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Abstract. The warming of high mountain regions caused
by climate change is leading to glacier retreat, decreasing
snow cover, and thawing permafrost, all of which have far-
reaching effects on ecosystems and societies. Landsat Col-
lection 2 provides multi-decadal land surface temperature
(LST) data, principally suited for large-scale monitoring at
high spatial resolution. In this study, we assess the potential
to extract LST trends using Landsat 5, 7, and 8 time series.
We conduct a comprehensive comparison of both LST and
LST trends with data from 119 ground stations of the Inter-
cantonal Measurement and Information System (IMIS) net-
work, located at high elevations in the Swiss Alps. The direct
comparison of Landsat and IMIS LST yields robust satellite
data with a mean accuracy and precision of 0.26 and 4.68 K,
respectively. For LST trends derived from a 22.6-year record
length, as imposed by the IMIS data, we obtain a mean accu-
racy and precision of − 0.02 and 0.13 K yr−1, respectively.
However, we find that Landsat LST trends are biased due to
unstable diurnal acquisition times, especially for Landsat 5
and 7. Consequently, LST trend maps derived from 38.5-year
Landsat data exhibit systematic variations with topographic
slope and aspect that we attribute to changes in direct short-
wave radiation between different acquisition times. We dis-
cuss the origin of the magnitude and spatial variation of the
LST trend bias in comparison with modeled changes in direct
shortwave radiation and propose a simple approach to esti-
mate the LST trend bias. After correcting for the LST trend
bias, the remaining LST trend values average between 0.07
and 0.10 K yr−1. Furthermore, the comparison of Landsat-
and IMIS-derived LST trends suggests the existence of a
clear-sky bias, with an average value of 0.027 K yr−1. De-

spite these challenges, we conclude that Landsat LST data
offer valuable high-resolution records of spatial and temporal
LST variations in mountainous terrain. In particular, changes
in the mountain cryosphere, such as glacier retreat, glacier
debris cover evolution, and changes in snow cover, are pre-
served in the LST trends and potentially contribute to im-
proved prediction of permafrost temperatures with large spa-
tial coverage. Our study highlights the significance of un-
derstanding and addressing biases in LST trends for reliable
monitoring in such challenging terrains.

1 Introduction

The Earth’s surface temperature at the land–atmosphere in-
terface is a key parameter of the surface energy budget and
influences a range of biological, chemical, and physical pro-
cesses within the critical zone (e.g., Brantley et al., 2007).
It reflects both climate change and land surface processes
and is defined as an essential climate variable by the World
Meteorological Organization (Bojinski et al., 2014). Increas-
ing surface temperature is expected to have a severe ad-
verse impact on ecosystems, human health, and infrastruc-
ture (IPCC, 2023). With time, surface warming propagates to
greater depths, resulting in additional changes. High moun-
tain regions that host glaciers, snow cover, and permafrost
are particularly sensitive to increasing temperatures. Where
mean annual ground temperatures rise to above 0 °C, per-
mafrost thaws, thereby destabilizing steep hillslopes (Gru-
ber and Haeberli, 2007; Huggel, 2009; Allen et al., 2009).
Indeed, increased rockfall activity and several recent signifi-
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cant slope failures in the European Alps (Gruber et al., 2004;
Harris et al., 2009; Walter et al., 2020) have been linked to
permafrost thaw. Such catastrophic events pose serious haz-
ards to both people and infrastructure in numerous moun-
tain ranges on Earth. Monitoring Earth’s surface temperature
and its spatiotemporal variation therefore significantly con-
tributes to the improved prediction of the impacts of global
warming. However, ground-based instrumental monitoring
of surface temperature is laborious and difficult to implement
over large regions and in remote mountainous areas with
steep hillslopes. Therefore, the spatial coverage of station-
based surface temperature data is limited, especially when it
comes to long-term records.

Satellite platforms equipped with thermal infrared sensors
allow the land surface temperature (LST) to be measured at a
range of spatial and temporal resolutions and have long been
used in a variety of research fields (Li et al., 2013; Hulley
et al., 2019; Reiners et al., 2023; Li et al., 2023). Tempo-
ral LST analysis for climate change studies or environmental
monitoring requires multi-decadal time series data, which of-
ten involves the challenge of maintaining the temporal coher-
ence of thermal data (Kuenzer and Dech, 2013). Many LST
studies rely on data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor on board the Terra and
Aqua satellites (Reiners et al., 2023). MODIS LST records
are temporally consistent (Hulley and Hook, 2011), and LST
trends have recently been derived globally (Sobrino et al.,
2020). However, the relatively coarse spatial resolution of the
thermal bands (1000 m) restricts the applicability of MODIS
LST in high mountainous regions, where the steep terrain
results in large spatial gradients in surface temperatures. In
addition to altitudinal gradients in temperature, due to the
decreasing air temperature, temperature variations also exist
in response to variable exposure to the sun.

As the robustness of trends increases with longer time se-
ries, LST records from the Advanced Very High Resolution
Radiometer (AVHRR) with 1000 m spatial resolution and
the Landsat program (60–120 m spatial resolution) are par-
ticularly useful for this purpose (Prata, 1994; Gutman and
Masek, 2012). Both suffer, although in a different manner,
from orbital drift effects, causing the acquisition time to vary
over time (Julien and Sobrino, 2022; Zhang and Roy, 2016).
Orbital drift corrections for AVHRR LST time series are con-
tinuously being developed (e.g., Gutman et al., 1999; Jin
and Treadon, 2003; Dech et al., 2021; Julien and Sobrino,
2022), as the daily temporal resolution allows for unique in-
sights into the long-term dynamics of LST. Landsat, with its
lower temporal but higher spatial resolution, has so far been
underutilized in time series analysis (Fu and Weng, 2015).
The recently released Landsat Collection 2, with improved
radiometric calibration and geolocation information (Craw-
ford et al., 2023), provides consistently generated LST data
(Malakar, 2018). Landsat-derived LST time series therefore
present a unique opportunity to explore the dynamics of high

mountain landscapes in response to climate change and hu-
man land cover modifications.

For instance, recently published LST trends of glacier sur-
faces in High Mountain Asia show enhanced surface warm-
ing trends due to supraglacial debris cover and its expansion
(Ren et al., 2024). Spatial patterns in LST trends are also
expected in areas of seasonal snow cover. At altitudes near
the 0 °C isotherm in particular, small changes in air temper-
ature can have a significant impact on snow cover (Pepin
and Lundquist, 2008). Observations show that in the Euro-
pean Alps snow cover declines in extent, duration, and depth
(Matiu et al., 2021) with vegetation, expanding into higher
elevations and thus changing the surface albedo (Rumpf et
al., 2022). Furthermore, because mountain permafrost tem-
peratures vary in response to changes in air temperature and
snow cover (Smith et al., 2022), spatial patterns in LST and
LST trends have the potential to inform expected spatial vari-
ations in permafrost temperature, depth, and extent. Despite
sufficiently long records and the high spatial resolution of
Landsat observations, deriving LST trends is complicated as
acquisition times have changed by up to 1 h (Roy et al., 2020)
due to orbit changes over the last few decades (Zhang and
Roy, 2016).

Here, we explore the opportunities of monitoring LST
trends in steep mountainous regions using Landsat Collec-
tion 2. We first assess the reliability of Landsat-derived LST
and LST trends by comparison with ground observations
from the Intercantonal Measurement and Information Sys-
tem (IMIS) network, which provides comparable radiometric
surface temperatures at high-elevation sites across the Swiss
Alps (Fig. 1). We then calculate spatially distributed LST
trends and identify a spatially variable bias that we associate
with orbital drift of the satellites. We analyze the magnitude
of and spatial variation in this bias and present a simple ap-
proach to correct for it. Additionally, we address issues re-
lated to the clear-sky bias and explore opportunities and lim-
itations of studying cryosphere changes using the corrected
Landsat LST trends.

2 Materials and methods

2.1 Landsat-derived LST

Landsat Collection 2 (C2) Level-2 science products provide
multi-decadal observational remote sensing data that are ge-
ometrically and radiometrically consistent and have harmo-
nized quality assessment bands (Dwyer et al., 2018). We used
Google Earth Engine (GEE) to analyze LST data (Malakar et
al., 2018) from the Landsat 5 Thematic Mapper (TM), Land-
sat 7 Enhanced Thematic Mapper Plus (ETM+), and Land-
sat 8 Thermal Infrared Sensor (TIRS) (hereafter LT05, LE07,
and LC08) covering a time span from 1984 to 2022. The na-
tive spatial resolutions of LT05 (120 m), LE07 (60 m), and
LC08 (100 m) were resampled in Collection 2 to 30 m, which
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Figure 1. Intercantonal Measurement and Information System
(IMIS) network of automated weather stations distributed across
the Swiss Alps. The presented 115 stations provide radiometric sur-
face temperatures at 30 min intervals with time spans greater than
5 years, indicated by the inset color. The red rectangle identifies the
upper Rhône Valley shown in Fig. 7. The dashed black rectangle
indicates the Landsat footprint at path 194 and row 27, referred to
in Fig. 2.

is the spatial resolution that we used. Throughout the study,
we use degrees Celsius (°C) for absolute temperatures and
kelvin (K) for temperature differences and rates.

