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Abstract

Abstract

Anti-NMDA receptor encephalitis (NMDARE) is an autoimmune disorder marked by
the production of antibodies against the NMDA receptor, an ionotropic glutamate
receptor in the central nervous system. NMDA receptors play a crucial role in synaptic
plasticity and neurotransmission. The presence of these auto-antibodies results in
decreased NMDA receptor levels, leading to diverse neurological and psychiatric
manifestations including psychosis, seizures, and movement disorders.

Routine clinical structural magnetic resonance imaging (MRI) often fails to detect
abnormalities despite severe disease manifestation. Conversely, advanced imaging
methods like resting-state functional MRI consistently reveal disrupted functional
connectivity (FC) associated with disease symptoms. In general, resting-state FC
refers to the temporal coherence of intrinsic, spontaneous brain signals across different
regions. Traditional FC analysis are limited to a static view of brain activity as they
average FC over the entire scan. In contrast, new dynamic time-resolved analysis
methods capture temporal fluctuations in FC, providing valuable insights into the
dynamic nature of brain activity with increased temporal resolution.

This thesis work applied these novel methodological advancements to study
functional dynamics and its clinical relevance in NMDARE patients from two
perspectives: In Study [, spatial and temporal patterns of four major FC states were
identified and compared between patients and healthy controls. In Study I/, a novel,
graph-based method was used to investigate alterations in the sequence of state
exploration, which refers to transitions between different patterns of spontaneous brain
activity over time.

In Study I, NMDARE patients exhibited alterations in FC in three out of four states,
along with a shift in the amount of time spent in different states. Patients also showed
increased volatility in state transitions, correlating with disease severity. Using machine
learning, dynamic FC models outperformed static models in discriminating patients
from controls. These findings highlight state-dependent changes and distinct dynamic
profile of state dynamics in NMDARE. Study Il complemented these findings and
further investigated alterations in the dynamics of state exploration and transition
trajectories, revealing reduced resilience of state transitions and compromised

transition networks associated with disease severity.
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Overall, our analyses demonstrate that NMDARE is linked to a clinically significant
destabilization of brain state transitions, providing new insights into the functional
reorganization of brain dynamics in this disease. Moreover, our results highlight the
potential of time-resolved FC analyses as a means of identifying novel biomarkers in
NMDARE and other neuropsychiatric disorders.

Keywords: neuroinfammatory disease ¢ autoimmune encephalitis « anti-NMDA
recptor encephalitis « brain imaging « functional magnetic resonance imaging « resting-
state fMRI « spontaneous brain activity ¢ functional connectivity dynamics ¢ graph

theory ¢ brain states « transition trajectories
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Zusammenfassung

Anti-NMDA-Rezeptor-Enzephalitis (NMDARE) ist eine Autoimmunerkrankung, die
durch die Bildung von Auto-Antikorpern gegen den NMDA-Rezeptor gekennzeichnet
ist. NMDA-Rezeptoren gehoren zu den ionotropen Glutamatrezeptoren des zentralen
Nervensystems und spielen eine entscheidende Rolle in der synaptischen Plastizitat
und Neurotransmission. Die Bildung dieser Antikorper fuhrt zu einer Verringerung der
Anzahl von NMDA-Rezeptoren, was sich in schwerwiegenden neurologischen und
psychiatrischen Symptomen wie Psychosen, Krampfanfallen und
Bewegungsstorungen manifestiert.

Klinische Routineuntersuchungen mittels struktureller
Magnetresonanztomographie (MRT) =zeigen trotz dieser Erkrankungsschwere
typischerweise keine Auffalligkeiten. Dagegen zeigen Verfahren wie funktionelles MRT
(fMRT) konsistente Veranderungen der funktionellen Konnektivitat (FC), die mit
Krankheitssymptomen korrelieren. Im Allgemeinen beschreibt FC die zeitliche
Koharenz zwischen den Signalen verschiedener Hirnregionen. Hierbei mitteln
herkdmmliche Analysen die FC Uber den gesamten Scan, was einer statischen
Beschreibung von Hirnaktivitat entspricht. Im Gegensatz dazu erfassen neue,
zeitaufgeléste Methoden Fluktuationen der FC und liefern so wertvolle Einblicke in die
Dynamik von Hirnaktivitat.

Die vorliegende Arbeit untersucht Veranderungen in der dynamischen FC bei
NMDARE-Patienten aus zwei Perspektiven: In Studie | wurden raumliche und zeitliche
Muster der vier Hauptkonnektivitatszustande identifiziert und zwischen Gesunden und
Patienten verglichen. In Studie Il wurde eine neuartige, graphenbasierte Methode
verwendet, um Veranderungen in der Explorationsabfolge funktioneller Hirnzustande
zu untersuchen.

In Studie | zeigten NMDARE-Patienten Veranderungen in drei von vier Zustanden
sowie Unterschiede in der Verweildauer in den verschiedenen Hirnzustanden. Die
Patienten zeigten auch eine erhdhte Volatilitat in den Zustandsubergangen, die mit der
Schwere der Erkrankung korrelierte. Beim Einsatz von maschinellem Lernen schnitten
dynamische FC-Modelle bei der Unterscheidung zwischen Patienten und Kontrollen
besser ab als statische Modelle. Diese Ergebnisse verdeutlichen zustandsabhangige
Veranderungen und das spezifische dynamische FC-Profil bei NMDARE. Studie Il baut
auf diesen Erkenntnissen auf und untersuchte speziell Veranderungen in der Dynamik

der Exploration von Konnektivitdtszustanden sowie deren Ubergangsmuster. Hier
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zeigten Patienten eine verringerte Stabilitat der Zustandsubergange, die ebenfalls mit
der Erkrankungsschwere korrelierte.

Insgesamt zeigen unsere Analysen, dass NMDARE mit einer klinisch signifikanten
Destabilisierung funktioneller Hirnzustande verbunden ist. Damit liefern sie wichtige
Erkenntnisse Uber die funktionelle Reorganisation von Hirnaktivitat bei der Erkrankung.
Daruber hinaus unterstreichen unsere Ergebnisse auch das Potenzial von
zeitabhangigen FC-Analysen zur Identifizierung neuer Biomarker bei NMDARE und
anderen neuropsychiatrischen Storungen.

Stichworter: Neuroinflammatorische Erkrankung + Autoimmunenzephalitis < Anti-
NMDA-Rezeptorenzephalitis * Bildgebung « funktionelle Magnetresonanztomographie
* MRT im Ruhezustand ¢ spontane Hirnaktivitat « funktionelle Konnektivitatsdynamiken

» Graphentheorie *« Konnektivitatszustande ¢ Transitionsverhalten
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1. Clinical background & Introduction to functional connectivity
1.1. Anti-NMDA receptor encephalitis (NMDARE)

Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) is a severe autoantibody-
mediated inflammatory disease that was first described in 2007 [1]. NMDARE is the
most common form of autoimmune encephalitis with an estimated incidence of
approximately 0.15 per 100.000 population per year and a prevalence of 0.6 out of
100.000 [2,3]. The disease is characterized by the presence of Immunoglobulin G
antibodies in the cerebro-spinal fluid and a gradual progression of symptomatology
that includes distinct psychopathology and multistage neuropsychiatric features (Fig
1A) [4,5]. Approximately 70% of patients experience a prodromal stage with
nonspecific inflammatory symptoms, followed by very prominent psychiatric symptoms
in 90% of case. These symproms, often including disorganized, agitated or violent
behavior, hallucinations, and mood instabilities, can be difficult to differentiate from
primary psychiatric disorders. At a later stage, patients show severe neurological
symptoms such as dyskinesia, autonomic dysfunction, and seizures, which often
require intensive care [4—6]. Although the disease is potentially fatal, around 80% of
patients show a favorable clinical outcome after 24 months, with early immunotherapy
and no emergency care being the main predictors of positive outcome [7].
Nonetheless, a prolonged phase of recovery including memory deficits and executive
dysfunctions often persists several years after disease onset [8—10]. Within the first 24
months, patients experience a 12% risk of generally milder relapses, with some having
multiple episodes. Hence, regular cerebrospinal fluid analysis is recommended for
early detection of recurrence [7]. First-line treatments include high-dose
corticosteroids, intravenous immunoglobulin, and/or plasmapheresis. If necessary,
second-line options like rituximab or cyclophosphamide can be administered [5].

The disease typically affects young females at a median age of 21 years, with a
ratio of 8:2 compared to males. However, disease onset can vary considerably, ranging
from <1 to 85 years, while the set of symptoms may differ between children and adults
at disease onset [5,11]. Although the exact cause is still unclear, the main confirmed
etiologies of NMDARE are paraneoplastic manifestations associated with an
underlying ovarian teratoma in around one-third of the cases as well as preceding

herpes simplex virus encephalitis [1,12].
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In NMDARE, the NR1 subunit of the NMDA receptor is targeted by auto-antibodies,
leading to an reduction of the receptors on the synaptic surface (Fig 1B) [13,14]. NMDA
receptors belong to the class of ionotropic glutamate receptors that are expressed
ubiquitously throughout the human brain — with the highest density in the medial
prefrontal cortex (mPFC) and the CA1 region of the hippocampus (Fig 1C) [15,16].
Excitatory synaptic transmission of a neural signal is dependent on the presynaptic
release of glutamate that diffuses across the synaptic cleft and binds to postsynaptic
NMDA receptors [17]. Through the activation of calcium-dependent signaling
cascades, NMDA receptors enhance signal transduction and influence both the
functional and structural plasticity of synapses, dendrites, and neurons [17]. As such,
NMDA receptor dysfunction can cause a wide range of symptoms and is thought to
play a key role in several neuropsychiatric diseases, such as schizophrenia and mood
disorders [18-20]. Therefore, insights from NMDARE have potential transdiagnostic
implications and could advance our understanding of shared psychiatric symptoms.

Although a causal relationship between the depletion of receptors and the clinical
presentation of NMDARE is assumed, a decrease in antibody titer does not correlate
with symptom regression [21]. Brain imaging techniques have been explored in the
quest of assessment tools that adequately describe disease progression and
potentially serve as prognostic markers. However, standard structural magnetic
resonance imaging (MRI) shows little to no abnormalities in 50-80% of patients [22,23],
creating a “clinico-radiological paradox”, where a severe disease course is observed
in the absence of visible morphological abnormalities. To address this paradox,
advanced MRI techniques, such as functional MRI (fMRI) have been investigated to
enhance our understanding of the link between clinical impairment and brain
reorganization.

Below, we first turn to central concepts of measuring spontaneous brain activity
with fMRI (section 1.2), recent methodological advancements that enable a time-
resolved account of brain activity (section 1.3) as well as the application of these

advancements in clinical populations (section 1.3.1).
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Figure 1: Clinical manifestation of NMDARE and disease mechanism. A The disease typically
presents with a distinct neuropsychiatric syndrome characterized by a viral prodromal phase, as well as
prominent neurological and psychiatric symptoms. From Kayser & Dalmau 2016 [6]. B NMDARE is
caused by antibodies targeting the NR1 subunit of the NMDA receptor. This results in internalization
and degradation of the receptor, leading to a significant reduction in receptor density on the synaptic
surface. From Lang & PriiRR 2016 [74]. C lllustration of a hippocampal section from a healthy individual
(top) and a patient with NMDARE (bottom), immunostained with NR1 antibody. Note the visibly lower
receptor density in the patient. From Dalmau et al. 2011 [13].

1.2. Imaging spontaneous brain activity: a window into functional
organization

As a non-invasive tool, fMRI detects changes in brain activity by indirectly measuring
localized macroscopic activity through blood flow and oxygenation® [24—26]. This
allows for the study of the diverse spontaneous neural activity that occurs in the human
brain, which fluctuates in structured patterns across different temporal and spatial
scales [27,28]. In the early stages, fMRI studies were mainly based on task-induced
modulation (i.e., exposure to a motor, sensory, or cognitive demand/ ‘task’) of the blood
oxygen level dependent (BOLD) signal, which considerably advanced the
understanding of brain function and spatial organization. In contrast, spontaneous, or
resting-state BOLD fluctuations were considered noise (i.e., physiological, movement,
or scanner artifacts) that were usually minimized through averaging of the BOLD time
series [27,29]. In the following years, however, accumulating evidence to the contrary
showed that resting-state brain activity is not random but provides insights into the
fundamental organization of infra-slow (< 0.1Hz) neural activity (Fig 2A) [27,30-34]. In

! Functional MRI utilizes localized fluctuations in blood oxygenation measuring ferromagnetic properties
of hemoglobin [24]. While oxygenated hemoglobin is diamagnetic (i.e., only paired electron pairs),
deoxygenated hemoglobin contains unpaired electrons and is magnetizable. As neural activity
metabolizes oxygen, the blood oxygen level dependent (BOLD) signal is used as a proxy to localize
brain activation via blood flow and temporarily increased local oxygenation levels — a process termed
neurovascular coupling [25]. Importantly, in contrast to other vascular territories in the body, vasodilation
in the brain is much less determined by systemic factors (e.g., catecholamines and instead shows a
high degree of autoregulation by local factors that help meet the brain’s need for constant blood supply
and water homeostasis [26].
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their seminal work, Biswal et al. demonstrated strong coupling of these low-frequency
fluctuations across homologous motor areas in the human cortex [30]. This temporal
dependency led to the pivotal idea that brain regions which show a strong temporal
correlation in their activity are functionally connected [30] — a concept that is commonly
referred to as functional connectivity (FC) (Fig 2B).

This discovery initiated a new era in neuroimaging research that has provided
fundamental insights into the intrinsic functional architecture of the human brain.
Estimated from whole-brain correlations of BOLD time series, human brain activity can
be decomposed into networks of functionally connected brain regions (Fig 2C)
[31,33,35]. These resting-state networks are robust, exhibit distinct spatiotemporal
features, and are highly reproducible [33]. This network architecture is commonly
summarized as the functional connectome and is typically subdivided into a visual, a
sensori-motor, an attentional, a fronto-parietal, and a default-mode network, each of
which possesses distinct functional characteristics [36—38]. While the sensori-motor
network has been implicated in the planning and performing of motor actions, the
default-mode network is typically attributed with internal processes including
autobiographical memory and mind-wandering [30,39]. Furthermore, functional
networks can be broadly divided into primary sensory and association networks that
are organized along a hierarchy from lower-order unimodal to higher-order transmodal
functional systems [33,40].

These findings have been extended to individualized descriptions of brain
organization: functional connectome “fingerprinting” can reliably identify individual
participants from large study populations with up to ~95% accuracy based on their
unique patterns of FC [41]. It has been posited that these inter-individual differences
of connectomics can even predict inter-individual differences in cognition (attention,
intelligence, or working memory) [41-43]. However, to what extent a direct mapping of
inter-individual differences in behavior onto individual differences in functional
organization is attainable, is still under debate [44].

To understand brain function in both healthy and diseased states, researchers have
investigated the relationship between clinical symptoms and alterations in functional
connectomics, using both correlational approaches and mechanistic models of brain
function [45-47]. These studies demonstrated that focal lesions in different locations
can lead to identical or similar clinical symptoms [48], thus supporting the concept of

spatially distributed but functionally integrated processing systems. From this
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standpoint, it is important to investigate disease-related alterations in the brain not only
in terms of local activity changes but also at the level of large-scale resting-state

functional networks [45].
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Figure 2: Functional organization of the brain as measured with resting-state fMRI. A Region-wise
time series of spontaneous, intrinsic brain activity captured by resting-state fMRI. B Correlated activity
among functionally related brain regions over time, known as functional connectivity (FC), is evident in
the activity patterns. The correlation matrix visualizes the temporal coherence between any two regions
in the brain. Red indicates highly correlated activity, blue highly anti-correlated activity. C FC is
organized into large-scale functional resting-state networks, typically including a visual network, a
sensori-motor network, an attentional network, a fronto-parietal network, and a default-mode network.
The network architecture depicted here is based on the commonly used estimation by Yeo et al. [33].

1.2.1. Prior evidence of functional reorganization in patients with
NMDARE

Patients with NMDARE have been reported to exhibit distributed impairments in FC,
affecting most of the large-scale networks, and specifically sensori-motor, fronto-
parietal, lateral-temporal, and visual networks [49]. Furthermore, impairment in the
connectivity of the default-mode network was consistently observed between
hippocampal and medial prefrontal regions [49,50]. Importantly, decreases in FC
correlated with individual memory performance [49,50] and psychiatric symptom
presentation [49], underlining the clinical relevance of functional disruptions in the
manifestation of NMDARE.

