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Abstract 

Anti-NMDA receptor encephalitis (NMDARE) is an autoimmune disorder marked by 

the production of antibodies against the NMDA receptor, an ionotropic glutamate 

receptor in the central nervous system. NMDA receptors play a crucial role in synaptic 

plasticity and neurotransmission. The presence of these auto-antibodies results in 

decreased NMDA receptor levels, leading to diverse neurological and psychiatric 

manifestations including psychosis, seizures, and movement disorders. 

Routine clinical structural magnetic resonance imaging (MRI) often fails to detect 

abnormalities despite severe disease manifestation. Conversely, advanced imaging 

methods like resting-state functional MRI consistently reveal disrupted functional 

connectivity (FC) associated with disease symptoms. In general, resting-state FC 

refers to the temporal coherence of intrinsic, spontaneous brain signals across different 

regions. Traditional FC analysis are limited to a static view of brain activity as they 

average FC over the entire scan. In contrast, new dynamic time-resolved analysis 

methods capture temporal fluctuations in FC, providing valuable insights into the 

dynamic nature of brain activity with increased temporal resolution. 

This thesis work applied these novel methodological advancements to study 

functional dynamics and its clinical relevance in NMDARE patients from two 

perspectives: In Study I, spatial and temporal patterns of four major FC states were 

identified and compared between patients and healthy controls. In Study II, a novel, 

graph-based method was used to investigate alterations in the sequence of state 

exploration, which refers to transitions between different patterns of spontaneous brain 

activity over time. 

In Study I, NMDARE patients exhibited alterations in FC in three out of four states, 

along with a shift in the amount of time spent in different states. Patients also showed 

increased volatility in state transitions, correlating with disease severity. Using machine 

learning, dynamic FC models outperformed static models in discriminating patients 

from controls. These findings highlight state-dependent changes and distinct dynamic 

profile of state dynamics in NMDARE. Study II complemented these findings and 

further investigated alterations in the dynamics of state exploration and transition 

trajectories, revealing reduced resilience of state transitions and compromised 

transition networks associated with disease severity.  
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Overall, our analyses demonstrate that NMDARE is linked to a clinically significant 

destabilization of brain state transitions, providing new insights into the functional 

reorganization of brain dynamics in this disease. Moreover, our results highlight the 

potential of time-resolved FC analyses as a means of identifying novel biomarkers in 

NMDARE and other neuropsychiatric disorders.  

 

 

 

Keywords: neuroinflammatory disease • autoimmune encephalitis • anti-NMDA 

recptor encephalitis • brain imaging • functional magnetic resonance imaging • resting-

state fMRI • spontaneous brain activity • functional connectivity dynamics • graph 

theory • brain states • transition trajectories 
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Zusammenfassung 

Anti-NMDA-Rezeptor-Enzephalitis (NMDARE) ist eine Autoimmunerkrankung, die 

durch die Bildung von Auto-Antikörpern gegen den NMDA-Rezeptor gekennzeichnet 

ist. NMDA-Rezeptoren gehören zu den ionotropen Glutamatrezeptoren des zentralen 

Nervensystems und spielen eine entscheidende Rolle in der synaptischen Plastizität 

und Neurotransmission. Die Bildung dieser Antikörper führt zu einer Verringerung der 

Anzahl von NMDA-Rezeptoren, was sich in schwerwiegenden neurologischen und 

psychiatrischen Symptomen wie Psychosen, Krampfanfällen und 

Bewegungsstörungen manifestiert. 

Klinische Routineuntersuchungen mittels struktureller 

Magnetresonanztomographie (MRT) zeigen trotz dieser Erkrankungsschwere 

typischerweise keine Auffälligkeiten. Dagegen zeigen Verfahren wie funktionelles MRT 

(fMRT) konsistente Veränderungen der funktionellen Konnektivität (FC), die mit 

Krankheitssymptomen korrelieren. Im Allgemeinen beschreibt FC die zeitliche 

Kohärenz zwischen den Signalen verschiedener Hirnregionen. Hierbei mitteln 

herkömmliche Analysen die FC über den gesamten Scan, was einer statischen 

Beschreibung von Hirnaktivität entspricht. Im Gegensatz dazu erfassen neue, 

zeitaufgelöste Methoden Fluktuationen der FC und liefern so wertvolle Einblicke in die 

Dynamik von Hirnaktivität. 

Die vorliegende Arbeit untersucht Veränderungen in der dynamischen FC bei 

NMDARE-Patienten aus zwei Perspektiven: In Studie I wurden räumliche und zeitliche 

Muster der vier Hauptkonnektivitätszustände identifiziert und zwischen Gesunden und 

Patienten verglichen. In Studie II wurde eine neuartige, graphenbasierte Methode 

verwendet, um Veränderungen in der Explorationsabfolge funktioneller Hirnzustände 

zu untersuchen. 

In Studie I zeigten NMDARE-Patienten Veränderungen in drei von vier Zuständen 

sowie Unterschiede in der Verweildauer in den verschiedenen Hirnzuständen. Die 

Patienten zeigten auch eine erhöhte Volatilität in den Zustandsübergängen, die mit der 

Schwere der Erkrankung korrelierte. Beim Einsatz von maschinellem Lernen schnitten 

dynamische FC-Modelle bei der Unterscheidung zwischen Patienten und Kontrollen 

besser ab als statische Modelle. Diese Ergebnisse verdeutlichen zustandsabhängige 

Veränderungen und das spezifische dynamische FC-Profil bei NMDARE. Studie II baut 

auf diesen Erkenntnissen auf und untersuchte speziell Veränderungen in der Dynamik 

der Exploration von Konnektivitätszuständen sowie deren Übergangsmuster. Hier 
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zeigten Patienten eine verringerte Stabilität der Zustandsübergänge, die ebenfalls mit 

der Erkrankungsschwere korrelierte. 

Insgesamt zeigen unsere Analysen, dass NMDARE mit einer klinisch signifikanten 

Destabilisierung funktioneller Hirnzustände verbunden ist. Damit liefern sie wichtige 

Erkenntnisse über die funktionelle Reorganisation von Hirnaktivität bei der Erkrankung. 

Darüber hinaus unterstreichen unsere Ergebnisse auch das Potenzial von 

zeitabhängigen FC-Analysen zur Identifizierung neuer Biomarker bei NMDARE und 

anderen neuropsychiatrischen Störungen. 

 

 

 

Stichwörter: Neuroinflammatorische Erkrankung • Autoimmunenzephalitis • Anti-

NMDA-Rezeptorenzephalitis • Bildgebung • funktionelle Magnetresonanztomographie 

• MRT im Ruhezustand • spontane Hirnaktivität • funktionelle Konnektivitätsdynamiken 

• Graphentheorie • Konnektivitätszustände • Transitionsverhalten  
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1. Clinical background & Introduction to functional connectivity 

1.1. Anti-NMDA receptor encephalitis (NMDARE) 

Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) is a severe autoantibody-

mediated inflammatory disease that was first described in 2007 [1]. NMDARE is the 

most common form of autoimmune encephalitis with an estimated incidence of 

approximately 0.15 per 100.000 population per year and a prevalence of 0.6 out of 

100.000 [2,3]. The disease is characterized by the presence of Immunoglobulin G 

antibodies in the cerebro-spinal fluid and a gradual progression of symptomatology 

that includes distinct psychopathology and multistage neuropsychiatric features (Fig 

1A) [4,5]. Approximately 70% of patients experience a prodromal stage with 

nonspecific inflammatory symptoms, followed by very prominent psychiatric symptoms 

in 90% of case. These symproms, often including disorganized, agitated or violent 

behavior, hallucinations, and mood instabilities, can be difficult to differentiate from 

primary psychiatric disorders. At a later stage, patients show severe neurological 

symptoms such as dyskinesia, autonomic dysfunction, and seizures, which often 

require intensive care [4–6]. Although the disease is potentially fatal, around 80% of 

patients show a favorable clinical outcome after 24 months, with early immunotherapy 

and no emergency care being the main predictors of positive outcome [7]. 

Nonetheless, a prolonged phase of recovery including memory deficits and executive 

dysfunctions often persists several years after disease onset [8–10]. Within the first 24 

months, patients experience a 12% risk of generally milder relapses, with some having 

multiple episodes. Hence, regular cerebrospinal fluid analysis is recommended for 

early detection of recurrence [7]. First-line treatments include high-dose 

corticosteroids, intravenous immunoglobulin, and/or plasmapheresis. If necessary, 

second-line options like rituximab or cyclophosphamide can be administered [5]. 

The disease typically affects young females at a median age of 21 years, with a 

ratio of 8:2 compared to males. However, disease onset can vary considerably, ranging 

from <1 to 85 years, while the set of symptoms may differ between children and adults 

at disease onset [5,11]. Although the exact cause is still unclear, the main confirmed 

etiologies of NMDARE are paraneoplastic manifestations associated with an 

underlying ovarian teratoma in around one-third of the cases as well as preceding 

herpes simplex virus encephalitis [1,12]. 
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In NMDARE, the NR1 subunit of the NMDA receptor is targeted by auto-antibodies, 

leading to an reduction of the receptors on the synaptic surface (Fig 1B) [13,14]. NMDA 

receptors belong to the class of ionotropic glutamate receptors that are expressed 

ubiquitously throughout the human brain – with the highest density in the medial 

prefrontal cortex (mPFC) and the CA1 region of the hippocampus (Fig 1C) [15,16]. 

Excitatory synaptic transmission of a neural signal is dependent on the presynaptic 

release of glutamate that diffuses across the synaptic cleft and binds to postsynaptic 

NMDA receptors [17]. Through the activation of calcium-dependent signaling 

cascades, NMDA receptors enhance signal transduction and influence both the 

functional and structural plasticity of synapses, dendrites, and neurons [17]. As such, 

NMDA receptor dysfunction can cause a wide range of symptoms and is thought to 

play a key role in several neuropsychiatric diseases, such as schizophrenia and mood 

disorders [18–20]. Therefore, insights from NMDARE have potential transdiagnostic 

implications and could advance our understanding of shared psychiatric symptoms. 

Although a causal relationship between the depletion of receptors and the clinical 

presentation of NMDARE is assumed, a decrease in antibody titer does not correlate 

with symptom regression [21]. Brain imaging techniques have been explored in the 

quest of assessment tools that adequately describe disease progression and 

potentially serve as prognostic markers. However, standard structural magnetic 

resonance imaging (MRI) shows little to no abnormalities in 50-80% of patients [22,23], 

creating a “clinico-radiological paradox”, where a severe disease course is observed 

in the absence of visible morphological abnormalities. To address this paradox, 

advanced MRI techniques, such as functional MRI (fMRI) have been investigated to 

enhance our understanding of the link between clinical impairment and brain 

reorganization. 

Below, we first turn to central concepts of measuring spontaneous brain activity 

with fMRI (section 1.2), recent methodological advancements that enable a time-

resolved account of brain activity  (section 1.3) as well as the application of these 

advancements in clinical populations (section 1.3.1). 
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Figure 1: Clinical manifestation of NMDARE and disease mechanism. A The disease typically 
presents with a distinct neuropsychiatric syndrome characterized by a viral prodromal phase, as well as 
prominent neurological and psychiatric symptoms. From Kayser & Dalmau 2016 [6]. B NMDARE is 
caused by antibodies targeting the NR1 subunit of the NMDA receptor. This results in internalization 
and degradation of the receptor, leading to a significant reduction in receptor density on the synaptic 
surface. From Lang & Prüß 2016 [14]. C Illustration of a hippocampal section from a healthy individual 
(top) and a patient with NMDARE (bottom), immunostained with NR1 antibody. Note the visibly lower 
receptor density in the patient. From Dalmau et al. 2011 [13].  

1.2. Imaging spontaneous brain activity: a window into functional 
organization 

As a non-invasive tool, fMRI detects changes in brain activity by indirectly measuring 

localized macroscopic activity through blood flow and oxygenation1 [24–26]. This 

allows for the study of the diverse spontaneous neural activity that occurs in the human 

brain, which fluctuates in structured patterns across different temporal and spatial 

scales [27,28]. In the early stages, fMRI studies were mainly based on task-induced 

modulation (i.e., exposure to a motor, sensory, or cognitive demand/ ‘task') of the blood 

oxygen level dependent (BOLD) signal, which considerably advanced the 

understanding of brain function and spatial organization. In contrast, spontaneous, or 

resting-state BOLD fluctuations were considered noise (i.e., physiological, movement, 

or scanner artifacts) that were usually minimized through averaging of the BOLD time 

series [27,29]. In the following years, however, accumulating evidence to the contrary 

showed that resting-state brain activity is not random but provides insights into the 

fundamental organization of infra-slow (< 0.1Hz) neural activity (Fig 2A) [27,30–34]. In 

 
1 Functional MRI utilizes localized fluctuations in blood oxygenation measuring ferromagnetic properties 
of hemoglobin [24]. While oxygenated hemoglobin is diamagnetic (i.e., only paired electron pairs), 
deoxygenated hemoglobin contains unpaired electrons and is magnetizable. As neural activity 
metabolizes oxygen, the blood oxygen level dependent (BOLD) signal is used as a proxy to localize 
brain activation via blood flow and temporarily increased local oxygenation levels – a process termed 
neurovascular coupling [25]. Importantly, in contrast to other vascular territories in the body, vasodilation 
in the brain is much less determined by systemic factors (e.g., catecholamines and instead shows a 
high degree of autoregulation by local factors that help meet the brain’s need for constant blood supply 
and water homeostasis [26]. 

Lang & Prüß 2016, Info Neurologie Dalmau et al. 2011, Lancet Neurol.Kayser & Dalmau 2011, Curr Psych Rev

A B C
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their seminal work, Biswal et al. demonstrated strong coupling of these low-frequency 

fluctuations across homologous motor areas in the human cortex [30]. This temporal 

dependency led to the pivotal idea that brain regions which show a strong temporal 

correlation in their activity are functionally connected [30]  – a concept that is commonly 

referred to as functional connectivity (FC) (Fig 2B).  

This discovery initiated a new era in neuroimaging research that has provided 

fundamental insights into the intrinsic functional architecture of the human brain. 

Estimated from whole-brain correlations of BOLD time series, human brain activity can 

be decomposed into networks of functionally connected brain regions (Fig 2C) 

[31,33,35]. These resting-state networks are robust, exhibit distinct spatiotemporal 

features, and are highly reproducible [33]. This network architecture is commonly 

summarized as the functional connectome and is typically subdivided into a visual, a 

sensori-motor, an attentional, a fronto-parietal, and a default-mode network, each of 

which possesses distinct functional characteristics [36–38]. While the sensori-motor 

network has been implicated in the planning and performing of motor actions, the 

default-mode network is typically attributed with internal processes including 

autobiographical memory and mind-wandering [30,39]. Furthermore, functional 

networks can be broadly divided into primary sensory and association networks that 

are organized along a hierarchy from lower-order unimodal to higher-order transmodal 

functional systems [33,40].  

These findings have been extended to individualized descriptions of brain 

organization: functional connectome “fingerprinting” can reliably identify individual 

participants from large study populations with up to ~95% accuracy based on their 

unique patterns of FC [41]. It has been posited that these inter-individual differences 

of connectomics can even predict inter-individual differences in cognition (attention, 

intelligence, or working memory) [41–43]. However, to what extent a direct mapping of 

inter-individual differences in behavior onto individual differences in functional 

organization is attainable, is still under debate [44].  

To understand brain function in both healthy and diseased states, researchers have 

investigated the relationship between clinical symptoms and alterations in functional 

connectomics, using both correlational approaches and mechanistic models of brain 

function [45–47]. These studies demonstrated that focal lesions in different locations 

can lead to identical or similar clinical symptoms [48], thus supporting the concept of 

spatially distributed but functionally integrated processing systems. From this 
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standpoint, it is important to investigate disease-related alterations in the brain not only 

in terms of local activity changes but also at the level of large-scale resting-state 

functional networks [45]. 

 
Figure 2: Functional organization of the brain as measured with resting-state fMRI. A Region-wise 
time series of spontaneous, intrinsic brain activity captured by resting-state fMRI. B Correlated activity 
among functionally related brain regions over time, known as functional connectivity (FC), is evident in 
the activity patterns. The correlation matrix visualizes the temporal coherence between any two regions 
in the brain. Red indicates highly correlated activity, blue highly anti-correlated activity. C FC is 
organized into large-scale functional resting-state networks, typically including a visual network, a 
sensori-motor network, an attentional network, a fronto-parietal network, and a default-mode network. 
The network architecture depicted here is based on the commonly used estimation by Yeo et al. [33]. 