The Landsat C2 LST calculation is based on a single-
channel algorithm (Malakar et al., 2018) that relies on only
one thermal infrared band and that has been widely used
to retrieve LST from Landsat data (Jiménez-Muñoz and So-
brino, 2003; Cook et al., 2014). The conversion of at-sensor
radiometric temperature to LST requires an atmospheric cor-
rection and knowledge of the surface emissivity. The atmo-
spheric correction in the Landsat C2 LST calculation is based
on the total column water vapor derived from National Cen-
ters for Environmental Prediction (NCEP) atmospheric re-
analysis data (Kalnay et al., 1996). Mean emissivity esti-
mates over the time period 2000–2008 are based on the Ad-
vanced Spaceborne Thermal Emission and Reflection Ra-
diometer Global Emissivity Dataset (ASTER GED) (Hulley
et al., 2015) and temporally adjusted using Landsat-derived
normalized difference vegetation index (NDVI) and normal-
ized difference snow index (NDSI). Inspection of the ASTER
GED reveals several artifacts, which appear to align with
artifacts in the Landsat LST data. To avoid erroneous LST
data and mask out clouds in the Landsat images, we applied
several filters and masks that we describe in more detail in
Sect. 2.3.

The scene acquisition time of Landsat for the Swiss Alps
lies mostly between 09:30 and 10:30 UTC. Figure 2 shows

Figure 2. Acquisition times (UTC) of Landsat LT05 (red), LE07
(blue), and LC08 (orange) at path 194 and row 027. LE07’s notice-
able orbital drift after 2018 (empty blue circles) causes a signifi-
cant shift in revisit timing and has been excluded from the analysis.
Linear regression lines (dotted and dashed) depict acquisition time
trends, with and without abrupt LT05 orbit changes prior to 2000.
The gray-shaded area indicates the time period for which IMIS sta-
tion data exist, although with variable record lengths.

the acquisition times from the different Landsat sensors dur-
ing the study period. While LC08 has a relatively stable ac-
quisition time, LE07 shows slightly continuous drift before
2018 and strong drift after 2018 due to depleted onboard
fuel resources (Qiu et al., 2021). LT05 on the other hand
shows both sporadic and continuous orbit changes that lead
to significant variations in acquisition time (Zhang and Roy,
2016). Although orbit variations are often due to sporadic or-
bit keeping maneuvers, a gradual increase in overpass times
is evident too (Roy et al., 2020). When fitting a linear model
to all satellites together (but excluding LE07 data after 2018
due to strong orbital decay), the acquisition time increased
from approximately 09:29 UTC in 1984 to 10:16 UTC in
2022 (Fig. 2, dotted line). We expect that LST trends derived
from the 38.5-year time series are likely biased by the pro-
gressively delayed acquisition times, probably towards more
positive values, due to gradual warming of the land surface
in the morning. Because different acquisition times also lead
to geometric changes in the sun–target–sensor configuration,
this bias may additionally vary with the slope and aspect of
the topography. We describe our approach to analyzing this
issue in Sect. 2.4.

2.2 IMIS-derived LST

We evaluated the Landsat-derived LST data by comparing
them with in situ surface temperature measurements from au-
tomated weather stations of the IMIS network. The IMIS net-
work was set up by the Swiss Federal Institute for Snow and
Avalanche Research (SLF) and consists of 186 stations dis-
tributed across the Swiss Alps. We used a subset of 119 sta-
tions (Table S1) that provide radiometric surface temperature
records in 30 min intervals. The IMIS stations measure radio-
metric surface temperature with an infrared sensor measuring
in a wavelength range of 7 to 20 µm (David Liechti, personal
communication, 2023). The record length per station varies,
with the longest record covering a period from 1996 to 2019
(Fig. 1). The IMIS stations are located between 1258 and
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2953 m elevation above sea level and are usually installed on
flat to gently sloping ground. As the stations are primarily
used for snow monitoring, the reported surface temperature
is calibrated using an emissivity of 0.98 (for snow), which
may thus introduce a bias towards colder temperatures during
snow-free conditions. Because the transition between snow-
covered and snow-free conditions cannot be unambiguously
determined based on the IMIS data alone and because of un-
known actual emissivity values of the ground surface, we re-
frained from efforts to correct this bias. For a surface tem-
perature of 15 °C, a change in emissivity of 0.01 would re-
sult in a temperature change of 0.73 K (Kuenzer and Dech,
2013). This bias decreases for lower LST values. Despite po-
tential measurement deviations under snow-free conditions,
the IMIS stations measure radiometric surface temperatures
and are thus well suited for comparison with Landsat-derived
LST. Additionally, the high temporal resolution of the IMIS
data allows us to compare LST clear-sky and cloudy-sky con-
ditions using the Landsat overpass times. We expect the large
difference in spatial resolution to introduce additional uncer-
tainty as Landsat most likely provides a mixed-pixel signal
of potentially spatially varying LSTs compared to the IMIS
data.

2.3 LST processing and trend estimation

For the studied period and the chosen Landsat sensors, we
obtained for each 30 m pixel in the co-registered image col-
lection several hundred LST observations scattered across
different times of a year. We used a harmonic model includ-
ing a linear trend (Eq. 1) to perform an ordinary least squares
regression (Shumway and Stoffer, 2013; Fu and Weng, 2015)
on the LST time series data in order to estimate (1) the mean
annual LST (MALST), (2) the annual LST amplitude, (3) the
long-term LST trend, and (4) the phase shift:

LSTt = β0+β1t +Acos(2πωt −ϕ), (1)

where β0 is the mean annual LST (K), β1 is the slope
(K yr−1) of the linear trend, t is the time in years, A is the
amplitude (K), ω is the frequency (equal to one for one cy-
cle per year), and ϕ is the phase. The harmonic term can be
decomposed into a sine and cosine term, and Eq. (1) is thus
linearized to

LSTt = β0+β1t +β2 cos(2πωt)+β3 sin(2πωt), (2)

where β2 and β3 are the newly introduced coefficients that
are equal to Acos(ϕ) and Asin(ϕ), respectively. GEE allows
for ordinary least squares regression of Eq. (2) and thus the
determination of the four coefficients β0 to β3. We acknowl-
edge that LST time series may contain abrupt changes due
to land cover change, for example, which may not be well
captured by a linear model (Zhu and Woodcock, 2012). Dif-
ferent approaches have been proposed to detect such changes
and simultaneously obtain trend values (see the recent review

by Li et al., 2022). However, the change detection approaches
currently available in GEE are more limited (Kennedy et al.,
2010; Zhu and Woodcock, 2012), and, as shown later, the
segmentation of the time series affects our ability to account
for LST trend bias due to orbital drift.

Prior to fitting Eq. (2) to the Landsat LST data, we imple-
mented filters to mask (1) duplicate LST observations with
the same date that result from along-track overlapping Land-
sat scenes and (2) cloud-contaminated pixels. The along-
track duplicates were removed by creating image pairs of
each Landsat scene and its temporal neighbor in the same
path and masking the overlapping region of the adjacent
scene. The pairs of subsequent Landsat scenes were identi-
fied by a difference in acquisition time of less than 100 s,
which is small enough to select only the scene following di-
rectly after. Cloud masking was done using the Landsat C2
pixel quality assessment (QA) band cloud flag with at least
medium confidence (Dwyer et al., 2018; Zhu and Woodcock,
2012). Although the cloud flag of the QA band provides
good accuracy (Foga et al., 2017), bright surfaces, such as
snow and ice in high mountain settings, can still be chal-
lenging. Predominantly in LT05 data, we find extremely low
LST values, which are likely clouds that were not captured
by the cloud detection algorithm. To overcome this issue,
we applied an additional filter that masks outliers by apply-
ing a threshold to the residuals between the modeled and
observed LST. We first calculated the β coefficients on the
cloud-filtered data, including potential outliers missed by the
QA cloud flag, and then uploaded them to GEE. In a sec-
ond step, we predicted for each Landsat acquisition time the
corresponding LST using the uploaded β coefficients (Eq. 2)
and applied a threshold of±30 K to the residuals to mask ex-
treme LST values (due to undetected clouds or wildfires, for
example) that might otherwise bias the LST trend (cf. Weng
and Fu, 2014). The procedure was applied to the complete
Landsat time series data. Figure 3 shows an exemplary LST
time series from each sensor, the harmonic model with a lin-
ear trend, the residuals, and the filtered outliers at the loca-
tion of IMIS station AMD2. Identical figures from all IMIS
locations can be found in the Supplement File S2.

To assess the reliability of the Landsat-derived LSTs and
LST trends, we compared them with LST data derived from
the IMIS network. We first extracted the Landsat LST time
series at the locations of the IMIS stations. As IMIS records
are only available in 30 min intervals, we linearly interpo-
lated LSTs at the Landsat acquisition times to obtain compa-
rable LST time series of equal length. Based on Eq. (2), we
derived the mean annual LST, the LST amplitude, the phase
of the harmonic oscillation, and LST trends for both datasets.
We further assessed the sensitivity of LST trends to the LT05,
LE07, and LC08 sensors by comparing data from each sen-
sor with the corresponding IMIS LST data, where the ob-
servation periods overlap. Because the temporal overlap of
the individual Landsat sensors and the IMIS data varies, this
comparison also results in different record lengths.

The Cryosphere, 18, 5259–5276, 2024 https://doi.org/10.5194/tc-18-5259-2024



D. T. Gök et al.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps 5263

Figure 3. Time series of Landsat LT05- (red), LE07- (blue), and LC08-derived (orange) land surface temperature (LST) (a) at location
47.17° N, 9.15° E (IMIS station AMD2). The harmonic model (solid sinusoidal line) was derived by least squared regression including a
linear trend component (dashed line). Outliers (empty circles) were detected by applying a threshold of ±30 K to the (b) residuals and were
removed from further analysis. Panels (c) and (d) show the distribution of the LST and residuals, respectively.