Despite their usefulness, conventional resting-state analyses have a significant
limitation in that they rely on the averaged correlation of BOLD time series over a multi-
minute scan, producing a "static" view of brain activity. This limitation prevents the
capture of dynamic evolution and reconfiguration of brain activity [51,52]. Thus, time-
resolved analysis of brain activity has been developed, which allows for the study of
the inherently dynamic nature of brain activity.

The studies included in this thesis focus on exploring the dynamics of functional
reorganization in patients with NMDARE with the objective to advance our
understanding of altered brain dynamics in this patient population.
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The following sections will give an introduction to the methodologies of time-
resolved analysis of intrinsic brain activity, discuss their behavioral and clinical
significance, and outline the theoretical and methodological framework that was
employed to study brain dynamics in patients with NMDARE.

1.3. From minutes to seconds: time-resolved analysis of spontaneous
brain activity

Time-resolved analysis of resting-state fMRI has emerged as the next frontier in
functional brain imaging [53,54]. By increasing the temporal resolution from minutes to
seconds, new models of brain function have been developed that provide novel
insights into regional and network interactions. As a result, our understanding of
healthy brain function and pathological conditions has significantly advanced [47,52—
56].

One line of research studies the functional dynamics of BOLD activity as the
variance or standard deviation of moment-to-moment fluctuations in the signal,
providing information on regional BOLD variability [57]. Moreover, several analytical
frameworks have been developed to capture functional variations in BOLD activity,
including time-resolved signal complexity [56], time-frequency analyses [54], co-
activation patterns [58,59], BOLD cofluctuation magnitude based on edge time series
[60], and biophysical modeling of nonlinear brain dynamics [61].

On the other hand, to describe connectivity dynamics among brain regions, the
concept of time-varying functional network interaction has been proposed — the
functional ‘chronnectome’ [53]. This framework allows for the identification of transient
FC states, which manifest as distinct recurrent patterns of whole-brain FC [62]. The
focus of the present thesis is to model brain dynamics by studying these functional
brain states and examining the transitions that occur between them (see section 2.1.

& section 2.3. for more detail).

1.3.1. Clinical and behavioral relevance of time-resolved spontaneous
brain activity

Time-resolved resting-state analyses offer a promising approach to better capture the
inherently dynamic aspects of cognition and behavior [63]. Indeed, numerous studies
have provided strong evidence linking moment-to-moment fluctuations in brain activity

to cognititive processes and behavior: For instance, Gonzalez-Castillo et al. [64]
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conducted a study where they scanned participants engaged in several cognitive
tasks, and they found that the patterns of functional configurations during each task
differed among participants and accurately reflected the individual’s level of task
engagement and cognitive ability [64]. Furthermore, it is possible to predict how well a
person is performing a task by analyzing the continuous patterns of brain function. For
example, if the connectivity between the default mode and sensory networks in the
brain is weak, participants are more likely to fail to perceive a faint sound [65]. Similarly,
ongoing connectivity patterns linked to the state of vigilance predicted intra-individual
variations in response speed [606].

Task-independent ongoing mental states are influenced by the intrinsic activity of
the brain, which is assumed to be more variable and less consistent across individuals
and time points, and not driven by external demands. Despite this, resting-state brain
dynamics have been linked to interindividual differences in general cognitive
performance: For example, higher standard deviation of BOLD signal indicated better
overall performance in working memory [67], cognitive flexibility [68], and response
speed [69]. However, brain signal variability can also have differential effects: for
example, higher BOLD signal variability can enhance cognitive flexibility but impair
cognitive stability [68].

Moreover, functional dynamics also change across the lifespan: Garrett et al.
demonstrated that BOLD variability decreases with age, and that signal variability has
five times greater predictive power for age than mean-based BOLD measures [57].
Importantly, those regions that were most predictive of age remained undetected with
conventional average measures, suggesting that Garrett af al. revealed a subset of
previously unknown age-related regions using variability measures [57]. Importantly,
the relationship between age, cognition, and brain dynamics also extends to other
conceptualizations of BOLD variability, such as time-resolved entropy [56].

Finally, time-resolved approaches have inspired efforts to further our understanding
of psychiatric and neurological conditions. Although it is unclear whether changes in
dynamic network properties are the cause or consequence of the disease, these
properties are increasingly regarded as novel biomarkers for disorders, as they seem
to be related to many clinical dysfunctions [52]. The analysis of FC states in people
with schizophrenia showed a pronounced shift in their state preference, indicating
changes of whole-brain activity configurations [70]. Moreover, these patients exhibited
increased overall transition frequencies between states [71].
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A different pattern was reported for patients with acute ischaemic stroke by
Bonkhoff et al. [72]: Here, patients exhibited distinct state-wise FC alterations in
sensori-motor networks that were accompanied by characteristic changes in temporal
properties of network interactions. Remarkably, the extent and nature of the changes
varied with the severity of the motor deficits [72].

In people with major depression, a prominent finding was decreased variability in
FC, accompanied by extended dwell times in the dominant state which showed low
overall connectivity. Changes in FC dynamics were correlated with symptoms such as
sadness, and disease severity, potentially reflecting negative, slow, and ruminative
thinking [73—76]. Patients with Alzheimer's disease demonstrated more volatile state
transitions and spent more time in usually infrequent, functionally segregated states
compared to healthy controls [77,78].

Patients with multiple sclerosis exhibited a complex pattern of unstable network
dynamics that was topologically constrained to pericentral, limbic and subcortical
areas. These dynamics were associated with measures of clinical disability [79,80].

These examples demonstrate the potential of functional dynamics to uncover new
perspectives on brain pathology that may not be detected through traditional static
analyses. Additionally, studying brain dynamics may reconcile conflicting evidence
from traditional resting-state approaches, leading to a more holistic understanding of
brain function in health and disease. With this in mind, the current thesis applies these
novel methodological advancements to investigate functional dynamics and its clinical

relevance in people with NMDARE.
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2. Methodological background & Framework
2.1. Identifying brain states

One fundamental approach to assess time-resolved connectivity dynamics involves
quantifying distinct functional brain states. These states correspond to transient whole-
brain patterns of inter-regional coupling [62].

Methodologically, brain states in resting-state fMRI are most commonly estimated
from sliding window correlations. In this simple, yet powerful approach, BOLD time
series are subdivided into temporal windows of equal length that can be either
overlapping or non-overlapping (Eig 3A). The length of these windows represents an
important methodological choice that determines the tradeoff between temporal
resolution (tracking fast temporal changes in FC) and estimation accuracy (enhancing
signal-to-noise ratio) [81]. Within each window, pairwise correlations of BOLD time
series are computed among brain regions, resulting in window-wise FC matrices which
represent a time-resolved account of covarying brain activity (Fig 3B). Subsequently,
clustering algorithms are applied to group windows with similar connectivity patterns
together. Thereby, each window is assigned to a particular functional brain state based
on a predetermined target measure (Fig 3C). The present thesis applies two of the
leading clustering methods to derive these functional brain states: k-means clustering
of network connectivity (Study I) and temporal meta-states (Study Il), as shown in Fig
3 and detailed in the following sections.

2.2. Mapping the functional connectome with graph theory

To investigate the multi-faceted organization of brain activity, researchers have widely
adopted tools from network neuroscience [82], with a special emphasis on graph
theory. Within this framework, the brain can be represented as a graph, where “nodes”
represent specific brain regions, and “edges” represent the connections between them
(e.g., FC) [83]. This approach allows for a robust abstraction of brain regions and how
they interact.

One critical feature of brain organization is network efficiency. Network efficiency
refers to how efficiently information flows through a network via the connections
between different regions of the brain. In the context of brain activity, network efficiency
involves both information integration and segregation [84].
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Information integration refers to the ability of a network to transmit information
between nodes. In the brain, this can be thought of as how easily information can be
transmitted across different brain regions that are not necessarily directly connected
[85].

Information segregation refers to the ability of a network to create groups of nodes
that are highly interconnected with each other. In the brain, this can be thought of as
clusters of regions that work together to perform specific functions [85].

This organizational property is closely linked to modularity. Modularity refers to the
presence of groups, modules or subnetworks within a larger network that have a
relatively higher density of connections between them compared to connections
outside the group [86,87]. In the context of the brain, modularity refers to the existence
of subnetworks, i.e., modules, of brain regions. These modules closely resemble
canonical resting-state networks and reinforce the idea of network organization in brain
function — see section 1.2. [31].

The combination of network efficiency and modularity in the brain allows for parallel
information processing across distributed domains, while balancing cost-intensive
functional integration and cost-efficient functional segregation [33,88].

Building on this background, the current work applies graph analysis in two ways.
In Study |/, it is used to describe spatial characteristics of functional states (i.e.,
differences in FC across states). In Study /I, graph analysis is applied to study the
spatiotemporal organization of transitions between temporal states (i.e., how the brain
transitions between different functional states over time). For more details, please refer
to Fig 3 & section 2.3.
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Figure 3: Schematic overview of the methodological and theoretical frameworks applied to
explore FC dynamics in patients with NMDARE in Study | and Study II.

In both studies, we applied a sliding window approach, where regional time series of
resting-state data are segmented into smaller windows (Fig 3A), with a connectivity
matrix obtained for each window (Fig 3B). These matrices are then clustered into
temporal patterns of connectivity (Fig 3C).

In Study I, four FC states were identified that represent the major connectivity
patterns. The approach allowed for the assessment of state-wise characteristics, such
as region-by-region differences in FC, average connectivity and modularity, as well as
number of windows spent in a given state (dwell time), and transition frequencies
between states (indicated with arrows).

In Study I, 35-55 temporal states were obtained, and a time-resolved transition
network graph was created to analyze transition trajectories between states. The
organizational properties of state sequences were assessed with modularity, network
efficiency, and robustness, as well as immobility (indicated with self-referenced arrows)
and leap size.

A more detailed prescription of the framworks is provided in the next two sections.



Methodological background & Framework

2.3.1. Framework Study I: Dynamic functional network connectivity —
estimating recurrent patterns of FC

Connectivity states quantified within the framework of dynamic functional network
connectivity reflect major, quasistable connectivity patterns that participants
systematically revisit throughout the scan [53,62]. This approach has been validated
many times [89], with most studies converging on a sliding window length between 30
and 60 seconds and identifying 4-6 distinct FC states [52,62,70-72,90]. These
temporal states are hierarchically organized along varying connectivity levels: from a
most frequently visited low-connectivity state to a least frequently visited high-
connectivity state, with some intermediate states (also see results of Study /)
[62,70,91]. While high-connectivity states may reflect moments of cost-intensive
functional integration between networks, low-connectivity states show high functional
segregation between networks, potentially reflecting a cost-efficient ‘default state’ [92].
Interestingly, these findings are consistent with our recent work on the complexity of
regional BOLD dynamics [56].

Analyses of FC states yield obvious information beyond a static account of brain
activity: First, the functional topology of each state can be analyzed individually. This
includes the degree of functional integration and segregation (as measured with
modularity, for example), overall connectivity, and region-by-region differences in FC.
Second, state-wise temporal properties can be quantified to describe how functional
coupling evolves over time, assessed with measures such as dwell time (time spent in
a given state once entered). Third, across-state functional dynamics can be quantified
as transition frequencies (number of switches between each pair of state). For a
schematic overview, see Fig 3 and Table 2 for details on these metrics.

2.3.2. Framework Study II: Tracking state transitions — a systematic
exploration of the brain’s functional repertoire

The framework applied in Study | is particularly useful to examine spatial
characteristics, such as region-by-region connectivity differences within and across the
major FC patterns. However, only a few primary brain states are identified with this
method which limits its ability to track fast temporal changes in FC [92,93]. Study Il
addresses this limitation and uses a considerably greater number of states, estimated
based on shorter windows of 2 to 4 seconds. To track the progression of state
transitions effectively, most studies suggest the use of 30-55 states [48,54-56].
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Previous research on state transition dynamics has shown that functional state
transitions follow a non-random, structured sequential order [94,95], potentially
reflecting a systemic exploration of the brain's functional repertoire [93]. Interestingly,
sequences of brain states seem to be organized in a modular manner: brain states are
clustered into modules of akin states, that show higher transition frequencies amongst
each other as compared to states from different modules [95]. This may ensure stable
information representation, while maintaining flexibility of responsiveness [88].

Analogous to the connectome, state transitions are hierarchically organized in time
[92], following the principal gradient of cortical organization [40]. Accordingly, brain
activity cycles between two sets of states with inverse activity profiles. One end of this
gradient is associated with lower-order unimodal systems (visual and sensori-motor),
while the opposing end is associated with higher-order transmodal systems (default-
mode, fronto-parietal) [92]. Traversing along this hierarchical gradient is thought to
minimize metabolic demand while enabling systematic state exploration [96].
Remarkably, this principle is highly reproducible across samples and species [95,97].

Finally, prior studies demonstrated that spatiotemporal dynamics of state
transitions are related to cognition and behavior [94]. This indicates that aberrant brain
transition dynamics may contribute to cognitive or behavioral deficits in
neuropsychiatric conditions. To capture these complex organizing principles of
transition trajectories, Ramirez-Mahaluf et al. recently developed a framework where
nodes in a graph represent brain states, and edges represent transitions between
those states [94]. This transition graph is constructed form the temporal succession of
functional brain states. Subsequently, graph theoretical metrics can be used to quantify
the spatiotemporal organization of brain state transitions (see Fig 3, and for details on
metrics, see Table 4).
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3. Research questions

3.1. Brain states and transitions: a new perspective on functional
reorganization in NMDARE

This work builds upon earlier studies on static FC in NMDARE by examining the
spatiotemporal dynamics of brain connectivity patterns in this patient population. The
goal is to uncover the dynamic network alterations associated with the wide range of
neuropsychiatric symptoms observed in this condition. To this end, two studies were
conducted:

In Study I, we performed dynamic functional network connectivity analysis [62] to
obtain discrete functional brain states (see section 2.3.1) in people with NMDARE and
healthy controls. Based on these states, we (i) assessed state-wise group differences
in FC and state dynamics, (ii) explored the relationship between state dynamics,
disease severity, and duration, and (iii) employed an unsupervised machine learning
approach to evaluate the potential of each brain state to discriminate patients from
controls in a predictive classification framework.

In Study I, we studied transition trajectories of brain state exploration in NMDARE,
using the recently developed analysis framework introduced in section 2.3.2 [94].
Based on the transition networks, we (i) assessed group differences in the spatial
topology of transition networks using graph theoretical measures, (ii) conducted
between-group comparisons for two measures that aim to represent the biological
costs of state transitions (leap size and immobility), and (iii) explored the relationship
between state transition properties and disease severity in patients with NMDARE.
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4. Methods & Results for Study I and Study I
4.1. Study I. State-dependent signatures of NMDARE
4.1.1. Methods & materials

This section summarizes the main methods & materials used in von Schwanenflug et
al. [91]. For more comprehensive information on the analyses, please refer to the
dedicated Methods section therein.

Participants:

For this study, we collected resting-state fMRI data from a large sample size of 57
patients with NMDARE and 61 healthy controls with no statistical difference between
groups regarding age & sex. NMDARE diagnosis was based on clinical presentation
and the presence of IgG NMDA receptor antibodies in cerebrospinal fluid. Patients
were in the post-acute stage, with a median of 2.43 years from disease onset to MR,
and a median disease severity of mRS 1.00 at the time of the scan. Controls had no
history of neurological or psychiatric conditions. Sample characteristics are
summarized in Table 1. All participants provided written consent, and the study was
approved by the local ethics committee. Further information on treatment and
medication during the disease course can be found in von Schwanenflug et al. [91],
Supplementary Table 1.

Table 1: Demographic variables and clinical measures of the participants in Study I.
Table from von Schwanenflug et al. [91].