1.2.1. Prior evidence of functional reorganization in patients with 
NMDARE 

Patients with NMDARE have been reported to exhibit distributed impairments in FC, 

affecting most of the large-scale networks, and specifically sensori-motor, fronto-

parietal, lateral-temporal, and visual networks [49]. Furthermore, impairment in the 

connectivity of the default-mode network was consistently observed between 

hippocampal and medial prefrontal regions [49,50]. Importantly, decreases in FC 

correlated with individual memory performance [49,50] and psychiatric symptom 

presentation [49], underlining the clinical relevance of functional disruptions in the 

manifestation of NMDARE. 

Despite their usefulness, conventional resting-state analyses have a significant 

limitation in that they rely on the averaged correlation of BOLD time series over a multi-

minute scan, producing a "static" view of brain activity. This limitation prevents the 

capture of dynamic evolution and reconfiguration of brain activity [51,52]. Thus, time-

resolved analysis of brain activity has been developed, which allows for the study of 

the inherently dynamic nature of brain activity.  

The studies included in this thesis focus on exploring the dynamics of functional 

reorganization in patients with NMDARE with the objective to advance our 

understanding of altered brain dynamics in this patient population. 

timeseries
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Yeo et al. 2011, J Neurophys.



Clinical background & Introduction to functional connectivity 

  17 | Page 

The following sections will give an introduction to the methodologies of time-

resolved analysis of intrinsic brain activity, discuss their behavioral and clinical 

significance, and outline the theoretical and methodological framework that was 

employed to study brain dynamics in patients with NMDARE.  

1.3. From minutes to seconds: time-resolved analysis of spontaneous 
brain activity 

Time-resolved analysis of resting-state fMRI has emerged as the next frontier in 

functional brain imaging [53,54]. By increasing the temporal resolution from minutes to 

seconds, new models of brain function have been developed that provide novel 

insights into regional and network interactions. As a result, our understanding of 

healthy brain function and pathological conditions has significantly advanced [47,52–

56]. 

One line of research studies the functional dynamics of BOLD activity as the 

variance or standard deviation of moment-to-moment fluctuations in the signal, 

providing information on regional BOLD variability [57]. Moreover, several analytical 

frameworks have been developed to capture functional variations in BOLD activity, 

including time-resolved signal complexity [56], time-frequency analyses [54], co-

activation patterns [58,59], BOLD cofluctuation magnitude based on edge time series 

[60], and biophysical modeling of nonlinear brain dynamics [61]. 

On the other hand, to describe connectivity dynamics among brain regions, the 

concept of time-varying functional network interaction has been proposed – the 

functional ‘chronnectome’ [53]. This framework allows for the identification of transient 

FC states, which manifest as distinct recurrent patterns of whole-brain FC [62]. The 

focus of the present thesis is to model brain dynamics by studying these functional 

brain states and examining the transitions that occur between them (see section 2.1. 

& section 2.3. for more detail). 

1.3.1. Clinical and behavioral relevance of time-resolved spontaneous 
brain activity 

Time-resolved resting-state analyses offer a promising approach to better capture the 

inherently dynamic aspects of cognition and behavior [63]. Indeed, numerous studies 

have provided strong evidence linking moment-to-moment fluctuations in brain activity 

to cognititive processes and behavior: For instance, Gonzalez-Castillo et al. [64] 
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conducted a study where they scanned participants engaged in several cognitive 

tasks, and they found that the patterns of functional configurations during each task 

differed among participants and accurately reflected the individual’s level of task 

engagement and cognitive ability [64]. Furthermore, it is possible to predict how well a 

person is performing a task by analyzing the continuous patterns of brain function. For 

example, if the connectivity between the default mode and sensory networks in the 

brain is weak, participants are more likely to fail to perceive a faint sound [65]. Similarly, 

ongoing connectivity patterns linked to the state of vigilance predicted intra-individual 

variations in response speed [66]. 

Task-independent ongoing mental states are influenced by the intrinsic activity of 

the brain, which is assumed to be more variable and less consistent across individuals 

and time points, and not driven by external demands. Despite this, resting-state brain 

dynamics have been linked to interindividual differences in general cognitive 

performance: For example, higher standard deviation of BOLD signal indicated better 

overall performance in working memory [67], cognitive flexibility [68], and response 

speed [69]. However, brain signal variability can also have differential effects: for 

example, higher BOLD signal variability can enhance cognitive flexibility but impair 

cognitive stability [68].  

Moreover, functional dynamics also change across the lifespan: Garrett et al. 

demonstrated that BOLD variability decreases with age, and that signal variability has 

five times greater predictive power for age than mean-based BOLD measures [57]. 

Importantly, those regions that were most predictive of age remained undetected with 

conventional average measures, suggesting that Garrett at al. revealed a subset of 

previously unknown age-related regions using variability measures [57]. Importantly, 

the relationship between age, cognition, and brain dynamics also extends to other 

conceptualizations of BOLD variability, such as time-resolved entropy [56]. 

Finally, time-resolved approaches have inspired efforts to further our understanding 

of psychiatric and neurological conditions. Although it is unclear whether changes in 

dynamic network properties are the cause or consequence of the disease, these 

properties are increasingly regarded as novel biomarkers for disorders, as they seem 

to be related to many clinical dysfunctions [52]. The analysis of FC states in people 

with schizophrenia showed a pronounced shift in their state preference, indicating 

changes of whole-brain activity configurations [70]. Moreover, these patients exhibited 

increased overall transition frequencies between states [71]. 
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A different pattern was reported for patients with acute ischaemic stroke by 

Bonkhoff et al. [72]: Here, patients exhibited distinct state-wise FC alterations in 

sensori-motor networks that were accompanied by characteristic changes in temporal 

properties of network interactions. Remarkably, the extent and nature of the changes 

varied with the severity of the motor deficits [72]. 

In people with major depression, a prominent finding was decreased variability in 

FC, accompanied by extended dwell times in the dominant state which showed low 

overall connectivity. Changes in FC dynamics were correlated with symptoms such as 

sadness, and disease severity, potentially reflecting negative, slow, and ruminative 

thinking [73–76]. Patients with Alzheimer's disease demonstrated more volatile state 

transitions and spent more time in usually infrequent, functionally segregated states 

compared to healthy controls [77,78].  

Patients with multiple sclerosis exhibited a complex pattern of unstable network 

dynamics that was topologically constrained to pericentral, limbic and subcortical 

areas. These dynamics were associated with measures of clinical disability [79,80].  

 These examples demonstrate the potential of functional dynamics to uncover new 

perspectives on brain pathology that may not be detected through traditional static 

analyses. Additionally, studying brain dynamics may reconcile conflicting evidence 

from traditional resting-state approaches, leading to a more holistic understanding of 

brain function in health and disease. With this in mind, the current thesis applies these 

novel methodological advancements to investigate functional dynamics and its clinical 

relevance in people with NMDARE. 
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2. Methodological background & Framework 

2.1. Identifying brain states 

One fundamental approach to assess time-resolved connectivity dynamics involves 

quantifying distinct functional brain states. These states correspond to transient whole-

brain patterns of inter-regional coupling [62].  

Methodologically, brain states in resting-state fMRI are most commonly estimated 

from sliding window correlations. In this simple, yet powerful approach, BOLD time 

series are subdivided into temporal windows of equal length that can be either 

overlapping or non-overlapping (Fig 3A). The length of these windows represents an 

important methodological choice that determines the tradeoff between temporal 

resolution (tracking fast temporal changes in FC) and estimation accuracy (enhancing 

signal-to-noise ratio) [81]. Within each window, pairwise correlations of BOLD time 

series are computed among brain regions, resulting in window-wise FC matrices which 

represent a time-resolved account of covarying brain activity (Fig 3B). Subsequently, 

clustering algorithms are applied to group windows with similar connectivity patterns 

together. Thereby, each window is assigned to a particular functional brain state based 

on a predetermined target measure (Fig 3C). The present thesis applies two of the 

leading clustering methods to derive these functional brain states: k-means clustering 

of network connectivity (Study I) and temporal meta-states (Study II), as shown in Fig 

3 and detailed in the following sections.  

2.2. Mapping the functional connectome with graph theory 

To investigate the multi-faceted organization of brain activity, researchers have widely 

adopted tools from network neuroscience [82], with a special emphasis on graph 

theory. Within this framework, the brain can be represented as a graph, where “nodes” 

represent specific brain regions, and “edges” represent the connections between them 

(e.g., FC) [83]. This approach allows for a robust abstraction of brain regions and how 

they interact. 

One critical feature of brain organization is network efficiency. Network efficiency 

refers to how efficiently information flows through a network via the connections 

between different regions of the brain. In the context of brain activity, network efficiency 

involves both information integration and segregation [84]. 
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Information integration refers to the ability of a network to transmit information 

between nodes. In the brain, this can be thought of as how easily information can be 

transmitted across different brain regions that are not necessarily directly connected 

[85]. 

Information segregation refers to the ability of a network to create groups of nodes 

that are highly interconnected with each other. In the brain, this can be thought of as 

clusters of regions that work together to perform specific functions [85].  

This organizational property is closely linked to modularity. Modularity refers to the 

presence of groups, modules or subnetworks within a larger network that have a 

relatively higher density of connections between them compared to connections 

outside the group [86,87]. In the context of the brain, modularity refers to the existence 

of subnetworks, i.e., modules, of brain regions. These modules closely resemble 

canonical resting-state networks and reinforce the idea of network organization in brain 

function – see section 1.2. [31]. 

The combination of network efficiency and modularity in the brain allows for parallel 

information processing across distributed domains, while balancing cost-intensive 

functional integration and cost-efficient functional segregation [33,88].  

Building on this background, the current work applies graph analysis in two ways. 

In Study I, it is used to describe spatial characteristics of functional states (i.e., 

differences in FC across states). In Study II, graph analysis is applied to study the 

spatiotemporal organization of transitions between temporal states (i.e., how the brain 

transitions between different functional states over time). For more details, please refer 

to Fig 3 & section 2.3. 
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2.3. Frameworks for Study I and Study II  

 
Figure 3: Schematic overview of the methodological and theoretical frameworks applied to 

explore FC dynamics in patients with NMDARE in Study I and Study II.  
 
 

In both studies, we applied a sliding window approach, where regional time series of 

resting-state data are segmented into smaller windows (Fig 3A), with a connectivity 

matrix obtained for each window (Fig 3B). These matrices are then clustered into 

temporal patterns of connectivity (Fig 3C).  

In Study I, four FC states were identified that represent the major connectivity 

patterns. The approach allowed for the assessment of state-wise characteristics, such 

as region-by-region differences in FC, average connectivity and modularity, as well as 

number of windows spent in a given state (dwell time), and transition frequencies 

between states (indicated with arrows).  

In Study II, 35-55 temporal states were obtained, and a time-resolved transition 

network graph was created to analyze transition trajectories between states. The 

organizational properties of state sequences were assessed with modularity, network 

efficiency, and robustness, as well as immobility (indicated with self-referenced arrows) 

and leap size.  

A more detailed prescription of the framworks is provided in the next two sections. 
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2.3.1. Framework Study I: Dynamic functional network connectivity – 
estimating recurrent patterns of FC 

Connectivity states quantified within the framework of dynamic functional network 

connectivity reflect major, quasistable connectivity patterns that participants 

systematically revisit throughout the scan [53,62]. This approach has been validated 

many times [89], with most studies converging on a sliding window length between 30 

and 60 seconds and identifying 4-6 distinct FC states [52,62,70–72,90]. These 

temporal states are hierarchically organized along varying connectivity levels: from a 

most frequently visited low-connectivity state to a least frequently visited high-

connectivity state, with some intermediate states (also see results of Study I) 

[62,70,91]. While high-connectivity states may reflect moments of cost-intensive 

functional integration between networks, low-connectivity states show high functional 

segregation between networks, potentially reflecting a cost-efficient ‘default state’ [92]. 

Interestingly, these findings are consistent with our recent work on the complexity of 

regional BOLD dynamics [56]. 

Analyses of FC states yield obvious information beyond a static account of brain 

activity: First, the functional topology of each state can be analyzed individually. This 

includes the degree of functional integration and segregation (as measured with 

modularity, for example), overall connectivity, and region-by-region differences in FC. 

Second, state-wise temporal properties can be quantified to describe how functional 

coupling evolves over time, assessed with measures such as dwell time (time spent in 

a given state once entered). Third, across-state functional dynamics can be quantified 

as transition frequencies (number of switches between each pair of state). For a 

schematic overview, see Fig 3 and Table 2 for details on these metrics. 

2.3.2. Framework Study II: Tracking state transitions – a systematic 
exploration of the brain’s functional repertoire 

The framework applied in Study I is particularly useful to examine spatial 

characteristics, such as region-by-region connectivity differences within and across the 

major FC patterns. However, only a few primary brain states are identified with this 

method which limits its ability to track fast temporal changes in FC [92,93]. Study II 

addresses this limitation and uses a considerably greater number of states, estimated 

based on shorter windows of 2 to 4 seconds. To track the progression of state 

transitions effectively, most studies suggest the use of 30-55 states [48,54–56].  
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Previous research on state transition dynamics has shown that functional state 

transitions follow a non-random, structured sequential order [94,95], potentially 

reflecting a systemic exploration of the brain's functional repertoire [93]. Interestingly, 

sequences of brain states seem to be organized in a modular manner: brain states are 

clustered into modules of akin states, that show higher transition frequencies amongst 

each other as compared to states from different modules [95]. This may ensure stable 

information representation, while maintaining flexibility of responsiveness [88].  

Analogous to the connectome, state transitions are hierarchically organized in time 

[92], following the principal gradient of cortical organization [40]. Accordingly, brain 

activity cycles between two sets of states with inverse activity profiles. One end of this 

gradient is associated with lower-order unimodal systems (visual and sensori-motor), 

while the opposing end is associated with higher-order transmodal systems (default-

mode, fronto-parietal) [92]. Traversing along this hierarchical gradient is thought to 

minimize metabolic demand while enabling systematic state exploration [96]. 

Remarkably, this principle is highly reproducible across samples and species [95,97].   

Finally, prior studies demonstrated that spatiotemporal dynamics of state 

transitions are related to cognition and behavior [94]. This indicates that aberrant brain 

transition dynamics may contribute to cognitive or behavioral deficits in 

neuropsychiatric conditions. To capture these complex organizing principles of 

transition trajectories, Ramirez-Mahaluf et al. recently developed a framework where 

nodes in a graph represent brain states, and edges represent transitions between 

those states [94]. This transition graph is constructed form the temporal succession of 

functional brain states. Subsequently, graph theoretical metrics can be used to quantify 

the spatiotemporal organization of brain state transitions (see Fig 3, and for details on 

metrics, see Table 4).  
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3. Research questions  

3.1. Brain states and transitions: a new perspective on functional 
reorganization in NMDARE 

This work builds upon earlier studies on static FC in NMDARE by examining the 

spatiotemporal dynamics of brain connectivity patterns in this patient population. The 

goal is to uncover the dynamic network alterations associated with the wide range of 

neuropsychiatric symptoms observed in this condition. To this end, two studies were 

conducted: 

In Study I, we performed dynamic functional network connectivity analysis [62] to 

obtain discrete functional brain states (see section 2.3.1) in people with NMDARE and 

healthy controls. Based on these states, we (i) assessed state-wise group differences 

in FC and state dynamics, (ii) explored the relationship between state dynamics, 

disease severity, and duration, and (iii) employed an unsupervised machine learning 

approach to evaluate the potential of each brain state to discriminate patients from 

controls in a predictive classification framework. 

In Study II, we studied transition trajectories of brain state exploration in NMDARE, 

using the recently developed analysis framework introduced in section 2.3.2 [94]. 

Based on the transition networks, we (i) assessed group differences in the spatial 

topology of transition networks using graph theoretical measures, (ii) conducted 

between-group comparisons for two measures that aim to represent the biological 

costs of state transitions (leap size and immobility), and (iii) explored the relationship 

between state transition properties and disease severity in patients with NMDARE. 
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4. Methods & Results for Study I and Study II 

4.1. Study I: State-dependent signatures of NMDARE 

4.1.1. Methods & materials 

This section summarizes the main methods & materials used in von Schwanenflug et 

al. [91]. For more comprehensive information on the analyses, please refer to the 

dedicated Methods section therein. 

 

Participants:  

For this study, we collected resting-state fMRI data from a large sample size of 57 

patients with NMDARE and 61 healthy controls with no statistical difference between 

groups regarding age & sex. NMDARE diagnosis was based on clinical presentation 

and the presence of IgG NMDA receptor antibodies in cerebrospinal fluid. Patients 

were in the post-acute stage, with a median of 2.43 years from disease onset to MRI, 

and a median disease severity of mRS 1.00 at the time of the scan. Controls had no 

history of neurological or psychiatric conditions. Sample characteristics are 

summarized in Table 1. All participants provided written consent, and the study was 

approved by the local ethics committee. Further information on treatment and 

medication during the disease course can be found in von Schwanenflug et al. [91], 

Supplementary Table 1. 

