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Abstract: 2,6-Dipicolinoylbis(N,N-dialkylthioureas), H2LR, readily react with uranyl salts under
formation of monomeric or dimeric complexes of the compositions [UO2(LR)(solv)] (solv = donor
solvents such as H2O, MeOH or DMF) or [{UO2(LR)(µ-OMe)}2]2− (1). In such complexes, the uranyl
ions are exclusively coordinated by the “hard” O,N,O or N,N,N donor atom sets of the central ligand
unit and the lateral sulfur donor atoms do not participate in the coordination. Different conformations
have been found for the dimeric anions. The bridging methanolato ligands and the four uncoor-
dinated sulfur atoms can adopt different orientations with respect to the equatorial coordination
spheres of the uranyl units. The presence of non-coordinated sulfur atoms offers the opportunity
for the coordination of additional, preferably “soft” metal ions. Thus, reactions with [AuCl(PPh3)],
lead acetate or acetates of transition metal ions such as Ni2+, Co2+, Fe2+, Mn2+, Zn2+, or Cd2+, were
considered for the syntheses of bimetallic complexes. Various oligometallic complexes with uranyl
units were prepared: [{UO2(LR)(µ-OMe)(Au(PPh3)}2] (2), [(UO2)3Pb2(LR)4(MeOH)2(µ-OMe)2] (3),
[M{UO2(LR)(OAc)}2] (M= Zn, Ni, Co, Fe, Mn or Cd) (R = Et: 5, RR = morph: 6), or [(UO2)(NiI)2(LR)2]
(7). The products were extensively studied spectroscopically and by X-ray diffraction.

Keywords: uranium; transition metals; mixed-metal complexes; 2,6-Dipicolinoylbis(N,N-dialkylthioureas)

1. Introduction

The coordination chemistry of uranium is of interest from different points of view:
(i) there is a permanent demand for the development and improvement of separation
techniques for this actinide element, (ii) the optimization of the fuel cycle chemistry from
the production of nuclear fuel elements until the reprocessing of spent nuclear fuel element
requires more input particularly for the treatment of multi-metal solutions and (iii) a
deeper insight is required into the biological chemistry of the radioactive element [1–25].
Particularly the latter point, which is related to the increasing bioavailability of soluble
uranium compounds (mainly containing uranyl units) in mining regions also involves
hitherto somewhat underestimated uranium complexes, For example, the coordination
chemistry with “soft” donor atoms. {UO2}2+ units are commonly regarded as “hard” acids
according to Pearson’s concept [26]; thus, the vast majority of structurally studied uranyl
compounds comprise complexes with oxygen or other “hard” donors. Compounds with
“soft” donor atoms are frequently regarded as instable and, thus, are not in the main focus
for technological processes. For the evaluation of potential uptake and distribution patterns
in biological systems, however, particularly interactions with sulfur-containing binding
sites such as thioethers, thiolates or thiocarbonyl units are of interest, having in mind their
important roles in the accumulation, transport and functional activity of metal ions in
biological systems in general.
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The available structural information about uranium(VI) complexes with sulfur-containing
ligands is relatively restricted, and the Cambridge Structural Database contains less than
70 uranyl complexes with uranium–sulfur bonds [27], while some more is known about
corresponding compounds with uranium in lower oxidation states [28–30]. The ligands
involved in the related uranyl studies mainly belong to chalcogenocarbamates, thiosemi-
carbazones and related compounds, bis(thiophosphinoyl)methanediides or imidodiphos-
phinochalcogenides [28–40]. In a recent paper, uranyl complexes with bifunctional aroyl-
bis(dialkylthioureas), H2LR (Scheme 1), have been studied [41]. Such ligands possess
“hard” (carbonyl units), “medium soft” (pyridine rings), and “soft” (thiourea moieties)
donor atoms and allow a flexible coordination behavior depending on the respective metal
ions [42–47]. Only weak uranium–sulfur bonds are established with {UO2}2+ ions, which
are readily cleaved when alternative bonding modes. For example, coordination to (hard)
donor solvents becomes available (Scheme 1).
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The reactions summarized in Scheme 1 confirm the structural flexibility of the H2LR lig-
ands and the obvious pH dependence of reactions including the fact that the bis(thio–ureas)
decompose under strongly acidic conditions as in methanolic solutions of uranyl nitrate or
uranyl acetate under formation of hexameric complexes with dipicolinato ligands, when
no supporting base is added. Corresponding reactions in the presence of NEt3 give chelate
complexes with intact, doubly deprotonated {LR}2− ligands. The organic ligands coordinate
pentadentate, when only small amounts of NEt3 is added, while solvolysis under formation
of dimers with bridging methanolato ligands is observed at higher pH. In the products of
the methanolysis, the uranium–sulfur bonds are cleaved and the picolinoylbis(thioureato)
ligands act as tridentate O,N,O chelates. The sulfur atoms remain uncoordinated even after
cleavage of the dimers by reaction with DMSO [41].

