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Zusammenfassung 

Nanomaterialien (NM) können durch Feinabstimmung ihrer physikalisch-chemischen Eigenschaften 

für verschiedene industrielle Zwecke hergestellt werden. Dies führt zu einer theoretisch 

unbegrenzten Anzahl von NM-Varianten. Dabei können selbst kleine Variationen in den physikalisch-

chemischen Eigenschaften eines NM einen erheblichen Einfluss auf seine Aufnahme, Toxikokinetik 

und (Öko-)Toxizität haben. Daher muss theoretisch eine separate Risikobewertung für alle Varianten 

und alle toxikologischen Endpunkte durchgeführt werden. Da dies nicht realistisch umsetzbar ist, sind 

Gruppierungs- und Read-Across-Ansätze, die eine Übertragung von Informationen zwischen 

hinreichend ähnlichen NM ermöglichen, vielversprechende Alternativen. Es ist jedoch nicht trivial, 

zuverlässige Gruppierungsansätze für NM zu entwickeln, da die Beziehung zwischen den einzelnen 

physikalisch-chemischen Eigenschaften und dem toxikologischen Profil von NM noch nicht 

hinreichend geklärt ist. Das übergeordnete Ziel dieser Arbeit war es, zu untersuchen, wie 

maschinelles Lernen (ML) eingesetzt werden kann, um die Gruppierung von NM bei der Suche nach 

solchen Beziehungen oder den zugrunde liegenden Mustern zu unterstützen. Da die Formulierung 

einer zuverlässigen Gruppierungshypothese in hohem Maße von einem mechanistischen Verständnis 

profitieren kann, wurden die zugrundeliegenden Wirkungsweisen oder Modes-of-Action (MoAs) für 

verschiedene NM auch durch die Untersuchung von Ergebnissen aus Omics-Ansätzen betrachtet.    

 

In der ersten Studie wurde versucht, mit Hilfe von ML die wichtigsten physikalisch-chemischen 

Eigenschaften zu ermitteln, die die Toxizität von NM beeinflussen. Dazu wurde ein Datensatz von elf 

NM mit einer umfassenden Beschreibung ihrer physikalisch-chemischen Eigenschaften verwendet. 

Diese physikalisch-chemischen Eigenschaften wurden dann mit verfügbaren in vivo Daten aus 

Kurzzeit-Inhalationsstudien (STIS) und in vitro Toxizitätsdaten verknüpft, die mit dem sogenannten 

Makrophagen-Assay gemessen wurden. In beiden Fällen wurde die Toxizität als binäre 

Ergebnisvariable dargestellt, die angibt, ob ein NM in den jeweiligen Toxizitätsstudien "aktiv" oder 

"passiv" war. Unüberwachte und überwachte ML-Ansätze wurden auf diesem Datensatz trainiert. Im 

unüberwachten Modell wurde die Hauptkomponentenanalyse (PCA) verwendet, um Informationen 

darüber abzuleiten, welche physikalisch-chemischen Eigenschaften in den ersten beiden 

Hauptkomponenten (PC) den stärksten Einfluss haben. Anschließend wurden die Ergebnisse mit Hilfe 

eines k-Nächste Nachbarn (kNN) Ansatzes mit den definierten Aktivitätsstufen verglichen. Im 

überwachten Gegenstück wurde eine Random Forest (RF) Analyse mit und ohne rekursive 

Merkmalseliminierung (RFE) durchgeführt. Die Toxizitätsklassen wurden somit direkt als 

Kennzeichnungen im Modellbildungsprozess verwendet. Insgesamt wurde das beste Modell mit RF 
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und RFE erzielt. Es erreichte eine ausgewogene Genauigkeit von 0,82 und wurde auf den drei 

Parametern Zetapotenzial, Redoxpotenzial und Auflösungsrate aufgebaut. Diese Studie zeigte, wie 

ML die NM-Gruppierungsansätze unterstützen kann. Gleichzeitig wurde aber auch deutlich, dass die 

Vorhersagemodellierung, die nur auf physikalisch-chemischen Eigenschaften beruht, erhebliche 

Einschränkungen aufweist. Während dies heute allgemein anerkannt ist und auch in verschiedenen 

Empfehlungen erwähnt wird, war dies zum Zeitpunkt der Studie noch nicht der Fall. Bereits mit 

diesem kleinen Datensatz von NM, der im Vergleich zu vielen anderen Studien eine umfassende 

Beschreibung der physikalisch-chemischen Eigenschaften aufwies, ist keine perfekte Trennung von 

"aktiven" und "passiven" NM möglich. 

 

Die zweite Studie zielte darauf ab, neben den physikalisch-chemischen Eigenschaften auch das 

Oxidationspotenzial (OP) zu untersuchen. Verschiedene Assays zur Messung des OP wurden im 

Hinblick auf ihre Vorhersagekraft für die NM-Toxizität bewertet. Darüber hinaus war es ein Ziel 

herauszufinden, ob OP-Assays einander ersetzen können oder ob die Ergebnisse verschiedener OP-

Assays aus unterschiedlichen Datensätzen kombiniert werden können. Im Rahmen dieser Studie 

wurden vier Assays verglichen, nämlich die azellulären Oberflächenreaktivitätsassays 

Elektronenspinresonanzspektroskopie (ESR) unter Verwendung einer CPH-Spinsonde und einer 

DMPO-Spinfalle und der Ferric Reduction Ability of Serum (FRAS) Assay sowie der zelluläre 

Proteincarbonylierungsassay als Marker für oxidative Proteinschäden in NRK-52E-Zellen. Der 

Vergleich basierte auf einer Fallstudie mit OP-Messungen für 35 NMs. Für die vier OP-Assays wurden 

die massebasierten Dosen mit den oberflächenbasierten verglichen, Korrelationen und Clustering 

zwischen den Assays berechnet und ihre Vorhersagekraft für die gleichen Ergebnisvariablen wie in 

der ersten Studie für einzelne Assays und alle möglichen Kombinationen davon in einem logistischen 

Regressionsmodell bewertet. Diese Vergleiche ergaben, dass die oberflächenbasierten Dosen eine 

bessere Vorhersagekraft haben als die massebasierten. Darüber hinaus waren die Korrelationen 

zwischen den OP-Assays nur moderat. Im Rahmen der logistischen Regressionsanalyse war die 

Vorhersagekraft bei der Proteincarbonylierung oder bei Kombinationen von Assays, die die 

Proteincarbonylierung einschließen, am höchsten. Wie erwartet, scheinen also biologische OP-Tests 

das tatsächliche Toxizitätsergebnis zuverlässiger vorherzusagen. Gleichzeitig ist die Kombination von 

Datensätzen, bei denen verschiedene OP-Assays verwendet wurden, um robuste ML-Modelle auf der 

Grundlage großer Datensätze zu erstellen, nicht ohne weiteres möglich, da die Assays nicht hoch 

korreliert sind. Insgesamt scheint das OP sehr informativ und relevant für NM im Allgemeinen zu 

sein. Allerdings können auch andere (nicht direkt mit dem OP zusammenhängende) 

Toxizitätsmechanismen durch die Behandlung mit NM ausgelöst werden, die durch OP-Assays nicht 

erfasst werden können. 
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Die dritte Studie konzentrierte sich allgemeiner auf die Aufklärung von MoAs, die der Toxizität von 

NM zugrunde liegen. Hier sollten proteomische Daten auf ihr Potenzial hin untersucht werden, die 

MoAs von NM zu entschlüsseln und so deren Gruppierung zu unterstützen. Da jedoch relativ wenige 

proteomische Daten für NM existieren und die Interpretation aufgrund fehlender Referenzdaten 

schwierig ist, bestand die Hauptidee darin, proteomische Signaturen, die für NM beobachtet wurden, 

mit denen von anderen Kompenenten wie Chemikalien, Drogen oder Krankheiten zu vergleichen. Da 

solche Meta-Analysen vor allem durch die fehlende Standardisierung von proteomischen Daten 

beeinträchtigt werden, wurde ein Workflow für die harmonisierte Auswertung von öffentlichen 

proteomischen Daten und deren Integration in eine Meta-Analyse entwickelt. Der PROTEOMAS-

Workflow zielt auf die FAIRifizierung (Findable, Accessible, Interoperable, Reusable) von 

proteomischen Daten ab. In einer ersten Fallstudie wurde PROTEOMAS an 25 proteomischen 

Datensätzen getestet, um die toxikologischen Wirkungen von NM im Verhältnis zu denen anderer 

Komponenten in der Lunge zu untersuchen. Proteomische Fingerabdrücke und deren Ähnlichkeiten 

zwischen den untersuchten Komponenten konnten identifiziert werden. PROTEOMAS war somit 

nützlich für die Meta-Analyse von Proteomdaten.  

 

Der Übersichtsartikel gibt einen Überblick über die Vielfalt der in der Literatur verfügbaren ML-

Modelle und Omics-Ansätze zur Unterstützung der NM-Gruppierung. Entsprechende Modelle 

wurden gesammelt und einige übergreifende Schlussfolgerungen aus diesen Manuskripten gezogen. 

Insbesondere die Datenverfügbarkeit und -qualität sind ein großes Problem, das die Entwicklung 

robuster ML-Modelle für die Vorhersage der Toxizität von NM erschwert. Darüber hinaus sind die 

Messungen in der Regel nicht gut standardisiert und es werden nur unzureichende Metadaten 

bereitgestellt, so dass die Datensätze nicht integriert werden können. Insgesamt besteht im Bereich 

der NM-Sicherheit ein großer Bedarf an FAIRen Daten, was die Entwicklung zuverlässigerer Modelle 

und die Weiterentwicklung von in silico Tools im regulatorischen Kontext ermöglichen würde. Es 

wurde auch beschrieben, dass die aktuellen Entwicklungen auf dem Gebiet der künstlichen 

Intelligenz die Schließung von Datenlücken und die Verbesserung der Verfügbarkeit von Metadaten 

in NM-Datenbanken sowie verknüpfte Datenkonzepte erheblich unterstützen können. 

 

Insgesamt haben sich ML-Modelle und Omics-Methoden als nützlich erwiesen, um NM-

Gruppierungsansätze zu unterstützen. Allerdings sind die Datenverfügbarkeit und die 

Standardisierung der Methoden von größter Bedeutung, um zuverlässige Modelle entwickeln zu 

können. 
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Summary 

Nanomaterials (NMs) can be manufactured to serve different industrial purposes by fine-tuning their 

physico-chemical properties. This results in a theoretically unlimited number of NM variants. 

Thereby, even small variations in the physico-chemical properties of a NM may have substantial 

influence on their uptake, toxicokinetics as well as (eco-)toxicity. Thus, in theory, risk assessment 

needs to be performed for all variants and all toxicological endpoint. As this is simply not feasible, 

grouping and read-across approaches which allow the transfer of information between sufficiently 

similar NMs are promising alternatives. However, establishing reliable grouping approaches for NMs 

is not trivial due to the current lack of understanding with respect to the relationship between 

individual physico-chemical properties and the toxicological profile of NMs. The overall aim of this 

thesis was to explore how machine learning (ML) approaches can be used to support NM grouping in 

finding such relationships or underlying patterns. As formulating a reliable grouping hypothesis may 

largely benefit from mechanistic understanding, the underlying modes-of-action (MoAs) for different 

NMs were also explored by investigating results from omics approaches.    

 

In the first study, the aim was to use ML for identifying the most important physico-chemical 

properties influencing the toxicity of NMs. Therefore, a dataset of eleven NMs with comprehensive 

description of their physico-chemical properties was used. These physico-chemical properties were 

then linked to available in vivo data obtained from short-term inhalation studies (STIS) and in vitro 

toxicity data measured with the so-called macrophage assay. In both cases, toxicity was represented 

as binary outcome variable indicating whether a NM was ‘active’ and ‘passive’ in the respective 

toxicity studies. Unsupervised and supervised ML approaches were trained on this dataset. In the 

unsupervised model, principal component analysis (PCA) was used to infer information on which 

physico-chemical properties have the strongest impact in the first two principal components (PCs). 

Afterwards, k-nearest neighbors (kNN) was applied to compare results to the defined activity levels. 

In the supervised counterpart, random forest (RF) analysis with and without recursive feature 

elimination (RFE) was performed. Toxicity classes were thereby directly used as labels in the model 

building process. Overall, the best model was obtained using RF with RFE. It reached a balanced 

accuracy of 0.82 and was built on the three parameters zeta potential, redox potential and 

dissolution rate. This study showed, how ML could support NM grouping approaches. At the same 

time, it was also obvious that predictive modeling based solely on physico-chemical properties has 

severe limitations. While this is widely accepted to date and also mentioned in various 

recommendations, this was not the case at the time of the study. Already with this small set of NMs 
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and compared to other studies a comprehensive description of physico-chemical properties, no 

perfect separation of ‘active’ and ‘passive’ NMs was possible. 

 

The second study, aimed at investigating the oxidative potential (OP) in addition to physico-chemical 

properties. Different assays for measuring the OP were evaluated with respect to their predictivity 

for NM toxicity. In addition, one goal was to find out whether or not OP assays could replace each 

other or whether results from different OP assay in different datasets could be combined. Within this 

study, four assays have been compared, namely the acellular surface reactivity assays electron spin 

resonance (ESR) spectroscopy using CPH spin probe and DMPO spin trap and the ferric reduction 

ability of serum (FRAS) assay as well as the cellular protein carbonylation assay as a marker for 

oxidative protein damage in NRK-52E cells. The comparison was based on a case study holding OP 

measurements for 35 NMs. For the four OP assays, mass-based doses were compared to surface-

based ones, correlations and clustering between assays were computed and their predictivity for the 

same outcome variables as in the first study was assessed for individual assays and all possible 

combinations of them in a logistic regression model. As a result of those comparisons, surface-based 

doses were shown to be more predictive than mass-based ones. In addition, correlations between 

the OP assays were only moderate. Within the logistic regression model, predictivity was highest for 

protein carbonylation or combinations of assays which include protein carbonylation. Thus, as 

expected, biological OP assays seem to predict the actual toxicity outcome more reliably. At the same 

time, combining datasets which used different OP assays for the purpose of building robust ML 

models based on large datasets is not easily possible as the assays are not highly correlated. Overall, 

OP seems to be very informative and relevant for NMs in general. However, also other toxicity 

mechanisms (not directly related to OP) may be triggered by NM treatment, which cannot be 

reflected by OP assays.  

 

The third study focused more generally on elucidating MoAs underlying NM toxicity. Here, 

proteomics data were to be explored for their potential to unravel MoAs of NMs to support NM 

grouping. However, as proteomics data for NMs are relatively scarce and interpretation is difficult 

due to missing reference data, the main idea was to integrate proteomics signatures observed for 

NMs with those from other traits like chemicals, drugs or diseases. As such meta-analyses are mainly 

hampered by the lack of standardization for proteomics data, a workflow for harmonized evaluation 

of public proteomics data and their integration in a meta-analysis setting was developed. The 

workflow PROTEOMAS aims to make proteomics data FAIR (findable, accessible, interoperable, 

reusable). In an initial case study, PROTEOMAS was tested on 25 proteomics datasets to investigate 

the toxicological effects of NMs in relation to those of other traits at the lung level. Proteomic 
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fingerprints and their similarities among the studied traits could be identified. PROTEOMAS was thus 

useful for meta-analysis of proteomic datasets.  

 

In the review article, an overview on the variety of ML models and omics approaches supporting NM 

grouping available in literature is provided. Corresponding models were collected and some 

overarching conclusions were drawn from these manuscripts. Especially, data availability and quality 

are a major concern preventing the development of robust ML models for NM toxicity prediction. In 

addition, measurements are usually not well-standardized and insufficient metadata is provided and 

thus datasets cannot be integrated. Overall, there is a strong need for FAIR data in the NM safety 

community which would then allow development of more reliable models and advancement of in 

silico tools in a regulatory context. It was also concluded, that recent developments in the field of AI 

may also greatly support data gap filling and improvement of metadata availability in NM databases 

as well as linked data concepts. 

 

Overall, ML models as well as omics methods were shown to be useful to support NM grouping 

approaches. However, data availability and standardization of methods are of utmost importance in 

order to be able to develop reliable models. 
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Chapter 1: Introduction 

1.1 NMs: Definition, properties and applications 

 

According to the recommendations of the European Commission, a NM is any material that consists 

of solid particles of which at least 50% in the number-based size distribution have at least one 

external dimension in the size range of 1 to 100 nm. The particles may thereby be unbound or 

bound in agglomerates or aggregates1. NMs can be produced from a wide range of core materials. 

Especially, NMs derived from metals and metal oxides, carbon-based materials like carbon nanotubes 

or graphene as well as organic NMs are frequently used. In addition, the physico-chemical properties 

of each NM can be varied to optimize their suitability for certain applications. This fine-tuning leads 

to a multitude of different variants which compared to their corresponding bulk materials, often 

show enhanced magnetic, electrical, optical, mechanical, catalytic and other properties. For instance, 

the increased surface area to volume ratio enhances their catalytic activity. In addition, hardness, 

stiffness as well as thermal stability may be enhanced for NMs compared to their macroscopic 

equivalents. In case of very small NMs like quantum dots, quantum effects may dominate thus 

influencing their fluorescent, magnetic, and electrical capacities2. These characteristics render them 

useful for a wide range of applications3.  

 

NMs are used in different sectors like medicine, cosmetics, textiles, electronics, construction or the 

food sector. In the textiles industry, graphene-based NMs and carbon nanotubes are used to 

enhance mechanical and thermal stability4. In addition, metal NMs like silver or copper oxide NMs 

offer antimicrobial5 and UV-resistant properties6. Silica NMs as well as carbon nanotubes can be used 

to create superhydrophobic coatings which enhance water-repelling properties of surfaces7. In 

cosmetics, titanium dioxide or zinc oxide based NMs are frequently added to sunscreen for effective 

protection against UVA and UVB radiation8, 9. At the same time, nanoclay is employed in food 

packaging to enhance barrier properties against gases and moisture and provide antimicrobial 

properties10. Fullerenes, nanotubes as well as metal oxide NMs are also applied in the development 

of solar cells, batteries, and fuel cells as they can improve energy conversion efficiency, storage 

capacity, and the overall performance of energy systems11. Another important sector for the use on 

NMs is the one of medicine and healthcare. Here, polymeric NMs are well-suited for targeted drug 

delivery as they enhance the efficacy and specificity of therapeutic agents while at the same time 

being largely biocompatible12. At the same time dendrimers are useful for medical imaging due to 

properties like high rigidity, low polydispersity and the possibility to easily apply surface 
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modifications13. Similarly, gold NMs can also support medical imaging as they show high x-ray 

absorption properties and thus can aid computed tomographies14. Additionally, NMs are used for 

tissue engineering of bone, skin, nerve, and dental tissues where they can improve the interaction 

between artificial implants and biological systems15. Finally, also environmental applications can 

profit from NMs, especially during the removal of pollutants and enhancement of the efficiency of 

environmental cleaning processes. Here, titanium dioxide NMs or carbon nanotubes can be used for 

water treatment, air purification, and environmental remediation as their small size and high surface 

area make them efficient catalysts16, 17. 

 

Due to this large spectrum of possible applications, a steadily increasing amount of NM has been 

produced over the last years. This also poses concerns with respect to safety of NMs and requires 

efficient safety assessment strategies to cope with the steadily increasing number of NMs on the 

market. 

 

 

1.2 Safety assessment 

 

While the fine-tuning of NM properties is largely advantageous from an industrial point of view, it 

also raises concern with respect to the safety of all these new materials and material variants for 

human health and the environment. A comprehensive safety or risk assessment, which is a 

systematic process used to identify, evaluate, and estimate the level of risk posed by certain 

compounds, is necessary for each variant to understand potential implications and risks emerging 

from the widespread use of NMs.  

 

For NMs, variations in factors like size, shapes or surface characteristics may have substantial effects 

on their uptake, toxicokinetics or (eco-)toxicity18. In general, especially, the large surface area to 

volume ratio is critical for NM toxicity as this increases the reactivity of the NMs allowing for much 

larger interactions between NMs and their environment19. In addition, the toxicity of NMs can also 

change in different surrounding media as well as over their lifetime. Due to their small size, NMs may 

also be capable of crossing biological barriers and interacting with living organisms at the cellular and 

molecular level20. Depending on their biodurability, NMs may also accumulate in biological tissues, 

thus causing long-term toxic effects. Therefore, substance identity plays a crucial role for risk 

assessment of NMs. More detailed insights from the regulatory point of view will be provided in the 

next section. 
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In general, risk assessment consists of two pillars: hazard assessment and exposure assessment. 

Hazard thereby relates to negative health effects induced by biological, chemical or physical agents. 

Hazard assessment includes hazard identification followed by hazard characterization. Hazard 

identification relates to the question which toxicological endpoints are triggered by a chemical. This 

directly relates to the MoA that is induced. In addition, hazard characterization addresses the 

determination of a critical threshold. This threshold defines the maximum dose of a substance that 

can be applied safely. In order to determine this critical dose level, dose-response studies applying a 

substance in multiple concentrations need to be carried out.  

 

In addition, exposure is the second pillar of main interest for risk assessment as the hazard of a 

substance is only relevant if humans or the environment actually get into contact with it. Considering 

the frequent use of NMs in our daily lifes, a wide range of potential exposure scenarios for humans 

and environment is conceivable. At the same time, the actual exposure depends on whether a NM 

may be released or whether it stays firmly bound in a matrix. The primary concern revolves around 

the intended application of the NM and the probability that humans or the environment get into 

contact with them. In case, NMs are released from a product, humans can be exposed via three main 

exposure routes, namely the dermal, oral or inhalative route.  

 

The focus in this work is on hazard identification for NMs in case of human exposure via the 

inhalative route. 

 

 

1.2.1 NMs under REACH 

 

In Europe, the overarching regulation for chemicals is REACH (registration, evaluation, authorization, 

and restriction of chemicals)21. In addition, various other regulations for specific sectors are 

available22-26. The aim of REACH is to manage the production, use, and disposal of chemicals to 

mitigate potential risks and to protect human health as well as the environment. Within REACH, it is 

stated that each chemical substance produced in or imported into the EU in quantities exceeding one 

ton per year needs to be registered with the European chemicals agency (ECHA), providing detailed 

information on their properties, hazards, and safe usage. The bulk form as well as the different NM 

variants are thereby covered under the same substance registration. Under REACH, the molecular 

structure and chemical composition are important for determining substance identity. However, for 

NMs, which are considered as forms of chemical substances, additional nano-specific requirements 

are needed in order to sufficiently describe them. Therefore, amendments to the REACH annexes27 
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have been introduced to specifically cover information requirements for NMs which exceed those of 

conventional chemicals. In the revised version of Annex VI of the REACH regulation27, the concept of 

nanoforms (NFs) is introduced. A substance can contain several NFs where NFs are distinguished 

based on differences in the parameters defined under points 2.4.2 to 2.4.5. of Annex VI, namely the 

size distribution, shape and other morphological characteristics, surface treatment and 

functionalization as well as the specific surface area of the particles. If two NFs vary in one of these 

parameters with differences being larger that the batch-to-batch variability during production28, they 

are considered to be distinct. According to the amendments to the REACH Annexes27 which were 

published in 2018, different NFs of one substance need to be identified and assessed separately in 

the registration dossier.  

 

One important step when putting new substances and mixtures on the market is their classification 

with respect to hazards. Different health hazards are relevant in this regard. An overview is given in 

Table 1. Self-classification with respect to these endpoints needs to be performed by the producers 

themselves when registering a new chemical. In addition, harmonized classification is performed by 

the EU in case a substance is identified to be carcinogenic, mutagenic, reprotoxic or a respiratory 

sensitizer. 

 

The gold standard for hazard assessment for several endpoints are results from in vivo testing. The 

term in vivo study describes experiments carried out with any kind of living animals. In case of 

toxicity testing for human hazard assessment, this usually refers to studies performed on rodents. In 

the regulatory context, toxicity testing still largely relies on in vivo studies, especially when it comes 

to more complex higher tier endpoints. Various factors need to be considered when performing an in 

vivo study as they may influence the study result. Especially species, strain and sex of the test animals 

as well as study duration and number of animals per group are important factors in this regard.  

Commonly used test animals in hazard assessment are rats (Rattus norvegicus) or mice (Mus 

musculus). With respect to duration, one distinguishes acute, sub-acute, sub-chronic and chronic 

studies. While acute studies focus on short term effects usually induced by one single dose of the 

test substance, studies with an extended duration and repeated application of the test substance are 

needed to obtain information on long-term effects. The number of animals per group plays an 

important role with respect to reliability of the findings in terms of statistical significance. In addition, 

the influence of biological diversity of animals on the reaction to the test substance can only be 

tested if the number of animals is sufficiently large.  In order to improve the informative value of a 

toxicological test and to derive suitable limit values, it is also necessary to apply multiple 

concentrations of the substance.  
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Table 1: Relevant endpoints for human health under REACH. Which endpoints need is be taken into 

account in a specific case is depends on the amount in which a chemical is produced (tonnage 

triggered).  

Endpoint Description 

Acute toxicity Adverse effects after single dose, multiple doses given within 24 

hours or inhalation exposure of 4 hours 

Skin corrosion/irritation Irreversible (corrosion) or reversible (irritation) damage to the skin 

Serious eye 

damage/irritation 

Serious eye damage: tissue damage in the eye, or serious physical 

decay of vision, which is not fully reversible within 21 days 

Eye irritation: changes in the eye, which are fully reversible within 

21 days 

Respiratory or skin 

sensitization 

Respiratory sensitization: hypersensitivity of the airways following 

inhalation of the substance  

Skin sensitization: allergic response following skin contact 

Mutagenicity Alteration of the structure, information content or segregation of 

DNA 

Carcinogenicity Induction of cancer or increase of its incidence 

Reproductive toxicity Adverse effects on sexual function and fertility in adult males and 

females or developmental toxicity in the offspring (before or after 

birth) 

Specific target organ toxicity 

(STOT) – single exposure 

Specific, non-lethal target organ toxicity after single exposure 

Specific target organ toxicity 

(STOT) – repeated exposure 

Specific, non-lethal target organ toxicity after repeated exposure 

 

Different values can be determined to describe these limit values. The easiest and most straight-

forward approach is to determine the NOAEL (no observable adverse effect level) or the LOAEL 

(lowest observable adverse effect level). The NOAEL is defined as the maximum tested dose for 

which no adverse effect could be observed while the LOAEL is the lowest test dose showing adverse 

effects. While being well established in risk assessment, the disadvantage of these measures is that 

the actual value depends strongly on which doses were actually tested. Depending on the spacing of 

the doses, these values may therefore be relatively far from the actual limit value and NOAELs or 

LOAELs from different studies for different chemicals are not directly comparable. An alternative 

approach is based on benchmark doses (BMD). This approach relies on fitting a quantitative dose-

https://reachonline.eu/clp/en/kw-exposure.html
https://reachonline.eu/clp/en/kw-irritation.html
https://reachonline.eu/clp/en/kw-substance.html
https://reachonline.eu/clp/en/kw-single-exposure.html
https://reachonline.eu/clp/en/kw-single-exposure.html
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response curve to the measured data. Based on this fitted curve, one can determine the BMD which 

is the dose leading to a certain level of response or the benchmark dose limit (BMDL) which in 

addition considers a confidence interval around the BMD. One important advantage of this method is 

that it also considers the shape of the dose-response curve across the whole range of tested doses. 

However, this approach can only be used for effects showing a certain minimum level of response.  

In order to obtain reliable safety margins for human exposure limits from animal studies, one needs 

to consider some uncertainty factors in addition29. First, uncertainties may result from inter-species 

variation from the test animal to humans. Taking this uncertainty factor into account allows to 

extrapolate from the average animal response to the average human response. In addition, intra-

species variation between humans also needs to be considered in order to guarantee that also 

sensitive humans are safely covered by the allowed limit concentrations. Other uncertainty factors 

may also play a role, e.g., uncertainties due to extrapolation from short-term to chronic exposure. 

Taking into account these uncertainty factors, one can obtain the derived no effect level (DNEL). 

 

 

1.2.2 Inhalation as the main route of exposure 

 

Among the three routes of exposure, inhalation is considered the most critical one for NMs as 

penetration into the deep lungs is comparatively easy and can potentially lead to respiratory toxicity, 

systemic absorption and accumulation in secondary organs30. Therefore, studying the pulmonary 

effects of NMs plays a major role in the field of nanotoxicology and is also the main focus within this 

thesis.  

 

An overview on the lung structure31 is given in Figure 1. The human respiratory tract is separated into 

the upper airways containing the nasopharynx as well as the lower airways with the tracheobronchial 

area and the alveolar region. The nasopharynx is comprised of the nasal cavity and mouth as well as 

the pharynx and larynx. The lower respiratory tract starts with the trachea, followed by the two main 

bronchi which further separate into smaller bronchioles in the left and right lung. Bronchioles finally 

terminate into alveoli in which the gas exchange takes place.  

 

NMs are of particular concern with respect to inhalation due to their potential to reach deep into the 

lower airways where they mainly deposit in the alveoli. Particles with aerodynamic diameters in the 

micrometer range remain in the upper airways and are cleared via the mucociliary clearance31. In this 

process, cilia on the membrane covered by a viscous mucus layer move the particles upwards 

allowing for transfer into the gastrointestinal tract and subsequent excretion. Instead, particles 
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below 100 nm can reach the distal lung and the alveoli in which the gas exchange takes place30-32. The 

most important cell types being in contact with the NM in this part of the lung are alveolar 

macrophages and epithelial cells31.  

 

The alveolar macrophages are responsible for clearance from the alveolar part of the lung via 

phagocytosis33-35. Macrophages engulf particles that reached the alveoli and are then cleared via the 

mucociliary escalator36 or the lymph nodes37. According to their role, the uptake of NMs into 

macrophages is very high compared to other cell types. However, the uptake varies depending on 

the physico-chemical properties of the NMs under consideration. Different studies investigated the 

behavior of macrophages in terms of NM uptake and responses to NM treatment38-41. NMs which are 

not recognized by macrophages fast enough can reach the alveolar epithelial cells.  

 

Alveolar epithelial cells can be divided into two types: Type I cells form a layer which functions as a 

barrier between the gas phase within the lung and the blood stream and are responsible for the gas 

exchange42, 43. Type II cells secrete pulmonary surfactant which coats the alveoli and prevents them 

from collapsing44. Epithelial cells can also take up NMs via transcytosis which allows NMs to reach the 

interstitial space45. From there, translocation into the blood circulation or the lymph nodes may take 

place which may potentially cause adverse effects in secondary organs in the end46-48. Translocation 

from the alveolar space to the capillary system and thus systemic availability is however size-

dependent and comparatively low47, 49, 50. Whether or not NMs accumulate in secondary organs or 

are cleared from the system depends on their biodurability. In addition, lung epithelial cells are 

known to respond to toxic external stimuli by releasing chemokines and cytokines triggering the 

activation of the immune system and inflammatory processes51. In long term, this may cause damage 

of lung tissue or the development of inflammatory lung diseases like COPD or asthma52, 53.  

 

Therefore, alveolar macrophages and epithelial cells are of high relevance for investigating NM 

toxicity in vitro and the derivation of corresponding computational models. Due to the fact that the 

majority of particles is taken up by macrophages, however, their response may be expected to be 

much larger compared to epithelial cells. 
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Figure 1: Structure of the respiratory tract. The figure is reprinted from Oberdörster et al.31 

 

 

1.2.3 MoAs 

 

The way in which a substance acts and the changes it induces is called the MoA. MoAs describe 

specific biological processes which lead to the observed physiological effects induced by a substance. 

Different MoAs may be invoked by NMs upon human exposure. Which MoA is relevant in a specific 

case, largely depends on the physico-chemical properties of the NM under consideration.  

 

Firstly, NMs with high biopersistence are of concern as they are not efficiently cleared from the body 

over a long time. In that case, generic particle effects may be induced after chronic exposure to high 

doses of insoluble particles with low cytotoxicity54. Within the lungs, an overload condition of 

particles may occur where NMs cannot be taken up fast enough by macrophages55. In addition, NMs 

may also be translocated to secondary organs and accumulate there56, 57. This constant presence of 

particles may lead to chronic inflammation in the lung which might in turn cause pulmonary fibrosis 

and ultimately lung cancer or respective outcomes in the secondary organs52, 53, 58. On the other 
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hand, if a NM quickly dissolves, it releases ions which may be toxic. While this is not a NM-specific 

toxicity mechanism, many NMs on the market are metals or metal oxides for which such a toxic ion 

release frequently occurs. Released ions can directly interact with and damage cellular components 

like DNA, proteins or phospholipids, thereby inhibiting their intended functionality and disrupting 

cellular processes.  As a secondary mechanism, ions can also catalyze the generation of reactive 

oxygen species (ROS) and induce oxidative stress59.  

 

In general, oxidative stress is another very important mechanism for NM toxicity60. Among others, 

the higher relative surface area can lead to increased surface reactivity61. NMs with high surface 

reactivity cause an excess in the production of ROS. While low levels of ROS can be counterbalanced 

by the cellular antioxidant system, higher concentrations of ROS cannot be sufficiently handled. In 

that case, ROS can damage cellular components like proteins or DNA or induce inflammation. It is 

worth mentioning here that oxidative stress and inflammation are adaptive responses of the 

organism which can be resolved over time. However, if they are not resolved and persist over longer 

periods, they may lead to manifested adverse effects like genotoxicity62. The OP of NMs will be 

further discussed in the section on physico-chemical properties in Chapter 1.7. 

 

Another factor influencing toxicity is the morphology, as has been well-documented for fibre-like 

NMs. This is the best understood MoA for NMs. In general, the fibre toxicity paradigm63 states that 

fibres exceeding certain thresholds with respect to their dimensions may cause asbestos-like 

responses like lung fibrosis and on the long term induce the severe cancer type mesothelioma. The 

biological changes related to inhalation of asbestos-like fibres are described in the Adverse Outcome 

Pathways AOP303 (https://aopwiki.org/aops/303), AOP409 (https://aopwiki.org/aops/409) and 

AOP171 (https://aopwiki.org/aops/171). AOP303 relates to the formation of lung cancer in general, 

while AOP409 and AOP171 focus on mesothelioma more specifically. AOP303 and AOP409 start with 

the induction of the so-called ‘frustrated phagocytosis’64-66. After inhalation of asbestos-like fibres, 

macrophages are recruited as a defense system against the foreign matter. However, unlike particles 

or other small entities, asbestos-like fibres are too long to be engulfed by the macrophage and 

instead get stuck and lyse the macrophage. Thereby, different molecules are released, e.g., ROS or 

mediators like interleukins or tumor necrosis factor α67. This causes local inflammation as well as an 

unspecific immune response which again recruits other macrophages and immune cells. These cells 

fail to degrade the asbestos-like fibres causing a cyclic increase. Over time, this causes persistent 

inflammation, the formation of granuloma and pulmonary fibrosis and cancer in the lung or 

mesotheliom68, 69. AOP171 starts from persistent cytotoxicity inducing chronic inflammation and 

oxidative stress finally leading to the formation of mesothelioma. The World Health Organization 

https://aopwiki.org/aops/303
https://aopwiki.org/aops/409
https://aopwiki.org/aops/171
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assumes fibres with length > 5 μm, diameter < 3 μm and aspect ratio (length/ diameter) > 3:1 to fall 

under the classical fibre toxicity paradigm which states that respirable, long and biopersistent fibres 

are carcinogenic63. For nanofibers, this classical fibre paradigm needs adaptation as it was observed 

that rigidity plays an important role in this case70. Very thin fibres are usually able to tangle and coil-

up and thus behave like particles. Instead, thicker fibres stay unbent and thus if they also fulfill the 

length and width criteria, are assumed to show a fibre MoA. However, measuring rigidity and 

determining a suitable threshold is not trivial and at present still a matter of debate. For multi-walled 

carbon nanotubes (MWCNTs), a diameter of 30 nm has been defined as the cut-off between 

entangled and rigid forms71. 

 

Finally, NMs may also induce specific toxic effects which are distinct for the material under 

consideration. This specific toxicity arises from the specific physico-chemical properties of the NM or 

its interactions with the biological target. Often, this specific toxicity is related to effects in particular 

organs, e.g., liver or the central nervous system. For specific toxicity, a dose-dependency can usually 

be observed. As an example, some silver NMs or quantum dots have shown specific neurotoxic 

effects which can occur due to the fact that these NMs can cross the blood-brain barrier56, 72, 73. Other 

NMs based on zinc oxide, titanium dioxide or silver accumulate in liver cells thus inducing 

hepatoxicity74-76. 

 

 

1.3 NAMs 

 

The number of new NFs on the market is rapidly increasing, all demanding for proper risk 

assessment. Theoretically, as the differences in physico-chemical properties may influence the 

toxicological profile, each NF would require a separate assessment with respect to its exposure, 

toxicokinetics, fate and (eco)toxicity. However, this is simply not feasible with respect to time, money 

and resources as well as the societal demands and legal requirements to reduce animal testing, given 

that, to date, this assessment still largely relies on in vivo studies to obtain reliable results. Another 

factor to be considered are potential inter-species differences in toxicodynamics and –kinetics which 

can result in uncertainties especially for negative results. This makes the use of alternative testing 

strategies, so-called NAMs, especially those focusing on mechanistic understanding of the processes 

underlying toxicity, unavoidable. Accordingly, a general paradigm shift from conventional animal 

testing towards NAMs can currently be observed. Under REACH, the use of NAMs is favored with 

respect to generating new data and should be used to avoid unnecessary animal testing. NAMs are 
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comprised of a variety of different in chemico, in silico and in vitro methods. This includes also high-

throughput screening allowing to test multiple substances at a time as well as high-content methods 

like omics approaches.  

 

 

1.3.1 In silico 

 

In silico modeling gained more and more importance in recent years77. The idea of in silico 

approaches is to develop computational models or tools inferring or predicting unknown information 

based on existing knowledge obtained in laboratory-based studies. This is critical as with the growing 

amount of chemicals on the market, interpretation of complex datasets, reuse of data to fill-in data 

gaps as well as meta-analyses to obtain a more general understanding of toxicity patterns and their 

relation to structural features are of utmost importance. The advantages of in silico models are that 

they are cheap, easy to adapt and well standardizable. However, one critical point to be considered is 

that in silico tools typically depend on in vivo and in vitro data and thus their performance is highly 

dependent on the availability and quality of such data. 

 

Under REACH, the use of in silico tools is strongly recommended. One frequently used in silico 

approach is quantitative structure activity relationship (QSAR) modeling. In QSAR models, the 

quantitative relationship between relevant physico-chemical properties of chemicals and their 

biological activity is determined by means of mathematical functions. Usually, this relationship only 

holds true for a certain class of materials called the applicability domain of the model78, 79. Most 

QSAR models, however, are only developed for simple toxicity endpoints like cytotoxicity as finding 

mathematical functions modeling complex endpoints sufficiently well is usually not feasible. For 

NMs, additional challenges arise due to their complexity and specialties which requires development 

of nano-specific descriptors and curated experimental datasets80, 81. Another frequently used tool is 

physiologically-based pharmacokinetic (PBPK) modeling which is a mathematical modeling technique 

for predicting the absorption, distribution, metabolism and excretion (ADME) of substances within 

the body82. PBPK modeling, thus, supports the prediction of systemic deposition or target organ 

exposure. In addition to these data-driven strategies, physics-based models are also useful tools 

supporting hazard assessment. Among the most frequently used physics-based modeling techniques 

is molecular docking which allows to predict the interactions between NMs and biomolecules based 

on existing knowledge on their three-dimensional structures. Its potential for toxicity prediction of 

various NMs has been shown in some case studies83. In addition, molecular dynamics simulations can 

be used to model time-dependent movements of atoms and molecules and to inform on 
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thermodynamic and kinetic properties at the atomic level. Thus, it can be used to simulate 

conformational changes of macromolecules and NMs. However, the tools are computationally very 

demanding and therefore, to date, only able to exemplify their potential use84. 

 

One of the main advantages of using in silico tools for risk assessment is that in contrast to in vivo 

and in vitro testing they may be used to predict potential hazards which means that an assessment 

can be performed prior to development and testing. Different ML techniques may be used to solve 

this task of predictive modeling. Thus, moving towards in silico tools means that it would be possible 

to predict and potentially also prevent hazards in safe(r)-and-sustainable-by-design (SSbD) 

approaches instead of just assessing them retrospectively. This may be useful for prioritization of 

NMs to be tested further as well as directly in regulatory decision making once the models are 

mature enough. To date, in silico tools are not accepted as stand-alone tools for regulatory purposes. 

However, they can be used as exploratory and supportive tools85, 86. As such they may be included in 

NAM frameworks like integrated approaches to testing and assessment (IATAs). 

 

 

1.3.2 In chemico 

 

In chemico approaches focus on the evaluation of potential hazards using chemical methods and 

reactions. Therefore, they assess the biological activity and potential toxicity of substances in an 

acellular environment. The focus of the corresponding methods is usually on some key mechanisms 

relevant for toxicity like the generation on ROS, the binding of proteins or the peroxidation of lipids. 

For the generation of ROS, various in chemico assays exist, e.g., the FRAS assay or the cell-free 

versions of the ESR and the Dichlorofluorescein assay. In chemico methods show various advantages 

compared to in vivo or in vitro approaches like simplicity, low cost and fast results. On the other 

hand, obtaining high correlations between in chemico methods and actual biological effects is still 

challenging, especially in case of NMs which have large potential to interact with the biological 

environment potentially leading to tremendous changes in their behavior. 

 

 

1.3.3 In vitro 

 

In vitro assays comprise studies performed outside living organisms using cell cultures. As with in vivo 

studies, different settings are possible in this context. Different cell lines as well as primary cells can 
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be treated with the test chemical to study its toxicity with respect to certain toxicological endpoints. 

Here, different cell models from different origin (human or animals) as well as different organs can 

be used. Cell lines may be used as single cultures or co-cultures using multiple cell lines at ones as 

well as in undifferentiated or differentiated state.  

 

In a classical setting, cell cultures are exposed to chemicals under submerged conditions. Here, 

chemicals are dispersed in a medium and then applied on top of the cell culture. Usually, the 

dispersion medium is supplemented with 10% fetal calf serum. For NMs, this poses a challenge with 

respect to particle identity as it will lead to the immediate binding of proteins present in the serum 

and thereby to the formation of a protein corona. An alternative way for exposing cells to NMs is the 

use of an air liquid interface. Here, particles are applied in form of aerosols and thus the challenges 

of interactions between serum and particles as well as the agglomeration of particles can be 

circumvented. However, this also does not reflect reality as under physiological conditions NMs 

would interact with body fluids like pulmonary surfactant.   

 

Various in vitro assays exist and may be used to study the influence of NMs on cells. The challenge, 

however, is that in vitro assays usually only describe relatively simple effects like cytotoxicity or the 

generation of ROS. Specifically, due to the short lifespan of cells, in vitro tests only represent acute 

effects of NMs while outcomes of chronic exposure cannot be assessed. Also factors like 

biodistribution, bioaccumulation and excretion cannot be represented sufficiently well. 

 

One specifically powerful NAM in the field of in vitro methods are omics techniques. The term omics 

refers to studies measuring changes in different biological molecules or components, e.g., genes in 

genomics, mRNAs levels describing gene expression in transcriptomics, proteins levels in proteomics 

or metabolite levels in metabolomics. Data from omics measurements give detailed insight into 

molecular changes and can be used to identify key molecular targets, pathways, and biomarkers 

associated with toxicity. Omics techniques exhibit various advantaged compared to conventional 

toxicity studies: 1) Omics yield high-content analyses with many molecules being measured in one 

single run and can be easily scaled to be used in high-throughput approaches with costs steadily 

decreasing. Thus, they allow for rapid and cost-effective analysis of biological changes; 2) They are 

not restricted to one single endpoint but instead allow for detection of all changes happening within 

the cells or tissue at ones and thus, under the very same conditions. Therefore, concerted effects 

from different signaling pathways may be observed which otherwise would stay undetected; 3) They 

enable early detection of changes before the actual outcome manifests meaning at earlier time 

points as well as at lower doses. This also helps avoiding the use of extrapolations from very high-
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dose apical endpoints which are typically used in in vivo studies87. This is important as it has been 

shown that in many studies tested concentrations are unrealistically high leading to altered toxicity 

mechanisms which are not relevant in real exposure scenarios88, 89; 4) They also make biomarker 

identification possible which can help in early and easy detection of induced effects; and 5) Omics 

data can be mapped to AOPs and can be used to gain detailed insights into toxicity mechanisms 

induced by a treatment90. While it already became clear that omics approaches are valuable tools in 

the light of toxicological research, their use in regulatory toxicity is still not accepted mainly due to 

missing standardization of measurement and analysis techniques for omics data as well as challenges 

in data interpretation.  

 

In general, the best-studied omics layer is transcriptomics. For transcriptomics, comprehensive 

databases91 are available and the evaluation of such datasets is comparatively well standardized. In 

addition, a reporting template for transcriptomics has already been introduced by the organization 

for economic co-operation and development (OECD)92, 93. Other omics layers like proteomics or 

metabolomics have been less explored in the past. However, due to their closer relation to the actual 

phenotype, their use is steadily increasing. For proteomics, the number of available raw data in 

databases like the PRoteomics IDEntification (PRIDE) database94 is rapidly growing. While for 

metabolomics, the number of available datasets is still comparatively low, an OECD reporting 

template similar to the one for transcriptomics has been developed93, 95. As each omics technique 

only explains part of the induced changes in the cells and has its own advantages and challenges, the 

most complete and representative picture is yielded if different omics layers are combined in a 

systems biological approach. At the same time, this also strengthens the reliability of the results as it 

allows to separate noise from findings with actual relevance. This global view is often referred to as 

toxicogenomics.  While systems toxicological approaches are highly relevant, they are challenging 

with respect to time, cost and complexity and thus not well suited for general screening approaches. 

However, they are very useful for gaining mechanistic insights supporting regulatory strategies like 

grouping and read-across as well as SSbD approaches. 

 

 

1.4 NAM Frameworks 

 

For rather simple endpoints like skin or eye corrosion/ irritation, NAMs can already reliably replace 

animal testing96. However, for higher tier endpoints which are more complex like carcinogenicity or 

reproductive toxicity, suitable NAMs are only emerging. In these cases, NAMs may still be useful for 
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reducing animal testing by integrating them in NAM frameworks. Among the most frequently used 

NAM frameworks are so-called IATAs. IATAs combine various assays and toxicological tests which, in 

combination, may be suitable to describe complex endpoints. Thereby, animal studies may be 

combined with different NAMs, e.g., in vitro or in silico approaches. One critical factor for the 

successful implementation of IATAs is obtaining knowledge on underlying MoAs which are closely 

connected to AOPs. In addition, grouping and read-across may be used for waiving testing for certain 

materials. The different concepts are described in more detail below. 

 

 

1.4.1 IATAs  

 

Especially for higher tier toxicological endpoints, it is necessary to combine multiple assays to 

sufficiently describe the single steps leading to the respective outcome. One concept commonly used 

to set up larger test batteries for complex endpoints are IATAs97. IATAs integrate all relevant 

information on certain aspects of the induced biological effects and weigh them in a weight-of-

evidence approach. It can also be used for targeted generation of new hazard data avoiding 

unnecessary testing. IATAs usually include not only in vitro tests but also information from in vivo 

studies or in silico models as well as physico-chemical properties or human data and arrange them in 

a structured manner usually resulting in a specific decision tree. The most comprehensive battery of 

IATAs for NMs has been developed in the EU project GRACIOUS98. In order to determine, which 

events and tests need to be included in a specific IATA, mechanistic understanding of the underlying 

biological changes is urgently needed. Especially for NMs whose behavior is very complex, it has 

proven that integration of mechanistic knowledge is necessary to obtain reliable models99. At the 

same time, this is also likely to improve regulatory acceptance of NAMs. Thus, IATAs are closely 

connected to MoAs and AOPs. 