 

Table 1: Demographic variables and clinical measures of the participants in Study I. 
Table from von Schwanenflug et al. [91]. 

  Patients Healthy Controls 
N  57 61 

Sex  ♀ / ♂ 50/7  54/7  

Age (years) Median ± IQR 25.00 ± 14.50 26.00 ± 11.00 
mRS at scan Median ± IQR 1.00 ± 1.00  .. 

Disease duration Median ± IQR 62.00 ± 59.50  ·· 
Time between disease 
onset and scan (years) 

Median ± IQR 2.43 ± 2.95 .. 

Table lists median and interquartilerange (IQR) of age, mRS at day of scan, and disease duration. 
mRS = modified Rankin Scale [0-4], higher scores indicate higher disease severity; disease duration 
= days in acute care; N = number of participants. 
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MRI data acquisition and analysis: 

MRI data was acquired using a 20-channel head coil and a 3T Trim Trio scanner. An 

echoplanar imaging sequence (repetition time [TR] = 2.25 s, echo time [TE] = 30 ms, 

260 volumes, voxel size = 3.4 × 3.4 × 3.4 mm3) was used for resting-state fMRI data 

and a high-resolution T1-weighted magnetization-prepared rapid gradient echo 

sequence (voxel size = 1 × 1 × 1 mm3) was used for structural scans. Preprocessing of 

the resting-state fMRI data included discarding the first five volumes, slice time 

correction, realignment, spatial normalization, and spatial smoothing using a 6-mm 

kernel. A dedicated MATLAB toolbox was used for group independent component 

analysis, resulting in a parcellation of 39 regions of interest that were subsequently 

assigned to functional resting-state networks [33]. 

 

Static and dynamic functional network connectivity analysis:  

For each participant, sliding window correlation (see section 2.1.) was applied to obtain 

functional dynamics. Thus, the functional time series of each region of interest was 

divided into consecutive overlapping time-windows of 67.5 seconds length that slid in 

steps of 2.25 seconds. Within each window, Pearson’s correlation between all region 

pairs was computed. Subsequently, four discrete functional network connectivity states 

were defined with k-means clustering as described in section 2.3.1, resulting in 

average whole-brain correlation matrices for both static FC and each dynamic state.   

 

Group differences in static and dynamic functional network connectivity:  

First, we analyzed the spatial topology of static FC and each state (dynamic FC).  

This involved evaluating whole-brain modularity and overall connectivity (a), as well 

as FC for all region pairs for static and state-wise connectivity matrices (b). To estimate 

group differences in modularity and overall connectivity (a), a permutation-based t-test 

was conducted for the static analysis. For the state analyses, a two-way ANOVA was 

employed to estimate group- and state-wise effects. Post-hoc analyses were 

conducted using a Kruskal-Wallis test. To assess group differences in FC between all 

region pairs for the static and state-wise connectivity matrices (b), non-parametric t-

tests were used and adjusted to correct for multiple comparisons [98]. 

Second, we analyzed the temporal state dynamics using dwell time and transition 

frequency. Here, a two-way ANOVA was used to estimate group- and state-wise 
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effects. Post-hoc comparisons were evaluated using either a non-parametric t-test or 

a Tukey's test depending on data characteristics. 

For a detailed explanation of the spatial and temporal metrics used in the analysis, 

please refer to Table 2. 

 

Correlation with clinical variables:  

We conducted post-hoc Pearson's correlation analyses to investigate the relationship 

between disease severity variables (i.e., acute days in hospitalization and modified 

Rankin Scale (mRS) scores at the time of the scan), and dynamic metrics (i.e., dwell 

time and transition frequency). 

 

Table 2: Description of spatial and temporal metrics assessed for between-group 
comparisons between NMDARE patients and healthy controls. 
Metric Definition 

Modularity 
[85,99] 

In Study I, modularity defines the degree to which the static FC matrix 
and each state can be subdivided into modules with maximally high FC 
within modules and maximally low FC between modules. In the dynamic 
analyses, modularity was calculated for all windows in each state and 
then averaged for each subject. Measure of functional segregation. 

Overall 
connectivity 

Calculated as the absolute mean connectivity of the static FC matrix or 
of each state. In the dynamic analyses, overall connectivity was 
calculated for all windows in each state and then averaged for each 
subject.  

Pairwise FC 
differences 

Group differences in FC between all region pairs with respect to 
connectivity strength. This was done for the static connectivity matrix as 
well as each state in the dynamic network analysis. 

Dwell time Average number of windows a participant spends in a particular state 
once entered. 

Transition 
frequency 

Absolute number of transitions between each pair of states. 

 

State-wise classification:  

Lastly, we evaluated the ability of static and dynamic FC (encompassing the the four 

dynamic states) to distinguish between patients and controls utilizing a supervised 

binary classification approach. Following previous work from Peer et al. [49], FC of the 

visual, fronto-parietal, and default-mode network areas were considered as input 

features. For each state, as well as for the static connectivity matrix, logistic regression 
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models were trained to predict group status (patients vs. healthy controls) in a leave-

one-out cross validation scheme. 

 

4.1.2. Results 

The key findings of the study are displayed in Fig 4 and summarized below. Please 

refer to von Schwanenflug et al. [91] for a detailed report of the results. 

 

i. Clustering analyses identified four major FC states (Fig 4A). While the global 

spatial topologies (i.e., modularity and overall connectivity) did not differ between 

groups, they differed considerably between states: the dominant (i.e., most 

frequently visited) state 1 closely resembled the static FC pattern exhibiting low 

overall connectivity and moderate modularity. States 2 and 3 both displayed 

elevated overall connectivity, yet only state 2 had a notably segregated structure 

(i.e., high modularity). Unlike state 3, which showed highly integrated and 

interconnected connectivity patterns, state 4 showed high modularity but reduced 

overall connectivity (see Fig 4A+B and von Schwanenflug et al. [91] 

Supplementary Tables 3-8 for detailed test statistics). 

ii. Region-by-region group comparison in FC yielded characteristic patterns of FC 

alterations in 3 out of 4 states in patients compared to controls (Fig 4A, detailed 

test statistics can be found in von Schwanenflug et al. [91]: Table 1 and Table 2).  

a. In the dominant (i.e., most visited) state, we observed a significant reduction 

in FC between the hippocampus and the mPFC (t = 4.01, pFDR = 0.0016). 

Interestingly, this finding closely aligns with the patterns observed in the static 

FC analyses (t = 4.36, pFDR < 0.001; refer to Fig 1 in von Schwanenflug et al. 

[91]). Consequently, our results support and validate previous observations, 

and appear to drive findings in static analyses. 

b. In addition, these findings are complemented by widespread disruptions in FC 

in state 2 and 3, including FC changes within the default-mode network, and 

between frontal and visual regions as well as subcortical areas – findings that 

went unnoticed in static FC analysis. 

c. Interestingly, in state 2, higher disease severity was significantly associated 

with a decrease in FC between mPFC and angular gyrus (r = -0.37, p = 0.019). 
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iii. Patients showed increased dwell time in state 2 (d = -0.42, p = 0.032), while at 

the same time showing decreased dwell time in state 1 (d = 0.40, p = 0.020) 

compared to controls (Fig 4C). This indicates a systematic shift in state preference 

in patients from the dominant state 1 to the less frequent, but highly segregated 

state 2. 

iv. Furthermore, patients exhibited increased transition frequency between states 

with low (state 1) and high (state 2) functional segregation (d = -0.50, p = 0.0063) 

and between states with high (state 3) and low (state 4) overall FC (d = -0.34, p = 

0.043, Fig 4C).  

a. Remarkably, increased transition frequency between state 1 and 2 was 

associated with higher disease severity (r = 0.34, p = 0.012). 

v. Lastly, a supervised classification approach further emphasizes the benefit of 

increasing temporal resolution: the power to predict group status varied and 

reached up to 78.6% (Fig 4D), exceeding the performance of the static 

classification (72%, von Schwanenflug et al. [91]), and highlighting the uniqueness 

of each state. 
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Figure 4: Results Study I – Dynamic functional network connectivity. A Dynamic functional 
network connectivity states. Each matrix displays the mean FC matrix for each state across patients 
and healthy controls, with darker red colors indicating stronger correlation and darker blue colors 
indicating stronger anti-correlation between regions. Green and yellow circles denote significantly lower 
and higher correlation values, respectively, in patients compared to controls. The diagonal rectangles 
represent functional networks. B State-wise spatial topology. State-wise comparison of average 
connectivity and modularity revealed significant differences between states but not between groups. 
States 2 and 3 exhibited stronger overall connectivity than States 1 and 4, while States 2 and 4 showed 
higher modularity than States 1 and 3. Black dots and vertical lines represent mean and standard 
deviation. C Temporal state dynamics. Group differences in average dwell time (left) and transition 
frequencies between states (right). Patients had lower dwell times in State 1 and longer dwell times in 
State 2, as well as higher transition frequencies between States 1 and 2, and between States 3 and 4, 
compared to controls. For transition frequencies, the direction of transition was ignored. D State-wise 
classification. State-wise feature selection matrices indicate the importance for each feature for 
predicting group status, with bigger and brighter circles indicating higher importance. Classification 
accuracy for each state is denoted in red. 
Statistical significance was denoted by *p < 0.05, **p < 0.01, or ***p < 0.001, with temporal state 
dynamics not corrected for multiple comparisons. CB = cerebellar network, DMN = default-mode 
network, dATT = dorsal attention network, FPN = fronto-parietal network, SM = sensori-motor network, 
VIS = visual network; AG = angular gyrus, HPC = hippocampus, IFG = inferior frontal gyrus, mPFC = 
medial prefrontal cortex, POS = parieto-occipital gyrus, SFG = superior frontal gyrus, TPOJ = temporo-
parieto-occipital junction. Figure and captions adapted from von Schwanenflug et al. [91]. 
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4.2. Study II: Reduced resilience of state transitions in NMDARE 

4.2.1. Methods & materials 

This section summarizes the main methods & materials used in von Schwanenflug et 

al. [100].  

 

Participants:  

This study included a large sample size of 73 patients with NMDARE and 73 healthy 

controls with no statistical difference between groups regarding age & sex. NMDARE 

diagnosis was confirmed by clinical presentation and the detection of IgG NMDA 

receptor antibodies in cerebrospinal fluid. Patients were in the post-acute stage, with 

a median of 2.97 years from disease onset to MRI, and a median disease severity of 

mRS 1.00 at the time of the scan. Controls had no history of neurological or psychiatric 

disorders. Clinical and demographic details are summarized in Table 3. All participants 

gave written consent, and the study was approved by the local ethics committee. 

Additional treatment information is available in von Schwanenflug et al. [100], Table 1 

& Supplementary Table S1. 

 

Table 3: Demographic variables and clinical measures of the participants in Study II. 
Table from von Schwanenflug et al. [100]. 

  Patients Healthy Controls 

N  73 73 

Sex  female/male 62/11 62/11 

Age (years) Median ± IQR (N) 28.55 +/- 8.7 (73) 28.50 ± 8.5 (73) 

mRS at scan Median ± IQR (N) 1.00 ± 1.5 (70) .. 

Disease duration 
(hospitalization time) 

Median ± IQR (N) 67.50 ± 72.00 (68) ·· 

Years between disease 
onset  and study 

Mean ± SD (N) 2.97 ± 2.48 (71) ·· 

Table lists median and interquartile range (IQR) of age, mRS at scan, disease duration, and time between 
scan and diagnosis. Disease duration = days in acute care; N = number of participants; mRS = modified 
Rankin Scale. 
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MRI data acquisition and analysis: 

MRI data was acquired using a 20-channel head coil and a 3T Trim Trio scanner. An 

echoplanar imaging sequence (repetition time [TR] = 2.25 s, echo time [TE] = 30 ms, 

260 volumes, voxel size = 3.4 × 3.4 × 3.4 mm3) was used for resting-state fMRI data 

and a high-resolution T1-weighted magnetization-prepared rapid gradient echo 

sequence (voxel size = 1 × 1 × 1 mm3) was used for structural scans. Preprocessing of 

functional images included removal of the first 4 volumes, slice-timing correction, 

realignment, detrending, intensity normalization, spatial smoothing, ICA-AROMA for 

head motion correction, regression of white matter and cerebrospinal fluid time series, 

demeaning, and band-pass filtering according to Parkes et al. [101].  

 

Meta-state estimation and transition network construction:  

To further analyze the functional data, we extracted the time-series of 638 regions of 

interest based on a functional atlas template as previously described [39,94]. Then, for 

each participant, we divided the time series of each region into non-overlapping 

windows of ~5 seconds length, and computed FC within each window between any 

two regions using Multiplication of Temporal Derivatives [77]. These FC values were 

then clustered into 35 to 55 brain states, resulting in a time-resolved transition network 

graph with brain states as nodes and transitions between brain states as weighted, 

directed edges (Fig 5A).  

 

Group comparisons of transition network properties:  

The organization of transition networks was assessed using modularity, network 

efficiency, and robustness. To evaluate the temporal properties of state transitions, 

leap size, immobility, and overall transition frequency were calculated. Additionally, the 

within-to-between module state similarity ratio (ratiosim) and the within-to-between 

module transitions ratio (ratiotrans) were computed for each participant. All metrics are 

described in detail in Table 4. 

General linear models were used to compare graph metrics, transition frequencies, 

ratiosim, and ratiotrans between groups, with head motion, framewise displacement, age, 

and sex as nuisance variables for each metric separately. 
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Correlation of network properties with disease severity:  

Next, the relationship between metrics and disease severity was investigated. To this 

end, we calculated a composite z-score for each patient, which reflected disease 

severity based on the patients’ mRS scores at the day of the scan and disease duration 

(days in acute care). Subsequently, Pearson’s correlation between network properties 

and disease severity was computed and corrected for multiple comparisons [98]. 

 

Table 4: Description of network properties assessed in Study II for between-group 
comparisons between NMDARE patients and healthy controls. Table from von 
Schwanenflug et al. [100]. 
Metric Definition 

Modularity 
[85,99] 

This network parameter quantifies the degree to which the transition 
network can be subdivided into clearly defined groups or modules of 
states with maximally possible number of within-module transitions 
and minimally possible number of between-module transitions. A high 
modularity indicates that states within a module show particularly high 
transition frequencies compared to states from different modules. 

Global efficiency 
[85,102,103] 

The global efficiency quantifies the average number of transitions 
necessary to reach one state from any other states in the network. 

Local efficiency 
[85,102,103] 

The local efficiency is the global efficiency (see above) computed on 
a particular state. In a transition network, this measure indicates how 
well-connected neighboring states are among each other. The local 
efficiency gets averaged across all states in a transition network. 

Immobility 
[94] 

Immobility quantifies the average number of windows a participant 
remained in the same state before transitioning to a different state. 

Leap size 
[94] 

Leap size is the average distance between consecutive states 
excluding periods of immobility. It is defined as the spatial distance 
between one state and the next one (1 – correlation coefficient of their 
connectivity matrices). It therefore measures the magnitude of ‘jumps’ 
between states and is thought to reflect metabolic cost of state 
transitions, assuming that transitions between more distinct states 
are more costly. 

Robustness 
[104] 

Measure of resilience against fragmentation of a network. Nodes 
(states) of the transition network are randomly removed one by one. 
A high robustness of a transition network indicates that even in the 
absence of several nodes (states), transitions among the remaining 
states are still possible. 

Transition 
frequency 

Overall number of transitions between different states excluding the 
periods of immobility. 

Ratiosim The ratio of within-to-between state similarity is defined as the 
average correlation of states within a module divided by the average 
correlation of states between modules. 
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Ratiotrans The ratio of within-to-between module transitions is the absolute 
number of transitions between states within the same module divided 
by the absolute number of transitions between modules. 

 

 

Functional topology of brain states:  

Lastly, we investigated which regions diverged most in their connectivity strength 

across states. Following Krohn et al. [56], the distance across meta-states (DAMS) for 

each pair of regions and for each participant was calculated. A high value of DAMS 

indicates that the connectivity pattern diverges strongly between brain states, while a 

low DAMS implies that the connectivity strength between two regions remains constant 

across all states of a transition network.  

4.2.2. Results 

The key findings of Study II are summarized below. Please refer to von Schwanenflug 

et al. [100] for a detailed report of the results. 