Patients Healthy Controls
N 57 61
Sex I3 50/7 54/7
Age (years) Median = IQR 25.00 + 14.50 26.00 + 11.00
mRS at scan Median = IQR 1.00 £ 1.00
Disease duration Median = IQR 62.00 £ 59.50
Time between disease Median = IQR 243 +£295

onset and scan (years)

Table lists median and interquartilerange (IQR) of age, mRS at day of scan, and disease duration.
mRS = modified Rankin Scale [0-4], higher scores indicate higher disease severity; disease duration
= days in acute care; N = number of participants.
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MRI data acquisition and analysis:

MRI data was acquired using a 20-channel head coil and a 3T Trim Trio scanner. An
echoplanar imaging sequence (repetition time [TR] = 2.25 s, echo time [TE] = 30 ms,
260 volumes, voxel size = 3.4 x 3.4 x 3.4 mm?3) was used for resting-state fMRI data
and a high-resolution T1-weighted magnetization-prepared rapid gradient echo
sequence (voxel size = 1 x 1 x 1 mm?3)was used for structural scans. Preprocessing of
the resting-state fMRI data included discarding the first five volumes, slice time
correction, realignment, spatial normalization, and spatial smoothing using a 6-mm
kernel. A dedicated MATLAB toolbox was used for group independent component
analysis, resulting in a parcellation of 39 regions of interest that were subsequently

assigned to functional resting-state networks [33].

Static and dynamic functional network connectivity analysis:

For each participant, sliding window correlation (see section 2.1.) was applied to obtain
functional dynamics. Thus, the functional time series of each region of interest was
divided into consecutive overlapping time-windows of 67.5 seconds length that slid in
steps of 2.25 seconds. Within each window, Pearson’s correlation between all region
pairs was computed. Subsequently, four discrete functional network connectivity states

were defined with k-means clustering as described in section 2.3.1, resulting in

average whole-brain correlation matrices for both static FC and each dynamic state.

Group differences in static and dynamic functional network connectivity:
First, we analyzed the spatial topology of static FC and each state (dynamic FC).
This involved evaluating whole-brain modularity and overall connectivity (a), as well
as FC for all region pairs for static and state-wise connectivity matrices (b). To estimate
group differences in modularity and overall connectivity (a), a permutation-based t-test
was conducted for the static analysis. For the state analyses, a two-way ANOVA was
employed to estimate group- and state-wise effects. Post-hoc analyses were
conducted using a Kruskal-Wallis test. To assess group differences in FC between all
region pairs for the static and state-wise connectivity matrices (b), non-parametric t-
tests were used and adjusted to correct for multiple comparisons [98].
Second, we analyzed the temporal state dynamics using dwell time and transition
frequency. Here, a two-way ANOVA was used to estimate group- and state-wise
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effects. Post-hoc comparisons were evaluated using either a non-parametric t-test or
a Tukey's test depending on data characteristics.
For a detailed explanation of the spatial and temporal metrics used in the analysis,

please refer to Table 2.

Correlation with clinical variables:

We conducted post-hoc Pearson's correlation analyses to investigate the relationship
between disease severity variables (i.e., acute days in hospitalization and modified
Rankin Scale (mRS) scores at the time of the scan), and dynamic metrics (i.e., dwell

time and transition frequency).

Table 2: Description of spatial and temporal metrics assessed for between-group
comparisons between NMDARE patients and healthy controls.

Metric Definition
Modularity In Study I, modularity defines the degree to which the static FC matrix
85,00] and each state can be subdivided into modules with maximally high FC

within modules and maximally low FC between modules. In the dynamic
analyses, modularity was calculated for all windows in each state and
then averaged for each subject. Measure of functional segregation.

Overall Calculated as the absolute mean connectivity of the static FC matrix or

connectivity of each state. In the dynamic analyses, overall connectivity was
calculated for all windows in each state and then averaged for each
subject.

Pairwise FC Group differences in FC between all region pairs with respect to

differences connectivity strength. This was done for the static connectivity matrix as

well as each state in the dynamic network analysis.

Dwell time Average number of windows a participant spends in a particular state
once entered.

Transition Absolute number of transitions between each pair of states.
frequency

State-wise classification:

Lastly, we evaluated the ability of static and dynamic FC (encompassing the the four
dynamic states) to distinguish between patients and controls utilizing a supervised
binary classification approach. Following previous work from Peer et al. [49], FC of the
visual, fronto-parietal, and default-mode network areas were considered as input

features. For each state, as well as for the static connectivity matrix, logistic regression



Methods & Results for Study | and Study Il

models were trained to predict group status (patients vs. healthy controls) in a leave-

one-out cross validation scheme.

4.1.2. Results

The key findings of the study are displayed in Fig 4 and summarized below. Please

refer to von Schwanenflug et al. [91] for a detailed report of the results.

Clustering analyses identified four major FC states (Fig 4A). While the global
spatial topologies (i.e., modularity and overall connectivity) did not differ between
groups, they differed considerably between states: the dominant (i.e., most
frequently visited) state 1 closely resembled the static FC pattern exhibiting low
overall connectivity and moderate modularity. States 2 and 3 both displayed
elevated overall connectivity, yet only state 2 had a notably segregated structure

(i.e., high modularity). Unlike state 3, which showed highly integrated and

interconnected connectivity patterns, state 4 showed high modularity but reduced

overall connectivity (see Fig 4A+B and von Schwanenflug et al. [91]
Supplementary Tables 3-8 for detailed test statistics).

Region-by-region group comparison in FC yielded characteristic patterns of FC
alterations in 3 out of 4 states in patients compared to controls (Fig 4A, detailed
test statistics can be found in von Schwanenflug et al. [91]: Table 1 and Table 2).

a. In the dominant (i.e., most visited) state, we observed a significant reduction
in FC between the hippocampus and the mPFC (t = 4.01, pror = 0.0016).
Interestingly, this finding closely aligns with the patterns observed in the static
FC analyses (t = 4.36, pror < 0.001; refer to Fig 1 in von Schwanenflug et al.
[91]). Consequently, our results support and validate previous observations,
and appear to drive findings in static analyses.

b. In addition, these findings are complemented by widespread disruptions in FC
in state 2 and 3, including FC changes within the default-mode network, and
between frontal and visual regions as well as subcortical areas — findings that
went unnoticed in static FC analysis.

c. Interestingly, in state 2, higher disease severity was significantly associated
with a decrease in FC between mPFC and angular gyrus (r =-0.37, p=0.019).
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Patients showed increased dwell time in state 2 (d = -0.42, p = 0.032), while at
the same time showing decreased dwell time in state 1 (d = 0.40, p = 0.020)
compared to controls (Fig 4C). This indicates a systematic shift in state preference
in patients from the dominant state 1 to the less frequent, but highly segregated
state 2.

Furthermore, patients exhibited increased transition frequency between states
with low (state 1) and high (state 2) functional segregation (d = -0.50, p = 0.0063)
and between states with high (state 3) and low (state 4) overall FC (d =-0.34, p =
0.043, Fig 4C).

a. Remarkably, increased transition frequency between state 1 and 2 was

associated with higher disease severity (r=0.34, p = 0.012).

Lastly, a supervised classification approach further emphasizes the benefit of
increasing temporal resolution: the power to predict group status varied and
reached up to 78.6% (Fig 4D), exceeding the performance of the static
classification (72%, von Schwanenflug et al. [91]), and highlighting the uniqueness

of each state.
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Figure 4: Results Study I — Dynamic functional network connectivity. A Dynamic functional
network connectivity states. Each matrix displays the mean FC matrix for each state across patients
and healthy controls, with darker red colors indicating stronger correlation and darker blue colors
indicating stronger anti-correlation between regions. Green and yellow circles denote significantly lower
and higher correlation values, respectively, in patients compared to controls. The diagonal rectangles
represent functional networks. B State-wise spatial topology. State-wise comparison of average
connectivity and modularity revealed significant differences between states but not between groups.
States 2 and 3 exhibited stronger overall connectivity than States 1 and 4, while States 2 and 4 showed
higher modularity than States 1 and 3. Black dots and vertical lines represent mean and standard
deviation. C Temporal state dynamics. Group differences in average dwell time (left) and transition
frequencies between states (right). Patients had lower dwell times in State 1 and longer dwell times in
State 2, as well as higher transition frequencies between States 1 and 2, and between States 3 and 4,
compared to controls. For transition frequencies, the direction of transition was ignored. D State-wise
classification. State-wise feature selection matrices indicate the importance for each feature for
predicting group status, with bigger and brighter circles indicating higher importance. Classification
accuracy for each state is denoted in red.

Statistical significance was denoted by *p<0.05, **p<0.01, or ***p<0.001, with temporal state
dynamics not corrected for multiple comparisons. CB = cerebellar network, DMN = default-mode
network, dATT = dorsal attention network, FPN = fronto-parietal network, SM = sensori-motor network,
VIS = visual network; AG = angular gyrus, HPC = hippocampus, IFG = inferior frontal gyrus, mPFC =
medial prefrontal cortex, POS = parieto-occipital gyrus, SFG = superior frontal gyrus, TPOJ = temporo-
parieto-occipital junction. Figure and captions adapted from von Schwanenflug et al. [91].
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4.2. Study Il: Reduced resilience of state transitions in NMDARE
4.2.1. Methods & materials

This section summarizes the main methods & materials used in von Schwanenflug et
al. [100].

Patrticipants:

This study included a large sample size of 73 patients with NMDARE and 73 healthy
controls with no statistical difference between groups regarding age & sex. NMDARE
diagnosis was confirmed by clinical presentation and the detection of IgG NMDA
receptor antibodies in cerebrospinal fluid. Patients were in the post-acute stage, with
a median of 2.97 years from disease onset to MRI, and a median disease severity of
mRS 1.00 at the time of the scan. Controls had no history of neurological or psychiatric
disorders. Clinical and demographic details are summarized in Table 3. All participants
gave written consent, and the study was approved by the local ethics committee.
Additional treatment information is available in von Schwanenflug et al. [100], Table 1

& Supplementary Table S1.

Table 3: Demographic variables and clinical measures of the participants in Study II.
Table from von Schwanenflug et al. [100].

Patients Healthy Controls
N 73 73
Sex female/male 62/11 62/11

Age (years) Median £ IQR (N)  28.55 +/- 8.7 (73) 28.50 + 8.5 (73)

mRS at scan Median = IQR (N) 1.00 £ 1.5 (70)
Disease duration Median £ IQR (N)  67.50 £ 72.00 (68)
(hospitalization time)

Years between disease Mean = SD (N) 2.97 £2.48 (71)

onset and study

Table lists median and interquartile range (IQR) of age, MRS at scan, disease duration, and time between
scan and diagnosis. Disease duration = days in acute care; N = number of participants; mRS = modified
Rankin Scale.
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MRI data acquisition and analysis:

MRI data was acquired using a 20-channel head coil and a 3T Trim Trio scanner. An
echoplanar imaging sequence (repetition time [TR] = 2.25 s, echo time [TE] = 30 ms,
260 volumes, voxel size = 3.4 x 3.4 x 3.4 mm?3) was used for resting-state fMRI data
and a high-resolution T1-weighted magnetization-prepared rapid gradient echo
sequence (voxel size = 1 x 1 x 1 mm?3)was used for structural scans. Preprocessing of
functional images included removal of the first 4 volumes, slice-timing correction,
realignment, detrending, intensity normalization, spatial smoothing, ICA-AROMA for
head motion correction, regression of white matter and cerebrospinal fluid time series,
demeaning, and band-pass filtering according to Parkes et al. [101].

Meta-state estimation and transition network construction:

To further analyze the functional data, we extracted the time-series of 638 regions of
interest based on a functional atlas template as previously described [39,94]. Then, for
each participant, we divided the time series of each region into non-overlapping
windows of ~5 seconds length, and computed FC within each window between any
two regions using Multiplication of Temporal Derivatives [77]. These FC values were
then clustered into 35 to 55 brain states, resulting in a time-resolved transition network
graph with brain states as nodes and transitions between brain states as weighted,

directed edges (Fig 5A).

Group comparisons of transition network properties:
The organization of transition networks was assessed using modularity, network
efficiency, and robustness. To evaluate the temporal properties of state transitions,
leap size, immobility, and overall transition frequency were calculated. Additionally, the
within-to-between module state similarity ratio (ratiosin) and the within-to-between
module transitions ratio (ratiouans) were computed for each participant. All metrics are
described in detail in Table 4.

General linear models were used to compare graph metrics, transition frequencies,
ratiosim, and ratiosans between groups, with head motion, framewise displacement, age,

and sex as nuisance variables for each metric separately.
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Correlation of network properties with disease severity:

Next, the relationship between metrics and disease severity was investigated. To this

end, we calculated a composite z-score for each patient, which reflected disease

severity based on the patients’ mRS scores at the day of the scan and disease duration

(days in acute care). Subsequently, Pearson’s correlation between network properties

and disease severity was computed and corrected for multiple comparisons [98].

Table 4: Description of network properties assessed in Study Il for between-group
comparisons between NMDARE patients and healthy controls. Table from von
Schwanenflug et al. [100].

Metric

Definition

Modularity
[85,99]

Global efficiency
[85,102,103]

Local efficiency
[85,102,103]

Immobility
[94]

Leap size
[94]

Robustness
[104]

Transition
frequency

RatiOs,m

This network parameter quantifies the degree to which the transition
network can be subdivided into clearly defined groups or modules of
states with maximally possible number of within-module transitions
and minimally possible number of between-module transitions. A high
modularity indicates that states within a module show particularly high
transition frequencies compared to states from different modules.

The global efficiency quantifies the average number of transitions
necessary to reach one state from any other states in the network.

The local efficiency is the global efficiency (see above) computed on
a particular state. In a transition network, this measure indicates how
well-connected neighboring states are among each other. The local
efficiency gets averaged across all states in a transition network.

Immobility quantifies the average number of windows a participant
remained in the same state before transitioning to a different state.

Leap size is the average distance between consecutive states
excluding periods of immobility. It is defined as the spatial distance
between one state and the next one (1 — correlation coefficient of their
connectivity matrices). It therefore measures the magnitude of jumps’
between states and is thought to reflect metabolic cost of state
transitions, assuming that transitions between more distinct states
are more costly.

Measure of resilience against fragmentation of a network. Nodes
(states) of the transition network are randomly removed one by one.
A high robustness of a transition network indicates that even in the
absence of several nodes (states), transitions among the remaining
states are still possible.

Overall number of transitions between different states excluding the
periods of immobility.

The ratio of within-to-between state similarity is defined as the
average correlation of states within a module divided by the average
correlation of states between modules.
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Ratiotrans The ratio of within-to-between module transitions is the absolute
number of transitions between states within the same module divided
by the absolute number of transitions between modules.

Functional topology of brain states:

Lastly, we investigated which regions diverged most in their connectivity strength
across states. Following Krohn et al. [56], the distance across meta-states (DAMS) for
each pair of regions and for each participant was calculated. A high value of DAMS
indicates that the connectivity pattern diverges strongly between brain states, while a
low DAMS implies that the connectivity strength between two regions remains constant

across all states of a transition network.

4.2.2. Results

The key findings of Study Il are summarized below. Please refer to von Schwanenflug
et al. [100] for a detailed report of the results.

i. Between-group comparison of network properties (Fig 5B) indicated reduced
resilience of state transition networks in patients compared to controls, which
manifests in
a. lower local efficiency of the network — fewer transitions between neighboring

(and thus similar) states (t = -2.41, pror = 0.029, d = 0.40),

b. higher leap size — transitions between more distinct states (t = 2.18, pror =
0.037, d =0.36), and

c. reduced robustness of the patients’ transition networks against perturbations
(t=-2.01, pror = 0.048, d =0.33).

d. modularity (t =-1.43, pror= 0.12, d =0.27), global efficiency (t = 1.00, pror =
0.20, d =0.17), and immobility (t =-0.32, pror = 0.38, d =0.05) of transitions
networks did not differ between groups.

ii. Moreover, patients showed a significantly lower ratiosans and ratiosin compared to
controls (ratiotrans: t = -2.48, pror = 0.026, d = 0.40; ratiosim: t = -2.48, prpr = 0.026,
d =0.41), while the overall number of transitions did not differ between groups (¢

= 0.32, pror = 0.377, d =0.05). This suggests that patients more frequently move
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between states from different modules compared to controls, possibly reflecting a

dissolved architecture of transition networks in NMDARE.

Significant network properties correlated with disease severity (Fig 5C),

highlighting the clinical relevance of our findings. Specifically, we found that higher

disease severity was associated with

a.
b.
C.
d.

higher leap size (Pearson’s r = 0.37, pror = 0.0030),
decreased robustness (Pearson’s r = -0.37, prpor = 0.0030),
lower ratiosim (Pearson’s r = -0.40, prpr = 0.0030),

and lower ratioans (Pearson’s r = -0.33, pror = 0.0064).