 

 

1.4.2 AOPs 

 

In order to develop reliable alternative methods and IATAs, a solid mechanistic understanding of the 

underlying biological changes induced by the treatment with a certain chemical or NM is of great 

advantage. This is especially needed for higher-tier endpoints with complex biological processes 

being induced. Knowledge on the MoA of substances can be used to support the development and 

refinement of the closely related AOPs. 
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AOPs have first been described by Ankley et al.100 and then adopted by the OECD. AOPs are 

conceptual frameworks that relate different biological events at various levels of biological 

organization to an adverse effect induced by a substance where events are arranged in a causally 

linked, sequential order. AOPs consist of a molecular initiating event (MIE) followed by multiple key 

events (KEs) ultimately leading to the adverse outcome (AO)101. The MIE describes the initial 

interaction between the substance and a biological target. Subsequently, several KEs may be induced 

on sub-cellular, cellular, tissue, organ or even whole-body level. The AO represents the final outcome 

on organ or whole-body level, e.g., lung fibrosis or cancer. The AOP concept is shown in Figure 2. 

Various AOPs have been described for a number of different AOs and can be found in the AOP-Wiki 

(https://aopwiki.org/). The first AOP that has been released by the OECD describes skin 

sensitization102. However, nano-specific AOPs are only beginning to emerge103-106. One may 

hypothesize that MIEs could potentially vary between NMs and conventional chemicals while the 

sequence of KEs may be expected to be the same. However, this hypothesis has to be tested in 

future approaches. More recently, the concept of AOPs has been extended to quantitative AOPs 

(qAOPs) which allow not only for qualitative but also for quantitative hazard assessment107, 108. This 

can be achieved using approaches like weight-of-evidence, probabilistic or mechanistic models. 

Overall, it is expected that AOPs may facilitate extrapolations between species as well as from in vitro 

to in vivo testing. In order not to stay at the conceptual level, the actual described changes must be 

measured in real-life scenarios. One of the most promising tools to do so is by means of omics 

approaches describing the single KEs109, 110.  

 

Moreover, information on the MoA should be included into NM grouping approaches in order to 

make them reliable. Predictive toxicogenomics offer great opportunities with respect to establishing 

such NM grouping approaches or substantiating existing NM grouping hypothesis based on 

mechanistic knowledge. This knowledge may be obtained from newly conducted experiments as well 

as from literature and database searches.  

 

https://aopwiki.org/
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Figure 2: Schematic representation of the AOP approach. The figure is reprinted from Ankley et al.100  

 

 

1.4.3 Grouping 

 

Risk assessment for NMs requires detailed characterization of each single NF with respect to physico-

chemical properties, hazard and exposure. As this assessment is simply infeasible in a reasonable 

amount of time and resources for the large number of existing and emerging NFs, alternative 

methods are urgently needed. In a regulatory context, grouping and read-across are frequently used 

to justify the waiving of specific tests or to fill-in data gaps through read-across102. In addition, these 

approaches may also be used in the context of prioritization for further testing, for ranking of NMs 

with respect to a certain toxicological outcome or in weight-of-evidence approaches as well as for 

supporting SSbD. Guidance documents for grouping and read-across in general111, 112 but also 

specifically for NMs113 are available. 

 

Grouping is defined as ‘the general approach for considering more than one chemical at the same 

time’111. Two main approaches are described for grouping: the category and the analogue 

approach111, 114, 115. In the category approach, chemicals for which the physico-chemical and 

(eco)toxicological properties are likely to be similar or follow a regular pattern due to structural 

similarities are grouped together. Trends or patterns within one category should thereby be 

identified across several materials in a consistent manner. Thus, establishment of a robust category 

should include a sufficient number of chemicals. Instead, if only a small number of chemicals is 

investigated and no clear trends can be observed, the analogue approach may be more valid. In that 

case, structural similarity of chemicals is still the key factor for grouping but additional expert 
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judgement is needed to identify whether the grouping hypothesis is still valid in the specific case 

under consideration. Importantly, grouping is endpoint-specific and thus established groups are not 

globally valid. For each hazard endpoint, a specific grouping hypothesis has to be formulated. This 

hypothesis needs to include an explanation on which key properties are important for establishing a 

group and how these are linked to the toxicological endpoint. The grouping hypothesis then needs to 

be justified in case studies. The most hazardous substance within one group should thereby always 

be tested in order to set the upper boundary.  

 

Once, a category is established or a suitable analogue is identified, data gaps within this group can be 

filled. In the regulatory field, this is usually done using a read-across approach. However, also other 

tools like QSAR or trend analysis are possible options to fulfill this task. Read-across uses information 

from a data-rich source substances to predict the same property or endpoint for one or several data-

poor target substances within the same group for which this data is missing. Thereby, read-across 

avoids testing each and every single variant thus saving resources. Robust and valid read-across can 

only be guaranteed in case of a clear underlying rationale for the established grouping. Comparisons 

to benchmark materials can also be used to reduce uncertainties. 

 

Therefore, the main question underlying every grouping activity is which structural features actually 

relate to physico-chemical properties or (eco)toxicological events and thus should be used as the 

basis for establishing a group. While for conventional chemicals, usually common functional groups, 

precursors or breakdown products are good candidates for potential similarities, for NMs the 

situation is more complex as there is a much larger variety in factors that may play a role in this 

regard and their exact structure is not known. The main difficulty is posed by the huge number of 

physico-chemical properties which could all potentially affect NM toxicity. In addition, changes in 

different media due to binding of biomolecules or agglomeration as well as aging effects over the 

whole life cycle need to be taken into account. The understanding on how changes in all these 

properties relate to toxicity, toxicokinetics as well as uptake behavior is only beginning to emerge.  

 

For NMs, REACH defines two goals for grouping: 1) Grouping can be performed to identify sets of 

similar NFs. In that case, similarity of NFs has to be shown in order to justify that hazard and 

exposure assessment can be performed jointly116; and 2) Grouping can also be performed for the 

purpose of read-across similar to conventional chemicals. A key factor of major importance for NM 

grouping is the unambiguous identification, characterization and naming of NFs. One difficulty here is 

that many physico-chemical properties can vary and therefore need to be assessed to find out 

whether two batches actually comprise the same NF or not. As for conventional chemicals, 
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properties like chemical composition, degree of purity and quantitative information on impurities or 

additives form the basis for NM characterization and identification21. In addition, the description of a 

NF also requires information on the number-based particle size distribution, surface functionalization 

or treatment, shape in terms of aspect ratio and particle morphology as well as the specific surface 

area27, 28. On top of that, physical properties like dissolution rate, state of agglomeration or 

aggregation and changes in surface chemistry as well as other higher-level parameters such as 

surface reactivity may also be relevant. While some of these properties are intrinsic to the NM itself, 

others vary depending on the medium surrounding the NM and are thus extrinsic. Therefore, in 

order to obtain a reliable grouping, characterization has to be performed in the relevant biological 

medium used for toxicity testing as well.  

 

While a number of physico-chemical properties may influence NM toxicity, no simple linear 

correlation between these factors and the toxicity outcome could be observed as each of these 

properties can influence uptake, toxicokinetics and/or (eco)toxicity in a complex way and also 

interdependencies between the properties can be observed115. In addition, uncertainties in 

measurements of physico-chemical properties and toxicity are still high for NMs. While some test 

guidelines have already been adapted to NMs, this is still an on-going process of standardization and 

validation. Especially for extrinsic properties, measurements are difficult to perform as they need to 

be carried out in complex media. Due to these uncertainties, reliability and comparability of existing 

datasets is still one of the largest bottlenecks with respect to developing robust grouping 

approaches. Thus, grouping for NMs remains a major challenge where simple structure-activity 

relationships cannot be established easily.  

 

ECHA has also generated a guidance document on grouping and read-across between NFs, or 

between NFs and non-NFs of the same substance28. The ECHA guidance clarifies the need to consider 

similarities of not just physico-chemical properties like aspect ratio, particle size, shape or solubility, 

but also toxicokinetic behavior and fate, as well as (eco)toxicological behavior between different NFs. 

The guidance indicates that it is possible to use physico-chemical parameters and/or in vitro 

screening methods to develop a robust scientific explanation of why different forms of the substance 

are sufficiently similar to be grouped when considering their hazard117. Although this guidance 

addresses only read-across for different forms of the same substance, it does not preclude read-

across between NFs of different substances. In addition, identifying NMs sharing a common MoA aids 

the justification of a grouping hypothesis. 

Due to the complexity of the task of NM grouping, various grouping frameworks have been described 

in past which build on each other and have constantly been improved over the years118-121. 
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Comprehensive overviews on different grouping and risk assessment framework were given in 

Oomen et al.119 and Giusti et al.115. The most recent and most advanced grouping framework for NMs 

was published as a result of the EU project GRACIOUS98. This framework supports grouping and read-

across by identifying suitable hypothesis describing key similarities between NFs while including 

relevant physico-chemical characteristics, route of exposure and hazard endpoints. Within the 

framework, 40 pre-defined grouping hypotheses were generated based on well-defined toxicokinetic 

pathways or MoAs122. Along with the grouping hypotheses, the GRACIOUS framework also gives 

advise on how to test each of them. In order to do so, each grouping hypothesis is coupled to a 

specific IATA guiding the gathering of evidence to test the hypothesis and to determine whether or 

not different NFs can be grouped together. Within IATAs, evidence from different sources like 

literature, in silico, in vitro or in vivo assays 123 are assembled and arranged in decision trees that 

support the decision whether the grouping hypothesis should be accepted or rejected. At the same 

time, IATAs also guide the decision on which new data may need to be generated in order to fill data 

gaps. In addition, the framework also comprises a template which can be used to generate own 

hypothesis. This hypothesis-driven approach is essential for aligning with the REACH requirements 

and sets the scientific justification for the grouping decision. The collection of some basic information 

on the NM identity and the intended use allows choosing a suitable grouping hypothesis and the 

associated IATA. The grouping hypothesis of interest can then be tested on a provisional group of 

NFs. The IATA enables acquisition of suitable evidence for acceptance or rejection of the grouping 

hypothesis. The GRACIOUS framework considers intrinsic as well as extrinsic properties of NM and is 

strongly focused on providing practical guidance for grouping and read-across instead of staying on a 

conceptual level. It also considers different exposure scenarios, applications and stages of life cycle 

to obtain a holistic picture.  Wherever possible, also IATAs use well-established methodologies or are 

aligned with OECD testing guidelines to enhance standardization. 

 

While case studies121, 124-130 have shown that the application of the developed grouping frameworks is 

useful, it also became obvious that usage of these theoretical frameworks is not that easy and fails in 

many cases. Especially the fact that no simple correlations can be observed between physico-

chemical properties of the NMs and the outcome of in vivo or in vitro experiments, renders grouping 

a difficult task. This missing link may be due to the fact that multiple physico-chemical properties 

influence the toxicological outcome in a non-linear manner. Thus, the bottleneck for making 

grouping frameworks applicable for read-across is to determine the set of descriptors that is most 

predictive for the toxicological outcome under consideration as well as the most suitable 

measurement techniques for reflecting these descriptors. Descriptors in this case may be simple 

physico-chemical properties of the NMs but also other higher-level descriptors like surface reactivity 
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or biological descriptors like those derived from omics techniques. ML and bioinformatics tools may 

aid refinement of the grouping frameworks by identifying the most relevant descriptors for NM 

grouping. 

 

 

1.5 Challenges for NAMs for regulatory application  

 

The development of suitable NAMs, is an ongoing process which still poses various challenges that 

need to be tackled in order to increase their suitability for regulatory purposes. First and most 

importantly, NAMs need to predict biological systems as close as possible in order to be useful for 

safety assessment. Due to the large complexity of biological systems, this is often a major hurdle. In 

addition, standardization and validation of methods are key factors required to ensure reliability and 

reproducibility of the results. This is directly related to regulatory acceptance of such methods. Also, 

data interpretation and integration need to be harmonized and technological limitations need to be 

acknowledged.  

 

For NMs, the situation is even more challenging as summarized before131 and successful 

implementation of NAMs requires adaptation of existing test guidelines for conventional chemicals 

which is currently still an on-going process led by the OECD. The most relevant challenges with 

respect to interpretation of findings and comparison between different NMs as well as for 

extrapolations from in vitro to in vivo to be mentioned in this context are NM dispersion stability, 

dosimetry and interactions of NMs with their biological environment. In the past, various 

organizations like the OECD and research projects like NANoREG, NanoHarmony, GRACIOUS or 

SmartNanoTox have tackled these challenges by developing and standardizing specific methods for 

characterization, handling and hazard assessment for NMs. The different challenges are described in 

more detail below.  

 

First of all, dispersion and dispersion stability over time is a critical factor in the context of NMs. 

Dispersion refers to the ability of particles to uniformly distribute within a medium leading to a 

homogeneous suspension. The process of NM dispersion usually involves breaking down aggregates 

into smaller entities or ideally single particles and spreading them throughout the medium. 

Frequently, NM dispersion is achieved by using sonication techniques based on the application of 

ultrasonic waves. Dispersion stability describes the ability of NMs to maintain this dispersed state 

over time. Dispersion is a critical factor for successful implementation of toxicological studies. 
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Especially in in vitro studies, it is crucial to apply stably dispersed NMs to the cells as otherwise 

proper exposure of the cells to the NMs cannot be guaranteed and results may not be representative 

as well as reproducible. How well a NM can be dispersed and how stable this dispersion is, depends 

on the physico-chemical properties of the NM under consideration. As an example, coatings on the 

surface of NMs can prevent agglomeration by reducing interactions between particles. Also, zeta 

potential is critical for the dispersion of NMs with high zeta potential generally indicating greater 

dispersion stability due to higher electrostatic repulsion between particles. Stabilizers may be used in 

addition to reduce agglomeration. The quality and stability of the dispersion should always be 

verified during experiments using characterization techniques like Dynamic Light Scattering. As a first 

step, test guidelines for inhalation toxicity132, 133 and NM dispersion134 have been updated by the 

OECD. However, standardizing measurements for NMs is still an on-going process. 

 

In addition, doses can be measured and compared using different metrics. Commonly, doses are 

given on mass basis using units like mg/ ml or mg/ kg body weight. However, due to differences in 

size, same doses with respect to mass may result in a largely differing number of particles contained. 

At the same time, this means that overall larger surface areas are available for reactions to take place 

in case of smaller particles. Therefore, it has been hypothesized that comparisons based on same 

surface doses are more appropriate especially for assays measuring surface-related properties like 

reactivity or dissolution135-137. In that case, doses will be given in mg/ m2. In addition, the dose per cell 

is also important implying that the seeding density should be considered when comparing findings136, 

138, 139. 

Another critical factor with respect to dosimetry is the effective dose. In vitro most variation between 

different types of NMs exists for cell cultures with adhesive cells under submerged conditions. In that 

case, NMs are dispersed in medium and then applied to cell culture dishes. Over time, NMs start 

sedimenting to the bottom of the cell culture dish where they may be in contact and potentially 

taken up by the cells. However, how fast NMs sediment again depends on their physico-chemical 

properties, mainly their density and their agglomeration state. Within an experiment, these 

differences usually cannot directly be influenced or taken into account and thus all results will be 

measured at the same time point leading to varying amounts of particles having reached the bottom. 

If one then compares NMs with different sedimentation speed, the results may not be representative 

as in one case more particles would have reached the cells. The deposited dose may be measured 

directly using analytical ultracentrifugation. However, the equipment for these techniques may not 

be available in many laboratories. Therefore, computational models have been developed to 

compute correction factors for this situation. Hinterliter et al.140 have developed the In vitro 

Sedimentation, Diffusion and Dosimetry model which is mainly based on sedimentation and diffusion 
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of the particles to determine how many particles reach the bottom of the dish within a certain time.  

This model has been refined to also take into account agglomeration and dissolution141. The main 

limitation with this model is that it does not consider desorption from the cell membrane which may 

be the case for particles showing only weak adhesion or are slowly taken up by the cells. The 

Distorted Grid model introduced by DeLoid et al.142 overcomes exactly this limitation by introducing 

an additional parameter for the absorption strength and allowing for particle diffusion back to the 

upper layers. Another factor to be considered is that the fact that particles have sedimented, does 

not automatically imply that they are also taken up by the cells. In many cases particles will only stay 

attached to the cell surface instead of being internalized. However, usually only particles which are 

taken up into the cells induce biological responses potentially leading to AOs. 

 

Similarly, internal doses differ from the applied dose in the in vivo situation as well. Looking at 

exposure via the inhalative route, whether or not NMs reach the lower respiratory tract and deposit 

within the airways again depends on their physico-chemical properties. Higher deposition efficiency 

of particles also increases the chances of penetration through the alveolar epithelium into the 

bloodstream and thus systemic availability143-145. Oberdoerster et al.145 have shown that the 

deposition in the respiratory tract strongly depends on size differences. This size-dependent 

deposition is also considered within the Multiple Path Particle Dosimetry model which can be used to 

predict particle dosages in human and rat airways146-148. In addition, PBPK modeling is important for 

estimating the exposure of secondary organs as it predicts the ADME properties of substances within 

the body. 

 

In addition to these general challenges for the estimation of effective doses of NMs, other factors are 

also critical for comparison of in vitro and in vivo results and may hamper the successful 

development of reliable in vitro methods. Among them, the binding of biomolecules from the 

surrounding medium can influence cellular uptake and thereby potentially also toxicity. Thus, not 

only the proper characterization of the pristine NM but also the characterization of relevant 

biological fluids plays an important role. In addition, NMs are known to interfere with 

spectrophotometric read-outs or enzymatically-catalyzed reactions which renders such methods 

inappropriate for NMs149, 150. Another challenge is the limited availability of in vivo reference data for 

NMs, which hampers proper validation of newly developed NAMs. In addition, the limited 

understanding on how variations in physico-chemical properties relate to changes in toxicity poses 

another challenge in the development of reliable NAMs. This challenge may be overcome by 

detecting underlying MoAs leading to NM toxicity which is one of the most promising approaches for 

developing reliable NAMs. While great advances have already been achieved over the last years, the 
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understanding of the biological effects of most NMs is still limited. Further enhancing this knowledge 

will enable the development of robust NAMs allowing also for prioritization of NMs which require 

further testing, generating reliable grouping hypotheses and the support of SSbD approaches. 

Bioinformatics and ML bare great potential for supporting the development of reliable NAMs and 

NAM frameworks and for unraveling MoA for NMs. 

 

 

1.6 Bioinformatics and ML models 

 

Bioinformatics and ML tools show great potential to support current risk assessment and for 

establishing new safety assessment paradigms in various ways. The main advantages of these tools 

are their capabilities for analyzing large and complex datasets, predicting potential hazards and 

providing valuable insights into MoAs thereby supporting risk assessment. Bioinformatics is an 

interdisciplinary field which uses various mathematical and computational methods for interpreting 

and analyzing biological data. Among those methods, there are various techniques from statistics and 

ML. In addition, omics data analysis forms one central pillar of bioinformatics. The most important 

concepts and techniques within these three fields are described below.   

 

With respect to NM grouping, bioinformatics tools can be applied in different ways. First, ML 

methods may be used to predict toxicity outcomes by linking these outcomes to physico-chemical 

properties. This can be achieved by the ability of ML models to quickly analyze vast amounts of data 

in a systematic way which might unravel hidden patterns in the data that cannot easily be detect by 

humans. In addition, omics analyses may be coupled with these predictive models to gain knowledge 

on the underlying toxicity mechanisms thereby improving the predictive ability of the models. Finally, 

bioinformatics tools may also be employed to integrate and manage information on NMs from 

different sources or databases. Altogether, these tools and integrated data may then aid regulators, 

researchers or industry in decision making with respect to safety aspects of NMs. 

 

The most critical challenge for modeling approaches in the context of NMs is the scarcity of existing 

data. At the same time, the most relevant question to be answered is the one of suitable descriptors 

of NM toxicity. These descriptors might be physico-chemical properties which can directly be 

influenced during design and production but also other surrogates which can be easily measured and 

potentially used for regulatory purposes at some point. Therefore, computational models should as 

much as possible try to fulfill the following criteria: 1) They should be able to cope with limited data 

availability. 2) They should be able to handle non-linear relationships. 3) They should not show high 
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risk of overfitting.  4) They should allow for feature selection. 5) They should be understandable and 

interpretable. 6) They should be easy to use for experts in the field. 7) They should not be highly 

dependent on changes of hyperparameters151. 

 

 

1.6.1 Data collection and pre-processing 

 

The first step in any computational approach is to assemble a dataset containing the necessary 

information. Therefore, usually data are collected from literature or one of the various available 

databases. In addition, new data directly obtained from experimental work may also be included in 

the dataset. For grouping purposes, these datasets should contain information on the physico-

chemical properties as well as on the toxicological endpoint under consideration. In addition to the 

pure numerical or qualitative values of the measured property or assay, the dataset should also 

contain information on metadata describing the experimental conditions under which the values 

were obtained. This might include information on whether results stem from in vivo or in vitro 

testing, which species or cell lines were used, which doses and time points were studied and so on. 

Even though this metadata might not be used directly in the model, it will still inform on whether 

results are comparable or not and will aid interpretation of the modeling outcomes. 

 

After collecting all the data, the dataset needs to be pre-processed in order to be usable for 

computational modeling. Pre-processing methods include techniques for feature reduction and 

feature selection, normalization, transformation, imputation, class balancing and others152. Which of 

these methods are needed in a specific case depends on the type of input data as well as on the 

algorithms applied to the data. Thus, not all steps are necessarily performed in all analyses.  

 

Feature reduction can be used to remove irrelevant or redundant information. This usually refers to 

variables which are non-informative due to low variance, a high number of missing values or high 

correlation with other variables in the dataset. In addition, feature selection may be useful for 

reducing the number of considered variables in order to avoid overfitting of the model153. Overfitting 

describes the situation in which the model learnt the underlying pattern of the data in too much 

detail such that it is not able to generalize well to new data anymore. This typically happens if the 

number of considered samples is relatively small while the number of variables with potential 

influence on the outcome is rather large. This is the typical situation in NM grouping approaches. 

Therefore, the number of parameters considered for modeling needs to be carefully chosen and 

adjusted using feature selection.   
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In addition, transformation and normalization are performed in order to scale variables or 

measurements such that they are comparable to each other. Log2 transformation is commonly 

applied to remove skewness of the data, to compress large dynamic ranges into linear patterns and 

to equalize variances. Especially for fold changes in omics data analysis, interpretation of the data 

may also be easier due to linearity which means that a two-fold upregulation would result in a value 

of +1 and a two-fold down-regulation in a value of -1 instead of 2 and 0.5, respectively. In addition, 

different normalization techniques are available. Z-score normalization is one of the most frequently 

used methods and standardizes the data to have a mean value of zero and a variance of one. While z-

score normalization makes variables comparable and is robust to outliers, the shapes of the 

distributions are not necessarily conserved which may make interpretation more complicated. 

Another option is min-max-normalization which scales the data to a fixed range, typically between 0 

and 1. In contrast to z-score normalization, this method preserves the shape of the distribution and 

restricts the values to concrete boundaries. However, it does not work well if the dataset contains 

outliers. In the case of omics data, median normalization and quantile normalization are very 

prominent methods. They are particularly useful for comparing samples from different experiments 

or platforms which may have different intensity distributions due to systematic biases. In median 

normalization, the distributions of all samples are shifted to have the same median value. In quantile 

normalization, data points for each sample or column are ranked from the smallest to the largest 

value, then replace by the row mean and re-order to the original order. Thereby, it is guaranteed that 

all samples show exactly the same distributions instead of just same median values. The advantage of 

quantile normalization is that it is more robust to outliers, however, if the extreme values are of 

biological relevance, this information may not be preserved. Therefore, normalization is a critical 

factor in data pre-processing and no universal recommendations fitting all datasets may be given. 

 

Depending on the aim of the model, discretization especially of the outcome variable might also be 

necessary. In that case, numerical values will be binned into discrete ones representing a certain 

range of values. As an example, numerical values of a specific assay may be transferred into binary 

format setting a certain threshold. All values below that threshold would then belong to the first 

class and values above the threshold represent a second class. These classes may, for instance, 

represent NMs which are ‘active’ or ‘passive’ with respect to a certain endpoint. In this setting, also 

class balancing may play a role. This is the case, if one class is substantially overrepresented meaning 

that its sample size is much larger compared to the second class. For NMs, this is frequently observed 

as usually there are more non-toxic than toxic compounds. In that case, the trained model is often 

biased towards the majority class which means that new samples will be identified as belonging to 

the majority class with higher probability independent of their nature. Therefore, in case of highly 
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imbalanced datasets, methods handling this problem should be applied. Here, resampling methods 

can be useful for oversampling the minority class by adding more instances or undersampling the 

majority class by removing instances. Frequently, the SMOTE algorithm154, 155 is applied for this task. 

In addition, many datasets contain missing values which cannot be handled by frequently used 

methods like PCA. In that case, there are two main possibilities to handle this problem. One option is 

to simply remove variables containing any missing values. However, in most cases this will lead to a 

huge loss of information. Alternatively, one can use imputation. During imputation, missing values 

are replaced by those predicted or estimated from the available information in the dataset. Different 

imputation techniques with different objectives as well as strengths and limitations exist. One option 

is to replace missing values by the mean or median of the available values for this variable. However, 

this produces the same value for all missing values of that variable and thus leads to non-normally 

distributed data. Here, RF imputation156 may aid by adding random noise.  Another technique 

frequently used in kNN imputation157 where missing values are estimated based on the values of the 

k closest data points. However, in all these methods it is expected that missing values are in the same 

range as the existing ones. However, especially for results from experimental techniques, another 

option is that values are missing because they fall under the limit of detection or the limit of 

quantification. In such cases, missing values are expected to be very small and therefore other 

imputation strategies should be used, e.g., imputation by drawing values from a down-shifted, 

shrunk normal distribution. Independent of which imputation method is used, potentially introduced 

uncertainties should always be kept in mind during further analysis. 

 

Once all the relevant data is collected and pre-processed different statistical approaches or modeling 

techniques may be applied to it. 

 

 

1.6.2 Statistics - Important methods and measures 

 

Various statistical methods and measures are of importance in the context of this thesis. First and 

most basic is statistical testing. Statistical testing is used to determine whether observed differences 

or relationships in the data are likely to be real or whether they just result from variations in the 

normal error range of the measurements. Therefore, a null hypothesis (H0) is defined which can 

either be accepted or rejected during statistical testing. The test statistic is a numerical value 

summarizing the distances between groups compared in the test. Calculation of the p-value is the 

main criterion for determining whether the observed differences are statistically significant. It 

represents the probability of obtaining results as extreme as the ones observed in the test statistic 
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when assuming that H0 is true. Thus, it tells how likely it is to obtain the observed result if in reality 

there is no difference in the populations. Small p-values suggest that observed result are rather 

unlikely under H0 and thus there actually is a difference between groups. P-values smaller than a 

certain significance level, commonly smaller 0.05, are considered as statistically significant and H0 is 

rejected. In other words, the probability that H0 is actually correct is lower than 5% in that case. 

Which statistical test needs to be chosen, depends on various factors like the type of data meaning 

whether variables consist of continuous or categorical values, the number of groups being compared 

or the study design which relates to independent or paired samples. In addition, the assumptions 

which can be made on the data play an important role for choosing the most suitable statistical test.  

 

The most frequently used statistical test is the t-test. The t-test is a parametric test comparing the 

means of two sample populations. As it is a parametric test, it assumes that the data in the dataset is 

normally distributed. In addition, the variances of the two samples should be approximately equal. 

Samples used in the t-test can be either independent if measurements are obtained from different 

populations or paired if data from the same or matched individuals are used in both groups. If the 

sample size is small, often one does not know whether the underlying distribution is really normally 

distributed as too few data points are sampled. In those cases, the use of non-parametric tests may 

be more appropriate. One such test is the Wilcoxon rank-sum test. The Wilcoxon test can be used for 

continuous but also for ordinal data. It ranks the combined data from both groups and computes the 

sum of the ranks in each group. These sums are then compared to calculate the test statistic. The 

Shapiro-Wilks test or Quantile-Quantile plots can be used to test whether the data is actually 

normally distributed. Other statistical tests also exist but will not be discussed further here. 

 

For high-dimensional datasets, multiple hypotheses are tested simultaneously. This is the case for 

omics data where the differential status of each transcript, protein or metabolite is assessed. 

Assuming a significance level of 0.05, if 100 tests are performed one may expect to obtain five false-

positive results just by chance. As for omics data usually multiple thousand molecules are assessed, 

this would result in a substantial number of false-positive results. Therefore, multiple testing 

correction has been introduced. One of the most reliable and frequently used methods is computing 

the false discovery rate (FDR) using the Benjamini-Hochberg method. This method sorts the p-values 

in ascending order and divides each observed p-value by its percentile rank. Then again, a 

significance cut-off, usually 0.05 or 0.01, is set. 

 

Another important statistical measure is correlation. Correlation measures the strength and direction 

of the relationship between two variables. Pearson correlation thereby considers linear relationships 
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between continuous variables. Values range from -1 in case of a perfectly inverse relationship over 0 

which indicates no linear relationship at all to 1 for perfect linear relationship in the same direction. 

While Pearson correlation is very informative, it has some limitations, namely it assumes that the 

data is normally distributed and it is sensitive to outliers. In the same manner as for statistical testing, 

a non-parametric alternative is available. Spearman correlation measures the strength and direction 

of monotonic relationships. This refers to consistent increase or decrease of one variable along with 

the other one. Again, values of the Spearman correlation coefficient range from -1 to 1 where 

positive correlation coefficients indicate positive monotonic relationships, and negative correlation 

coefficients relate to negative monotonic relationships. Pearson correlation is also useful when 

working with ordinal data. 

 

 

1.6.3 ML techniques 

 

In addition to statistical methods, also various ML tools exist. ML is a subset of artificial intelligence 

(AI) focusing on models and algorithms enabling computers to learn patterns from given data and 

make prediction based on those for new datasets in an exploratory manner. Usually, a set of 

descriptors that may be relevant for the outcome is used as features or input variables. In case of NM 

grouping, these features may be physico-chemical properties, omics data or some surrogate 

measurements. The outcome variable might relate to information on a certain toxicity endpoint. In 

general, ML models can be divided into supervised and unsupervised methods. Supervised methods 

thereby learn from labeled data while unsupervised methods simply detect patterns in the data 

without any prior knowledge on class membership. Depending on the nature of the outcome 

variable, ML methods are separated further into classification models with categorical outcomes and 

regression models in case of a continuous outcome variable. Model development in ML is generally 

divided into two phases: a training and a testing phase. In the first step, the data is therefore split 

into a training and a test set. The model is than fitted on the training data in order to learn any 

underlying patterns by adjusting its parameters. In the subsequent testing phase, the performance of 

the model for unseen data is accessed to judge its generalizability. The most important challenge in 

this regard is finding the right balance such that neither overfitting nor underfitting occurs158. In case 

of underfitting, the model does not represent the training data very well as it is too simple. In case of 

overfitting, the training data is learned too well and in too much detail and thus cannot generalize to 

new data. Once a model is trained and tested and shown to be robust it can be deployed for real-

world data and applications. Usually, this is an iterative process in which the model is improved over 



 

36 
 

time. Feature engineering can be performed to select or transform features thereby improving 

model performance. 

 

Various ML algorithms are available (see Figure 3). The most common and relevant ones in case of 

NM grouping approaches will be briefly described here. Unsupervised ML techniques comprise tools 

for dimensionality reduction and clustering. One of the most frequently used technique is PCA. PCA 

transforms a set of potentially correlated variables into linearly uncorrelated ones. These new 

variables are called PCs. By analyzing the coefficients of the PCs, one can determine the importance 

of the different descriptors. In the case of NMs, the materials may be represented in a lower-

dimensional space based on the first few PCs. Each PCs would be a linear combination of all assessed 

physico-chemical properties. The properties related to the highest coefficients are then assumed to 

be of highest relevance. In addition, cluster analysis may be used to organize objects based on their 

similarity with different cluster algorithms being available. Most frequently, hierarchical clustering is 

used where the two nearest clusters are combined into a new common cluster in an iterative fashion 

building up a tree-like structure. Typically, Euclidean distances are used to compute similarity of 

clusters. However, additional distance measures exist and may even be more useful. Apart from that, 

exclusive clustering is also frequently used. Here, data points are forced to end up in separate 

clusters. A common example is k-means clustering where all data points are assigned to one of k 

cluster points. Fuzzy clustering instead allows for multiple class memberships each with a certain 

degree of membership probability. Overall, clustering is a useful tool for exploratory data analysis 

and may provide insights into similarity of NMs.  

 

In addition, various supervised techniques exist as well. Among them, RFs159 are of special interest for 

NM grouping as they are a non-parametric technique which can handle small datasets relatively well 

with comparatively low risk of overfitting and at the same time holding inherent methods for feature 

selection. RFs combine multiple binary decision trees built on bootstrap samples of the original data. 

Each decision tree makes splits based on the explanatory variables in a way that they separate 

groups in the outcome variable as well as possible. With respect to feature selection, stepwise 

removal of the most unimportant features may be performed based on inherent criteria like the Gini 

impurity or the mean decrease of accuracy160. 

 

Linear and logistic regression are important techniques modeling relationships between one 

dependent outcome variables and one or more independent predictor variables. In linear regression, 

the aim is to find the best-fitting linear equation describing this relationship between dependent and 

independent variables. The outcome variable thus needs to be continuous. Slope and intercept the 
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best fitting line are estimated by minimizing the sum of squared differences between the observed 

and predicted values. Instead, logistic regression is used if the outcome variable is categorical where 

binary classification with outcomes 0 and 1 is most frequently performed. Logistic regression models 

the probability that the dependent variable belongs to a particular category based on one or more 

independent variables. A sigmoid function is thereby used to transform linear combination of the 

predictor variables into a value between 0 and 1. 

 

Additionally, performing feature selection may be very useful for NM toxicity prediction. Feature 

selection has two main advantages: in can be used to avoid overfitting of the training data and it can 

improve the comprehensibility of the model for humans. In general, methods like LASSO161 or 

ElasticNets162 are most frequently used to perform feature selection for ML models. However, 

simpler methods like RFE163 may also be used. In that case the least important parameters are 

removed from the model in a recursive way until the model performance keeps constant or drop 

again. 
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Figure 3: Overview on ML algorithms. 

 

 

Once ML models supporting NM grouping and toxicity prediction have been developed, it needs to 

be assessed how well they perform. Several measures and techniques are suitable for this task. For 

regression models, performance is usually measured in terms of the Goodness-of-fit. Therefore, the 

squared correlation coefficient or the standard error of estimation may be computed. The 

performance is measured simply within the original training data. Instead, for supervised models the 

model performance is assessed by applying the model to separate test sets. After model training the 

model is used to predict the labels of the data in the test set. Predicted labels are then compared to 

the true class. From this comparison, counts of true- and false-positives and -negatives can be 

obtained. These counts can be used to calculate the sensitivity and specificity of the model, meaning 

its ability to predict correct labels for instances from both classes. The balanced accuracy can be 
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calculated by taking the mean of sensitivity and specificity. This value is usually used as the final 

measure of model performance. In case the dataset is small, like it is usually the case for NMs, 

instead of splitting the data into training and test set, one may use leave-one-out cross-validation 

(LOOCV)152. In that case, one holdout sample is defined, the model is trained on the remaining 

samples and then the class is predicted for the holdout sample. This is performed in an iterative 

manner such that in the end the class of each sample is predicted based on all other ones. The 

performance can then be calculated in the same fashion as before. In a similar fashion, also k-fold 

cross-validation is possible where a certain number of subsets are used for validation.  

 

Various tools and ML models have been developed to support NM grouping. A comprehensive 

overview is given in the fourth publication included in this thesis. 

 

 

1.6.4 Omics techniques and relevant tools 

 

In the first step, omics data is usually pre-processed to allow detection of altered transcripts, 

proteins, metabolites and so on. This comprises data cleaning, transformation, normalization or 

imputation. Subsequently, the significance of the differential expression or abundance of each of the 

molecules can determined using statistical testing or linear modeling. As many molecules are tested 

at once, multiple testing correction needs to be performed. In addition, fold changes are frequently 

computed to get insights into the quantitative changes. As omics techniques are prone to false-

positive detection due to their high-dimensionality, conclusions are usually not drawn at the level of 

single molecules. Instead, pathway or gene set enrichment analysis (GSEA)164 may be performed. 

Thereby molecules are mapped to predefined gene sets or pathways like KEGG pathways165, 166, 

HALLMARK pathways167, Reactome pathways168, 169 or GO terms170. Only if a sufficient number of 

proteins are changed, the pathway or gene set will be identified as significantly perturbed which 

increases the reliability of the finding. Results of omics analysis are frequently visualized in volcano 

plots which highlight significantly altered molecules with sufficiently large fold changes. Heatmaps 

instead can show intensities across different samples along with their hierarchical clustering results. 

Boxplot can be used to visualize data distributions and assess for example the success of data 

normalization. Various tools for NM toxicity assessment based on omics data have been introduced 

in the past. A collection of such tools is presented in the review paper which is part of this thesis. 
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1.7 Available data for application of ML for NM grouping 

 

In order to create ML models which are able to support NM grouping, different types of data are 

needed: 1) Hazard data from in vitro or in vivo studies can be used as the output variable of the ML 

models. In supervised approaches they may represent labels; 2) Physico-chemical properties are used 

as input variables in classical grouping approaches; and 3) Omics data can support the justification of 

a grouping hypothesis by informing on shared underlying MoAs or induced AOPs. An overview on 

available data for these data types in the field of NMs is given below.  

 

 

1.7.1 Hazard data 

 

Experimental hazard data can be derived from in vivo or in vitro approaches. In vivo 90-sub-chronic 

or 28-day sub-acute studies with repeated doses applied to rodents thereby comprises the gold 

standard for inhalation toxicity. As an alternative supporting the 3R principles, the OECD Working 

Party on Manufactured NMs proposed STIS. The corresponding protocol was developed in the 

projects NANOSAFE2 and nanoCare and is an adaptation of the OECD Test Guideline 412 for 28-day 

sub-acute studies132. In STIS, rats are exposed for five days followed by a recovery period of two to 13 

weeks during which animals are observed. STIS are able to provide information on early NM-induced 

pathogenesis as well as reversibility or persistence of effects. STIS have been performed for a variety 

of NMs171-174 and data from broncho-alveolar lung fluid, lung histopathology and clinical parameters 

have been collected. Those studies have shown that STIS provide reliable results with respect to 

toxicity induction in the respiratory tract. From these studies NOAECs can be derived. Most NMs like 

barium sulfate, many silicon dioxide NMs, graphite nanoplatelets or carbon black show no or only 

moderate effects in case of unmodified amorphous silicon dioxide in STIS. Only few materials show 

strong effects in STIS, for instance rigid MWCNTs175. While STIS greatly improves testing 

requirements with respect to time and cost, it still remains an in vivo approach. 

 

As an attempt to circumvent the need for in vivo studies, various in vitro alternatives have been 

developed. However, most of them correlate poorly with in vivo results. The most comprehensive 

testing strategy so far is the so-called macrophage assay176 which reflects STIS results well across a 

large number of tested NMs. The macrophage assay studies the biological responses of alveolar 

macrophages which are the most important cells in the immune defense against exogenous 

substances or organisms taken up via the inhalative route. Four assays performed with the rat 
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alveolar macrophage cell line NR8383 are combined in this approach: 1) LDH release informing on 

particle-induced cytotoxicity, 2) glucuronidase release indicating activation of the immune defense, 

3) H2O2 release as an indicator for cell-mediated oxidative properties of NMs and 4) TNF-α levels as a 

surrogate for pro-inflammatory reactions.  
 

Within the original study, the macrophage assay was tested with respect to its applicability for use in 

a tiered approach for regulatory hazard assessment of NMs. As an example, it might be used in the 

context of the DF4nanoGrouping framework to distinguish ‘active’ and ‘passive’ NMs which form two 

of the four groups in this framework thereby also prioritizing NMs for further higher tier testing. This 

requires that the macrophage assay provides results which are in line with the corresponding in vivo 

findings. In order to prove predictivity of the macrophage assay for the in vivo outcome, a prediction 

model was established. Therefore, an initial set of 20 STIS results were categorized as ‘active’ or 

‘passive’ based on their NOAEC. While STIS and macrophage assays were performed with mass-based 

doses, surface area seems to be the more relevant metric with respect to NM effects on 

macrophages177, 178. Therefore, mass-based concentrations were converted into surface-based ones 

and surface-based thresholds for distinguishing ‘active’ and ‘passive’ NMs were introduced. For STIS, 

a threshold of 10 mg/m3 was set to distinguish NMs ‘active’ NMs with NOAECs smaller than this 

threshold from ‘passive’ NMs with larger NOAECs. This categorization was used as a reference and 

compared to findings of the macrophage assay. For the macrophage assay, results from all four 

assays were evaluated separately in terms of statistical significance. Doses selected for testing in 

these assays are chosen such that they can reflect macrophage loading in STIS in order to facilitate 

interpretation of the results. For each assay, the LOAEC was determined. A threshold of 6000 

mm2/ml was set to separate ‘active’ and ‘passive’ NMs in the macrophage assay. This threshold has 

been derived from in vivo findings on lung overload conditions and reflects the highest in vitro non-

overload dose of 4000 μm2/NR8383 cell176. In order to exclude borderline reactions, only NMs for 

which at least two out of four assays showed significant LOAECs below the threshold, were assigned 

an ‘active’ label. Testing the predictivity of the macrophage assay for STIS results in the first case 

study led to an accuracy of 0.95. Meanwhile, case studies for testing the predictivity of the 

macrophage assay with respect to STIS results have been extended to various additional materials179 

and thereby the usefulness of this assay has been further substantiated. The macrophage assay thus 

seems to be a good in vitro alternative informing on inhalation toxicity. 
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1.7.2 Physico-chemical properties 

 

Various physico-chemical properties have been shown to influence NM toxicity and thus might be 

important in the context of NM grouping. Those properties may either be intrinsic and thus only 

depend on the nature of the NM itself or extrinsic meaning that they can change along with the 

surrounding conditions of the NM like the medium they are contained in. The most important 

properties along with the way they might influence toxicity are briefly described here. 

 

The first important property is the size of NMs. The primary particle size is the one typically provided 

by the manufacturer and can be obtained from transmission electron microscopy or scanning 

electron microscopy in powder state after synthesis. Once suspended, the hydrodynamic diameter of 

the NM can be determined. As NMs in suspension are covered by a hydrate shell and ions, this value 

is typically higher that the PPS. The hydrodynamic diameter may be measured using different 

technique. Among them, the most common one is dynamic light scattering. In relevant medium, the 

hydrodynamic diameter is expected to increase further due to the binding of proteins onto the 

surface of the NMs called the protein corona. Due to their small size, NMs may be taken up and 

distributed throughout the body thereby potentially also passing biological barriers more easily31. 

However, size is not a single parameter but actually the size distribution is also of interest. 

Differences in size result from the fact that particles agglomerate or bind other molecules in different 

amounts. This information may be important as agglomerates may behave substantially different 

also with regards to induction of toxic effects compared to unbound particles.  

 

One property directly related to size of NMs is the surface area. The smaller a NM is, the larger 

becomes the ratio between surface area and mass. As many reactions of NMs with their 

environments take place at the surface of the NMs, the relative surface area is expected to be an 

important factor with respect to toxicity. The surface area is frequently measured using Brunauer-

Emmett-Teller analysis. Another property to be assessed is surface functionalization or treatment. 

This may lead to electrostatic stabilization by charge or steric stabilization by polymers. Thus, 

functionalization is expected to decrease toxicity. In addition, zeta potential describes the potential 

of the interface between layers and is indicative for NM suspension stability. Zeta potential is 

dependent on the pH, the ion strength and concentration as well as the presence of biomolecules. 

Thus, the zeta potential is an extrinsic property of NMs and may vary depending on the surrounding 

medium. 

Surface reactivity or the OP is considered an important surrogate variable strongly related to NM 

toxicity. It describes the ability of NMs to induce oxidative stress by generation of ROS. Oxidative 
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stress is a commonly occurring toxicity mechanism for NMs180. It may cause inflammation or on the 

long-term AOs like fibrosis or genotoxicity. Various acellular and cellular assays exist for measuring 

the OP. Among the acellular assays, ESR is frequently used. However, other acellular assays like the 

FRAS assay exist and have the advantage that they do not rely on expensive equipment. Cellular OP 

assays are more complicated to standardized and thus less frequently used but have the advantage 

that they assess the OP in a biological context which might be closer to real exposure situations.  

 

 

1.7.3 Omics data 

 

Most efforts in the field of omics analyses for NMs have been performed on the level of 

transcriptomics. A large number of transcriptomics datasets including those on NMs are stores in 

databases like NCBI GEO181. However, other omics layers like proteomics or metabolomics may yield 

information closer to the phenotype and are therefore of interest for risk assessment. Unfortunately, 

proteomics or metabolomics datasets for NMs in public databases like PRIDE are relatively scarce. 

Comprehensive datasets which analyzed omics data across multiple layers are even less explored and 

only few studies are available in literature and public databases182-188. The advantage of omics data, 

however, is that NM-specific datasets may potentially be integrated with those on other traits. Here, 

huge collections of datasets are available and can be integrated given that proper harmonization 

could be achieved. 

  



 

44 
 

Chapter 2: Aim of the work 

Due to fine-tuning of NMs for industrial purposes, plenty of NM variants are available on the market. 

As risk assessment for all variants with respect to all toxicological endpoint is not feasible, NAM 

frameworks like grouping and read-across are urgently needed. However, currently, reliable NM 

grouping is still a major challenge due to the missing knowledge with respect to the link between 

physico-chemical properties and toxicological outcomes. The overarching aim of this thesis was to 

explore the various possibilities by which ML models and bioinformatics approaches can support NM 

grouping. This was addressed in three different studies. The most important open question for 

establishing reliable NM grouping approaches is which properties are best suited to define similarity 

with respect to a specific toxicity endpoint. Therefore, different properties as well as approaches 

were compared across the publications contained in this work.  

 

First, a variety of physico-chemical properties was assessed with respect to their predictivity for 

inhalation toxicity in order to find out which of those properties might be most relevant in the 

context of NM grouping. For this purpose, unsupervised and supervised approaches were compared 

for a set of eleven NMs with comprehensive description of their physico-chemical properties with 

respect to their suitability to reduce the set of physico-chemical properties to only the most relevant 

ones and feature selection was incorporated to test its suitability for model improvement.  

 

In the next step, functional assays should be considered in addition to physico-chemical parameters. 

For this purpose, the OP of NMs was considered in more detail as: 1) It has been shown to be highly 

relevant in the context of NM toxicity; and 2) It can serve as a surrogate for multiple physico-

chemical properties, thus reducing the characterization efforts. As various assays for measuring the 

OP exist and are frequently used, the main aim was to compare the outcomes of different OP assays. 

This has multiple implications for how datasets from different studies holding information on the OP 

could potentially be combined. In case of high correlations among assays, datasets may directly be 

integrated in order to increase the number of NMs considered during modeling. Instead, in case of 

low to medium correlations, combining various OP assays may yield higher predictivity for the 

toxicity outcome as different aspects of reactivity may be considered. Also, the influence of mass- vs. 

surface-based dose metrics was explored with respect to the predictivity for toxicity.  