 

i. Between-group comparison of network properties (Fig 5B) indicated reduced 

resilience of state transition networks in patients compared to controls, which 

manifests in  

a. lower local efficiency of the network – fewer transitions between neighboring 

(and thus similar) states (t = -2.41, pFDR = 0.029, d = 0.40),  

b. higher leap size – transitions between more distinct states (t = 2.18, pFDR = 

0.037, d = 0.36), and  

c. reduced robustness of the patients’ transition networks against perturbations 

(t = -2.01, pFDR = 0.048, d = 0.33). 

d. modularity (t = -1.43, pFDR = 0.12, d = 0.27), global efficiency (t = 1.00, pFDR = 

0.20, d = 0.17), and immobility (t = -0.32, pFDR = 0.38, d = 0.05) of transitions 

networks did not differ between groups.  

ii. Moreover, patients showed a significantly lower ratiotrans and ratiosim compared to 

controls (ratiotrans: t = -2.48, pFDR = 0.026, d = 0.40; ratiosim: t = -2.48, pFDR = 0.026, 

d = 0.41), while the overall number of transitions did not differ between groups (t 

= 0.32, pFDR = 0.377, d = 0.05). This suggests that patients more frequently move 
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between states from different modules compared to controls, possibly reflecting a 

dissolved architecture of transition networks in NMDARE. 

iii. Significant network properties correlated with disease severity (Fig 5C), 

highlighting the clinical relevance of our findings. Specifically, we found that higher 

disease severity was associated with  

a. higher leap size (Pearson’s r = 0.37, pFDR = 0.0030),  

b. decreased robustness (Pearson’s r = -0.37, pFDR = 0.0030),  

c. lower ratiosim (Pearson’s r = -0.40, pFDR = 0.0030),  

d. and lower ratiotrans (Pearson’s r = -0.33, pFDR = 0.0064). 

iv. Lastly, in both groups the divergence in connectivity across states were most 

pronounced in visual and sensori-motor areas, suggesting that state transitions 

are mainly initiated by connectivity changes in unimodal networks. Patients 

exhibited even greater divergence in connectivity within these networks compared 

to controls, potentially explaining the increased temporal instability in brain state 

transitions (Fig 5D).  
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Figure 5: Results Study II – Temporal meta-state analysis. A Transition network graph of an 
exemplary participant. In this state transition network visualization, nodes (i.e., brain states) are 
colored based on their degree, i.e., the number of transitions to/ from that state. The distance between 
two nodes represents their transition cost (1 minus correlation). The thickness of the edges indicates 
the number of transitions between the nodes, and the arrows indicate the direction of the transition. Self-
connections indicate immobility periods, where there were no changes in meta-states between two 
consecutive time windows. B Group differences in transition network properties. Between-group 
comparisons of graph theoretical measures. Only significant metrics are shown. Coloured dots represent 
the residuals after nuisance regression. Black dots and whiskers represent the mean and standard 
deviation. C Clinical correlation. Correlation between disease severity (composite z-score) and altered 
network properties (residuals after nuisance regression). Correlation plots for local efficiency, ratiosim 
and ratiotrans are shown in Supplementary Figure 3 in von Schwanenflug et al. [100]. D Region-by-
region distance across meta-states (DAMS). The DAMS matrix displays how coupling strength varies 
between brain regions across meta-states. High DAMS values (yellow) indicate strong differences in 
connectivity strength across meta-states, while low DAMS values (blue) indicate more consistent 
connectivity strength. Brain plots on the right show group differences within functional networks. 
Differences in DAMS between patients and controls were found in edges within the visual, default-mode, 
and sensori-motor networks. VIS = visual network, dATT = dorsal attention network, vATT = ventral 
attention network, DMN = default mode network, FPN = fronto-parietal network, SM = sensori-motor 
network, LIM = limbic network, SC = subcortical network, und. = undefined. 
* indicates significant difference with pFDR < .05.  
Figure and captions adapted from von Schwanenflug et al. [100]. 
 
 

A Transition network graph B Group differences in transition network properties

C Clinical correlation D Region-by-region distance across meta-state (DAMS)

norm
alized DAM
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https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.15901#support-information-section
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5. Discussion 

5.1. Scope of the present thesis and summary of findings 

NMDARE is a severe antibody-mediated inflammatory disease with a characteristic 

neuropsychiatric syndrome [6]. Despite the severe disease course, standard clinical 

structural MRI shows no or only mild abnormalities in most patients [22,23], motivating 

the search for functional signatures of the disease. Indeed, conventional static FC 

analyses have identified widespread alterations in connectivity linked to cognitive and 

psychiatric symptom severity [23,49,50,105]. However, these results are based on 

overly simplistic, static models of brain function. As brain activity is intrinsically dynamic 

[54], models that integrate time-dependent properties of connectivity are crucial to 

understand functional reorganization in NMDARE. 

To close this gap, the present thesis studied alterations in the temporal dynamics 

of functional brain organization in patients with NMDARE. To this end, FC dynamics in 

NMDARE were compared to healthy control particpants from two perspectives:  

First, spatial and temporal patterns of major FC states were identified and 

compared between groups in a well-established neuroimaging framework [62]. In the 

second study, an innovative method [94] was applied to investigate alterations in the 

sequence of state exploration – measured as temporal transitions between patterns of 

spontaneous brain activity. 

In the first study, patients showed state-specific impairments of FC in three out of 

four states, along with a systematic shift in dwell time from the dominant, low-

connectivity state to a less frequent, but highly segregated state. In addition, patients 

exhibited an increased volatility of overall state transitions. These findings were 

associated with measures of disease severity. Furthermore, a supervised machine 

learning approach showed higher predictive power in dynamic in contrast to static FC 

models. While these findings reveal state-dependent changes in FC and a 

characteristic dynamic profile of state dynamics in patients with NMDARE, detailed 

investigation of individualized temporal dynamics and transition trajectories was limited 

due to a comparatively low spatial and temporal resolution.  

Therefore, the second study extended these findings and investigated alterations 

in patterns of state exploration. By employing a graph-analytical framework, we 

identified reduced stability of functional state transitions and a disrupted architecture 
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of transition networks in patients with NMDARE that was again related to disease 

severity. 

Together, our analyses show that NMDARE is associated with a clinically relevant 

destabilization of brain state transitions, thereby offering new perspectives on the 

functional reorganization of brain dynamics in the disease. Our results moreover 

demonstrate the potential of time-resolved FC analyses for the identification of 

biomarkers in NMDARE and other neuropsychiatric disorders. 

5.2. Implications of the findings 

Together, the findings of our studies show that NMDARE is characterized by an 

increased volatility of temporal brain states. These changes in brain dynamics reflect 

functional reorganization and aligns well with the clinico-radiological paradox detailed 

in section 1.1.  

Prior research has indicated that the efficiency of transitioning between states is 

closely linked with cognitive performance and motor abilities [94]. This suggests that 

an irregular pattern of state exploration in NMDARE underpins some of the identified 

dysfunctions [52,93] and aligns well with the clinical correlations observed in this thesis. 

Overall, this indicates that the clinical symptoms of NMDARE might be more accurately 

attributed to functional reorganization — possibly as an expression of NMDA 

hypoactivity — than purely structural damage. 

In patients with NMDARE, the internalization of the NMDA receptor triggered by 

autoantibodies leads to a decrease in receptor density [13]. This likely impacts 

glutamatergic neurotransmission, which drive transient fluctuations in neural 

oscillations [106,107]. Alterations in these neural dynamics could compromise the 

temporal coordinations of brain regions. Such disruptions might disturb the balance of 

brain activity patterns, so that NMDA receptor hypofunction potentially results in 

excessively unstable state transitions [108,109], which are generally thought to 

facilitate the exploration of the functional repertoire [110].  

The present thesis supports this view and highlights the key role of functional brain 

dynamics in the functional reorganization in NMDARE. 
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5.3. Limitations of the present thesis and open questions in the study 
of dynamic FC 

Some limitations of the current work deserve mentioning: First, the sliding window 

approach requires a pre-specification of the window length. As it is likely that the brain 

operates on different temporal scales, the window size inherently limits the temporal 

spectrum that can be captured. Hence, the optimal choice of this parameter depends 

on the scientific question and is a matter of ongoing debate. Methodological 

improvements try to address these shortcomings and propose windowless approaches 

such as time-frequency analysis [54,111] or hidden Markov models [92]. However, 

these methods have their own weaknesses and assumptions [63].  

Second, the current studies are based on the connectivity between brain regions, 

which is by definition a relational measure of the activity between two brain regions. 

However, it is crucial to consider time-varying properties of the brain regions 

themselves, as their activity ultimately shape the inter-regional relations, functional 

hierarchy and temporal dynamics of the brain. As such, measures such as time-varying 

complexity or edge-time series may give deeper insights into the processes that give 

rise to the phenomenon of dynamic network connectivity [56,112].  

Third, k-means clustering enforces the extraction of a predefined k number of 

states. While this ensures comparability between participants and groups, it may not 

mirror the actual number of states present in the current data set. Yet, for the dynamic 

functional network connectivity as applied in Study I, the replicability of states has been 

demonstrated to be high within and between participants [89]. For the temporal meta-

state analysis as applied in Study II, we scrutinized our analysis across multiple k meta-

states to ensure that parameter choices did not bias the observed results (see von 

Schwanenflug et al. [100]).  

Forth, direct implications for clinical practice are limited due to the lack of statistical 

power in neuroimaging studies to identify reliable individual markers of dynamic 

change, complex processing pipelines and the limited amount of available data. 

Nevertheless, our findings provide important new insights into the functional brain 

reorganization in NMDARE and strengthen the foundation needed to ultimately 

develop practical implementations. 
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5.4. Future directions: functional dynamics as the next frontier in the 
brain sciences 

Psychiatric disorders often share similar characteristics to NMDARE including clinical 

and cognitive symptoms, neurotransmitter dysfunctions, or genetic risk factors. 

Identifying FC markers sensitive enough to complement existing criteria and symptom 

checklists would greatly benefit the clinical setting, facilitating faster initial diagnosis 

and enhanced differential diagnosis. In the case of NMDARE, there have been 

consistent findings of marked disruptions in FC, making it a potential neuroimaging 

marker [23,49,50,91,100]. Further investigating brain dynamics (that is, including the 

dimension of time in describing functional signals) opens up new opportunities to 

identify more precise characteristics of brain functioning and pathology. Indeed, our 

studies demonstrate that some states are more relevant to disease expression than 

others, and dynamic features of FC enhance classification performance compared to 

static accounts of FC [71,113]. This exciting finding suggests that dynamic state 

analyses can be useful in distinguishing disease, disease stage, or prognostic 

outcome. 

NMDARE in particular provides remarkable opportunities to identify transdiagnostic 

characteristics, as the condition shares dynamic network alterations that are 

associated with NMDAR dysfunction with other pathologies – first and foremost 

schizophrenia [114]. Given the large overlap in psychiatric symptomatology in these 

diseases, NMDA receptor hypofunction is further strengthened as the hypothesized 

pathophysiological basis for cognitive and psychiatric symptoms in both diseases [18]. 

Recent studies on time-resolved FC in schizophrenia have shown notable 

convergence with our findings, including a shift in state preference [70], increased 

overall transition frequencies [71], and altered modular network structure [115]. The 

extent to which these dynamic features are indeed transdiagnostic must therefore be 

investigated in specifically designed comparative studies.  

Computational models that go beyond diagnosis and biomarkers simulate neuronal 

and neurotransmitter systems for treatment purposes. These models suggest that 

interventions using pharmacological and electromagnetic methods have the potential 

to rebalance perturbed state dynamics by inducing state transitions [93,97,116]. 

Similar to our study, they suggest that state transitions can be initiated by specific 

regions, making them promising treatment targets [93]. Other studies using deep-brain 

stimulation have identified targets that can rebalance and elicit changes in brain 
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connectivity, alleviating symptoms in neuropsychiatric and motor disorders that are 

otherwise resistant to treatment [93]. 

To advance its clinical potential and bring brain dynamics into practice, a key goal 

of the next years is to gain a comprehensive understanding on human brain dynamics. 

Only if we identify unifying principles, can we advance our understanding of 

neurological and psychiatric disorders and enable functional dynamics to ultimately 

serve as risk, diagnostic, and prognostic markers.  

5.5. Conclusion 

The studies presented in the current thesis are the first to investigate the temporal 

dynamics of brain activity in patients with NMDARE. Overall, the results suggest that 

the clinical manifestations of NMDARE may be more closely tied to (dynamic) 

functional reorganization than to structural damage. Using state-of-the art 

methodologies in contemporary human neuroimaging, both studies suggested a 

clinically relevant increase in the volatility of brain dynamics and reduced resilience of 

brain state transitions, emphasizing the importance of brain dynamics in the 

manifestation of the disease. These results highlight that, by increasing the temporal 

resolution from minutes to seconds, time-resolved FC analyses add clinically valuable 

information and provide new insights beyond traditional FC analyses. Converging 

findings in other neuropsychiatric disorders furthermore strengthen the importance of 

spatiotemporal dynamics for improved characterization and understanding of 

functional reorganization in these diseases. Critically, association with measures of 

disease severity stresses the potential of time-resolved FC measures as novel disease 

biomarkers and treatment targets in NMDARE. 
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State-dependent signatures of anti-N-methyl-
D-aspartate receptor encephalitis
Nina von Schwanenflug,1,2 Stephan Krohn,1,2 Josephine Heine,1

Friedemann Paul,1,3,4,5 Harald Prüss1,6 and Carsten Finke1,2*

Traditional static functional connectivity analyses have shown distinct functional network alterations in patients with anti-N-methyl-D-
aspartate receptor encephalitis. Here, we use a dynamic functional connectivity approach that increases the temporal resolution of con-
nectivity analyses from minutes to seconds. We hereby explore the spatiotemporal variability of large-scale brain network activity in
anti-N-methyl-D-aspartate receptor encephalitis and assess the discriminatory power of functional brain states in a supervised classifi-
cation approach.We included resting-state functional magnetic resonance imaging data from 57 patients and 61 controls to extract four
discrete connectivity states and assess state-wise group differences in functional connectivity, dwell time, transition frequency, fraction
time and occurrence rate. Additionally, for each state, logistic regressionmodels with embedded feature selection were trained to predict
group status in a leave-one-out cross-validation scheme. Compared to controls, patients exhibited diverging dynamic functional con-
nectivity patterns in three out of four states mainly encompassing the default-mode network and frontal areas. This was accompanied
by a characteristic shift in the dwell time pattern and higher volatility of state transitions in patients. Moreover, dynamic functional
connectivity measures were associated with disease severity and positive and negative schizophrenia-like symptoms. Predictive power
was highest in dynamic functional connectivity models and outperformed static analyses, reaching up to 78.6% classification accuracy.
By applying time-resolved analyses, we disentangle state-specific functional connectivity impairments and characteristic changes in tem-
poral dynamics not detected in static analyses, offering new perspectives on the functional reorganization underlying anti-N-methyl-D-
aspartate receptor encephalitis. Finally, the correlation of dynamic functional connectivitymeasures with disease symptoms and severity
demonstrates a clinical relevance of spatiotemporal connectivity dynamics in anti-N-methyl-D-aspartate receptor encephalitis.
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HC = healthy controls; HPC = hippocampus; IFG = inferior frontal gyrus; LOOCV = leave-one-out cross-validation; mPFC =
medial prefrontal cortex; MPRAGE = Magnetization-Prepared RApid Gradient Echo; mRS = modified Rankin scale; OFG =
orbito-frontal gyrus; PC = principal component; PHG = parahippocampal gyrus; POS = parieto-occipital gyrus; prim.
Visual = primary visual cortex; rs-fMRI = resting-state functional MRI; SB = subcortical; SFG = superior frontal gyrus
SM = sensorimotor; SMA = supplementary motor area; STG = superior temporal gyrus; TE = echo time; TPOJ =
temporo-parieto-occipital junction; TR = repetition time

Graphical Abstract

Introduction
Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is
a severe autoimmune disorder of the CNS caused by anti-
bodies targeting the NR1 subunit of the NMDA receptor.1

The disease is characterized by a complex neuropsychiatric
syndrome with delusions, hallucinations, movement abnor-
malities, autonomic dysfunction, decreased levels of

consciousness and cognitive dysfunction, e.g. deficits of ex-
ecutive control and memory.1–6

Despite the severe disease course, routine clinical MRI re-
veals no abnormalities in 50–80% of patients.5,7 In contrast,
functional connectivity (FC) is disrupted in distinct function-
al networks, including medial-temporal, fronto-parietal and
visual networks.8 Specifically, hippocampal connectivity
with medial prefrontal regions of the default-mode network
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(DMN) is significantly impaired, and these alterations are
associated with the severity of memory impairment.
Moreover, disruption of fronto-parietal and ventral atten-
tion networks correlates with positive and negative
schizophrenia-like symptoms.3,8 These traditional resting-
state FC analyses have thus contributed to reveal the me-
chanisms underlying clinical symptoms in anti-NMDA re-
ceptor encephalitis by assessing the coherence of brain
activity between distinct regions. However, traditional FC
analyses are ‘static’ in the sense that blood-oxygen-level de-
pendent time series are averaged across a scan with duration
of several minutes.