Lastly, in both groups the divergence in connectivity across states were most

pronounced in visual and sensori-motor areas, suggesting that state transitions

are mainly initiated by connectivity changes in unimodal networks. Patients

exhibited even greater divergence in connectivity within these networks compared

to controls, potentially explaining the increased temporal instability in brain state

transitions (Fig 5D).
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Figure 5: Results Study Il - Temporal meta-state analysis. A Transition network graph of an
exemplary participant. In this state transition network visualization, nodes (i.e., brain states) are
colored based on their degree, i.e., the number of transitions to/ from that state. The distance between
two nodes represents their transition cost (1 minus correlation). The thickness of the edges indicates
the number of transitions between the nodes, and the arrows indicate the direction of the transition. Self-
connections indicate immobility periods, where there were no changes in meta-states between two
consecutive time windows. B Group differences in transition network properties. Between-group
comparisons of graph theoretical measures. Only significant metrics are shown. Coloured dots represent
the residuals after nuisance regression. Black dots and whiskers represent the mean and standard
deviation. C Clinical correlation. Correlation between disease severity (composite z-score) and altered
network properties (residuals after nuisance regression). Correlation plots for local efficiency, ratiosim
and ratiowans are shown in Supplementary Figure 3 in von Schwanenflug et al. [100]. D Region-by-
region distance across meta-states (DAMS). The DAMS matrix displays how coupling strength varies
between brain regions across meta-states. High DAMS values (yellow) indicate strong differences in
connectivity strength across meta-states, while low DAMS values (blue) indicate more consistent
connectivity strength. Brain plots on the right show group differences within functional networks.
Differences in DAMS between patients and controls were found in edges within the visual, default-mode,
and sensori-motor networks. VIS =visual network, dATT =dorsal attention network, vATT = ventral
attention network, DMN = default mode network, FPN =fronto-parietal network, SM = sensori-motor
network, LIM = limbic network, SC = subcortical network, und. = undefined.

* indicates significant difference with prpr <.05.

Figure and captions adapted from von Schwanenflug et al. [100].
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5. Discussion
5.1. Scope of the present thesis and summary of findings

NMDARE is a severe antibody-mediated inflammatory disease with a characteristic
neuropsychiatric syndrome [6]. Despite the severe disease course, standard clinical
structural MRI shows no or only mild abnormalities in most patients [22,23], motivating
the search for functional signatures of the disease. Indeed, conventional static FC
analyses have identified widespread alterations in connectivity linked to cognitive and
psychiatric symptom severity [23,49,50,105]. However, these results are based on
overly simplistic, static models of brain function. As brain activity is intrinsically dynamic
[54], models that integrate time-dependent properties of connectivity are crucial to
understand functional reorganization in NMDARE.

To close this gap, the present thesis studied alterations in the temporal dynamics
of functional brain organization in patients with NMDARE. To this end, FC dynamics in
NMDARE were compared to healthy control particpants from two perspectives:

First, spatial and temporal patterns of major FC states were identified and
compared between groups in a well-established neuroimaging framework [62]. In the
second study, an innovative method [94] was applied to investigate alterations in the
sequence of state exploration — measured as temporal transitions between patterns of
spontaneous brain activity.

In the first study, patients showed state-specific impairments of FC in three out of
four states, along with a systematic shift in dwell time from the dominant, low-
connectivity state to a less frequent, but highly segregated state. In addition, patients
exhibited an increased volatility of overall state transitions. These findings were
associated with measures of disease severity. Furthermore, a supervised machine
learning approach showed higher predictive power in dynamic in contrast to static FC
models. While these findings reveal state-dependent changes in FC and a
characteristic dynamic profile of state dynamics in patients with NMDARE, detailed
investigation of individualized temporal dynamics and transition trajectories was limited
due to a comparatively low spatial and temporal resolution.

Therefore, the second study extended these findings and investigated alterations
in patterns of state exploration. By employing a graph-analytical framework, we
identified reduced stability of functional state transitions and a disrupted architecture
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of transition networks in patients with NMDARE that was again related to disease
severity.

Together, our analyses show that NMDARE is associated with a clinically relevant
destabilization of brain state transitions, thereby offering new perspectives on the
functional reorganization of brain dynamics in the disease. Our results moreover
demonstrate the potential of time-resolved FC analyses for the identification of

biomarkers in NMDARE and other neuropsychiatric disorders.

5.2. Implications of the findings

Together, the findings of our studies show that NMDARE is characterized by an
increased volatility of temporal brain states. These changes in brain dynamics reflect
functional reorganization and aligns well with the clinico-radiological paradox detailed
in section 1.1.

Prior research has indicated that the efficiency of transitioning between states is
closely linked with cognitive performance and motor abilities [94]. This suggests that
an irregular pattern of state exploration in NMDARE underpins some of the identified
dysfunctions [52,93] and aligns well with the clinical correlations observed in this thesis.
Overall, this indicates that the clinical symptoms of NMDARE might be more accurately
attributed to functional reorganization — possibly as an expression of NMDA
hypoactivity — than purely structural damage.

In patients with NMDARE, the internalization of the NMDA receptor triggered by
autoantibodies leads to a decrease in receptor density [13]. This likely impacts
glutamatergic neurotransmission, which drive transient fluctuations in neural
oscillations [106,107]. Alterations in these neural dynamics could compromise the
temporal coordinations of brain regions. Such disruptions might disturb the balance of
brain activity patterns, so that NMDA receptor hypofunction potentially results in
excessively unstable state transitions [108,109], which are generally thought to
facilitate the exploration of the functional repertoire [110].

The present thesis supports this view and highlights the key role of functional brain
dynamics in the functional reorganization in NMDARE.
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5.3. Limitations of the present thesis and open questions in the study
of dynamic FC

Some limitations of the current work deserve mentioning: First, the sliding window
approach requires a pre-specification of the window length. As it is likely that the brain
operates on different temporal scales, the window size inherently limits the temporal
spectrum that can be captured. Hence, the optimal choice of this parameter depends
on the scientific question and is a matter of ongoing debate. Methodological
improvements try to address these shortcomings and propose windowless approaches
such as time-frequency analysis [54,111] or hidden Markov models [92]. However,
these methods have their own weaknesses and assumptions [63].

Second, the current studies are based on the connectivity between brain regions,
which is by definition a relational measure of the activity between two brain regions.
However, it is crucial to consider time-varying properties of the brain regions
themselves, as their activity ultimately shape the inter-regional relations, functional
hierarchy and temporal dynamics of the brain. As such, measures such as time-varying
complexity or edge-time series may give deeper insights into the processes that give
rise to the phenomenon of dynamic network connectivity [56,112].

Third, k-means clustering enforces the extraction of a predefined k number of
states. While this ensures comparability between participants and groups, it may not
mirror the actual number of states present in the current data set. Yet, for the dynamic
functional network connectivity as applied in Study I, the replicability of states has been
demonstrated to be high within and between participants [89]. For the temporal meta-
state analysis as applied in Study /I, we scrutinized our analysis across multiple k meta-
states to ensure that parameter choices did not bias the observed results (see von
Schwanenflug et al. [100]).

Forth, direct implications for clinical practice are limited due to the lack of statistical
power in neuroimaging studies to identify reliable individual markers of dynamic
change, complex processing pipelines and the limited amount of available data.
Nevertheless, our findings provide important new insights into the functional brain
reorganization in NMDARE and strengthen the foundation needed to ultimately

develop practical implementations.
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5.4. Future directions: functional dynamics as the next frontier in the
brain sciences

Psychiatric disorders often share similar characteristics to NMDARE including clinical
and cognitive symptoms, neurotransmitter dysfunctions, or genetic risk factors.
Identifying FC markers sensitive enough to complement existing criteria and symptom
checklists would greatly benefit the clinical setting, facilitating faster initial diagnosis
and enhanced differential diagnosis. In the case of NMDARE, there have been
consistent findings of marked disruptions in FC, making it a potential neuroimaging
marker [23,49,50,91,100]. Further investigating brain dynamics (that is, including the
dimension of time in describing functional signals) opens up new opportunities to
identify more precise characteristics of brain functioning and pathology. Indeed, our
studies demonstrate that some states are more relevant to disease expression than
others, and dynamic features of FC enhance classification performance compared to
static accounts of FC [71,113]. This exciting finding suggests that dynamic state
analyses can be useful in distinguishing disease, disease stage, or prognostic
outcome.

NMDARE in particular provides remarkable opportunities to identify transdiagnostic
characteristics, as the condition shares dynamic network alterations that are
associated with NMDAR dysfunction with other pathologies — first and foremost
schizophrenia [114]. Given the large overlap in psychiatric symptomatology in these
diseases, NMDA receptor hypofunction is further strengthened as the hypothesized
pathophysiological basis for cognitive and psychiatric symptoms in both diseases [18].
Recent studies on time-resolved FC in schizophrenia have shown notable
convergence with our findings, including a shift in state preference [70], increased
overall transition frequencies [71], and altered modular network structure [115]. The
extent to which these dynamic features are indeed transdiagnostic must therefore be
investigated in specifically designed comparative studies.

Computational models that go beyond diagnosis and biomarkers simulate neuronal
and neurotransmitter systems for treatment purposes. These models suggest that
interventions using pharmacological and electromagnetic methods have the potential
to rebalance perturbed state dynamics by inducing state transitions [93,97,116].
Similar to our study, they suggest that state transitions can be initiated by specific
regions, making them promising treatment targets [93]. Other studies using deep-brain
stimulation have identified targets that can rebalance and elicit changes in brain
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connectivity, alleviating symptoms in neuropsychiatric and motor disorders that are
otherwise resistant to treatment [93].

To advance its clinical potential and bring brain dynamics into practice, a key goal
of the next years is to gain a comprehensive understanding on human brain dynamics.
Only if we identify unifying principles, can we advance our understanding of
neurological and psychiatric disorders and enable functional dynamics to ultimately
serve as risk, diagnostic, and prognostic markers.

5.5. Conclusion

The studies presented in the current thesis are the first to investigate the temporal
dynamics of brain activity in patients with NMDARE. Overall, the results suggest that
the clinical manifestations of NMDARE may be more closely tied to (dynamic)
functional reorganization than to structural damage. Using state-of-the art
methodologies in contemporary human neuroimaging, both studies suggested a
clinically relevant increase in the volatility of brain dynamics and reduced resilience of
brain state transitions, emphasizing the importance of brain dynamics in the
manifestation of the disease. These results highlight that, by increasing the temporal
resolution from minutes to seconds, time-resolved FC analyses add clinically valuable
information and provide new insights beyond traditional FC analyses. Converging
findings in other neuropsychiatric disorders furthermore strengthen the importance of
spatiotemporal dynamics for improved characterization and understanding of
functional reorganization in these diseases. Critically, association with measures of
disease severity stresses the potential of time-resolved FC measures as novel disease
biomarkers and treatment targets in NMDARE.
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State-dependent signatures of anti-N-methyl-
D-aspartate receptor encephalitis

®Nina von Schwanenflug,"2 [®Stephan Krohn,"2 ®Josephine Heine,I
®Friedemann Paul,"“'5 ®Harald Priiss"® and @®Carsten Finke'%*

Traditional static functional connectivity analyses have shown distinct functional network alterations in patients with anti-N-methyl-p-
aspartate receptor encephalitis. Here, we use a dynamic functional connectivity approach that increases the temporal resolution of con-
nectivity analyses from minutes to seconds. We hereby explore the spatiotemporal variability of large-scale brain network activity in
anti-N-methyl-p-aspartate receptor encephalitis and assess the discriminatory power of functional brain states in a supervised classifi-
cation approach. We included resting-state functional magnetic resonance imaging data from 57 patients and 61 controls to extract four
discrete connectivity states and assess state-wise group differences in functional connectivity, dwell time, transition frequency, fraction
time and occurrence rate. Additionally, for each state, logistic regression models with embedded feature selection were trained to predict
group status in a leave-one-out cross-validation scheme. Compared to controls, patients exhibited diverging dynamic functional con-
nectivity patterns in three out of four states mainly encompassing the default-mode network and frontal areas. This was accompanied
by a characteristic shift in the dwell time pattern and higher volatility of state transitions in patients. Moreover, dynamic functional
connectivity measures were associated with disease severity and positive and negative schizophrenia-like symptoms. Predictive power
was highest in dynamic functional connectivity models and outperformed static analyses, reaching up to 78.6% classification accuracy.
By applying time-resolved analyses, we disentangle state-specific functional connectivity impairments and characteristic changes in tem-
poral dynamics not detected in static analyses, offering new perspectives on the functional reorganization underlying anti-N-methyl-p-
aspartate receptor encephalitis. Finally, the correlation of dynamic functional connectivity measures with disease symptoms and severity
demonstrates a clinical relevance of spatiotemporal connectivity dynamics in anti-N-methyl-p-aspartate receptor encephalitis.
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HC = healthy controls; HPC = hippocampus; IFG = inferior frontal gyrus; LOOCV = leave-one-out cross-validation; mPFC =
medial prefrontal cortex; MPRAGE = Magnetization-Prepared RApid Gradient Echo; mRS = modified Rankin scale; OFG =
orbito-frontal gyrus; PC = principal component; PHG = parahippocampal gyrus; POS = parieto-occipital gyrus; prim.
Visual = primary visual cortex; rs-fMRI = resting-state functional MRI; SB = subcortical; SFG = superior frontal gyrus
SM = sensorimotor; SMA = supplementary motor area; STG = superior temporal gyrus; TE = echo time; TPOJ =

temporo-parieto-occipital junction; TR = repetition time

Graphical Abstract

Dynamic functional connectivity in anti-N-Methyl-D-aspartate encephalitis

o Estimation of distinct connectivity states using resting-state functional MRI
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Introduction

Anti-N-methyl-p-aspartate (NMDA) receptor encephalitis is
a severe autoimmune disorder of the CNS caused by anti-
bodies targeting the NR1 subunit of the NMDA receptor."
The disease is characterized by a complex neuropsychiatric
syndrome with delusions, hallucinations, movement abnor-
malities, autonomic dysfunction, decreased levels of

consciousness and cognitive dysfunction, e.g. deficits of ex-
ecutive control and memory.'™®

Despite the severe disease course, routine clinical MRI re-
veals no abnormalities in 50-80% of patients.”’ In contrast,
functional connectivity (FC) is disrupted in distinct function-
al networks, including medial-temporal, fronto-parietal and
visual networks.® Specifically, hippocampal connectivity
with medial prefrontal regions of the default-mode network

59 | Page
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(DMN) is significantly impaired, and these alterations are
associated with the severity of memory impairment.
Moreover, disruption of fronto-parietal and ventral atten-
tion networks correlates with positive and negative
schizophrenia-like symptoms.>® These traditional resting-
state FC analyses have thus contributed to reveal the me-
chanisms underlying clinical symptoms in anti-NMDA re-
ceptor encephalitis by assessing the coherence of brain
activity between distinct regions. However, traditional FC
analyses are ‘static’ in the sense that blood-oxygen-level de-
pendent time series are averaged across a scan with duration
of several minutes.

Yet, the brain is a complex dynamic system in which the
strength and spatial organization of connectivity patterns
can change within seconds, resulting in multiple spatiotem-
poral organization patterns during one MRI scan.”™"!
‘Dynamic’ FC approaches capture these changes of function-
al brain organization and allow for the investigation of tem-
poral properties, i.e. identification of distinct connectivity
states and analysis of transition trajectories between these
states—alterations of which may vary with the disease.’
Indeed, recent studies report intriguing evidence that dy-
namic FC analyses enable a better characterization of net-
work alterations in psychiatric and neurological diseases
compared to static FC approaches.'® Therefore, dynamic
FC measures are increasingly understood as meaningful
attributes to describe different disease phenotypes, e.g. in
schizophrenia, major depression, stroke and Alzheimer’s
disease.'>*

One common method to analyse dynamic FC applies a
clustering algorithm to obtain distinct functional brain
states, which are defined as time-varying, but recurrent pat-
terns of FC.'® This approach provides a specifically promis-
ing tool for disentangling the dynamic network changes
underlying the diverse neuropsychiatric symptoms in
anti-NMDA receptor encephalitis. Here, we used this ap-
proach to (i) investigate the spatiotemporal properties of
brain states in a large sample of patients with anti-NMDA
receptor encephalitis and healthy controls (HC); (ii) explore
the relationship between state dynamics, disease severity and
duration and psychiatric symptoms and (iii) evaluate the
potential of each brain state to discriminate between pa-
tients and controls using a supervised machine learning
approach.