 

As NM grouping may also greatly benefit from knowledge on the underlying MoAs, studying the 

related proteomics signatures to infer correlations between NMs was another key aim of this work. 

Due to the sparsity of NM-related proteomics datasets, the idea was to integrate NM-specific 
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proteomics data with those related to other traits like chemicals, drugs or diseases, thereby 

benefiting from the more profound knowledge on them. However, such meta-analyses are only 

possible if the applied analysis workflows are harmonized. Thus, the aim was to provide such a 

workflow which allows for automated evaluation of proteomics datasets in a harmonized manner 

finally enabling the direct comparison of study results across various publicly available proteomics 

datasets. As such meta-analyses are mainly hampered by the lack of standardization for proteomics 

data, a workflow for harmonized evaluation of public proteomics data and their integration in a 

meta-analysis setting needs to be developed. The workflow PROTEOMAS aims to achieve 

FAIRification of proteomics data. 

 

Finally, existing ML and omics approaches from the literature were also summarized in order to 

highlight their great potential for supporting NM grouping.  
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A B S T R A C T

Nanomaterials (NMs) can be produced in numerous different variants of the same chemical substance. An in-
depth safety assessment for each variant by generating test data will simply not be feasible. Thus, NM grouping
approaches that would significantly reduce the time and amount of testing for novel NMs are urgently needed.
However, identifying structurally similar NM variants remains challenging as many physico-chemical properties
could be relevant.

Here, we aimed at emphasizing on the value of machine learning models in the process of NM grouping by
considering a case study on eleven selected, well-characterized NMs. To that end, we linked physico-chemical
properties of these NMs to characterized hallmarks for inhalation toxicity. We applied unsupervised and su-
pervised machine learning techniques to determine which combination of properties is most predictive. First, we
assessed NM similarity in an unsupervised manner using principal component analysis (PCA) followed by
subsequent superposition of activity labels combined with a k-nearest neighbors approach. Then, we used
random forests (RFs) as a supervised machine learning technique which directly uses the knowledge on the
activity class in the process of defining NM similarity. Thus, similarity was defined only on those properties
showing the highest correlation with the activity and therefore had the highest discriminative power. In order to
improve the performance, we then used recursive feature elimination (RFE) to delete uninformative features
biasing the results. The best performance was achieved by the reduced RF model based on RFE where a balanced
accuracy of 0.82 was obtained. Out of eleven different properties we determined zeta potential, redox potential
and dissolution rate to have the strongest predicting impact on biological NM activity in the present dataset.
Though the dataset is too small with respect to the number of NMs studied and the applicability domain is
expected to be very limited due to the fact that only few material classes were covered, our study demonstrates
how machine learning and feature selection methods can be implemented for identifying the most relevant
physico-chemical NM properties with respect to toxicity. We suggest that once the most relevant properties have
been detected in a model built on a sufficient number of different NMs and across multiple NM classes, they
should obtain special emphasis in future grouping approaches.

1. Introduction

Nanomaterials (NMs) can be manufactured with various function-
alities serving different industrial purposes (Forster et al., 2011). In

theory, an infinite number of different variants can be obtained for each
material type by altering physico-chemical properties such as size,
shape or by applying chemical surface coatings. However, altering
physico-chemical properties does not only influence the functionality of
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the NM but at the same time may also have an impact on its biological
interactions by affecting for example cellular uptake, toxikokinetics or
(eco-)toxicity (Marzaioli et al., 2014; Froehlich, 2012; Braakhuis et al.,
2014). Even slight changes in some properties may drastically alter a
NM's toxicological profile while other properties may have a lower
impact on the toxicity. Unfortunately, a proper understanding of how
changes in certain physico-chemical properties are associated with
changes in toxicity, toxikokinetics or uptake is only beginning to
emerge. Thus, currently each NM variant requires a detailed case-by-
case evaluation that includes a thorough characterization of the phy-
sico-chemical properties as well as an in-depth assessment of the tox-
icological profile. Given the huge number of variants and the high de-
mands with respect to time, laboratory animals and cost needed for
these analyses such an approach is not feasible to be followed for all
variants (ECHA, 2016). Instead, alternative methods aiming at reducing
the amount of testing needed to address the question of potential ha-
zards of NMs, such as grouping and read-across are urgently needed
(OECD, 2016; ).

For chemicals, grouping concepts have already been well estab-
lished (OECD, 2016; ECHA, 2008). Two strategies are proposed and the
decision which one to use mainly depends on the number of available
similar source chemicals (OECD, 2016; ECHA, 2017). If a sufficient
number of similar chemicals is available the category approach can be
used According to the guidance documents on grouping released by
OECD (2016) and ECHA (2008, 2017), a chemical category is a group of
chemicals whose physicochemical and (eco-)toxicological properties
and/or environmental fate are likely to be similar or follow a regular
pattern, usually as a result of structural similarity. For new chemicals to
be added to such an established group, the toxicity can then be pre-
dicted using tools, such as read-across, trend analysis, quantitative
structure activity relationships (QSARs) (EU US Roadmap
Nanoinformatics 2030, 2018). If only a smaller number of source che-
micals is available, the analogue approach may become appropriate. In
that case, trends may not become apparent, such that this approach is
more dependent on expert judgement. In any case, key features for
assuming similarity of chemicals are e.g. common functional groups,
common breakdown products or a trend between potency and proper-
ties of interest across the group (OECD, 2016).

For NMs, several grouping approaches have been published already
(Oomen et al., 2014; Oomen et al., 2015; Sellers et al., 2015; Arts et al.,
2015; Dekkers et al., 2016). However, in the absence of case studies
most of these approaches stay conceptual at this stage and grouping of
NMs remains still challenging (Lamon et al., 2018). One of the main
challenges is that one needs a much higher number of physico-chemical
properties to describe a NM compared to a conventional chemical. NMs
are characterized not only by many material-specific, so-called intrinsic
properties, but also by properties that vary in dependence of the sur-
rounding medium (extrinsic properties). All of these properties can
potentially influence NM (eco-)toxicity, uptake or fate. However, the
specific influence of each of these properties on the observed toxicity as
well as a proper understanding on how they may be linked to each
other and to the toxicity is only currently emerging. In addition,
properties of NMs may also change during their lifetime, for example
due to aging, agglomeration or aggregation, corona formation, or dis-
solution (ECHA, 2017; EU US Roadmap Nanoinformatics 2030, 2018;
Oomen et al., 2014). Thus, also the toxicity profile of a NM could
change over time. Another important factor is that the current un-
certainties with respect to measuring physico-chemical properties and
toxicity are high. Many of the test methods are still in the process of
being adapted and validated for NMs (Gao and Lowry, 2018). In par-
ticular, extrinsic properties, which may change depending on the en-
vironmental conditions the NM is exposed to, are difficult to obtain
because measurements have to be carried out in complex biological
fluids. However, only if both, intrinsic and extrinsic properties of a NM
are carefully characterized, information on the transformations of the
NM under different conditions can be modeled reliably and used for

outcome prediction. Thus, currently the largest bottleneck for estab-
lishing grouping approaches for NMs is the lack of systematic and re-
liable data sets suited for establishing solid linkages between physico-
chemical properties and observed toxicity.

Several NM grouping schemes have been proposed already. The
most comprehensive ones are the MARINA approach (Sellers et al.,
2015), the RIVM approach (Oomen et al., 2015), the DF4nanoGrouping
approach (Arts et al., 2015) and the NanoREG approach (Dekkers et al.,
2016). However, only one of them, the DF4nanoGrouping framework,
has been verified in a number of case studies (Arts et al., 2016). The
DF4nanoGrouping approach covers intrinsic and extrinsic properties of
the NMs as well as biopersistence, uptake, biodistribution, cellular and
apical toxicity. This framework uses a tiered approach to distinguish
four different groups of NMs. The first group comprises water-soluble
NMs which can be assumed to be non-biopersistent. Group 2 consists of
biopersistent high aspect ratio (HAR) NMs. As the DF4nanoGrouping
approach focusses on inhalation toxicity, HAR NMs have to be con-
sidered separately from other NMs as they are expected to have a much
higher hazard potential compared to NMs with lower aspect ratio in the
lung. All other NMs are subsequently categorized as either passive or
active NMs. The distinction between the groups can be based on the
outcome of in vitro toxicity tests (alveolar macrophage assay (Wiemann
et al., 2016)), as well as on surface reactivity (Ferric Reducing Ability of
Serum assay (FRAS) (Gandon et al., 2017) or a cytochrome C assay
(Delaval et al., 2017)). While the separation of the first two groups is
made based on intrinsic and extrinsic properties of the NMs, the dis-
tinction between groups three and four are mainly based on toxicity
testing data. The DF4nanoGrouping framework was used as a starting
point in this work. Our aim was to identify physico-chemical properties
that may guide the distinction between active and passive NMs which is
one necessary step for applying the DF4nanoGrouping framework.
Several challenges had thereby to be overcome.

Not all physico-chemical properties will necessarily be equally im-
portant for discriminating between active and passive materials.
Moreover, the relevance of a particular property may be endpoint-
specific. Thus, the main challenge is to weigh the physico-chemical
properties based on their relevance for a certain toxicity endpoint and
to identify combinations of the most relevant properties of a NM, which
are predictive for an observed toxicological effect. It can be expected
that a prediction of toxicity should be possible with a reduced set of
properties (Gao and Lowry, 2018). The knowledge on which physico-
chemical properties are predictive for a specific endpoint will not only
facilitate grouping approaches and risk assessment for NMs but, at the
same time, may also be supportive for Safe-by-Design.

Machine learning techniques are generally well-suited for solving
the tasks of parameter selection and parameter ranking in a data-
driven, exploratory way. Often, unsupervised approaches, such as
principle component analysis (PCA) are suggested to be suited for NM
grouping (Lynch et al., 2014; Sayes et al., 2013; Aschberger et al.,
2019). PCA reduces the dimensionality of the input feature space to
only a few linear combinations of the original input variables that show
highest variability across the dataset, the so-called principle compo-
nents (PCs). However, PCA has some drawbacks in the context of NM
grouping and prioritization of certain physico-chemical properties of
the NMs with higher importance for the toxicity outcome. As PCA is an
unsupervised method, the PCs reflecting the directions of highest var-
iation are not necessarily related to changes in the outcome variable.
Some physico-chemical properties may highly vary between a set of
NMs without having large influence on their toxicity outcome. In ad-
dition, the reduction of the representational space using linear combi-
nations of the input properties makes the interpretation of the resulting
PCs difficult. Another limitation of PCA is the assumption of a linear
relationship between the PCs and the input space, as well as assuming
statistically normal distributed variables, which might not necessarily
be true for NM properties.

In order to overcome these drawbacks, non-parametric supervised
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machine learning techniques which do not make strict assumptions on
the properties of the input data and at the same time do use labeled data
for training can be used instead. One such method is random forest (RF)
classification (Breiman, 2001). RFs are a collection of binary decision
trees, which are built on bootstrap samples of the original sample space.
Every decision tree combines the explanatory variables in such a way
that they are best linked to an outcome variable.

Though other supervised methods are available as well, RFs show
several advantages for NM toxicity prediction: As the trees built during
the RF approach show a rather low correlation among each other due to
random choices of sample and variable sets, predictions are rather ro-
bust even for relatively small sample sizes and overfitting does not
occur as frequently as it does with other methods like single decision
trees (Amaratunga et al., 2008). In addition, RFs are non-parametric
and thus well suited for different kinds of data properties and re-
lationships between input variables and the outcome. Another ad-
vantage of RFs is that they use internal variable importance measures.
The variable importance may be directly used to select the subset of NM
properties that is most predictive for the toxicity outcome. We assume
that establishing NM grouping concepts on only those most predictive
NM properties may be more robust then including all NM properties
which partly may be unrelated to toxicity.

A few studies have already applied RFs in the context of NM toxicity
prediction (Lamon et al., 2018; Sizochenko et al., 2014; Cassano et al.,
2016; Ha et al., 2018). However, these studies include all features in the
model building step or perform feature selection only based on corre-
lations between the input properties (Lamon et al., 2018). Due to
random choices of subsets of variables being made at each split, a large
number of noise variables which are unrelated to the outcome variable
may have an impact on the performance on RFs. Therefore, feature
selection based on feature importance prior to building the final RF
model can be highly useful to improve the prediction accuracy (Genuer
et al., 2010) and should be assessed. In the current study we use an
approach based on recursive feature elimination (RFE) to remove un-
important features in a stepwise manner. Goldberg et al. (2015) already
showed the advantages of such an approach for the prediction of the
NM transport behavior. In a similar fashion, Findlay et al. (2018) used
RFE to improve models predicting protein corona formation on silver
NMs based on their physico-chemical properties. Other studies (Darst
et al., 2018; Gregorutti et al., 2017) have shown that RFE in general is
useful in case of correlated predictors. For NMs, many of the physico-
chemical properties are not independent of each other and thus RFE is
assumed to be useful to improve RF models for NM toxicity prediction.

There are two main goals to be achieved during feature selection: 1)
One may want to determine all important variables related to the

outcome variable or 2) one may want to obtain a minimal set of vari-
ables that gives a good predictive model, which is not overfitted and
able to generalize to new datasets. In the case of NM toxicity prediction,
the second goal will be most important.

In RFs, feature selection can be performed in a very straightforward
way by the stepwise removal of features with the smallest variable
importance. This variable importance can, for example, be assessed by
the mean decrease of Gini impurity or the mean decrease of accuracy.
The Gini impurity measures how often a randomly chosen sample
would be incorrectly labeled if it was randomly labeled according to the
distribution of labels in the subset. The mean decrease in accuracy is
obtained by permuting the values of the feature under consideration
and measuring the error increase due to this randomization. In contrast
to PCA, the dimension reduction in this approach is achieved by re-
moving complete features instead of combining them to new linear
combinations of the original features. Thus, the interpretability of the
results is more straightforward.

In the present study, we compared the performance of unsupervised
PCA in combination with a k-nearest neighbor (kNN) approach with
that of a RF approach for linking physico-chemical properties to toxicity
data and to build a predictive model for NM toxicity. Here, PCA was
added for comparison reasons only as it is a commonly used method but
not all assumptions are necessarily fulfilled in this study. We also
compared the performance of full and reduced RF models. Reduction of
the number of input variables is assumed to be useful for improving the
prediction accuracy of the model as datasets containing only a small
number of input variables are prone to overfitting if too many input
variables are included (Breiman, 2001). We tested the performance of
the aforementioned methods on a dataset of eleven NMs mainly con-
sisting of different silica particles that are systematically varied in size
and structure, surface charge and surface hydrophobicity.

2. Materials and methods

2.1. NMs

In the present study, we analyzed a set of eleven different NMs
(Table 1). The main case study consists of seven amorphous silica
particles altered in a systematic way by changing their surface charge
(SiO2_15_unmod, SiO2_15_Amino and SiO2_15_Phospho), size and
structure (SiO2_15_unmod, SiO2_40, SiO2_7) as well as hydrophobicity
(SiO2_7, SiO2_7_TMS2, SiO2_7_TMS3). The silica NMs were obtained
from BASF SE (SiO2_15_unmod, SiO2_15_Amino and SiO2_15_Phospho)
and from Evonik Resource Efficiency GmbH (SiO2_40, SiO2_7,
SiO2_7_TMS2, SiO2_7_TMS3).

Table 1
Physico-chemical properties and measurement techniques used in this study.

Property Measurement technique

Relative density or specific density of the material (mass per
volume)

Literature-based

Primary particle size (SEM) in nm Scanning electron microscopy
Surface area (BET) in [m2/g] Brunnauer-Emmet-Teller
Zeta potential at pH 7.4 in mV Electrophoretic light scattering
Hydrodynamic diameter (z.average) in nm Dynamic light scattering
Dissolution rate in [%w] Solubility/chemical analysis of the supernatant by ICP-OES
Isoelectric point (pH value of no surface charge) Electrophoretic light scattering
Band gap Literature-based
Redox potential in mV Pt-cathode normalized to standard hydrogen electrode
ESR CPH (mass-based) Electron spin resonance spectroscopy using the spin probe CPH, NMs are applied at same mass concentration,

sample to blank ratio
ESR CPH (surface-based) Electron spin resonance spectroscopy using the spin probe CPH, NMs are applied at same surface area

concentration, sample to blank ratio
ESR DMPO (mass-based) Electron spin resonance spectroscopy using the spin trap DMPO, NMs are applied at same mass concentration,

sample to blank ratio
ESR DMPO (surface-based) Electron spin resonance spectroscopy using the spin trap DMPO, NMs are applied at same surface area

concentration, sample to blank ratio
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In addition to the silica case study a few other NMs were included in
this study. TiO2 NM-105 from the JRC repository is used as a bench-
mark material (Nel, 2013) in this study as it has widely been used and
carefully been characterized before. Most importantly it has been
chosen by the OECD's Working Party on Manufactured Nanomaterials
as a benchmark for interlaboratory comparisons and verification of
testing methods for NMs.

In addition, CuPhthalocyanine Blue and CuPhthalocyanine Green
were added to the set of considered NMs in this study as they form
another mini-case study. They are a pair of materials that only differ in
one halogenation. Thus, the influence of that halogenation on the
toxicity outcome can directly be studied. Both pigments were obtained
in technical grade from BASF Colors and Effects.

Mn2O3 was bought from Skyspring Nanomaterials and was included
in the dataset as well as it has shown strong effects on macrophages
previously (unpublished data obtained in the project nanoGRAVUR).
Thus, Mn2O3 may serve as a positive control in this study.

All NMs were confirmed to be endotoxin-free in a Limulus
Amebocyte Lysate Endochrome (LAL) test.

2.2. NM dispersion and characterization of physico-chemical properties

NMs were dispersed at a final concentration of 0.5mg/ml using a
Bandelin Cup Horn (Bandelin, Germany) following the NanoToxClass
SOP (-NanoToxClass, 2017). The hydrophilic NMs were dispersed in
water or cell culture medium. 10% fetal calf serum (FCS) was added to
the cell culture medium after Cup Horn sonication. For the two NMs
with hydrophobic surface coatings (SiO2_7_TMS2, SiO2_7_TMS3),
100 μg/ml of Pluronic F108 (Sigma-Aldrich, # 542342, Germany) was
added before sonication. Final input power applied were 6W.

All NMs were characterized with respect to their physico-chemical
properties using well standardized state of the art approaches (Izak-Nau
and Voetz, 2014) that have already been applied and tested in former
German and EU projects like nanoGEM, MARINA or nanOximet. The
standardized methods and operation procedures of these projects were
used for NM characterization (NanOxiMed, 2014 - 2016). An overview
of the measured properties along with their measurement techniques is
given in Table 1.

Within this study, physico-chemical properties measured in deio-
nized water (dH2O) were used. However, similar measurements have
been performed in two different cell culture media (F-12K and DMEM)
and may be explored for their potential to refine the approach. Only
those physico-chemical properties not containing any missing values
were included in the analyses.

The mean values of the physico-chemical properties that were used
in the classification approach are summarized in Table 2.

2.3. NM toxicity testing

Categorization of NMs into active and passive materials was mainly
based on literature data. In vivo inhalation toxicity was considered most
relevant (Christensen et al., 2010). Information on in vivo toxicity was
obtained from short-term inhalation studies (STIS) in rats performed by
Landsiedel et al. (2014). NMs were considered as active if the NOAEC
was below 10mg/m3 and otherwise classified as passive as explained in
Wiemann et al. (2016).

For NMs in the dataset for which no published in vivo data was
available at the time of the study, we assigned the activity label based
on the macrophage assay as suggested in Wiemann et al. This macro-
phage assay is performed with the rat alveolar macrophage cell line
NR8383 and combines four assay measurements, namely LDH, ROS,
TNF-α and glucuronidase. High correlations between the outcomes of
the in vitro macrophage assay and the in vivo STIS have been shown
already in Wiemann et al. who directly compared the outcomes of the
studies for a comprehensive set of NMs. NMs are considered as active if
at least two of the assays (i.e. LDH, ROS, TNF-α or glucuronidase) show Ta
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a LOAEC (Lowest Observable Adverse Effect Concentration) below
6000mm2/ml and as passive otherwise in accordance with Wiemann
et al.

For NMs not studied in Wiemann et al. (see Table 3), the macro-
phage assay was performed within the study following the method
descriptions in Wiemann et al. The assays (i.e. LDH, ROS, TNF-α or
glucuronidase) were basically performed as described in Wiemann et al.
with only two exceptions: 1) The TNF-α assay was replaced by an ELISA
test (BMS622, Invitrogen) and 2) the NR8383 cells were seeded at a
density of 5×105 cells/ml in 96-well plates. The cells were then ex-
posed to 22.5, 45, 90 and 180 μg/ml NMs concentrations in serum free
Ham's F-12K medium with 1% penicilin/streptomycin for 16 h and re-
spectively 1.5 h in case of the ROS assay. Blanks (cell free medium ±
NMs) corresponding to each sample were used to eliminate any inter-
ference of NMs.

2.4. Machine learning approaches

We used an approach based on a PCA combined with a kNN clas-
sifier to address the problem of NM toxicity prediction in an un-
supervised manner. PCA is commonly used to project high-dimensional
data into a lower-dimensional space which still holds as much in-
formation as possible. Therefore, one has to determine the PCs of the
corresponding dataset. The linear combination representing the direc-
tion of highest variability of the data is called the first PC. All remaining
PCs are orthogonal vectors of highest variability in that direction. Here,
the first two PCs were used to define similarity between NMs and as
input for the kNN approach. The kNN reads-across the toxicity value
from the k NMs that were determined to be most similar to each other.
In this study, the parameter k was set to one and thus the toxicity label
was obtained in a read-across manner from the NM that is the nearest
neighbor of the target NM. The similarity was defined based on the first
two PCs and is visualized in Fig. 2.

RF classification was used for supervised learning. RFs build up a
number of decision trees based on bootstrap samples of the original
data. Within each decision tree, the input variables, here the physico-
chemical properties, are combined in such a way that they separate
both classes from each other as well as possible. In this step, another
layer of randomness is added by considering only a subset of the input
variables as potential split criteria for each split. Which descriptor is
finally chosen to set the split criterion depends on their separation
performance. Common choices to select the split criterion are the Gini
impurity or the prediction accuracy (also called permutation error)
(Breiman, 2003). Both criteria are described in more detail below in the
paragraph on RFE.

In order to assess the generalizability of the constructed RF, the

dataset should be divided into a training set, which is used to build the
RF and a test set, which is used to assess how well the RF performs on a
set of data that the RF has not seen before. Here, we used cross-vali-
dation in a leave-one-out manner. Thus, for each NM, the class label
was predicted by the RF generated on all other NMs. The final predic-
tion of toxicity for the test NM is based on a majority voting of all trees
in the RF. As here RF classification is used, the outcome variable holds
class labels for each sample.

For reduction of the number of input variables of the RF, we used
backward recursive feature elimination (RFE) (Guyon et al., 2002)
based on the mean decrease of accuracy (MDA) importance. The MDA is
computed by randomly permuting the values of each input variable,
one at a time, and assessing how much the prediction accuracy drops by
doing so. Larger decreases in the prediction accuracy correspond to
higher importance of the input variable under consideration. The fea-
ture with the minimum value for MDA corresponding to the least im-
portant variable was removed from the input set and a new RF was built
based on this reduced set of variables. The minimal set of input vari-
ables giving an optimal balanced accuracy was determined. Equiva-
lently, RFE was performed based on the Gini importance as the variable
exclusion criterion. Gini importance measures how well the samples
can be assigned to the two output classes by making a split on the
variable under consideration at a specific node. The higher that value is,
the better is the separation of the instances into the two classes and the
higher is the importance of the inspected feature. Means and standard
deviations for the MDA as well as Gini importance values for each
feature were calculated in order to infer knowledge on the importance
of each physico-chemical property on the toxicity outcome. Variability
estimates of the importance result from the leave-one-out cross-vali-
dation in which variable importance was assessed within each RF
model and then averaged across all models.

The performance of the classification models was assessed based on
the numbers of correct and incorrect class predictions. A material is
correctly classified if the class predicted by the model is the same as the
label that the NM was originally assigned based on the results of the
STIS or the macrophage assay. Sensitivity (true predictions as ‘active’
(true positives)/all predictions as ‘active’ (positives)), specificity (true
predictions as ‘passive’ (true negatives)/all predictions as ‘passive’
(negatives)) and balanced accuracy (sensitivity+ specificity/2) were
assessed by comparing the assigned class label to the predicted one.

The implementation of RFs from the R package ‘randomForest’ was
used with the number of trees generated being set to 5000 and the
number of features assessed at each split being set to the default value.
An R package implementing the methods presented here is available at
https://github.com/AileenBahl/ML_Tox.

3. Results

3.1. Assignment of toxicity labels

In vivo STIS results are present for five of the NMs. In four cases they
match the results from the macrophage assay. Only CuPhthalocyanine
Blue is false-positive in vitro but passive in vivo. For six of the NMs, no
results from the macrophage assay have been published before. Thus,
we performed the macrophage assays for those NMs. All results are
summarized in Table 3. For all cases in which an in vivo categorization
was available, we assigned this as the class label. For the other cases, we
used the in vitro categorization. The only exception is CuPhthalocyanine
Green which due to its similarity to CuPhthalocyanine Blue was as-
sumed to be passive in vivo. CuPhthalocyanine Green was obtained from
CuPhthalocyanine Blue by halogenation. Both materials differ only by
this halogenation. As we do not have information from in vivo studies
for CuPhthalocyanine Green, the passive behavior in vivo is only an
assumption.

Table 3
In vivo and in vitro categorization of the NMs. Activity categories were assigned
based on previous finding from STIS (Landsiedel et al., 2014). NMs that were
not tested in this study were categorized based on the results of the macrophage
assay (Wiemann et al., 2016).

NM In vivo categorization
(STIS)

In vitro categorization
(macrophage assay)

SiO2_15_unmod Active Active
SiO2_15_Amino Passive Passive
SiO2_15_Phospho Passive Passive
SiO2_40 / Activea

SiO2_7 / Activea

SiO2_7_TMS2 / Passivea

SiO2_7_TMS3 / Passivea

CuPhthalocyanine Blue Passive Active
CuPhthalocyanine Green / Activea

TiO2 NM-105 Active Active
Mn2O3 / Activea

a Obtained within NanoToxClass.
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3.2. Physico-chemical properties across NMs

Fig. 1 shows the distribution of values of all studied physico-che-
mical properties across NMs in a heatmap. The values for the physico-
chemical properties of the NMs were translated into colors (ranging
from dark blue for the lowest values to dark red for the highest values).
The values of all properties were scaled to guarantee comparability
between properties with differing ranges of values. A comparison of the
left part of the heatmap consisting of the physico-chemical properties
belonging to the set of NMs with class label ‘active’ (column names
colored in black) with the right part consisting of passive NMs (column
names colored in purple) shows that there is no single variable that can
perfectly distinguish between the active and the passive group. How-
ever, for some of the properties tendencies are visible. One such ex-
ample is the zeta potential which is higher in almost all passive NMs
than compared to the active ones. In addition, the dendrogram on the
left side of the figure shows how similar the different physico-chemical
properties are to each other across all tested NMs. In Supp. Fig. 1, the
clustering of NMs across all physico-chemical properties is shown. Ac-
tive and passive NMs cannot be separated from each other and do not
cluster together based on all assessed physico-chemical properties with
equal weights.

3.3. Unsupervised learning approach - PCA and kNN

The kNN read-across like approach was based on the first two
principal components (PCs) obtained from a PCA. These two PCs ex-
plain 69.8% of the total variance. Fig. 2 shows the contributions of each
input parameter to each of the two PCs, as well as the location of each
NM within the space spanned by these two PCs. The first PC is strongly
related to the reactivity of the NMs (ESR and redox potential) and to a
lesser extent also to the relative density. The second PC is highly

influenced by the hydrodynamic diameter followed by zeta potential,
surface area, band gap and dissolution rate.

Training a kNN with k=1, so reading across the toxicity class from
the NM that is most similar to the one that should be predicted with
respect to the first two PCs, we obtained seven correct predictions,
while four NMs were misclassified (namely SiO2_15_unmod,
SiO2_15_Phospho, SiO2_7, SiO2_7_TMS2). This corresponds to a sensi-
tivity of 0.6, a specificity of 0.67 and a balanced accuracy of 0.64.

3.4. Supervised learning approach - random forest

3.4.1. Full model
As a starting point, we created a full RF model by incorporating all

assessed physico-chemical properties as input variables. This leads to a
correct prediction of the toxicity of six NMs and a misclassification of
five NM (see Table 4). The sensitivity of that classifier is 0.4, the spe-
cificity is 0.67 and the balanced accuracy is 0.54. The stability of the
correct predictions as assessed by the ratio between the correct and the
incorrect votes is roughly the same as compared to the stability of the
incorrect predictions.

The importance of each input variable in that RF is assessed by the
MDA or mean decrease in Gini importance, respectively (see Fig. 3 and
Table 5). In both cases, zeta potential, dissolution rate, surface-based
ESR DMPO, and redox potential are among the top 5 highest-ranking
variables. For Gini importance the set of top 5 variables is completed by
mass-based ESR CPH, for accuracy it is the relative density.

3.4.2. Reduced models
As the performance of RFs is drastically reduced if a lot of noise

variables not highly related to the outcome variable are included in the
prediction, we reduced the number of input variables to see whether
the performance of the predictor can be improved. We assessed

Fig. 1. Heatmap of physico-chemical properties across
NMs. The table of physico-chemical properties was
translated into colors ranging from dark blue for the
smalles values to dark red for the highest values. All
properties were scaled across NMs in order to make them
comparable and to avoid overrepresentation of those
properties having larger values in general in the clus-
tering step. The black labels on the left side of the x-axis
correspond to active NMs, the purple ones on the right
side correspond to passive NMs. Comparing both sides
shows that none of the physico-chemical properties alone
is able to seperate active from passive NMs. The den-
drogram shows the similarity of the physico-chemical
properties across all studied NMs. The length of the
branches indicates how closely correlated the properties
are. Shorter branches represent higher similarity and thus
higher correlation.
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backward RFE based on MDA as well as on Gini importance prior to the
actual model building step.

First, we reduced the number of input variables in the model based
on the MDA with re-evaluation. In each step of the RFE, we built a RF,
ranked the input variables according to their MDA, removed the vari-
able with lowest importance and created a new RF based on this re-
duced set of input variables. We then determined the minimal set of
input variables leading to the highest balanced accuracy of the model.

The best model was obtained using zeta potential, dissolution rate
and redox potential. In that case, only two NMs were misclassified
(SiO2_15_Phospho and TiO2 NM-105) leading to a sensitivity of 0.8, a

specificity of 0.83 and a balanced accuracy of 0.82. The empirical fre-
quencies of votes for both classes in the prediction of SiO2_15_Phospho
were almost equal (55% of all votes for ‘active’ and 45% of all votes for
‘passive’) and the difference in the number of correct and incorrect
votes was much smaller than for most other NMs (exceptions:
SiO2_15_unmod and CuPhthalocyanine Green which also had almost
equally many votes for either of the classes, see Table 6). However, in
the case of TiO2 NM-105, the prediction of the incorrect class label is
rather stable (85% of all votes suggested ‘passive’ as the correct class
label). The variable importance for the zeta potential is 20.50 ± 7.11,
for dissolution rate it is 16.49 ± 5.59 and for redox potential it is

Fig. 2. PCA biplot of the first two principle components (PCs). The figure displays the variable loadings of the physico-chemical properties and PC scores of the NMs
across the first two principle components. Values on the x-axis correspond to the scores of each NM as well as to the scaled variable loadings of the physico-chemical
properties in PC1. The y-axis represents the same properties for PC2. The arrows represent the weights of each physico-chemical property in the linear combination of
each of the two principle components. Higher absolute values of these weights indicate higher importance of the property for the associated PC. The lengths of the
arrows relate to the importance of the corresponding properties within the first two PCs with longer arrows representing more important properties. The direction of
the arrow indicates whether the particular property is more important in PC1 (horizontal arrows) or in PC2 (vertical arrows). The location of each of the NMs within
this reduced space is indicated by black labels for active NMs and purple labels for passive NMs.

Table 4
Classification result for the full RF model based. All assessed physico-chemical properties were used as input for the generation of a RF classifier. Internal model
validation was performed using leave-one-out cross-validation. Empirical frequencies are the same for the RF model based on the mean decrease in accuracy and the
mean decrease in Gini importance.

NM True class Predicted Class Empirical frequency of votes for label ‘active’ Empirical frequency of votes for label ‘passive’

SiO2_15_unmod Active Passive 0.34 0.66
SiO2_15_Amino Passive Passive 0.44 0.56
SiO2_15_Phospho Passive Active 0.67 0.33
SiO2_40 Active Active 0.61 0.39
SiO2_7 Active Passive 0.42 0.58
SiO2_7_TMS2 Passive Passive 0.30 0.70
SiO2_7_TMS3 Passive Passive 0.25 0.75
CuPhthalocyanine Blue Passive Passive 0.48 0.52
CuPhthalocyanine Green Passive Active 0.59 0.41
TiO2 NM-105 Active Passive 0.26 0.74
Mn2O3 Active Active 0.57 0.43

A. Bahl, et al. NanoImpact 15 (2019) 100179

7



15.28 ± 3.88. The spatial distribution of NMs across the space spanned
by the three variables is depicted in Fig. 4.

If we use the mean decrease in Gini importance instead of the MDA
to rank the features, the balanced accuracy of the model drops to 0.73
with SiO2_15_unmod being misclassified in addition to the previous two
materials. The empirical frequencies of votes do not improve and the
surface-based ESR measurement with the DMPO spin trap is needed in
addition to the three parameters from the model based on the MDA.
Thus, using the mean decrease of accuracy leads to better results in that
case.

The spatial distribution of NMs across the three variables is depicted
in Fig. 4.

4. Discussion

In this study, we evaluated the performance of an unsupervised
machine learning approach based on a PCA in combination with a kNN
classifier, as well as a supervised strategy based on RFs with and
without feature selection for the prediction of the inhalation toxicity of
eleven NMs. While the prediction performance of the full RF model was
even lower than that of the unsupervised approach, backward RFE prior
to building the final RF model strongly improved the accuracy of the
model leading to improved results compared to those obtained with
PCA. At the same time, our approach allowed to identify the physico-
chemical properties having highest predictivity for the outcome of in-
halation toxicity based on our dataset. For the most powerful approach
of RF with RFE, a systematic removal of the most uninformative
property in each step led to a correct prediction for nine out of eleven
NMs. Zeta potential, redox potential and dissolution rate were thereby
determined to be the best discriminating features.

Overall, zeta potential, redox potential as well as dissolution rate
were among the most powerful predictors in all generated models using
supervised as well as unsupervised approaches. These properties are
also in-line with existing hypotheses.

The zeta potential is a measure for the surface charge of a NM. This
can be regarded as a proxy for the stability of NM dispersions in vitro
and predicts the likelihood of NM interactions as well as interactions of
NMs with other charged molecules like proteins (Liu et al., 2015; Cho
et al., 2012). Therefore, zeta potential plays an important role in NM
agglomeration and the formation of a protein corona. With increasing
absolute values of the zeta potential, the repulsion forces between
particles increase thereby lowering the potential for aggregation
leading to a more stable suspension. This may, for example, improve
cellular uptake and induce stronger biological effects.

The redox potential of a NM is associated with its ability to form
reactive oxygen species (ROS) (Hellack et al., 2017). ROS are known to
react with DNA, proteins, lipids or other cellular compounds and to
damage them or hamper their functionality by inducing conformational
changes. Thus, NMs with a higher redox potential can likely be assumed
to be more active.

The dissolution rate of NMs can potentially affect their toxicity in
different ways. On one hand, fast dissolving NMs produce a high
amount of ions. The toxicological outcome, of course, will depend on
whether these ions are toxic (Cho et al., 2012; Cho et al., 2011). On the
other hand, dissolution also affects the bioavailability and biopersis-
tence of NMs and can thus influence the toxicity of particles indirectly
as well (Utembe et al., 2015).

Fig. 3. Variable importance of each parameter within the full RF model. a)
Mean decrease in accuracy and b) mean decrease in Gini importance are de-
picted for each physico-chemical property. Properties at the top of the plot are
of highest importance in the particular model.

Table 5
Variable importance values in the full RF model. Means and standard deviations
for the mean decrease of accuracy as well as Gini importance values for each
feature are given. Standard deviations result from the leave-one-out cross-va-
lidation in which variable importance was assessed within each RF model and
then averaged across all models.

Physico-chemical
parameter

Mean decrease in
accuracy

Mean decrease in Gini
importance

Dissolution rate 11.83 ± 3.18 0.45 ± 0.12
Zeta potential 9.66 ± 5.28 0.72 ± 0.12
Relative density 6.44 ± 2.25 0.23 ± 0.07
Redox potential 6.00 ± 2.96 0.38 ± 0.09
ESR DMPO (surface-

based)
0.94 ± 3.41 0.39 ± 0.06

Band gap −0.24 ± 4.85 0.23 ± 0.09
ESR CPH (surface-based) −0.54 ± 2.89 0.28 ± 0.05
Hydrodynamic diameter −1.51 ± 4.29 0.30 ± 0.07
ESR CPH (mass-based) −2.19 ± 5.03 0.40 ± 0.13
Surface area −2.41 ± 3.48 0.23 ± 0.06
Isoelectric point −3.65 ± 4.65 0.36 ± 0.09
Primary particle size −4.42 ± 3.32 0.26 ± 0.04
ESR DMPO (mass-based) −6.32 ± 1.73 0.21 ± 0.03
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There are a number of studies that found, at least partially, the same
properties to be important for NM toxicity. Burello (2017) performed a
regression analysis on 43 oxide NMs to relate physico-chemical prop-
erties at the level of neutrophiles in BALF. He identified reactivity,
surface charge, wettability and dissolution rate as the most predictive
properties. This is in accordance with our findings. Cassano et al.
(2016) predicted cytotoxicity assessed with different cell lines for 19
silica particles and found aspect ratio and zeta potential to yield the
most important associations. This is not contradictory to our findings,
because we did not systematically vary the aspect ratio of the particles
in our study. In the publication of Singh and Gupta (2014), zeta po-
tential turned out to be the most important property for linking the

results of an apoptosis assay with 44 NM having different metal cores to
the NM properties. The study of Cho et al. (2012) revealed zeta po-
tential and dissolution as the most important properties influencing
lung inflammation. In addition, Warheit et al. (2007a, 2007b) and
Sayes et al. (2006) have also shown a correlation between high surface
reactivity of NMs and inhalation toxicity. Drew et al. (2017) applied
RFs to predict the potency group for pulmonary toxicity for six NMs and
found zeta potential to be among the most predictive physico-chemical
properties. Our results also confirm the rather generic statement of Arts
et al. (2015) that intrinsic material properties like size or surface area
alone are not sufficient to group NMs for predicting their toxicity.

Comparing the empirical frequencies of the votes, the full model

Table 6
Classification result for the reduced RF model based after backward recursive feature elimination. The input parameters, comprised of the physico-chemical
properties in this case, were reduced in a stepwise manner removing the most unimportant feature in each step. RFs were sequentially built on these reduced sets of
input parameters. The RF with the best balanced accuracy and the minimal number of input features was selected as the final model. Internal model validation was
performed using leave-one-out cross-validation. The best model was obtained with the three physico-chemical properties zeta potential, dissolution rate and redox
potential as input parameters and variable importance being addressed by the mean decrease in accuracy. Results for this model are shown in this table.

NM True class Predicted class Empirical frequency of votes for label ‘active’ Empirical frequency of votes for label ‘passive’

SiO2_15_unmod Active Active 0.56 0.44
SiO2_15_Amino Passive Passive 0.24 0.76
SiO2_15_Phospho Passive Active 0.55 0.45
SiO2_40 Active Active 0.82 0.18
SiO2_7 Active Active 0.74 0.26
SiO2_7_TMS2 Passive Passive 0.13 0.87
SiO2_7_TMS3 Passive Passive 0.20 0.80
CuPhthalocyanine Blue Passive Passive 0.31 0.69
CuPhthalocyanine Green Passive Passive 0.43 0.57
TiO2 NM-105 Active Passive 0.15 0.85
Mn2O3 Active Active 0.81 0.19

Fig. 4. Scatterplot of the input variables of the RF model reduced by recursive feature elimination (RFE). The best RF model after RFE contains only three of the
physico-chemical properties as input properties: zeta potential, redox potential and dissolution rate. Their mean values for each NM are shown here.
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shows very strong preferences for the incorrect group for mis-
classifications of SiO2_15_unmod, SiO2_15_Phospho and TiO2 NM-105.
For the misclassification of SiO2_15_unmod and SiO2_15_Phospho, one
potential reason might be related to the fact that across all physico-
chemical properties these two NMs are very similar (see Supp. Fig. 1).
As for the prediction of the class of SiO2_15_unmod, this NM is left out
in the leave-one-out cross-validation, it probably follows the same paths
down the trees in the RF that SiO2_15_Phospho took in the training step
in many cases. As SiO2_15_Phospho belongs to the opposite category
this will result in a misclassification of SiO2_15_unmod. The same is true
in the other direction as well. In addition, zeta potential is among the
most important properties in the full model. For TiO2 NM-105, all NMs
with a similar zeta potential belong to the passive class (see Supp.
Fig. 1). This might be the major reason for the strong tendency to assign
a passive label to it (and thus to misclassify it). Especially, the high
empirical frequency of the wrong category of TiO2 NM-105 is also re-
tained in the reduced model. This might be due to the fact that the zeta
potential is the most important predictor in that model as well.

Another reason why the model performs very poorly for TiO2 NM-
105 might be that the classifier trained here is highly biased towards
silica-based NM. Thus, the applicability domain might also be limited to
silica-based NMs or materials behaving very similar. Adding more ti-
tania to the training set or in general increasing the range of different
core materials covered, might improve the classification performance
for TiO2 NM-105 (and other underrepresented material classes). This
bias may also have substantial influence on the selection of the most
relevant physico-chemical properties. Using a different set of NMs may
therefore change the set of parameters leading to the best predictive
model. However, this is not a limitation of the method but rather a
limitation due to the fact that only few datasets exist and that those
datasets that do exist are not standardized in the way they assess
physico-chemical properties and/or toxicity and thus cannot easily be
integrated. Independent of which machine learning tool is used, stable
and reliable results for the selection of the most important properties
for NM grouping may only be obtained if models are based on a larger
number of NMs and material classes.

In addition to the limited dataset, unknown in vivo behavior for
some of the NMs is a potential source of error as well. It is possible that
some of the NMs which have not been assessed in vivo so far were as-
signed to the wrong category and thus the assumed ground truth may
actually not reflect the reality completely. In that case, the model
performance and detected most important physico-chemical properties
might change drastically especially as we tested only a very limited
number of NMs here. However, Wiemann et al. showed that there is
quite good agreement between the macrophage assay and STIS results
in general and thus we assume that most NMs are assigned to the
correct category here.

Another important point when building a predictive model is the
representation of the outcome variable. In this approach we used a
binary categorization into active and passive materials. Another possi-
bility would be the representation of the toxicity as a continuous
variable. One commonly used method to obtain a continuous outcome
variable for toxicity data is benchmark dose (BMD) modeling (EPA,
2012). While BMDs might improve the model, we did not use them in
this study as several challenges exist. Most importantly, the BMD ap-
proach was not suitable to compare results obtained for the four assays
performed in the macrophage assay. For these assays, we observed very
different dose responses such that obtained BMDs might not necessarily
be comparable. The dose-response curves thereby deviated in their
shape as well as in the amount of change observed. In addition, in vitro
in vivo correlations of BMDs would also have to be assessed to be able to
compare the results for all NMs.

As mentioned before, another difficulty for reliably linking physico-
chemical properties with toxicity is the fact that many techniques for
measuring physico-chemical properties are not sufficiently adapted and
tested for NMs and thus their results may not be reproducible or

comparable between studies. Also, the best metric for the comparison of
the toxicity effects of NMs is still discussed (Oberdoerster and
Kuhlbusch, 2018). Doses corresponding to the same surface area are
frequently assumed to be of higher relevance when comparing NM ef-
fects. However, so far no final conclusions have been drawn in that
regard. Also, depending on the choice of metric, the most important
physico-chemical properties predicted by the model may vary. De-
pending on whether the outcome variable is represented as a binary or
as a continuous variable and whether a discriminating or a clustering
approach is applied, the link between physico-chemical properties and
toxicity might change as well (Aschberger et al., 2019; Drew et al.,
2017).

In future models, the fact that misclassification of active NMs as
passive is much more costly than vice versa should also be considered.
This is due to the fact, that overlooking and not testing a hazardous NM
may have drastic consequences while this is not true for misclassifying a
passive NM as active and simply testing that NM without necessity.
Thus, adapting the misclassification cost in such a way that the penalty
for misclassifying an active material as passive is much higher than that
for misclassifying a passive NM as active should be included in the
model building process. In RF approaches, this can be achieved in dif-
ferent ways. Usually, weighting the misclassification costs differently
for different classes is based on sampling or thresholding techniques
(Drew et al., 2017) and can be easily included into the approach pre-
sented here.

With respect to the assessment of feature importance, the Gini im-
portance is known to favor predictor variables with more categories
over those with fewer categories (Strobl et al., 2007). Here, we assessed
only continuous variables, such that this is not an issue in the present
study. However, should additional categorical parameters be included
in future models, this fact has to be considered. Variable importance
values retrieved from MDA are more reliable on the one hand, but seem
to overestimate the variable importance in case of highly correlated
variables on the other (Strobl et al., 2008). In the case of NM toxicity
prediction, down voting of highly correlated variables is not proble-
matic, because one just aims to find a minimal set of predictive features
and does not necessarily need all good predictors. Also, RFE has been
shown to decrease issues arising due to highly correlated input vari-
ables (Darst et al., 2018; Gregorutti et al., 2017). For more complex RF
modeling and including more diverse input parameters it might be
necessary to explore more sophisticated methods of measuring variable
importance and performing feature selection as presented by e.g. Strobl
et al. (2007, 2008).

As mentioned earlier, results of the PCA are only reliable if certain
assumptions are fulfilled, e.g. a linear relationship between the prin-
ciple components and the input space, as well as statistically normal
distributed variables. Here, these assumptions have not been assessed in
detail. However, for some of the physico-chemical properties it can
easily be seen that for the limited set of NMs assessed here the as-
sumption of normally distributed values does not hold true. This is the
case for variables like the relative density of the NMs which is the same
for most materials studied here. Also, we cannot exclude the possibility
of non-linear relationships between principle components or higher-
order correlation which may not be resolved by PCA. Thus, results
obtained by the PCA analyses should be handled with care. Instead, the
RF approach does not make such strong assumptions and might thus
lead to more reliable results in that case.

Apart from PCA, one could also apply other methods which are
simpler than RFs but do not rely on strong assumptions like linearity or
normality. One such method that would be able to relate the values of
the physico-chemical properties to the toxicity of the NM is logistic
regression. However, logistic regression has some limitations compared
to RFs: While in RFs the importance of each physico-chemical property
is automatically assessed in the context of all other available properties,
in logistic regression each possible interaction has to be integrated as a
separate term into the regression formula. While this is still possible for
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low-dimensional data, more advanced models will have to include more
potential descriptors from which the most predictive set of features has
to be chosen afterwards. Thus, for high-dimensional data, using logistic
regression is impractical. In that way, RFs are much more flexible
compared to logistic regression. A benchmark study on a large set of
different datasets has also shown better performance of RFs compared
to logistic regression, especially in the case of a large number of input
variables relative to the number of samples (Couronné et al., 2018).
Another advantage of RFs is that categorical input variables, which are
very likely to occur in NM toxicity prediction, can be integrated much
easier than in logistic regression.