We used Student’s t test to draw a statistical inference for
the regression slope and evaluate the significance of LST
trends (Muro et al., 2018). Pixels with non-significant trends
(p values < 0.05) were flagged. Note that the comparison of
LST trends between Landsat and IMIS data, as well as the
spatial analysis of LST trends in relation to the LST trend
bias, is based on all trend data and does not require statistical
significance of trend values.

2.4 LST trend bias analysis

We expect the LST trend to be biased due to the variations
in acquisition time caused by orbital change of the satel-
lites (Fig. 2). Within the 47 min time difference in image
acquisition between the beginning and the end of the 38.5-
year Landsat observation period, the sun’s position, and thus
also the solar zenith angle, changes notably, modifying the
amount of incoming shortwave radiation received by the sur-
face. In mountainous terrain with variably steep and exposed
topography, we expect this effect to be spatially non-uniform.
Based on the fitted linear model of the acquisition time,
we analyzed changes in the incoming direct solar radiation
(1Sin) for the Swiss Alps using the “insol” functional library
(Corripio, 2003). We studied the relationship of LST trends
and1Sin with topography by aggregating mean values for 2°
slope and 10° aspect sections derived from the 10 m resolu-
tion Copernicus digital elevation model (Copernicus DEM,
2022). Prior to averaging LST trends, we excluded glaciers
and recently deglaciated areas using a mask based on glacier
outlines from the Randolph Glacier Inventory v6 (RGI Con-
sortium, 2017), which we expanded by 10 pixels in the 30 m
resolution LST trend images. Additionally, we excluded all
regions below 1700 m elevation, which are likely influenced
by anthropogenic land cover changes (Rumpf et al., 2022).

2.5 Validation metrics

The LST data used in this study, obtained from the Landsat
C2 archive, are based on three different sensors (LT05, LE07,
and LC08) and auxiliary datasets such as the ASTER GED
and NCEP reanalysis data. Since both of these datasets have
their limitations, it is important to validate LST data to en-
sure their accuracy and reliability. We compared the Landsat-
derived LST measurements with in situ LST measurements
from the IMIS stations at the Landsat acquisition time. We
followed the Land Surface Temperature Product Validation
Best Practice Protocol (Guillevic et al., 2017) by using met-
rics of accuracy, precision, and uncertainty to report LST val-
idation results. The accuracy (µ), as a measure of the system-
atic error, is given by the arithmetic mean of the difference
between the satellite-derived LST and the in-situ-measured
reference LST (1LSTref). The precision (σ ) describes the
spread of the LST around the expected value (1LSTref) and
can be approximated by the standard deviation. The uncer-
tainty is given by the root mean square error (RMSE) and
describes the dispersion of the LST values. Because the ac-
curacy and precision of LST data can be strongly affected by
outliers, we also report the median of the 1LSTref for the
accuracy and the median absolute deviation of the residu-
als for the precision as additional validation metrics (Guille-
vic et al., 2017). We apply these validation metrics to both
the LST data and the LST trends. We emphasize that in our
study the term validation may be slightly misleading as it
suggests that the ground-based IMIS measurements provide
the correct LST values. However, we note that even the IMIS
data are most likely biased during snow-free conditions (see
Sect. 2.2) and subject to measurement uncertainties. In addi-
tion, the different footprints of the ground-based (∼ 10 cm)
and spaceborne (∼ 10–100 m) measurements allow for devi-
ations due to spatial heterogeneity in LST. We come back
to this issue in the Discussion section. Nevertheless, we ar-
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gue that the comparison of these datasets is a valuable ef-
fort and that consistency between both temperature measure-
ments provides confidence.

3 Results

3.1 LST comparison

For the comparison of Landsat-derived LST with ground-
based LST from the IMIS network, we interpolated IMIS
LSTs at the Landsat acquisition time. In total 44 981 Landsat
observations are available for comparison with IMIS obser-
vations. The LST data from all three Landsat sensors are scat-
tered around the 1 : 1 line in comparison with the IMIS data
(Fig. 4a–d). At around 0 °C IMIS LST, the spread in Landsat-
derived LST is considerably larger than that of the observa-
tions at the IMIS stations. It furthermore appears that LSTs
derived from each Landsat sensor tend to be slightly warmer
for LSTs above 0 °C compared to those below 0 °C. Mean-
and median-based metrics of accuracy (µ), precision (σ ),
and uncertainty (RMSE) between Landsat and IMIS LST for
each sensor and the entire time series are shown in Fig. 4 and
Table 1. The accuracy (µ) ranges from +0.05 K (LC08) to
+0.36 K (LE07) and indicates a slight positive bias. The pre-
cision (σ ) ranges from 4.04 (LE07) to 6.06 K (LT05). Con-
sidering data from all three sensors together (Fig. 4d), the
accuracy is +0.26 K, the precision is 4.69 K, and the uncer-
tainty is 4.7 K (Table 1). Considering median values, the pre-
cision improves but the accuracy deteriorates.

3.2 LST trend comparison

We also compared Landsat-derived LST trends with trends
derived from IMIS LST data interpolated at Landsat obser-
vation times for each sensor and the complete time series
(Fig. 5, Table 2). We excluded stations with record lengths of
less than 5 years. Short time series result from different tem-
poral overlaps between the IMIS records and Landsat sen-
sors, in particular LT05 and LC08 (Fig. 5a, c). These show
large scatter around the 1 : 1 line compared to trends derived
from longer time series, resulting in relatively large uncer-
tainties (Table 2). Therefore, amongst the different sensors,
LE07 provides the most reliable results (Fig. 5b), with bet-
ter accuracy and precision (Table 2), due to the large tem-
poral overlap with the IMIS data. Consequently, our com-
parison of trends derived from all sensors with IMIS-derived
LST trends (Fig. 5d) is primarily dominated by LE07. Con-
sidering data from all three sensors together, the accuracy
is −0.02 K yr−1, and the precision is 0.13 K yr−1, improving
considerably when referring to median values.

3.3 Spatiotemporal variations in LST

We applied Eq. (2) to the Landsat LST time series (LT05,
LE07, and LC08) across Switzerland using GEE. The model

results are presented as maps of the mean annual land sur-
face temperature (MALST), the LST amplitude, the phase of
the harmonic oscillation, and the LST trend in Fig. 6, with a
focus on the upper Rhône Valley shown in Fig. 7. The pre-
sented MALST values are for the year 2000 and range from
−25 to+25 °C. We consistently observe the highest MALST
values at low elevations and the lowest at high elevations,
where snow- and ice-covered areas range from 0 to −20 °C.
As seen in the detailed map in Fig. 7a, MALST values show
reasonable spatial variations with terrain aspect, and no sig-
nificant processing artifacts are present. East-facing slopes
consistently display higher MALST compared to west-facing
ones, which aligns with expectations due to the late morn-
ing overpass of the Landsat satellites (Fig. 7a). Data gaps,
which are most evident in southern Germany in Fig. 6, are
due to data gaps in the ASTER GED data and are consistent
across all variables. LST amplitude values range between 3
and 25 K (Fig. 6b), with the lowest values where snow or ice
cover is present year-round. High-amplitude values are found
in regions with seasonal snow cover that also heat up during
the summer (Fig. 7b). The phase of the harmonic oscillation
(Fig. 7c) shows spatial variations in seasonal shifts, which we
report as the day of the year with the highest (peak) temper-
ature in the annual LST cycle. The phase values display an
altitudinal gradient (Fig. 6c) with a slight aspect dependence
(Fig. 7c).

Averaged across the entire study area, the mean LST trend
is 0.14 K yr−1 with a 5th and 95th percentile of 0.08 and
0.21 K yr−1, respectively (Fig. 6d). Areas with a high popu-
lation density often appear to exhibit trend values exceeding
0.2 K yr−1. Notably, the highest trend values are observed in
areas where retreating glaciers expose sediment or bedrock
(Fig. 7d). Compared to the MALST, the LST amplitude, and
the phase of the harmonic oscillation, the LST trend val-
ues display more artifacts. Subtle but systematic across-track
jumps in LST trends are visible in the northeast of the map
in Fig. 6d. These artifacts align with the Landsat orbit and
variations in the number of observations due to overlapping
scenes from adjacent orbital tracks (Fig. S3.1; see Supple-
ment). Similarly, the post-2003 Landsat LE07 scan line cor-
rector failure induces across-track stripes in the number of
LST observations that also appear in some parts of the LST
trend maps (only faintly visible on some glacier surfaces in
Fig. 7d). These patterns in LST trend values are consistent
with the sensitivity to record length we observed in our com-
parison of Landsat- and IMIS-derived LST trends (Sect. 3.2).
We further discuss this point in Sect. 4.1. Finally, LST trends
in the detailed map display an aspect dependency, with gen-
erally lower values on east-facing slopes and higher values
on west-facing slopes (Fig. 7d). Regions with flat topogra-
phy (as in the foreland), wide valleys, or lakes show more
continuous trend values. We suspect that this effect is related
to the shift towards later acquisition times and thus to vari-
ations in the solar zenith angle over the 38.5-year Landsat

The Cryosphere, 18, 5259–5276, 2024 https://doi.org/10.5194/tc-18-5259-2024



D. T. Gök et al.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps 5265

Figure 4. Comparison of Landsat-derived land surface temperature (LST) with IMIS LST for (a) the Thematic Mapper (LT05); (b) the
Enhanced Thematic Mapper Plus (LE07); (c) the Thermal Infrared Sensor (LC08); and (d) LT05, LE07, and LC08 together (L578). The
colors denote the number of data points by decadal logarithm. The inset figures show histograms of LST residuals, with1LST being Landsat
LST–IMIS LST.