Materials and methods

For this study, 57 patients with anti-NMDA receptor en-
cephalitis (female: 50, median age: 25.00 + 14.50 years)
were recruited from the Department of Neurology at
Charité-Universititsmedizin Berlin. The diagnosis was
based on clinical presentation and detection of IgG
NMDA receptor antibodies in the cerebrospinal fluid.
Patients were in the post-acute disease stage, with a median
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of 2.43 years (+ 2.95) between disease onset and MRI data
acquisition. The median disease duration, i.e. days spent in
hospitalization, was 63 days (+ 56.50, N = 52). Disease se-
verity at the time of scan was assessed based on the modified
Rankin scale (mRS; median mRS: 1.00 + 1.00, N = 55). The
control group consisted of 61 age- and sex-matched healthy
participants (female: 54, median age: 26.00 + 11.00 years)
with no history of neurological or psychiatric disease.
Clinical and demographic characteristics are summarized
in Supplementary Table 1. All participants gave written in-
formed consent, and the study was approved by the local
ethics committee.

Structural and functional MRI data were acquired at the
Berlin  Center for Advanced Neuroimaging at
Charité-Universititsmedizin Berlin using a 20-channel head
coil and a 3T Trim Trio scanner (Siemens, Erlangen,
Germany). For resting-state functional MRI (rs-fMRI), we
employed an echoplanar imaging sequence [repetition
time (TR)=2.25s, echo time =30 ms, 260 volumes, vox-
el size=3.4mm x 3.4 mm x 3.4 mm]. High-resolution
Ti-weighted structural scans were collected using a
Magnetization-Prepared RApid Gradient Echo sequence
(MPRAGE; 1 mm x 1 mm x 1 mm).

Our processing pipeline followed the procedure of recent re-
lated work.'® Preprocessing of rs-fMRI scans included dis-
carding the first five volumes to account for equilibration
effects, slice time correction, realignment to the first volume,
spatial normalization to MNI space (voxel size 2 mm x
2 mm x 2 mm) and spatial smoothing with a 6-mm full
width at half maximum smoothing kernel using the
CONN Toolbox (https:/web.conn-toolbox.org/).

To perform group-independent component analysis and dy-
namic functional network analysis, we applied the
GroupICA fMRI toolbox (GIFT, http:/mialab.mrn.org/
software/gift/index.html). For each participant, 255 time
points were first decomposed into 150 temporally indepen-
dent principle components (PCs) and subsequently into
100 independent PCs using the Infomax algorithm.'” This
procedure was repeated 20 times in ICASSO to estimate
the reliability and ensure the stability of the decompos-
ition."® For back-reconstruction of individual time courses
and spatial maps, gig-ica (integrated in the GIFT Toolbox)
was applied to the data.'” The resulting 100 independent
components were individually rated as signal or noise by
three independent raters (N.v.S., J.H., C.F.). In total, 39
components were assigned to functional networks based
on the labels proposed by Thomas Yeo et al.> For cerebellar
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(CB) and subcortical (SB) components, two distinct net-
works were added. This yielded a total of seven functional
resting-state networks including sensorimotor (SM), visual
(VIS), SB, CB, DMN, dorsal attention and fronto-parietal
network (FPN). Supplementary Fig. 1 shows all functional
networks and Supplementary Table 2 contains peak values
and coordinates for all components. Finally, we applied add-
itional processing steps including linear, quadratic and cubic
detrending, motion regression (12 motion parameters) to re-
duce motion-related artefacts, high-frequency cut-off at
15 Hz, despiking (identified as framewise displacement
> 0.5mm) and interpolation of time courses using a
third-order spline fit.

To compare the dynamic FC results with conventional ‘sta-
tic’ FC, we calculated the average pairwise connectivity be-
tween all component pairs across the resting-state scan
using Pearson’s correlation coefficient r for each subject.
Subsequently, age, sex and motion parameters were re-
gressed out, and Fisher z-transformation was applied.

In order to obtain FC dynamics, FC between all component
pairs was calculated over consecutive windowed segments of
the time courses (i.e. sliding windows) using a window of
30TR length (£ 67.5s) that shifted in steps of 1TR
(2 2.25s). After the correlation matrix was computed on
each window (i.e. 225 39 x 39 matrices per participant),
Fisher z-transformation was applied and age, sex and mo-
tion parameters were regressed out as nuisance variables.
Subsequently, matrices of each participant were concate-
nated, and k-means clustering was applied with k=4 ac-
cording to the elbow criterion (see Supplementary Fig. 2).
Thus, each window was assigned to one of the four clusters
representing  discrete network FC states.'® Squared
Euclidean distance was applied for clustering, and the pro-
cess was repeated 100 times to avoid convergence on local
minima.

For a global characterization of the static and the state-wise
correlation matrices, modularity (as a measure of functional
network segregation) and absolute mean connectivity (re-
ferred to as ‘overall connectivity’) were calculated.”">* In
the static FC analysis, both measures were calculated on
each subject’s connectivity matrix and subsequent group
comparison was performed using a non-parametric #-test
as applied in Glerean et al.** In the dynamic FC analysis,
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modularity and absolute mean connectivity were calculated
for all windows in each state and averaged for each subject.
Subsequently, a two-way ANOVA was conducted to esti-
mate group- and state-wise effects as well as their interac-
tion. For post hoc analysis, a Kruskal-Wallis test was
performed.

Next, we assessed group differences in FC between all
component pairs for the static and the dynamic functional
network analysis with respect to connectivity strength with
a non-parametric ¢-test. For the dynamic FC analysis, group
differences were evaluated for each state separately.

Besides the analysis of state-dependent connectivity pat-
terns, estimation of time-varying FC provides the opportu-
nity to capture dynamic metrics. Here, four commonly
used metrics were calculated: (i) dwell time (i.e. average
number of windows a participant spends in a particular
state), (ii) transition frequency (i.e. a participant’s number
of transitions between each pair of states), (iii) fraction
time (i.e. percentage of windows spent in a state) and (iv)
state occurrence rate (i.e. number of participants that en-
tered the state over the course of the scan).'>"” Group differ-
ences in occurrence rates were estimated using the z-test for
population proportions. For the other metrics, two-way
ANOVAs were conducted to estimate group- and state-wise
effects as well as their interaction. Post hoc comparisons
were evaluated with a non-parametric #-test or a Tukey’s test.

Between-group comparisons for the modularity and over-
all connectivity, static and dynamic functional network ana-
lysis, dwell time, fraction time and occurrence rates were
based only on participants who visited the respective state.

Finally, group-wise analyses were complemented by a super-
vised binary classification approach to assess the potential of
the static FC markers and the four dynamic FC states to dis-
criminate between patients and controls. As previous work
has suggested visual, fronto-parietal and DMN areas to re-
present the biologically relevant discriminatory features in
anti-NMDA receptor encephalitis, these networks were con-
sidered as the set of input features.® For the static design and
each state, logistic regression models were trained on the
z-scored FC indices to predict group status (anti-NMDA re-
ceptor encephalitis patients versus HC) in a leave-one-out
cross-validation (LOOCV) scheme. To facilitate model spar-
sity and counteract overfitting, embedded feature selection
was applied through L1 regularization. Hyperparameter op-
timization of the regularization strength A was applied for
each state-input matrix (observations-by-connectivity fea-
tures) by searching a linearly spaced parameter grid that
was identical for all four states. Selection probability of
each feature was read out as the empirical rate of non-zeroed
feature weights over all predictions within a state. Prediction
performance was evaluated by standard confusion matrix
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measures (i.e. true and false positive and negative rates and
overall accuracy). Model training and prediction were im-
plemented in Matlab (The MathWorks, Inc., Natick, MA,
USA).

The data that support the findings of this study are available
upon reasonable request from the corresponding author.
The code is available on GitHub (https:/github.com/
nivons/statedynamicsNMDARE).

Results

We observed pairwise (component-to-component) differ-
ences in static FC between anti-NMDA receptor encephalitis
patients and HC that clustered in the inter- and intra-
connectivity of the DMN (Fig. 1 and Table 1). In line with
previous studies,®® anti-NMDA receptor encephalitis pa-
tients showed decreased static connectivity between the
hippocampus (HPC) and the medial prefrontal cortex
(mPFC; Pepr < 0.05). In addition, anti-NMDA receptor en-
cephalitis patients exhibited significantly reduced DMN con-
nectivity with the supplementary motor area, temporo-
parieto-occiptal junction (TPOJ), the parieto-occipital sulcus
(POS) and the superior frontal gyrus (SFG) and increased FC
with the orbito-frontal gyrus (OFG) (Puncorr < 0.001). There
was no significant difference between patients and controls
in modularity (mean + SD: 0.35 4+ 0.09 versus 0.33 + 0.09;
t=-1.19, P=0.12) and overall connectivity (0.30 + 0.05
versus 0.31+ 0.07; £=0.63, P=0.26).

Following previous studies that found a correlation be-
tween the mPFC-hippocampal connection and disease sever-
ity variables,™® we conducted a post hoc correlation analysis
(using Pearson’s correlation coefficient) between these regions
and disease severity at the time of scan (mRS). Higher mRS
scores were associated with a reduced connectivity between
the parahippocampal gyrus (PHG) and the mPFC (r=
—0.28, P=0.040), as well as with lower connectivity be-
tween the hippocampus and the mPFC (r=—0.27, P=0.05).

K-means clustering identified four connectivity states for HC
and anti-NMDA receptor encephalitis patients (Fig. 2).
Group-wise mean connectivity and modularity for each state
are shown in Fig. 3. Multiple regression models for modular-
ity and overall connectivity yielded a significant effect for the
state (modularity, P<0.001; overall connectivity, P<
0.001), but not for group or interaction. The dominant
State 1 closely resembled the static FC pattern (r=0.94,
Supplementary Table 14) with low overall connectivity
and moderate modularity. States 2 and 3 were both charac-
terized by high overall connectivity, while only State 2 had a
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highly segregated structure (i.e. high modularity). In con-
trast to State 3, State 4 exhibited high modularity and low
overall connectivity (Fig. 3, see Supplementary Tables 3—8
for detailed test statistics).

Anti-NMDA receptor encephalitis patients showed dis-
tinct FC alterations across the four connectivity states in
comparison to controls (Fig. 2 and Table 2). As in the static
FC group analysis, group differences comprised the DMN,
VIS and FPN, but in a state-dependent fashion: in the static
FC-resembling State 1, patients with anti-NMDA receptor
encephalitis displayed decreased connectivity between the
mPFC and the hippocampus, i.e. results very similar to the
findings in the static FC analysis. The highly modular State
2 showed impaired connectivity between the mPFC and
the angular gyrus (AG) as well as the parieto-occipital sulcus
in patients. Furthermore, the inferior frontal gyrus (IFG)
exhibited connectivity alterations with the putamen (bil.)
and the visual cortex. Similarly, the densely connected/high-
ly integrative State 3 was characterized by decreased con-
nectivity from the IFG to the putamen. Additionally,
connectivity between the TPOJ and the superior frontal
gyrus was reduced in anti-NMDA receptor encephalitis
patients compared to HC. For State 4, no significant altera-
tions were observed after false discovery rate (FDR)
correction.

Next, we obtained the correlation coefficient between all
significant component pairs and disease severity (mRS at the
time of scan) as well as disease duration (days in hospitaliza-
tion): in the strongly segregated State 2, higher disease sever-
ity was significantly associated with a decrease in FC
between mPFC and angular gyrus (r=-0.37, P=0.019),
while in the densely connected/highly integrative State 3,
higher disease severity was significantly related to a decrease
in connectivity between TPOJ and dorsolateral superior
frontal gyrus (r=—0.39, P=0.046). Due to the exploratory
nature of the study, post hoc correlation analyses were not
corrected for multiple comparisons.

In addition to state-wise connectivity patterns, we assessed
state and group differences in dwell time, transition fre-
quency, fraction time and occurrence rate using two-way
ANOVAs. We found a significant state effect in dwell times
(P=0.00021): dwell times were higher for patients and con-
trols in State 1 compared to States 2 (I'=-3.77, P=
0.0010) and 3 (T=-3.61, P=0.0019). Importantly, a sig-
nificant group effect (P=0.010) revealed a shift in dwell
times between patients and controls: while patients showed
lower dwell times in the dominant static FC-resembling State
1 (P=0.020), they had higher dwell times in the strongly
segregated State 2 compared to controls (P=0.032;
Fig. 4). Similarly, the model for transition frequencies
yielded a significant effect for the group (P=0.044) and
state (P <0.001). Post hoc group comparisons exhibited
higher transition frequencies in patients between states
with high and low overall connectivity, i.e. States 1 and 2
(P=0.043), and between states with high and low across-
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Figure | Mean static functional connectivity matrix across brain regions of anti-NMDA receptor encephalitis patients and HC.
Darker red/blue colours indicate higher positive/negative correlation values between component pairs. Green circles mark lower correlation
values in anti-NMDA receptor encephalitis compared to controls, and yellow circles indicate higher correlation values in anti-NMDA receptor
encephalitis compared to controls. Small black rectangle indicates significant difference of FC between the hippocampus (Region 59) and the
mPFC (Region 36) between patients and controls after FDR-correction (Pepr < 0.05), while no rectangle indicates differences between groups
for Puncorr < 0.001. Highlighted regions are displayed with anatomical labels. A key for the region numbers is provided in Supplementary Table 2.
Big diagonal rectangles indicate functional networks, e.g. the sensorimotor network that comprises regions 6, |5, 23, 44 and 78. NMDARE,

anti-NMDA receptor encephalitis.

network connectivity, i.e. States 3 and 4 (P = 0.0063; Fig. 4),
in comparison to controls. Furthermore, transitions from/to
State 1 were significantly more frequent than transitions
from States 2/3 to State 4 or vice versa. Fraction time dif-
fered across states (P=0.0023), but not between groups
(P=0.56). A post hoc test revealed higher percentages of
windows in State 1 compared to State 2 (T=-3.23, P=
0.0077) and 3 (T=-3.02, P=0.014). Occurrence rates of
dynamic FC states were similar in anti-NMDA receptor en-
cephalitis patients and HC: the static FC-resembling State 1
showed the highest occurrence, followed by States 2 and 4;
the lowest occurrence rates were observed for the densely
connected/highly integrative State 3. Despite similar general
occurrences, state-wise between-group proportion tests re-
vealed that a higher number of patients visited the highly
segregated State 2 compared to controls (P =0.019), while
the proportions were equal for both groups in States 1, 3
and 4. Detailed test statistics can be found in Table 3 and
Supplementary Tables 9-13.

To identify a relationship between disease severity vari-
ables (i.e. acute days in hospitalization and mRS score at
the time of scan) and dynamic metrics (i.e. dwell time and
transition frequency), we conducted Pearson’s correlation
analyses between these variables. We found that increased
transition frequency between States 1 and 2 was associated
with disease severity at the time of scan (r=0.34, P=
0.012). We further compared dwell time and transition fre-
quency from patients with positive and negative
schizophrenia-like psychiatric symptoms to those without

respective psychiatric symptoms. Here, patients with posi-
tive symptoms exhibited higher dwell times (z=2.07, P=
0.038) in the highly segregated State 4 compared to those
without positive symptoms. In contrast, patients with
negative symptoms showed higher dwell times (z=2.02,
P=0.043) in the densely connected/highly integrative
State 3 compared to those without negative symptoms.