Yet, the brain is a complex dynamic system in which the
strength and spatial organization of connectivity patterns
can change within seconds, resulting in multiple spatiotem-
poral organization patterns during one MRI scan.9–11

‘Dynamic’ FC approaches capture these changes of function-
al brain organization and allow for the investigation of tem-
poral properties, i.e. identification of distinct connectivity
states and analysis of transition trajectories between these
states—alterations of which may vary with the disease.9

Indeed, recent studies report intriguing evidence that dy-
namic FC analyses enable a better characterization of net-
work alterations in psychiatric and neurological diseases
compared to static FC approaches.10 Therefore, dynamic
FC measures are increasingly understood as meaningful
attributes to describe different disease phenotypes, e.g. in
schizophrenia, major depression, stroke and Alzheimer’s
disease.12–15

One common method to analyse dynamic FC applies a
clustering algorithm to obtain distinct functional brain
states, which are defined as time-varying, but recurrent pat-
terns of FC.16 This approach provides a specifically promis-
ing tool for disentangling the dynamic network changes
underlying the diverse neuropsychiatric symptoms in
anti-NMDA receptor encephalitis. Here, we used this ap-
proach to (i) investigate the spatiotemporal properties of
brain states in a large sample of patients with anti-NMDA
receptor encephalitis and healthy controls (HC); (ii) explore
the relationship between state dynamics, disease severity and
duration and psychiatric symptoms and (iii) evaluate the
potential of each brain state to discriminate between pa-
tients and controls using a supervised machine learning
approach.

Materials and methods
Participants
For this study, 57 patients with anti-NMDA receptor en-
cephalitis (female: 50, median age: 25.00+ 14.50 years)
were recruited from the Department of Neurology at
Charité-Universitätsmedizin Berlin. The diagnosis was
based on clinical presentation and detection of IgG
NMDA receptor antibodies in the cerebrospinal fluid.
Patients were in the post-acute disease stage, with a median

of 2.43 years (+ 2.95) between disease onset and MRI data
acquisition. The median disease duration, i.e. days spent in
hospitalization, was 63 days (+ 56.50, N= 52). Disease se-
verity at the time of scan was assessed based on the modified
Rankin scale (mRS; median mRS: 1.00+ 1.00,N= 55). The
control group consisted of 61 age- and sex-matched healthy
participants (female: 54, median age: 26.00+ 11.00 years)
with no history of neurological or psychiatric disease.
Clinical and demographic characteristics are summarized
in Supplementary Table 1. All participants gave written in-
formed consent, and the study was approved by the local
ethics committee.

MRI data acquisition
Structural and functional MRI data were acquired at the
Berlin Center for Advanced Neuroimaging at
Charité-Universitätsmedizin Berlin using a 20-channel head
coil and a 3 T Trim Trio scanner (Siemens, Erlangen,
Germany). For resting-state functional MRI (rs-fMRI), we
employed an echoplanar imaging sequence [repetition
time (TR)= 2.25 s, echo time= 30 ms, 260 volumes, vox-
el size= 3.4 mm× 3.4 mm× 3.4 mm]. High-resolution
T1-weighted structural scans were collected using a
Magnetization-Prepared RApid Gradient Echo sequence
(MPRAGE; 1 mm× 1 mm× 1 mm).

MRI data analysis
Our processing pipeline followed the procedure of recent re-
lated work.16 Preprocessing of rs-fMRI scans included dis-
carding the first five volumes to account for equilibration
effects, slice time correction, realignment to the first volume,
spatial normalization to MNI space (voxel size 2 mm×
2 mm× 2 mm) and spatial smoothing with a 6-mm full
width at half maximum smoothing kernel using the
CONN Toolbox (https://web.conn-toolbox.org/).

Group-independent component
analysis
To perform group-independent component analysis and dy-
namic functional network analysis, we applied the
GroupICA fMRI toolbox (GIFT, http://mialab.mrn.org/
software/gift/index.html). For each participant, 255 time
points were first decomposed into 150 temporally indepen-
dent principle components (PCs) and subsequently into
100 independent PCs using the Infomax algorithm.17 This
procedure was repeated 20 times in ICASSO to estimate
the reliability and ensure the stability of the decompos-
ition.18 For back-reconstruction of individual time courses
and spatial maps, gig-ica (integrated in the GIFT Toolbox)
was applied to the data.19 The resulting 100 independent
components were individually rated as signal or noise by
three independent raters (N.v.S., J.H., C.F.). In total, 39
components were assigned to functional networks based
on the labels proposed by Thomas Yeo et al.20 For cerebellar
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(CB) and subcortical (SB) components, two distinct net-
works were added. This yielded a total of seven functional
resting-state networks including sensorimotor (SM), visual
(VIS), SB, CB, DMN, dorsal attention and fronto-parietal
network (FPN). Supplementary Fig. 1 shows all functional
networks and Supplementary Table 2 contains peak values
and coordinates for all components. Finally, we applied add-
itional processing steps including linear, quadratic and cubic
detrending, motion regression (12 motion parameters) to re-
duce motion-related artefacts, high-frequency cut-off at
15 Hz, despiking (identified as framewise displacement
. 0.5 mm) and interpolation of time courses using a
third-order spline fit.

Static functional network
connectivity analysis
To compare the dynamic FC results with conventional ‘sta-
tic’ FC, we calculated the average pairwise connectivity be-
tween all component pairs across the resting-state scan
using Pearson’s correlation coefficient r for each subject.
Subsequently, age, sex and motion parameters were re-
gressed out, and Fisher z-transformation was applied.

Dynamic functional network
connectivity analysis
In order to obtain FC dynamics, FC between all component
pairs was calculated over consecutive windowed segments of
the time courses (i.e. sliding windows) using a window of
30TR length (≙ 67.5 s) that shifted in steps of 1TR
(≙ 2.25 s). After the correlation matrix was computed on
each window (i.e. 225 39× 39 matrices per participant),
Fisher z-transformation was applied and age, sex and mo-
tion parameters were regressed out as nuisance variables.
Subsequently, matrices of each participant were concate-
nated, and k-means clustering was applied with k= 4 ac-
cording to the elbow criterion (see Supplementary Fig. 2).
Thus, each window was assigned to one of the four clusters
representing discrete network FC states.16 Squared
Euclidean distance was applied for clustering, and the pro-
cess was repeated 100 times to avoid convergence on local
minima.

Statistical analysis for group
differences in static and dynamic
functional network connectivity
For a global characterization of the static and the state-wise
correlation matrices, modularity (as a measure of functional
network segregation) and absolute mean connectivity (re-
ferred to as ‘overall connectivity’) were calculated.21,22 In
the static FC analysis, both measures were calculated on
each subject’s connectivity matrix and subsequent group
comparison was performed using a non-parametric t-test
as applied in Glerean et al.23 In the dynamic FC analysis,

modularity and absolute mean connectivity were calculated
for all windows in each state and averaged for each subject.
Subsequently, a two-way ANOVA was conducted to esti-
mate group- and state-wise effects as well as their interac-
tion. For post hoc analysis, a Kruskal–Wallis test was
performed.

Next, we assessed group differences in FC between all
component pairs for the static and the dynamic functional
network analysis with respect to connectivity strength with
a non-parametric t-test. For the dynamic FC analysis, group
differences were evaluated for each state separately.

Statistical analysis for state dynamics
Besides the analysis of state-dependent connectivity pat-
terns, estimation of time-varying FC provides the opportu-
nity to capture dynamic metrics. Here, four commonly
used metrics were calculated: (i) dwell time (i.e. average
number of windows a participant spends in a particular
state), (ii) transition frequency (i.e. a participant’s number
of transitions between each pair of states), (iii) fraction
time (i.e. percentage of windows spent in a state) and (iv)
state occurrence rate (i.e. number of participants that en-
tered the state over the course of the scan).12,15 Group differ-
ences in occurrence rates were estimated using the z-test for
population proportions. For the other metrics, two-way
ANOVAs were conducted to estimate group- and state-wise
effects as well as their interaction. Post hoc comparisons
were evaluated with a non-parametric t-test or a Tukey’s test.

Between-group comparisons for the modularity and over-
all connectivity, static and dynamic functional network ana-
lysis, dwell time, fraction time and occurrence rates were
based only on participants who visited the respective state.

State-wise classification
Finally, group-wise analyses were complemented by a super-
vised binary classification approach to assess the potential of
the static FC markers and the four dynamic FC states to dis-
criminate between patients and controls. As previous work
has suggested visual, fronto-parietal and DMN areas to re-
present the biologically relevant discriminatory features in
anti-NMDA receptor encephalitis, these networks were con-
sidered as the set of input features.8 For the static design and
each state, logistic regression models were trained on the
z-scored FC indices to predict group status (anti-NMDA re-
ceptor encephalitis patients versus HC) in a leave-one-out
cross-validation (LOOCV) scheme. To facilitate model spar-
sity and counteract overfitting, embedded feature selection
was applied through L1 regularization. Hyperparameter op-
timization of the regularization strength λ was applied for
each state-input matrix (observations-by-connectivity fea-
tures) by searching a linearly spaced parameter grid that
was identical for all four states. Selection probability of
each feature was read out as the empirical rate of non-zeroed
feature weights over all predictions within a state. Prediction
performance was evaluated by standard confusion matrix
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measures (i.e. true and false positive and negative rates and
overall accuracy). Model training and prediction were im-
plemented in Matlab (The MathWorks, Inc., Natick, MA,
USA).

Data availability
The data that support the findings of this study are available
upon reasonable request from the corresponding author.
The code is available on GitHub (https://github.com/
nivons/statedynamicsNMDARE).

Results
Functional network analysis
Static functional network connectivity analysis
We observed pairwise (component-to-component) differ-
ences in static FC between anti-NMDA receptor encephalitis
patients and HC that clustered in the inter- and intra-
connectivity of the DMN (Fig. 1 and Table 1). In line with
previous studies,3,8 anti-NMDA receptor encephalitis pa-
tients showed decreased static connectivity between the
hippocampus (HPC) and the medial prefrontal cortex
(mPFC; PFDR, 0.05). In addition, anti-NMDA receptor en-
cephalitis patients exhibited significantly reduced DMNcon-
nectivity with the supplementary motor area, temporo-
parieto-occiptal junction (TPOJ), the parieto-occipital sulcus
(POS) and the superior frontal gyrus (SFG) and increased FC
with the orbito-frontal gyrus (OFG) (Puncorr, 0.001). There
was no significant difference between patients and controls
in modularity (mean+ SD: 0.35+ 0.09 versus 0.33+ 0.09;
t=−1.19, P= 0.12) and overall connectivity (0.30+ 0.05
versus 0.31+ 0.07; t= 0.63, P= 0.26).

Following previous studies that found a correlation be-
tween the mPFC-hippocampal connection and disease sever-
ity variables,3,8 we conducted a post hoc correlation analysis
(using Pearson’s correlation coefficient) between these regions
and disease severity at the time of scan (mRS). Higher mRS
scores were associated with a reduced connectivity between
the parahippocampal gyrus (PHG) and the mPFC (r=
−0.28, P= 0.040), as well as with lower connectivity be-
tween the hippocampus and the mPFC (r=−0.27, P= 0.05).

Dynamic functional network connectivity analysis
K-means clustering identified four connectivity states for HC
and anti-NMDA receptor encephalitis patients (Fig. 2).
Group-wise mean connectivity andmodularity for each state
are shown in Fig. 3. Multiple regression models for modular-
ity and overall connectivity yielded a significant effect for the
state (modularity, P, 0.001; overall connectivity, P,
0.001), but not for group or interaction. The dominant
State 1 closely resembled the static FC pattern (r= 0.94,
Supplementary Table 14) with low overall connectivity
and moderate modularity. States 2 and 3 were both charac-
terized by high overall connectivity, while only State 2 had a

highly segregated structure (i.e. high modularity). In con-
trast to State 3, State 4 exhibited high modularity and low
overall connectivity (Fig. 3, see Supplementary Tables 3−8
for detailed test statistics).

Anti-NMDA receptor encephalitis patients showed dis-
tinct FC alterations across the four connectivity states in
comparison to controls (Fig. 2 and Table 2). As in the static
FC group analysis, group differences comprised the DMN,
VIS and FPN, but in a state-dependent fashion: in the static
FC-resembling State 1, patients with anti-NMDA receptor
encephalitis displayed decreased connectivity between the
mPFC and the hippocampus, i.e. results very similar to the
findings in the static FC analysis. The highly modular State
2 showed impaired connectivity between the mPFC and
the angular gyrus (AG) as well as the parieto-occipital sulcus
in patients. Furthermore, the inferior frontal gyrus (IFG)
exhibited connectivity alterations with the putamen (bil.)
and the visual cortex. Similarly, the densely connected/high-
ly integrative State 3 was characterized by decreased con-
nectivity from the IFG to the putamen. Additionally,
connectivity between the TPOJ and the superior frontal
gyrus was reduced in anti-NMDA receptor encephalitis
patients compared to HC. For State 4, no significant altera-
tions were observed after false discovery rate (FDR)
correction.

Next, we obtained the correlation coefficient between all
significant component pairs and disease severity (mRS at the
time of scan) as well as disease duration (days in hospitaliza-
tion): in the strongly segregated State 2, higher disease sever-
ity was significantly associated with a decrease in FC
between mPFC and angular gyrus (r=−0.37, P= 0.019),
while in the densely connected/highly integrative State 3,
higher disease severity was significantly related to a decrease
in connectivity between TPOJ and dorsolateral superior
frontal gyrus (r=−0.39, P= 0.046). Due to the exploratory
nature of the study, post hoc correlation analyses were not
corrected for multiple comparisons.

State dynamics
In addition to state-wise connectivity patterns, we assessed
state and group differences in dwell time, transition fre-
quency, fraction time and occurrence rate using two-way
ANOVAs. We found a significant state effect in dwell times
(P= 0.00021): dwell times were higher for patients and con-
trols in State 1 compared to States 2 (T=−3.77, P=
0.0010) and 3 (T=−3.61, P= 0.0019). Importantly, a sig-
nificant group effect (P= 0.010) revealed a shift in dwell
times between patients and controls: while patients showed
lower dwell times in the dominant static FC-resembling State
1 (P= 0.020), they had higher dwell times in the strongly
segregated State 2 compared to controls (P= 0.032;
Fig. 4). Similarly, the model for transition frequencies
yielded a significant effect for the group (P= 0.044) and
state (P, 0.001). Post hoc group comparisons exhibited
higher transition frequencies in patients between states
with high and low overall connectivity, i.e. States 1 and 2
(P= 0.043), and between states with high and low across-
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network connectivity, i.e. States 3 and 4 (P= 0.0063; Fig. 4),
in comparison to controls. Furthermore, transitions from/to
State 1 were significantly more frequent than transitions
from States 2/3 to State 4 or vice versa. Fraction time dif-
fered across states (P= 0.0023), but not between groups
(P= 0.56). A post hoc test revealed higher percentages of
windows in State 1 compared to State 2 (T=−3.23, P=
0.0077) and 3 (T=−3.02, P= 0.014). Occurrence rates of
dynamic FC states were similar in anti-NMDA receptor en-
cephalitis patients and HC: the static FC-resembling State 1
showed the highest occurrence, followed by States 2 and 4;
the lowest occurrence rates were observed for the densely
connected/highly integrative State 3. Despite similar general
occurrences, state-wise between-group proportion tests re-
vealed that a higher number of patients visited the highly
segregated State 2 compared to controls (P= 0.019), while
the proportions were equal for both groups in States 1, 3
and 4. Detailed test statistics can be found in Table 3 and
Supplementary Tables 9–13.

To identify a relationship between disease severity vari-
ables (i.e. acute days in hospitalization and mRS score at
the time of scan) and dynamic metrics (i.e. dwell time and
transition frequency), we conducted Pearson’s correlation
analyses between these variables. We found that increased
transition frequency between States 1 and 2 was associated
with disease severity at the time of scan (r= 0.34, P=
0.012). We further compared dwell time and transition fre-
quency from patients with positive and negative
schizophrenia-like psychiatric symptoms to those without

respective psychiatric symptoms. Here, patients with posi-
tive symptoms exhibited higher dwell times (z= 2.07, P=
0.038) in the highly segregated State 4 compared to those
without positive symptoms. In contrast, patients with
negative symptoms showed higher dwell times (z= 2.02,
P= 0.043) in the densely connected/highly integrative
State 3 compared to those without negative symptoms.