Independent of uncertainties in the results, this study was able to
show how machine learning and feature selection strategies can be used
for linking physico-chemical properties of NMs to their toxicity. These
extracted physico-chemical properties may then be used to detect NMs
which are similar in terms of their toxicity effect, i.e. for establishing
grouping with respect to NM hazards. Here, we used a categorization
into active and passive materials in accordance with previous studies
(Wiemann et al., 2016; Landsiedel et al., 2014). However, the predic-
tion algorithm may be extended to the case of multiple class labels or
even continuous outcomes once a larger number of consistent data is
collected. A better understanding of which of the many possible physio-
chemical properties actually drive toxicity will certainly enable the
selection of sufficiently similar NMs to achieve robust grouping. The
properties and models developed in this study should be regarded as a
first basis for how to further develop NM grouping procedures and how
to better understand and interpret similarity between NM variants.
However, further refinement of the models and external validation with
more and different materials will be necessary for obtaining reliable
predictions and resolving the misclassifications presented here. Mul-
tiple improvement strategies will be tested in our future work.

As not all misclassifications have been resolved yet, the predictors
we included in our dataset do not seem to be sufficient to explain the
complete underlying differences in mechanisms of toxicity. Thus, ad-
ditional variables may have to be included in the model building step to
improve the prediction accuracy. Therefore, in future we are planning
to extend our set of input parameters by adding more computed theo-
retical descriptors ( EU US Roadmap Nanoinformatics 2030, 2018; s.r.l.,
K.C., n.d.; SCC, n.d.), as well as descriptors based on protein coronas
and multi-omics data. Furthermore, we are specifically searching for
similar data sets that might be helpful for data integration and external
validation of our model. In addition, we will also include NM de-
scriptors measured in relevant media or bio-fluids.

5. Conclusion

This work aimed to demonstrate how machine learning approaches
can be used to determine sets of physico-chemical properties which are
predictive for certain NM toxicity endpoints. Here, we applied different
machine learning tools to a set of eleven NMs to identify the combi-
nation of physico-chemical properties that is most predictive for in-
halation toxicity within this set. This was done for two different pur-
poses 1) to identify physico-chemical properties that strongly correlate
with toxicity and 2) to propose a reduced set of physico-chemical
properties that will not only facilitate NM grouping but at the same
time may support further research as well.

To achieve this, we assessed the suitability of an unsupervised ap-
proach based on PCA combined with kNN as well as a supervised ap-
proached based on RFs with and without prior feature selection for
predicting NM toxicity. The best performance in terms of balanced
accuracy of the prediction model was obtained with the reduced RF
model after backward RFE. Variable selection based on the MDA led to
equal or better results than Gini importance in all cases. The three most
important features zeta potential, redox potential, and dissolution rate
were among the highest ranking variables in unsupervised as well as
supervised analyses with both the full as well as the reduced model

after RFE.
However, in this study only a very limited set of NMs with a ma-

terial focus on silica NMs was tested. In order to obtain reliable and
generalizable results, the number of studied NMs has to be extended
and a range of different material classes has to be tested. The pre-re-
quisite for this is the standardization of measurements and the im-
provement of predictive assays which allow for meta-analyses of the
results of multiple studies. The incorporation of benchmark materials
like TiO2 NM-105 is very useful in this regard. As so far, test methods
for the analysis of NMs are not standardized, uncertainties with respect
to suitability and reliability of the methods exist. Thus, uncertainties
with respect to data quality are present in NM datasets in general.
Studying benchmark materials allows for comparison with results from
other studies and for estimating the reliability and reproducibility of
applied methods. In addition, TiO2 NM-105 has been used in many
other case studies and can thus be used to compare and integrate da-
tasets from different studies. This forms the basis for developing more
reliable and robust predictive models incorporating a wide range of
core materials and different nanoforms for each material class.

This study should be understood as a proof-of-concept study on how
to use machine learning tools to build predictive models and to detect
physico-chemical properties that are of high importance for NM toxicity
and can be used for NM grouping. With extended datasets, the eva-
luation strategy presented here may add a significant contribution to
understanding how physico-chemical properties of NMs may be linked
to toxicity in future. The study provides valuable insights into which
methods may be applied and further developed to decrease the com-
plexity of input parameters in order to facilitate NM grouping.

Crucial next steps will be the enlargement of datasets and useful
descriptors and external validation of the predicted major descriptors
once reliable models on extended datasets have been built.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.impact.2019.100179.
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A B S T R A C T

Nanomaterials (NMs) can be manufactured in plenty of variants differing in their physicochemical properties.
Functional assays can be highly useful to cope with the enormous variability by supporting prioritization and
categorization. Oxidative potential (OP) seems to be in particular important in this context and different assays
are available. However, their reliability and predictivity are not well-characterized.
This study compares four different test methods for measuring NM OP. Reactive oxygen species (ROS) gen-

eration was measured on a set of 35 different materials, all extensively characterized with respect to physico-
chemical properties and most of them with respect to toxicity. Different acellular assays were applied, namely
electron spin resonance (ESR) spectroscopy using CPH spin probe and DMPO spin trap, and the ferric reduction
ability of serum (FRAS) assay. In addition, protein carbonylation as a marker for oxidative protein damage was
analyzed in NRK-52E cells. All assays were assessed individually for their predictivity compared to established
toxicological endpoints. We also aimed to identify the optimal assay combination using multivariate logistic
regression and other statistical measures.
BET surface area-based doses were more suitable to relate surface reactivity to toxicity. In addition, nor-

malization to the deposited dose was advantageous for cellular assays as it improved the predictivity for in vitro
as well as in vivo toxicity. The carbonylation assay, potentially in combination with ESR (DMPO spin trap) or
FRAS assay, led to the best predictive performance.
In summary, we propose a testing strategy for NM OP and demonstrated the applicability in an extended case

study on 35 materials. This work is an important contribution towards reliable grouping and testing strategies
for NMs.

1. Introduction

Nanomaterials (NMs) can be produced from different chemical sub-
stances and their physicochemical properties can be precisely fine-tuned to
meet specific functional needs. This results in a theoretically unlimited
number of NM variants, differing in physicochemical properties such as
size, shape or surface chemistry. Hence, they may also show different tox-
icological profiles rendering hazard and risk assessment time and resource
intense. Grouping and read-across are powerful tools to reduce the amount
of necessary experimental testing and thus gained huge interest in the last

decade (ECHA, 2008; OECD, 2014). NMs with similar physicochemical and
toxicological properties can be assessed as a group. Within an established
group available data from data-rich source materials can be used to predict
properties and/or toxicities of data-poor target materials. Within a group,
comparisons to known benchmark materials can be used as a powerful
approach to reduce the uncertainty related to health risks of innovative,
new materials. In addition, such approaches are also useful for safety as-
sessment of well-established materials such as fillers and pigments that are
produced in megaton quantities in many different (nano-)forms
(l'Environment Md, 2015; Wohlleben et al., 2017).
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Several frameworks for NM grouping have already been proposed
such as the approach developed by the US-Canada Regulatory
Cooperation Council (RCC RCC, 2003), the DF4NanoGrouping frame-
work (Arts et al., 2015), the MARINA grouping and read across ap-
proach (Oomen et al., 2015) and others, as summarized in several re-
view articles (Giusti et al., 2019; Oomen et al., 2018). Almost every NM
grouping framework acknowledges surface reactivity as a central
parameter (Arts et al., 2015; Oomen et al., 2018; Arts et al., 2014; Arts
et al., 2016; Braakhuis et al., 2014; Collier et al., 2015; Kuempel et al.,
2012; Nel et al., 2013). The underlying idea is that intrinsic factors like
shape, size, coating, composition, crystallinity, impurities, etc. may
modulate the surface reactivity and thus account for differences in the
toxicological potency between different (nano-)forms of a substance. As
the relationship between intrinsic physicochemical properties and sur-
face reactivity is not trivial and hardly can be predicted, the measure-
ment of surface reactivity is a good starting point to be implemented in
grouping and categorization frameworks. A high surface reactivity is
assumed to cause the generation of high quantities of reactive oxygen
species (ROS) that may then lead to non-selective oxidation of biomo-
lecules, to oxidative cell damage and to oxidative stress (Sies, 2015;
Stone et al., 2007; Xia et al., 2007). NMs can produce ROS by different
mechanisms. Fenton-like reactions leading to the generation of hy-
droxyl radicals are among the most common ones. Other relevant me-
chanisms are catalytic processes at the NM surface or radical produc-
tion via dissolved (metal) ions (Driessen et al., 2015; He et al., 2014).
ROS can be divided into two classes of molecules. The first type com-
prises very reactive and thus short-lived species, such as singlet oxygen
or free radicals (e.g. superoxide or hydroxyl radicals). They can only
reach nearby cellular targets and interact with them. In addition, there
are more stable and long-lived species (such as hydrogen peroxide),
which can thus also affect distant targets (Hellack et al., 2017a).
The imbalance between ROS generation and ROS detoxification

leads to elevated ROS levels within cells and is called oxidative stress.
This can induce various adverse outcomes such as cytotoxicity, geno-
toxicity or inflammation (Unfried et al., 2007; Marano et al., 2011;
Lanone et al., 2009; Halliwell and Whiteman, 2004; Fu et al., 2014;
Borm and Müller-Schulte, 2006). Most of these responses are triggered
by alterations in cellular pathways and/or by oxidative damage of
biomolecules like proteins, lipids or DNA (Nel et al., 2013; Xia et al.,
2007; Driessen et al., 2015; Hellack et al., 2017a). Proteins are the most
common targets for cellular ROS. It has been estimated that up to 70%
of all ROS finally end up as direct or indirect protein adducts (Davies,
2005; Dalle-Donne et al., 2006). Many different NMs are able to induce
oxidative stress (He et al., 2014).
The term ROS comprises different short-lived radicals and mole-

cular species. It is neither efficient nor straightforward to detect all of
them, even if this would allow for important insights into the under-
lying mode of action (MoA). The measurements are in particular diffi-
cult in dynamic biological environments (He et al., 2014). Accordingly,
functional assays are useful to determine the production of specific ROS
and of specific consequences of oxidative stress. In order to obtain re-
liable results, the outcomes of different assays have to be compared and
potentially combined to form one parameter, referred to herein as the
oxidative potential (OP). The OP as obtained from individual or com-
bined assays should then be correlated to the outcomes of different in
vivo and in vitro toxicity assays to assess the predictive power of surface
reactivity for the specific toxicological endpoint.
Electron spin resonance (ESR) spectroscopy allows qualitative

identification and quantitative measurements of free radical species in
acellular and cellular environments. It measures the transitions be-
tween electron spin states of paramagnetic molecules and it can thus be
used to study species with at least one unpaired electron. The ESR
spectrum is specific for each radical and its intensity is proportional to
the amount of radicals. Two main challenges affect ROS detection: their
high reactivity (and thus short life time), and their very low con-
centrations (He et al., 2014). Therefore, one usually uses spin probes/

labels which react with non-radical ROS to make them visible by ESR or
spin traps to stabilize the free short-living radicals. In the current study,
the spin probe CPH (1-hydroxy-3-carboxy-pyrrolidine) (Hellack et al.,
2017b) and the spin trap DMPO (5,5-dimethylpyrroline N-oxide) (Shi
et al., 2003) were used. CPH is able to react mainly with singlet oxygen,
superoxide radicals and peroxynitrite to give the stable nitroxide ra-
dical 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl, which then can
be detected by ESR spectroscopy (He et al., 2014). DMPO is a nitrone
spin trap that can trap mainly hydroxyl and superoxide radicals. The
advantage of ESR is that one gets very detailed insights into the de-
tected ROS species. However, special equipment is needed, which is not
available in most laboratories.
Ferric reduction ability of serum (FRAS) assay measures ROS for-

mation in human blood serum (HBS). Thus, it uses a biologically re-
levant medium. The FRAS assay is a more indirect read-out of ROS
generation, measuring the total antioxidant depletion in HBS. The
surface reactivity is derived from the ability of the NM-preincubated
HBS to reduce Fe3+ to Fe2+ detected by a color change of the solution.
The FRAS assay is able to differentiate between NMs at the lower end of
the reactivity scale with higher sensitivity compared to ESR (Gandon
et al., 2017). It detects a broad range of ROS species at once.
Differently to acellular ESR and FRAS, the measurement of protein

carbonylation is a cell-based assay, which measures an important and
widely assessed biomarker for protein oxidation (Stadtman, 2006).
Protein carbonylation is an irreversible post-translational modification,
often related to a loss or a decrease of protein function (Driessen et al.,
2015). Carbonylated proteins accumulate in cells under oxidative stress
conditions and are associated with several human diseases (Dalle-
Donne et al., 2003) such as neurodegenerative diseases (for example
Alzheimer's or Parkinson's diseases (Smith et al., 1991; Uttara et al.,
2009)), diabetes (Telci et al., 2000), chronic lung diseases or with
natural processes, such as aging (Rudzińska et al., 2020). The mea-
surement of the amount of protein carbonylation induced in cells as a
consequence of NM exposure is considered as an indirect measure of
ROS production (Hellack et al., 2017a). The assay exploits the specific
derivatization of the carbonyl moieties with dinitrophenylhydrazine.
The resulting dinitrophenylhydrazone is then revealed using an im-
munoassay (Giusti and Haase, 2020). While cellular assays are assumed
to be of higher biological relevance, they are more difficult to stan-
dardize and they are affected by biological variability. In addition, they
do not represent an intrinsic property of the NM but instead are highly
dependent on the cell line and the cell culture conditions.
Several studies already suggested combining multiple assays for

measuring NM OP and/or oxidative stress. Riebeling et al. (2016) de-
scribed a tiered approach in which first an acellular assay like ESR or
FRAS should be performed (tier 1) followed by an in vitro assay, e.g.
protein carbonylation (tier 2) and, in the last step, an approach giving
more mechanistic insights, e.g. mass spectrometry of carbonylated
proteins and analysis of regulation of the pathways they belong to (tier
3). Similarly, Hellack et al. (2017a) suggested using acellular assays like
ESR or FRAS assays, which might then be accompanied by cellular
assays for complementary read-outs and omics approaches for other
oxidative stress independent responses as well as additional evidence
for false positive and false negative results. While the last step of me-
chanistic insights is not further evaluated in this study, we assessed the
suitability of different acellular and cellular assays for relating OP to
toxicity outcomes using a larger number of materials. In total 35 dif-
ferent materials were included in this study, all of which are extensively
characterized with respect to their physicochemical properties. More-
over, most of the materials also have been well-characterized for their
toxicological profiles in vivo and/or in vitro (Wiemann et al., 2016).
The surface reactivity of NMs is a strong candidate to contribute to

adverse reactions in lung tissue. A high surface reactivity is assumed to
cause the generation of high quantities of reactive oxygen species
(ROS), which may then lead to non-selective oxidation of biomolecules,
thus to oxidative cell damage and eventually to oxidative stress and
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inflammation. Therefore, the results from the above mentioned four
tests (that is ESR with CPH spin probe or DMPO spin trap, FRAS assay,
carbonylation assay) were correlated with the results of the short-term
inhalation studies (STIS), a method which describes multiple kinds of
acute adverse effects of inhaled particles on the lung and which dif-
ferentiates between active and passive NM. Another correlation was
made with in vitro data from the alveolar macrophage test. This strategy
was chosen for three reasons.
Firstly, NM inhalation is considered the exposure route of the

highest concern. Accordingly, we built our study on data describing the
lung toxicity of NMs following inhalation. Secondly, numerous STIS
results up to now provide the largest pool of reliable inhalation toxicity
data all of which were obtained under the conditions of good laboratory
practice (GLP). In these inhalation studies all types of adverse reactions
evident from BALF data, lung histopathology, and also gross biopsies
are routinely considered. According to the evaluation routines of STIS a
NM is considered as to be “active” if a particle concentration of< 10
mg per m3 (administered for 5 days, nose only inhalation exposure,
21 days follow up) leads to any significant adverse effects. These may
include all signs of inflammation, granuloma formation, beginning fi-
brosis, or other pathological findings. A high oxidative potential of a
NM may directly or indirectly contribute to this panel of adverse re-
actions and, therefore, was correlated with the STIS data. Thirdly, the
alveolar macrophage assay based on NR8383 cells, as an in vitro test,
has a considerable potential to predict the results obtained with STIS.
Accordingly, the assay is increasingly being used as a simple tool to
differentiate between active and passive NMs. Since not only in-
flammation but also a damage of the macrophage population and local
H2O2 production (e.g. via DNA adduct formation) may lead to a damage
to the lung epithelium, the macrophage assay tests for (1.) particle-
induced cytotoxicity (via LDH release), (2.) activation (glucuronidase
release), (3.) cell-mediated oxidative properties of NMs (H2O2 release),
and (4.) pro-inflammatory properties (release of TNF-α). The cellular
particle dose used in this assay, under ideal conditions (i.e. complete
gravitational settling), overlaps with the macrophage loading in STIS,
which facilitates the interpretation of results. Nevertheless, evaluation
and interpretation of the four single results and especially the sub-
sequent active/passive classification of NM (in analogy to STIS), de-
manded the introduction of a surface-based threshold value, and also of
a 2-out-of-4 criterion. As outlined and explained in detail by Wiemann
et al. (2016), this is an empiric and also pragmatic in vitro approach.
However, it reduced the number of false positives, excluded false ne-
gatives, and resulted in a 95% accuracy in predicting the active/passive
categorization derived from the well-established animal inhalation ex-
periments. Due to its predictive properties we used the active/passive
allocation of the macrophage assay in parallel to STIS results and ex-
plored possible correlations with the oxidative potential of NMs mea-
sured by ESR, FRAS and carbonylation.
In order to consider the influence of NM properties on the specific

assays, we selected several materials of different chemical compositions
and different variants (e.g. size, shape, crystallinity, surface chemistry)
of the same chemical composition. We ranked and compared the NM
variants of the same chemical composition according to their OP and
also compared results over a wider range of materials. Our study further
justifies the proposal of positive and negative benchmark materials for
surface reactivity, which are of fundamental importance for the de-
velopment of reliable and accepted test methods.

2. Materials and methods

2.1. (Nano-) materials

We studied several materials including nano- and non-nanomater-
ials of in total twelve different material classes. These were different
variants of silica, aluminosilicates, iron oxides, titania, ceria, zinc
oxides, diketopyrrolopyrrol pigments, carbon-, copper- and wolfram-

based materials. In addition, manganese oxide and barium sulfate were
included as positive (Arts et al., 2015; Arts et al., 2016) and negative
(Arts et al., 2015; Arts et al., 2016; Buesen et al., 2014; Landsiedel et al.,
2014) benchmarks, respectively. An overview of all materials, including
the supplier information and a summary of the most important physi-
cochemical properties is given in Table 1. For a more complete over-
view see Wohlleben et al. (2019) and Maser et al. (2015). Please notice
that Cu-Phthalocyanine non-halogenated is called Pigment Blue in
Wiemann et al. (2016). The NMs were obtained from different sup-
pliers, which are listed in Supplementary Table 1a.

2.2. Material dispersion

Unless otherwise noted, all materials were dispersed following a
SOP jointly developed by the projects nanoGRAVUR and NanoToxClass
based on cup horn sonication (https://www.nanopartikel.info/files/
projekte/NanoToxClass/NanoToxClass-SOP_Dispersion_by_cup_horn_
sonication_V2.0.pdf). In brief, a final power of 6 W was applied. Stock
solutions of hydrophilic NMs were generated with a concentration of
0.5 mg/ml in water or in cell culture medium (DMEM w/o phenol red
and L-glutamine, high glucose, PAN Biotech GmbH supplemented with
2 mM L-glutamine, 0.1 mg/ml penicilline/streptomycine, 25 mM hepes
buffer) without serum. For assessing protein carbonylation, the stock
solutions were diluted to the final concentrations using DMEM medium
supplemented with 10% non-heat inactivated fetal calf serum (FBS
Good from PAN Biotech). In the case of the two CuPhthalo NMs,
100 μg/ml Pluronic was added in order to obtain a better dispersion.

2.3. Material characterization

2.4. Analytical ultracentrifugation

Analytical ultracentrifugation was used to determine the amount of
material deposited to the bottom of a cell dish. These values were used
to normalize the values of the protein carbonylation assay.
By synchronizing an optical detection system to the centrifugal

frequency, analytical ultracentrifugation can track colloids during their
settling under increased gravitational acceleration. The sample pre-
paration at a concentration of 0.5 mg/ml in DMEM with 10% FCS was
identical to the preparation for the protein carbonylation assay. Here
we used Beckman XLI machines and evaluated the distribution of se-
dimentation coefficients by the SedFit v15 software. The distribution of
sedimentation coefficients can be simply integrated over the dose that is
deposited by sedimentation during incubation (Sauer et al., 2015). This
approach to dosimetry neglects transport by diffusion, which may in-
crease the deposited dose above the predicted level especially for the
colloidal SiO2 materials (Sauer et al., 2015). However, the approach has
the advantage that for evaluation one does not need to know the ef-
fective density but inherently incorporates the modulation of sedi-
mentation behavior due to protein corona and agglomeration and even
distributions thereof which is not possible in modeling approaches
(DeLoid et al., 2014).

2.5. Assays for determination of OP

2.5.1. Electron spin resonance (ESR) spectroscopy
All measurements were performed in deionized water (dH2O) using

the spin probe 1-hydroxy-3-carboxy-pyrrolidine (CPH) (Hellack et al.,
2017b) or the spin trap5,5-dimethylpyrroline N-oxide (DMPO) (Shi
et al., 2003). CPH is able to react with singlet oxygen, superoxide ra-
dicals and peroxynitrite to the stable nitroxide radical 3-carboxy-
2,2,5,5-tetramethylpyrrolidine 1-oxyl (He et al., 2014). DMPO is a ni-
trone spin trap that can trap hydroxyl and superoxide radicals. Surface
reactivity values were obtained as the ratio of radical formation with
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and without the NM. CPH was used in PBS in the presence of the
chelator desferroxamine (DFO, 0.1 mM) to prevent transition metal-
induced reactions (Driessen et al., 2015) and incubated for 10 min at
37 °C before measurements. DMPO was mixed with PBS and H2O2 to
induce Fenton-like reactions and incubated for 15 min at 37 °C in a
shaking water bath in the dark before measurements. ESR measure-
ments were performed on a ESR 300spectrometer MiniScope (Mag-
nettech, Berlin, Germany) at room temperature (RT) with the following
settings: magnetic field 3365 G, sweep width 100 G, scan time 30 s,
number of scans 3, modulation amplitude 1.975 G, and receiver gain
1000 (Hellack et al., 2017b).
ESR measurements were performed with same mass concentration

for all NMs (CPH: 0.5 mg/ml and DMPO: 0.25 mg/ml) as well as with
same BET surface area for all NMs (1 m2/ml, exception: NM-110 and
NM-600: 0.5 m2/g (results extrapolated to 1 m2/g)).

2.5.2. FRAS
In the current study, the multi-dose protocol of the FRAS assay

presented in Gandon et al. (2017) is used as it was shown to be much
more sensitive especially for small to medium responses and details can
be found there. In brief, NMs are added to human blood serum (HBS)
and removed by centrifugation after 90 min of incubation. A solution
containing Fe3+ is then added to the HBS. After incubation, the amount
of reduction from Fe3+ (transparent) to Fe2+ (blue) is detected

optically in terms of color change (absorbance at 593 nm). The darker
the blue color detected in this process, the more antioxidant species are
used which is (at least partly) caused by ROS scavenging. This usage of
antioxidant species is measured as the biological oxidative damage
(BOD) and is expressed in Trolox equivalent units (TEU). Trolox, a
water-soluble analog of vitamin E, is used for calibration of the ab-
sorption signal.
The FRAS assay was performed with uniform mass doses with five

different concentrations over all NMs (0.75, 2, 5.5,15 and 40 mg/ml) as
well as with same BET surface area doses for each NM (1 m2/ml). The
data analysis was then performed as described in Section 2.8.

2.5.3. Protein carbonylation
In the current study, protein carbonylation is quantified similarly to

what was described in Driessen et al. (2015), following the procedure in
Giusti and Haase (2020). NMs were tested at final concentrations of 10, 25
and 50 μg/ml in NRK-52E cell cultures (obtained from DSMZ, German
collection of microorganisms and cell cultures). Cells were seeded in 6-well
plates at a density of 0.15 × 106 cells/well. After a settling time of 24 h,
cells were incubated with NMs for another 6 h and then lysed with modified
RIPA buffer. Protein concentrations were measured using a Bradford assay
according to manufacturer instructions. Protein carbonyls were assessed
using the Oxiblot® kit (Millipore), which uses the derivatization reagent 2,4-
dinitrophenylhydrazine (DNPH). DNPH reacts with the carbonyl groups and

Table 1
Overview of tested materials including key physicochemical properties (Wohlleben et al., 2019). “ns” indicates that the result was not significant against the limit of
detection. *data from JRC (2013).

Class Material Primary particle
size (TEM/SEM
mean diameter)
(nm)

Specific
surface area
(BET) [m2/
g]

Surface charge
(zeta potential)
at pH 7 (mV)

Hydrophobicity
(water contact angle)

Solubility in water
(OECD screening
LoD or value, metal
ion) (ppm)

Dissolution rate in
relevant human
medium (lysosomal
dissolution rate k) [ng/
cm2/h]

Silica SiO2_15_unmod
SiO2_15_Amino
SiO2_15_Phospho
SiO2 NM-200*
SiO2 NM-203
SiO2Levasil 50
SiO2Levasil 100
SiO2Levasil 300
SiO2Aerosil 200

15
15
15
50
26.2
55
30
15
9

200
200
200
189
213
50
100
200
300

−39
0
−43
−45
−24
−39

−32.7

0
0
0

44

27
13
12

56

0.2
0.27
0.45

0.4

Aluminosilicates Kaolin
Bentonite
DQ12 (Quartz)

279
1362

24
52

−53
−31

10
10

0.8
0.1

1.3
0.65

Iron oxides Fe2O3nanoform A
Fe2O3nanoform B
Fe2O3larger

12
37
48

107
30
12

−27
18
−55

10
10
10

ns
ns
ns

0.04
0.04
0.1

Titania TiO2 NM-102
TiO2 NM-105
TiO2 non-nano

34.8
21
204

80
51
15

−33
−17
36

10
60
10

ns
ns
ns

0
0.013
0

Ceria CeO2 NM-211
CeO2 NM-212

15
40

66
27

−24
15

10
60

0.1
0.1

0.14
0.06

Copper-based CuO
Cu-Phthalocyanine
non-halogenated
Cu-Phthalocyanine
halogenated

24
17
39

34
53
69

−34
−11
−38

10
138
163

97
ns
ns

283
0.76
0.42

Zinc oxides ZnO NM-110
ZnO NM-111

42
80

12
14

30
−25

10
152

3.6
3.3

204
177

Diketopyrrolopyrrol
pigments

DPP_premixed
DPP nano
DPP non-nano

400
43
233

17
94
16

−30.4
−16
−41

103
135
136

Carbon-based Carbon black
Graphene oxide
Graphene 1-layer
Graphene multilayer

56.5

559
17.6

−16.5
−16.2
−45.4
−40.7

148

93
79

Tungsten-based WS2 100 −49.2
Manganese-based Mn2O3 (pos. control) 36 20 −5 0.2 2
Barium-based BaSO4 NM-220 (neg.

control)
32 41 −37 10 6 10

A. Bahl, et al. NanoImpact 19 (2020) 100234

4



is transformed to 2,4-dinitrophenylhydrazones which can be detected with
specific antibodies (Riebeling et al., 2016). Protein carbonyls were assessed
here using a Dot Blot technique, which permits to assess the signal of
protein carbonylation and to normalize it to the total deposited protein
determined by Colloidal Gold Total Protein Stain (Bio-Rad). The results are
expressed as fold increase in comparison to untreated cells. Semi-quantifi-
cation relative to a negative control (signal from untreated cells) was per-
formed using Image Lab™ software (Bio-Rad) with a global background
subtraction. For each NM, carbonylation of three independent biological
replicates was measured.
Protein carbonylation measurements were only performed with

uniform masses (10, 25 and 50 μg/ml) tested for each NM. In the
protein carbonylation assay, three different concentrations of NMs were
applied to the cells (Supplementary Fig. 1). For comparison to the other
assays, we only considered data obtained for the medium dose as these
already reveal differences between the different NMs while still keeping
cytotoxicity at an acceptable level. Uniform surface values were not
measured but instead calculated by normalizing to 1 m2/ml BET surface
using the formula

=value for 1 m
ml

obtained value

applied concentration BET

2

g
ml

m
g

2

with obtained values being those from the medium applied dose.

2.6. Toxicity data and molecular descriptors

Most of the materials used here have already been well character-
ized with respect to their toxicity with results from in vitro macrophage
assay and in vivo short-term inhalation studies (STIS) being available
(Wiemann et al., 2016; Landsiedel et al., 2014; Wiemann et al., 2018).
In vitro toxicity data were obtained using published and well-estab-
lished standard operating procedures (SOPs). In vivo data were obtained
under the conditions of good laboratory practice (GLP). The results of
these studies were compared against those of the four reactivity assays
performed here.

In vitro categories were obtained from Wiemann et al. (2016). Here,
four different assays are performed with the supernatants from particle-
exposed NR8383 rat alveolar macrophages, namely LDH, ROS, TNF-α
and glucuronidase. Different doses of NMs between 22.5 and 180 μg/ml
are tested. NMs are considered as being active if for at least two assays
the LOAEC (Lowest Observable Adverse Effect Concentration) is
reached at a particle surface concentration < 6000 mm2/ml, and
otherwise as passive. As explained in Wiemann et al. (2016) the
threshold of 6000 mm2/ml was derived from 4000 μm2/NR8383 cell,
which would approximately correspond to 0.04–0.08 m2 per rat lung or
0.04–0.08 m2/g lung tissue, and which is in line with previous esti-
mations of lung overload for TiO2 and BaSO4 NMs in rats. A total of 28
NMs under consideration in the current study have been studied in the
macrophage assay; 14 of them were assessed in all surface reactivity
assays and are used for comparisons in the regression models.
In addition, 15 of the NMs under study were tested in in vivo STIS

(Arts et al., 2016; Landsiedel et al., 2014; Keller et al., 2014; Ma-Hock
et al., 2009). Rats were exposed to aerosols of different NM con-
centrations ranging from 0.5 to 50 mg/m3 for 6 h/day on five con-
secutive days. Rats were sacrificed between 3 and 21 days after the end
of exposure. Blood samples, bronchoalveolar lavage fluid (BALF) and
histopathological sections from different parts of the respiratory tract
were analyzed. Based on the combination of all these analyses, a
common NOAEC (No Observable Adverse Effect Concentration) was
assigned to each NM. This NOAEC represents the NM concentration at
which no effects were observed in any of the analyses. In accordance
with the categorization used in Wiemann et al. (2016), NMs were
considered as active if the NOAEC is< 10 mg/m3, otherwise they are
considered as passive.
In a last step, reactivity data was integrated with the calculated

descriptor LUMO (Lowest Unoccupied Molecular Orbital). The energy
level of the LUMO describes the electron affinity of the NM and is re-
lated to its surface redox activity. Thus, a high correlation between the
energy of the LUMO and the surface reactivity, especially the ESR re-
sults, which directly measure ROS formation of the NMs, may be ex-
pected. Data on the LUMO energy is taken from Gajewicz et al. (2018).

2.7. Deposited dose

A key factor for comparability of results for different NMs in cellular
assays with adhesive cells is the effective dose. NMs sediment to the
bottom of the cell culture dishes over time. However, the speed of this
sedimentation differs between NMs depending on their physicochem-
ical properties, mainly density and state of agglomeration. The amount
of NMs actually deposited at the time of performing the assay is critical
for evaluating the toxicity of the NM. In this study, the deposited dose
was directly measured by analytical ultracentrifugation. Measurements
were performed after 6 h of incubation at a concentration of 0.5 mg/ml.

2.8. Analysis and statistics

First, we addressed the question whether to compare NM responses
based on same mass-based doses or based on same BET surface area
doses. Therefore, results of assays for which multiple concentrations of
NMs were assessed, were converted into a single value. For uniform
mass FRAS data, four-parameter log-logistic dose-response models were
fitted and the area under the curve (AUC) was computed. This value
was used in subsequent analyses. For protein carbonylation, three dif-
ferent concentrations were used. We decided to use the medium con-
centration of 25 μg/ml in downstream analyses as for the highest
concentration some materials show cytotoxic effects already while for
the lowest concentration only very slight differences in the carbonyla-
tion is observable across the NMs. For all other assays and metrics, only
single doses were tested.
We then split the NMs into active and passive materials based on

their categorization with respect to the macrophage assay as well as
STIS results. The distributions of values within these two groups were
compared to each other for each assay using both dose metrics. For the
protein carbonylation assay, the values were normalized to the de-
posited dose in addition.
Assays were then compared with regards to their similarity across

the tested NMs. Heatmaps were drawn for scaled data and hierarchical
clustering was performed using a complete linkage setting on Euclidean
distances. Concordance in rankings of NMs between different assays
was assessed using Spearman correlation. We chose Spearman corre-
lation as the considered data was skewed and we do not necessarily
expect a linear relationship between assays. In an additional step, we
also compared NMs within well-studied material classes to get more
detailed insights into rankings and assay comparisons.
In addition, univariate and multivariate logistic regression models were

fit using the R packages glm and brglm. The dependent variable was
comprised of in vitro or in vivo categories as described above. Each NM was
assigned a label ‘active’ or ‘passive’. The active class was chosen as the
positive class. Dependent variables were used in a surface-based manner
with normalization to the deposited dose in case of the carbonylation assay.
First, all univariate regression models were fit and their performance was
evaluated using the Akaike Information Criterion (AIC) where smaller va-
lues indicate a better model fit. In order to account for small sample biases
and the problem of complete separation, Firth's bias reduction was per-
formed. The regression models were then used to predict the classes of each
NM and the predictive performance of the models was assessed in a leave-
one-out cross-validation (LOOCV).
In a last step, we also compared the results obtained by ESR to

computed molecular descriptors (LUMO) from the literature to assess
whether this might be a useful theoretical descriptor for NM grouping
describing the reactivity of NMs.
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All computations and visualizations were performed with R and
Bioconductor. Codes are available on github under AileenBahl/
logRegReactivity.

3. Results

3.1. Reactivity data

Within this study, we investigated the OP of various different materials
using four different assays. We assessed how useful these assays are for the
purpose of NM ranking and categorization. To that end, we included 35
well-characterized materials of twelve different chemical classes, com-
prising of nano- and non-nano materials (see Table 1). The OP was assessed
using electron spin resonance (ESR) spectroscopy using CPH spin probe and
DMPO spin trap, ferric reduction ability of serum (FRAS) assay and a cell-
based protein carbonylation assay. NMs were applied with same mass doses
(all assays) as well as same surface doses (only acellular assays). For the
cellular carbonylation assay, obtained values were normalized to the de-
posited dose as measured by analytical ultracentrifugation in addition. It is
worth noting, that Pluronic was also tested in the carbonylation assay to
exclude any influence on the assay (data not shown). The values across all
assays and metrics are shown in Table 2a (mass-based) and Table 2b
(surface-based) and in more detail in Supplementary Table 1a and 1b. Data
availability is summarized in Supplementary Table 2.

3.2. Correlation of surface reactivity assay results with available toxicity
data

First, we addressed the question of the most suitable metric to ob-
tain useful descriptors of the OP for NM categorization. To that end we
compared data from same mass doses with those from same surface
doses. The NMs were categorized into active and passive materials
(Table 3) using previous categorizations based on the macrophage assay
(Wiemann et al., 2016) and (if available) STIS (Landsiedel et al., 2014).
Wiemann et al. (2016) assessed in vitro toxicity of most NMs used in

this study in the rat alveolar macrophage lung cell line NR8383. The
macrophage assay combines four different endpoints: LDH, ROS by
H2O2 production, TNF-α and glucuronidase. If at least two of these
assays give positive results, the NM is considered to be active. The
outcome of the macrophage assay across all NMs is shown in Table 3.
Next, for each OP assay, the distribution of the values within the active
and the passive group of materials as assessed by the macrophage assay
is depicted in the boxplots in Fig. 1. Regardless of the assay and metric,
the NMs that are active in the macrophage assay, show a tendency for
elevated mean values compared to those in the passive group. In ESR
with CPH and DMPO, NMs with low and high reactivity appear in both,
the active and the passive group. However, especially for the CPH
probe, the mean values of both groups are very far apart and thus a
clear tendency for higher values in the active group is visible. In the

Table 2a
Mass-based values obtained from the four OP assays.

Class Material ESR
(CPH)
[Ratio sample/blank
at 0.5 mg/ml]

ESR
(DMPO)
[Ratio sample/blank
at 0.25 mg/ml]

FRAS
[AUC]

Carbonyls
[Ratio sample/control
at 25 μg/ml]

Carbonyls [Ratio sample/control at
25 μg/ml] (normalized)

Silica SiO2_15_unmod
SiO2_15_Amino
SiO2_15_Phospho
SiO2 NM-200
SiO2 NM-203
SiO2Levasil 50
SiO2Levasil 100
SiO2Levasil 300
SiO2Aerosil 200

0.82
0.92
1.21

0.92

0.97
0.97
0.83

0.84

890,786
1,300,879
1,288,551

718,407

1.73
1.38
0.58
0.97
1.05

86.25
3.06
3.19

2.92

Alumino-silicates Kaolin
Bentonite
DQ12 (Quartz)

1.60 0.99 503,136
2,915,633
93,404

1.65
1.36

3.06
7.17

Iron oxides Fe2O3nanoform A
Fe2O3nanoform B
Fe2O3larger

0.51
0.82
13.86

0.75
1.13
4.33

3,220,889
150,508
357,083

4.29
1.8
2.51

4.52
2.54
2.79

Titania TiO2 NM-102
TiO2 NM-105
TiO2 non-nano

0.63
0.69
0.94

0.88
1.01
0.91

829,911
677,867
257,420

1.48 3.1

Ceria CeO2 NM-211
CeO2 NM-212

1.80
1.42

1.28
2.07

837,353
570,057

Copper-based CuO
Cu-Phthalocyanine
non-halogenated
Cu-Phthalocyanine
halogenated

178.12
1.22

1.03

21.21
1.71

0.67

10,293,942
408,695

734,588

10.74
0.66

0.81

12.78
1.04

1.11

Zinc oxides ZnO NM-110
ZnO NM-111

1.51 2.20 2,898,432
1,069,431

2.53
1.89

4.76

Diketo-pyrrolo-
pyrrolPigments

DPP_premixed
DPP nano
DPP non-nano

0.88
0.84
0.82

0.77
0.77
1.06

−337,683
92,638
52,079

0.77
0.41
1.43

Carbon-based Carbon black
Graphene oxide
Graphene 1-layer
Graphene
Multilayer

1.21

10.22
2.42

0.98

0.75
1.15

2,100,127

516,294
2,018,319

1.33
0.57

Tungsten-based WS2 0.71 1.22 674,129
Manganese-based Mn2O3

(pos. control)
16.79 2.27 9,525,211 2.48

Barium-based BaSO4NM-220
(neg. control)

6232 1.14 1.43
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FRAS assay, NMs in both boxes overlap at the lower end of the plot and
thus, NMs with low surface reactivities appear in both, the active and
the passive group. However, materials with high reactivity in the FRAS
assay only appear in the active group. For the protein carbonylation
assay, the overlap between the distributions is higher in the high ac-
tivity range. NMs with very low reactivity values in the carbonylation
assay only appear in the passive group. To take into account that only
the fraction of NMs depositing at the bottom of the wells contributes to
the cells exposure, we normalized the data to deposited doses calcu-
lated by using the distribution of sedimentation coefficients measured
by analytical ultracentrifugation. A consequence of the normalization
to the deposited dose is a more pronounced separation between the
active and the passive group. Statistical differences between values for
active and passive materials can be observed for ESR with DMPO in the
mass-based analysis as well as for protein carbonylation after normal-
ization for the surface-based analysis (Wilcoxon p < 0.05). However,
in the case of the mass-based ESR with DMPO, most sample-to-blank
ratios are close to 1 and thus these results may not be reliable. Overall,
the use of a surface-based dose metric has as a consequence an in-
creased separation between active and passive NMs.
In the same way, available in vivo data from STIS were compared to

results of the current study (Fig. 2). NMs which are active in STIS, show
overall higher mean values across the assays with the only exception
being ESR with CPH. For the CPH and carbonylation assay, the picture

is very similar to the in vitro situation seen in the macrophage assay
above. Again, a consequence of the normalization to the deposited dose
is a better separation between the groups. For the FRAS assay and the
carbonylation assay, there is a clear separation between both groups
with especially low values being only present in the passive group. For
the ESR the picture is not as clear as in the macrophage assay. Here, no
clear separation between both groups is possible. However, this may
not only be an indication for the higher complexity of in vivo studies but
results also from the fact that here the positive class is only comprised
of three materials. Thus, generalization from this set is very difficult
and results may not necessarily be robust for larger case studies.
Respective boxplots for only those cases with complete information

across all assays are shown in Supplementary Fig. 2 for the macrophage
assay and Supplementary Fig. 3 for STIS.
Overall, surface-based values led to a better separation of active and

passive materials. In addition, normalizing the protein carbonylation
data to the deposited dose also improved the separation of the NMs in
the two categories. In the subsequent section, only those values will be
considered in the main manuscript. All remaining analyses are shown in
the supplementary files.

3.3. Correlations between reactivity assays

Next, we compared data across all test materials to assess the overall

Table 2b
Surface-based values obtained from the four OP assays.

Class Material ESR
(CPH)
[Ratio sample/blank
at 0.5 mg/ml]

ESR
(DMPO)
[Ratio sample/blank at
0.25 mg/ml]

FRAS
[AUC]

Carbonyls
[Ratio sample/control
at 25 μg/ml]

Carbonyls [Ratio sample/control at
25 μg/ml] (normalized)

Silica SiO2_15_unmod
SiO2_15_Amino
SiO2_15_Phospho
SiO2 NM-200
SiO2 NM-203
SiO2 Levasil 50
SiO2 Levasil 100
SiO2 Levasil 300
SiO2 Aerosil 200

0.87
0.92
0.91

1.03
1.07
1.21

14.05
18.95
8.01

23.20
4.76
13.23
13.94
23.20

345
275
115
204
197

17,250
611
639

548

Alumino-silicates Kaolin
Bentonite
DQ12 (Quartz)

44.45
6.86

7.28
1.28

16.39
86.99

2754
1048

5100
5516

Iron oxides Fe2O3 nanoform A
Fe2O3 nanoform B
Fe2O3 larger

15.21
20.19
383.33

0.87
1.04
9.24

44.20
15.33
34.46

1604
2400
8376

1688
3380
9307

Titania TiO2 NM-102
TiO2 NM-105
TiO2 non-nano

1.29
1.09
1.21

1.79
1.66
1.58

6.30
18.64
13.77

1942 2428

Ceria CeO2 NM-211
CeO2 NM-212

268.60
189.41

1.37
2.32

14.16
12.90

Copper-
Based

CuO
Cu-Phthalocyanine
non-halogenated
Cu-Phthalocyanine
Halogenated

567.23
11.34

185.32

5.42
7.43

1.44

268.75
11.51

18.15

12,631
496

468

15,037
787

641

Zinc oxides ZnO NM-110
ZnO NM-111

63.38 7.36 150.99
20.31

8417
5030

15,881

Diketopyrrolo-pyrrolPigments DPP_premixed
DPP nano
DPP non-nano

4.97
1.75
1.15

0.64
0.58
0.59

−23.11
3.39
1.83

1812
174
3563

Carbon-based Carbon black
Graphene oxide
Graphene 1-layer
Graphene
multilayer

942
104

Tungsten-based WS2
Manganese-based Mn2O3

(pos. control)
461.42 2.04 209.76 6080

Barium-based BaSO4 NM-220
(neg. control)

2.30 1.31 6.65 56 65
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correlation between the different assays. Spearman correlations be-
tween all pairs of assays over all tested materials show how well the
ranks of the NMs in the corresponding assays correlate (Table 4). The
highest correlation can be seen between the two ESR assays
(ρ = 0.552). In addition, there are significant correlations at a sig-
nificance level of 0.05 between ESR with CPH and FRAS (ρ = 0.530),
ESR with DMPO and FRAS (ρ = 0.529) as well as FRAS and protein
carbonylation (ρ = 0.544).
The heatmap in Fig. 3 gives more detailed insights into the com-

parability of results for the different materials. It also provides a
ranking of all materials considering data of all assays while Supple-
mentary Fig. 4 depicts a ranking of all materials using the data of the
FRAS assay only.
It becomes obvious that highly reactive materials (e.g. CuO, Mn2O3,

ZnO NM-110) tend to be reactive in most assays while non-reactive
materials (e.g. TiO2 NM-105, SiO2_15_Amino, SiO2_15_Phospho, BaSO4
NM-220) similarly tend to be negative in all assays. In between there
are materials with medium reactivity, for which the results of the dif-
ferent assays may differ more. CuO overall clearly is the material giving
the highest response in ESR with CPH, FRAS and the carbonylation
assay. Fe2O3 larger and ZnO NM-110 also respond very strongly in three
of the four assays. However, the least responsive assay is not the same
in both cases (FRAS for Fe2O3 larger and ESR with CPH for ZnO NM-
110). Kaolin and CuPhthalo non-halogenated show high responses only
in the ESR with DMPO, while values of the other assays are only in the

medium to low range. Apart from the NMs at the lower end of the
heatmap which show very low values in all assays, Kaolin and
CuPhthalo non-halogenated is the pair of NMs with the most similar
activation pattern.

3.4. Model performance of single and combined reactivity assays

In order to compare how well each of the reactivity assays explains
the toxicity categorization and whether a combination of multiple as-
says improves the predictions, we fitted univariate and multivariate
logistic regression models. The outcome for each NM was defined by a
categorization into active and passive materials with respect to results
from the macrophage assay or STIS as explained above. Due to biases
because of small datasets and complete separation in some of the
models, we decided to use Firth's bias reduction method (FIRTH, 1993).
In addition, the fitted regression models were used to predict the class
of each material after model fitting in a LOOCV approach. The results of
the univariate and multivariate models are summarized in Table 5 and
Supplementary Table 3.
In a first approach, we build the regression models on all materials

with complete information available across all four assays. While the
performance of the best model for the macrophage assay was good
(prediction accuracy of 0.81), we observed that one of the misclassified
materials was CuO. As CuO shows a very high reactivity in all assays
and moreover is active in vitro and in vivo, a good prediction model

Table 3
Toxicity categories obtained from the in vitro macrophage assay as well as from in vivo STIS.