Classification analyses

Binary classification (anti-NMDA receptor encephalitis pa-
tients versus HC) based on static connectivity features
yielded an overall prediction accuracy of 72%, with ba-
lanced feature distribution across the networks (see
Supplementary Fig. 3). When dynamic connectivity features
were considered, discriminatory power differed in a state-
wise fashion. Prediction performance was lowest for the
dominant, static FC-resembling State 1 (overall accuracy
of 61.5%), intermediate and similar to model performance
with static feature input for the modular-structured States
2(72.6%) and 4 (70.8%), and highest for the least frequent
and densely connected/highly integrative State 3 (78.6%; see
Supplementary Fig. 4 for the state-wise confusion matrices).
Besides model evaluation outcomes, the feature selection fre-
quencies over individual predictions in the LOOCV scheme
also varied across states (Fig. 5). While States 1 and 3 yielded
balanced selection rates over both across- and within-
network connectivity features, States 2 and 4 showed fewer
discriminatory features, and these were primarily across-
network connections (FPN to VIS and DMN for State 2
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Table |. Test results of static functional network connectivity analysis

Regions Network Component #
mPFC—hippocampus DMN—DMN 36-59
mPFC—SMA DMN—SM 36-23
mPFC—TPO) DMN—VIS 33-38
mPFC—TPO) DMN—VIS 36-38
mPFC—PHG DMN—DMN 36-14
SFG—POS DMN—AATT 24-80
mPFC—OFG DMN—FPN 33-29
mPFC—SFG DMN—DMN 36-61
STG—SFG DMN—FPN 40-89

Puncorr PrpRr T d
<0.0001* 0.00024* 4.36 0.62
0.00092 0.15 3.30 0.44
0.00084 0.15 3.26 0.54
0.0006 0.15 3.40 0.45
0.00016 0.12 3.85 0.55
0.00072 0.15 329 0.52
0.00043 0.15 —3.48 —0.37
0.00087 0.15 327 0.40
0.00057 0.15 324 0.49

Table includes component name, network assignment, number (#), t-value, P-value and effect size (d) of component pairs that are highlighted in Fig. I.

*Significant after FDR-correction.

and DMN to VIS for State 4). Importantly, although some
connectivity features were discriminatory across several
states (e.g. component pairs 12-90 showed high selection
frequency for States 1-3), the constellation of predictive fea-
tures changed dynamically over connectivity states, empha-
sizing the uniqueness of each state.

Discussion

In this study, we applied dynamic FC analyses to character-
ize distinct connectivity patterns and temporal dynamics of
network interactions in anti-NMDA receptor encephalitis.
Investigating state-specific FC alterations, we found a
marked impairment of FC between the hippocampus and
the mPFC in the most visited, i.e. dominant state. This con-
nectivity pattern closely mirrored observations in the static
FC analysis and corroborated previous findings.>® Three
additionally identified states showed connectivity alterations
within the DMN and between frontal, visual and SB areas—
findings that remained undetected in the static FC analysis.
Investigation of state dynamics showed a systematic shift
in dwell time from the dominant state to a strongly segre-
gated state in patients. Likewise, negative and positive
schizophrenia-like symptoms were associated with distinct
patterns of state preference. In addition, an increased volati-
lity of transitions between states with high and low overall
connectivity and states with high and low segregation was
observed in patients. These state dynamics were associated
with disease severity. Finally, classification analyses revealed
that discriminatory network features and predictive power
varied dynamically across states, exceeding the discrimin-
atory power of static FC analyses and yielding the highest
prediction in a highly connected/highly integrated state.
Our observations demonstrate the potential of time-resolved
FC analysis for a better characterization of disease mechan-
isms involved in anti-NMDA receptor encephalitis.

In line with previous studies, conventional static FC analyses
showed impaired connectivity between the mPFC and the

hippocampus as well as altered connectivity patterns in
frontal parts of the DMN.>® Indeed, the CA1 subregion of
the hippocampus and the prefrontal cortex contains the
highest density of NMDA receptors.”* Converging observa-
tions of disrupted hippocampal-prefrontal connectivity are
thus biologically plausible and point to a robust disease bio-
marker and potential treatment target in anti-NMDA recep-
tor encephalitis. Furthermore, both brain regions are main
components of the DMN and are involved in memory and
executive functions>**°—the two cognitive domains most
frequently impaired in patients with anti-NMDA receptor
encephalitis.+*27-2%

However, these findings are inherently limited to a static
account of connectivity changes. Time-varying FC, in
contrast, captures moment-to-moment changes in connectiv-
ity, reflecting a more physiologically plausible model of brain
activity. One line of thought hypothesizes that the temporal
variability of FC networks enables a systematic exploration
of network configurations, which allows brain regions to dy-
namically (dis-)engage, and modulate changes in cognition
and behaviour.”” Dynamic state analysis as employed in
this study represents a powerful tool to describe these dynam-
ics and potential instabilities of this process.'®

Indeed, state-wise group comparisons revealed connectiv-
ity differences between patients and controls in three out of
four states. These differences were most pronounced in
within- and across-network connectivity of the DMN and
almost exclusively manifested as reduced connectivity
strength in anti-NMDA receptor encephalitis.

State 1 represented the dominant state, i.e. the most vis-
ited state, the state in which participants remained longest
and that was involved in most transitions. The connectivity
pattern of State 1 was characterized by low overall connect-
ivity and low segregation. Anti-NMDA receptor encephal-
itis patients showed a significantly impaired hippocampal-
prefrontal connectivity in comparison to controls that
closely resembled the pattern observed in current and pre-
vious static FC analyses.»® Thus, the connectivity pattern
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Figure 2 Dynamic functional network connectivity states for anti-NMDA receptor encephalitis patients and healthy controls.
Darker red/blue colours indicate higher positive/negative correlation values between component pairs. Green circles mark lower correlation
values in anti-NMDA receptor encephalitis compared to controls and yellow circles indicate higher correlation values in anti-NMDA receptor
encephalitis compared to controls. Small black rectangles indicate significant differences of FC between patients and controls after
FDR-correction (Pepg < 0.05). Highlighted regions are displayed with anatomical labels. A key for the region numbers is provided in
Supplementary Table 2. Big diagonal black rectangles indicate functional networks, e.g. the sensorimotor network that comprises regions 6, 15,23,

44 and 78. NMDARE, anti-NMDA receptor encephalitis.

0.8

0.6

04

0.2

65 | Page



Publication |

Functional dynamics in NMDAR encephalitis

State-wise connectivity

o
13
a

*

I
~
@

o
w
a

.
A 4

Connectivity [abs(Mean)]

o
o

State

BRAIN COMMUNICATIONS 2022: Page 9 of 13 | 9

State-wise modularity

o
3

x

I
3

Modularity Index [Q]

0.1

State

Figure 3 State-wise comparison of overall connectivity and modularity. In general, States | and 4 exhibited weak overall state
connectivity compared to States 2 and 3. Segregation of functional networks, as measured with modularity, was highest in States 2 and 4, followed
by State | and weakest in State 3. Black dots and vertical lines represent mean and standard deviation **P < 0.00| (Bonferroni-corrected). *P <
0.01 (Bonferroni-corrected). Detailed test statistics can be found in Supplementary Tables 3-8.

in the dominant State 1 seems to drive findings of altered
connectivity in conventional static FC analyses. In contrast,
States 2—4 showed strikingly different features. FC altera-
tions in States 2 and 3 went beyond the aggregated findings
of the static analysis and revealed impaired connectivity
between the mPFC and parieto-occipital areas, and between
the IFG and the putamen (State 2). The latter is also pre-
sent in State 3 along with impaired frontal-parietal
connectivity.

Importantly, correlation analyses revealed that these dy-
namic FC alterations were associated with disease severity
and disease duration, primarily involving mPFC connectiv-
ity and highlighting the clinical relevance of these findings.
Together, these results disentangle state-specific connectivity
patterns observed in conventional FC analyses and indicate
the potential differential contribution of state-wise FC al-
terations to clinical symptoms and disease stages.

In addition to these alterations in large-scale connectivity
patterns in different states, anti-NMDA receptor encephal-
itis patients showed distinct temporal properties with re-
spect to connectivity states, i.e. different transition
frequencies and dwell times in comparison to controls.

This involved a systematic shift in dwell time from the dom-
inant State 1 to the segregated State 2, with patients nearly
doubling their dwell time in State 2. Interestingly, recent evi-
dence shows that successful working memory performance
relies on increased network integration.>® Prolonged dwell-
ing in the segregated, less-integrated State 2 might thus be re-
lated to the frequently observed working memory deficits in
anti-NMDA receptor encephalitis.* Remarkably, patients
who experienced positive schizophrenia-like symptoms
spent more time in the highly segregated State 4, while those
with negative symptoms increased their dwell time in the
highly integrative State 3. These observations are consistent
with recent studies in schizophrenia showing an increased
modular network structure in patients.>'

Additionally, patients showed an increase in transition
frequencies between States 1 and 2 as well as between
States 3 and 4. These transition frequency alterations were
significantly correlated with disease severity, indicating
that severe anti-NMDA receptor encephalitis disease courses
are associated with more volatile transition dynamics, while
state preference (i.e. dwell time) is not affected. The dynamic
interplay between brain regions—in the sense of the flexible
(dis-)engagement of functional links and state transitions—
is critical to efficiently process internal and external stimuli
and flexibly adapt behaviour. While state transitions are

Table 2. Test results of dynamic functional network connectivity analysis

Regions Network Component # Pepr T d
State | mPFC—hippocampus DMN—DMN 36-59 0.0016 4.01 0.60
State 2 prim. Visual—IFG VIS—FPN 1171 0.016 —3.80 —0.57
Putamen—IFG SC—FPN 5-71 0.016 4.09 0.56
mPFC—angular gyrus DMN—DMN 36-84 0.016 3.83 0.54
mPFC—POS DMN—AATT 36-10 0.016 4.06 0.79
State 3 TPOJ—SFG VIS—FPN 38-89 0.00021 433 0.78
Putamen—IFG SC—FPN 5-71 0.041 3.99 0.69

Table includes component name, network assignment, number (#), t-value, P-value and effect size (d) of component pairs that are highlighted in Fig. 2.
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Figure 4 Group differences in state dynamics. (A) Group differences in average dwell time (in windows). Solid lines point to significant
differences in post hoc testing between groups (non-parametric t-test, uncorrected). (B) Group differences in transition frequencies between
states (P-values). For transition frequencies, the direction of transition was ignored. Post hoc group comparisons were calculated using a
non-parametric t-test (uncorrected). *P < 0.05; **P < 0.01. NMDARE, anti-NMDA receptor encephalitis.

thought to be generally important to explore different brain
states in order to facilitate and enhance cognitive flexibility,
overly unstable transition dynamics may be linked to defi-
ciencies in the integration and stable representation of infor-
mation.>*> The imbalance of stability and volatility may,
therefore, lead to impaired memory, perception or executive
functions.>>>* These suggestive links between state dynam-
ics and impaired cognitive performance in anti-NMDA re-
ceptor encephalitis require further detailed investigations
in combined task-based and resting-state fMRI studies.

Previous studies have applied dynamic FC analyses to brain
disorders such as major depression, Alzheimer’s disease or
schizophrenia.!>!315:3037 I these studies—and those with

HC only'®—the most visited state resembled the weakly
connected dominant State 1 in the present study suggesting
the brain’s preference for a cost-efficient, energy-saving ‘de-
fault’ state.>®3 Morcover, patient groups showed charac-
teristic changes in state dynamics, such as altered state
occurrences, transition frequency or dwell times,'213:36:37

In patients with major depression, decreased variability in
FC is the most prominent finding along with prolonged
dwell times in the weakly connected dominant state.'>*%~
42 Changes in dynamic metrics were associated with sadness
and disease severity and may mirror main symptoms includ-
ing negative, slow and ruminative thinking,'3*°

A different pattern was found for patients with
Alzheimer’s disease. Similar to patients with anti-NMDA re-
ceptor encephalitis, state transitions are more volatile and
patients tend to spent more time in less frequent,

Table 3. Group differences in dwell time (average number of windows), transition frequencies between states

(absolute numbers) and fraction time (percentage).

State NMDARE patients (mean + SD) Healthy controls (mean + SD) Puncorr d
Dwell time | 46.6 + 53.8 757 + 85.6 0.020* 0.43
2 34.9 + 49.9 17.6 + 30.6 0.032* —0.42
3] 142 +22.8 16.2 + 28.0 0.21 0.22
4 243 +45.0 30.3 + 588 0.12 0.31
Transition frequency 1-2 13+1.5 0.8 + 1.37 0.043* —0.34
1-3 08+ 14 08 + 1.42 0.85 0.03
14 13+1.9 1.1+ 1.95 0.55 —0.11
2-3 @5 4k 13 0.7 + 1.31 0.44 0.14
24 03+08 0.3 £0.95 0.92 0.01
34 03+ 09 0.0+0.13 0.0063* —0.50
Fraction time | 51.0 +33.1 54.7 + 38.0 0.30 0.11
2 31.5 +29.0 31.5+258 0.48 0.01
3 274 +277 323 +292 0.27 0.17
4 328 +31.7 39.1 + 339 0.22 0.20

Group differences were calculated using a two-sided non-parametric t-test. P-values and effect sizes (d) are shown. NMDARE, anti-NMDA receptor encephalitis.

#P < 0.05 (uncorrected).
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Figure 5 Feature selection matrices for state-wise predictions of group status (anti-NMDA receptor encephalitis patients
versus healthy controls). The feature selection exceeding a minimum threshold at 10% of individuals within state predictions are displayed.
Bigger and brighter circles indicate a higher selection rate. A key for the region numbers is provided in Supplementary Table 2. NMDARE,

anti-NMDA receptor encephalitis.

functionally segregated states as compared to HC.>*37

Interestingly, however, opposite results have also been re-
ported,*® potentially because dynamic connectivity pattern
alterations change progressively across disease stages.
Furthermore, our results show a notable convergence
with recent studies in patients with schizophrenia reporting
a similarly marked shift in state preference'* as well as in-
creased overall transition frequencies,** and altered modular
network structure.?’ Given the considerable overlap in psy-
chiatric symptoms in patients with schizophrenia and
anti-NMDA receptor encephalitis**>*¢ and the glutamate

hypothesis positing NMDA receptor dysfunction as the
pathophysiological basis for cognitive and psychiatric symp-
toms in schizophrenia,*”>*® our findings raise the interesting
possibility that the transdiagnostic psychopathological pro-
file of both diseases*’ could be paralleled by a common set of
dynamic network alterations.

Classification analyses

While our findings support the role of the hippocampus, the
anterior DMN and frontal areas as potential connectivity

68 | Page
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biomarkers in anti-NMDA receptor encephalitis, group-
level analyses are not suited to estimate the discriminatory
power of connectivity alterations or their value to predict
disease severity.’® To this end, we applied classification ana-
lyses based on logistic regression models to these data.
Prediction performance and the set of selected network fea-
tures were variable across the different connectivity states,
indicating that discriminatory network constellations differ
between states. Interestingly, the best performance (78.6%
accuracy) was achieved in State 3, which showed the lowest
overall occurrences but a highly integrative connectivity pat-
tern. In contrast, static FC distinguished patients from con-
trols with 72% accuracy. These results show that dynamic
FC models can outperform static models and indicate the
potential of spatiotemporal FC dynamics as prognostic bio-
markers in anti-NMDA receptor encephalitis. However, fur-
ther prospective studies are needed to identify biomarkers
that can be used on the individual participant level and in
clinical settings.

Some limitations of the present study deserve mentioning.
First, window-based approaches require the specification
of windowing parameters and the optimal choices in this re-
gard are an active area of research and debate.®! Second, a
given window size may only capture a part of the dynamic
nature of the human brain, as networks may reconfigure
over different time scales even within the possible temporal
spectrum of MRI signals.’" Lastly, for classification ana-
lyses, it is generally sensible to include large amounts of
data.>® While our study is based on a large study population
in the light of the incidence of the disease, the sample sizes
per state varied as not all participants visited all states.