Classification analyses
Binary classification (anti-NMDA receptor encephalitis pa-
tients versus HC) based on static connectivity features
yielded an overall prediction accuracy of 72%, with ba-
lanced feature distribution across the networks (see
Supplementary Fig. 3). When dynamic connectivity features
were considered, discriminatory power differed in a state-
wise fashion. Prediction performance was lowest for the
dominant, static FC-resembling State 1 (overall accuracy
of 61.5%), intermediate and similar to model performance
with static feature input for the modular-structured States
2 (72.6%) and 4 (70.8%), and highest for the least frequent
and densely connected/highly integrative State 3 (78.6%; see
Supplementary Fig. 4 for the state-wise confusion matrices).
Besides model evaluation outcomes, the feature selection fre-
quencies over individual predictions in the LOOCV scheme
also varied across states (Fig. 5). While States 1 and 3 yielded
balanced selection rates over both across- and within-
network connectivity features, States 2 and 4 showed fewer
discriminatory features, and these were primarily across-
network connections (FPN to VIS and DMN for State 2

Figure 1Mean static functional connectivitymatrix across brain regions of anti-NMDA receptor encephalitis patients and HC.
Darker red/blue colours indicate higher positive/negative correlation values between component pairs. Green circles mark lower correlation
values in anti-NMDA receptor encephalitis compared to controls, and yellow circles indicate higher correlation values in anti-NMDA receptor
encephalitis compared to controls. Small black rectangle indicates significant difference of FC between the hippocampus (Region 59) and the
mPFC (Region 36) between patients and controls after FDR-correction (PFDR, 0.05), while no rectangle indicates differences between groups
for Puncorr, 0.001. Highlighted regions are displayed with anatomical labels. A key for the region numbers is provided in Supplementary Table 2.
Big diagonal rectangles indicate functional networks, e.g. the sensorimotor network that comprises regions 6, 15, 23, 44 and 78. NMDARE,
anti-NMDA receptor encephalitis.
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and DMN to VIS for State 4). Importantly, although some
connectivity features were discriminatory across several
states (e.g. component pairs 12–90 showed high selection
frequency for States 1–3), the constellation of predictive fea-
tures changed dynamically over connectivity states, empha-
sizing the uniqueness of each state.

Discussion
In this study, we applied dynamic FC analyses to character-
ize distinct connectivity patterns and temporal dynamics of
network interactions in anti-NMDA receptor encephalitis.
Investigating state-specific FC alterations, we found a
marked impairment of FC between the hippocampus and
the mPFC in the most visited, i.e. dominant state. This con-
nectivity pattern closely mirrored observations in the static
FC analysis and corroborated previous findings.3,8 Three
additionally identified states showed connectivity alterations
within the DMN and between frontal, visual and SB areas—
findings that remained undetected in the static FC analysis.
Investigation of state dynamics showed a systematic shift
in dwell time from the dominant state to a strongly segre-
gated state in patients. Likewise, negative and positive
schizophrenia-like symptoms were associated with distinct
patterns of state preference. In addition, an increased volati-
lity of transitions between states with high and low overall
connectivity and states with high and low segregation was
observed in patients. These state dynamics were associated
with disease severity. Finally, classification analyses revealed
that discriminatory network features and predictive power
varied dynamically across states, exceeding the discrimin-
atory power of static FC analyses and yielding the highest
prediction in a highly connected/highly integrated state.
Our observations demonstrate the potential of time-resolved
FC analysis for a better characterization of disease mechan-
isms involved in anti-NMDA receptor encephalitis.

Static functional network
connectivity analysis
In line with previous studies, conventional static FC analyses
showed impaired connectivity between the mPFC and the

hippocampus as well as altered connectivity patterns in
frontal parts of the DMN.3,8 Indeed, the CA1 subregion of
the hippocampus and the prefrontal cortex contains the
highest density of NMDA receptors.24 Converging observa-
tions of disrupted hippocampal–prefrontal connectivity are
thus biologically plausible and point to a robust disease bio-
marker and potential treatment target in anti-NMDA recep-
tor encephalitis. Furthermore, both brain regions are main
components of the DMN and are involved in memory and
executive functions25,26—the two cognitive domains most
frequently impaired in patients with anti-NMDA receptor
encephalitis.4,6,27,28

Dynamic functional network
connectivity analysis
However, these findings are inherently limited to a static
account of connectivity changes. Time-varying FC, in
contrast, captures moment-to-moment changes in connectiv-
ity, reflecting a more physiologically plausible model of brain
activity. One line of thought hypothesizes that the temporal
variability of FC networks enables a systematic exploration
of network configurations, which allows brain regions to dy-
namically (dis-)engage, and modulate changes in cognition
and behaviour.29 Dynamic state analysis as employed in
this study represents a powerful tool to describe these dynam-
ics and potential instabilities of this process.16

Indeed, state-wise group comparisons revealed connectiv-
ity differences between patients and controls in three out of
four states. These differences were most pronounced in
within- and across-network connectivity of the DMN and
almost exclusively manifested as reduced connectivity
strength in anti-NMDA receptor encephalitis.

State 1 represented the dominant state, i.e. the most vis-
ited state, the state in which participants remained longest
and that was involved in most transitions. The connectivity
pattern of State 1 was characterized by low overall connect-
ivity and low segregation. Anti-NMDA receptor encephal-
itis patients showed a significantly impaired hippocampal–
prefrontal connectivity in comparison to controls that
closely resembled the pattern observed in current and pre-
vious static FC analyses.3,8 Thus, the connectivity pattern

Table 1. Test results of static functional network connectivity analysis

Regions Network Component # Puncorr PFDR T d

mPFC—hippocampus DMN—DMN 36–59 ,0.0001* 0.00024* 4.36 0.62
mPFC—SMA DMN—SM 36–23 0.00092 0.15 3.30 0.44
mPFC—TPOJ DMN—VIS 33–38 0.00084 0.15 3.26 0.54
mPFC—TPOJ DMN—VIS 36–38 0.00061 0.15 3.40 0.45
mPFC—PHG DMN—DMN 36–14 0.00016 0.12 3.85 0.55
SFG—POS DMN—dATT 24–80 0.00072 0.15 3.29 0.52
mPFC—OFG DMN—FPN 33–29 0.00043 0.15 −3.48 −0.37
mPFC—SFG DMN—DMN 36–61 0.00087 0.15 3.27 0.40
STG—SFG DMN—FPN 40–89 0.00057 0.15 3.24 0.49

Table includes component name, network assignment, number (#), t-value, P-value and effect size (d) of component pairs that are highlighted in Fig. 1.
*Significant after FDR-correction.
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Figure 2 Dynamic functional network connectivity states for anti-NMDA receptor encephalitis patients and healthy controls.
Darker red/blue colours indicate higher positive/negative correlation values between component pairs. Green circles mark lower correlation
values in anti-NMDA receptor encephalitis compared to controls and yellow circles indicate higher correlation values in anti-NMDA receptor
encephalitis compared to controls. Small black rectangles indicate significant differences of FC between patients and controls after
FDR-correction (PFDR, 0.05). Highlighted regions are displayed with anatomical labels. A key for the region numbers is provided in
Supplementary Table 2. Big diagonal black rectangles indicate functional networks, e.g. the sensorimotor network that comprises regions 6, 15, 23,
44 and 78. NMDARE, anti-NMDA receptor encephalitis.
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in the dominant State 1 seems to drive findings of altered
connectivity in conventional static FC analyses. In contrast,
States 2–4 showed strikingly different features. FC altera-
tions in States 2 and 3 went beyond the aggregated findings
of the static analysis and revealed impaired connectivity
between the mPFC and parieto-occipital areas, and between
the IFG and the putamen (State 2). The latter is also pre-
sent in State 3 along with impaired frontal-parietal
connectivity.

Importantly, correlation analyses revealed that these dy-
namic FC alterations were associated with disease severity
and disease duration, primarily involving mPFC connectiv-
ity and highlighting the clinical relevance of these findings.
Together, these results disentangle state-specific connectivity
patterns observed in conventional FC analyses and indicate
the potential differential contribution of state-wise FC al-
terations to clinical symptoms and disease stages.

State dynamics
In addition to these alterations in large-scale connectivity
patterns in different states, anti-NMDA receptor encephal-
itis patients showed distinct temporal properties with re-
spect to connectivity states, i.e. different transition
frequencies and dwell times in comparison to controls.

This involved a systematic shift in dwell time from the dom-
inant State 1 to the segregated State 2, with patients nearly
doubling their dwell time in State 2. Interestingly, recent evi-
dence shows that successful working memory performance
relies on increased network integration.30 Prolonged dwell-
ing in the segregated, less-integrated State 2 might thus be re-
lated to the frequently observed working memory deficits in
anti-NMDA receptor encephalitis.4 Remarkably, patients
who experienced positive schizophrenia-like symptoms
spent more time in the highly segregated State 4, while those
with negative symptoms increased their dwell time in the
highly integrative State 3. These observations are consistent
with recent studies in schizophrenia showing an increased
modular network structure in patients.31

Additionally, patients showed an increase in transition
frequencies between States 1 and 2 as well as between
States 3 and 4. These transition frequency alterations were
significantly correlated with disease severity, indicating
that severe anti-NMDA receptor encephalitis disease courses
are associated with more volatile transition dynamics, while
state preference (i.e. dwell time) is not affected. The dynamic
interplay between brain regions—in the sense of the flexible
(dis-)engagement of functional links and state transitions—
is critical to efficiently process internal and external stimuli
and flexibly adapt behaviour. While state transitions are

Figure 3 State-wise comparison of overall connectivity and modularity. In general, States 1 and 4 exhibited weak overall state
connectivity compared to States 2 and 3. Segregation of functional networks, as measured with modularity, was highest in States 2 and 4, followed
by State 1 and weakest in State 3. Black dots and vertical lines represent mean and standard deviation **P, 0.001 (Bonferroni-corrected). *P,
0.01 (Bonferroni-corrected). Detailed test statistics can be found in Supplementary Tables 3–8.

Table 2. Test results of dynamic functional network connectivity analysis

Regions Network Component # PFDR T d

State 1 mPFC—hippocampus DMN—DMN 36–59 0.0016 4.01 0.60
State 2 prim. Visual—IFG VIS—FPN 11–71 0.016 −3.80 −0.57

Putamen—IFG SC—FPN 5–71 0.016 4.09 0.56
mPFC—angular gyrus DMN—DMN 36–84 0.016 3.83 0.54
mPFC—POS DMN—dATT 36–10 0.016 4.06 0.79

State 3 TPOJ—SFG VIS—FPN 38–89 0.00021 4.33 0.78
Putamen—IFG SC—FPN 5–71 0.041 3.99 0.69

Table includes component name, network assignment, number (#), t-value, P-value and effect size (d) of component pairs that are highlighted in Fig. 2.
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thought to be generally important to explore different brain
states in order to facilitate and enhance cognitive flexibility,
overly unstable transition dynamics may be linked to defi-
ciencies in the integration and stable representation of infor-
mation.29,32 The imbalance of stability and volatility may,
therefore, lead to impaired memory, perception or executive
functions.33,34 These suggestive links between state dynam-
ics and impaired cognitive performance in anti-NMDA re-
ceptor encephalitis require further detailed investigations
in combined task-based and resting-state fMRI studies.35

Relation to other brain disorders
Previous studies have applied dynamic FC analyses to brain
disorders such as major depression, Alzheimer’s disease or
schizophrenia.12,13,15,36,37 In these studies—and those with

HC only16—the most visited state resembled the weakly
connected dominant State 1 in the present study suggesting
the brain’s preference for a cost-efficient, energy-saving ‘de-
fault’ state.38,39 Moreover, patient groups showed charac-
teristic changes in state dynamics, such as altered state
occurrences, transition frequency or dwell times.12,13,36,37

In patients with major depression, decreased variability in
FC is the most prominent finding along with prolonged
dwell times in the weakly connected dominant state.13,40–
42 Changes in dynamic metrics were associated with sadness
and disease severity and may mirror main symptoms includ-
ing negative, slow and ruminative thinking.13,40

A different pattern was found for patients with
Alzheimer’s disease. Similar to patients with anti-NMDA re-
ceptor encephalitis, state transitions are more volatile and
patients tend to spent more time in less frequent,

A B

Figure 4 Group differences in state dynamics. (A) Group differences in average dwell time (in windows). Solid lines point to significant
differences in post hoc testing between groups (non-parametric t-test, uncorrected). (B) Group differences in transition frequencies between
states (P-values). For transition frequencies, the direction of transition was ignored. Post hoc group comparisons were calculated using a
non-parametric t-test (uncorrected). *P, 0.05; **P, 0.01. NMDARE, anti-NMDA receptor encephalitis.

Table 3. Group differences in dwell time (average number of windows), transition frequencies between states
(absolute numbers) and fraction time (percentage).

State NMDARE patients (mean+++++SD) Healthy controls (mean+++++SD) Puncorr d

Dwell time 1 46.6+ 53.8 75.7+ 85.6 0.020* 0.43
2 34.9+ 49.9 17.6+ 30.6 0.032* −0.42
3 14.2+ 22.8 16.2+ 28.0 0.21 0.22
4 24.3+ 45.0 30.3+ 58.8 0.12 0.31

Transition frequency 1–2 1.3+ 1.5 0.8+ 1.37 0.043* −0.34
1–3 0.8+ 1.4 0.8+ 1.42 0.85 0.03
1–4 1.3+ 1.9 1.1+ 1.95 0.55 −0.11
2–3 0.5+ 1.3 0.7+ 1.31 0.44 0.14
2–4 0.3+ 0.8 0.3+ 0.95 0.92 0.01
3–4 0.3+ 0.9 0.0+ 0.13 0.0063* −0.50

Fraction time 1 51.0+ 33.1 54.7+ 38.0 0.30 0.11
2 31.5+ 29.0 31.5+ 25.8 0.48 0.01
3 27.4+ 27.7 32.3+ 29.2 0.27 0.17
4 32.8+ 31.7 39.1+ 33.9 0.22 0.20

Group differences were calculated using a two-sided non-parametric t-test. P-values and effect sizes (d) are shown. NMDARE, anti-NMDA receptor encephalitis.
*P, 0.05 (uncorrected).
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functionally segregated states as compared to HC.36,37

Interestingly, however, opposite results have also been re-
ported,43 potentially because dynamic connectivity pattern
alterations change progressively across disease stages.

Furthermore, our results show a notable convergence
with recent studies in patients with schizophrenia reporting
a similarly marked shift in state preference12 as well as in-
creased overall transition frequencies,44 and altered modular
network structure.31 Given the considerable overlap in psy-
chiatric symptoms in patients with schizophrenia and
anti-NMDA receptor encephalitis45,46 and the glutamate

hypothesis positing NMDA receptor dysfunction as the
pathophysiological basis for cognitive and psychiatric symp-
toms in schizophrenia,47,48 our findings raise the interesting
possibility that the transdiagnostic psychopathological pro-
file of both diseases49 could be paralleled by a common set of
dynamic network alterations.

Classification analyses
While our findings support the role of the hippocampus, the
anterior DMN and frontal areas as potential connectivity

Figure 5 Feature selection matrices for state-wise predictions of group status (anti-NMDA receptor encephalitis patients
versus healthy controls). The feature selection exceeding a minimum threshold at 10% of individuals within state predictions are displayed.
Bigger and brighter circles indicate a higher selection rate. A key for the region numbers is provided in Supplementary Table 2. NMDARE,
anti-NMDA receptor encephalitis.
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biomarkers in anti-NMDA receptor encephalitis, group-
level analyses are not suited to estimate the discriminatory
power of connectivity alterations or their value to predict
disease severity.50 To this end, we applied classification ana-
lyses based on logistic regression models to these data.
Prediction performance and the set of selected network fea-
tures were variable across the different connectivity states,
indicating that discriminatory network constellations differ
between states. Interestingly, the best performance (78.6%
accuracy) was achieved in State 3, which showed the lowest
overall occurrences but a highly integrative connectivity pat-
tern. In contrast, static FC distinguished patients from con-
trols with 72% accuracy. These results show that dynamic
FC models can outperform static models and indicate the
potential of spatiotemporal FC dynamics as prognostic bio-
markers in anti-NMDA receptor encephalitis. However, fur-
ther prospective studies are needed to identify biomarkers
that can be used on the individual participant level and in
clinical settings.

Limitations
Some limitations of the present study deserve mentioning.
First, window-based approaches require the specification
of windowing parameters and the optimal choices in this re-
gard are an active area of research and debate.51 Second, a
given window size may only capture a part of the dynamic
nature of the human brain, as networks may reconfigure
over different time scales even within the possible temporal
spectrum of MRI signals.51 Lastly, for classification ana-
lyses, it is generally sensible to include large amounts of
data.50 While our study is based on a large study population
in the light of the incidence of the disease, the sample sizes
per state varied as not all participants visited all states.