Class Material Categorization in vitro
(Wiemann et al., 2016; Wohlleben et al., 2019)

Categorization in vivo
(Landsiedel et al., 2014; Wiemann et al., 2018)

Silica SiO2_15_unmod
SiO2_15_Amino
SiO2_15_Phospho
SiO2 NM-200
SiO2 NM-203
SiO2 Levasil 50
SiO2 Levasil 100
SiO2 Levasil 300
SiO2 Aerosil 200

active
passive
passive
active
active
active
active
passive

active
passive
passive

active

Aluminosilicates Kaolin
Bentonite
DQ12 (Quartz)

active
active

Iron oxides Fe2O3 nanoform A
Fe2O3 nanoform B
Fe2O3 larger

passive
active
passive

passive

passive
Titania TiO2 NM-102

TiO2 NM-105
TiO2 non-nano

passive
active
passive

active

Ceria CeO2 NM-211
CeO2 NM-212

active
active

active
active

Copper-based CuO
Cu-Phthalocyanine
non-halogenated
Cu-Phthalocyanine
Halogenated

active
active

passive

active
passive

Zinc oxides ZnO NM-110
ZnO NM-111

active
active active

Diketopyrrolo-pyrrol Pigments DPP_premixed
DPP nano
DPP non-nano

passive
passive
active

passive
passive

Carbon-based Carbon black
Graphene oxide
Graphene 1-layer
Graphene
multilayer

Tungsten-based WS2
Manganese-based Mn2O3

(pos. control)
active

Barium-based BaSO4 NM-220
(neg. control)

passive passive
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Fig. 1. Boxplots comparing mass- and surface-based values from each of the four assays comparing active versus passive NMs as assessed in the macrophage assay.
Depicted are values from ESR with CPH probe with same mass (a) and same BET surface area doses (b), ESR with DMPO trap with same mass (c) and same BET
surface area doses (d), FRAS assay with same mass (e) and same BET surface area doses (f) and carbonylation assay with same mass (g) and same BET surface area
doses (h). In addition, carbonyl values were normalized to the deposited dose for same mass (i) and same BET surface area doses (j).
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Fig. 2. Boxplots comparing mass- and surface-based values from each of the four assays comparing active versus passive NMs as assessed in STIS. Depicted are values
from ESR with CPH probe with same mass (a) and same BET surface area doses (b), ESR with DMPO trap with same mass (c) and same BET surface area doses (d),
FRAS assay with same mass (e) and same BET surface area doses (f) and carbonylation assay with same mass (g) and same BET surface area doses (h). In addition,
carbonyl values were normalized to the deposited dose for same mass doses (i) and same BET surface area doses (j).
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should definitely classify this material correctly. We thus investigated
this misclassification in more detail and observed it mainly results from
the inclusion of Fe2O3 larger in the regression model. Fe2O3 larger
shows relatively high reactivity in the ESR measurements while being
passive in vitro and in vivo. The behavior of Fe2O3 larger deserves a
deeper investigation. An interesting observation is that Fe2O3 larger
shows a very unusual morphology of a spiked, irregular surface in TEM
scans, which clearly distinguishes it from all other materials, which are
closer to spheroidal geometry. In our study we decided to exclude this
material from the final analysis as in general a false negative classifi-
cation is considered a severe drawback of a model and we expected a
good prediction model to correctly classify materials like CuO.
For the macrophage assay, the best models reached a prediction

accuracy of 0.89 (see Table 5). This accuracy was achieved when ESR
with the DMPO probe or FRAS assay results were combined with car-
bonylation assay data or in the case when all assays were included. Due
to the lower model complexity, the first two models obtain a lower AIC
(14.68 ± 0.82 and 13.22 ± 3.16, respectively, compared to
18.77 ± 0.76 for the complete set of assays) and are thus preferable. In
the model with all descriptors as well as in the model including ESR
with DMPO and carbonylation, the misclassified materials are Fe2O3
nanoformB and TiO2 NM-105 which are both classified as passive while
being active in vitro and in the case of TiO2 NM-105 also in vivo (see
Fig. 4 and Supplementary Fig. 5a). In the model including FRAS assay
and carbonylation (see Supplementary Fig. 5b), Fe2O3 nanoformB and
CuPhthalo non-halogenated are misclassified as passive. The best model
based on a single assay is the one based on the carbonylation data with

an AIC of 12.35 ± 2.28 and a balanced accuracy of 0.84. In this model,
CuPhthalo non-halogenated (passive instead of active) and Fe2O3 na-
noformA (active instead of passive) are misclassified (see Supplemen-
tary Fig. 5c).
For the STIS categorization, the same models as in the macrophage

assay except the one including all surface reactivity assays show the
best performance. Here, the model with only the carbonylation assay,
even performs exactly as good (prediction accuracy of 0.83) as the other
two which include in addition ESR with DMPO or FRAS results, re-
spectively. All three models misclassify only TiO2 NM-105 (passive
instead of active) (see Supplementary Fig. 6).
Thus, the best testing strategy in our case study is to include ESR

with DMPO or FRAS together with the carbonylation assay (based on
outcome of the in vitro macrophage assay) or using the carbonylation
assay alone (based on the outcome of the in vivo STIS results).
In the next part, we want to investigate the different material classes

in more detail with the goal of ranking the individual materials within
the classes.

3.5. Case studies

3.5.1. Silica case study
We considered nine variants of silica NMs and three aluminosili-

cates. Results from all assays were present for three silica particles and
one aluminosilicate (see Supplementary Tables 1a, 1b, 2).
In the first step, we used the assays with the same mass con-

centrations (referred to as uniform mass data). For the FRAS assay,
five different concentrations of SiO2_15_unmod, SiO2_15_Amino,
SiO2_15_Phospho, SiO2NM-203, Bentonite, Kaolin and Quartz NMs
were tested (see Fig. 5). We performed dose-response modeling for
better comparability between NMs. The results are shown in Fig. 5. The
results of the supernatants are shown in Supplementary Fig. 7. As ex-
pected, the dose-response curves of all silica particles lie between the
one of the negative control (BaSO4 NM-220) and the positive control
(Mn2O3). For all NMs except quartz, a clear dose-dependent response is
observed. The micron-sized quartz gives a low intensity, concentration
independent response. Compared to all other silica particles and the
aluminosilicates, quartz has the lowest OP. Kaolin shows roughly the
same OP as SiO2 NM-203 at the highest tested dose. However, while the
dose-response curve already reached a saturation point for NM-203, it is
expected to further increase for Kaolin if higher concentrations were
tested. This would result in Kaolin being ranked higher than SiO2 NM-
203 at higher concentrations. This is actually a general phenomenon
that can be observed among all particles: While the dose-response
curves for some materials are very steep at low doses and then level off
very fast (e.g. SiO2 NM-203 or Mn2O3), others continue growing until
the highest dose that was applied here but at lower rates (e.g. Kaolin or
Bentonite). Within the group of silica particles, SiO2_15_Amino and
SiO2_15_Phospho behave very similar over the complete dose range and
cause more oxidative damage in FRAS assay than SiO2_15_unmod,
which in turn shows a higher response compared to SiO2 NM-203.
Bentonite gives the highest response of all silica-based materials. Using
the outcome obtained for the highest tested dose, the NMs can be
ranked from lowest to highest response in FRAS assay: BaSO4 NM-
220 < quartz< SiO2 NM-203 ≈ Kaolin< SiO2_15_untreated
< SiO2_15_Amino ≈ SiO2_15_Phospho<Bentonite<Mn2O3.
In order to compare the results obtained from different assays we

ranked all materials from lowest to highest responses for each assay
(Supplementary Fig. 8). As expected, the positive control Mn2O3 is
ranked highest across all assays but the carbonylation assay where it
only obtains the second highest rank after SiO2_15_unmod. The nega-
tive control BaSO4 has the lowest rank in the FRAS assays and the
carbonylation assay. In the mass-based ESR assay, no measurements for
BaSO4 were performed. Bentonite NM-600, which shows the highest
response of all silica-based materials in the FRAS assay, shows only
medium response in the carbonylation assay. While SiO2_15_Phospho,

Table 4
Spearman correlation to assess comparability between the different assays.

ESR CPH ESR DMPO FRAS Carbonylation

ESR CPH 1 0.552⁎
(n = 23)

0.530⁎
(n = 22)

0.475
(n = 15)

ESR DMPO 1 0.529⁎
(n = 22)

0.357
(n = 15)

FRAS 1 0.544⁎
(n = 16)

Carbonylation 1

⁎ p < 0.05.

Fig. 3. Heatmap of scaled outcomes from all four assays. Hierarchical clustering
is performed based on Euclidean distance.
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SiO2_15_Amino and SiO2_15_unmod show very similar response in FRAS
and ESR, the protein carbonylation shows a much higher response for
SiO2_15_unmod. This difference in response in the protein carbonyla-
tion is in-line with the fact that SiO2_15_unmod is classified as active in
vitro an in vivo, while the other two are passive. In the mass-based as-
says, Kaolin shows relatively low reactivity even though it is active in
vitro.
In accordance with the mass-based data, we also performed the

ranking of BET surface area-based measurements of the silica-based
materials. The results are shown in Fig. 6. The positive control Mn2O3
still has the highest rank in all assays but ESR with DMPO, where it only
gives the second highest response value. The negative control BaSO4
shows the lowest response in the carbonylation assay as well as the
second lowest rank in the FRAS assay. In the ESR assay, BaSO4 ranks in
the middle of all materials. However, the sample to blank ratio is still
relatively close to 1 and thus BaSO4 is also not very reactive in ESR. In
the surface-based carbonylation assay (normalized to the deposited
dose), we observe almost perfect separation of active and passive ma-
terials with the only exception being SiO2 NM-203 which shows low
carbonylation while being active in vitro and in vivo. While in the FRAS
assay SiO2 NM-203 is ranked higher, this assay is not separating
SiO2_15_unmod well from its two coated variants. Similarly, in both
ESR assays, the aluminosilicates are ranked very high (corresponding to
their categorization as active), while the three silica show very similar
response even though SiO2_15_unmod is active and the other two are
not.

Table 5
Logistic regression models are fit for each combination of predictors. Sensitivity, specificity as well as the balanced accuracy of each assay alone as well as all possible
combinations of them are assessed in a Leave-One-Out Cross-Validation using Firth’ regression. The best models, typically achieved by combining several assays, are
highlighted in green. The best models relying on one assay only are highlighted in yellow. The ticks in columns 2 to 5 indicate which predictors were used in each
logistic regression model. The AIC relates to the goodness-of-fit of the regression model relative to its complexity. Smaller values of the AIC indicate higher suitability
of the model. The sensitivity gives the proportion of active materials correctly predicted as active while the specificity relates to correct predictions of passive
materials. The balanced accuracy is the trade-off between sensitivity and specificity.

Outcome variable Predictors AIC
(mean ± sd) from LOOCV

Balanced prediction accuracy Sensitivity Specificity

CPH DMPO FRAS Carbonyl

Macro-phage assay ✓ 20.02 ± 0.65 0.5 1 0
✓ 16.68 ± 0.88 0.43 0.67 0.2

✓ 18.49 ± 0.66 0.22 0.44 0
✓ 12.35 ± 2.28 0.84 0.89 0.8

✓ ✓ 18.98 ± 0.81 0.38 0.56 0.2
✓ ✓ 20.12 ± 0.76 0.28 0.56 0
✓ ✓ 13.69 ± 1.79 0.79 0.78 0.8

✓ ✓ 18.20 ± 0.94 0.73 0.67 0.8
✓ ✓ 14.68 ± 0.82 0.89 0.78 1

✓ ✓ 13.22 ± 3.16 0.89 0.78 1
✓ ✓ ✓ 19.69 ± 1.05 0.48 0.56 0.4
✓ ✓ ✓ 16.32 ± 0.66 0.83 0.67 1
✓ ✓ ✓ 18.30 ± 2.01 0.52 0.44 0.6

✓ ✓ ✓ 17.63 ± 0.79 0.83 0.67 1
✓ ✓ ✓ ✓ 18.77 ± 0.76 0.89 0.78 1

STIS ✓ 11.62 ± 0.99 0.5 0 1
✓ 12.86 ± 0.77 0.4 0 0.8

✓ 11.76 ± 1.02 0.5 0 1
✓ 8.78 ± 1.28 0.83 0.67 1

✓ ✓ 13.46 ± 0.79 0.4 0 0.8
✓ ✓ 13.38 ± 1.01 0.4 0 0.8
✓ ✓ 10.78 ± 1.59 0.67 0.33 1

✓ ✓ 13.61 ± 0.83 0.4 0 0.8
✓ ✓ 11.09 ± 1.19 0.83 0.67 1

✓ ✓ 10.80 ± 1.64 0.83 0.67 1
✓ ✓ ✓ 15.13 ± 0.72 0.2 0 0.4
✓ ✓ ✓ 12.69 ± 1.57 0.57 0.33 0.8
✓ ✓ ✓ 12.78 ± 1.41 0.57 0.33 0.8

✓ ✓ ✓ 12.92 ± 1.45 0.73 0.67 0.8
✓ ✓ ✓ ✓ 14.64 ± 1.32 0.47 0.33 0.6

Fig. 4. Scatterplot showing the result of the logistic regression model including
ESR with DMPO and carbonylation data based on the data holding macrophage
assay labels. On the y-axis, the probability of each NM to belong to the active
class as given by the regression model is depicted. NMs at the lower end of this
axis are predicted to be passive, the ones at the top are assigned to the active
class. Purple dots represent NMs that were assigned to the passive class by the
macrophage assay, black dots represent active NMs with respect to the mac-
rophage assay. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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Fig. 5. Dose-response curves for different silicas obtained by the FRAS assay.

Fig. 6. Surface reactivity of silica particles measured (a, b, c) or calculated (d) according to different assays and uniform BET surface area. NMs within each plot are
ranked with particle showing lowest reactivity on the left end to particles with highest response at the right. a) ESR with CPH probe, b) ESR with DMPO trap, c) FRAS
and d) protein carbonylation assay results are depicted.
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Overall, these results suggest that within the silica-based materials
the surface-based measurements also perform slightly better than mass-
based assays as well as that even here a combination of the different
assays might be advantageous.

3.5.2. Iron oxide case study
In the case of the surface-based measurements for iron oxide, ESR

with CPH and DMPO as well as the carbonylation assay both rank the
particles in the same way, namely Fe2O3 nanoformA<Fe2O3
nanoformB<Fe2O3 larger (Fig. 7). The difference in response between
the two smaller nanoforms is much smaller than the one between the
two small nanoforms and the larger one.
In the FRAS assay, Fe2O3 nanoformB shows less response compared

to Fe2O3 larger and Fe2O3 nanoformA (see also Supplementary Fig. 9c).
The carbonylation assay ranks Fe2O3 nanoformB higher than
nanoformA and Fe2O3 larger obtains the highest rank again. In all as-
says, Fe2O3 larger is ranked higher that the two smaller nanoforms, in
case of ESR with DMPO even higher than Mn2O3. Comparing the two
smaller nanoforms among each other, the carbonylation assay as well as
both ESR assays rank Fe2O3 nanoformB which is active higher that the
passive Fe2O3 nanoformA (even though for ESR with DMPO both values
are close to 1). While for ESR this ordering is preserved in the mass-
based measurements (see Supplementary Fig. 9), for the carbonylation
assay it is not.

3.5.3. Zinc oxide
For zinc oxide all assays show elevated signals compared to BaSO4

(see Supplementary Figs. 10 and 11). This matches the fact that ZnO
NM-110 and ZnO NM-111 are both classified active. Especially for ESR,
this effect is even more pronounced in the surface-based measurements.
Only in the FRAS assay, both zinc oxides are tested and there ZnO NM-
110 shows slightly higher response that ZnO NM-111.

3.6. The potential of the theoretical descriptor ‘LUMO’ in the OP detection

Another concept frequently used in NM grouping and QSAR ap-
proaches is the calculation of theoretical descriptors. It has been shown
by Burello and Worth (2011) and by Zhang et al. (2012) that it is
possible to predict the electron transfer from/to NMs to/from biological
environment by comparing the bottom of the conduction band (Ec) with
the cellular redox potential (from −4.12 to −4.84 eV). An electron
transfer from biological systems to NMs can only take place when the
cellular redox potential is higher than Ec. If this is not the case, it is
always possible that an electron transfer from an aqueous donor to the
NM and from this to the biological system takes place until reaching a
steady state. Gajewicz et al. (2018) applied such an approach within a
grouping framework for NMs. Considering that Ec for semiconducting
NMs can be approximated with the energy of the lowest unoccupied
molecular orbital (LUMO). Gajewicz et al. considered a threshold for
the LUMO of −2.40 eV, NMs with LUMO at lower energy are con-
sidered active and all the others are considered passive.
The same approach could be used to interpret the release of radicals

in aqueous environment, as for example in ESR experiments using
different spin traps. Therefore, we compared the results obtained by

Fig. 7. Surface reactivity of iron oxide particles measured (a, b, c) and calculated (d) according to different assays and uniform BET surface area. NMs in the plot are
sorted by ranks, from the particle with lowest reactivity on the left end to the particle with highest response at the right. a) ESR with CPH probe, b) ESR with DMPO
probe, c) FRAS and d) protein carbonylation assay results are depicted.
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ESR with CPH spin probe and DMPO spin trap with the LUMO or Ec
obtained from literature (Gajewicz et al., 2018; Burello and Worth,
2011; Zhang et al., 2012; FIRTH, 1993) (see Fig. 8). A slight trend to-
wards higher ESR values for materials with LUMO or Ec close to or
within the region of the cellular redox potential can be observed,
especially in the case of the CPH probe. However, there are some out-
liers visible like CeO2 NM-211 and NM-212 which show high values in
ESR with CPH while having a LUMO clearly larger than −4.12 eV or
Fe2O3 nanoformA and nanoformB which have a LUMO close to the
cellular redox potential but rather low response in ESR with DMPO.

4. Discussion

Previously, different assays have been used to measure the OP of
NMs. All assays rely on different principles and thus, different techni-
ques have different advantages and disadvantages. Their use depends
on what exactly shall be measured, the generation of free radicals,
which can be performed in acellular as well as in cell-based environ-
ments or different cell-based consequences. In addition, there are also
technical reasons why different laboratories may favor specific techni-
ques. For instance, ESR seems to be a very reliable assay but needs

Fig. 8. Scatterplot comparing the outcomes of a) ESR with CPH probe and b) ESR with DMPO probe with the LUMO of the NMs. The area highlighted in green is the
cellular redox potential (Zhang et al., 2012). The light blue vertical lines correspond to the redox potential of hydroxyl radicals on the right (Wang et al., 2017) and
the redox potential of superoxide radicals on the left. The dark blue vertical line represents the LUMO values determined as a cut-off between active and passive NMs
by Gajewicz et al. (2018). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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special equipment, which is very expensive and thus available in only
few laboratories.
In order to obtain reliable grouping concepts and a suitable testing

strategy and to be able to apply statistical and computational methods
that can aid this process, large amounts of data representing a great
variety of existing NMs are necessary. For combining all the available
data, we need to assess how comparable results from different assays
are and how they can be integrated. Therefore, we need to address the
questions of how well assays are suitable to rank materials within
chemical families with respect to know toxicity data from previous
studies as well as how well this works over all material classes.
Here, we compared the results of four different assays measuring the

OP of NMs, namely ESR with the spin probe CPH as well as with the
spin trap DMPO, the FRAS assay and a cell-based protein carbonylation
assay. We assessed differences in the assay results if NMs were applied
with the same mass dose or with the same surface dose and compared
how well both metrics can explain results of the in vitro macrophage
assay and in vivo STIS. Logistic regression was used to obtain the
combination of assays that is most suitable to predict toxicity outcomes
and to compare the results to those from analyses in which only one of
the assays was used. Investigation of different NM families allowed for
more detailed insights.
The comparison of assay results based on same mass doses and same

surface doses, respectively, showed that measurements based on same
surface doses are more suitable to distinguish between active and
passive NMs as categorized by the macrophage assay. For STIS cate-
gorization, the advantages of the surface-based measurements were still
visible overall although much less pronounced. It should be noted that
the number of investigated materials in vivo was much lower. The better
outcome for surface-based dose metrics is most probably related to the
fact that ROS generation can only take place at the surface of the NMs
and thus, surface area is the more important metric. Similar findings
were also described in previous studies (Mottier et al., 2016; Schmid
and Stoeger, 2016; Simkó et al., 2014). The normalization of the cell-
based carbonylation assay results to the deposited dose was advanta-
geous for both, the prediction of the in vitro macrophage assay and the
in vivo STIS results. This is related to the fact that only NMs that reach
the cells may cause protein carbonylation in them. Other studies also
highlighted the importance of the deposited dose or even better internal
dose for the prediction of toxicological responses (Simkó et al., 2014;
Cohen et al., 2014; Schmid and Cassee, 2017).
Comparing the different assays for determining the OP of NMs

showed that ESR with CPH and DMPO and FRAS assay had pairwise
significant correlations (p < 0.05) among each other and also FRAS
assay was significantly correlated with the carbonylation assay.
However, correlation coefficients only lie between 0.5 and 0.6. This
might be explained by the fact that all assays detect different types of
ROS, which indicates that each assay may have a different specificity
and a combination of various assays might improve the overall pre-
dictive performance. With respect to the specificity of the assays, CPH
spin probes in ESR are most sensitive to singlet oxygen, superoxide
radicals and peroxynitrite. In contrast, DMPO spin traps trap mainly
hydroxyl and superoxide radicals. The FRAS assay measures anti-
oxidant depletion in general which might be triggered by different ROS
but also by reactive nitrogen species. In protein carbonylation, the re-
sult depends on the amount of different kinds of produced ROS but also
on the compensating mechanisms reducing ROS in the cell.
In addition, the assays are performed in different environments with

increasing systems complexity. ESR directly measures the ROS pro-
duction in dH2O. While dH2O is a very simple environment which does
not induce much interference with the measurement technique, it may
not represent the physiological conditions in which the NM acts very
well. Important properties like the formation of a protein corona are not
accounted for by ESR. FRAS assay instead uses human serum, which is a
more physiological environment. While this might be a more relevant
scenario then measurements in dH2O, FRAS is still an acellular assay

and does not account for additional factors important for toxicity of
NMs, e.g. different amounts of NM uptake or cell-based ROS defense
activities. Cellular assays like protein carbonylation do consider those
factors and thus represent a more relevant read-out from a toxicological
point of view. However, biological variability may scatter the outcomes
of cellular assays as the outcome will depend on many details such as
selected cell model, passage number, cell seeding density, etc. This,
together with the unknown internal dose makes the interpretation of
the results difficult. Based on the described differences between the
assays the observed differences in the ranking of materials are not
unexpected or astonishing.
The idea that a combination of assays might be advantageous for

predicting the toxicity category of the NM is also supported by the fact
that in the heatmap, the combination of all assays leads to a clustering
with most of the active materials being in the upper part of the heatmap
for which at least one of the assays gives a strong response while most
passive materials are at the bottom with very low responses across all
assays.
While this combination of all assays in the heatmap already gives

first hints that using multiple assays at the same time might be bene-
ficial, we wanted to compare how well models based on single assays
perform compared to multivariate models and which combination of
assays gives best results. Therefore, we fitted logistic regression models
with different assay combinations as well as single assays as the input.
In the case of macrophage assay categories, the best model consisted of
ESR with DMPO spin trap or FRAS together with the carbonylation
assay. This is in-line with other studies which also suggested combi-
nations of acellular and cellular assays to determine the OP of NMs
previously (Riebeling et al., 2016). The best model based on one single
assay is the one including only carbonylation data with a drop in ac-
curacy from 89% to 84%. For STIS categories, the best model perfor-
mance (83% accuracy) could be achieved even with the carbonylation
assay alone. Given the fact that this assay is much less complicated and
needs no special equipment, it seems to be a reasonable choice to use
protein carbonyls to describe the OP of NMs.
Just a small set of NMs are subject to misclassification in the best

models. TiO2 NM-105 is misclassified in the optimal STIS models as
well as in the macrophage assay model including all assays or ESR with
DMPO and carbonylation assay. Some crystalline forms of titanium
dioxide are photoactive, including the anatase-dominated NM tested
here. As the OP was detected in dark which might not be the situation in
vitro and especially in vivo, discrepancies in the categorization might
result from this fact. In addition, CuPhthalo non-halogenated is mis-
classified in the macrophage assay models with FRAS and carbonylation
as well as in the model with only the carbonylation data. However,
CuPhthalo non-halogenated is known to be false-positive in vitro al-
ready (Arts et al., 2016; Wiemann et al., 2016) (see Pigment Blue in
Table 3 in (Wiemann et al., 2016)). Thus, the misclassification detected
here fits to the overall picture for this particular material. In the mac-
rophage assay models also Fe2O3 nanoformA and Fe2O3 nanoformB are
frequently misclassified, as they are passive in the inhalation test
(Hofmann et al., 2016).
Comparing results of different assays within families of NMs, we

saw that even within different families same-BET-surface-area-based
measurements performed slightly better than mass-based assays. Again,
the carbonylation assay was most useful to separate active and passive
materials. However, in most cases other assays are needed for complete
separation.
This study provided useful insights into a potential testing strategy

for OP of NMs. Even though our case study containing 35 different
materials was quite extended, overall only a limited set of materials was
tested, which might impair generalizability of the results. Larger col-
lections of materials are needed to rerun the approach provided here.
In addition, the same surface data for the carbonylation assay were

only calculated in this approach. These results could be blurred by
deviations in the agglomeration state, deposition, etc. Same surface
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data should thus be obtained by directly measuring NMs at same sur-
face doses, which is however more challenging in cell-based assays as
the BET surfaces vary a lot between different materials. Thus, it may
become very challenging to select a suitable uniform surface-area dose
for cell-based assays.

5. Conclusion

Here, we compared four different assays measuring the oxidative
potential (OP) of 35 nanomaterials from twelve different chemical
classes. These assays, namely ESR (with CPH spin probe and DMPO spin
trap), FRAS assay and a cell-based protein carbonylation assay have
been used in previous studies and also in some NM grouping ap-
proaches. Overall, for very reactive and non-reactive NMs we saw good
agreement among the assays. However, for NMs with intermediate re-
activity, the consistency was lower. This is not surprising, considering
that the assays measure different types of ROS, they are conducted in
cellular or acellular environment, and reflect ROS production either
directly or indirectly. A combination of assays, or the justified selection
of one assay, may better predict in vivo outcomes. In our dataset we
observed a good agreement with previous in vitro and in vivo findings as
well. This was especially the case when NMs were applied at same
surface doses and if, for the carbonylation assay, results were normal-
ized to the deposited dose. Logistic regression revealed that a combi-
nation of ESR with DMPO or FRAS together with the carbonylation
assay was most predictive for in vitro outcomes, whereas for in vivo
outcomes the model based on carbonylation data only gave the highest
predictivity, especially when surface dose is used as a dose metric. In
any case, suitable benchmark materials with high (CuO, Mn2O3, ZnO
NM-110) and low (BaSO4 NM-220) OP were identified. In a next step,
further validation of the approach should be performed by extending
and completing the data set. This may also result in more specific re-
commendations as to whether single or combined assays are more ap-
propriate to predict the toxicologically relevant OP of nanomaterials.
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Abstract 

Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the sub-
stances’ mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve 
this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in 
toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these 
datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present 
the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed 
for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data 
for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention 
to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the 
development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and 
reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a 
meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PRO-
TEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis 
of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of 
computational protocols.

Keywords Proteomics, Harmonized proteomics data analysis, Meta-analysis, Mode-of-action (MoA), Adverse 
outcome pathways (AOP), Nanomaterials, FAIR data

Introduction
Animal testing is still key in risk assessment of chemi-
cal substances but in  vivo experiments imply exorbi-
tant costs. The high number of different toxicological 

endpoints that need to be evaluated is also a bottleneck 
when assessing substance toxicity. The increasing num-
ber of substances to be introduced in the market calls 
for the development of reliable alternative methods. The 
most commonly used experimental alternative mod-
els are in vitro tests based on cell cultures that are typi-
cally used to assess acute effects. However, to adequately 
cover more complex endpoints and in particular chronic 
effects, integrated test strategies that combine a series of 
different assays are needed. Developing such test strate-
gies requires mechanistic understanding of the underly-
ing biological changes caused by the substances.
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In toxicology, a key concept to depict mechanistic 
knowledge of the effect of a substance at different bio-
logical levels is the concept of Adverse Outcome Path-
way (AOP), which is a robust framework to contribute 
to regulatory decision making [1, 2]. AOPs address the 
alterations induced by a substance at the molecular, cel-
lular, organ and organism level [3] and aim to describe 
the substance mode-of-action (MoA) [4] as a series of key 
events. Different in  vitro and in silico technologies can 
then be applied to evaluate the key events preceeding the 
adverse outcome.

Omics-based technologies became important in toxi-
cology because they allow to investigate toxicity mecha-
nisms in a holistic manner. In this way, they account for 
the generation of vast datasets at different biological lev-
els [5]. Although these approaches can provide detailed 
insights into MoA at molecular and cellular levels [6, 7], 
omics technologies are not yet part of the routine meth-
ods in regulatory hazard assessment procedures because 
standardization of the computational models for inter-
pretation of the datasets is still needed [8, 9]. Workflows 
for harmonized analysis of omic data contribute directly 
to facilitate the use of omics in regulatory-decision 
making.

Among all omic techniques, transcriptomics has an 
immediate potential in this field, because data generation 
and analysis can be well harmonized and results allow 
for straightforward comparison between experiments. 
However, the major drawback of transcriptomics is the 
relatively indirect relationship between the measured 
effects and the respective phenotype. Proteomics, despite 
being able to describe closer the phenotype, is not gener-
ally performed in a harmonized manner. Next to inher-
ent technical challenges, several factors contribute to the 
lack of uniformity of proteomics measurements: there 
are no unified experimental design nor sample prepara-
tion protocols, and the different degrees of sophistica-
tion of the measuring devices result in high level of noise. 
Additionally, datasets available on public repositories 
frequently suffer from insufficient metadata, hindering 
the assignment of the correct experimental condition to 
each file within the dataset. Moreover, different methods 
for analyzing and modeling the data often lead to differ-
ent results, hampering the comparison of the data origi-
nated from separate studies. Although analytic methods 
are equally valid, their pipelines are usually adapted to fit 
the datasets generating an impact on the outcome. These 
challenges call for attention if publicly available data is 
meant to be reused [10].

In this work, we introduce PROTEOMAS, a workflow 
designed to analyze proteomic studies in a harmonized 
and transparent manner with the aim to increase their 
potential for (re)use in toxicological regulatory processes. 

The workflow follows the Omics Reporting Framework 
by the Organisation for Economic Cooperation and 
Development (OECD) [11, 12], precisely to the Data 
Acquisition and Processing Reporting Module (DAPRM) 
and to the Data Analysis Reporting Module (DARM) for 
discovery of differently abundant molecules. It intends 
to integrate proteomics to transcriptomics and metabo-
lomics, which are so far the only omic techniques further 
accepted in regulatory matters. During the analysis, a log 
file collecting all relevant information according to the 
Omics Reporting Framework is created which guarantees 
transparency of all steps and results. The overarching aim 
of PROTEOMAS is to contribute to the understanding of 
the MoA of substances and to the development of AOPs. 
Notably, our workflow complies with the FAIR principles 
(Findable, Accessible, Interoperable and Reusable) of bio-
informatics tools, and contributes to data FAIRness of 
proteomics studies [13].

Results
The PRIDE Archive, one of the main public repositories 
for proteomic data, currently hosts over 20,000 pro-
jects. This large amount of data has great potential in 
toxicology. However, it is difficult to use these datasets to 
compare the outcomes of different projects due to their 
heterogenic nature. Apart from the technical differences, 
the large variety of analytic workflows and interpretation 
tools hinders comparability of the results. The tool that 
we introduce in this work, PROTEOMAS (PROTEOmics 
Meta-AnalysiS), can perform automated and harmonized 
meta-analyses of data-dependent acquisition (DDA) pro-
teomic datasets using the popular and commonly used 
label-free quantification (LFQ) algorithm of the freeware 
MaxQuant [14]. PROTEOMAS functions independently 
of technical specifications and of metadata availability. 
PROTEOMAS can process results obtained from differ-
ent devices, with the only condition that generated files 
can be analyzed with MaxQuant. Currently supported 
file formats are *.wiff (ABSciex), *.mzxml (MzXml), *.raw 
(Thermo), *.uimf (UIMF), and *.d (Agilent and Bruker). 
This approach then enables the comparison of results 
from different studies.

Figure 1 provides an overview on the different process-
ing steps included in the workflow. The numbers in the 
flowchart indicate the different steps which are discussed 
in detail below. Some steps are decision-based and 
depend on different criteria regarding the characteristics 
of the respective datasets and their associated metadata. 
The workflow can be applied to publicly available data-
sets from repositories or to newly generated ones.
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Preparation of the proteomic datasets
PROTEOMAS can be used for any dataset generated by 
a label-free proteomics approach (Fig. 1, step 1). The sine 
qua non condition for the dataset is the possibility to run 
MaxQuant on it. MaxQuant [14] is a widely used prot-
eomics software for identification and quantification of 
proteins analyzed by mass spectrometry (MS). Raw files 
downloaded from the PRIDE repository have to be ana-
lyzed with MaxQuant including the option ’LFQ inten-
sities’ before running PROTEOMAS. This setting allows 
for a generic normalization and quantification technique 

called MaxLFQ [15]. MaxLFQ performs delayed nor-
malization in combination with maximum peptide ratio 
extraction. Thereby, it solves two common problems 
occurring during quantification of label-free proteomics 
data: (1) Delayed normalization removes biases occurring 
from slight differences in handling and MS performance 
between sample fractions. The only assumption here is 
that most proteins do only change minimally between 
experimental conditions. (2) The maximum peptide 
ratio extraction algorithm defines the selection of pep-
tide signals which contribute to the overall protein signal 

Fig. 1 Flowchart showing the processing steps within the workflow. Each implemented step is represented by a separate rectangle (green). 
Decisions based on certain criteria are represented by diamond shapes (red), while input and output files are shown in parallelograms (yellow). 
Numbers correspond to the processing steps performed and are further explained in the text
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across samples. It calculates all pairwise protein ratios 
among samples based on all shared peptides belonging 
to the protein of interest. By default, at least two pep-
tide ratios are needed to obtain a valid protein ratio. This 
default value was not changed in the analysis. As a last 
step, LFQ intensity profiles are calculated for each pro-
tein such that all pairwise peptide comparisons are sat-
isfied and the best estimate is obtained. The underlying 
assumption of MaxLFQ is that the majority of proteins 
is not changing between analyzed conditions. However, 
in the original publication of MaxLFQ, the authors tested 
this assumption in a benchmark dataset in which more 
than 30% of all identified proteins were changed. While 
there was a shift in total log ratios between changed and 
non-changed proteins, changed proteins could still be 
detected and quantified as such [15].

MaxQuant generates, among others, a ’proteinGroups.
txt’ file as output, which is the main input required for 
running PROTEOMAS (Fig.  1, step 2). In addition to 
the ‘proteinGroups.txt’ file, the user can create three 
additional optional files, where information about each 
measured sample can be described: (1) The ‘Condition-
Assignment.csv’ should be used if each treatment con-
dition is known for each sample. Within this file each 
original sample name is assigned to the associated condi-
tion. (2) A more precise specification of the comparisons 
to be evaluated (e.g. treatment 1 vs. control 1 and treat-
ment 2 vs. control 2) can be transferred to the workflow 
through the next optional file called ’Comparisons.csv’. 
(3) If, on the other hand, information about the treatment 
conditions is unknown, the ’ClusterNumber.csv’ file may 
be used if the total number of different treatments condi-
tions is known.

Data pre‑processing
Within PROTEOMAS data pre-processing starts by 
loading the ‘proteinGroups.txt’ file. The input file is pre-
processed to remove non-relevant data (Fig.  1, step 3), 
precisely, proteins marked as ‘contaminants’, ‘identified 
only by site’ or ‘reverse’. To minimize protein misidenti-
fication, only proteins identified by at least two peptides 
with at least one of them being unique were kept for 
downstream analysis. In addition, data was log2-trans-
formed (Fig.  1, step 4). In a technically sound dataset, 
one would expect that log2-transformed values of the 
LFQ intensities show a normal distribution when plot-
ted as histograms, which in the next steps supports the 
use of downstream analysis methods which often assume 
normally distributed data. The workflow produces the 
corresponding figures and collects them directly in the 
output folder. This information can be used for analyzing 
data quality. No external data normalization is performed 

as this step is inherently done with MaxQuant using the 
MaxLFQ option.

DDA proteomic datasets typically contain a large 
number of missing values, which are listed as zeros in 
the output files. A missing value in the dataset does not 
necessarily mean that the respective protein was not 
present in the sample; it means that there were too few 
data points for proper quantification [16]. After a log2-
transformation, values equal to zero will be converted to 
non-assigned numbers (NaN). In case sufficient metadata 
is available, all samples will be assigned to their corre-
sponding condition as indicated in the ’ConditionAssign-
ment.csv’ file before continuing the analysis (Fig. 1, step 
5). The case of missing metadata is described later on. 
After assigning samples to their respective conditions, it 
is checked whether at least triplicates are present in each 
group as this is a minimal pre-requisite for successful 
outlier detection and statistical testing. If this is not the 
case for some of the conditions, those are deleted from 
the dataset.

Dealing with missing values
A threshold of minimal valid values for each protein 
entry of 70% in at least one condition group was set as 
default (Fig. 1, step 6). After filtering proteins, some miss-
ing values will very likely remain in the datasets. These 
values can be replaced by valid values by a process called 
imputation (Fig.  1, step 7). Imputation allows to retain 
the full sample size of detected proteins [17], which can 
contribute to improving the proteome coverage and the 
determination of enriched descriptors.

There are different imputation methods, which can be 
divided into two classes: MCAR and MNAR methods 
[17, 18]. In MCAR methods, values are assumed to be 
missing completely at random. In the case of proteom-
ics, this would mean that only by chance peptides were 
not detected by the mass spectrometer. As an example, 
this could happen if a more abundant peptide elutes at 
the same time and overshadows the presence of another 
peptide, which goes undetected. In that case, missing val-
ues would optimally be replaced by values, which are in 
the same range as those of the other replicates within this 
condition for the protein under consideration. Available 
methods comprise, e.g. the k-nearest neighbors (kNN) 
method [19] or the random forest (RF) method [20]. In 
contrast, MNAR methods assume that values are miss-
ing not at random and thus the protein is truly absent. 
Common examples of MNAR imputation methods are 
replacement by LOD (limit of detection) values or sam-
pling from a downshifted and shrunk normal distribution 
which means that missing values are replaced by small 
values. In proteomic datasets, one would usually expect 
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to see both, MCAR and MNAR values; however, it is 
impossible to determine the exact type for each missing 
value. Therefore, within the workflow, we used a combi-
nation of MCAR and MNAR methods and the decision 
on which one to use is based on the amount of missing 
values across samples within a condition.

First, we extract all proteins which have at most 
30% missing values within the specified condition. We 
assume that these are actually MCAR values as they 
were detected in most replicates of the same condition. 
For those, missing values are replaced with random for-
est imputation as in that case, we would actually expect 
the protein to be present in all samples of that condition 
(in concordance with the filtering based on valid values) 
(Fig.  2). Random forest imputation starts with replac-
ing all missing values by the mean value of that protein 
within a given condition and then generating random 
forest models each time leaving out one of the originally 
missing values. Each random forest model then predicts 
a new value which replaces the mean value. This step is 
done iteratively in order to obtain better results.

After random forest imputation, all other missing 
values are assumed to be MNAR values and are thus 
replaced by small values obtained from an imputation 
based on drawing values from the downshifted and 
shrunk normal distribution (Fig.  3). In this approach, 
the width and the center of each sample are calculated 
separately to simulate random values, which are used 
to fill the missing values of each sample, such that the 
width of the distribution will shrink to a factor of 0.3 
(default) and the distribution will be downshifted by 
1.8 (default) standard deviations (sampling  from the 
left side of the distribution) for each sample. Histo-
grams can be used to check the imputation and data-
set quality. An example of histograms before and after 
imputation is shown in Fig. 3. In addition, Fig. 4 shows 
a boxplot confirming that samples are comparable and 
no further normalization is needed after MaxLFQ. 
The complete collection of quality control plots can be 
found in the GitHub repository.

Fig. 2 MCAR vs. MNAR imputation. Within the PROTEOMAS workflow these are implemented in terms of a Step 1: random forest imputation and b 
Step 2: imputation from a down-shifted and shrunk normal distribution
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Differential analysis of quantitative changes in protein 
levels
Remaining proteins including both valid and imputed 
values are subjected to differential analysis. This allows 
to detect changes in protein levels between different 
samples or conditions, while determining along the 
degree of statistical significance. Here, we used linear 
modeling (Fig.  1, step 8) to identify proteins which 
show a significant difference in abundance between 
two conditions. A Benjamini–Hochberg FDR thresh-
old of 0.05 is used to correct for multiple testing. A fold 
change threshold of 1.5 up- or downregulation was set 
for determining significantly changed protein levels 
between two conditions. For visual inspection of the 
results, the workflow creates PCA plots and heatmap 
(Fig. 5) showing the clustering of all groups within one 
project as well as volcano plots for each comparison 

(Fig. 6). Plots for all projects are provided in the GitHub 
repository.

The conditions to be tested against each other can be 
defined in the ’Condition.csv’ file. If no such file is speci-
fied, PROTEOMAS will look for any condition named 
’control’ and compares all conditions against this one. In 
case no ’Condition.csv’ file, as well as no ’control’ con-
dition is available, all pairs of conditions are compared 
against each other.

Dealing with (missing) metadata
As it is often the case in repositories, the lack of meta-
data adjoining the datasets hampers proper compari-
son among treatments or conditions, as the relationship 
between raw files and corresponding measured sam-
ples is not clear. It is still possible to identify clusters of 
samples according to similarities of protein patterns, 
but typically criteria to separate treatment or condition 
groups remains subjective. An additional difficulty arises 
if the number of conditions evaluated in the dataset is 
unknown. PROTEOMAS, on the other hand, is able to 
perform assignment of conditions to each sample in an 
automated and objective fashion, without subjective bias.

In case metadata is not sufficient to directly assign 
experimental conditions to each sample, an additional 
automated condition assignment step is included in 
PROTEOMAS (Fig. 1, step 10). Here, each sample will be 
assigned to its condition group using a k-means cluster-
ing approach. In k-means clustering, k random cluster 
centers are defined and each sample is assigned to its 
nearest cluster center based on Euclidean distance. Then 
cluster centers are recalculated based on the assigned 
samples and samples are reassigned to the new center 
means. This is continued in an iterative fashion until the 

Fig. 3 Histograms comparing the data distribution a before and b after imputation

Fig. 4 Boxplot showing the comparability of samples after MaxLFQ 
normalization
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algorithm converges and group assignments no longer 
change.

The crucial point in k-means clustering is the value 
of k, which is the number of clusters to define. In case 
group assignments cannot directly be obtained from 
the metadata but still the number of groups is known, 
k-means algorithm can be performed directly. Other-
wise, if the number of groups is also unknown, k first 
has to be determined. Although the determination of 
the optimal number of groups could be done by visual 
inspection of hierarchical clustering or PCA plots, this 

option is not feasible when processing a  large number 
of projects, and it implies a subjective bias. Therefore, 
the determination of the optimal number of clusters k 
is done automatically in this workflow. Multiple meth-
ods for detecting the optimal number of k exist and a 
number of them are implemented in the R-package 
’NbClust’ [21].

To find the most suitable method for determining the 
optimal k and at the same time also assess the quality of 
the condition assignment using k-means, we blinded all 
studies considered for the case study below, which do 
have sufficient metadata and compared the outcomes 
in terms of significant proteins (Fig.  7) and KEGG 
pathways of the blinded and the nonblinded approach 
(Fig.  8). For the final implementation of PROTEO-
MAS, cindex was chosen for determining the optimal 
number of clusters k as it shows the highest recovery of 
KEGG pathways. Figure 8 shows the amount of KEGG 
pathways found to be significantly altered in the non-
blinded and blinded setting, as well as their overlap for 
each analyzed project. For blinded analyses, the deter-
mined number of k is used as the number of cluster 
centers to be used for k-means clustering. Each sample 
of the dataset is then assigned to one of the clusters. 
An example of the condition assignment by k-means 
is shown in Fig.  9. Index ‘fixedK’ corresponds to the 
case when the number of conditions is set manually 
by the user using the ‘ClusterNumber.csv’. Other plots 

Fig. 5 a PCA plot and b heatmap showing clustering of samples within the different conditions of project ‘PXD000853’

Fig. 6 Volcano plot showing differentially abundant proteins 
between healthy humans and mice with xenograft tumors for project 
‘PXD000853’
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corresponding to this step can be found on the GitHub 
repository.

Protein enrichment analysis
Gene set enrichment analysis (GSEA) was used to 
identify enriched KEGG, Reactome and HALLMARK 
pathways as well as GO terms (Fig.  1, step 9). For each 
condition, the list of proteins is sorted in ascending order 
using the following formula: -log10 (FDR) * abs (log 
ratio). Thereby, proteins with small FDR and large log 
ratio are shifted to the beginning of the list, while those 
with large FDR and small log ratio occur at the end of the 
list. GSEA then identifies gene set which show over-rep-
resentation at the top of the protein list. If enough pro-
teins of a gene set are ranked at the top of the list, the 
gene set will show significant enrichment. These signifi-
cantly enriched gene sets are collected in the final output 
file of PROTEOMAS and constitute the proteomic fin-
gerprint of the studied condition.

Comparison with the original findings
In order to compare results from the analysis with our 
workflow to the original ones, we extracted lists of sig-
nificantly altered proteins from the publications for 
randomly selected studies [22–24], and performed 
enrichment analysis of KEGG pathways. Original results 
were then compared to the lists we obtained using PRO-
TEOMAS. Results of these comparisons are shown in 
Fig. 10. For all projects under consideration, we see very 
similar trends: PROTEOMAS consistently finds a similar 
set of significantly altered proteins and KEGG pathways 
like the original publications. In all cases, the major part 
of proteins and pathways are shared between the original 
publications and PROTEOMAS. Overlaps between origi-
nal findings and those from our workflow range from 

Fig. 7 Barplot showing the percentage of overlapping identified 
KEGG pathways between blinded and nonblinded studies for 
different indices used to determine the optimal number of clusters 
k. Each bar represents the mean percentage across all analyzed 
projects. For each index, the overlap between nonblinded and 
blinded is shown in blue, the percentage of KEGG pathways in the 
nonblinded dataset that could also be determined with the blinded 
setting is shown in red and the percentage of KEGG pathways in 
the blinded setting that was also present in the original nonblinded 
setting is depicted in yellow

Fig. 8 Amount of KEGG pathways found to be significantly altered 
in the nonblinded, as well as the blinded setting for each analyzed 
project. Percent overlaps are shown by the size of the dots

Fig. 9 Example of automatic cluster detection (project ‘PXD000853’). 
The optimal number of clusters k is obtained from method cindex. 
This choice of k is then used for group assignment using a k-means 
clustering approach. The cluster plot indicates the group assignment 
of each sample after k-means clustering with the predicted number 
of conditions (in this case 2)
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19 to 86% at the protein level and 38% to 85% for KEGG 
pathways. Therefore, especially on the level of KEGG 
pathways, which is assumed to be less prone to false-pos-
itive findings, PROTEOMAS gives very similar results. In 
addition, PROTEOMAS detects only very few additional 
pathways and thus creates only minimal noise.