Conclusions

Our analyses identified distinct brain states with characteris-
tic patterns of FC alterations and shifted temporal dynamics
in patients with anti-NMDA receptor encephalitis that re-
mained undetected in conventional static analyses.
Critically, dynamic FC measures correlated with disease se-
verity and psychiatric symptoms, suggesting that altered
resting-state dynamics carry meaningful clinical information
about anti-NMDA receptor encephalitis. Given converging
findings in other neuropsychiatric diseases, time-resolved
FC analysis holds promise for an improved characterization
and understanding of brain functioning in these disorders.
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Abstract

Patients with anti-N-methyl-aspartate receptor (NMDA) receptor encephalitis
suffer from a severe neuropsychiatric syndrome, yet most patients show no
abnormalities in routine magnetic resonance imaging. In contrast, advanced
neuroimaging studies have consistently identified disrupted functional connec-
tivity in these patients, with recent work suggesting increased volatility of
functional state dynamics. Here, we investigate these network dynamics
through the spatiotemporal trajectory of meta-state transitions, yielding a
time-resolved account of brain state exploration in anti-NMDA receptor
encephalitis. To this end, resting-state functional magnetic resonance imaging
data were acquired in 73 patients with anti-NMDA receptor encephalitis and
73 age- and sex-matched healthy controls. Time-resolved functional connectiv-
ity was clustered into brain meta-states, giving rise to a time-resolved transi-
tion network graph with states as nodes and transitions between brain meta-
states as weighted, directed edges. Network topology, robustness and transition
cost of these transition networks were compared between groups. Transition
networks of patients showed significantly lower local efficiency (t = —2.41,
DPrpr = -029), lower robustness (¢t = —2.01, prpr = .048) and higher leap size
(t =2.18, prpr = .037) compared with controls. Furthermore, the ratio of
within-to-between module transitions and state similarity was significantly
lower in patients. Importantly, alterations of brain state transitions correlated
with disease severity. Together, these findings reveal systematic alterations of
transition networks in patients, suggesting that anti-NMDA receptor encepha-

litis is characterized by reduced stability of brain state transitions and that this

List of abbreviations: BOLD signal, blood-oxygen-level-dependent signal; DAMS, distance across meta-states; dATT, dorsal attention network;
DMN, default mode network; FC, functional connectivity; FD, framewise displacement; FDR, false discovery rate; FPN, fronto-parietal network; HC,
healthy controls; LIM, limbic network; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NMDAR, anti-N-methyl-aspartate receptor;
ratiogm, ratio of within-to-between meta-state similarity; ratio.ns, ratio of within-to-between meta-state trasnitions; ROI, region of interest; rs-fMRI,
resting-state fMRI; SC, subcortical network; SM, sensorimotor network; TE, echo time; TR, repitition time; vATT, ventral attention network; VIS,

visual network.
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1 | INTRODUCTION

Anti-N-methyl-aspartate receptor (NMDAR) encephalitis is
an immune-mediated disorder of the central nervous sys-
tem caused by autoantibodies targeting the NMDA recep-
tor and leading to a dysregulation of the glutamatergic
neurotransmitter system (Dalmau et al., 2019). The disease
manifests in a complex neuropsychiatric syndrome with
prominent psychiatric symptoms (e.g., delusions and psy-
chosis) and seizures, dyskinesia, psychosis, decreased levels
of consciousness and cognitive dysfunction (Finke
et al., 2012; Graus et al., 2016; Heine et al., 2021). Despite
the severe disease course, only 50-70% of patients show
abnormalities in standard structural magnetic resonance
imaging (MRI) (Graus et al., 2016; Heine et al., 2015),
resulting in a clinico-radiological paradox. In contrast, sev-
eral functional MRI studies have suggested disrupted func-
tional connectivity (FC) in NMDAR encephalitis that is
linked to disease severity, disease duration and cognitive
symptoms (Finke et al., 2012, 2013; Gibson et al., 2019,
2020; Heine et al, 2021; Peer et al, 2017; von
Schwanenflug et al., 2022). In contrast, several functional
MRI studies have suggested disrupted FC in NMDAR
encephalitis that is linked to disease severity, disease dura-
tion and cognitive symptoms (Finke et al, 2012, 2013;
Gibson et al, 2019, 2020; Heine et al., 2021; Peer
et al.,, 2017; von Schwanenflug et al., 2022). These func-
tional alterations include large-scale functional networks,
such as sensorimotor, frontoparietal, lateral-temporal and
visual networks (Peer et al., 2017). In addition, the hippo-
campus and the medial prefrontal cortex—regions with the
highest NMDAR density (Dalmau et al., 2011)—have been
associated with deficits in memory performance and execu-
tive function, two core cognitive symptoms in NMDAR
encephalitis (Finke et al., 2012; Heine et al., 2021).

FC as measured with resting-state functional MRI (rs-
fMRI) is estimated from the pairwise correlation of
blood-oxygen-level-dependent (BOLD) activity between
brain regions without the presence of an explicit task
(Biswal et al, 1995). However, traditional ‘static’
approaches obtain FC as an average across several
minutes, therefore missing important information that
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reduced resilience of transition networks plays a clinically relevant role in the

manifestation of the disease.

autoimmune encephalitis, functional brain states, functional connectivity dynamics, graph
analysis, transition trajectories

may be derived from dynamic changes in functional con-
nections (Allen et al., 2014; Calhoun et al., 2014). Hence,
the analysis of FC has been recently refined from a time-
invariant static account to a time-varying description.
This methodological progress allows to unveil temporal
properties of functional brain organization, such as the
identification of functional states, that is, transient con-
nectivity patterns, and their transition trajectories. These
FC dynamics are thought to reflect brain state explora-
tion that facilitates cognition and behaviour and may
vary with disease (Bassett et al., 2011; Deco et al., 2011;
Kringelbach & Deco, 2020). Accordingly, a recent case—
control study investigating FC dynamics in NMDAR
encephalitis showed that patients exhibited altered state
preference as well as increased transition frequencies
between major connectivity patterns (von Schwanenflug
et al., 2022). However, a detailed investigation of the
transition trajectory of brain states and its link to clinical
symptoms is still missing. Brain state exploration—
facilitated by transitions between functional states—is
thought to ensure stable information representation
while promoting functional integration across distant
brain regions and subsystems and, if disturbed, poten-
tially affects information integration and behaviour
(Deco et al., 2011; Lord et al., 2019). Hence, identifying
mechanisms and disruptions of these transition trajecto-
ries may contribute to the understanding of the patho-
physiology of NMDAR encephalitis and further
neuropsychiatric diseases that are associated with
NMDAR dysfunction, for example, schizophrenia.

Graph theoretical approaches are well-suited to study
the temporal architecture of state exploration. Ramirez-
Mahaluf et al. (2020) recently introduced the concept of
transition networks to investigate the trajectory of tra-
versing functional states (from hereon also referred to as
meta-states). In this concept, transition networks are
represented as graphs with brain states as nodes and
transitions between meta-states as directed and weighted
edges. Similar to other biological systems (Latora &
Marchiori, 2001), transition networks show properties of
complex networks (i.e., heavy-tailed degree distribution,
high local efficiency and modularity) indicating an
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organized, cost-efficient, non-random temporal trajectory
of brain states (Ramirez-Mahaluf et al., 2020). Further-
more, transition network characteristics have been
related to motor function and cognitive performance in
healthy controls indicating behavioural relevance
(Ramirez-Mahaluf et al., 2020).

Here, we aimed to specify alterations of the spatio-
temporal trajectory of state transitions and its relation to
disease severity in NMDAR encephalitis. Therefore, we
constructed transition networks for a large sample of
patients and age- and sex-matched healthy controls. We
hypothesized that the temporal structure of state explora-
tion in NMDAR encephalitis would show altered dynam-
ics (von Schwanenflug et al., 2022) and weakened
stability of transition networks compared with a group of
healthy controls.

2 | MATERIALS AND METHODS

2.1 | Participants

For this study, 73 patients with NMDAR encephalitis
were recruited from the Department of Neurology at
Charité - Universititsmedizin Berlin. All patients fulfilled
diagnostic criteria including characteristic clinical pre-
sentation and detection of IgG NMDA receptor anti-
bodies in the cerebrospinal fluid (Graus et al., 2016).
Patients were in the post-acute phase of their disease
with a median of 2.97 years (interquartile range [IQR]:
2.48) after disease onset. Disease severity at the time of

TABLE 1

scan and peak of disease was assessed with the modified
Rankin Scale (mRS). The control group consisted of
73 age- and sex-matched healthy participants without
any history of neurological or psychiatric disease. Data
from 49 patients and 25 controls were analysed in a
recent study by von Schwanenflug et al. (2022) investigat-
ing functional dynamics in NMDAR encephalitis. For the
current study, patient-control matching was optimized
for age and sex through a computational matching algo-
rithm (see Data S1). The two groups were perfectly bal-
anced for sex and did not differ significantly in age as
tested with a Wilcoxon rank sum test (p = .61). Clinical
and demographic characteristics are summarized in
(Table 1). The study was approved by the ethics commit-
tee of the Charité - Universitdtsklinikum Berlin and con-
ducted according to the ethical principles of the WMA
Declaration of Helsinki.

2.2 | MRI data acquisition

MRI data were collected at the Berlin Center for Advanced
Neuroimaging at Charité — Universititsmedizin Berlin using
a 3T Trim Trio scanner equipped with a 20-channel head
coil (Siemens, Erlangen, Germany). RS functional images
were acquired using an echoplanar imaging sequence (repe-
tition time [TR] = 2.25 s, echo time [TE] = 30 ms, 260 vol-
umes, voxel size = 34 x 34 x 34 rnm3)A High-resolution
T1-weighted structural scans were collected using a
magnetization-prepared rapid gradient echo sequence
(MPRAGE; voxel size =1 x 1 x 1 mm?®).

Demographic variables and clinical measures of the participants. Table lists median and interquartile range (IQR) of age,

mRS at scan, mRS at peak of disease, disease duration and time between scan and diagnosis. Treatment and medication during disease

course were evaluated using a binary scale (present: ‘yes’ vs. absent: ‘no’). Disease duration = days in acute care; N = number of

participants; mRS = modified Rankin Scale

N

Sex Female/male

Age (years) Median + IQR (N)
mRS at scan Median + IQR (N)

mRS at peak of disease Median + IQR (N)
Median + IQR (N)

Mean + SD (N)

Disease duration (hospitalization time)
Years between disease onset and study
First-line treatment

Second-line treatment

Anticonvulsant medication

Antipsychotic medication

Abbreviation: NMDAR, anti-N-methyl-aspartate receptor.

NMDAR encephalitis patients Healthy controls
73 73
62/11 62/11

28.55 + 8.7 (73)
1.00 + 1.5 (70)
4+2(67)

67.50 + 72.00 (68)
2.97 +2.48 (71)
72/73

37/73

51/73

48/73

28.50 + 8.5 (73)
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2.3 | MRI data analysis

Prior to preprocessing, framewise displacement (FD) was
calculated for each participant and assessed against a
mean FD cutoff of .50 mm (Eijlers et al., 2019; Power
et al.,, 2014). No participant had a mean FD greater than
or equal to .50 mm. For preprocessing, we applied the
‘ICA-AROMA+2Phys’-Pipeline proposed by Parkes et al.
(2018) to our data: The pipeline included removal of the
first 4 volumes of each participant’s rs-fMRI scan, volume
realignment, slice-timing correction, detrending of BOLD
time series, intensity normalization, spatial smoothing
with 6 mm full width at half maximum, ICA-AROMA for
head motion correction to robustly remove motion-
induced signal artefacts from the functional MRI data
(Pruim et al., 2015), regression of white matter and cere-
brospinal fluid time series to control for physiological
fluctuations of non-neuronal origin, demeaning and
band-pass filtering to retain frequencies between .008
and .08 Hz.

2.4 | Participant-wise meta-state
estimation and transition network
construction

The following steps were performed with the same
parameters as previously described and evaluated in
Ramirez-Mahaluf et al. (2020). Time-series extraction
was done using a whole-brain parcellation template with
638 similarly sized regions of interests (ROIs) (Crossley
et al.,, 2013). Extracted functional time series were seg-
mented into 127 consecutive time windows of 2TRs
(24.5 s), which yielded reliable results in previous work
(Ramirez-Mahaluf et al., 2020). The comparatively short
window length was necessary to be able to meaningfully
track state transitions across a large number of meta-
states. For each window, FC was estimated between any
two ROIs using Multiplication of Temporal Derivatives, a
method that is suitable to estimate FC across a range of
correlation strengths and (short) window lengths (Shine
et al, 2015). The resulting ROI-by-ROI (638-by-638)
matrices were then Pearson-correlated, resulting in a
127-by-127 similarity matrix of windows. To obtain dis-
crete brain meta-states, MATLAB-inbuilt k-means clus-
tering was applied to the similarity matrix using 10,000
maximum iterations and 2000 replicates with random ini-
tial positions. For each meta-state, all windows belonging
to that state were averaged, yielding a mean ROI-by-ROI
(638-by-638) connectivity matrix. To scrutinize our ana-
lyses across multiple numbers of meta-states, we
extracted k meta-states (k = 35, 40, 45, 50 and 55)

EJN European Journal of Neuroscience  FENS

following the range of k in (Ramirez-Mahaluf et al., 2020)
for each participant separately.

Finally, transition networks were constructed for each
participant and k number of meta-states: A transition
network is a graph network, where each meta-state corre-
sponds to a node and transitions between meta-states
represent the edges of that graph. The edges are directed
and weighted according to the number of transitions
from meta-state i to meta-state j (Ramirez-Mahaluf
et al., 2020).

Importantly, this novel approach runs k-means clus-
tering on each individual time series to describe individ-
ual temporal trajectories of meta-state transitions. Hence,
this approach differs fundamentally from the definition
of dynamic FC states across individuals (von
Schwanenflug et al., 2022), which searches for common
patterns of recurring connectivity on a group level.

2.5 | Group comparisons of transition
network properties

From each of the transition networks, we derived three
widely used graph theoretical measures (modularity, local
efficiency and global efficiency), two custom measures that
are thought to capture the biological costs of meta-state
transitions (leap size and immobility) (Ramirez-Mahaluf
et al., 2020), as well as one measure that assesses the
robustness of the network against perturbations. Note
that modularity, local and global efficiency and immobil-
ity were calculated on the transition matrix (matrix con-
taining the number of transitions between each pair of
meta-states) for each participant, whereas leap size was
based on the distance matrix (i.e., 1-correlation for each
meta-state pair). To assess robustness, we employed the
NetSwan package available for R to randomly remove
one node after another from the network and recalculate
the size of the largest connected component
(Achard, 2006; Lynall et al., 2010). A more detailed
description of the graph theoretical metrics is provided in
(Table S1).

In addition, tramsition frequency, ratio of within-to-
between module meta-state similarity and ratio of within-
to-between  module  transitions were compared
between patients and controls. Here, a ‘module’ refers
to a group of meta-states assigned to the same
community as defined by the modularity algorithm
(community_louvain.m). Whereas transition frequency is
calculated as the absolute number of transitions
between different meta-states, the ratio of within-to-
between meta-state similarity (ratiog,,) is defined as the
average correlation of meta-states within a module
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divided by the average correlation of meta-states
between modules. Similarly, the ratio of within-to-
between module transitions (ratio,,,s) is the absolute
number of transitions within the same module divided
by the absolute number of transitions between modules.

Between-group comparisons of graph theoretical
measures, transition frequencies, ratioy;,, and ratio.,
were assessed by comparing the area under the curve
(AUC; MATLAB?’s trapz) between patients and controls.
The AUC was calculated from k = 35 to k = 55 for each
metric and participant, which allowed us to derive one
inference measure across all number of meta-states. For
each metric separately, the AUC was entered into a
regression model controlling for head motion (FD), age,
and sex as nuisance variables. Group comparisons were
performed on the residuals using a permutation-based t-
test and FDR-corrected using Benjamini-Hochberg
(Benjamini & Hochberg, 1995).

2.6 | Correlation of network properties
with disease severity

Next, we investigated the relationship of transition net-
work properties with disease severity of patients. To this
end, mRS scores at the time of scanning and disease
duration (days in acute care) were z-transformed across
patients and subsequently averaged, resulting in a com-
posite z score for each patient that reflects disease sever-
ity clinical disability. The Pearson’s correlation
coefficient between dynamic network properties and dis-
ease severity was obtained and corrected for multiple
comparisons.

2.7 | Functional network topology of
meta-states

Lastly, each meta-state can be represented by a whole-
brain FC matrix (638-by-638), in which each edge corre-
sponds to the coupling strength between two given brain
regions. Consequently, we sought to evaluate the spatial
differences in functional topology of these edges across
all meta-states. To this end, we quantified how much
each edge differed across meta-states by computing the
distance across meta-states (DAMS), a previously defined
summary measure by Krohn and colleagues (Krohn
et al., 2021), which is defined as the cumulative differ-
ence across a specified state space. Here, this distance
was computed for each edge across all possible meta-state
comparisons given a particular value of k, then normal-
ized over k, and finally averaged over the applied range
of k values. In consequence, we obtain a single distance

measure for each edge and participant, where a high
value of DAMS between any two ROIs indicates that the
connectivity between these regions differs strongly
between meta-states. In contrast, a low DAMS indicates
that the connectivity between these regions is similar
across all meta-states of a transition network. Subse-
quently, group differences for each edge in the distance
matrix were assessed with a two-sample ¢ test and FDR-
corrected for multiple comparisons using Benjamini-—
Hochberg (Benjamini & Hochberg, 1995). Finally, the
participant-specific DAMS values were averaged across
participants to obtain the distance matrix shown in
(Figure 4).

