differentizes he patoces Bl ar cancinama from hepatic
metsasiof ractal cancer by artracting pharma.nlcn stic parameters and radiomic faztures Exp. Thergpeuric bed. 70 364352

Lind), Gan ¥, Wang ¥, Du], Yin{) and 5hi K 2019 Diagnost o value of hepatic artery perfusion fraction aombinedwithtgf{in patien towith
hepatoceliulrcarcinoma Oncol Lem 17 563541

16



76

10F Publs=ing

Plys. Med Biol 68 (F0X3) 215018 EM Digene et al

Mittermesar A, Brtl-Wagner B, Ridee |, Districh O and Ingrischd 2019 Bapesian ph arma.anlin stic maodeling o fd ynamic oo ast-enhan eed
M gn i resnnan o2 ima ging: validation andapplicaton Pliys Med Bisl 84 18Tz

Mimzalkis, Murase K, Yosh ilknea T, Morimo io 8, Ohno Y and Sugmura K 2008 A quan ttativemethod for estima ting he patic bloo dflow
nsing a dual- input single-compartment model Br. [ Radiol 81 730-800

Muchen W, Tangfan X, Jiangiao C and Yo L 3022 Differentizin g «fecs ofinput deatory and epistemdic unceriintias on spetem outpit:a
separating sensitivity anahis approach Mach Sy Sig Proces. 181 109421

Ortiens T, Barbieni S, Orinn M B, Klassen B, van Laarhowven H WM, Crepee H, Naderveen A [, Zhen { and Gomney-Champion O ] 22
Dreep bearmi g DCE - MR para mesier estima tio i a ppli cation in panareat ccancer Mad. nage A nal 80102512

PandeyD, Wang H., Yin X, Wang K, Zhang ¥ andShen | 202 1 Antrmatic breast besion sagmentation s ng on rtinm o max-fio walgorithm
inphae preserved DCE-MR b Flealth Iformearion Soien e 10th It Conf vol 13079 Springer) pp 12437

Rudalf L M, van H, Ameaden O, Marcd B, Mitho ¥ and Cian ME 3022 Ph psics-infarmed neural networks for mypocandi al perfusion MR
quantification Med mage Ana 78 1029

Lomrbran S Pand Boddey DL 2011 On thescope and interpratation of the Tofis maodd s dor DCE-MRL Magnetic resnnancein medicne
Magn Reson Med 66 73545

Sourbron 3 Fand Buddey DL 2003 lassic mo des for dynamicooniras -enhanced MR NMR Bomed 26 10027

Tanna R, Worrall D E, Kaden B, Ghosh A, GrossuF, Bizzd A, Soting poul os S N, Criminisi A and Alarander DC 2021 Uneerimy maodeling
indeplearn ing for saferneuroi magesnhan c2ment: demeanstration in difo sion MR New slmege 125 117368

Tafs PS 1997 Mod ding racer kin atics in dmamic Gd-DTPAMRimaging . Mg, Reson. Imaging7 91-101

T S era 1999 Estimaing kinetic paramsders from dynamic contrast-enhanced T{l )-weightad MR] ofa diffusable tracer: sandardizad
quantitiesand spmbols [ Magn Reson bnaging 10 20552

MasC eral 7019 meohrtion al nevral nenearis for dirac t infenan e of ph arma ool netic pa rame ters: application o srolke dyn amic
con fras-enhanced MBI Fenr, Newrol 3 1147

Wang PN, ¥Weikina | ¥, Banonoft L Samsonow A A, KderF, Smigelv B M and H olmes ] H 23022 Thein fluence of data -driven compressed
SETERIN F TAC Ot C Baon ¢ n.g isn G e pha rmeacolon etic an dysisin breast TOE W RT Tomagpraph p (A an A thor, Mich ) 81552639

Yang |F, ZhaaZH, Zhang ¥, Phan L Yang LM, Zhang M M Wang BY, Wang Tand Lo BC 2006 Dual-input ten-comparimsnt
pharmaaon kinetic masdel o fid pnamic on nirast-enh anoed magn stic rewonan e imaging in hepaioc sliolar carcinoma Wedd [
(adraen ol IX MhI-&2

Zom [, Bater | Mand Can'¥ 2000 Estimation of pharmaonkinstic paramseters from D3 E-W BT by actrac tin g bon g and short time -depend ent
features using an LSTM netwenrk bfed. Fliys 47 344757

17



77

Curriculum Vitae

My curriculum vitae does not appear in the electronic version of my paper for reasons of

data protection.