Case study: comparison of the proteomic fingerprint 
of different projects related to lung conditions
As  a case study, we tested the workflow to evaluate the 
toxicological effects of nanomaterials (NMs) at the lung 
level. NMs consist of particles of which at least 50% are 1 
to 100 nm in size in terms of at least one external dimen-
sion [25]. Several comprehensive projects have studied 
the effect of NMs by omics measurements from in vivo 
and in  vitro experiments. Although these results have 
contributed to the understanding the NMs hazards, the 
collected information is still not yet sufficient to conclu-
sively unravel different MoA in detail, since the number 
of NM omic datasets is still comparatively low. However, 
one may assume that NMs will to a large extent share 
common MoA with conventional chemicals or other 
conditions. It is likely that NMs will have unique initiat-
ing events, but the following downstream physiological 

changes are likely to be shared by other effectors. As for 
NMs inhalation is considered the most critical route of 
exposure, we kept the focus of our work on lung prot-
eomic datasets. Within this case study, we demonstrate 
how by means of PROTEOMAS, we are able to extract 
mechanistic information from different proteomic stud-
ies publicly available.

We analyzed 25 lung-related proteomics stud-
ies obtained from the PRIDE Archive within this case 
study. These include studies on lung cancer, pulmonary 
fibrosis, invasive pulmonary aspergillosis (IPA), chronic 
obstructive pulmonary disease (COPD), SARS-CoV-2 
(Covid-19), and various NM treatments. Table  1 pro-
vides information on some project characteristics, as well 
as the total number of identified proteins, as obtained 
from the ‘proteinGroups.txt’ file, and it indicates whether 
metadata to the corresponding dataset is available. 
Table  2 shows the number of significantly altered pro-
teins as well as enriched descriptors, which constitute the 
proteomic fingerprint for each comparison.

Comparing proteomic signatures across multiple datasets
Evaluated projects usually contain more than one 
condition, since different treatment, time-points, 

Fig. 10 Venn diagrams showing the overlap of the original findings for projects ‘PXD007223’, ‘PXD000853’ and ‘PXD014022’, and those obtained 
from PROTEOMAS
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concentrations, etc., belong to the same dataset. For the 
present analysis, we have merged the conditions into 
traits, resulting in the following categories: lung can-
cer, aspergillosis, COPD, different drug treatments, viral 
infection, different NMs like carbon, ion releasing and 
 TiO2 NMs, among others. Each trait was normalized by 
the amount of conditions included for an equilibrated 
comparability.

Enriched HALLMARK pathways within the different 
traits were compared in a meta-analysis and results are 
depicted as a heatmap in Fig.  11. Hierarchical cluster-
ing was performed among traits as well as HALLMARK 
pathways. For this case study we have added a pathway 
that we created especially for this analysis: the “Lung 
Inflammation Key Event”. This pathway includes proteins 

and genes known to be regulated in lungs undergoing 
inflammation, as collected from 35 papers addressing 
explicitly this topic. The list of 266 proteins and genes, as 
well as the citation to the original articles, are included 
in the Additional file  1: Table  S1. The aim of the “Lung 
Inflammation Key Event” pathway was to gain a com-
prehensive description of an important key event often 
present in different AOPs, and particularly in the AOP 
for lung fibrosis. LPS serves as a positive control for 
activation of inflammatory response, and it proved to 
strongly regulate this pathway. Figure 11 shows that dif-
ferent types of NMs exhibit particular behaviors, and the 
caused alterations resemble distinct traits. This is true 
also for the “Lung Inflammation Key Event” pathway.

Table 1 Overview of proteomic datasets used in this case study and their characteristics.

Projects marked with * had insufficient metadata

Project id Species In vitro/ in vivo model Trait Total number of 
proteins in raw 
data

Sufficient 
metadata 
available?

Number of pairs of 
conditions compared

PXD007223 Human A549 Lung cancer 2008 Yes 1

PXD000861 Human BEAS-2B Lung cancer 3670 Yes 4

PXD018895 Human A549 Lung cancer 3744 Yes 1

PXD000853 Human A549 Lung cancer 5197 Yes 2

PXD005698 Human A549, H358 Lung cancer 942 Yes 2

PXD005733 Human Lung cancer and adjacent 
tissue

Lung cancer 1936 Yes 1

PXD007137* Human NCI-H650 Lung cancer 1321 No 2

PXD004818* Human Lung tissue Lung cancer 2811 No 6

PXD007180 Human A549 Smoking 2590 Yes 4

PXD020470 Human HPA-HULEC
co-culture

SARS CoV-2 6753 Yes 2

PXD021685 Human THP-1 SARS CoV-2 1787 Yes 2

PXD007148h Human A549 COPD 466 Yes 2

PXD007148m Mouse Lung tissue COPD 875 Yes 2

PXD016664h Human Lung tissue and BALF IPA 5118 Yes 1

PXD016664m Mouse Lung tissue and BALF IPA 3054 Yes 2

PXD014022 Human A549 IPA and P. aeruginosa infec-
tion

4184 3

PXD005834* Mouse A549 IPA 2790 No 4

PXD018569 Human NCI-H2030  > 30 drugs 8773 Yes 27

PXD023041* Mouse Lung tissue Influenza 3440 No 0

PXD013244 Mouse Blood serum Gu-Ben-Fang-Xiao decoction 
(GBFXD)

3429 Yes 2

PXD016148 Mouse BALF NMs (Fe, Co, CB) 1525 Yes 22

PXD019267 Human THP-1 31 NMs 3665 Yes 33

PXD018900 Rat BALF NM-401 (MWCNT) 1223 Yes 8

PXD005970 Human HBEC-3KT NM-400
(MWCNT)

5483 Yes 2

PXD025423 Human HBEC-3KT NM-62002a
(TiO2)

5483 Yes 2
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When comparing proteomic signatures, most reliable 
results are obtained when considering as many projects 
as possible. PROTEOMAS’ ability to process them in 
a harmonized and automated manner permits to deal 
with such a high number of datasets. The ever-increasing 
number of omic studies being publicly available will allow 
to develop an increasing understanding of the biological 
alterations caused by studied traits.

Discussion
New methodological developments to contribute to the 
advance of AOPs are crucial in establishing reliable alter-
native methods for toxicology in line with the 3R-prin-
ciples of reducing, refining or replacing animal testing. 
Omic techniques are very promising methods in this 
regard, precisely due to the potential to provide plenty 
of information on the MoA of evaluated substances. 
Currently, most omic-based approaches to unravel tox-
icity mechanisms rely on transcriptomics [26–29]. Tran-
scriptomics has already proven its potential, e.g. by its 
contribution to the lung fibrosis AOP [30, 31] and by its 
involvement in the Genomic Allergen Rapid Detection 
(GARD) approach for skin sensitization [32, 33].

Proteomics, on the other hand, has the potential 
to be more descriptive of the adverse outcome, since 
this method can closer describe the phenotype than 

transcriptomics. The drawback of proteomics is the het-
erogeneity among proteomic datasets due to the high 
variability of methods and instruments used to generate 
the data. As opposed to microarray- or RNAseq-based 
transcriptomics, proteomic output does not necessar-
ily contain information on the same set of molecules, i.e. 
includes a larger number of missing values, which makes 
comparison of different experiments more challenging.

Here, we present an automated workflow to process 
proteomic data which allows analysis in a high-through-
put manner without subjective bias. Although the work-
flow can be used to process data from a single dataset as 
well, its main benefit lies in the possibility of processing 
a large number of them, for example those found in pub-
lic repositories. Once a collection of datasets is retrieved 
from the repository, PROTEOMAS allows in a simple 
and harmonized way, to process the datasets in a sequen-
tial manner.

For each dataset, the workflow identifies a group of 
proteins that appear altered among evaluated condi-
tions within the dataset, and assigns a series of descrip-
tors, like protein IDs, GO terms, KEGG, HALLMARK 
and Reactome pathways, among others, altogether high-
lighting the proteomic signature of each particular data-
set, which can be linked to relevant biological changes 
and by this to phenotypic differences. Such a systematic 

Table 2 Overview on the number of significantly enriched gene set for different background datasets for each analyzed trait in the 
case study

Trait # Significantly altered GO 
terms

# Significantly altered KEGG 
pathways

# Significantly altered 
REACTOME pathways

# Significantly 
altered HALLMARK 
sets

Lung cancer 1462 46 181 35

IPA 1065 42 189 22

CNT NM-400 396 11 44 12

COPD 312 6 110 8

Drug 1739 47 329 25

CB 19 0 6 0

Co NM 6 1 7 2

Fe NM 80 1 18 0

FeCo NM 127 1 30 0

CNT NM-403 201 2 13 3

Ag NM 185 6 21 5

Au NM 417 10 93 9

Other CNT 300 6 79 8

CuO NM 300 3 65 9

ND 145 1 10 1

LPS 140 4 19 7

QD 276 8 66 8

TiO2 696 33 171 17

Virus 446 21 73 16
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and harmonized data analysis allows the comparison 
of results from many different proteomic projects, i.e. 
by mapping their proteomic signatures. Additionally, it 
contributes to the reuse of proteomic data, which can be 
then more easily integrated to the outcome of other omic 
techniques, like the wealth of transcriptomic and metab-
olomic results already publicly available.

In the present work, we show that original results 
from the projects taken from the repository vary only 

minimally from those originated by PROTEOMAS. In 
the framework of a case study, we proved the utility of 
PROTEOMAS for comparing NM-related proteomic 
data with other lung-related studies. Since this workflow 
is versatile in processing a large amount of proteomic 
datasets, we could easily compare the proteomic sig-
nature from different NM treatments, to those of other 
various effectors. A special emphasis was put to inflam-
mation as key event attempting to contribute to the 

Fig. 11 Heatmap comparing HALLMARK pathways across different traits. Each row corresponds to a certain HALLMARK pathway. Different grades 
of blue indicate the degree to which the corresponding pathway is altered for that trait. Clustering was performed using Euclidean distance and 
average linkage. The results of the clustering between projects are represented in the column dendrogram; the clustering between HALLMARK 
pathways across projects is shown in the row dendrogram



Page 13 of 17Bahl et al. Journal of Cheminformatics           (2023) 15:34  

development of AOPs. The same procedure however, 
could easily be followed to investigate the effect of other 
substances on other organs. Results can advance directly 
the development of AOPs and the understanding of the 
MoA.

In parallel, our workflow aims at facilitating the appli-
cation of artificial intelligence strategies to describe the 
effect of evaluated treatments, thus contributing to make 
proteomic data analysis more FAIR [34, 35]. Simultane-
ously, our workflow was developed to comply with the 
DAPRM and DARM of the Omics Reporting Frame-
works (TRF and MRF) by the OECD, in order to increase 
the transparency of proteomic data analysis for regula-
tory purposes.

Conclusion
Hazard assessment of chemicals relies mostly on very 
expensive and time consuming in vivo experiments. The 
high number of substances which are placed in the mar-
ket requires the development of alternative methods. 
However, their adequacy depends on the deep under-
standing of the substance’s mechanistic effects. Omic 
studies are extremely useful to provide the required 
mechanistic knowledge, since they provide a comprehen-
sive description of caused alterations at different molecu-
lar levels. However, they are not yet considered as routine 
methods in regulatory assessments due to the lack of 
standardization of the computational analysis of the data-
sets. Workflows for harmonization of the analysis of omic 
data contribute directly to facilitate the use of omics in 
regulatory  decision making. Most of the efforts in this 
regard have been made in the field of transcriptomics. 
Proteomic experiments on the other hand, besides being 
more descriptive of the phenotype, are not performed 
in a manner that allows straightforward comparison of 
results, because the experimental setup and measuring 
methods do not belong to established platforms, as for 
transcriptomics. To address this challenge, in this work 
we introduced a workflow called PROTEOMAS for har-
monized proteomic data analysis, precisely intended to 
facilitate the use of omics in regulatory decision making. 
Thus the main utility of our workflow is that it can per-
form meta-analysis of proteomic data from public origin, 
allowing the comparison of results from different experi-
mental sources, while increasing the transparency of 
the analysis. Additionally, it is in agreement with Omics 
Reporting Framework guidelines of the OECD to inte-
grate proteomics to other omic methods used in regula-
tory toxicology.

In this work to show the robustness and reliability of 
PROTEOMAS, we run our workflow on 25 different 
datasets from public origins and obtained comparable 
results with the source publications. Additionally, we 

developed a case study, where we performed a meta-
analysis to study the toxicological effect of nanomaterials 
at the lung level, with a particular focus set on inflamma-
tion. Altogether, PROTEOMAS is a contribution to the 
development of alternative test strategies by facilitating 
the integration of proteomic experiments, while commit-
ting to the FAIR principles (Findable, Accessible, Interop-
erable and Reusable) of computational protocols.

Methods
Workflow characteristics
PROTEOMAS is a workflow for efficient processing 
of MS-based proteomic datasets in a high throughput 
manner. The workflow is fully automated and imple-
mented in Python (version 3.5) and R (version 4.1.0) in 
a platform-independent manner (usable under Windows, 
Linux and MAC). In addition, it can be applied on any 
dataset, either publicly available or de novo generated by 
an LFQ approach, which includes multiple replicates for 
each condition or treatment (n ≥ 3). The corresponding 
code can be found under https:// github. com/ Ailee nBahl/ 
PROTE OMAS.

In brief, PROTEOMAS starts from MaxQuant out-
put files and performs a series of statistical steps, which 
are explained in more detail in the Results section. The 
workflow starts with typical data processing steps like 
filtering, transformation, normalization, imputation and 
outlier removal. Subsequently, proteins which are signifi-
cantly altered among conditions are identified. Protein 
set enrichment analysis is used to identified enriched 
KEGG, Reactome and HALLMARK pathways as well as 
GO terms. A flowchart (Fig.  1) summarizing the work-
flow steps was created using the yEd tool https:// www. 
yworks. com/ produ cts/ yed.

Obtaining input data
PROTEOMAS can be used to analyze the user’s own as 
well as public proteomic datasets. Public datasets may be 
retrieved from the PRIDE [36] (PRoteomics IDEntifica-
tions) Archive, which is a public data repository of MS-
based proteomic data (https:// www. ebi. ac. uk/ pride/ archi 
ve). The PRIDE Archive includes currently over 20.000 
(state November 2022) projects and this number is rap-
idly increasing. From PRIDE, the user may download 
raw files for each project of interest and subject them to 
a MaxQuant analysis. Instead, for many projects Max-
Quant output files are available on PRIDE along the cor-
responding raw data which can be used directly as input 
for the workflow.

Raw data analysis
In case only raw data is available for a project of inter-
est, MaxQuant has to be run before PROTEOMAS. 

https://github.com/AileenBahl/PROTEOMAS
https://github.com/AileenBahl/PROTEOMAS
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed
https://www.ebi.ac.uk/pride/archive
https://www.ebi.ac.uk/pride/archive
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MaxQuant [14] is an established proteomics software, 
which is primarily used for protein identification and 
quantification, using algorithms specifically developed 
for the analysis of high-resolution quantitative MS data. 
It performs data integration and statistical validation for 
protein inference by using false discovery rates (FDR). 
MaxQuant output files are tables of the detected pep-
tides, proteins and protein groups. MaxQuant (version 
1.6.14) was used in this work to process raw MS-based 
proteomics files by searching either against human, rat 
or mouse Uniprot databases (State: March 2021), respec-
tively. The false discovery rate was set to 1% (default 
value). For advanced protein identification, the ‘Match 
between runs’ parameter was enabled. Protein nor-
malization and quantification was done in MaxQuant 
by applying the LFQ parameter, in which the minimum 
number of unique peptides was set to 1. The workflow’s 
input is the ‘proteinGroups.txt’ output file generated by 
MaxQuant analysis, which contains the identified protein 
groups, all-, razor- and unique peptides, as well as LFQ 
intensities. Normalized LFQ intensities generated by 
MaxQuant are exported from the ‘proteinGroups.txt’ file 
and used for further analysis.

Statistical analysis
All data cleaning, transformation and filtering steps 
were performed using basic Python (version 3.8), as 
well as some standard additional packages like pandas 
and numpy. In addition, for the statistical analysis some 
more advanced R packages (R version 4.1.0) were embed-
ded into the Python code using the rpy2 package. For 
the imputation of values missing completely at random 
(MCAR) we used the R package missForest [20] with 
the number of trees set to 30 and the maximum number 
of iterations set to 3. In addition, the PCAGrid [37, 38] 
method from the rrcov package is used to automatically 
detect outlier samples. All arguments were set to default. 
In case of insufficient metadata, the NbClust [21] package 
is used for prediction of the optimal number of groups 
(k) and group assignment using k-means algorithm. Lin-
ear modeling was performed using the lm() function 
from R and false discovery rates (FDRs) are computed 
using Python’s statsmodels.stats.multitest package. This 
results in a list of significantly altered proteins for each 
analyzed dataset with cut-offs set to FDR < 0.05 and log 
ratio of abundances ≥ log2(1.5).

Protein set enrichment analysis
Protein set enrichment analysis is a method used for 
the biological interpretation of the obtained sets of 
proteins with significantly altered abundances. Differ-
ent databases or ontologies can be used to this end. In 
this work, protein enrichment analysis was performed 

Table 3 Selection of requirements of the OECD Transcriptomics 
Reporting Framework which are relevant for PROTEOMAS

Task Required information

Normalization - Normalization method
- Background data subtraction
- Method of background calculation
- Weighting procedure
- Log transformation
- Data trimmed?
- Control samples removed before
normalization?
- Formulas
- Link/repository/accession number for
deposited normalized data + format + 
description of raw data tables

Data filtering - Low signal intensities
- High variability between technical repli-
cates
- Which methods?
- Which cut-offs?

Outlier removal - Method for identification and thresholds
- Exclusion at which processing step
- List of samples excluded and per sample
Justification
- Removal before or after normalization and
Justification

Discovery of differentially 
abundant molecules 
(DAMs)

- Name and version of software
- Operating system
- Name and version of additional libraries
- Availability of software, hyperlinks or 
source
codes
- Table of all contrasts / conditions com-
pared for
DAM identification
- Table of number of samples in each group 
for
DAM identification
- Identification of samples with expected
covariances (due to shared conditions 
during
processing)
- Identification of technical replicates
- Name and description of statistical 
approach
- Data transformation performed
- For effects models: Specification of effects
models used and effects that were mod-
elled
- For pairwise comparison approaches:
specification of test and values (any
transformation or adjustment) being used
- Specification of decision criteria (nominal 
alpha
value, p-value threshold, multiple testing
correction method, adjusted threshold 
value,
log fold-change cut-off level) including 
exact
order of operations
- Output and supporting files according to 
the file
manifest, list all files including a description,
describe rows and columns of tables, 
analysis
scripts, software configurations or tables of
metadata
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using the R-package ‘fgsea’ [39]. Background sets were 
obtained from the Human Molecular Signatures Data-
base (MSigDB) [40] (version 2022, human). Uniprot IDs 
of the analyzed proteomic datasets were mapped to gene 
names using the Uniprot.ws package from R. Mouse and 
rat gene names were mapped to human ones using the 
msigdbr() package. After these id transformations, results 
from the proteomic experiments are ready to be com-
pared to the background databases.

Different databases are used to obtain information on 
enriched gene sets. Kyoto Encyclopedia of Genes and 
Genomes or shortly KEGG (www. kegg. jp/ kegg/ pathw 
ay. html) is a bioinformatics database resource for under-
standing biological and cellular functions as well as bio-
logical pathways from a genomic perspective [41]. The 
database is online available and can be used to analyze 
and classify genes into their respective functional path-
ways, which are a collection of reference maps that corre-
spond to a known functional or biological network. The 
‘KEGG PATHWAY’ category represents pathway maps 
in various types of molecular networks, such as reac-
tion and interaction networks for metabolism, cellular 
processes networks, disrupted reaction and interaction 
networks of human diseases, as well as chemical struc-
ture transformation networks for drug development. 
Similarly, the REACTOME database (https:// react ome. 
org/) [42] contains manually curated pathways describ-
ing various molecular processes. For REACTOME gene 
set in the MSigdb, the original REACTOME pathways 
have been filtered to remove redundancy between the 
different sets. The Gene Ontology (GO) knowledgebase 
(www. geneo ntolo gy. org) describes biological informa-
tion based on three main layers: biological process (BP), 
cellular component (CC) and molecular function (MF). 
HALLMARK gene sets represent a collection of well-
defined biological states or processes which show coher-
ent expression [40].

In addition to the established databases and gene sets 
described above, we specifically created the so-called 
“Lung Inflammation Key Event” gene set. This set incor-
porates 266 genes that are known to be regulated in lungs 
undergoing inflammation. These genes were extracted 
from 35 papers addressing explicitly this topic. The list 
of included genes, as well as the citation to the origi-
nal articles, is given in Additional file 1: Table  S1. With 
this gene set we aim at comprehensively describing the 
important key event of inflammation which is present 
in many different AOPs, and particularly in the AOP for 
lung fibrosis.

The Python script created in this work obtains enrich-
ment scores for all of the aforementioned databases. All 
significantly enriched terms having a FDR less than 0.05 
are collected in a single file, which includes the category 

(e.g. Process, Function, KEGG), the term (e.g. GO identi-
fier), the description, as well as the p-value and the FDR 
values for each enriched term. The enriched terms gener-
ated by PROTEOMAS were used for data interpretation. 
Within this work, we mainly concentrated on the inter-
pretation of HALLMARK pathways.

Datasets and application of the workflow
We randomly selected publicly available proteomic 
datasets from the PRIDE Archive repository, which 
originate from studies on lung alterations. We focused 
on pulmonary alterations because we intend to investi-
gate the inhalative toxicological effects of NM in future 
studies. First, we prioritize cancerogeneous effects 
induced by NM. Therefore, we compiled a collection of 
25 proteomic datasets (Table  1) to generate a prelimi-
nary map of lung alterations, eight of which are related 
to lung cancer and lung cancer treatments. The other 
projects cover different pulmonary traits as a back-
ground set of alteration as well as five studies on NM 
treatments. All studies were analyzed in an automated 
manner by the PROTEOMAS workflow. Venn diagrams 
comparing original findings against those obtained 
from PROTEOMAS were generated using R’s VennDia-
gram package.

Report generation according to requirements of the OECD 
transcriptomics reporting framework
During data evaluation PROTEOMAS automatically 
generates a report summarizing relevant information 
on the data analysis. The recorded information is in line 
with the requirements laid down in the transcriptomics 
reporting framework of the OECD. The requirements 
are summarized in Table 3.

Abbreviations
AOP  Adverse outcome pathways
DAM  Discovery of differentially abundant molecules
DAPRM  Data acquisition and processing reporting module
DARM  Data analysis reporting module
DDA  Data-dependent acquisition
FAIR  Findable, accessible, interoperable and reusable
FDR  False discovery rate
GARD  Genomic allergen rapid detection
GSEA  Gene set enrichment analysis
kNN  K-nearest neighbors
LFQ  Label-free quantification
LOD  Limit of detection
MCAR   Missing completely at random
MoA  Mode-of-action
MRF  Metabolomic reporting frameworks
MS  Mass spectrometry
OECD  Organisation for Economic Cooperation and Development
TRF  Transcriptomic reporting frameworks
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1 Abstract 
 

Nanomaterials (NMs) offer plenty of novel functionalities. Moreover, their physicochemical 

properties can be fine-tuned to meet the needs of specific applications, leading to virtually unlimited 

numbers of NM variants. Hence, efficient hazard and risk assessment strategies building on new 

approach methodologies (NAMs) become indispensable. Indeed, the design, the development and 

implementation of NAMs has been a major topic in a substantial number of research projects. One of 

the promising strategies that can help dealing with the high number of NMs variants is grouping and 

read-across. Based on demonstrated structural and physico-chemical similarity, NMs can be grouped 

and assessed together. Within an established NM group, read-across may be performed to fill in data 

gaps for data-poor variants using existing data for NMs within the group. Establishing a group 

requires a sound justification, usually based on a grouping hypothesis that links specific physico-

chemical properties to well-defined hazard endpoints. However, for NMs these interrelationships are 

only beginning to be understood. The aim of this review is to demonstrate the power of 

bioinformatics with a specific focus on machine learning (ML) approaches to unravel the NM Modes-

of-Action (MoA) and identify the properties that are relevant to specific hazards, in support of 

grouping strategies. This review emphasizes on the following messages: 1) ML supports identification 

of the most relevant properties contributing to specific hazards; 2) ML supports analysis of large 

omics datasets and identification of MoA patterns in support of hypothesis formulation in grouping 

approaches; 3) omics approaches are useful for shifting away from consideration of single endpoints 

towards a more mechanistic understanding across multiple endpoints gained from one experiment; 

and 4) approaches from other fields of Artificial Intelligence (AI) like Natural Language Processing or 

image analysis may support automated extraction and interlinkage of information related to NM 

toxicity. Here, existing ML models for predicting NM toxicity and for analyzing omics data in support 

of NM grouping are reviewed. 
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2 Introduction 
 

Engineering physicochemical properties of nanomaterials (NMs) such as size, morphology or surface 

chemistries has become common practice in order to meet the needs of specific applications. This has 

resulted in a large variety and a steadily increasing number of different NMs or nanoforms (NFs), as 

defined in specific regulatory frameworks1. However, adjusting NM physicochemical properties does 

not only impact their desired functionalities but the fine tuning also influences their original or 

expected behavior in biological milieu including, their uptake by cells, biodistribution, dissolution rate 

and/or toxicity to humans or the environment, and more. To overcome the need to fully characterize 

each and every NM variant for all possible toxicological outcomes, European chemicals legislation 

REACH1 allows for grouping and read-across, to either justify waiving specific tests or to fill in data 

gaps.   

For chemicals, grouping is well established as a ‘general approach for considering more than one 

chemical at the same time’2,3. The idea behind grouping approaches is that chemicals which are similar 

enough with respect to certain criteria (e.g., structural, physico-chemical properties, etc.) can be 

considered as a group. Chemicals within one group are then expected to show similar (eco-

)toxicological and/or environmental fate behaviour. Within this group, data gaps on toxicological 

behaviour for a certain member of the group can therefore be filled by read-across using information 

from the other members in the group. In general, grouping may support risk assessment as well as 

Safe(r)-and-Sustainable-by-Design (SSbD) approaches. Groups are established initially on the basis of 

structural similarity, which can be based on various principles such as common functional groups, 

precursors, breakdown products or a constant incremental change of the properties of interest across 

the group2,4. However, it then has to be demonstrated that these structural similarities result in a 

similar fate and/or (eco-)toxicity. Thus, knowledge of a common toxic mechanism or Mode-of-Action 

(MoA) can strongly facilitate grouping, since grouping always requires a proper scientific justification 

which is mainly supported by establishing a link between specific properties and the toxicological 

endpoint of interest. In addition, grouping is endpoint-specific meaning that group membership may 

vary depending on which toxicity endpoint is considered. 

In the last decade several grouping frameworks have been developed for NMs, e.g. the MARINA 

grouping and read-across approach5, the DF4nano Grouping Framework6, which are comprehensively 

summarized in Oomen et al.7 and Giusti et al.8 The most recent and comprehensive framework is the 

GRACIOUS9 grouping framework. Additional insights into NM grouping in the context of the EU 

chemical legislation are detailed in Mech et al.10 The most recent GRACIOUS framework is based on a 

hypothesis-driven approach. It proposes several grouping hypotheses, which link specific 

physicochemical properties with specific fates and/or toxicities, it tested the hypotheses, in case 

studies11-16 and lastly, it has developed guiding principles to support users to formulate their own 

grouping hypotheses17.  

Nevertheless, grouping of NMs remains a challenge. In particular, unravelling relationships between 

specific physicochemical properties and toxicities is not trivial due to the large panel of interdependent 

physicochemical properties that are needed to describe a single NM18. The number- based particle size 

distribution, surface functionalization or treatment, shape or morphology as well as surface area are 

certainly the most central ones19,20. Dissolution rate, state of agglomeration/aggregation and surface 

reactivity have also been shown to be of high relevance21,22. However, plenty of other NM properties 



exist that are not tested and, several of the NM properties are polydisperse already after production 

and additionally have the potential to change during the life cycle, depending on the environment/ 

biological medium in which they are suspended or incorporated. This renders the physicochemical 

characterization of NMs both in their dry state and as applied, a complex task. Overall, identifying 

which physicochemical parameters are driving toxicity remains the key challenge in NM grouping23,24.  

Omics approaches are a very promising tool which have already frequently been applied for chemicals 

including NMs. Different omics layers can be investigated, e.g., levels of gene transcription 

(transcriptomics), protein abundances (proteomics) or levels of small molecule metabolites 

(metabolomics). Among them, transcriptomics is by far the most studied omics level for describing the 

molecular changes induced by NMs. This is mainly due to the fact that transcriptomics technologies 

are highly advanced, the evaluation is well standardized and interpretation of the results is relatively 

straightforward due to the well-studied and well-annotated state of this particular level of biological 

organization25-27 and well-established tools. On the other hand, while being closer to the actual 

phenotype, indicating the potential for more direct causal association with the adverse outcome (AO), 

i.e., endpoint of interest, proteomics or metabolomics are much complex and do not at present have 

standardized protocols for the analysis and interpretation of data. The OECD reporting frameworks 

have been established for both transcriptomics28 and metabolomics29; however, standardized 

evaluation and interpretation for metabolomics and proteomics is still lagging behind. While for now, 

it is possible to individually assess and report the single omics end point (transcriptomics or 

metabolomics or proteomics), their combined evaluation, which may be important to obtain a holistic 

view of the biological response to an exposure remains difficult. Thus, developing models that are 

based on omics data is also consistent with the major shift away from pure consideration of single 

endpoints towards a more mechanistic understanding which can be observed within the field of 

toxicology.  In general, omics approaches yield the advantage that multiple endpoints are considered 

at the same time as a whole panel of cellular changes is measured in one single experiment, allowing 

for investigation of dependencies between events and endpoints.  

Within NM experiments, usually omics data for a few materials are obtained and analyzed 

subsequently30,31. While this provides useful insights into various biological changes in that specific 

experiment, it is difficult to derive general patterns and to extract which changes are most relevant in 

terms of grouping NMs with respect to a certain endpoint. Especially, the high-dimensional setting of 

omics experiments with the number of parameters being much larger than the number of samples is 

a major challenge. Here, meta-analyses may be very useful to counterbalance this situation. Due to 

data sharing rules in the community and corresponding journals, huge databases of publicly available 

datasets exist for different omics levels like the National Center for Biotechnology Information Gene 

Expression Omnibus (NCBI GEO)32 for transcriptomics or PROteomic IDEntification(PRIDE) database33 

for proteomics. While these datasets are naturally covering a wide range of studied traits like 

chemicals, drugs or diseases, omics datasets should theoretically allow integration across those 

traits. Such meta-analyses settings may be beneficial for the detection of patterns as they are based 

on a greater knowledge base and noise occurring in single studies may be cancelled out.  

 

Machine learning (ML), a subfield of artificial intelligence (AI), may be highly valuable for addressing 

this task. The greatest advantage of ML is that such models are able to automatically learn patterns 

in large datasets and derive associated predictions. Generally, data to be modeled is described in a 

feature vector or matrix. This comprises values for measured input features like physicochemical 

properties or others. Additionally, a respective outcome variable, describing for instance a certain 



toxicity outcome can be linked to the input data. ML algorithms range from classical linear or logistic 

regression models to more complex ones such as Random Forests (RFs) or Support Vector Machines 

(SVMs) and Deep Learning models like Neural Networks (NNs). The choice of ML algorithm used in a 

study should be based on the amount and complexity of the available data as well as the specific goal 

in order to obtain robust trustworthy results. In an optimal dataset for the development of ML 

models, the number of samples should be much larger than the number of features describing these 

samples. However, in biological settings this is rarely ever the case. Therefore, the main goal for 

implementing useful ML models is to find the right balance between model complexity and 

generalizability – thus, avoiding overfitting. Model complexity means that a model is complex enough 

to be able to describe a set of so-called training data, at the same time, be able to predict outcomes 

for previously unseen test data.  Also, there is usually a trade-off between flexibility/power and 

interpretability/inference capacity of a ML method34,35. This means that simplest methods are also 

the most easily interpretable ones, such as linear regression (and variants such as elastic net 

regression) or decision trees. More complex methods such as RF and SVMs are significantly less 

interpretable, and the least interpretable models are neural nets and the multilayered deep neural 

networks (deep learning models). Explainable AI (XAI) is a subset of AI and ML techniques focused on 

making AI systems more understandable, transparent, and interpretable for humans. This has 

implications also for regulatory toxicology, as models should be maximally interpretable for reasons 

of transparency and governance. 

 

Again, ML are optimally suited to aid the analysis of omics data for several reasons. Omics datasets 

are high-dimensional and rich in describing many cellular alterations within each single 

measurement, in which patterns and relationships can be detected and that may not be visible using 

traditional statistical methods. However, the high dimensionality of the data can also be challenging. 

Here, moving from datasets limited to single experiment or materials towards integration of various 

datasets in a meta-analysis setting may be beneficial. In such cases, ML is well-suited to handle the 

complexity of the datasets, unraveling the hidden interactions or dependencies between molecular 

components. ML can also be used to automatically select the most relevant features such as 

transcripts, proteins or metabolites related to specific molecular events or key event (KE), thereby 

reducing the dimensionality and improving the interpretability, resulting in identification of potential 

biomarkers. ML can also directly be used for omics-driven predictive modeling. Additionally, meta-

analyses are great tools for handling noise in the data and distinguishing true from random signals36. 

ML can support integration of multiple omics layers. Finally, a great advantage of ML methods is that 

they can easily be adapted by re-training once new data become available. Thus, ML models are well 

suited for reducing the complexity of analysis of omics datasets, revealing the important biological 

traits perturbed after exposure. Moving forward, once NMs with similar MoAs have been identified, 

one may investigate corresponding similarities and differences in physico-chemical properties and 

elucidate the most relevant properties for formulating a grouping hypothesis, and also to provide 

design principles for NMs with reduced hazard. Advances in high-throughput transcriptomics 

facilitate the creation of large and uniform data sets that are ideally suited for ML and grouping 

applications as the available technologies reduce the cost of transcriptome profiling by up to 10-20-

fold37. Coupling together omics and high-throughput screening technologies in a tiered approach 

increases the granularity and informativeness of the data further38. XAI may also facilitates MoA 

discovery as it helps to interpret the decision made by ML models. In the context of transcriptomics-

derived MoAs, tools need to be developed, in part, to conform to XAI principles while maximizing 

predictive ability.   



 

Some recent reviews have summarized ML models in the NM field9,39-41. However, they have not or 

only scarcely considered the potential of omics data in the context of NM grouping.  The aim of this 

review is to provide an overview of existing ML models that enable complex data integration and 

analysis in support of NM grouping and to shed light on how omics data may be used in conjunction 

with ML models in the development of reliable grouping frameworks. The review focuses only on 

hazard endpoints which are considered relevant under REACH (see Table 1) for human toxicity. ML 

models for other endpoints like cytotoxicity or ecotoxicity as well as those predicting NM uptake or 

protein corona formation are excluded from this review.  

 

3 Relevant hazard endpoints 
 

Grouping allows waiving of tests or filling the data gaps related to a target substance by using data 

from a previously tested source substance. In the European Union, the most important overarching 

regulation for chemicals is REACH. The Annexes VII to X of the REACH regulation1 specify which 

information the manufacturers need to provide when registering a new substance. These 

requirements are dependent on the tonnage of production per year. Thus, higher tonnages lead to 

more extensive toxicological testing requirements. In order to tackle specific information requirements 

for NMs, the REACH annexes VII to X have been updated to specifically consider nano-specific 

information needs21. In addition, work is underway to modify or adapt test guidelines in consideration 

of specific properties and property specific effects of NMs42. 

Apart from REACH, other specific legislations exist for chemicals with specific applications, e.g., 

cosmetics43, food contact materials44 or pesticides45. All these regulations consider (to a large extent) 

similar toxicological endpoints. The relevant endpoints for several legislation for NMs have also been 

collected in the European Union Observatory for NMs (EUON) report on novel approach 

methodologies (NAMs, refer to a set of innovative techniques or testing strategies used in toxicology 

and risk assessment to evaluate the safety of chemicals.) for NMs46 as well as in a recent publication 

from Bleeker et al.47 which intends to support harmonization of the testing requirements for NMs 

across EU legislations. An overview on relevant hazard classes for human health as described in these 

documents is given in Table 1. 

 

While for some of the above-mentioned endpoints such as skin corrosion/irritation or serious eye 

damage/irritation, NAMs are well-established and NAMs data is accepted for regulatory decision 

making, for other more complex endpoints, NAM development is still on-going. Although a push for 

replacing animal tests with validated NAMs is in full swing internationally48 to date, toxicological testing 

for complex endpoints still largely relies on animal studies. 

  



Table 1: Relevant endpoints for human health under REACH. The endpoints to consider depends on 

the production amount of the substance in tonnage (tonnage triggered). 

Endpoint Description 

 

Acute toxicity Adverse effects after single dose, multiple doses given within 24 

hours or inhalation exposure of 4 hours 

Skin corrosion/irritation Irreversible (corrosion) or reversible (irritation) damage to the skin 

Serious eye 

damage/irritation 

Serious eye damage: tissue damage in the eye, or serious physical 

decay of vision, which is not fully reversible within 21 days 

Eye irritation: changes in the eye, which are fully reversible within 

21 days 

Respiratory or skin 

sensitization 

Respiratory sensitization: hypersensitivity of the airways following 

inhalation of the substance  

Skin sensitization: allergic response following skin contact 

Mutagenicity / Genotoxicity Alteration of the structure, information content or segregation of 

DNA 

Carcinogenicity Induction of cancer or increase of its incidence 

Reproductive toxicity Adverse effects on sexual function and fertility in adult males and 

females 

Developmental toxicity in the offspring (before or after birth) 

Specific target organ toxicity 

(STOT) – single exposure 

Specific, non-lethal target organ toxicity after single exposure 

Specific target organ toxicity 

(STOT) – repeated exposure 

Specific, non-lethal target organ toxicity after repeated exposure 

(Developmental) 

neurotoxicity 

Disruption of the nervous system of the individual or in utero or 

early postnatal development 

Effects on gut microbiome Effects on gut microbiome variability and dysbiosis 

Endocrine disruption Adverse effects connected to endocrine system like developmental 

malformations, disorders of immune and nervous systems functions 

or increased cancer risk 

Hypersensitivity / food 

intolerance 

Adverse reaction to food including or excluding the immune system 

(Developmental) 

immunotoxicity 

Adverse effects on the structure and function of the immune system 

in the individual or its offspring 

Phototoxicity Toxic response after exposure to environmental light 

 

 

4 NAMs and NAM frameworks 
 

For many chemicals, and especially for NMs, the data for complex endpoints is very scarce and an 

increasing number of new materials is entering the market every year. Filling the data gaps and testing 

new materials using animal studies raises not only ethical concerns but is also limited with respect to 

time and cost efficiency. In addition, human relevance of animal models is frequently questioned and 

https://reachonline.eu/clp/en/kw-exposure.html
https://reachonline.eu/clp/en/kw-irritation.html
https://reachonline.eu/clp/en/kw-substance.html
https://reachonline.eu/clp/en/kw-single-exposure.html
https://reachonline.eu/clp/en/kw-single-exposure.html
https://www.sciencedirect.com/topics/medicine-and-dentistry/nervous-system


the underlying toxicity mechanisms are often less obvious in animal models. Therefore, NAMs are 

becoming increasingly important for safety assessment in the light of the 3R principles for reducing, 

refining and replacing animal studies. Several NAMs exist and are based on in vitro, in chemico and in 

silico methods. This also includes high-throughput screening, allowing for testing of multiple chemicals 

at a time and high-content methods like omics approaches that enable comprehensive understanding 

of the underlying mechanisms49. 

One major advantage of NAMs is that they allow unraveling toxicity mechanisms which may greatly 

improve hazard and risk assessment in the future. However, single NAMs are not sufficient to describe 

an AO. Instead, a battery of NAMs may be required to sufficiently assess an AO. Therefore, NAM 

frameworks combining multiple individual NAMs are needed. 

To date, several NAM frameworks have been developed. Within REACH, one of the most important 

alternatives relying on NAMs frameworks is the concept of grouping and read-across. For chemicals 

in general, grouping is already well established and frequently used in the regulatory decision 

making, with structural similarities or common functional groups being some of the key parameters 

defining similarity. In contrast, for NMs, the situation is much more complex and establishing reliable 

grouping approaches is not trivial. This stems from the facts that 1) the number of physico-chemical 

properties needed to sufficiently describe a NM is much large and to date, no simple relationship 

between any single property and the toxicological outcomes has been consistently observed. This 

may also be due to the polydispersity of NM (or any other particle) in their properties, such that not 

all particles in one test preparation exhibit the exactly identical properties; 2) the NM physico-

chemical properties change during the lifecycle and/or in different environments; 3) other tasks such 

as exposure characterisation and dose estimation are an issue; and 4) NMs interfere with some assay 

components, requiring optimisation of existing methods or development of novel methods. All of this 

has resulted in inconsistent results and reporting, leading to an inability to generalise the observed 

results across NMs of similar properties.  

Instead of purely relying on read-outs from in vivo or in vitro testing, information on common MoAs or 

toxicity mechanisms may greatly advance NM grouping approaches and can help to justify an existing 

grouping hypothesis2. The knowledge of underlying MoAs can then in turn greatly advance two 

important concepts: Adverse Outcome Pathways (AOPs) and Integrated Approaches to Testing and 

Assessment (IATAs).  

AOPs (Ankley et al. 2010) are conceptual frameworks which aim to causally link certain biological 

events in a sequential manner, starting from a molecular initiating event (MIE), inducing multiple KEs 

and finally leading to an AO. The MIE thereby represents the interaction of a NM with a biomolecule 

or an event after its first interaction. That is followed by KEs at multiple levels of biological organization 

that are essential to the disease progression and can be measured, e.g., at the cellular, tissue or organ 

level. The AO may then be one of the endpoints mentioned in Table 1. Several AOPs have been 

proposed for chemical induced toxicity and may also be applicable or adaptable to NMs50-53. One such 

example is AOP173 from the AOPwiki (https://aopwiki.org/aops/173) which describes the 

development of pulmonary fibrosis after substance interaction with pulmonary resident cell 

membrane components, which is relevant to NMs. 

Often AOPs are used as a basis to establish IATAs, which are frameworks for evaluating complex hazard 

endpoints by integrating multiple sources of information for studying various aspects of the toxicity 

endpoint under consideration53,54. A proper understanding of the underlying MoA and related AOPs is 



important for developing reliable IATAs, as they enable identification of the right assays reflecting KEs 

to be tested. IATAs allow integration of the different assay outcomes and provide information on a 

potential hazard in a weight-of-evidence manner. Within an IATA, different kinds of NAMs can be 

combined. 

In the following sections, an overview of existing approaches based on ML and omics supporting NM 

grouping and potentially also other NAM frameworks is given. 

 

5 ML and existing ML models for NMs 
 

ML models are well suited for predicting outcomes with respect to NM toxicity and for selecting the 

most relevant descriptors influencing toxicity. In general, supervised and unsupervised ML models, as 

well as some mixed types exist. In supervised models, the goal is to map labels assigned to each 

sample to variances observed in the input data. In the case of NM grouping, these labels are usually 

representing a toxicity endpoint, e.g., the outcome of an in vivo study or an in vitro assay. Depending 

on the nature of this response variable, ML models can be divided into regression models in which 

the outcome variable is continuous and classification models with discrete outcome variables. 

Instead, unsupervised models use unlabeled data and thus, only rely on variances in the input data 

and seek to find patterns therein. An overview of frequently used ML algorithms34,35 is given in Figure 

1. 

 

 

Figure 1: Overview on common ML algorithms. 

  

Machine learning 
algorithms

Machine learning 
algorithms

UnsupervisedUnsupervised

ClusteringClustering

Principle 
Component 

Analysis (PCA)

Principle 
Component 

Analysis (PCA)

Linear 
discriminant 

analysis (LDA)

Linear 
discriminant 

analysis (LDA)

SupervisedSupervised

Regression 
models

Regression 
models

Decision treesDecision trees

Random forests 
(RFs) 

Random forests 
(RFs) 

Support vector 
machines (SVMs)

Support vector 
machines (SVMs)

Deep learningDeep learning

Semi-supervisedSemi-supervised
Reinforcement 

learning
Reinforcement 

learning



To identify relevant studies, a search in Scopus using the following search query: TITLE-ABS-

KEY ( ( nanoparticle  OR  nanomaterial OR nanoparticles  OR  nanomaterials  )  AND  ( "in 

silico"  OR  computational  OR  "machine learning"  OR  "case study" )  AND  toxicity ), was conducted. 

This search matched 988 publications of which 657 publications were tagged as primary publications 

(Stand: 11/2023). From these publications, those using a ML model to predict one of the relevant 

endpoints in Table 1 were identified. In addition, relevant studies from previous reviews on ML 

models in the NM field9,39-41 were also added. An overview of the relevant approaches is provided in 

Table 2.  

Except for one study, all identified approaches concentrate either on mutagenicity and genotoxicity 

or on STOT as the modelled endpoint. In addition, almost all models include supervised approaches. 

Most frequently, tree-based approaches, namely decision trees or  

RFs, are used to predict toxicity. Often, these are preceded by an unsupervised analysis using 

hierarchical clustering or Principle Component Analysis (PCA). Overall, the predictive performance of 

the models was found quite good (0.7 to 1.0). However, it is also easily visible from Table 2 that the 

number of available datasets is very small in most cases and usually not sufficient to build robust ML 

models. In addition to predicting toxicity outcomes, many studies also perform feature selection to 

reduce the model to only the most relevant descriptors. From Table 2, it becomes obvious that the 

selected descriptors vary largely across studies. Thus, even though most models show relatively high 

predictive performance, it may be expected that their applicability domain is rather limited. With 

respect to selected materials, there is a strong focus on metal oxide NMs and multi-walled carbon 

nanotubes (MWCNTs). Other materials are not sufficiently covered so far and thus, cannot easily be 

assessed with the available models. As properties by which different material classes and materials of 

different shapes can be described may differ, integrating various types of NMs in a common model is 

not straightforward. 

 

This raises the question, whether establishing NM grouping approaches on the level of intrinsic 

physico-chemical properties is sufficient. Predictive models and grouping approaches based on 

intrinsic physicochemical properties -describing the chemical and physical structures have two major 

advantages: 1) they can mostly be controlled directly during the production process and 2) many of 

the intrinsic properties can be measured more easily compared to extrinsic properties, which often 

require more complex methodologies, which are not well-standardized. However, intrinsic physico-

chemical parameters alone are insufficient to group NMs in a reliable manner. Extrinsic descriptors 

reflecting the biological activity of NMs are superior compared to approaches based on simple physico-

chemical parameters55 and they need to be derived to separate distinct NM hazard groups sufficiently 

well. However, grouping of NMs is still not perfect. In addition, intrinsic as well as extrinsic physico-

chemical properties suffer from the fact that the applicability domain usually restricts models to very 

specific subsets of NMs.  Due to all these reasons, NM grouping may be viewed as a complex endevour 

and further efforts are needed to develop effective grouping strategies. 

In a more general approach, one may try to group NMs based on a common MoA. This is closely related 

to the concept of AOPs and the analysis of omics experiments which are described in the next section. 

Omics measurements may especially be helpful to separate different MoAs and thus solve the 

difficulties for NM grouping that result from the fact that some AOs in vivo or in vitro may feature 

different MoAs and in other cases, different MOAs may lead to the same AO.  