3 | RESULTS

3.1 | Group differences in network
properties

Group comparisons of graph theoretical measures yielded
significantly lower local efficiency (t = —241,
pror =.029, d = .40), higher leap size (¢t = 2.18,
Pror = -037, d = .36) and lower robustness (t = —2.01,
prpr = .048, d = .33) of transition networks in patients
compared with controls. In contrast, modularity
(t =—-143, prppr =.12, d = .27), global efficiency
(t = 1.00, prpr = .20, d = .17) and immobility (t = —.32,
Prpr = -38, d = .05) of transitions networks did not differ
between groups (Figure 1). The transition networks of six
exemplary participants with high and low leap size are
shown in Figure S1.

Correlation of similarity and the number of transi-
tions between two meta-states revealed that transition
frequency was higher between similar meta-states for
both groups and all numbers of meta-states (rtho = [.48,
.53, .54, .54, .52] for the different k meta-states; all
p < .001, Figure 2). Accordingly, transitions within mod-
ules were on average 3.4 times more likely than between
modules with a ratio,,,s (ratio of within-to-between
module transitions) = [2.40, 2.94, 3.44, 3.89, 4.44]
depending on the number of meta-states. This result was
expected as modularity is calculated on the transition
matrix. Interestingly, however, the ratio,,,s was signifi-
cantly lower in patients with NMDAR encephalitis com-
pared to controls (t = —2.48, prppr =.026, d = .40),
whereas the overall number of transitions between differ-
ent meta-states did not differ between groups (¢ = .32,
DPrpr = 377, d = .05). Similar to ratiogqy,s, ratiog,, (ratio
of within-to-between meta-state similarity) was on aver-
age 3.2 (ratiog,, = [2.9, 3.1, 3.2, 3.3, 3.4], for the different
k meta-states). Again, the ratioy;,,, was significantly lower
in patients compared with controls (t = —2.48,
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was estimated calculating Spearman’s ¢. The regression line is
included for visualization purposes. Number of transitions (x-axis)
are the sum of transitions between any two meta-states,
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Prpr = 026, d = .41). This suggests that patients transi-
tion between topologically more different meta-states
(from different modules) compared with controls,

whereas the overall transition frequency remains
unaltered.
3.2 | Correlation of network properties

with disease severity

Next, we investigated the relationship of significant graph
metrics, that is, local efficiency, leap size and robustness,
ratioyq,s and ratiog;,,, with a composite z score for disease
severity. Higher disease severity was significantly associ-
ated with higher leap size (Pearson’s r = .37,
Prpr = 0030, Figure 3), decreased robustness (Pearson’s
r =—.37, prpr =.0030, Figure 3), lower ratiog,,
(Pearson’s ¥ = —.40, prpr = 0030, Figure S3) and lower
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altered network properties (residuals
after nuisance regression). Correlation
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ratiogqns are shown in Figure S3. *
indicates significant difference
Prpr < .05.
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FIGURE 4 Interregional distance across meta-states (DAMS). (a) The DAMS matrix visualizes interregional differences in coupling
strength across meta-states averaged across all participants. High DAMS values (yellow) indicate strong differences in connectivity strength
across meta-states, whereas low DAMS values (blue) indicate that the connectivity strength between regions is more similar across meta-
states. (b) Brain plots show results from group-comparison within each functional network. Differences in DAMS between patients and
healthy controls were found for edges within the visual, default-mode and sensorimotor network (false discovery rate [FDR]-corrected).
Network assignment of regions is based on the labels proposed by Yeo et al. (2011). Subcortical regions were subsumed as a subcortical
network. VIS = visual network, dATT = dorsal attention network, VATT = ventral attention network, DMN = default mode network,
FPN = fronto-parietal network, SM = sensorimotor network, LIM = limbic network, SC = subcortical network, und. = undefined,

HC = healthy controls, NMDAR encephalitis = patients with anti-NMDA receptor encephalitis.

ratio,,s (Pearson’s r = —.33, pppr = .0064, Figure S3)
but not with local efficiency (Pearson’s r = —.11,
Prpr = .35, Figure S3).

3.3 | Functional network topology of
meta-states

The edges with the highest DAMS, that is, edges that
exhibited most pronounced differences in coupling
strength across meta-states, clustered predominantly in
unimodal networks, namely, the sensorimotor and visual
network (Figure 4a). This topological pattern is highly con-
vergent with recent findings from Krohn and colleagues
(Krohn et al., 2021) and is akin across groups (Figure S4).
Whole-brain group comparison yielded no significant
difference in DAMS between groups after correction for

multiple comparison. Therefore, we explored group dif-
ferences in DAMS within each functional RS network
separately. This network-wise group comparison revealed
significant differences between edges within the visual,
default mode and sensorimotor networks (FDR-
corrected, Figure 4b). Remarkably, significant edges
showed higher DAMS in patients within the visual and
sensorimotor network but lower DAMS within the
default-mode network (Table S3).

4 | DISCUSSION

Ongoing brain activity can be described as transient FC
patterns (so-called brain states) that are visited in a struc-
tured, non-random trajectory  (Ramirez-Mahaluf
et al., 2020). These brain state dynamics are thought to
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facilitate cognition and behaviour and may vary in dis-
ease (Kringelbach & Deco, 2020). In this study, we
employed a time-resolved analysis of brain activity to
capture the spatiotemporal dynamics of brain state tran-
sitions in a large sample of patients with NMDAR
encephalitis. Our results indicate reduced resilience of
state transition networks in patients compared with con-
trols. This manifests in lower local efficiency of the net-
work (fewer transitions from or to neighbouring,
i.e., similar and meta-states), higher leap size (transitions
between more distinct meta-states) and reduced robust-
ness of the patients’ transition networks against random
attacks. Furthermore, the ratio of within-to-between
module transitions and meta-state similarity was signifi-
cantly reduced in patients. Importantly, these state
dynamic metrics were correlated with disease severity,
highlighting the clinical relevance of our findings.

In patients with NMDAR encephalitis, autoantibodies
target the NR1 subunit of the NMDA receptor causing an
internalization of the receptor (Dalmau et al., 2011).
Although this results in a broad range of psychiatric and
neurological symptoms, standard clinical MRI shows no
or only minor abnormalities in most patients (Graus
et al., 2016; Heine et al., 2015). In contrast, FC analyses
were able to identify characteristic connectivity alter-
ations: Static RS FC analyses that average connectivity
across an entire scanning session showed widespread dis-
rupted connectivity in visual, temporal, hippocampal and
mid-frontal areas associated with the severity of cognitive
and psychiatric symptoms (Cai et al., 2020; Finke
et al., 2013; Peer et al., 2017). However, given that brain
activity is inherently dynamic (Chang & Glover, 2010),
models that incorporate spatiotemporal features of con-
nectivity may complement our knowledge about func-
tional disruptions in neuropsychiatric disorders. Indeed,
we recently found that dynamic FC showed a shift in
state preference and transition probabilities in patients
with NMDAR encephalitis that was associated with dis-
ease severity and disease duration (von Schwanenflug
et al., 2022). In the present study, we further expand on
these dynamic FC findings and investigated alterations in
the spatiotemporal trajectory of functional state explora-
tion through the underlying state space. State exploration
is thought to reflect the dynamic repertoire of intrinsic
brain activity that is important for information integra-
tion and mental processes (Deco et al, 2011; Gu
et al., 2017; Lord et al., 2019). Therefore, disruptions in
the temporal organization of state transitions may
account for clinical symptoms in disease (Deco
et al., 2017; Kringelbach & Deco, 2020). In fact, we found
a characteristic spatiotemporal reorganization of the tran-
sition trajectory in patients compared with controls that
was related to disease severity. This spatiotemporal

WILEYL—Z

reorganization—as reflected by lower local efficiency,
lower robustness and higher leap size of the transition
network—may represent overly unstable transition
dynamics in NMDAR encephalitis (von Schwanenflug
et al., 2022) that could be linked to deficiencies in infor-
mation integration (Deco et al., 2017; Lord et al., 2019).

At a scale of seconds to minutes, the human brain
operates through continuously evolving activity that can
be characterized as transient quasi-stable brain states
(Allen et al., 2014; Calhoun et al., 2014). This evolution
of brain activity is non-random, allowing for a systematic
exploration of brain states (Ramirez-Mahaluf
et al., 2020). Analogous to the modular spatial organiza-
tion of the cortex, the temporal trajectory of brain state
transitions shows similar topological properties; that is,
brain states are grouped into modules of similar meta-
states, with higher transition frequencies within a mod-
ule than between modules (see methods and results sec-
tion: ratiogs/ratiog,). This modular organization is
thought to promote segmented and cost-efficient infor-
mation processing, while enabling the exploration of the
functional repertoire via transitions to meta-states of a
different module (Bassett et al., 2011; Bertolero
et al.,, 2015; Deco et al., 2017; Sporns & Betzel, 2016;
Tognoli & Kelso, 2014). In line with the modular struc-
ture, transition networks in healthy controls show high
local efficiency and low global efficiency (as compared
with a null model) (Ramirez-Mahaluf et al., 2020).
Although a high local efficiency allows for locally special-
ized functioning, a comparatively smaller number of con-
nections between subsystems of a network, that is, low
global efficiency, still allow for distributed information
processing across different subsystems (Sporns &
Betzel, 2016). Moreover, a high local efficiency enhances
the robustness of a system. By providing alternative path-
ways between two nodes (i.e., meta-states), the system
compensates for potential disturbances and provides sta-
ble representation of information (De Vico Fallani
et al.,, 2009). Interestingly, the spatiotemporal organiza-
tion of state exploration may also be directly relevant to
behaviour. A recent study on transition networks in a
healthy population suggests that the efficiency of the net-
work is associated with performance in cognition and
motor function (Ramirez-Mahaluf et al., 2020). Thus,
state exploration may vary across diseases potentially
accounting for a multitude of symptoms (Kringelbach &
Deco, 2020).

Indeed, the present study highlights significant differ-
ences in the temporal architecture of transition networks
between patients with NMDAR encephalitis and healthy
controls. We found that patients exhibited decreases in
local efficiency and robustness and increases in leap size.
Decreased local efficiency hints at unstable

EJN European Journal of Neuroscience  FENS

d11y) SUONIPUOD) PUE SULIA L A1 338 “[£Z07/80/S0] U0 AIEIQIT QUIUQ KL *KUPILIN AUBIY0) £q [06€ 1°UF/1 1 1°01/10P/WO 2] KXeiqiaui[uo//:sdiy Wos paprojusod '€ ‘€207 ‘89S600b 1

o Kol

SURIIT SUOWIIOD) 2T AqEatIdde U £q PAWIFAOT Ik SDILIE YO 128N JO $A[NI 10] AILIQI] AU KL UO



Publication Il

VON SCHWANENFLUG ET AL.

MW“_EY EJN &opean oumarorneoscence  FENS

representation of information due to lower redundancy
of the transition network, which is described in more
detail in the previous paragraph. Leap size is thought to
reflect metabolic cost and is measured as the magnitude
of ‘jumps’ between topologically different meta-states.
Eliciting state transitions is energetically costly (Gu
et al., 2017; Lord et al., 2013) and possibly increases when
traversing states that show highly disparate activation
profiles. This intuition is supported by our finding that
(low-cost) transitions between two similar meta-states are
more likely than (cost-intensive) transitions between dis-
tant meta-states. Accordingly, higher leap size in patients
may indicate higher metabolic demand along with higher
volatility of state transitions. Lastly, we evaluated the
robustness of the transition network, which is the ability
of maintaining information processing within the net-
work before collapsing (Aerts et al., 2016). We found that
transition networks of patients with NMDAR encephali-
tis are less robust compared to those of controls when
removing the nodes (i.e., meta-states) one by one.
Together with a decreased local efficiency and higher
leap size, this points to a destabilization and reduced
resilience of transition networks in patients with
NMDAR encephalitis, corroborating earlier findings in
this patient population (von Schwanenflug et al., 2022).
This notion is furthermore supported by decreased ratios
of within-to-between module transitions and within-to-
between module meta-state similarity in patients. In
addition, four out of five network measures—leap size,
robustness, ratio,,,s and ratiog,,,—were correlated with a
composite score of disease severity, supporting clinical
relevance of our findings.

The neural basis for functional brain state transitions
is a matter of ongoing investigation. Neural dynamics
may coordinate whole-brain FC patterns, thereby
enabling the exploration of the brain’s functional reper-
toire (Gu et al., 2017; Kringelbach & Deco, 2020; Lord
et al., 2019). In NMDAR encephalitis, internalization of
the NMDAR alters glutamatergic synaptic transmission,
impacting the coordination between large-scale func-
tional networks. Interestingly, reduced resilience of tran-
sition networks in patients with NMDAR encephalitis is
supported by findings from attractor-based computa-
tional models that postulate that NMDAR dysfunction
may lead to overly unstable attractors in brain activity
(Rolls, 2012, 2021). NMDAR hypofunction, as in NMDAR
encephalitis and schizophrenia, may lead to a flattening
of the attractors (destabilizing effect), facilitating pertur-
bations to provoke transitions between attractors (Loh
et al., 2007; Rolls, 2012).

Finally, our study provides evidence that a subset of
regions preferentially promotes brain state transitions
(Kringelbach & Deco, 2020; Krohn et al, 2021).

Convergent with recent work on brain dynamics, we
found that changes in connectivity across states are most
pronounced in regions of the visual and sensorimotor
areas, potentially following a hierarchy from unimodal to
transmodal networks (Krohn et al., 2021). Interestingly,
in patients with NMDAR encephalitis, connectivity
changes across meta-states within unimodal networks
were even more pronounced, providing a spatial correlate
of the increased temporal volatility in state transitions.
Both the visual and the sensorimotor network have been
reported to show reduced static FC in patients with
NMDAR encephalitis; these effects correlated with dis-
ease severity; that is, they were more pronounced in
more severely affected patients (Peer et al., 2017). Along
with altered FC found in other large-scale functional net-
works (Chen et al., 2022; Finke et al.,, 2013; Heine
et al., 2015; Peer et al., 2017), these findings reflect the
prominent expression of NMDARs throughout the cortex,
their pathophysiological role in NMDAR encephalitis
and potentially their contribution to the orchestration of
brain dynamics. Limiting state transitions to a defined
number of regions initiating those transitions raise the
intriguing possibility that controlled external stimulation
of these particular regions could be applied to achieve a
rebalancing of state dynamics (Gu et al, 2017
Kringelbach & Deco, 2020).

Some limitations of our study deserve mentioning:
First, statistical comparison of dynamic metrics revealed
several significant group differences, albeit with moder-
ate effect sizes. Thus, future work should consider acquir-
ing larger samples and potentially examine subgroup
differences in this disease to better characterize the
potential clinical significance of these alterations, with
the ultimate goal of moving beyond group-level effects
and towards individual patients. Second, the window
length of 2 TR (£4.5 s) is comparatively short and may
decrease the signal-to-noise ratio. However, the size of
this time window has been recognized as a good trade-off
between sensitivity and specificity (Shine et al., 2015).
Furthermore, a high reliability of meta-state estimation
was previously shown using a very similar window
length (Ramirez-Mahaluf et al., 2020). Third, k-means
clustering is applied to each participant separately.
Although this approach poses inherent limitations to
study between-group differences in meta-state topology,
it is particularly suited to investigate individualized tem-
poral dynamics and characteristics of the transition tra-
jectory of functional states. Forth, the applied k enforces
the extraction of a large number of (potentially similar)
meta-states for each participant. While most studies focus
on 3-5 distinct major connectivity states defined on a
group level, this number of states may not be sufficient to
represent the full repertoire of functional configurations
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of the human brain. Furthermore, a small number of
states limit a detailed investigation of individual transi-
tion trajectories between these states, which was the
main purpose of the present study.

5 | CONCLUSION

In this study, we employed a time-resolved graph analyti-
cal framework to study the spatiotemporal trajectory of
brain state transitions in patients with NMDAR encepha-
litis. Besides decreases in local efficiency, we observed
reduced robustness of the patients’ transition networks
against random attacks compared with those of healthy
controls. Together with higher leap size in patients, these
findings show reduced resilience of functional state tran-
sitions in patients, that is, related to disease severity.
Hence, our findings add to the evidence that disturbance
of functional brain network dynamics plays a key role in
the pathophysiology of NMDAR encephalitis.
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