Table 1. Validation metrics of Landsat-derived LST in comparison with IMIS-derived LST.

Quantity Symbol Unit LT05 LE07 LC08 L578

Accuracy (mean, median) µ K 0.26, 0.72 0.36, 0.5 0.05, 0.31 0.26, 0.5
Precision (mean, median) σ K 6.06, 2.47 4.04, 1.70 4.26, 2.05 4.69, 2.01
Uncertainty (RMSE) RMSE K 6.07 4.06 4.26 4.7
Sample number n – 11 526 21 853 11 602 44 981

record. In the following section we examine this trend bias in
more detail using IMIS station data.

3.4 LST trend bias

We point out in Sect. 2.1 that Landsat acquisition times
have changed between 1984 and 2022. Approximating this
change by a linear model for the acquisition time yields a
time difference of 47 min over a period of 38.5 years (from
09:29 UTC in 1984 to 10:16 UTC in 2022; Fig. 2). To esti-
mate how much of an LST difference we can expect to re-

sult purely from this 47 min delay in image acquisition, we
exploit the high-temporal-resolution IMIS data by calculat-
ing for every day and every IMIS station the LST difference
between 10:16 and 09:29 UTC. The daily LST differences
(1LST) show a bimodal distribution (Fig. 8), which we sepa-
rated using bimodal Gaussian regression. During melting pe-
riods, snow surfaces remain locked at the melting point, and
1LST values are essentially zero (blue curve). The remain-
ing 1LST values are normally distributed (red curve) with
a mean 1LST of 1.72 K and a standard deviation of 0.93 K.
The mean 1LST of the full distribution is 1.55 K, which,
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Figure 5. Comparison of Landsat-derived land surface temperature (LST) trends with IMIS LST trends for the (a) Thematic Mapper (LT05);
(b) Enhanced Thematic Mapper Plus (LE07); (c) Thermal Infrared Sensor (LC08); and (d) LT05, LE07, and LC08 together (L578). Stations
with a record length (marker color) of less than 5 years have been omitted. Trend residuals (Landsat LST trends and IMIS LST trends)
together with the accuracy (µ) and precision (σ ) values are shown in the inset histograms. Note the strong impact of record length on the
comparison of LST trends.

Table 2. Validation metrics of Landsat-derived LST trends in comparison with IMIS-derived LST trends.

Quantity Symbol Unit LT05 LE07 LC08 L578

Accuracy (mean, median) µ K yr−1 0.12, 0.11 −0.03, −0.02 −0.07, −0.06 −0.02, −0.01
Precision (mean, median) σ K yr−1 0.20, 0.13 0.09, 0.05 0.31, 0.19 0.13, 0.04
Uncertainty (RMSE) RMSE K yr−1 0.23 0.10 0.31 0.13
Sample number n – 97 115 113 115

over a 38.5-year period, suggests an average LST trend bias
of 0.04 K yr−1. However, the IMIS stations are located on flat
to gently sloping terrain, and the LST trend bias varies with
topography.

The influence of topographic slope and aspect on the LST
trends is shown by aggregated mean values for 2° slope and
10° aspect bins in Fig. 9c. For slope angles above∼ 10°, LST
trends are generally lower on east-facing slopes, whereas
they are higher on west-facing slopes. Mean LST trend val-
ues for slope angles above 75° are noisy due to very few sam-

ples (pixels) and were excluded from analysis. We compared
this pattern with modeled differences in incoming solar ra-
diation between 09:29 and 10:16 UTC (1Sin) for the first
of all months of the year using terrain parameters from the
DEM of our study area. In Fig. 9d we show the pattern for
July, which turned out to resemble the LST trend pattern the
most, although differences in1Sin patterns between May and
September are generally small.

Overall, we find large similarities in the general pattern
of how mean LST trends and 1Sin vary with slope and as-
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Figure 6. Landsat land surface temperature (LST) time-series-derived (a) mean annual LST (MALST), (b) LST amplitude, (c) phase of the
harmonic oscillation, and (d) LST trend across Switzerland and adjacent areas.

pect (Fig. 9c, d; note that the color bar in d diverges, while
the other one is continuous). Specifically, the cross sections
shown for slope angles of 30 and 50° (Fig. 9e, f) highlight the
similar sinusoidal variation in LST trend and 1Sin with as-
pect. As expected, LST trend and1Sin variations with aspect
are low for slope angles < 10°. However, while the average
1Sin value for any given slope and across all aspects is rel-
atively similar, this is not the case for LST trends. Here, we
observe higher trend values for small slope angles when av-
eraged across all aspects compared to higher slope angles.

4 Discussion

4.1 Uncertainties related to LST and LST trends

Our comparison of Landsat-derived and in-situ-measured
IMIS LSTs has shown good agreement with a mean accu-
racy of 0.26 K for the combined Landsat sensors (Fig. 4, Ta-
ble 1). We observed no significant deviations in accuracy for
the individual sensors, but the number of data points varies
due to different temporal overlap of IMIS records and Land-
sat sensors. The slight positive bias of Landsat-derived LSTs
greater than 0 °C compared to those measured from the IMIS
stations is likely due to inaccurate IMIS LST data during
snow-free conditions. The radiometric temperature measure-

ments at the IMIS stations are based on a constant emissiv-
ity value of 0.98 for snow, resulting in biased temperatures
in snow-free conditions. This explanation is consistent with
greater accuracy at negative IMIS-derived LSTs, which are
often associated with snow cover. The relatively large pre-
cision value of 4.69 K is likely in part due to the scatter
around 0 °C, which is not necessarily a faulty or inaccurate
measurement but rather caused by mixed-pixel effects due to
the large resolution differences between IMIS and Landsat.
During snowmelt periods, the IMIS sensor records ∼ 0 °C
LST as long as snow persists under the sensor. Simultane-
ously, however, the larger footprint (60–120 m) of the Land-
sat measurement may record a mixed signal in the wider area
around the IMIS station, potentially ranging from snow-free
patches in sun-exposed areas to non-melting snow cover in
shadows, for example. By excluding data points where IMIS
LST is between −3.5 and +3.5 °C, which are 30% of all
data points, the precision and uncertainty for L578 reduce to
4.37 and 4.38, respectively. Despite the relatively large un-
certainty and a slight warm temperature bias, we find that the
comparison of almost 4.5× 104 LST measurements shows
good agreement. We note, however, that the IMIS network’s
spatial distribution does not fully represent the topographic
complexity encountered in high mountains, as the stations
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Figure 7. Landsat land surface temperature (LST) time-series-derived (a) mean annual LST (MALST), (b) LST amplitude, (c) phase of the
harmonic oscillation, and (d) LST trend across the upper Rhône Valley.

Figure 8. Bimodal distribution of IMIS-derived land surface tem-
perature differences (1LST) in daily LST interpolated at 09:29 and
10:16 UTC. The mean (µ) 1LST of the full distribution is 1.55 K,
and the standard deviation (σ ) is 0.83 K, which, over a 38.5-year
period, suggests an average LST trend bias of 0.04 K yr−1 over flat
and gently sloping terrain where IMIS stations are typically located.

are mostly installed on flat to gently sloping surfaces below
3000 m elevation.

The robustness of LST trends varies among Landsat sen-
sors due to different temporal overlaps with the IMIS sta-
tion data (Fig. 2). Using LST data from all three sensors, the
temporal overlap with IMIS LST data covers a record length
of 22.6 years. Trends with such large temporal overlap are
aligned well around the 1 : 1 line with a mean accuracy of
−0.02 K yr−1, while record lengths <15 years show signifi-
cantly more variability. However, long record comparison is
dominated by LE07, which has the most overlap in the ob-
servation period (Fig. 2). Although we are unable to evalu-
ate LST trends from LT05 and LC08 based on long time se-
ries, our comparison together with the previous comparison
of Landsat- and IMIS-derived LSTs for the different sensors
provides confidence that LST trends derived from different
Landsat sensors, spanning 38.5 years in total, are robust.

Besides the record length, the total number of LST obser-
vations also plays an important role in deriving robust LST
trends. Although the Landsat archive covers 4 decades of
LST observations, its temporal resolution of a 16 d revisit in-
terval is rather low. In addition, cloud cover renders many
scenes unusable, highlighting the need for reliable cloud
masking. This raises two problems, especially for mountain-
ous terrain. First, frequent cloud cover leads to inevitable

The Cryosphere, 18, 5259–5276, 2024 https://doi.org/10.5194/tc-18-5259-2024



D. T. Gök et al.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps 5269

Figure 9. Incoming shortwave radiation at 09:29 UTC (a) and 10:16 UTC (b), land surface temperature (LST) trend (c), and shortwave
radiation difference between both times (1Sin) (d) across Switzerland, excluding glaciers and all regions below 1700 m. Values are averaged
for 2° slopes and 15° aspect bins. Cross sections of 30 and 50° slope angles show a similar sinusoidal pattern between the mean LST trend
(e) and mean 1Sin (f), indicating LST trends biased by orbital drift.

data gaps, and, second, cloud detection algorithms are prone
to failure over bright surfaces like snow and ice, which are
common at high elevations. Our filter procedure, which is
based on an initial LST model and thresholding the model–
observation residuals in a second step, provides a way to de-
tect unreasonably high or low LST values by taking the exist-
ing seasonal trend into account. We found that this filter more
often removes unreasonably low LSTs, which are likely mis-
classified clouds, rather than high LSTs, potentially linked
to wildfires. Yet, it is also possible that the Landsat cloud
flag might have classified bright surfaces as clouds, resulting
in the possible removal of valid LST observations. A robust
and reliable cloud detection algorithm is currently the only
practical way to minimize such problems.