Table 2: Predictive ML models for NM toxicity and grouping in mammals or mammalian cell models 

Modelled 

endpoint 

Reference Study 

type 

Model type Feature 

selection 

performed 

Computational 

validation 

performed 

Study design / 

dataset 

Selected descriptors 

for best model 

Predictive 

performance of 

best model 

Germ cell 

mutagenicity 

Lamon et al., 

201856 

In vitro Hierarchical 

clustering, 

PCA, RF 

Gini index / 6 TiO2, testing 

RAAF 

workflow, 

read-across for 

Comet assay 

Content of organic 

matter, total non-

TiO2, biodurability in 

different media 

/ 

Aschberger 

et al., 201957 

In vitro / 

in vivo 

(different 

rodents) 

Hierarchical 

clustering, PCA 

PCA loadings / 19 MWCNTs, 

testing RAAF 

workflow, 

different 

genotoxicity 

assays (Comet, 

micronucleus) 

in vitro and in 

vivo 

Length, SSA, CEA:H, 

and CEA:N 

/ 

Murugadoss 

et al., 202158 

In vitro PCA, 

regression and 

RF 

/ Trainings and 

test set 

TiO2 case study Agglomerate size R2 = 0.658 

Kotzabasaki 

et al., 202159 

In vitro / 

in vivo 

(different 

rodents) 

PCA, SVM, RF, 

Logistic 

regression, 

Naïve Bayes 

Recursive 

Feature 

Elimination 

Trainings and 

test dataset 

(Kennard-Stone 

algorithm) 

15 MWCNTs 

from literature 

Length, zeta 

potential, Purity, 

Polydispersity index 

Accuracy = 0.8 

Sizochenko, 

201960 

In vitro / 

in vivo 

Support vector 

machines 

/ / 21 MO NMs, 

genotoxicity in 

Electronegativity of 

the metal and 

the charge of its ion 

Balanced 

accuracy = 0.75 

for Comet assay 



(Wistar 

rats) 

(SVM), Naïve 

Bayes, k-

nearest 

neighbors 

(KNN), and 

Decision Tree 

(DT), Self-

organizing 

maps (SOM) 

Comet assay 

and Ames test 

and 0.83 for 

Ames test  

Ambure, 

202061 

In vitro / 

in vivo 

(different 

rodents)  

LDA, RF Genetic 

algorithm 

(GA) and best 

subset 

selection 

(BSS) 

Internal 

(training set) 

and external 

(test set) 

validation, Y-

randomization 

test 

and 10-fold 

cross-validation 

for RF  

7 metal oxides 

nanoparticles 

(SiO2, ZnO, 

TiO2, CuO, 

Fe2O3, Fe3O4, 

Al2O3,) 

classification-

based multi-

tasking (mtk)-

QSAR model 

predicting 

genotoxicity 

Concentration 

exposed, 

core size of 

nanoparticle, 

exposure time, 

experimental 

protocols, and cell 

lines + 5 calculated 

descriptors  

Accuracy = 0.94 

El Yamani et 

al., 202262 

In vitro PLS   seventeen 

NMs derived 

from titanium 

dioxide (TiO2), 

zinc oxide 

(ZnO), silver 

H-L energy, 
Ionization potential, 
HOMO energy, 
pristine (TEM) size 

 



(Ag) and silica 

(SiO2), comet 

assay with Fpg 

Halder et al., 

202063 

In vitro Perturbation 

theory 

machine 

learning 

(PTML) based 

QSTR 

approach 

 Training and test 

set + external 

validation data 

78 metal oxide 

NMs, in vitro 

Comet assay 

 

Number of 

heavy atoms and the 

size of the NMs, 

graph density 

Accuracy = 

97.81% 

Reproductive 

toxicity 

Ban et al., 

201864 

In vivo 

(different 

rodents)  

RF regression, 

Similarity 

network 

 training data 

sets (from 20% 

to 100%) were 

randomly 

selected from 

original data 

sets, with 10 

repetitions 

Based on 

public data for 

male rodents; 

carbon 

nanotubes, 

and Ag and 

TiO2 NPs 

 R2 = 0.624, RMSE 

= 0.198 

Specific 

target organ 

toxicity 

(STOT) – 

single 

exposure 

González-

Durruthy et 

al., 201965 

Ex vivo 

(Wistar 

rats) 

LDA and ANN 

based on 

linear and non-

linear 

classification 

algorithms 

 Training and 

validation set 

Prediction of 

mitotoxicity in 

rat kidney, 9 

types of CNTs, 

based on 

fractal SEM 

nanodescrip-

tors 

 Specificity = 

99.5% and 

sensitivity = 

99.2% 

Specific 

target organ 

toxicity 

Gajewicz et 

al., 201866 

In vivo Decision tree 

model 

Gini 

importance 

Training and test 

sets, multiple 

splits 

19 NM, NOAEC 

from STIS, 

protein 

Size, surface area, 

presence of a coating 

Balanced 

accuracy = 0.8 

for protein 



(STOT) – 

repeated 

exposure 

carbonylation 

and IOP (FRAS 

assay) 

carbonylation 

and 1.0 for IOP 

Bahl et al., 

201967 

In vitro / 

in vivo 

(Wistar 

rats) 

PCA with kNN, 

RF 

RFE LOOCV 11 NM (mainly 

SiO2), 

predicted 

outcomes: 

Macrophage 

assay and STIS, 

classification 

into active and 

passive 

Zeta potential, redox 

potential 

and dissolution rate 

Balanced 

accuracy = 0.82 

Bahl et al., 

202068 

In vitro / 

in vivo 

(Wistar 

rats) 

Prediction 

model based 

on 

multivariate 

logistic 

regression 

with Firth's 

bias reduction 

method 

Greedy 

search 

LOOCV 14 NM from 

various 

material 

classes, 

categorization 

based on 

surface 

reactivity, 

predicted 

outcomes: 

Macrophage 

assay and STIS, 

classification 

into active and 

passive 

Carbonylation assay 

potentially in 

combination with 

either FRAS or ESR 

with DMPO 

Balanced 

accuracy = 0.89 

for the 

macrophage 

assay and 0.83 

for STIS 



Marvin et al., 

201769 

In vitro / 

in vivo 

(different 

rodents) 

Bayesian 

network 

(network 

structure 

based on 

expert 

judgement) 

/ Validated with 

independent 

data  

 

Metal- and 

metal-oxide 

nanomaterials, 

based on 

international 

expert 

consultation 

and the 

scientific 

literature (e.g., 

in vitro / in vivo 

data) 

Elemental 

composition, surface 

coating, 

surface area, 

aggregation and 

particle size 

 

Prediction 

accuracy: 0.72 

for hazard 

potential and 

0.71 for 

biological effect 

Sheehan et 

al., 201870 

In vitro / 

in vivo 

(different 

rodents) 

Bayesian 

networks 

(combined 

with weight of 

evidence with 

MCDA (multi-

criteria 

decision 

analysis) 

methodology) 

/ Validated with 

independent 

data  

See Marvin et 

al., 201775 

See Marvin et al., 

201775 

Prediction 

accuracy = 0.67 

Drew et al., 

201771 

In vivo 

(different 

rodents) 

Dose-

response-

modeling, 

hierarchical 

clustering, 

Random 

Forest 

Mean 

squared 

error 

External 

validation set 

Data collected 

from 25 in vivo 

studies, 

various 

materials, 

pulmonary 

inflammation 

Density, surface area, 

and diameter 

Balanced 

accuracy = 0.8 



regression (for 

initial potency 

class 

assignment) 

and RF 

classification 

(for 

prediction) 

in rodents, 

materials 

classified into 

four potency 

groups 

Furxhi et al., 

202072 

In vitro RF Information 

gain analysis 

k-fold cross 

validation and 

external 

validation set 

Neurotoxicity 

prediction 

Exposure dose and 

duration, 

toxicological assay, 

cell type, zeta 

potential 

Accuracy: 0.98 

Gernand and 

Casman, 

201473 

In vivo 

(different 

rodents) 

Regression 

trees and RF 

Mean 

variance 

reduction 

10-fold cross-

validation 

Meta-analysis 

across 17 

CNTs, 

polymorpho-

nuclear 

neutrophils 

(PMNs), 

macrophages 

(MAC), lactate 

dehydrogenas

e 

(LDH), and 

total protein 

(TP) modelled 

separately; 

reflect 

PMN + macrophages: 

median diameter, 

mass mode 

aerodynamic 

diameter 

(MMAD), and cobalt 

content 

LDH: short median 

length, cobalt 

content 

TP: geometric 

variables, median 

length and median 

diameter, and 

MMAD 

R2 between 0.83 

for neutrophils 

and 0.95 for 

total protein 



immune 

response 

and cell 

membrane 

damage and 

death 

Gernand and 

Casman, 

201674 

In vivo 

(different 

rodents) 

RF, Monte 

Carlo 

resampling 

technique 

Mean 

variance 

reduction 

Out-of-bag error 

used 

Meta-analysis 

of pulmonary 

nanoparticle 

toxicity, 

concentration 

of LDH or the 

number of 

PMNs 

in 

bronchoalveol

ar lavage (BAL) 

fluid; CNT, 

TiO2, SiO2, 

ZnO, MnO 

Varies with modelled 

material classes, 

total mass more 

important than all 

physico-chemical 

parameters 

R2 = 0.97 



 

6 Omics approaches revealing NM MoA 
 

As described before, omics data have the potential to support NM grouping approaches by informing 

about underlying MoAs and induced AOPs. Thus, this review also focuses on predictive models for NM 

toxicity which include omics data as descriptors as well as other omics approaches which may 

potentially support NM grouping. Therefore, all omics-based tools and approaches were searched and 

below, important primary NM omics studies are described.   

Several studies were performed to describe the changes induced by NMs on the level of 

transcriptomics. Various in vitro75-77 as well as in vivo78-83 approaches have been described. Although 

scarcer, literature on the effects of NM treatment on other omics layers also exists. For proteomics, 

mass spectrometry gives the most comprehensive results and is therefore frequently used nowadays84-

87. Also, metabolomics changes are addressed in multiple studies88-90. In addition, some approaches 

considered multiple omics layers at the same time91-96. While this is not a comprehensive list of 

available studies, it is already clear, that these several omics datasets shed light on molecular changes 

induced by various NMs in vitro and in vivo from different perspectives, using different omics layers, 

techniques and methods, cell models, species and so on. The main question that remains is, how to 

use this existing information to support NM grouping. An overview of predictive models as well as 

other useful approaches will be given in the next section. In addition, the different obstacles rendering 

the development of omics-based models non-trivial is discussed.  

As mentioned previously, one of the major advantages with respect to omics data is that almost all 

journals require study authors to make the raw datasets belonging to a publication available. 

Therefore, a large amount of data is available in public databases, e.g., NCBI Gene Expression Omnibus 

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) for transcriptomic data or PRIDE archive 

(https://www.ebi.ac.uk/pride/archive/) for proteomic data. As ML models require large datasets with 

respect to the number of samples, reuse of this data to train or test models is of great value for 

developing robust approaches and has frequently been applied. In addition, meta-analyses of several 

omics-based studies may also broaden the understanding of molecular mechanisms and MoAs of NMs. 

Predictive ML models and other useful tools developed in the field of omics-based NM grouping are 

summarized in Tables 3 and 4, respectively. 

From the literature review performed here, we identified a few models that aim to predict NM toxicity 

or grouping based on omics measurements (see Table 3). The models use different ML algorithms to 

predict either in vitro or in vivo outcomes or to directly suggest grouping on NMs. All models yield high 

predictive performances of at least 0.7 for the validation set. To reduce the number of descriptors, two 

studies use feature selection 97,98 for reducing the parameters included in the final model thereby 

improving explainability.  

In addition, multiple other tools have been developed or used to support omics-based analysis of NM 

toxicity. Kohonen et al.99 developed a ‘predictive toxicogenomics space’ (PTGS) tool which yields a 

predictive signature for drug-induced liver injury (DILI). This tool has also recently been applied 

successfully to NMs100.  Serra et al.101 created the INSIdE NANO tools which contextualizes 

transcriptomic changes of NMs with those induced by drugs, chemicals and diseases.  A similar 

approach is followed by Bahl et al.102 who developed PROTEOMAS, a harmonized proteomic workflow 



which is applied to a case study in a very similar fashion. In addition, tools calculating benchmark doses 

(BMDs) based on omics data are also useful to support NM toxicity evaluation and grouping. Proposals 

for such tools have been made by Halappanavar et al.103, Gromelski et al.52 and Serra et al.104 Others 

have attempted to link physico-chemical properties of NMs to observations of changes in omics data. 

Kinaret et al.105 used coexpression networks and Bannuscher et al.106 and Karkossa et al.92 used 

Weighted Gene Correlation Network Analysis (WGCNA)107. Jagiello et al. developed a QSAR models for 

predicting transcriptomic pathway level response108. A complete list of identified approaches with 

more details is shown in Table 4. In addition, this table also lists several meta-analyses which may 

provide useful datasets for further model development or validation. 

 

  



Table 4: Predictive ML models for NM toxicity and grouping based on omics data 

Omics layer 

 
  

Reference Model type Feature 

selection 

performed 

Validation 

performed 

Study design Predictive 

performance of best 

model or proposed 

grouping 

Transcriptomics Furxhi et al., 

2018109 

Bayesian 

network 

 Internal 10-fold 

cross-validation + 

external test set + 

reliability 

validation set 

Eight different types of NM, 

certain pathways included 

into BN 

Depending on the 

endpoint, ~ 0.9 - 1.0 

for the test set and 

0.7-0.9 for reliability 

validation set   

Proteomics Yanamala et 

al., 201997 

HCA, LCA, L1-

l2-norm, SVM, 

t-test 

RFE External 

validation set 

Carboneous NMs, pulmonary 

toxicity (BALF) in mice 

Prediction accuracy 

= 0.9 - 1.0 

Billing et al., 

202086 

Fuzzy c-means 

algorithm, PCA 

  Fe3O4 nanoparticles 

doped with increasing 

amounts of cobalt, in BALF, 

modeling inflammation, 

cytotoxicity and genotoxicity 

PCA based on three 

protein signatures 

(NP response, 

NETosis, and NP 

response) as 

proposed grouping 

Multiomics Fortino et al., 

202298 

Bayesian 

information 

criterion, 

Similar 

Network 

Fusion, Logistic 

regression, RF 

PCA, LASSO, 

varSelRF, 

GARBO 

External 

validation set, 

70% training and 

30% test set 

31 industrially relevant 

ENMs, metals / metal oxides 

and carboneous materials, 

mRNA, miRNA, proteins and 

protein corona, THP-1 and 

BEAS-2B, mouse lung tissue, 

EC10, classification based on 

cytotoxicity and neutrophil 

infiltration 

Accuracy ~1.0 for 

cytotoxicity and 

~0.95 for in vivo 

toxicity in the best 

case 



Table 5: Additional omics approaches that could support NM grouping 

 

Omics layer Reference Approach / 

Model type 

Study design Descriptors suitable for use in 

NM grouping 

Transcriptomics 

 

Kohonen et al., 

201799 

 

Predictive 
toxicogenomics 
space (PTGS) 
 
Unsupervised 
probabilistic 
component 
modelling 

- Input: transcriptomic data of 1,300 compounds 

(CMap) and dose-dependent cytotoxicity data 

(NCI-60) 

- Prediction of chemically-induced pathological 

states in liver 

- PTGS composed of 1,331 genes distributed over 

14 overlapping cytotoxicity-related gene space 

components 

 

Predictive signature may be 

useful for NM-induced liver 

toxicity and approach may be 

used to find predictive 

signatures for other relevant 

endpoints   

Serra et al., 

2019101 

INSIdE NANO 

 

Interaction 

network 

- Input: over 3,000 biological entities including 28 

NMs (mainly metal-oxides)  

- Systems biology framework for contextualization 

of MoA of NMs 

- Infer knowledge on NMs from drugs, chemicals 

and diseases 

Biosignatures and similarities 

with other entities within the 

network 

Serra et al., 

2020104 

BMDx 

 

Benchmark Dose 

(BMD) Modelling 

- Input: gene expression matrix and phenotype 
table 
- Computes BMDs, related values and IC50/EC50 

estimations 

BMD based on transcriptional 

changes 

Serra et al., 

2020110 

TinderMix 

 

Time- and dose-

response 

- Input: Gene log fold changes  
- Simultaneously models the effects of time and 
dose on the transcriptome 

Identification of genes showing 

a dynamic (time-dependent) 

and dose-dependent response; 

responsive genes labelled 



modeling for 

transcriptomics 

- Fits different integrated time and dose models to 
each gene, selects the optimal one, and computes 
time and dose effect map 
- Genes with time- and dose-dependent response 

according to integrated time 

and dose point of departure 

Halappanavar 

et al., 2019103 

BMDt / BMDneu 

 

BMD modelling 

- Input: Genome-wide lung transcriptomic 

responses for 10 different MWCNTs, 9 variants of 

nano TiO2 and one Carbon Black type - BMD values 

for transcriptional and apical endpoints 

BMD for transcriptional changes 

used to rank NMs by their 

potency (median BMD of all or 

most relevant pathways) 

Marwah et al., 

2019111 

eUTOPIA  

 

Transcriptomic 

analysis workflow 

- Processing, visualization and interpretation of 
results 
- R shiny app  

Differential gene expression 

results 

Gromelski et 

al., 202252 

Nano-QSAR 

model 

- Input: Length and diameter of MWCNTs  
- Web-based application that enables to predict 
the transcriptomic pathway-level response  
- Predict doses that initiate inflammation 

BMD(L) value by AOP-anchored 

Nano-QSAR model and 

expectations with respect to up- 

and downregulation of genes 

Halappanavar 

et al., 2021112 

Review on AOPs - Systematic review of nanotoxicology literature 
for identifying KEs of relevance to NMs 
- Development of Nano-AOP database 
- Case studies using the database to describe key 

events for AOPs 

Description of effects related to 

certain key events, possibility of 

calculating e.g., BMDs 

Kinaret et al., 

2017105 

Coexpression 

networks 

- Correlations between gene expression profiles 
and physico-chemical properties 
- Significantly correlated genes selected 
- Gene-gene coexpression networks inferred 
- Genes in the network ranked based on previous 
correlations 
- Three different network response modules 
extrapolated (5,10 and 20 top-ranked genes) 

List of most important genes 

and GO terms from 

coexpression networks and 

correlations with physico-

chemical properties  



- GO terms progressively enriched across the 

response modules chosen 

Labib et al., 

2016113 

Transcriptional 

BMD 

- Input: gene expression profiles for three 
MWCNTs 
- Significantly perturbed pathways categorized 
along key events in lung fibrosis AOP 
- Benchmark doses (BMDs) calculated for each 
perturbed pathway 
- Overall transcriptional BMDs for each MWCNT 

derived 

Overall transcriptional BMDs for 

each NM 

Jagiello et al., 

2021108 

Nano-QSAR 

model  

- Input: Transcriptomics data 
- Selection of relevant pathways for modeling 
- Generation of AOP-informed Nano-QSAR model 
- Applied to MWCNT case study 

AOP-informed Nano-QSAR 

modeling approach 

Saarimäki et 

al., 2023114 

AOP fingerprint - Multi-step strategy to annotate AOPs is 
developed 
- Highlight relevant AOs for chemical exposures 
with strong in vitro and in vivo convergence 
- Supporting chemical grouping and other data-
driven approaches 
- Panel of AOP-derived in vitro biomarkers for 

pulmonary fibrosis identified and experimentally 

validated 

AOP fingerprint and AOP-driver 

biomarkers 

Williams et al., 
2015127 

Bi-clustering - Input: transcriptional data for TiO2 NMs, CB and 
CNTs 
- Meta-analysis on public microarray datasets for 
pulmonary diseases in mouse models following 
substance exposure 
- Similar gene expression profiles identified 
- Bi-clusters used for GSEA 
- Determination of disease significance of these 

data-driven gene sets 

Toxicity fingerprints for lung 
diseases (List of gene sets) 



Halappanavar 
et al., 201578 

Transcriptional 
profiling 

- Transcriptional profiling for different TiO2 NM 
variants 
- Determination of differentially expressed genes 

List of differentially expressed 
genes (DEGs) 

Balfourier et 

al., 2023115 

Meta-analysis - Input: 56 GEO microarray datasets on 8 metals 
and 2 non-metals 
- Forward selection of relevant properties 

List of differentially expressed 

genes (DEGs) and pathway 

enrichment; clustering of NMs 

in meta-analysis 

Saarimäki et 

al., 2021116 

Meta-analysis - Manually curated database on transcriptomic 

profiles on 101 NM-related datasets from GEO 

and Array express 

Curated and FAIRified collection 

of NM transcriptomics data 

including their physicochemical 

characteristics 

Ghojavand, 

Bagheri and 

Tanha, 2019117 

Meta-analysis - Publicly available microarray dataset treated by 
either Ag NPs or Ag ions 
- Protein-protein-interaction network analysis 

List of DEGs and up- and down-

regulated hub genes 

Nikota et al., 

2016118 

Meta-analysis, 
clustering 

- Input: Seven toxicogenomics studies on mouse 
pulmonary responses for carbon nanotubes 
(CNTs), carbon black, and TiO2 NPs 
- mRNA profiles compared to publicly available 
datasets of 15 other mouse models of lung 
injury/diseases induced by various agents 
- Implications of ENM-perturbed biological 

processes to disease pathogenesis in lungs 

 

List of DEGs; clustering of traits 
in meta-analysis 

Proteomics 

 

Bahl et al., 

2023102 

PROTEOMAS 

 

Analysis workflow 

- Proteomic analysis workflow for harmonized 
meta-analyses 
- Exemplified using 25 datasets from PRIDE archive 

on lung-specific alterations 

List of altered proteins and 

pathway enrichment; clustering 

of traits in meta-analysis  

Basak et al., 

2016119 

Computation of 

similarity index 

- Input: MWCNTs and TiO2 nanobelts, Caco-

2/HT29-MTX cells in co-culture 

Similarity index telling how 

similar abundances of a certain 



protein are between two 

conditions  

Varsou et al., 

2018120 

toxFlow 

 

Model-based 

connectivity 

mapping 

- Web-tool integrating physicochemical, omics 
and biology information for read-across 
prediction 
- Based on gene set variation analysis (GSVA) 
- Applied in a case study based on 129 
protein corona fingerprints (PCF) for 84 gold NMs 

to predict cell association with human A549 cells 

(RLOO
2 = 0.97) 

Integrated network of 

physicochemical, omics and 

biology 

information data for read-

across prediction 

Metabolomics Enea et al., 

2019121 

PCA and OPLS-DA - Input: Gold nanospheres versus gold nanostars 

in rat liver 

Discriminating metabolites 

Multiomics 

 

Shin et al., 

2021122 

PCA and kNN - Input: 11 NMs with different core materials 
- Transcriptomics, proteomics and metabolomics 
- Afterwards 19 drugs applied to see how they 

affect nanotoxicity effects 

Predictive signature 

Canzler et al., 

2020123 

multiGSEA - Tool to perform sequential GSEA integrating 
multiple omics layers 

Pathway enrichment across 

omics levels 

Bannuscher et 

al., 2019106 

Weighted Gene 

Correlation 

Network Analysis 

(WGCNA) 

- Input: Proteomics and metabolomics for 7 NMs 

in NR8383 cells 

Correlations between omics and 

physico-chemical properties 

and identification of key drivers 

Karkossa et al., 

201992 

Weighted Gene 

Correlation 

Network Analysis 

(WGCNA) 

- Input: Proteomics and metabolomics for 11 NMs 

in RLE-6TN cells 

Correlations between omics and 

physico-chemical properties 

and identification of key drivers 

Dumit et al., 

2023124 

Meta-analysis, 

Random Forest 

- Meta-analysis across publicly available 

proteomic and transcriptomic data on MWCNTs 

Identification of most 

discriminant HALLMARK 

pathways, prediction of 



expected behavior with respect 

to inducing a fibre-specific MoA  

Martens et al., 

2018125 

WikiPathways - Make omics data interoperable with the AOP-
Wiki 

Mapping of omics data to AOPs 

Cai et al., 

2018126 

Multi-hierarchical 

nano-SAR 

profiling 

- Input: Fe2O3 NMs 
- Heatmap correlating metabolomic and 
proteomic results to seven basic physico-chemical 
properties 
- Metabolic pathways from MetaboAnalyst for 

metabolomics and KEGG pathways for proteomics 

Correlations between omics, 

physico-chemical properties 

and toxicity outcomes 

 



7 The value of AI for supporting NAMs 
 

AI is a subfield of computer science in which algorithms and models are developed to mimic cognitive 

functions of human intelligence, such as learning and problem-solving. AI can aid risk assessment of 

NMs in various ways, especially by automating and improving commonly used processes. The major 

field of classical ML mainly dealing with pattern recognition and predictive modelling has already been 

introduced in detail above. However, this type of modeling and pattern recognition is only one part of 

existing AI methods. Other applications of AI may also be relevant for risk assessment of NMs and are 

briefly introduced below.  

 

Automated (meta)data extraction and linked data 

One important task in risk assessment is to gather all available data on the NM under study. This is a 

difficult and time-consuming task as data might be spread across various databases, tables or even 

be only present in scientific publications as unstructured texts. AI may support this task in terms of 

data and text mining using automated information retrieval and natural language processing (NLP). 

Different approaches for mining chemical and biological data have been developed in the past. Swain 

and Cole developed the ChemDataExtractor for automated extraction of chemical information from 

scientific literature128. Also tmChem129 can perform chemical named entity recognition from texts.  In 

addition, CD-REST130 is able to extract chemical-induced disease relations from literature. This 

automated data extraction may support integration of individual findings across multiple publications 

which was not obvious previously. Also, relationships between diseases and genes131 or proteins and 

drugs132 could be identified by text mining approaches. Similar approaches may also be used in the 

field of nanotoxicology. Especially, with recent developments in the field of Large Language Models 

(LLMs) this field is expected to be of major relevance in future research. Integration of such LLMs 

with knowledge graphs may further support data retrieval and storage in a structured way. This may 

also aid the curation of databases with respect to toxicological results as well as metadata. In 

addition, linking different databases holding certain information on NMs may also be facilitated by 

LLMs due to automated recognition of similar terms and alternative naming. As an example, AI may 

be useful for linking NM-specific information stored in databases like eNanoMapper133 to omics 

databases like GEO or PRIDE in an efficient way even if the naming schema and underlying ontologies 

differ. In the broader context of risk assessment, toxicity information may be automatically 

integrated with other information such as their intended use or information based on different 

exposure scenarios. This may also be useful in terms of prioritization of NMs to be investigated and 

ML models may be developed specifically for this task. Additionally, if trained well, AI models can 

evaluate multiple risk factors and dependencies between them simultaneously. This may be of high 

value when evaluating complex mixtures of NMs or chemicals.  

 

 

Data curation 

Data curation is of utmost importance for developing reliable approaches and models for NM 

toxicity134. However, if performed manually this is a highly time-consuming task with numerous 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/natural-language-processing


challenges as shown in various projects before. AI may provide useful tools to facilitate this task135. 

Here, anomaly detection is one of the most well-known information enrichment techniques which 

enables identification of outliers or patterns differing from the rest of the data in an automated way. 

Suitable models may significantly speed-up the identification of inconsistencies in the data. In addition, 

NLP may also improve the detection of data gaps in registration dossiers for NMs on the market in the 

context of regulatory process optimization by automated screening strategies. At the same time, 

recommendations based on historical data may automatically be generated.  In addition to advantages 

in time consumption, AI methods are also less prone to errors compared to humans processing large 

amounts of data, given that the input data is of high quality. While not every published study can be 

considered as high quality, AI methods can directly support the identification of quality issues and 

assess the data quality. Anomaly detection is one very prominent example of data quality checks and 

is frequently supported by computational tools like Isolation Forests136 or autoencoders137.  

 

Image analysis 

Another field which provides great opportunities for the application of AI is the field of image analysis. 

Automated image analysis may be enabled by deep learning approaches like convolutional neural 

networks. An example of such an approach has been provided by Aversa et al.138 who automatically 

identified NMs in Transmission Electron Microscopy (TEM)/ Scanning Electron Microscope (SEM) 

images and derived their size and number. In addition, Karatzas et al.139 used deep learning models to 

predict the effects of NMs on Daphnia magna. Similar approaches may also be derived from videos 

instead of images. However, the main challenge for image recognition is that large datasets need to 

be labeled before training the model.  

 

Support during omics data analysis 

Omics data are especially useful in the context of AI as usually many datasets are publicly available 

and, in addition, integration of NM-specific data with other chemicals or traits is easier. Thus, they 

allow to obtain more comprehensive insights into the underlying biological consequences of NM 

treatment. One of the most common applications of AI to omics data is the identification of potential 

biomarkers140. LLM in turn could also support the interpretation of the identified biomarkers by 

quickly searching for existing literature and extracting relevant information and context. Similarly, 

one may also elucidate information on perturbed molecular pathways, affected targets or common 

patterns induced by treatment with different NMs. These developments are supported by the fact 

that LLMs like chatGPT can access databases such as GenBank, Ensembl and Gene Ontology, KEGG, 

Reactome, GEO or ArrayExpress thereby directly being able to connect the various information 

stored in these resources141. The integration across different omics layers is another field which may 

be supported by AI. Commonly, ML and Deep Learning algorithms are applied in the context of multi-

omics integration142,143. In predictive ML models, omics data may also be used to infer links between 

physico-chemical properties, molecular changes and toxicity which may support regulatory decision 

making or Safe(r)-by-Design strategies. Especially, explainability  is an important area of research 

allowing for new insights into outcomes of AI models thereby probably enhancing their acceptance in 

the field of toxicology144. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/transmission-electron-microscopy
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electron-microscope


Apart from all these advantages, AI models are highly dependent on the quality and amount of 

underlying data. Training AI models requires large datasets of high-quality data which are relevant for 

the studied question and are not subject to biases. One important limiting factor is data availability. 

Therefore, the implementation of the FAIR (findable, accessible, interoperable and reusable) principles 

is a key factor in the development of reliable AI models145.  

 

8 Remaining challenges and future requirements 
 

Data availability 

The first and most critical challenge in developing robust NM grouping frameworks is the limited 

availability of data. Any grouping approach can only be generalizable to different kinds of NMs if it was 

developed based on NMs belonging to different classes and property combinations. This requires many 

datasets to be available and to be comparable to each other in a way that they can be integrated. 

Especially, ML models can only make robust predictions if they have been trained on large sets of data 

containing as much variability as possible146. Although high-throughput omics technologies are 

facilitating the generation of ever larger training data sets even by academic researchers, no single 

project will be able to generate sufficiently extensive datasets, and data reuse is the only option. In 

order to allow proper data reuse, the FAIR data principles145,147 should be considered when publishing 

any results. Briefly, the principles refer to e.g., clear and harmonized use of persistent identifiers, and 

that data as well as corresponding metadata can easily be found by both humans and machines at the 

same time. Data should also be accessible, either openly or through means of authorization or 

authentication depending on the need for restriction or not. Furthermore, data should be 

interoperable in order to allow for integration across highly diverse data sets. Overall, the principles 

guide in terms of making data reusable in the sense that descriptions of the data and metadata are 

sufficiently detailed to allow for reproducibility, automated assessments of for example data quality 

and large-scale integration allowing for novel interpretation opportunities. 

 

Unique identification of NMs 

 

Another central question in the case of NMs, which is directly related to the FAIR data principles, is 

how to uniquely identify a specific NM. Each NM has a multitude of different physico-chemical 

properties which may also change during their lifecycle. Small changes in few of these properties may 

have large impacts on the toxicity outcome. Even for benchmark materials, variations may occur if they 

are from different batches. Therefore, it is important to know exactly which NF was studied in a certain 

experiment in order to be able to interpret and reuse data. Due to the complexity of NMs, this is, 

however, not straightforward. Some attempts have been made to structure the nomenclature in such 

a way that each NM can be uniquely identified, e.g. the NInChI148 or labelled with a unique identifier 

even to the level of new batches, e.g. the European Materials Registry149. These first approaches will 

have to be fine-tuned in the future and, importantly, also must be used within the community such 

that this information will be provided along with published data.   



Reliability of data 

Reliability of studies on NMs is an important factor. This is mainly because the handling of NMs is not 

easy. Also, the best way to disperse NMs is still a matter of debate and thus handled differently among 

researchers. In many cases, there are no standardized ways on how to perform certain measurements 

of physico-chemical properties or toxicity assays. Many of the OECD test guidelines are not yet adapted 

for NMs42,47. In addition, interferences of toxicological assays with the tested NMs may occur and 

suitable replacements are not always available at the time being. All these uncertainties, missing 

adaptations to NMs and lacking standardizations lead to high variability of the resulting measurements 

and renders integration of results from different studies a difficult task.  

 

Standardization and regulatory acceptance of omics data 

Some of the uncertainties induced by grouping based on physico-chemical properties alone can be 

overcome by adding omics data as these add an additional layer of mechanistic understanding. 

However, omics data often lack sufficient comparability. This is mainly because different measurement 

devices and analysis pipelines are in use. Therefore, also in the case of omics data harmonization and 

standardization of data reporting and analysis workflows are of utmost importance. The 

transcriptomic28 and metabolomic29 reporting frameworks developed by the OECD are highly valuable 

tools in this context. These frameworks define certain information that needs to be provided for 

transcriptomic and metabolomic experiments thereby supporting the implementation of the FAIR data 

principles.  

 

Obtaining robust models 

Finally, the question on how to combine and compare NM-related data in order to obtain robust 

models is another important aspect for grouping of NMs. Here, different aspects need to be taken into 

consideration: 1) Different measures of similarity exist and can be applied. A number of tools for 

quantifying similarity between NMs were recently compared by Jeliazkova et al.150 However, the 

different measures have different advantages and disadvantages and may eventually lead to different 

results. The use of high-dimensional omics datasets may even pose additional challenges in this regard; 

2) Instead of focusing solely on NMs, integration with other more extensively studied traits like 

chemical, drugs or diseases may be supporting the acceptance of a certain grouping hypotheses as 

they may provide additional insights. While this is complicated with regards to physico-chemical 

properties as those may be very different between NMs and other traits, on the level of omics data 

this approach seems to be reasonable. ML models like those based on transfer learning may be very 

valuable in this context; 3) AI in general is expected to form an important pillar in the generation of 

robust models as it will not be feasible to search, evaluate and integrate the huge and ever-increasing 

amount of data available manually; and 4) Once ML models have been developed on well standardized 

data and methods, extensive validation is indispensable. 

 

 



9 Conclusion 
 

ML models for NM grouping 

ML is a valuable tool supporting NM grouping. Especially, the ability to extract the most important 

parameters describing toxicity in an automated, objective fashion is of great use. The extracted 

properties can then be used to determine the similarity of NMs. ML models can aid NM grouping 

approaches in several ways: 1) ML models are able to derive information and patterns from complex 

and high-dimensional datasets which cannot be easily detected by human inspection. Thus, they may 

capture more complex interactions between physical, chemical, and biological properties and can 

potentially enable more accurate classification and grouping of NMs; 2) ML models can predict the 

behavior of NMs under different conditions which may reduce time and cost when assessing safety, 

toxicity, and environmental impact of NMs and may guide SSbD approaches; 3) ML models are very 

time and cost efficient. Once a model is trained, incoming data for new NMs can usually be 

processed very quickly; and 4) ML can also aid the discovery of new properties or applications of NMs 

by identifying common patterns or correlations in large datasets. In addition, combining supervised 

and unsupervised approaches may also be important. While the prediction task of models is usually 

based on labeled data and supervised approaches, the advantage of unsupervised methods is that 

they can also use the large pool of unlabeled data to search for as patterns or reduce dimensionality. 

As dataset size is of high relevance with respect to developing robust ML models with a large 

applicability domain, this is a very useful and recommended strategy.  

 

Omics for NM grouping 

Usually, NM grouping approaches are based on measured physico-chemical properties or sometimes 

calculated descriptors. The advantage of directly linking physico-chemical properties with toxicity is 

that one obtains information on how NMs need to be manipulated to make them safer, e.g., in 

Safe(r)-and-sustainable-by-design approaches. However, limitations with respect to the 

generalizability and applicability domain have frequently been discussed and can also be observed 

from the different models presented in this review. This is because the importance of certain 

properties largely varies with the material types and shapes under study. Also, similar effects may be 

obtained from NMs with very different physico-chemical properties. Omics approaches are very well 

suited to overcome these limitations as they yield additional mechanistic insights which can support 

NM grouping. Nevertheless, there are a few challenges which need to be overcome in order to 

successfully integrated omics results into NM grouping approaches. Especially, FAIRification of NM 

omics data, harmonization and standardization of measurements and analyses workflows, the 

definition of similarity and validation of findings are major fields in which improvement is still 

required in order to achieve robust models and regulatory acceptance. Once these hurdles are 

successfully tackled, omics approaches are a very promising source of information for supporting NM 

grouping. This is confirmed by the first approaches which obtained very good predictive performance 

when including omics data in the prediction models for NM toxicity. Thereby, omics approaches hold 

a number of benefits for NM grouping approaches: 1) Omics data provide detailed information about 

biological effects and interactions of NMs. This may aid the formulation and testing of a grouping 

hypothesis and thus support regulatory bodies in making informed decisions regarding the use and 

control of NM; 2) While grouping approaches based on physico-chemical properties suffer from the 



fact that these properties may change depending on their surrounding medium as well as over time, 

omics provide a more direct read-out of the actual state of the NM that was seen by the cells. In 

combination with ML patterns and relationships not evident from traditional analysis methods may 

be detected; and 3) If well performed and analyzed, omics experiments are directly comparable 

among studies thus well-suited for meta-analyses. This does not only hold true within studies on 

different NMs but instead meta-analyses including other traits like chemicals, drugs and so on are 

also possible. The fact that a huge number of such omics datasets is publicly available including raw 

data as well as metadata, is very promising for the implementation of robust ML models, whose 

performance largely depends on the amount of available data. 

 

AI for NM grouping 

AI in general will be unavoidable in the context of developing reliable grouping approaches to cope 

with the wealth of information available. The complexity of the task of finding suitable NAMs for NM 

toxicity assessment leads to a high number of potential applications of different AI methods. 

Especially NLP is expected to have a great influence on future data processing and retrieval. The 

following tasks have high potential for support by NLP: 1) Automated review and data extraction 

from scientific literature. This may also include automated generation of databases; 2) Finding 

patterns, trends and inconsistencies in research papers or datasets; 3) Standardization of 

terminologies; 4) Compliance of research documents with regulatory standards; and 5) automated 

annotation and generation of metadata within databases. However, while AI may provide very 

helpful tools for obtaining information in an efficient and objective manner, human judgement will 

be of utmost importance and should not be underestimated. This may especially be important in 

terms of plausibility considerations, contextual interpretation, decision making, quality checks or 

results with high uncertainties.  

 

Recommendations for future research investment 

In order to implement ML and omics techniques successfully in the process of NM grouping, 

standardization of test methods including dispersion and quality assessment of produced data are 

urgently needed in order to allow comparison between results from different studies. In line with that, 

raw data should be made available to the community once they are published and they should be 

accompanied by sufficient metadata. This may be supported by further refinement of file and model 

sharing formats, ontologies, terminologies and data quality assessment tools specific for the needs in 

the field of NMs. Along these lines, it is also of high relevance to find a solution for unambiguous 

naming of NMs which allows direct comparison of the data. New developments in AI, especially in the 

field of LLMs can aid the curation and linkage of existing databases. More reliable and comparable data 

will automatically support the implementation of more robust ML models with a larger applicability 

domain. At the same time, it will be necessary to enhance the explainability of ML models in order to 

derive a grouping hypothesis that can also be tested for validation purposes. Here, ML algorithms need 

to be explored and adjusted with respect to methods and insights that allow for interpretation of the 

outcome. While it is important to increase the explainability of the model itself, also unraveling the 

underlying MoA will support the hypothesis formulation.  Here, more omics studies on NMs and meta-

analyses will be highly useful for extracting predictive signatures that can be used in hazard 

assessment. Once predictive signatures and thus relevant transcripts, proteins or metabolites have 



been identified, targeted testing of only these entities will be possible allowing for high-throughput 

screening. 
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Chapter 4: Discussion 

4.1 ML and omics are highly useful tools to support NM grouping 

 

Within this work, the value of using various bioinformatics and ML models on different kind of data 

with the aim to support NM grouping approaches and toxicity prediction was emphasized. Different 

models have been applied and the outcomes of each study will be discussed briefly. 

 

In the first study, unsupervised and supervised ML were used to predict NM toxicity based on 

physico-chemical properties. Therefore, a classifier based on PCA and kNN was compared to one 

deploying RFs with and without feature selection. The models were used to predict inhalation 

toxicity from a set of eleven NMs described by various physico-chemical parameters. The supervised 

RF model with backward RFE showed higher prediction accuracy. Importantly, the approaches do not 

only allow for prediction of NM toxicity but at the same time also for identification of physico-

chemical properties which are strongly related to the toxicity outcome. This is a major requirement 

for implementing robust NM grouping approaches. The ML models were applied to a case study 

consisting mainly of systematically varied silica NMs and some additional materials for benchmarking 

and checking transferability to other material classes. For this specific case study investigated in the 

first publication, nine out of eleven NMs could be predicted correctly with respect to inhalation 

toxicity. The inhalation response was thereby expressed as a binary variable with labels ‘active’ and 

‘passive’ based on previous results from STIS and the macrophage assay. The final model was based 

on three explanatory variables, namely zeta potential, redox potential and dissolution rate which 

showed highest impact on the toxicity outcome.  

 

While the predictive performance of the model is quite good, it already becomes obvious that 

generalization to other types of NMs may be challenging. Finding additional sets of NMs for which 

similar properties have been measured was not possible at the time of the publication due to a lack 

of standardization of assays back then. This situation has largely improved in the last years with many 

standardization efforts being performed by standardization organizations like the OECD, ISO or CEN 

as well as large research projects like NanoDefine, NanoTest, NanoValid, NANoREG, PATROLS or 

NanoHarmony which are also laid down in several guidance documents. Given the small sample size, 

the model is not expected to be robust across a larger applicability domain. However, the RF 

approach itself seems to be very well-suited even with a small number of tested NMs and the 

technique can easily be adapted to new case studies. Therefore, the models established in this study 



 

139 
 

can be considered as an initial foundation and a proof-of-concept for advancing NM grouping 

approaches and gaining better comprehension of similarities between NM variants while making 

use189, 190 of the power of computational modeling. Further adaptations will be needed to obtain 

reliable models that generalize well across a wide range of NMs. Namely, larger and more 

heterogeneous trainings and test datasets as well as additional properties which are more focused 

on describing the underlying MoA of the NMs need to be considered. Also, standardization efforts 

with more and more TGs being adapted for NMs have been made since the publication of this study 

and are currently on-going within the OECD191. This standardization of methods being used will allow 

for combining datasets across multiple studies for meta-analyses in future, thereby, leading to a 

more comprehensive data foundation for computational modeling approaches. An inclusion of 

benchmark materials also aids in assessing whether or not results from different studies are 

comparable. Finally, once reliable models are generated, external validation is also necessary. 

 

In addition to simple physico-chemical descriptors, the read-outs of higher-level functional assays 

describing the OP of NMs were used in the second study. This was a promising approach as many 

studies had observed that OP has a great impact on NM toxicity which was also supported by our 

own findings from the first study in which redox potential was among the most relevant properties 

for predicting NM toxicity. Using such surrogate assays may be useful especially for NMs with their 

complex and variable properties which are difficult to be sufficiently reflected in all details. Thus, 

they may drastically reduce characterization efforts and at the same time potentially simplify the 

combination of datasets for meta-analyses. The main difficulty for OP is that various assays based on 

different principles exist and are frequently used. Therefore, the focus of the second study was on 

how comparable different OP assays are and how well they predict, alone or in combination, NM 

toxicity. In this study, the OP of a set of 35 NMs with a variety of different core materials was 

determined using four different assays, namely ESR with the spin probe CPH as well as with the spin 

trap DMPO, the FRAS assay and a cell-based protein carbonylation assay. We compared the results of 

the different assays with respect to their predictivity for a binary outcome variable reflecting 

inhalation toxicity in terms of mass-based as well as surface-based dose metrics. As a result, we 

found that surface-based doses show better separation of ‘active’ and ‘passive’ materials which is 

assumed to be related to the fact that ROS generation only takes place at the surface of the NMs. 

Also, normalization to the actual deposited dose in the cell-based carbonylation assay was 

advantageous in terms of predictivity. With respect to the comparability of assay results, we saw 

moderate correlations between 0.5 and 0.8 for all assay pairs. Also, within NM families, the order of 

NMs by OP was not perfectly preserved across NMs. Especially those NMs with intermediate OP 

showed inconsistencies between assays. Comparing all assay combinations with respect to their 
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ability to separate ‘active’ and ‘passive’ NMs in a logistic regression model, carbonylation combined 

with either ESR or FRAS resulted in the best separation of the two classes. 

 

By combining multiple OP assays, well-performing models for toxicity prediction could already be 

generated. However, most studies measure OP only with one certain technique. This is challenging as 

the moderate correlation between the different OP assays prevents combination of datasets for 

which the OP was detected using different measurement techniques. This hampers meta-analysis 

settings in which sufficiently large datasets for ML modeling may be generated. In addition, while it is 

a very common one, ROS generation due to high OP reflects only one specific way in which NMs may 

induce toxicity. However, other possible MoAs also need to be considered in order to establish 

robust NM grouping approaches. High-content approaches yielding broader information like omics 

may be very useful tools in this regard.  

 

Omics techniques are well-suited to inform on various MoAs which could be induced by NMs at the 

same time. They are useful tools as they provide mechanistic insights into molecular alterations 

induced by compounds. Currently most omics studies in toxicology focus on transcriptomics. At the 

same time, other omics layers like proteomics and metabolomics are expected to reflect the actual 

phenotypes much closer. While for transcriptomics measurements and analysis are already quite well 

standardized, the analysis of other omics layers is more complex and less harmonized. However, 

harmonization is a pre-requisite for meta-analyses which would allow for larger datasets necessary 

for robust modeling. In addition, the lack of standardization currently prevents regulatory acceptance 

of omics analyses. An advantage of omics techniques is that there are common descriptors that are 

frequently computed and can be directly compared among studies, e.g., KEGG pathways165, 166 or GO 

terms170, 192. The same descriptors can also be used across different omics layers allowing for even 

more comprehensive results. Strikingly, comparisons are not only possible between NM-related 

studies but can also include results for other traits like chemical treatments, drugs or diseases on 

which much more knowledge on underlying MoAs is available. For these traits, a huge number of 

datasets is available in public repositories like GEO or PRIDE.  

 

In order to make use of this available wealth of data, the third study focused on harmonizing 

proteomics data analysis which is a pre-requisite enabling meta-analyses across different studies. The 

main challenge for proteomics is the large heterogeneity of datasets caused by the fact that various 

methods and instruments are used for measuring abundances of proteins in different labs and no 

standard analysis workflows exist so far. One main difference to transcriptomics is the fact that only 

a subset of all proteins is detected in each run during mass spectrometry. Different machines thereby 
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show different sensitivity which leads to substantially varying amounts of identified proteins. 

Therefore, the amount and identity of identified proteins is highly variable and lots of missing values 

are present in each dataset. This becomes a major challenging when comparing multiple datasets in a 

meta-analysis. In order to tackle this challenge, we developed a workflow called PROTEOMAS which 

allows to automatically process a large number of proteomic datasets without introducing any 

subjective biases. For each dataset, PROTEOMAS processes the data allowing for identification of 

altered proteins and subsequently deriving more overarching information on GO terms170, 192 as well 

as KEGG165, 166, Reactome168, 169 or HALLMARK167 pathways. These descriptors then comprise the 

proteomic signature of the dataset. These signatures may be compared among various traits allowing 

to integrate proteomic results for NMs generated in different projects as well as contextualization 

using other proteomics datasets from traits for which more profound knowledge exists. While the 

methods used in each step are kept rather simple, not necessarily modeling every detail of each 

dataset, the expectation is that the most important patterns would be unraveled once a large 

number of datasets for the same trait have been investigated while noise cancels out. The usefulness 

of the workflow was shown in a case study which exemplified a meta-analysis studying the 

toxicological effects of NMs at the lung level with particular focus on inflammation based on 25 

publicly available datasets of different traits. 