Conclusions
Our analyses identified distinct brain states with characteris-
tic patterns of FC alterations and shifted temporal dynamics
in patients with anti-NMDA receptor encephalitis that re-
mained undetected in conventional static analyses.
Critically, dynamic FC measures correlated with disease se-
verity and psychiatric symptoms, suggesting that altered
resting-state dynamics carry meaningful clinical information
about anti-NMDA receptor encephalitis. Given converging
findings in other neuropsychiatric diseases, time-resolved
FC analysis holds promise for an improved characterization
and understanding of brain functioning in these disorders.
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Abstract

Patients with anti-N-methyl-aspartate receptor (NMDA) receptor encephalitis

suffer from a severe neuropsychiatric syndrome, yet most patients show no

abnormalities in routine magnetic resonance imaging. In contrast, advanced

neuroimaging studies have consistently identified disrupted functional connec-

tivity in these patients, with recent work suggesting increased volatility of

functional state dynamics. Here, we investigate these network dynamics

through the spatiotemporal trajectory of meta-state transitions, yielding a

time-resolved account of brain state exploration in anti-NMDA receptor

encephalitis. To this end, resting-state functional magnetic resonance imaging

data were acquired in 73 patients with anti-NMDA receptor encephalitis and

73 age- and sex-matched healthy controls. Time-resolved functional connectiv-

ity was clustered into brain meta-states, giving rise to a time-resolved transi-

tion network graph with states as nodes and transitions between brain meta-

states as weighted, directed edges. Network topology, robustness and transition

cost of these transition networks were compared between groups. Transition

networks of patients showed significantly lower local efficiency (t = !2.41,

pFDR = .029), lower robustness (t = !2.01, pFDR = .048) and higher leap size

(t = 2.18, pFDR = .037) compared with controls. Furthermore, the ratio of

within-to-between module transitions and state similarity was significantly

lower in patients. Importantly, alterations of brain state transitions correlated

with disease severity. Together, these findings reveal systematic alterations of

transition networks in patients, suggesting that anti-NMDA receptor encepha-

litis is characterized by reduced stability of brain state transitions and that this

List of abbreviations: BOLD signal, blood-oxygen-level-dependent signal; DAMS, distance across meta-states; dATT, dorsal attention network;
DMN, default mode network; FC, functional connectivity; FD, framewise displacement; FDR, false discovery rate; FPN, fronto-parietal network; HC,
healthy controls; LIM, limbic network; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NMDAR, anti-N-methyl-aspartate receptor;
ratiosim, ratio of within-to-between meta-state similarity; ratiotrans, ratio of within-to-between meta-state trasnitions; ROI, region of interest; rs-fMRI,
resting-state fMRI; SC, subcortical network; SM, sensorimotor network; TE, echo time; TR, repitition time; vATT, ventral attention network; VIS,
visual network.
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reduced resilience of transition networks plays a clinically relevant role in the

manifestation of the disease.

KEYWORD S
autoimmune encephalitis, functional brain states, functional connectivity dynamics, graph
analysis, transition trajectories

1 | INTRODUCTION

Anti-N-methyl-aspartate receptor (NMDAR) encephalitis is
an immune-mediated disorder of the central nervous sys-
tem caused by autoantibodies targeting the NMDA recep-
tor and leading to a dysregulation of the glutamatergic
neurotransmitter system (Dalmau et al., 2019). The disease
manifests in a complex neuropsychiatric syndrome with
prominent psychiatric symptoms (e.g., delusions and psy-
chosis) and seizures, dyskinesia, psychosis, decreased levels
of consciousness and cognitive dysfunction (Finke
et al., 2012; Graus et al., 2016; Heine et al., 2021). Despite
the severe disease course, only 50–70% of patients show
abnormalities in standard structural magnetic resonance
imaging (MRI) (Graus et al., 2016; Heine et al., 2015),
resulting in a clinico-radiological paradox. In contrast, sev-
eral functional MRI studies have suggested disrupted func-
tional connectivity (FC) in NMDAR encephalitis that is
linked to disease severity, disease duration and cognitive
symptoms (Finke et al., 2012, 2013; Gibson et al., 2019,
2020; Heine et al., 2021; Peer et al., 2017; von
Schwanenflug et al., 2022). In contrast, several functional
MRI studies have suggested disrupted FC in NMDAR
encephalitis that is linked to disease severity, disease dura-
tion and cognitive symptoms (Finke et al., 2012, 2013;
Gibson et al., 2019, 2020; Heine et al., 2021; Peer
et al., 2017; von Schwanenflug et al., 2022). These func-
tional alterations include large-scale functional networks,
such as sensorimotor, frontoparietal, lateral-temporal and
visual networks (Peer et al., 2017). In addition, the hippo-
campus and the medial prefrontal cortex—regions with the
highest NMDAR density (Dalmau et al., 2011)—have been
associated with deficits in memory performance and execu-
tive function, two core cognitive symptoms in NMDAR
encephalitis (Finke et al., 2012; Heine et al., 2021).

FC as measured with resting-state functional MRI (rs-
fMRI) is estimated from the pairwise correlation of
blood-oxygen-level-dependent (BOLD) activity between
brain regions without the presence of an explicit task
(Biswal et al., 1995). However, traditional ‘static’
approaches obtain FC as an average across several
minutes, therefore missing important information that

may be derived from dynamic changes in functional con-
nections (Allen et al., 2014; Calhoun et al., 2014). Hence,
the analysis of FC has been recently refined from a time-
invariant static account to a time-varying description.
This methodological progress allows to unveil temporal
properties of functional brain organization, such as the
identification of functional states, that is, transient con-
nectivity patterns, and their transition trajectories. These
FC dynamics are thought to reflect brain state explora-
tion that facilitates cognition and behaviour and may
vary with disease (Bassett et al., 2011; Deco et al., 2011;
Kringelbach & Deco, 2020). Accordingly, a recent case–
control study investigating FC dynamics in NMDAR
encephalitis showed that patients exhibited altered state
preference as well as increased transition frequencies
between major connectivity patterns (von Schwanenflug
et al., 2022). However, a detailed investigation of the
transition trajectory of brain states and its link to clinical
symptoms is still missing. Brain state exploration—
facilitated by transitions between functional states—is
thought to ensure stable information representation
while promoting functional integration across distant
brain regions and subsystems and, if disturbed, poten-
tially affects information integration and behaviour
(Deco et al., 2011; Lord et al., 2019). Hence, identifying
mechanisms and disruptions of these transition trajecto-
ries may contribute to the understanding of the patho-
physiology of NMDAR encephalitis and further
neuropsychiatric diseases that are associated with
NMDAR dysfunction, for example, schizophrenia.

Graph theoretical approaches are well-suited to study
the temporal architecture of state exploration. Ramirez-
Mahaluf et al. (2020) recently introduced the concept of
transition networks to investigate the trajectory of tra-
versing functional states (from hereon also referred to as
meta-states). In this concept, transition networks are
represented as graphs with brain states as nodes and
transitions between meta-states as directed and weighted
edges. Similar to other biological systems (Latora &
Marchiori, 2001), transition networks show properties of
complex networks (i.e., heavy-tailed degree distribution,
high local efficiency and modularity) indicating an
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organized, cost-efficient, non-random temporal trajectory
of brain states (Ramirez-Mahaluf et al., 2020). Further-
more, transition network characteristics have been
related to motor function and cognitive performance in
healthy controls indicating behavioural relevance
(Ramirez-Mahaluf et al., 2020).

Here, we aimed to specify alterations of the spatio-
temporal trajectory of state transitions and its relation to
disease severity in NMDAR encephalitis. Therefore, we
constructed transition networks for a large sample of
patients and age- and sex-matched healthy controls. We
hypothesized that the temporal structure of state explora-
tion in NMDAR encephalitis would show altered dynam-
ics (von Schwanenflug et al., 2022) and weakened
stability of transition networks compared with a group of
healthy controls.

2 | MATERIALS AND METHODS

2.1 | Participants

For this study, 73 patients with NMDAR encephalitis
were recruited from the Department of Neurology at
Charité - Universitätsmedizin Berlin. All patients fulfilled
diagnostic criteria including characteristic clinical pre-
sentation and detection of IgG NMDA receptor anti-
bodies in the cerebrospinal fluid (Graus et al., 2016).
Patients were in the post-acute phase of their disease
with a median of 2.97 years (interquartile range [IQR]:
2.48) after disease onset. Disease severity at the time of

scan and peak of disease was assessed with the modified
Rankin Scale (mRS). The control group consisted of
73 age- and sex-matched healthy participants without
any history of neurological or psychiatric disease. Data
from 49 patients and 25 controls were analysed in a
recent study by von Schwanenflug et al. (2022) investigat-
ing functional dynamics in NMDAR encephalitis. For the
current study, patient-control matching was optimized
for age and sex through a computational matching algo-
rithm (see Data S1). The two groups were perfectly bal-
anced for sex and did not differ significantly in age as
tested with a Wilcoxon rank sum test (p = .61). Clinical
and demographic characteristics are summarized in
(Table 1). The study was approved by the ethics commit-
tee of the Charité - Universitätsklinikum Berlin and con-
ducted according to the ethical principles of the WMA
Declaration of Helsinki.

2.2 | MRI data acquisition

MRI data were collected at the Berlin Center for Advanced
Neuroimaging at Charité – Universitätsmedizin Berlin using
a 3T Trim Trio scanner equipped with a 20-channel head
coil (Siemens, Erlangen, Germany). RS functional images
were acquired using an echoplanar imaging sequence (repe-
tition time [TR] = 2.25 s, echo time [TE] = 30 ms, 260 vol-
umes, voxel size = 3.4 ! 3.4 ! 3.4 mm3). High-resolution
T1-weighted structural scans were collected using a
magnetization-prepared rapid gradient echo sequence
(MPRAGE; voxel size = 1 ! 1 ! 1 mm3).

TAB L E 1 Demographic variables and clinical measures of the participants. Table lists median and interquartile range (IQR) of age,
mRS at scan, mRS at peak of disease, disease duration and time between scan and diagnosis. Treatment and medication during disease
course were evaluated using a binary scale (present: ‘yes’ vs. absent: ‘no’). Disease duration = days in acute care; N = number of
participants; mRS = modified Rankin Scale

NMDAR encephalitis patients Healthy controls

N 73 73

Sex Female/male 62/11 62/11

Age (years) Median ± IQR (N) 28.55 ± 8.7 (73) 28.50 ± 8.5 (73)

mRS at scan Median ± IQR (N) 1.00 ± 1.5 (70) ""

mRS at peak of disease Median ± IQR (N) 4 ± 2 (67) ""

Disease duration (hospitalization time) Median ± IQR (N) 67.50 ± 72.00 (68) ""

Years between disease onset and study Mean ± SD (N) 2.97 ± 2.48 (71) ""

First-line treatment 72/73 ""

Second-line treatment 37/73 ""

Anticonvulsant medication 51/73 ""

Antipsychotic medication 48/73 ""

Abbreviation: NMDAR, anti-N-methyl-aspartate receptor.
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2.3 | MRI data analysis

Prior to preprocessing, framewise displacement (FD) was
calculated for each participant and assessed against a
mean FD cutoff of .50 mm (Eijlers et al., 2019; Power
et al., 2014). No participant had a mean FD greater than
or equal to .50 mm. For preprocessing, we applied the
‘ICA-AROMA+2Phys’-Pipeline proposed by Parkes et al.
(2018) to our data: The pipeline included removal of the
first 4 volumes of each participant’s rs-fMRI scan, volume
realignment, slice-timing correction, detrending of BOLD
time series, intensity normalization, spatial smoothing
with 6 mm full width at half maximum, ICA-AROMA for
head motion correction to robustly remove motion-
induced signal artefacts from the functional MRI data
(Pruim et al., 2015), regression of white matter and cere-
brospinal fluid time series to control for physiological
fluctuations of non-neuronal origin, demeaning and
band-pass filtering to retain frequencies between .008
and .08 Hz.

2.4 | Participant-wise meta-state
estimation and transition network
construction

The following steps were performed with the same
parameters as previously described and evaluated in
Ramirez-Mahaluf et al. (2020). Time-series extraction
was done using a whole-brain parcellation template with
638 similarly sized regions of interests (ROIs) (Crossley
et al., 2013). Extracted functional time series were seg-
mented into 127 consecutive time windows of 2TRs
(≙4.5 s), which yielded reliable results in previous work
(Ramirez-Mahaluf et al., 2020). The comparatively short
window length was necessary to be able to meaningfully
track state transitions across a large number of meta-
states. For each window, FC was estimated between any
two ROIs using Multiplication of Temporal Derivatives, a
method that is suitable to estimate FC across a range of
correlation strengths and (short) window lengths (Shine
et al., 2015). The resulting ROI-by-ROI (638-by-638)
matrices were then Pearson-correlated, resulting in a
127-by-127 similarity matrix of windows. To obtain dis-
crete brain meta-states, MATLAB-inbuilt k-means clus-
tering was applied to the similarity matrix using 10,000
maximum iterations and 2000 replicates with random ini-
tial positions. For each meta-state, all windows belonging
to that state were averaged, yielding a mean ROI-by-ROI
(638-by-638) connectivity matrix. To scrutinize our ana-
lyses across multiple numbers of meta-states, we
extracted k meta-states (k = 35, 40, 45, 50 and 55)

following the range of k in (Ramirez-Mahaluf et al., 2020)
for each participant separately.

Finally, transition networks were constructed for each
participant and k number of meta-states: A transition
network is a graph network, where each meta-state corre-
sponds to a node and transitions between meta-states
represent the edges of that graph. The edges are directed
and weighted according to the number of transitions
from meta-state i to meta-state j (Ramirez-Mahaluf
et al., 2020).

Importantly, this novel approach runs k-means clus-
tering on each individual time series to describe individ-
ual temporal trajectories of meta-state transitions. Hence,
this approach differs fundamentally from the definition
of dynamic FC states across individuals (von
Schwanenflug et al., 2022), which searches for common
patterns of recurring connectivity on a group level.

2.5 | Group comparisons of transition
network properties

From each of the transition networks, we derived three
widely used graph theoretical measures (modularity, local
efficiency and global efficiency), two custom measures that
are thought to capture the biological costs of meta-state
transitions (leap size and immobility) (Ramirez-Mahaluf
et al., 2020), as well as one measure that assesses the
robustness of the network against perturbations. Note
that modularity, local and global efficiency and immobil-
ity were calculated on the transition matrix (matrix con-
taining the number of transitions between each pair of
meta-states) for each participant, whereas leap size was
based on the distance matrix (i.e., 1-correlation for each
meta-state pair). To assess robustness, we employed the
NetSwan package available for R to randomly remove
one node after another from the network and recalculate
the size of the largest connected component
(Achard, 2006; Lynall et al., 2010). A more detailed
description of the graph theoretical metrics is provided in
(Table S1).

In addition, transition frequency, ratio of within-to-
between module meta-state similarity and ratio of within-
to-between module transitions were compared
between patients and controls. Here, a ‘module’ refers
to a group of meta-states assigned to the same
community as defined by the modularity algorithm
(community_louvain.m). Whereas transition frequency is
calculated as the absolute number of transitions
between different meta-states, the ratio of within-to-
between meta-state similarity (ratiosim) is defined as the
average correlation of meta-states within a module
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divided by the average correlation of meta-states
between modules. Similarly, the ratio of within-to-
between module transitions (ratiotrans) is the absolute
number of transitions within the same module divided
by the absolute number of transitions between modules.

Between-group comparisons of graph theoretical
measures, transition frequencies, ratiosim, and ratiotrans
were assessed by comparing the area under the curve
(AUC; MATLAB’s trapz) between patients and controls.
The AUC was calculated from k = 35 to k = 55 for each
metric and participant, which allowed us to derive one
inference measure across all number of meta-states. For
each metric separately, the AUC was entered into a
regression model controlling for head motion (FD), age,
and sex as nuisance variables. Group comparisons were
performed on the residuals using a permutation-based t-
test and FDR-corrected using Benjamini-Hochberg
(Benjamini & Hochberg, 1995).

2.6 | Correlation of network properties
with disease severity

Next, we investigated the relationship of transition net-
work properties with disease severity of patients. To this
end, mRS scores at the time of scanning and disease
duration (days in acute care) were z-transformed across
patients and subsequently averaged, resulting in a com-
posite z score for each patient that reflects disease sever-
ity clinical disability. The Pearson’s correlation
coefficient between dynamic network properties and dis-
ease severity was obtained and corrected for multiple
comparisons.

2.7 | Functional network topology of
meta-states

Lastly, each meta-state can be represented by a whole-
brain FC matrix (638-by-638), in which each edge corre-
sponds to the coupling strength between two given brain
regions. Consequently, we sought to evaluate the spatial
differences in functional topology of these edges across
all meta-states. To this end, we quantified how much
each edge differed across meta-states by computing the
distance across meta-states (DAMS), a previously defined
summary measure by Krohn and colleagues (Krohn
et al., 2021), which is defined as the cumulative differ-
ence across a specified state space. Here, this distance
was computed for each edge across all possible meta-state
comparisons given a particular value of k, then normal-
ized over k, and finally averaged over the applied range
of k values. In consequence, we obtain a single distance

measure for each edge and participant, where a high
value of DAMS between any two ROIs indicates that the
connectivity between these regions differs strongly
between meta-states. In contrast, a low DAMS indicates
that the connectivity between these regions is similar
across all meta-states of a transition network. Subse-
quently, group differences for each edge in the distance
matrix were assessed with a two-sample t test and FDR-
corrected for multiple comparisons using Benjamini–
Hochberg (Benjamini & Hochberg, 1995). Finally, the
participant-specific DAMS values were averaged across
participants to obtain the distance matrix shown in
(Figure 4).