The number of observations in the LST time series varies
not only due to clouds, but also due to other systematic fac-
tors. Substantial spatial differences in LST counts arise from
partial overlapping of adjacent Landsat paths (Fig. S3.1),
which tends to increase towards the poles. In our study area,
these overlaps yield approximately twice as many observa-
tions for a third of the area. Furthermore, the Landsat 7

scan line corrector failure further reduces data availability at
smaller spatial scales. MALST, amplitude, and phase derived
from LST time series seem to be generally unaffected by the
variable number of observations as no large-scale patterns
following the mentioned limitations can be observed (Fig. 6a,
b, c). However, the LST trend is more sensitive to the num-
ber of observations, and subtle artifacts that align with the
flight path of the satellite can be identified in some regions
(Fig. 6d). In some regions faint stripes can be seen that corre-
spond to the Landsat 7 scan line failure and thus reduced data
availability. We assessed the robustness of LST trend calcu-
lations with respect to the number of observations through a
systematic Monte Carlo simulation. By iteratively reducing
the time series size (n= 100) and performing repeated trend
analyses (1000 repetitions), we quantified the impact of data
reduction on trend stability. Each value of the 1000 repeti-
tions was compared to the LST trend of the full time series
(difference) and summarized as the mean and standard devi-
ation. We chose the Landsat LST time series at the IMIS lo-
cation of OFE2, comprising 1009 observations with an LST
trend of 0.11 K yr−1, as an illustrative test site. The analy-
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Figure 10. Sensitivity analysis of land surface temperature (LST)
trend stability. The LST trend anomaly shows the difference in the
LST trend derived from the full time series and repeated LST trend
calculations (1000 repetitions) with iteratively reduced sample sizes
(n= 100). Results are given as the mean and standard deviation.

sis revealed that although the mean LST trend value remains
stable across sample sizes, the standard deviation, which rep-
resents the precision, varies more strongly. For common sam-
ple sizes of around 750 LST observations over the 38.5-year
period, the 1σ value is 0.01.

4.2 Clear-sky bias

LST measurements based on thermal infrared remote sensing
are biased towards clear-sky conditions (Ermida et al., 2019).
The effect of such a bias on LST trends has not yet received
much attention (Yang et al., 2024). A recent study has indi-
cated no discernible impact of clear-sky bias on LST trends
(Good et al., 2022) by comparing satellite-derived LST with
2 m air temperatures under clear-sky and all-sky conditions.
Furthermore, Zhao et al. (2021) compared mean annual LST
trends with trends in the frequency of clear-sky days and
found no clear correlation for daytime LST but emphasized
the challenges arising from changing surface conditions in
the analysis. The Landsat data provide us with the timing
of cloud cover and thus allow us to estimate the impact of
cloud cover on LST trends at the IMIS locations. We com-
pared IMIS LST trends derived during Landsat overpass days
on clear-sky days with IMIS LST trends derived during all
Landsat overpass times, including in clear-sky and cloudy-
sky conditions. We found that on average LST trends dur-
ing clear-sky conditions are 0.027 K yr−1 warmer than dur-
ing all-weather conditions (Fig. 11). We note however that
the spread in the data is relatively large, and we are reluc-
tant to generalize this finding. Nevertheless, this exercise
suggests that for our study area, an additional uncertainty
of ∼ 0.03 K yr−1 is added for comparison between clear-sky
and all-weather conditions.

4.3 LST trend bias due to changing acquisition times

Our analysis of changes in IMIS LST at 09:29 and
10:16 UTC (Fig. 8) and the spatial patterns of Landsat-
derived LST trends with slope and aspect (Fig. 9) suggests
the existence of an LST trend bias due to changing acquisi-
tion times. A linear fit of the acquisition times of all three

Figure 11. Relationship between IMIS land surface temperature
(LST) trends during clear-sky and all-weather conditions. LST data
were interpolated at Landsat overpass times.

sensors together does obviously not cover all the individ-
ual variations in orbit positions. However, the close similar-
ity of the slope and aspect dependency in LST trends and
1Sin suggests that this approach appears to recover the first-
order bias reasonably well. The dominant process that influ-
ences diurnal variations in LST during clear-sky conditions
is the incoming solar radiation (Ghausi et al., 2023). Sur-
faces that are exposed to direct solar radiation receive par-
ticularly high amounts of energy and are thus prone to heat-
ing up quickly during the morning hours, especially during
the summer months. The additional radiation flux received
during the 47 min time window peaks for surfaces that are
oriented orthogonal to the sun position, at an aspect value of
approximately 130°, whereas the LST trend and 1Sin peak
at approximately 255° (Fig. 9). Instead, our results suggest
that the spatial pattern in the LST trend is more strongly con-
trolled by the relative changes in direct solar radiation (1Sin)
during the 47 min time window rather than the total amount
of energy received, with positive and negative peaks at ap-
proximately westerly- and easterly-exposed surfaces, respec-
tively. As a result, the greatest temperature changes occur
where surfaces have an orientation that results in a switch be-
tween sun exposure and shadow during the 47 min time win-
dow. Observed differences in the slope–aspect dependence
of 1Sin and LST trends (Fig. 9a, b) are probably related to
actual LST trends that are unrelated to slope and aspect.

Possibly the simplest way to deal with the LST trend bias
due to changing acquisition times would be to choose an
observation time period in which the orbital drift was min-
imal, such as 1998–2018, or by neglecting Landsat 5 data
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Figure 12. Mean LST trends (a), modeled LST trend bias (b), and corrected mean LST trends (c) for 2° slope and 10° aspect angles.

altogether and Landsat 7 after 2018 (Fig. 2). We tested this
shorter time period (Figs. S3.2, S3.3) and obtained LST trend
values that were considerably noisier and more strongly af-
fected by artifacts, seemingly related to the number of obser-
vations (see Sect. 4.1). We attribute this lower signal-to-noise
ratio to the shorter observation time period, which also hap-
pened to be a limiting factor in our comparison with IMIS-
derived trend values (Fig. 5). Previous studies concerned
with the removal of the influence of orbital satellite drift on
LST data – mostly for NOAA-AVHRR – have employed dif-
ferent techniques (e.g., Julien and Sobrino, 2012) that are,
however, difficult to implement for Landsat due to substan-
tially fewer observations and more heterogeneous terrain. In
addition, correcting each observation to a consistent time be-
fore fitting Eq. (2) is prone to unquantified errors and spu-
rious trends (Julien and Sobrino, 2012) and difficult to im-
plement in GEE. We thus tested another possible approach,
which is to estimate the LST trend bias after the fitting, based
on the strong observed terrain influence (Fig. 9). This ap-
proach is probably less accurate as it neglects potential influ-
ences of different ground surface materials, but it is easier to
implement.

To do so, we first smoothed the map of mean 1Sin for
slope and aspect using local linear regression and normal-
ized the values by the standard score. We then scaled the
normalized model to approximate the observed LST trend
pattern as a function of slope and aspect by least squares re-
gression. Finally, we used the mean amount of surface warm-
ing (0.04 K yr−1) within the 47 min time window for flat and
gently sloping terrain from the IMIS stations (Fig. 8) to align
the model data for slope angles less than 10° (Fig. 12).

The modeled LST trend bias ranges between approxi-
mately 0 and 0.07 K yr−1, depending on slope and aspect.
After removing the estimated bias, the remaining LST trends
(Fig. 12c) still show some residual pattern that follows the
topography, with about 0.02 K yr−1 lower trend values cen-
tered on a ∼ 160° aspect and ∼ 35° slope. The slope–aspect
position of this residual LST trend feature is similar to the po-
sition of the highest Sin values in Fig. 9a and b. If there was an
additional influence of the additional Sin, received during the
47 min time period, we would expect LST trend values to be

Figure 13. Corrected land surface temperature (LST) trends of the
Swiss Alps. Significance was estimated using a t test, and only sig-
nificant (p<0.05) LST trends are shown in the map.

higher on surfaces approximately orthogonal to the sun vec-
tor, not lower, as suggested by the observations. Therefore,
it presently remains unclear whether the residual LST trend
feature is due to the LST trend bias and an inadequate correc-
tion or possibly related to other processes. Applying the LST
trend bias correction to the LST trends derived from GEE
(Fig. 13) results in overall lower trend values and less spatial
differences in LST trends with respect to aspect. Further spa-
tial variations that are still present after the bias correction
appear to be related to differences and changes in land cover
types and warrant further detailed inspection. LST trends re-
lated to changes in the mountain cryosphere are discussed
in Sect. 4.4, but a detailed analysis of land cover changes is
beyond the scope of this study.