 

In the final review publication, different computational approaches which can support NM grouping 

approaches were assembled. Here, we only considered models for toxicological endpoints relevant 

under REACH. Apart from general computational models, the focus was put on models which 

integrate omics results and omics analysis tools in the field of NMs which were not directly 

developed in the context of NM grouping but might still largely support such kind of approaches. The 

review showed that in general ML models and omics are very useful tools supporting NM grouping. 

At the same time, limitations with respect to generalizability and a restricted applicability domain 

have been acknowledged in most publications. In addition, approaches integrating omics result 

emphasize on the added value due to these approaches. While some of the models already show 

good performance with respect to toxicity prediction, most also acknowledge that a number of 

challenges remain with regard to developing robust prediction models. Major issues that need to be 

tackled comprise: 1) the limited number of available datasets, 2) the necessary improvement of 

FAIRification for NM-related data including omics data, 3) the harmonization and standardization of 

measurements and analysis workflows, 4) the comparison of different measures for NM similarity 

and 5) the external validation of models to improve regulatory acceptance. Given the wealth and 

complexity of information available, AI may greatly support the generation of linked data as well as 

model development. These points will be discussed further in the following subsections.  
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4.2 Remaining challenges for developing robust ML approaches for NM 

grouping 

 

4.2.1 Data availability 

The most important requirement for developing robust computational models supporting NM 

grouping are large, high-quality datasets describing physico-chemical properties as well as NM 

toxicity. These datasets should contain measurements from standardized assays including 

standardized data evaluation procedures. ML methods can only generalize well to new NMs if they 

have been trained on a sufficiently large number of samples with varying properties such that they 

can learn which patterns are consistently present in the data. If the number of samples is small, it is 

very probable that some features co-occur with a certain toxicity outcome by chance. Once larger 

datasets are used, this randomly occurring similarities can be detected much easier. In addition, if 

the model shall be able to predict NM toxicity across various types of NMs, this heterogeneity should 

also be present in the training data. This property is referred to as the applicability domain of the 

model. If the training dataset is very homogeneous with respect to NM types or otherwise restricted 

to only subsets of the occurring ranges of certain physico-chemical properties, the applicability 

domain is expected to be small and the predictivity for NM types or properties not present in the 

training data will probably be poor.  

 

In the world of chemicals, large-scale systematic datasets exist and led to the development of more 

powerful computational models. In 2007, the US EPA launched the ToxCast project193 in which high-

throughput screening techniques and computational toxicology approaches were applied to a large 

number of chemicals. The dataset contains data for more than 1,000 chemicals tested for more 

than 700 high-throughput assay endpoints covering various cell-based as well as biochemical in vitro 

assays. This dataset is publicly available and can be used for model development and testing. 

Together with other federal US agencies this initial dataset was then enlarged in the Tox21 program 

to more than 10,000 chemicals tested in approximately 50 assays. The data is stored in a MySQL 

database and can be accessed programmatically. Based on this data, it is possible to identify patterns 

in compound-induced biological responses, rank and prioritize chemicals or develop predictive 

toxicity models. While reaching this dimension of available FAIR data might not be realistic in near 

future for NMs, it still shows how powerful bioinformatics and ML tools can be if a sufficient number 

of systematic data is available. 
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In the field of NM toxicity, these large, reliable datasets with diversity in studied NM types are rarely 

available77. This is especially the case for datasets which study endpoints with regulatory relevance 

and comprise information on a sufficient number of physico-chemical properties to characterize the 

different NMs well enough. Typically, only few NMs are tested within one study due to time and 

financial constraints. Therefore, development of accurate and robust ML models in the field of NM 

toxicity is currently still a major challenge194. In order to successfully implement computational 

modeling approaches for NM grouping and toxicity prediction, sufficiently large high-quality datasets 

with respect to physico-chemical properties and effects to be modelled are urgently needed. 

Optimally, these datasets should also be present in a unified format and freely accessible in public 

databases151. 

 

In order to assemble large datasets suitable for ML modeling, data from different sources may need 

to be integrated. Here, data on different aspects of the same NM may need to be collected with the 

main challenge being the identification of different sources and corresponding matching of NM 

identifiers. In addition, one may also want to collect data on different NMs in which case 

comparability of the measurements is the most critical factor. Both cases will be discussed below. 

 

 

4.2.2 Data quality 

Another critical aspect with regards to obtaining reliable ML models is data quality. Only if measured 

data for physico-chemical properties, NM toxicity or any other parameter included in the model are 

accurately measured with low technical errors, the ML model can detect underlying patterns in a 

reliable manner. Reliability of measurements, expected technical or biological variability and 

potential other uncertainty factors are important in this regard. However, for NMs various challenges 

with respect to reliability of measurements for material characterization, a lack of validated toxicity 

assay as well as a missing understanding of MoAs are observed195. Criteria for estimating the quality 

of NM experimental data have been introduced for guiding scientists and modellers in judging 

reliability of data196. Integrating such data quality checks into the modeling process may at the same 

time improve the robustness of developed models. 
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4.2.3 Integration of data on one particular NM 

As many factors have to be considered in order to fully characterize a NM including physico-chemical 

properties, interactions with the environment, different exposure scenarios and toxicity assays as 

well as omics measurements, information on one particular NM may be scattered. Thereby, data 

originating from different studies or projects may be stored in different databases or even be only 

existent in scientific literature. Unambiguous identification and characterization of NMs and missing 

unique representations or naming of NMs are the main challenge for the purpose of data integration.  

Unambiguous identification is mainly hampered by the fact that many physico-chemical properties 

can vary and therefore need to be assessed to find out whether two NMs are actually the same or 

not. As for conventional chemicals, properties like chemical composition, degree of purity and 

quantitative information on impurities or additives form the basis for NM characterization and 

identification21. In addition, the description of a NM also requires information on the number-based 

particle size distribution, surface functionalization or treatment, shape in terms of aspect ratio and 

particle morphology as well as the specific surface area. On top of that, physical properties like 

dissolution rate, state of agglomeration or aggregation and changes in surface chemistry as well as 

other higher-level parameters such as surface reactivity may also be relevant27. While some of these 

properties are intrinsic to the NM itself, others vary depending on the medium surrounding the NM 

and are thus extrinsic. Therefore, in order to obtain a reliable grouping, characterization has to be 

performed in the relevant biological medium used for toxicity testing.  

 

In addition, unique naming is important for reuse and integration of data as it is required for 

mapping data from different sources. For NMs, no clear naming standards are agreed on in the 

community as their complex structure does not directly allow for trivial terminology. However, 

attempts have been made to establish a common notation, recently. Lynch et al.197 introduced 

NInChIs which are line notations describing NMs and discriminating different NFs. NInChIs are 

machine-readable and thus allow easy identification and integration of data from various sources. 

Inclusion of this standard representation as a generally accepted and used identifier among the 

nanosafety but also material producing and material modeling communities is a challenging task. 

However, achieving this goal would have great impact on successfully integrating data and 

performing NM grouping. 
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4.2.4 Integration of data across NMs 

 

Due to the complexity of the characterization of NMs and toxicity testing, it is usually the case that 

only a handful of NMs are considered within one study. In order to create sufficiently large datasets 

for ML modeling, integration of data across various NMs from multiple studies is therefore 

necessary. For robust modeling, comparability of measurements is critical with respect to combining 

data from different laboratories or projects. If different assays or standard operating procedures 

(SOPs) have been used, it is very difficult for a model to learn patterns on such data which hold 

additionally introduced differences. Here, careful characterization of dispersions and expected 

effective doses play an important role. A sufficient number of replicates and tested doses in case of 

toxicity assays are also a pre-requisite for developing robust models with low uncertainties. If 

datasets from different sources are sufficiently comparable and well-described in standard formats, 

they may be combined in modeling approaches which can largely improve the quality of the model. 

However, in the field of NMs, standardization of measurements is still an on-going process. While for 

many physico-chemical properties TGs have been adapted already or are currently being adapted, 

standardization of toxicity assays is still more challenging. Frequently, discrepancies and 

inconsistencies have been observed in the data. Main factors hampering comparability are difficulties 

in handling of NMs with respect to factors like dispersion and dosimetry as well as interactions with 

biological molecules in the surrounding of the NM. Also, systematically varied NMs and benchmark 

materials have not been included in many studies which renders implementation of NM grouping 

approaches and comparisons between studies challenging tasks. 

 

One important step towards standardized measurements across projects are interlaboratory 

comparisons which assess whether or not similar results are obtained by different laboratories if they 

perform the same assay using the same SOP. That implies that processes need to be well-described 

in any detail and that local differences should not introduce large variations impacting results. 

Various projects have performed interlaboratory comparisons for NMs, e.g., GRACIOUS or 

NanoHarmony. Another important factor is community-wide acceptance of standardized protocols as 

only if researchers actually perform measurements according to SOPs, comparability of datasets can 

be achieved. As ML models are critically dependent on reliable and comparable underlying data, this 

is a major requirement for exploiting the full potential of these methods. The major challenge here is 

to agree on and establish common standards, terminologies and harmonized infrastructures across 

various stakeholders including researchers, regulators and industry. 
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4.2.5 Challenges with respect to single omics datasets 

  

Omics may have great impact on risk assessment in the light of the current strategic shift towards 

NAMs. The major advantage is that they give detailed insights into MoAs and can inform AOPs. Due 

to highly advanced data sharing policies for omics data, a large amount of publicly available datasets 

exists. While only a small part of these omics datasets is related to NMs, integration of NM-specific 

omics datasets with those on other traits like chemicals, drugs or diseases may still support 

interpretation and unraveling of underlying MoAs. However, the use of omics data in the context of 

risk assessment in general as well as integration of public omics datasets are not trivial for various 

reasons. 

 

First, omics analyses are prone to technical and biological noise due to the complexity of 

measurements and the exposed system. Also, the huge variability in applied analysis steps with 

regard to normalization, imputation or multivariate statistical or ML methods may lead to substantial 

differences in biomarker detection. Therefore, reproducibility of toxicogenomics signatures is a 

major concern which needs to be carefully investigated198. One important factor in this regard is 

statistical power which is directly related to the number of replicates in a study. Benchmark datasets 

for comparing different platforms, cell types, species and so on may support reproducibility.  

 

In addition, dimensionality is a major concern. In omics analysis, the number of features is much 

larger than the number of replicate measurements. This large number of potential descriptors like 

single transcripts, proteins or metabolites is challenging in terms of false-positive or false-negative 

results. Therefore, computing FDRs and observation of consistent trends across pathways or other 

defined sets is of utmost importance for avoiding artifacts. For predictive modeling, methods like 

MaNGA199 may be used to find the best minimal set of features with high predictivity and stability 

and a wide applicability domain using a multi-objective optimization strategy. 

 

The advantage of omics is that molecular changes are measurable already few hours or days after 

treatment which renders it very efficient and appealing for predicting long-term effects compared to 

in vivo studies which may even take years. While single dose and time point analyses can inform on 

MoAs, deriving a Point of Departure or BMD requires testing of multiple doses. Variations of the 

investigated timepoint are also important to study kinetic patterns of molecular alterations and for 

gaining insights into potential chronic effects or recovery mechanisms. However, while in 

conventional toxicity studies at least multiple doses are frequently tested, for omics usually these 
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comprehensive assessments are not performed. Still, some approaches for estimating BMDs or PODs 

from omics data have been proposed200, 201.  

 

Another challenge is that it is currently not known in detail, which changes are indicative with 

respect to adverse effects and what are relevant signatures or patterns in the different omics layers. 

Especially for complex cases where one substance induces changes related to multiple hazard 

endpoints or if mixtures of substances are considered not much is known about underlying 

signatures. In addition, signatures may also include defense or repair mechanisms which need to be 

separated from the adverse ones. While this is partly covered during enrichment analysis, this 

knowledge is far from complete to date.  

 

 

4.2.6 Challenges for integration of various omics datasets or layers 

 

While analyzing single omics datasets is already not trivial, more challenges occur when datasets 

shall be combined. Omics datasets may be generated by different types of machines and analyzed in 

various ways with numerous commercial and open-source software tools and packages being 

available. Here, the variability strongly depends on the omics layer under study. In transcriptomics, 

data is usually derived from RNA-seq or formerly microarrays.  While many variations in protocols 

and analyses can be observed, recommendations for best practices exist and standardization effort 

have been made202, 203. An additional advantage is the fact that in transcriptomics the complete or a 

specified fixed set of transcripts, respectively, is detected which facilitates comparisons between 

studies. Interlaboratory comparisons have shown good reproducibility of gene expression profiles 

induced upon exposure to toxicants. However, while the complete transcriptome is detected in RNA-

seq experiments, not all transcripts will actually be expressed and yield functional proteins in the cell. 

 

Other omics layers like proteomics and metabolomics are better suited to represent the actual 

functional changes due to NM treatment on molecular level. Despite the fact that results better 

reflect the real biological situation, standardization and comparability are much more complicated 

and less advanced for these fields204. Large-scale proteomics and metabolomics are frequently 

carried out using mass spectrometry (MS)-based approaches. The disadvantage in proteomics 

approaches is that usually peptides are measured and then mapped back to proteins. Thereby, one 

loses certain information on factors like isoforms. Proteomics also is not as close to the real 

phenotypes as for example metabolomics. This is mainly due to the fact that post-translational 

modifications are highly relevant for protein activity while in the main LC-MS/MS run only the 
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abundances of proteins are measured. Modifications can also be measured; however, this process is 

time-consuming. As mentioned before, comparisons between transcriptomics and proteomics are 

hampered by the fact that in transcriptomics usually a finite set of transcripts is measured while this 

is not the case for proteomics.  

 

Instead, in metabolomics all small molecules in the cell shall be detected. These small molecules are 

end products of cellular regulatory processes and thus, this omics layer is closest to the phenotype. 

In addition, small molecules can easily distribute all over the body and therefore they can be 

secreted in various biofluids where easy sampling of such biomarkers is possible. However, 

standardization is complex and almost not tackled so far. Especially, quantification is a very 

challenging task in this regard.  

 

Systems biology integrates information across various omics layers, thereby also considering 

interactions between them. Thus, systems biology yields a very broad understanding of NM-induced 

changes at the molecular level. However, integration of different omics layers is not trivial for several 

reasons: 1) Systematic studies assessing multiple omics layers under the very same conditions allow 

for direct comparisons. However, while in the field of NM toxicity some multi-omics studies have 

been published182, 183 these studies are still rare; 2) Determination of the most suitable time point to 

be studied is essential. While effects in transcriptomics are visible comparatively fast after treatment, 

proteins have to be built first which requires time and thus changes on the proteomic level are seen 

much later. This has to be taken into account for integration of multiple layers. Thus, testing of 

multiple time points and doses is very useful but at the same time increases the complexity; 3) 

Specific databases allowing the deposition of data from multiple omics levels are lacking. Thus, if 

data from multi-omics experiments are publicly available, the data will be spread across databases 

and tools for data integration and automated querying are needed; and 4) Usually, interpretation of 

omics data is performed on the level of affected pathways or GO terms. While for single layers this is 

quite straightforward, tools integrating information from multiple omics layer during the enrichment 

analysis are still under development205. 

 

One additional challenge with respect to integration of omics datasets is the availability of metadata. 

While huge amounts of data are present in public databases, they are not always well annotated. In 

many cases, databases do not hold information on which samples belong to which study groups, 

which concentrations or time points were tested and so on. Sometimes this information can be 

found in the corresponding publications or their supplementary files. In other cases, the information 

is missing completely. Here, templates for the upload of omics data are of great use. For 
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transcriptomics and metabolomics, the OECD already defined rules on how to describe 

transcriptomics and metabolomics datasets in regulatory toxicology in their reporting frameworks92, 

93, 95. For proteomics, no such document exists so far. These frameworks can be considered as a good 

starting point for making omics data ready for regulatory use. However, their benefit relies on the 

actual usage by researchers who upload their data to databases. In addition, AI may also support the 

curation of publicly available datasets by automatically extracting metadata from publications. 

 

Overall, the use and integration of omics datasets are of great value for risk assessment but currently 

hampered by lack of standardization of measurements and harmonized analysis workflows as well as 

sufficient annotations. FAIRification of available data is thus urgently needed for omics data but also 

other data related to NM characterization and toxicity.  

 

 

4.3 The need for FAIR data 

 

Large-scale high-quality data is required for developing reliable computational approaches for risk 

assessment. However, in reality, studies usually investigate only a small number of NMs. Meta-

analyses could strongly improve the data situation for model development. Unfortunately, original 

data is often not made publicly available or scattered across databases. This hampers proper meta-

analysis as data is scarce and often not comparable due to differences in ontologies, metadata 

standards or missing nano-specific information. Here, making data compliant to the FAIR principles206 

would greatly support these efforts. 

 

Data are findable if they are assigned to globally unique persistent identifiers. They should also be 

accompanied by rich metadata which can be found in a searchable resource. Accessibility is 

guaranteed by making sure that data and their corresponding metadata can be retrieved by their 

assigned identifier using standardized communication protocols like ‘http’ or ‘ftp’. Interoperability 

describes the fact that data and metadata should use a formal, accessible, shared and broadly 

applicable language for knowledge representation meaning that it should be human- as well as 

machine-readable. Finally, reusability relates to describing the data by metadata in such detail that 

other users can decide whether the data will actually fit their research goal and be of use. It also 

deals with data licenses, origin and citation issues as well as the question whether or not community 

standards or best practices for data sharing have been used. Various factors have to be considered in 
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order to harmonize NM-related data and make them FAIR and were discussed in previous 

publications207, 208.  

 

First of all, unique identifiers for NMs need to be developed. This issue has already been discussed 

above. The main question here is how to represent structurally complex NMs in a standardized 

machine-readable manner77, 209. Currently, only expert judgement in combination with comparisons 

of physico-chemical properties can be used to estimate whether two datasets actually described the 

same NM or not. First approaches for generating globally unique identifiers in terms of machine-

readable structural representations were based on nano-InChIs197, 210. In addition, common 

terminology and ontologies are needed for integrating data in an automated way.  While large efforts 

have been made to curate metadata in projects like NanoReg2, it became obvious that this is not 

reasonable without harmonized terminologies. The OECD Harmonized Templates are a great 

achievement providing standard formats for reporting on various aspects of risk assessment 

including some physico-chemical properties of NMs. Currently, the most comprehensive collection of 

information on NMs and NM toxicity exists in the eNanoMapper database207.  The eNanoMapper 

database implements the nanosafety community-based eNanoMapper ontology and uses the ISA-

TAB-NANO format211 which is a standard data sharing format for NMs. This allows access to the data 

using specified ontology terms which is directly related to reporting standards for metadata which 

need to be implemented in the nanosafety community in order to reduce future data curation 

efforts. Importantly, links to specific SOPs and TGs should also be provided. In general, accessibility of 

data and metadata needs to be guaranteed. Currently, it is often necessary to contact experts 

directly in order to find data and obtain all necessary details regarding characterization and 

experimental setup. However, this is not efficient for large-scale modeling tasks. Instead, data along 

with sufficient metadata and detailed descriptions with respect to conditions under which they were 

derived should be stored in publicly available databases. Here, storing raw data as well as processed 

data is of additional value for re-interpretation of the data. As various datasets on the same material 

are expected to be stored in different fit-for-purpose databases, these should be well linked and 

interoperable to allow for retrieval and integration of related datasets207. Awareness of previously 

published data from different projects may be increased in that way as well. 

 

Omics data and corresponding repositories are generally considered to be FAIR. In the field of omics 

data, standardized file formats and repositories are commonly used. Also, publications in this area 

require usage of standardized reporting formats and database upload to public repositories. 

However, in the nanosafety domain interoperability is hampered due to the lack of domain-specific 

metadata, ontologies and reporting standards accepted by the community. Thus, nanosafety 
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information and omics data can often not be linked. However, efforts have been made enable this 

interlinkage, for instance, a template for connecting nano-specific proteomics datasets obtained 

from the PRIDE archive to collected NM-specific metadata was generated and allows for upload to 

eNanoMapper thereby facilitating data reuse. 

 

Overall, FAIR data related to nanosafety allow for sustainable reuse of publicly funded data for the 

purpose of developing in silico models and IATAs. Compliance to the FAIR principles will greatly 

improve data integration and thus enable the creation of comprehensive datasets covering various 

NMs, physico-chemical properties and omics data. With these datasets, development of robust 

models and tools supporting NM grouping will be largely facilitated. To further support the 

FAIRification of data for NMs and advanced materials, the Advanced Nano FAIR Implementation 

Network (https://www.go-fair.org/implementation-networks) was established during the EU project 

Gov4Nano.  

 

 

4.4 In vitro to in vivo extrapolation 

 

As mentioned in the introduction, it is critical to keep in mind the differences between applied and 

effective dose both in vitro and in vivo. Only if the effective doses are comparable, in vitro results will 

be relevant for drawing conclusions on the in vivo situation. Several factors play a role in this regard. 

Dispersion stability needs to be carefully checked before any in vitro treatment in order to make sure 

that NMs are presented to the cells as a homogeneous suspension in order to guarantee the 

reproducibility of the results. Dosimetry modeling for NMs is thereby much more complex compared 

to conventional chemicals as differences in particle density and agglomeration status may have large 

impact on the deposition of NMs in in vitro tests. Direct measurements of particle uptake in vitro are 

also critical as using fluorescence labeling might also change the properties of the NM and thereby its 

uptake behavior and/ or toxicity212. In addition, the choice of the cell model is of high relevance213. 

While some studies show good agreement between in vitro and in vivo results, it is expected that 

differences mainly result from the fact that whole organism responses are compared to single, 

isolated cell types. This is problematic as interactions between cell types cannot be sufficiently 

modeled and intrinsic circulation of NMs in the body cannot be mimicked. Advanced co-culture 

systems and 3D models may improve this situation by providing more realistic surrogates. Also, the 

test methods must be checked for reliability taking into account possible interferences of the NM 

with the assay read-out. Another question that arises is how reliable the true outcome is in terms of 

https://www.go-fair.org/implementation-networks
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predictivity for humans. This relates to the fact that not all toxicity mechanisms are conserved across 

different species and the ADME behavior might also vary between tested animals and humans. 

However, the percentage of materials for which this is expected to be the case is rather low. For 

obtaining realistic concentrations reflecting the in vivo exposure of a certain tissue, PBPK modeling 

should optimally be considered jointly with the predictive model in the context of NM grouping.   

 

While acute effects are much easier to detect, chronic effects pose a larger challenge. In vitro assays 

are not suitable for directly predicting chronic effects. However, acute mechanistic responses may 

still be predictive for chronic effects. In general, oxidative stress and inflammation may be used as 

indicators for chronic diseases which may be developed upon prolonged exposure to the NM. In 

addition, some clinical biomarkers are known to be detectable also at the beginning of disease 

progression as they reflect certain disease mechanisms which contribute to pathogenesis, 

irrespective of the stage. These changes may also be well reflected in in vitro studies. In addition, for 

NMs, usually only STIS has been performed. However, manifestation of some adverse effects may 

actually need more time and may not be visible in STIS. Thus, actual chronic effects have not been 

studied in vivo as well and can only be concluded from STIS. 

 

For omics analyses, a few additional factors have to be considered. Poulsen et al.214 have shown that 

comparing individual genes between in vivo and in vitro led to low correlations. Instead, they 

recommended comparisons on pathway level as similarity was found to be much higher between in 

vivo and in vitro. Similarly, Kinaret et al.215 found transcriptomic similarities on the functional level 

between mouse lungs in vivo and human macrophage cell line results after NM exposure when data 

were properly analyzed and NM properties are taken into account. In addition, NMs may also trigger 

non-specific cellular effects like adaptive responses which are not indicative of adverse outcomes.  

 

 

4.5 Regulatory acceptance and needs 

 

The urgent need for a paradigm shift towards NAMs and mechanistic understanding on adverse 

effects induced by NMs has been recognized also in regulation as NAMs can enhance risk assessment 

in terms of efficiency and potentially also accuracy while at the same time reducing animal testing 

and increasing the understanding of toxicity mechanisms. Regulatory bodies like ECHA emphasize on 

the integration of NAMs into risk assessment. However, currently a number of hurdles still need to 
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be overcome in order to successfully integrate NAMs, and especially in silico tools and omics data 

into regulatory risk assessment. 

 

In general, to gain regulatory acceptance, validation of models and tools is necessary. Here, it needs 

to be demonstrated that methods under consideration are reliable, relevant and predictive. For 

grouping and read-across, REACH also requires robust scientific justifications and adequate and 

reliable documentation for the applied methods. First of all, standardization of models and 

underlying data is needed. With respect to data quality, measurement techniques for physico-

chemical properties, toxicological endpoints as well as omics data must use standardized 

measurement and evaluation protocols and must clearly state the details of the measurement 

procedure in order to be traceable and reproducible. Quality measures also need to be introduced 

and data sharing practices should be established in order to ensure consistency and reliability of such 

data. In addition, developed models need to be robust, accurate and reproducible. Inclusion of 

benchmark materials may aid in assessing the performance of in silico models across datasets. 

Transparency and interpretability of models is another important factor allowing to understand 

decisions and predictions made in the model. At the same time, the models should also show 

biological relevance. Therefore, integration of domain expertise and mechanistic insights are 

important to ensure biological plausibility. Also, quantification of uncertainties of models and their 

communication to regulators and stakeholders is crucial for regulatory decision-making. Establishing 

a robust and sustainable infrastructure will also be needed to allow for integration of systems 

biological approaches into regulatory testing. To date, for most of these criteria, implementation is 

still work-in-progress.  
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Chapter 5: Conclusion and outlook 

In this thesis, the value of ML tools and bioinformatics for supporting NM grouping approaches was 

assessed. It was shown that ML models are very useful for extracting the most important properties 

describing NM toxicity in an automated and objective fashion. However, in order to build robust ML 

models, large high-quality datasets in terms of the number of tested NMs are urgently needed.  

 

This directly relates to the largest challenge of the first study described here. In this study, a RF 

model was used for predicting results from STIS and the macrophage assay based on physico-

chemical properties of the NMs. While the accuracy of the developed model was quite good, it 

already became clear that the number of tested materials is a major limitation with respect to 

robustness. In case of NMs, a large number of physico-chemical properties is needed to sufficiently 

cover their high complexity considering that not only intrinsic properties are relevant but also 

extrinsic ones varying with the surrounding environment or during the life cycle of NMs. All these 

properties may play an important role for toxicity. Thus, description of each NM would require a 

large number of measurements which is very time-consuming. Especially for extrinsic properties, 

measuring them in a reliable and standardized way is not straightforward as assays need to be 

performed in relevant media which usually causes severe interferences. Difficulties with NM 

dispersion and computation of effective doses further impair integration of available datasets. 

Overall, it became clear that establishing NM grouping approaches on physico-chemical properties is 

not trivial.  

 

The OP of NMs seems to be a well-suited surrogate variable reducing the need for extensive 

characterization of the NMs, which might allow for the measurement of larger sets of NMs. However, 

different OP assays exist and need to be studied in terms of their comparability. This was assessed in 

the second study. Here, different dose metrics were compared, correlations between assays were 

computed and logistic regression was used to assess predictivity of single assays and assay 

combinations. In was found that different OP assays show only moderate correlations and that 

combining multiple assays improved predictivity. However, due to only moderate correlations, 

integration of datasets from different studies for obtaining sufficiently large datasets for modeling 

cannot easily be performed. Also, while the OP is considered important for describing how NMs can 

induce toxicity, other MoAs not related to the OP exist and are not properly represented in OP 

assays. 
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Thus, including information on MoAs in terms of omics data is a promising approach. So far, the 

knowledge on MoAs of NMs is still limited. Especially in case of proteomics, only few NM-specific 

datasets are available. The advantage with omics data, however, is that NM-specific datasets may 

directly be integrated with those from other traits like chemicals, drugs or diseases. Thereby, 

generating larger datasets suitable for ML modeling is facilitated. However, integration of datasets 

for meta-analyses requires harmonization of analysis workflows and differences in measurement 

techniques need to be taken into account in order to make results comparable. While for 

transcriptomics large efforts have been made in terms of standardization, this is not true for 

proteomics. Therefore, as a first step towards harmonized meta-analysis of proteomics data, 

PROTEOMAS was introduced in the third study. PROTEOMAS is a harmonized workflow for evaluating 

proteomics data from public repositories. Its value for comparing NM-specific proteomics signatures 

to those of other traits like chemicals, drugs or diseases has been shown in a case study on 25 

proteomics datasets.  

 

Finally, other computational approaches were reviewed in order to conclude on general challenges 

and further steps needed. A large number of approaches can be found in literature and have proven 

to be very valuable for gaining insights into NM toxicity. However, various challenges are still 

hampering the development of robust models. Data availability and quality were the most critical 

challenges in this regard. Without sufficient data, developing robust ML models which can generalize 

well across a large number of NMs is not feasible. As the number of studied NMs in each study is 

naturally very limited due to the complexity of necessary measurements, integration of results from 

different studies and projects will be necessary for any robust modeling approaches. This integration 

is only possible if data is comparable. To achieve comparability, data should comply with the FAIR 

data principles for data sharing and reuse. The main challenges for NMs with respect to FAIR data are 

the generation of unified naming schemes, the development and use of suitable SOPs and the 

provision of sufficient metadata describing experiments.  

 

AI-based tools based on transfer learning, large language models or other techniques are expected to 

be indispensable for efficient data handling in risk assessment of NMs and in the context of ML 

model development and omics data analysis supporting NM grouping. Apart from predictive 

modeling described here, other tasks related to NM risk assessment may be largely profit from 

available AI tools. As an example, data curation efforts may be accelerated by AI. If performed 

manually, this process is highly time-consuming. On the other hand, AI models may quickly detect 

and potentially also fill data gaps in registration dossiers based on historical data thereby optimizing 

regulatory processes. In addition, automated extraction of relevant information from sources like 
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research publications can also be performed using, for instance, large language models. This may aid 

FAIRification of toxicological data as well as metadata of public databases. Also linking data stored in 

different databases may be facilitated by AI. In the context of risk assessment in general, toxicity 

information may be automatically linked to other information like physico-chemical characterization, 

intended use, exposure scenarios or omics data which might be spread across several databases 

without proper links between them. Additionally, AI models may be capable of evaluating multiple 

risk factors and dependencies between them simultaneously which may be useful in case of 

evaluating complex mixtures of NMs or chemicals.  

Recent developments in the field of AI including ML as well as continuous improvements in the field 

of omics data analysis together with on-going efforts in standardization of assays and FAIRification of 

available NM-related data are expected to be pointing the way to the future for efficient NM risk 

assessment supported by computational tools. 
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Supp. Fig. 1. Heatmap of physico-chemical properties across NMs. The table of physico-chemical 

properties was translated into colors ranging from dark blue for the smallest values to dark red for 

the highest values. All properties were scaled across NMs in order to make them comparable and 

avoid overrepresentation of those properties having larger values in general in the clustering step. 

The dendrogram on the left shows the similarity of the physico-chemical properties across all studied 

NMs. The dendrogram on the top shows how similar NMs are across all studied physico-chemical 

properties. 
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Supplementary Figure 1: Protein carbonylation of silica particles measured at three different 

concentrations a) 10 µg/ml, b) 25 µg/ml and c) 50 µg/ml. 
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Supplementary Table 1a: Mass-based values obtained from the four OP assays with standard deviations 

Class Material Supplier ESR  
(CPH) 

ESR  
(DMPO) 

FRAS  
(AUC) 

Carbonyls  Carbonyls 
(normalized) 

Silica SiO2_15_unmod 
SiO2_15_Amino 
SiO2_15_Phospho 
SiO2 NM-200 
SiO2 NM-203 
SiO2Levasil 50 
SiO2Levasil 100 
SiO2Levasil 300 
SiO2Aerosil 200 

BASF SE 
BASF SE 
BASF SE 
JRC repository 
JRC repository 
Levasil 
Levasil 
Levasil 
Evonik 

0.82±0.14 
0.92± 0.03 
1.21± 0.04 
 
 
 
 
 
0.92± 0.16 

0.97± 0.01 
0.97± 0.01 
0.83± 0.08 
 
 
 
 
 
0.84± 0.19 

890786 
1300879 
1288551 
 
718407 

1.73± 1.04 
1.38± 0.46 
0.58± 0.29 
0.97± 0.45 
1.05± 0.72 
 
 
 
 

86.25± 51.86 
3.06± 1.02 
3.19± 1.60 
 
2.92± 2.00 
 
 
 
 

Aluminosilicates Kaolin 
Bentonite 
DQ12 (Quartz) 

BASF SE 
Zoz GmbH 
(Archiv Toxikologie BASF) 

1.60± 0.11 
 

0.99± 0.27 
 

503136 
2915633 
93404 

1.65± 0.55 
1.36± 1.02 

3.06± 1.01 
7.17± 5.36 

Iron oxides Fe2O3nanoform A 
Fe2O3nanoform B 
Fe2O3larger 

BASF Colors and Effects 
BASF Colors and Effects 
Huntsman 

0.51± 0.02 
0.82± 0.12 
13.86± 1.16 

0.75± 0.04 
1.13± 0.05 
4.33± 0.11 

3220889 
150508 
357083 

4.29± 2.26 
1.8± 0.67 
2.51± 0.90 

4.52± 2.38 
2.54± 0.95 
2.79± 1.00 

Titania TiO2 NM-102 
TiO2 NM-105 
TiO2 non-nano 

JRC repository 
JRC repository 
Kronos 

0.63± 0.08 
0.69± 0.01 
0.94± 0.09 

0.88± 0.15 
1.01± 0.06 
0.91± 0.18 

829911 
677867 
257420 

 
1.48± 1.57 

 
3.1± 1.96 

Ceria CeO2 NM-211 
CeO2 NM-212 

JRC repository 
JRC repository 

1.80± 0.23 
1.42± 0.18 

1.28± 0.24 
2.07± 0.32 

837353 
570057 

  

Copper-based CuO 
Cu-Phthalocyanine 
non-halogenated 
Cu-Phthalocyanine 
Halogenated 

Sigma Aldrich 
BASF Colors and Effects 
 
BASF Colors and Effects 

178.12± 
29.37 
1.22± 0.07 
 
1.03± 0.09 

21.21± 2.63 
1.71± 0.30 
 
0.67± 0.07 

10293942 
408695 
 
734588 
 

10.74± 1.76 
0.66± 0.15 
 
0.81± 0.43 

12.78± 2.10 
1.04± 0.23 
 
1.11± 0.59 

Zinc oxides ZnO NM-110 
ZnO NM-111 

JRC repository 
JRC repository 

1.51± 0.29 2.20± 0.09 2898432 
1069431 

2.53± 1.98 
1.89± 1.44 

4.76± 3.74 

Diketopyrrolopyrrol 
pigments 

DPP_premixed 
DPP nano 
DPP non-nano 

BASF Colors and Effects 
BASF Colors and Effects 
BASF Colors and Effects 

0.88± 0.06 
0.84± 0.03 
0.82± 0.05 

0.77± 0.04 
0.77± 0.08 
1.06± 0.15 

-337683 
92638 
52079 

0.77± 0.69 
0.41± 0.1 
1.43± 0.43 

 

Carbon-based Carbon black 
Graphene oxide 

Ensaco 
(Archiv IUTA) 

1.21± 0.16 
 

0.98± 0.11 
 

2100127 
 

1.33± 1.18 
0.57± 0.28 
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Graphene 1-layer 
Graphene 
   Multilayer 

ACS nanomaterials 
ACS nanomaterials 

10.22± 0.56 
2.42± 0.21 

0.75± 0.12 
1.15± 0.06 

516294 
2018319 

Wolfram-based Wolfram Apnano, Israel 0.71± 0.01 1.22± 0.02 674129   

Manganese-based  Mn2O3 
(pos. control) 

Skyspring Nanomaterials 16.79± 3.33 2.27± 0.06 9525211 2.48± 1.89  

Barium-based BaSO4 NM-220 (neg. 
control) 

Solvay   6232 1.14± 0.4 1.43± 0.50 
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Supplementary Table 1b: Surface-based values obtained from the four OP assays with standard deviations 

Class Material ESR  
(CPH) 

ESR  
(DMPO) 

FRAS Carbonyls  Carbonyls 
(normalized) 

Silica SiO2_15_unmod 
SiO2_15_Amino 
SiO2_15_Phospho 
SiO2 NM-200 
SiO2 NM-203 
SiO2Levasil 50 
SiO2Levasil 100 
SiO2Levasil 300 
SiO2Aerosil 200 

0.87± 0.12 
0.92± 0.09 
0.91± 0.06 
 
 
 
 
 
 

1.03± 0.19 
1.07± 0.10 
1.21± 0.13 
 
 
 
 
 
 

14.05± 1.72 
18.95± 0.79 
8.01± 2.43 
 
23.20 
4.76± 0.67 
13.23± 0.10 
13.94± 0.97 
23.20± 1.61 

345± 207 
275± 91 
115± 57 
204± 95  
197± 135 
 
 
 
 

17250± 10372 
611± 203 
639± 319 
 
548± 375 
 
 
 
 

Aluminosilicates Kaolin 
Bentonite 
DQ12 (Quartz) 

44.45± 6.02 
13.72 ± 0.26 
 

7.28± 0.79 
2.56 ± 0.23 

16.39± 1.07 
86.99± 1.15 

2754± 912 
1048± 783 

5100± 1689 
5516± 4120 

Iron oxides Fe2O3nanoform A 
Fe2O3nanoform B 
Fe2O3larger 

15.21± 0.61 
20.19± 2.01 
383.33± 26.71 

0.87± 0.05 
1.04± 0.07 
9.24± 0.69 

44.20± 2.03 
15.33± 2.24 
34.46± 1.72 

1604± 846 
2400± 899 
8376± 3007 

1688± 890 
3380± 1266 
9307± 3341 

Titania TiO2 NM-102 
TiO2 NM-105 
TiO2 non-nano 

1.29± 0.07 
1.09± 0.06 
1.21± 0.06 

1.79± 0.14 
1.66± 0.20 
1.58± 0.15 

6.30± 0.60 
18.64± 2.76 
13.77± 2.21 

 
1942± 1226 

 
2428± 1532 

Ceria CeO2 NM-211 
CeO2 NM-212 

268.60± 22.10 
189.41± 
104.20 

1.37± 0.06 
2.32± 0.07 

14.16± 2.40 
12.90± 2.17 

  

Copper- 
Based 

CuO 
Cu-Phthalocyanine 
non-halogenated 
Cu-Phthalocyanine 
Halogenated 

567.23± 34.34 
11.34± 2.99 
 
185.32± 7.84 
 

5.42± 1.06 
7.43± 2.46 
 
1.44± 0.18 
 

268.75± 2.07 
11.51± 0.77 
 
18.15± 2.09 

12631± 2074 
496± 110 
 
468± 249  

15037± 2469 
787± 175 
 
641± 341 

Zinc oxides ZnO NM-110 
ZnO NM-111 

126.76 ± 8.80  15 ± 1.00 150.99± 2.10 
20.31± 2.26 

8417± 6607 
5030± 3827 

15881± 12466 

DiketopyrrolopyrrolPigments DPP_premixed 
DPP nano 

4.97± 0.46 
1.75± 0.52 

0.64± 0.02 
0.58± 0.06 

-23.11± 2.66 
3.39± 1.80 

1812± 1622 
174± 43 
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DPP non-nano 1.15± 0.08 0.59± 0.11 1.83± 2.18 3563± 1061 

Carbon-based Carbon black 
Graphene oxide 
Graphene 1-layer 
Graphene 
Multilayer 

   942± 833 
104± 50 

 

Wolfram-based Wolfram      

Manganese-based  Mn2O3 
(pos. control) 

461.42± 10.65 2.04± 0.43 209.76± 6080± 4642  

Barium-based BaSO4 NM-220 (neg. control) 2.30± 0.06 1.31± 0.13 6.65± 56± 20 65± 23 
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Supplementary Table 2: Overview of tested materials and data availability. Ticks indicate that 

materials were measure in this assay. (M) means that only values for uniform mass assays exist, (S) 

means that the material was only measured in assays performed on uniform surface areas. 

Class Material ESR FRAS Carbonyl 

Silica SiO2_15_unmod* 
SiO2_15_Amino 
SiO2_15_Phospho 
SiO2 NM-200 
SiO2 NM-203 
SiO2Levasil 50 
SiO2Levasil 100 
SiO2Levasil 300 
SiO2Aerosil 200 

 
 
 
 
 
 
 
 
 (M) 

 
 
 
 
 (M) 
 (S) 
 (S) 
 (S) 
 (S) 

 
 
 
 
 
 

Aluminosilicates Kaolin 
Bentonite 
DQ12 (Quartz) 

 
 (S) 

 
 
 (M) 

 
 

Iron oxides Fe2O3nanoformA 
Fe2O3nanoformB 
Fe2O3larger 

 
 
 

 
 
 

 
 
 

Titania TiO2 NM-102 
TiO2 NM-105 
TiO2 non-nano 

 
 
 

 
 
 

 
 
 

Ceria CeO2 NM-211 
CeO2 NM-212 

 
 

 
 

 

Copper-based CuO 
Cu-Phthalocyanine 
non-halogenated 
Cu-Phthalocyanine 
halogenated 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Zinc oxides ZnO NM-110 
ZnO NM-111 

 
 

 
 

 
 

Diketopyrrolopyrrol 
Pigments 

DPP_premixed** 
DPP nano 
DPP non-nano 

 
 
 
 

 
 
 
 

 
 
 
 

Carbon-based Carbon black 
Graphene oxide 
Graphene 1-layer 
Graphene multilayer 

 (M) 
 
 (M) 
 (M) 

 (M) 
 
 (M) 
 (M) 

 
 

Wolfram-based Wolfram  (M)  (M)  

Manganese-based  Mn2O3 (pos. control)    

Barium-based BaSO4NM-220 (neg. 
control) 

 (S)   

* SiO2_15_unmod ≙ SiO2 Levasil 200 

** DPP_premixed is a physical mixture of DPP with acrylic resin to enhance the compatibility of the 

pigment when it is integrated in certain polymer matrices. 
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Supplementary Figure 2: Boxplots comparing mass-based and surface-based values of complete cases 

across all assays from each of the four assays between NMs that were active in the macrophage assay 

and those that were passive. Depicted are values from ESR with CPH with same mass (a) and same 

surface area doses applied (b), ESR with DMPO with same mass (c) and same surface area doses applied 

(d),FRAS assay with same mass (e) and same surface area doses applied (f) and carbonylation assay 

with same mass (g) and same surface area doses applied (h). In addition, carbonyl values were 

normalized to the deposited dose of the respective NM for same mass doses (i) and same surface doses 

(j).  
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Supplementary Figure 3: Boxplots comparing mass-based and surface-based values of complete cases 

across all assays from each of the four assays between NMs that were active in STIS and those that 

were passive. Depicted are values from ESR with CPH with same mass (a) and same surface area doses 

applied (b), ESR with DMPO with same mass (c) and same surface area doses applied (d),FRAS assay 

with same mass (e) and same surface area doses applied (f) and carbonylation assay with same mass 

(g) and same surface area doses applied (h). In addition, carbonyl values were normalized to the 

deposited dose of the respective NM for same mass doses (i) and same surface doses (j). 
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Supplementary Figure 4: Ranking of all materials by the FRAS assay, measured at equal surface dose 

(1m²/mL). Bentonite NM-600 cannot be grouped with other aluminosilicates. Coated ZnO NM-111 

cannot be grouped with untreated ZnO NM-110. For other substance families, the similarity is high 

among the different (nano)forms of each substance. 



 

11 
 

Supplementary Table 3: Outcome of univariate and multivariate logistic regression models with and 

without Firth’ bias reduction. 

Outcome 
variable 

Predictors AIC (glm) AIC (brglm) 

CPH DMPO FRAS Carbonyl 

Macro-
phage assay 

    23.11  23.12 

    22.20  22.25 

    20.68  21.30 

    18.88 19.23 
    23.77 23.88 
    20.51 21.29 
    13.01 14.07 

    22.38 23.06 

    20.87 21.37 

    20.76 21.67 
    19.02 20.41 
    8 12.74 
    14.94 16.39 

    22.72 23.72 
    10 19.65 

STIS     14.77  14.81 

    15.31  15.38 

    13.37  13.77 

    10.92 11.24 
    14.61 15.50 
    14.77 15.61 
    6 13.33 

    14.42 15.26 

    6 12.34 

    12.74 13.41 
    16.42 17.59 
    8 14.92 
    8 14.59 

    8 14.68 
    10 16.85 
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Supplementary Figure 5: Scatterplots showing the result of the logistic regression model including a) 

ESR DMPO and carbonylation data, b) FRAS and carbonylation data and c) carbonylation data only 

based on the data holding macrophage assay labels. On the y-axis, the probability of each NM to belong 

to the active class as given by the regression model is depicted. If this probability exceeds 0.5, the NM 

is assigned an active class label, otherwise it is predicted to be passive. Purple dots represent NMs that 

were assigned to the passive class by the macrophage assay, black dots represent active NMs with 

respect to the macrophage assay. 
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Supplementary Figure 6: Scatterplots showing the result of the logistic regression model including a) 

ESR DMPO and carbonylation data, b) FRAS and carbonylation data and c) carbonylation data only 

based on the data holding STIS labels. On the y-axis, the probability of each NM to belong to the active 

class as given by the regression model is depicted. If this probability exceeds 0.5, the NM is assigned 

an active class label, otherwise it is predicted to be passive. Purple dots represent NMs that were 

assigned to the passive class based on STIS results, black dots represent active NMs with respect to 

STIS. 
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Supplementary Figure 7: Dose-response curves for a) the supernatants of the silica particles and H2O 

20%, b) iron particles and c) zinc particles obtained by the FRAS assay. Each figure also includes a grey 

dose-response curve for the negative control BaSO4 as well as a black curve for the positive control 

Mn2O3. 
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Supplementary Figure 8: Surface reactivity of silica particles measured with different assays and 

uniform mass. NMs in the plot are sorted by ranks, from the particle with lowest reactivity on the left 

end to the particle with highest response at the right. a) ESR with CPH probe, b) ESR with DMPO probe, 

c) FRAS and d) protein carbonylation assay results are depicted. 
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Supplementary Figure 9: Surface reactivity of iron oxide particles measured with different assays and 

uniform mass. NMs in the plot are sorted by ranks, from the particle with lowest reactivity on the left 

end to the particle with highest response at the right. a) ESR with CPH probe, b) ESR with DMPO probe, 

c) FRAS and d) protein carbonylation assay results are depicted. 
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Supplementary Figure 10: Surface reactivity of zinc oxide particles measured with different assays and 

uniform mass. NMs in the plot are sorted by ranks, from the particle with lowest reactivity on the left 

end to the particle with highest response at the right. a) ESR with CPH probe, b) ESR with DMPO probe, 

c) FRAS and d) protein carbonylation assay results are depicted. 
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Supplementary Figure 11: Surface reactivity of zinc oxide particles measured with different assays and 

uniform surface area. NMs in the plot are sorted by ranks, from the particle with lowest reactivity on 

the left end to the particle with highest response at the right. a) ESR with CPH probe, b) ESR with DMPO 

probe, c) FRAS and d) protein carbonylation assay results are depicted. 
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