3 | RESULTS

3.1 | Group differences in network
properties

Group comparisons of graph theoretical measures yielded
significantly lower local efficiency (t = !2.41,
pFDR = .029, d = .40), higher leap size (t = 2.18,
pFDR = .037, d = .36) and lower robustness (t = !2.01,
pFDR = .048, d = .33) of transition networks in patients
compared with controls. In contrast, modularity
(t = !1.43, pFDR = .12, d = .27), global efficiency
(t = 1.00, pFDR = .20, d = .17) and immobility (t = !.32,
pFDR = .38, d = .05) of transitions networks did not differ
between groups (Figure 1). The transition networks of six
exemplary participants with high and low leap size are
shown in Figure S1.

Correlation of similarity and the number of transi-
tions between two meta-states revealed that transition
frequency was higher between similar meta-states for
both groups and all numbers of meta-states (rho = [.48,
.53, .54, .54, .52] for the different k meta-states; all
p < .001, Figure 2). Accordingly, transitions within mod-
ules were on average 3.4 times more likely than between
modules with a ratiotrans (ratio of within-to-between
module transitions) = [2.40, 2.94, 3.44, 3.89, 4.44]
depending on the number of meta-states. This result was
expected as modularity is calculated on the transition
matrix. Interestingly, however, the ratiotrans was signifi-
cantly lower in patients with NMDAR encephalitis com-
pared to controls (t = !2.48, pFDR = .026, d = .40),
whereas the overall number of transitions between differ-
ent meta-states did not differ between groups (t = .32,
pFDR = .377, d = .05). Similar to ratiotrans, ratiosim (ratio
of within-to-between meta-state similarity) was on aver-
age 3.2 (ratiosim = [2.9, 3.1, 3.2, 3.3, 3.4], for the different
k meta-states). Again, the ratiosim was significantly lower
in patients compared with controls (t = !2.48,
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pFDR = .026, d = .41). This suggests that patients transi-
tion between topologically more different meta-states
(from different modules) compared with controls,
whereas the overall transition frequency remains
unaltered.

3.2 | Correlation of network properties
with disease severity

Next, we investigated the relationship of significant graph
metrics, that is, local efficiency, leap size and robustness,
ratiotrans and ratiosim, with a composite z score for disease
severity. Higher disease severity was significantly associ-
ated with higher leap size (Pearson’s r = .37,
pFDR = .0030, Figure 3), decreased robustness (Pearson’s
r = !.37, pFDR = .0030, Figure 3), lower ratiosim
(Pearson’s r = !.40, pFDR = .0030, Figure S3) and lower

F I GURE 1 Between-group comparisons of graph theoretical measures. Coloured dots represent the residuals after nuisance regression.
Black dots and whiskers represent the mean and standard deviation, respectively. HC = healthy controls, NMDAR encephalitis = patients
with anti-NMDA receptor encephalitis. * indicates significant difference pFDR < .05.

F I GURE 2 Correlation between meta-state similarity and
number of transitions between them (here shown for k = 45; see
Figure S2 for k’s = [35, 40, 50, 55]). Meta-state similarity (y-axis)
was estimated calculating Spearman’s ϱ. The regression line is
included for visualization purposes. Number of transitions (x-axis)
are the sum of transitions between any two meta-states,
independent of the direction of transitions.
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ratiotrans (Pearson’s r = !.33, pFDR = .0064, Figure S3)
but not with local efficiency (Pearson’s r = !.11,
pFDR = .35, Figure S3).

3.3 | Functional network topology of
meta-states

The edges with the highest DAMS, that is, edges that
exhibited most pronounced differences in coupling
strength across meta-states, clustered predominantly in
unimodal networks, namely, the sensorimotor and visual
network (Figure 4a). This topological pattern is highly con-
vergent with recent findings from Krohn and colleagues
(Krohn et al., 2021) and is akin across groups (Figure S4).

Whole-brain group comparison yielded no significant
difference in DAMS between groups after correction for

multiple comparison. Therefore, we explored group dif-
ferences in DAMS within each functional RS network
separately. This network-wise group comparison revealed
significant differences between edges within the visual,
default mode and sensorimotor networks (FDR-
corrected, Figure 4b). Remarkably, significant edges
showed higher DAMS in patients within the visual and
sensorimotor network but lower DAMS within the
default-mode network (Table S3).

4 | DISCUSSION

Ongoing brain activity can be described as transient FC
patterns (so-called brain states) that are visited in a struc-
tured, non-random trajectory (Ramirez-Mahaluf
et al., 2020). These brain state dynamics are thought to

F I GURE 3 Correlation between
disease severity (composite z-score) and
altered network properties (residuals
after nuisance regression). Correlation
plots for local efficiency, ratiosim and
ratiotrans are shown in Figure S3. *
indicates significant difference
pFDR < .05.

F I GURE 4 Interregional distance across meta-states (DAMS). (a) The DAMS matrix visualizes interregional differences in coupling
strength across meta-states averaged across all participants. High DAMS values (yellow) indicate strong differences in connectivity strength
across meta-states, whereas low DAMS values (blue) indicate that the connectivity strength between regions is more similar across meta-
states. (b) Brain plots show results from group-comparison within each functional network. Differences in DAMS between patients and
healthy controls were found for edges within the visual, default-mode and sensorimotor network (false discovery rate [FDR]-corrected).
Network assignment of regions is based on the labels proposed by Yeo et al. (2011). Subcortical regions were subsumed as a subcortical
network. VIS = visual network, dATT = dorsal attention network, vATT = ventral attention network, DMN = default mode network,
FPN = fronto-parietal network, SM = sensorimotor network, LIM = limbic network, SC = subcortical network, und. = undefined,
HC = healthy controls, NMDAR encephalitis = patients with anti-NMDA receptor encephalitis.
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facilitate cognition and behaviour and may vary in dis-
ease (Kringelbach & Deco, 2020). In this study, we
employed a time-resolved analysis of brain activity to
capture the spatiotemporal dynamics of brain state tran-
sitions in a large sample of patients with NMDAR
encephalitis. Our results indicate reduced resilience of
state transition networks in patients compared with con-
trols. This manifests in lower local efficiency of the net-
work (fewer transitions from or to neighbouring,
i.e., similar and meta-states), higher leap size (transitions
between more distinct meta-states) and reduced robust-
ness of the patients’ transition networks against random
attacks. Furthermore, the ratio of within-to-between
module transitions and meta-state similarity was signifi-
cantly reduced in patients. Importantly, these state
dynamic metrics were correlated with disease severity,
highlighting the clinical relevance of our findings.

In patients with NMDAR encephalitis, autoantibodies
target the NR1 subunit of the NMDA receptor causing an
internalization of the receptor (Dalmau et al., 2011).
Although this results in a broad range of psychiatric and
neurological symptoms, standard clinical MRI shows no
or only minor abnormalities in most patients (Graus
et al., 2016; Heine et al., 2015). In contrast, FC analyses
were able to identify characteristic connectivity alter-
ations: Static RS FC analyses that average connectivity
across an entire scanning session showed widespread dis-
rupted connectivity in visual, temporal, hippocampal and
mid-frontal areas associated with the severity of cognitive
and psychiatric symptoms (Cai et al., 2020; Finke
et al., 2013; Peer et al., 2017). However, given that brain
activity is inherently dynamic (Chang & Glover, 2010),
models that incorporate spatiotemporal features of con-
nectivity may complement our knowledge about func-
tional disruptions in neuropsychiatric disorders. Indeed,
we recently found that dynamic FC showed a shift in
state preference and transition probabilities in patients
with NMDAR encephalitis that was associated with dis-
ease severity and disease duration (von Schwanenflug
et al., 2022). In the present study, we further expand on
these dynamic FC findings and investigated alterations in
the spatiotemporal trajectory of functional state explora-
tion through the underlying state space. State exploration
is thought to reflect the dynamic repertoire of intrinsic
brain activity that is important for information integra-
tion and mental processes (Deco et al., 2011; Gu
et al., 2017; Lord et al., 2019). Therefore, disruptions in
the temporal organization of state transitions may
account for clinical symptoms in disease (Deco
et al., 2017; Kringelbach & Deco, 2020). In fact, we found
a characteristic spatiotemporal reorganization of the tran-
sition trajectory in patients compared with controls that
was related to disease severity. This spatiotemporal

reorganization—as reflected by lower local efficiency,
lower robustness and higher leap size of the transition
network—may represent overly unstable transition
dynamics in NMDAR encephalitis (von Schwanenflug
et al., 2022) that could be linked to deficiencies in infor-
mation integration (Deco et al., 2017; Lord et al., 2019).

At a scale of seconds to minutes, the human brain
operates through continuously evolving activity that can
be characterized as transient quasi-stable brain states
(Allen et al., 2014; Calhoun et al., 2014). This evolution
of brain activity is non-random, allowing for a systematic
exploration of brain states (Ramirez-Mahaluf
et al., 2020). Analogous to the modular spatial organiza-
tion of the cortex, the temporal trajectory of brain state
transitions shows similar topological properties; that is,
brain states are grouped into modules of similar meta-
states, with higher transition frequencies within a mod-
ule than between modules (see methods and results sec-
tion: ratiotrans/ratiosim). This modular organization is
thought to promote segmented and cost-efficient infor-
mation processing, while enabling the exploration of the
functional repertoire via transitions to meta-states of a
different module (Bassett et al., 2011; Bertolero
et al., 2015; Deco et al., 2017; Sporns & Betzel, 2016;
Tognoli & Kelso, 2014). In line with the modular struc-
ture, transition networks in healthy controls show high
local efficiency and low global efficiency (as compared
with a null model) (Ramirez-Mahaluf et al., 2020).
Although a high local efficiency allows for locally special-
ized functioning, a comparatively smaller number of con-
nections between subsystems of a network, that is, low
global efficiency, still allow for distributed information
processing across different subsystems (Sporns &
Betzel, 2016). Moreover, a high local efficiency enhances
the robustness of a system. By providing alternative path-
ways between two nodes (i.e., meta-states), the system
compensates for potential disturbances and provides sta-
ble representation of information (De Vico Fallani
et al., 2009). Interestingly, the spatiotemporal organiza-
tion of state exploration may also be directly relevant to
behaviour. A recent study on transition networks in a
healthy population suggests that the efficiency of the net-
work is associated with performance in cognition and
motor function (Ramirez-Mahaluf et al., 2020). Thus,
state exploration may vary across diseases potentially
accounting for a multitude of symptoms (Kringelbach &
Deco, 2020).

Indeed, the present study highlights significant differ-
ences in the temporal architecture of transition networks
between patients with NMDAR encephalitis and healthy
controls. We found that patients exhibited decreases in
local efficiency and robustness and increases in leap size.
Decreased local efficiency hints at unstable
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representation of information due to lower redundancy
of the transition network, which is described in more
detail in the previous paragraph. Leap size is thought to
reflect metabolic cost and is measured as the magnitude
of ‘jumps’ between topologically different meta-states.
Eliciting state transitions is energetically costly (Gu
et al., 2017; Lord et al., 2013) and possibly increases when
traversing states that show highly disparate activation
profiles. This intuition is supported by our finding that
(low-cost) transitions between two similar meta-states are
more likely than (cost-intensive) transitions between dis-
tant meta-states. Accordingly, higher leap size in patients
may indicate higher metabolic demand along with higher
volatility of state transitions. Lastly, we evaluated the
robustness of the transition network, which is the ability
of maintaining information processing within the net-
work before collapsing (Aerts et al., 2016). We found that
transition networks of patients with NMDAR encephali-
tis are less robust compared to those of controls when
removing the nodes (i.e., meta-states) one by one.
Together with a decreased local efficiency and higher
leap size, this points to a destabilization and reduced
resilience of transition networks in patients with
NMDAR encephalitis, corroborating earlier findings in
this patient population (von Schwanenflug et al., 2022).
This notion is furthermore supported by decreased ratios
of within-to-between module transitions and within-to-
between module meta-state similarity in patients. In
addition, four out of five network measures—leap size,
robustness, ratiotrans and ratiosim—were correlated with a
composite score of disease severity, supporting clinical
relevance of our findings.

The neural basis for functional brain state transitions
is a matter of ongoing investigation. Neural dynamics
may coordinate whole-brain FC patterns, thereby
enabling the exploration of the brain’s functional reper-
toire (Gu et al., 2017; Kringelbach & Deco, 2020; Lord
et al., 2019). In NMDAR encephalitis, internalization of
the NMDAR alters glutamatergic synaptic transmission,
impacting the coordination between large-scale func-
tional networks. Interestingly, reduced resilience of tran-
sition networks in patients with NMDAR encephalitis is
supported by findings from attractor-based computa-
tional models that postulate that NMDAR dysfunction
may lead to overly unstable attractors in brain activity
(Rolls, 2012, 2021). NMDAR hypofunction, as in NMDAR
encephalitis and schizophrenia, may lead to a flattening
of the attractors (destabilizing effect), facilitating pertur-
bations to provoke transitions between attractors (Loh
et al., 2007; Rolls, 2012).

Finally, our study provides evidence that a subset of
regions preferentially promotes brain state transitions
(Kringelbach & Deco, 2020; Krohn et al., 2021).

Convergent with recent work on brain dynamics, we
found that changes in connectivity across states are most
pronounced in regions of the visual and sensorimotor
areas, potentially following a hierarchy from unimodal to
transmodal networks (Krohn et al., 2021). Interestingly,
in patients with NMDAR encephalitis, connectivity
changes across meta-states within unimodal networks
were even more pronounced, providing a spatial correlate
of the increased temporal volatility in state transitions.
Both the visual and the sensorimotor network have been
reported to show reduced static FC in patients with
NMDAR encephalitis; these effects correlated with dis-
ease severity; that is, they were more pronounced in
more severely affected patients (Peer et al., 2017). Along
with altered FC found in other large-scale functional net-
works (Chen et al., 2022; Finke et al., 2013; Heine
et al., 2015; Peer et al., 2017), these findings reflect the
prominent expression of NMDARs throughout the cortex,
their pathophysiological role in NMDAR encephalitis
and potentially their contribution to the orchestration of
brain dynamics. Limiting state transitions to a defined
number of regions initiating those transitions raise the
intriguing possibility that controlled external stimulation
of these particular regions could be applied to achieve a
rebalancing of state dynamics (Gu et al., 2017;
Kringelbach & Deco, 2020).

Some limitations of our study deserve mentioning:
First, statistical comparison of dynamic metrics revealed
several significant group differences, albeit with moder-
ate effect sizes. Thus, future work should consider acquir-
ing larger samples and potentially examine subgroup
differences in this disease to better characterize the
potential clinical significance of these alterations, with
the ultimate goal of moving beyond group-level effects
and towards individual patients. Second, the window
length of 2 TR (≙4.5 s) is comparatively short and may
decrease the signal-to-noise ratio. However, the size of
this time window has been recognized as a good trade-off
between sensitivity and specificity (Shine et al., 2015).
Furthermore, a high reliability of meta-state estimation
was previously shown using a very similar window
length (Ramirez-Mahaluf et al., 2020). Third, k-means
clustering is applied to each participant separately.
Although this approach poses inherent limitations to
study between-group differences in meta-state topology,
it is particularly suited to investigate individualized tem-
poral dynamics and characteristics of the transition tra-
jectory of functional states. Forth, the applied k enforces
the extraction of a large number of (potentially similar)
meta-states for each participant. While most studies focus
on 3–5 distinct major connectivity states defined on a
group level, this number of states may not be sufficient to
represent the full repertoire of functional configurations
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of the human brain. Furthermore, a small number of
states limit a detailed investigation of individual transi-
tion trajectories between these states, which was the
main purpose of the present study.

5 | CONCLUSION

In this study, we employed a time-resolved graph analyti-
cal framework to study the spatiotemporal trajectory of
brain state transitions in patients with NMDAR encepha-
litis. Besides decreases in local efficiency, we observed
reduced robustness of the patients’ transition networks
against random attacks compared with those of healthy
controls. Together with higher leap size in patients, these
findings show reduced resilience of functional state tran-
sitions in patients, that is, related to disease severity.
Hence, our findings add to the evidence that disturbance
of functional brain network dynamics plays a key role in
the pathophysiology of NMDAR encephalitis.
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