4.4 Prospects for studying changes in the cryosphere

Based on the corrected LST trend map (Fig. 13), the spa-
tially averaged (±1σ ) Landsat-derived clear-sky LST trend
for all of Switzerland and for the time period 1984–2022
is 0.1± 0.05 K yr−1. Insignificant (p>0.05) LST trends, de-
termined by a t test, were masked out and not considered.
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Figure 14. Changes in the Unteraar Glacier, Switzerland, evidenced by late summer Landsat scenes from (a) 1984 and (b) 2022 and by (c)
land surface temperature (LST) trends. The satellite images show false color composites using the shortwave infrared 1, near infrared, and
red bands as red, green, and blue channels. The blue line in all panels indicates the outline of the Unteraar Glacier based on the Randolph
Glacier Inventory (RGI Consortium, 2017).

Most LST trend values range from 0.07 to 0.09 K yr−1, with
higher trends in populated valley bottoms like the Rhône Val-
ley and lower trends over vegetated hillslopes at higher ele-
vations (Fig. 7). A detailed analysis of LST trend variations
with respect to different land cover types and properties as
well as their change is beyond the scope of this study. How-
ever, we here briefly present examples of how changes in the
mountain cryosphere map into spatial patterns of LST trends
at high spatial resolution. For instance, the rapid changes in
mountain glaciers correlate well with patterns observed in the
LST trends. Figure 14 shows the Unteraar Glacier as an ex-
ample, where the highest LST trends by far occur along the
glacier margin due to ice retreat and exposure of bedrock.
Additionally, high LST trends are associated with the expan-
sion of supraglacial debris, which is well shown on the south-
ern branch of the Unteraar Glacier, and the disappearance of
clean ice in the lower few kilometers of the glacier. In con-
trast, LST trends are lower in magnitude and spatially more
homogenous in the accumulation zone, which experiences
minimal changes in surface type.

How changes in snow cover influence LST trends would
require a detailed analysis with respect to snow extent, du-
ration, depth, and seasonality, which is beyond the scope of
this study. However, in order to assess the first-order sensi-
tivity of LST trends to potential changes in snow cover, we
spatially averaged LST trends for 100 m elevation bins and
1 °C MALST bins across the study area (Fig. 1), excluding
glaciers and glacier retreat zones (see Sect. 2.4). Based on
a previous global-scale study of air temperatures, we expect
the highest positive temperature trends at altitudes where the
MALST is between −10 and +5 °C due to reduced snow
cover and increased absorption of solar radiation (Pepin and
Lundquist, 2008). Observed mean LST trends at elevations
where MALST is between−10 and 0 °C are among the high-
est trend values, consistent with an influence of snow cover
on LST trends (Fig. 15). In fact, LST trend magnitudes dis-
play a systematic pattern with MALST and elevation that
merits more detailed examination. We note that MALST dif-

Figure 15. Relationship between (a) mean land surface temperature
(LST) trends for 100 m elevation bins and 1 °C mean annual land
surface temperature (MALST) bins, (b) annual mean snow depth
trends, and (c) trends in the number of annual snow-free days at the
IMIS stations with a record length of more than 10 years.

ferences of up to ∼ 20 K at a similar elevation are easily ex-
plained by different aspects, that is, exposure to the sun (see
Fig. 7a), which may coincide with different long-term trends
in snow cover duration. Although dominantly negative mean
annual snow depth trends, derived from the IMIS stations by
linear regression of annual mean snow depths, further sup-
port the effect of snow decline on LST trends, we did not
find a clear correlation between LST trends and mean an-
nual snow depth trends (Fig. 14b). In addition, we do observe
mostly positive trends in the number of snow-free days per
year (Fig. 15c), and these trends appear to increase in ele-
vation. It is reasonable to assume that LST trends are higher
where changes in snow cover are associated with more snow-
free days and that LST trends are likely smaller where snow
depth declines, but the surface nevertheless remains mostly
snow covered, similar to that in glacier accumulation zones.
However, a clear correlation between trends in the number of
snow-free days and LST is not obvious, which could be re-
lated to the rather short record length of the IMIS stations and
significant year-to-year variability in snow depth and cover.
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5 Conclusions

Our study has shown that Landsat-derived land surface tem-
perature (LST) data since 1984 offer opportunities to study
the spatial variability of LST in complex topography at high
spatial resolution. Our comparison with ground observations
from the IMIS network provides confidence in the remote-
sensing-derived LST data and LST trends, despite challenges
due to differences in spatial resolution. The analysis of Land-
sat C2 LST time series, using harmonic regression includ-
ing a linear component, exploits the periodic nature of the
intra-annual LST variation and yields maps of the mean an-
nual LST (MALST), the annual amplitude, the timing of the
harmonic oscillation (phase), and the long-term LST trend.
We observe meaningful spatial patterns with elevation, slope,
and aspect that allow for the identification of the influence
of surface orientation or type (e.g., glacier surfaces) on an-
nual LST variations. However, all LST time series compo-
nents (i.e., MALST, amplitude, phase, trend) presented in
this study are based on LST at around ∼ 10:00 UTC, i.e.,
∼ 11:00 local time, and must thus be interpreted accord-
ingly. In principle, the Landsat archive provides a sufficiently
long time series to obtain LST trends, as shown from our
comparison with IMIS LST data. LST trend values obtained
from Landsat and the IMIS network converge for record
lengths >15 years, whereas shorter records exhibit consider-
ably more noise. However, our analysis of the slope–aspect
dependence of LST trends strongly suggests that trend val-
ues are biased due to the long-term orbit changes that cause
spurious LST trends. As orbit variations are not uniform
with time and the sensor, a temporal coherence correction
is challenging. Assuming a long-term linear change in ac-
quisition time, we have shown that the change in incident
solar radiation can explain, at least in large part, the spa-
tial slope–aspect patterns of “apparent” Landsat-derived LST
trends. By modeling and removing the LST trend bias due
to changing acquisition time, we obtain a spatially aver-
aged (±1σ ) Landsat-derived clear-sky LST trend for the time
period 1984–2022 of 0.1± 0.05 K yr−1. The corrected LST
trends respond to changes in the mountain cryosphere, such
as glacier retreat, debris cover evolution, and snow decline,
and can potentially contribute to an improved prediction of
permafrost temperatures, as surface temperatures propagate
into greater depths. Further analysis is needed to disentan-
gle the effect of land cover and land cover changes on the
observed LST trends.

Data availability. GeoTIFF files of the mean annual land surface
temperature, amplitude, land surface temperature trend, RMSE, and
phase of the harmonic oscillation, together with the Google Earth
Engine Python code, are available from the repository at https://doi.
org/10.5880/GFZ.3.3.2023.005 (Gök et al., 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-18-5259-2024-supplement.

Author contributions. DTG: conceptualization, methodology, writ-
ing (original draft and review and editing). DS: conceptualiza-
tion, methodology, writing (review and editing), supervision. HW:
methodology, writing (review and editing).

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We are grateful to Noel Gorelick for advice re-
garding Google Earth Engine. During the preparation of this work,
the authors checked spelling and grammar using DeepL and Chat-
GPT to improve readability. After using these tools, the authors re-
viewed and edited the content and take full responsibility for the
content of the publication.

Financial support. This research has been supported by the
European Research Council under the EU H2020 program (grant
no. 759639).

The article processing charges for this open-access
publication were covered by the Helmholtz Centre Potsdam –
GFZ German Research Centre for Geosciences.

Review statement. This paper was edited by Franziska Koch and
reviewed by two anonymous referees.

References

Allen, S., Gruber, S., and Owens, I. F.: Exploring steep bedrock
permafrost and its relationship with recent slope failures in the
Southern Alps of New Zealand, Permafrost Periglac., 20, 345–
356, https://doi.org/10.1002/ppp.658, 2009.

Bojinski, S., Verstraete, M. M., Peterson, T. C., Richter, C.,
Simmons, A. J., and Zemp, M.: The concept of essen-
tial climate variables in support of climate research, appli-
cations, and policy, B. Am. Meteorol. Soc., 95, 1431–1443,
https://doi.org/10.1175/bams-d-13-00047.1, 2014.

Brantley, S. L., Goldhaber, M. B., and Ragnarsdottir, K.: Crossing
disciplines and scales to understand the critical zone, Elements,
3, 307–314, https://doi.org/10.2113/gselements.3.5.307, 2007.

https://doi.org/10.5194/tc-18-5259-2024 The Cryosphere, 18, 5259–5276, 2024

https://doi.org/10.5880/GFZ.3.3.2023.005
https://doi.org/10.5880/GFZ.3.3.2023.005
https://doi.org/10.5194/tc-18-5259-2024-supplement
https://doi.org/10.1002/ppp.658
https://doi.org/10.1175/bams-d-13-00047.1
https://doi.org/10.2113/gselements.3.5.307


5274 D. T. Gök et al.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps

Cook, M., Schott, J. R., Mandel, J., and Raqueño, N. G.: Develop-
ment of an Operational Calibration Methodology for the Land-
sat Thermal Data Archive and Initial Testing of the Atmospheric
Compensation Component of a Land Surface Temperature (LST)
Product from the Archive, Remote Sensing, 6, 11244–11266,
https://doi.org/10.3390/rs61111244, 2014.

Copernicus DEM: COP-DEM_EEA-10-INSP, Copernicus DEM
[data set], https://doi.org/10.5270/esa-c5d3d65, 2022.

Corripio, J. G.: Vectorial algebra algorithms for calculating ter-
rain parameters from DEMs and solar radiation modelling
in mountainous terrain, Int. J. Geogr. Inf. Sci., 17, 1–23,
https://doi.org/10.1080/713811744, 2003.