78

My curriculum vitae does not appear in the electronic version of my paper for reasons of

data protection.



79

My curriculum vitae does not appear in the electronic version of my paper for reasons of

data protection.



80

Publication list

Dejene EM, Brenner W, Makowski MR, Kolbitsch C. Unified Bayesian network for uncer-
tainty quantification of physiological parameters in dynamic contrast enhanced (DCE)
MRI of the liver. Phys Med Biol. 2023;68(21)

Dejene EM, Kolbitsch C. Deep learning for quantitative evaluation of motion correction in
dynamic contrast enhanced (DCE) MRI. Proceedings of the 32nd Annual Meeting of
ISMRM. Toronto, ON, Canada. May 2023.

Dejene EM, Brenner W, Makowski MR, Kolbitsch C. Deep learning for accurate estima-
tion of contrast agent bolus arrival delays in DCE MRI of the liver. Proceedings of the 25th

Annual Meeting of DS-ISMRM. Berlin, Germany. September 2023.



81

Acknowledgments

First and foremost, my honour and appreciation goes to God who stood by me, gave me
sufficient grace to overcome all challenges. Thank you, Lord, for the working grace that

made everything possible for me.

I would like to give my heartfelt and sincere gratitude to my supervisor, Dr. Christoph
Kolbitsch. | am grateful for your advice, continuous guidance, and feedback throughout
my PhD Dissertation Research Project. | would like to respectfully acknowledge Prof. Dr.
Winfried Brenner and Prof. Dr. Marcus Makowski, for the critical comments and feedback,
to my research work. Also, | am thankful to both of you, Prof. Tobias Schéffter and Prof.

Ingolf Sack, for your valuable feedback to my overall work.

| would like to acknowledge the funding from the German Research Foundation
(GRK2260, BIOQIC). I would like to greatly acknowledge Dr. Judith Bergs, who provided
me with invaluable support with regard to the PhD Dissertation process, including perti-

nent administrative issues during my stay in Berlin, Germany.

I would like to thank with gratitude everyone in Christ Evangelical Church (CEC) in Mu-
nich, Germany. My special thanks goes to Pastor Amde Aklilu, Senayit Woldemariam,
Selamawit Yibra, Tamirat Abera, Yohanna Yitbarek, Daniel Berhanu, Behailu Getahun,
Aman Gashaw, Worku Alemu, Hawi Geleta, Tolosa Hunde, Elsabeth Kassa, Tigist
Negash, Deres Gebreeyesus, Emebet Markos, Yeshi Bereda and, Atakelt Sebhatu for
the friendship and support in prayers during my stay in Munich. Unforgettable memory
takes me back to the late Hanna Abera, whose kindness and support would always be

remembered. Overall, | am very thankful for everyone in unison at CEC Munich.

Furthermore, | would like to thank everyone in Berlin Bethlehem Church, especially Pas-
tor Seife Bekele, Misrak Kushe and Eyerusalem Shebrou. My special thanks goes to you
Meron Solomon (Merye), for those pleasant and unforgettable times in Berlin. The wor-

ship time every Saturday was and is still an energy, impetus for me for the week.



82

My deep appreciation goes to my father, Prof. Dr. Mashilla Dejene. Dad, thank you for
being a great-hearted father, a teacher who shaped my moral and ethical standards and
a man who loves my mother so much. Thank you for your continuous encouragement,
which has been a great source of inspiration. | would like to acknowledge my brother

Eskinder Mashilla for his support and care at all times.

My special and invaluable thanks go to my mother, Alemtsehay Berihun (Ema). Ema,
your prayer was and is still continuous; your care for me is selfless; your pieces of advice
are full of wisdom and understanding. You have shown me the power of prayer, the mean-
ing of faith, and showed Christ to me. Thank you, Ema, for your friendship, for always
being there to guide me, comfort me, lead me to the big plans of God over my life. | would
like to extend my special thanks to my husband, Tewodros Awgichew. | really appreciate
your support and understanding in all the times | have been busy with my doctoral re-

search work.

Last but not least, my special thanks go to my precious daughter Tsiyon Tewodros. Some-
times the days get longer because | cannot wait to go home and be with you. Tsinu/Li-elt
(Joy), may you grow with the wisdom and love of the Lord each and every day. Thank

you for bringing more joy to my life.