Crawford, C. J., Roy, D. P., Arab, S., Barnes, C., Vermote, É., Hul-
ley, G., Gerace, A., Choate, M. J., Engebretson, C., Micijevic,
E., Schmidt, G. L., Anderson, C., Anderson, M. C., Bouchard,
M., Cook, B. D., Dittmeier, R., Howard, D. M., Jenkerson, C. B.,
Kim, M., Kleynhans, T., Maiersperger, T., Mueller, C., Neigh,
C. S. R., Owen, L. R., Page, B. P., Pahlevan, N., Rengarajan,
R., Roger, J. C., Sayler, K. L., Scaramuzza, P., Skakun, S., Yan,
L., Zhang, H. K., Zhu, Z., and Zahn, S.: The 50-year Land-
sat collection 2 archive, Science of Remote Sensing, 8, 100103,
https://doi.org/10.1016/j.srs.2023.100103, 2023.

Dech, S., Holzwarth, S., Asam, S., Andresen, T., Bachmann, M.,
Boettcher, M., Dietz, A. J., Eisfelder, C., Frey, C., Gesell, G.,
Geßner, U., Hirner, A., Hofmann, M., Kirches, G., Klein, D.,
Klein, I., Kraus, T., Krause, D., Plank, S., Popp, T., Reinermann,
S., Reiners, P., Roessler, S., Ruppert, T., Scherbachenko, A.,
Vignesh, R., Wolfmueller, M., Zwenzner, H., and Kuenzer, C.:
Potential and Challenges of Harmonizing 40 years of AVHRR
Data: The TIMELINE Experience, Remote Sensing, 13, 3618,
https://doi.org/10.3390/rs13183618, 2021.

Dwyer, J. L., Roy, D. P., Sauer, B., Jenkerson, C. B., Zhang,
H. K., and Lymburner, L.: Analysis Ready Data: Enabling
analysis of the Landsat Archive, Remote Sensing, 10, 1363,
https://doi.org/10.3390/rs10091363, 2018.

Ermida, S. L., Trigo, I. F., DaCamara, C. C., Jiménez,
C., and Prigent, C.: Quantifying the Clear-Sky bias
of satellite land surface temperature using Microwave-
Based estimates, J. Geophys. Res.-Atmos., 124, 844–857,
https://doi.org/10.1029/2018jd029354, 2019.

Foga, S., Scaramuzza, P., Guo, S., Zhu, Z., Dilley, R. D., Beckmann,
T., Schmidt, G. L., Dwyer, J. L., Hughes, M. J., and Laue, B.:
Cloud detection algorithm comparison and validation for opera-
tional Landsat data products, Remote Sens. Environ., 194, 379–
390, https://doi.org/10.1016/j.rse.2017.03.026, 2017.

Fu, P. and Weng, Q.: Temporal dynamics of land sur-
face temperature from Landsat TIR Time Series
images, IEEE Geosci. Remote S., 12, 2175–2179,
https://doi.org/10.1109/lgrs.2015.2455019, 2015.

Ghausi, S. A., Tian, Y., Zehe, E., and Kleidon, A.: Radiative con-
trols by clouds and thermodynamics shape surface temperatures
and turbulent fluxes over land, P. Natl. Acad. Sci. USA, 120,
e2220400120, https://doi.org/10.1073/pnas.2220400120, 2023.

Gök, D. T., Scherler, D., and Wulf, H.: Landsat-derived spatiotem-
poral variations of land surface temperature, GFZ Data Services
[data set], https://doi.org/10.5880/GFZ.3.3.2023.005, 2024.

Good, E., Aldred, F., Jimenez, C., Veal, K. L., and Jiménez,
C.: An Analysis of the Stability and Trends in the
LST_ cci Land Surface Temperature Datasets Over Eu-

rope, Earth and Space Science, 9, e2022EA002317,
https://doi.org/10.1029/2022ea002317, 2022.

Gruber, S. and Haeberli, W.: Permafrost in steep bedrock
slopes and its temperature-related destabilization fol-
lowing climate change, J. Geophys. Res., 112, F02S18,
https://doi.org/10.1029/2006jf000547, 2007.

Gruber, S., Hoelzle, M., and Haeberli, W.: Permafrost
thaw and destabilization of Alpine rock walls in the
hot summer of 2003, Geophys. Res. Lett., 31, L13504,
https://doi.org/10.1029/2004gl020051, 2004.

Guillevic, P., Göttsche, F.-M., Nickeson, J., Hulley, G., Ghent, D.,
Yu, Y., Trigo, I. F., Hook, S. J., Sobrino, J. A., Remedios, J.
J., Román, M. O., and Camacho, F.: Land Surface Tempera-
ture Product Validation Best Practice Protocol Version 1.0, Land
Product Validation Subgroup (WGCV/CEOS), NASA [data set],
https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001, 2017.

Gutman, G. E.: On the use of long-term global data of land re-
flectances and vegetation indices derived from the advanced very
high resolution radiometer, J. Geophys. Res., 104, 6241–6255,
https://doi.org/10.1029/1998jd200106, 1999.

Gutman, G. E. and Masek, J.: Long-term time series of the Earth’s
land-surface observations from space, Int. J. Remote Sens.,
33, 4700–4719, https://doi.org/10.1080/01431161.2011.638341,
2012.

Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B.,
Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Höl-
zle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg,
M. A., Lehning, M., Matsuoka, N., Murton, J. B., Noet-
zli, J., Phillips, M., Ross, N., Seppälä, M., Springman,
S. M., and Mühll, D. V.: Permafrost and climate in Eu-
rope: Monitoring and modelling thermal, geomorphological
and geotechnical responses, Earth-Sci. Rev., 92, 117–171,
https://doi.org/10.1016/j.earscirev.2008.12.002, 2009.

Huggel, C.: Recent extreme slope failures in glacial environments:
effects of thermal perturbation, Quaternary Sci. Rev., 28, 1119–
1130, https://doi.org/10.1016/j.quascirev.2008.06.007, 2009.

Hulley, G. and Hook, S. J.: Generating consistent land surface tem-
perature and emissivity products between ASTER and MODIS
data for earth science research, IEEE T. Geosci. Remote, 49,
1304–1315, https://doi.org/10.1109/tgrs.2010.2063034, 2011.

Hulley, G., Hook, S. J., Abbott, E. A., Malakar, N. K., Is-
lam, T., and Abrams, M. J.: The ASTER Global Emissiv-
ity Dataset (ASTER GED): Mapping Earth’s emissivity at
100 meter spatial scale, Geophys. Res. Lett., 42, 7966–7976,
https://doi.org/10.1002/2015gl065564, 2015.

Hulley, G., Ghent, D., Göttsche, F.-M., Guillevic, P., Mil-
drexler, D. J., and Coll, C.: Land surface temperature, in:
Elsevier eBooks, 57–127, https://doi.org/10.1016/b978-0-12-
814458-9.00003-4, 2019.

IPCC: Climate Change 2023: Synthesis Report: Contribution of
Working Groups I, II and III to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change, edited by: Core
Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzer-
land, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023

Jiménez-Muñoz, J. C. and Sobrino, J. A.: A generalized
single-channel method for retrieving land surface tempera-
ture from remote sensing data, J. Geophys. Res., 108, 4688,
https://doi.org/10.1029/2003jd003480, 2003.

The Cryosphere, 18, 5259–5276, 2024 https://doi.org/10.5194/tc-18-5259-2024

https://doi.org/10.3390/rs61111244
https://doi.org/10.5270/esa-c5d3d65
https://doi.org/10.1080/713811744
https://doi.org/10.1016/j.srs.2023.100103
https://doi.org/10.3390/rs13183618
https://doi.org/10.3390/rs10091363
https://doi.org/10.1029/2018jd029354
https://doi.org/10.1016/j.rse.2017.03.026
https://doi.org/10.1109/lgrs.2015.2455019
https://doi.org/10.1073/pnas.2220400120
https://doi.org/10.5880/GFZ.3.3.2023.005
https://doi.org/10.1029/2022ea002317
https://doi.org/10.1029/2006jf000547
https://doi.org/10.1029/2004gl020051
https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001
https://doi.org/10.1029/1998jd200106
https://doi.org/10.1080/01431161.2011.638341
https://doi.org/10.1016/j.earscirev.2008.12.002
https://doi.org/10.1016/j.quascirev.2008.06.007
https://doi.org/10.1109/tgrs.2010.2063034
https://doi.org/10.1002/2015gl065564
https://doi.org/10.1016/b978-0-12-814458-9.00003-4
https://doi.org/10.1016/b978-0-12-814458-9.00003-4
https://doi.org/10.59327/IPCC/AR6-9789291691647
https://doi.org/10.1029/2003jd003480


D. T. Gök et al.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps 5275

Jin, M. and Treadon, R.: Correcting the orbit drift ef-
fect on AVHRR land surface skin temperature mea-
surements, Int. J. Remote Sens., 24, 4543–4558,
https://doi.org/10.1080/0143116031000095943, 2003.

Julien, Y. and Sobrino, J. A.: Correcting AVHRR Long
Term Data Record V3 estimated LST from orbital
drift effects, Remote Sens. Environ., 123, 207–219,
https://doi.org/10.1016/j.rse.2012.03.016, 2012.

Julien, Y. and Sobrino, J. A.: Toward a reliable correction of NOAA
AVHRR orbital drift, Frontiers in Remote Sensing, 3, 851933,
https://doi.org/10.3389/frsen.2022.851933, 2022.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W. G., Deaven,
D. G., Gandin, L. S., Iredell, M., Saha, S., White, G. H.,
Woollen, J. S., Zhu, Y., Chelliah, M., Ebisuzaki, W., Hig-
gins, W., Janowiak, J. E., Mo, K. C., Ropelewski, C. F.,
Wang, J., Leetmaa, A., Reynolds, R. W., Jenne, R. L., and
Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B.
Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-
0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.

Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detect-
ing trends in forest disturbance and recovery using yearly
Landsat time series: 1. LandTrendr – Temporal segmenta-
tion algorithms, Remote Sens. Environ., 114, 2897–2910,
https://doi.org/10.1016/j.rse.2010.07.008, 2010.

Kuenzer, C. and Dech, S.: Thermal Infrared Remote Sensing: Sen-
sors, Methods, Applications, Springer Science & Business Me-
dia, https://doi.org/10.1007/978-94-007-6639-6, 2013.

Li, J., Li, Z.-L., Wu, H., and You, N.: Trend, seasonality, and abrupt
change detection method for land surface temperature time-series
analysis: Evaluation and improvement, Remote Sens. Environ.,
280, 113222, https://doi.org/10.1016/j.rse.2022.113222, 2022.

Li, Z., Wu, H., Duan, S., Zhao, W., Ren, H., Li, X., Leng, P., Tang,
R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X.,
Shang, G., Tang, B., Yan, G., and Zhou, C.: Satellite Remote
sensing of global land surface temperature: definition, methods,
products, and applications, Rev. Geophys., 61, e2022RG000777,
https://doi.org/10.1029/2022rg000777, 2023.

Li, Z.-L., Tang, B., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.
F., and Sobrino, J. A.: Satellite-derived land surface temperature:
Current status and perspectives, Remote Sens. Environ., 131, 14–
37, https://doi.org/10.1016/j.rse.2012.12.008, 2013.

Malakar, N. K., Hulley, G., Hook, S. J., Laraby, K. G., Cook,
M., and Schott, J. R.: An Operational Land Surface Tem-
perature Product for Landsat Thermal Data: Methodology
and Validation, IEEE T. Geosci. Remote, 56, 5717–5735,
https://doi.org/10.1109/tgrs.2018.2824828, 2018.

Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C.,
Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Grego-
rio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt,
M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., No-
tarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler,
M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A.,
Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubey-
roux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.:
Observed snow depth trends in the European Alps: 1971 to 2019,
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-
1343-2021, 2021.

Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld,
F., Waske, B., and Diekkrüger, B.: Land surface temperature

trends as indicator of land use changes in wetlands, Int. J. Appl.
Earth Obs., 70, 62–71, https://doi.org/10.1016/j.jag.2018.02.002,
2018.

Pepin, N. and Lundquist, J. D.: Temperature trends at high eleva-
tions: Patterns across the globe, Geophys. Res. Lett., 35, L14701,
https://doi.org/10.1029/2008gl034026, 2008.

Prata, A. J.: Land surface temperatures derived from the ad-
vanced very high resolution radiometer and the along-track
scanning radiometer: 2. Experimental results and validation
of AVHRR algorithms, J. Geophys. Res., 99, 13025–13058,
https://doi.org/10.1029/94jd00409, 1994.

Qiu, S., Zhu, Z., Shang, R., and Crawford, C. J.: Can
Landsat 7 preserve its science capability with a drift-
ing orbit?, Science of Remote Sensing, 4, 100026,
https://doi.org/10.1016/j.srs.2021.100026, 2021.

Reiners, P., Sobrino, J. A., and Kuenzer, C.: Satellite-Derived
Land Surface Temperature Dynamics In the Context of
Global Change – A Review, Remote Sensing, 15, 1857,
https://doi.org/10.3390/rs15071857, 2023.

Ren, S., Yao, T., Yang, W., Miles, E., Zhao, H., Zhu, M., and
Li, S.: Changes in glacier surface temperature across the Third
Pole from 2000 to 2021, Remote Sens. Environ., 305, 114076,
https://doi.org/10.1016/j.rse.2024.114076, 2024.

RGI Consortium: Randolph Glacier Inventory: A dataset of global
glacier outlines (Version 6), National Snow and Ice Data Center
[data set], https://doi.org/10.7265/4m1f-gd79, 2017.

Roy, D. P., Li, Z., Zhang, H. K., and Huang, H.-C.: A con-
terminous United States analysis of the impact of Landsat
5 orbit drift on the temporal consistency of Landsat 5 The-
matic Mapper data, Remote Sens. Environ., 240, 111701,
https://doi.org/10.1016/j.rse.2020.111701, 2020.

Rumpf, S. B., Gravey, M., Broennimann, O., Luoto, M.,
Cianfrani, C., Mariéthoz, G., and Guisan, A.: From white
to green: Snow cover loss and increased vegetation pro-
ductivity in the European Alps, Science, 376, 1119–1122,
https://doi.org/10.1126/science.abn6697, 2022.

Shumway, R. H. and Stoffer, D. S.: Time Series Analysis and its
applications: With R Examples, third edition, 3rd edn., Int. Stat.
Rev., 81, 323–325, https://doi.org/10.1111/insr.12020_15, 2013.

Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., and
Romanovsky, V. E.: The changing thermal state of per-
mafrost, Nature Reviews Earth & Environment, 3, 10–23,
https://doi.org/10.1038/s43017-021-00240-1, 2022.

Sobrino, J. A., Julien, Y., and García-Monteiro, S.: Surface Temper-
ature of the Planet Earth from Satellite Data, Remote Sensing,
12, 218, https://doi.org/10.3390/rs12020218, 2020.

Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., De
Preux, A., Huss, M., Tognacca, C., Clinton, J., Diehl, T.,
and Bonanomi, Y.: Direct observations of a three million cu-
bic meter rock-slope collapse with almost immediate initia-
tion of ensuing debris flows, Geomorphology, 351, 106933,
https://doi.org/10.1016/j.geomorph.2019.106933, 2020.

Weng, Q. and Fu, P.: Modeling annual parameters of clear-sky land
surface temperature variations and evaluating the impact of cloud
cover using time series of Landsat TIR data, Remote Sens. En-
viron., 140, 267–278, https://doi.org/10.1016/j.rse.2013.09.002,
2014.

Yang, Y., Zhao, W., Yang, Y., Xu, M., Mukhtar, H., Tauqir,
G., and Tarolli, P.: An annual temperature cycle feature con-

https://doi.org/10.5194/tc-18-5259-2024 The Cryosphere, 18, 5259–5276, 2024

https://doi.org/10.1080/0143116031000095943
https://doi.org/10.1016/j.rse.2012.03.016
https://doi.org/10.3389/frsen.2022.851933
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1007/978-94-007-6639-6
https://doi.org/10.1016/j.rse.2022.113222
https://doi.org/10.1029/2022rg000777
https://doi.org/10.1016/j.rse.2012.12.008
https://doi.org/10.1109/tgrs.2018.2824828
https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.1016/j.jag.2018.02.002
https://doi.org/10.1029/2008gl034026
https://doi.org/10.1029/94jd00409
https://doi.org/10.1016/j.srs.2021.100026
https://doi.org/10.3390/rs15071857
https://doi.org/10.1016/j.rse.2024.114076
https://doi.org/10.7265/4m1f-gd79
https://doi.org/10.1016/j.rse.2020.111701
https://doi.org/10.1126/science.abn6697
https://doi.org/10.1111/insr.12020_15
https://doi.org/10.1038/s43017-021-00240-1
https://doi.org/10.3390/rs12020218
https://doi.org/10.1016/j.geomorph.2019.106933
https://doi.org/10.1016/j.rse.2013.09.002


5276 D. T. Gök et al.: Land surface temperature trends derived from Landsat imagery in the Swiss Alps

strained method for generating MODIS daytime All-Weather
land surface temperature, IEEE T. Geosci. Remote, 62, 4405014,
https://doi.org/10.1109/tgrs.2024.3377670, 2024.

Zhang, H. K. and Roy, D. P.: Landsat 5 Thematic Mapper re-
flectance and NDVI 27-year time series inconsistencies due to
satellite orbit change, Remote Sens. Environ., 186, 217–233,
https://doi.org/10.1016/j.rse.2016.08.022, 2016.

Zhao, W., Yang, M., Chang, R., Zhan, Q., and Li, Z.-L.: Sur-
face warming trend analysis based on MODIS/Terra Land
surface temperature product at Gongga Mountain in the
southeastern Tibetan Plateau, J. Geophys. Res.-Atmos., 126,
https://doi.org/10.1029/2020jd034205, 2021.

Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow
detection in Landsat imagery, Remote Sens. Environ., 118, 83–
94, https://doi.org/10.1016/j.rse.2011.10.028, 2012.

The Cryosphere, 18, 5259–5276, 2024 https://doi.org/10.5194/tc-18-5259-2024

https://doi.org/10.1109/tgrs.2024.3377670
https://doi.org/10.1016/j.rse.2016.08.022
https://doi.org/10.1029/2020jd034205
https://doi.org/10.1016/j.rse.2011.10.028

	Abstract
	Introduction
	Materials and methods
	Landsat-derived LST
	IMIS-derived LST
	LST processing and trend estimation
	LST trend bias analysis
	Validation metrics

	Results
	LST comparison
	LST trend comparison
	Spatiotemporal variations in LST
	LST trend bias

	Discussion
	Uncertainties related to LST and LST trends
	Clear-sky bias
	LST trend bias due to changing acquisition times
	Prospects for studying changes in the cryosphere

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