The unexpected pH dependence of such reactions and the presence of uncoordinated
“soft” sulfur donors in some of the products stimulated us to conduct ongoing experiments
with variable amounts of NEt3 and with the addition of “soft” metal ions, which might be
able to coordinate to the vacant thioureato units of the coordinated {LR}2− ligands.

2. Results and Discussion

2.1. Structural Isomerism of Dimeric Uranyl Complexes with H2LR Ligands

An ongoing study of the reactions of uranyl compounds with H2LR ligands described
in ref. [41] shows that the dimeric [{UO2(LEt2)(µ-OMe)}2]2− anion (compound 1 of Scheme 1)
can be isolated in different conformations depending on the solvents and the cations used.
Since such a behavior may have an influence on the attempted reactions with other metal
ions, some attention should be devoted to this point.

The previously structurally characterized anion 1 has been crystallized as a triclinic
bis(triethylammonium) salt from a CH2Cl2 solution and may be described as a syn,syn-
[{UO2(LEt2)(µ-OMe)}2]2− isomer. This means that the two methyl groups of the bridging
methanolato ligands as well as the four (uncoordinated) sulfur atoms each point to one side
of the equatorial plane of the complex anion. This plane is formed by the uranium atoms,
the O,N,O donor sets of the deprotonated aroylthioureato ligands and the oxygen atoms of
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the bridging methanolates as depicted in Figure 1a. During the recrystallization of this com-
pound from CHCl3, an isomerization was observed and the isolated orange-yellow crystals
were monoclinic and contained the compound in an anti,anti-conformation, which is shown
in Figure 1b. Interestingly, similar ligand rearrangements have also been found during
simple salt metatheses, such as the production of ethyltriphenylphosphonium salts of the
uranium complexes. Several isomers could be isolated from such procedures including the
syn,anti isomer shown in Figure 1c. DFT calculations on B3LYP/LANL2DZ(uranium)+6-
311++G**(others) and PBE0-GD3BJ/StuttgartRLC(uranium)+def2-TZVPPD(others) level
were performed to assess the conformational stability of the complexes. While a neglectable
preference for the anti,anti conformation and the syn,anti conformation was found for the
N,N-diethyl and morpholine derivatives on the B3LYP level respectively, the syn,syn struc-
ture is the least favored conformer in both cases. The syn,anti conformer of the morpholine
derivative is the most stable isomer by nearly 20 kJ/mol on the higher PBE0-GD3BJ level
of calculation, which includes dispersion effects. Structural differences resulting in ener-
getic differences ranging around 20 kJ/mol as identified in the present case can readily be
overcome by solvent effects in solution and packing effects in the solid state that become
relevant during the crystallization processes. The individual B3LYP energy values for the
corresponding experimentally observed geometries are displayed in Figure 1.
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Figure 1. Conformations of the [{UO2(LEt2)(µ-OMe)}2]2− (1) anions observed in the solid-state of the
compound together with the small energy differences between the syn,syn (a), the, syn anti (b) and
the anti,anti isomers (c) according to DFT calculations.

While details of the structure of the syn,syn-[{UO2(LEt2)(µ-OMe)}2]2− anion have
already been reported [41], ellipsoid representations of the anti,anti and syn,anti isomers
are shown in Figure 2. The different orientations of the methanolato ligands and the
thiourea sulfur atoms relative to the central coordination plane are clearly seen. The
anti,anti orientation of these units in the (HNEt3)2[{UO2(LEt2)(µ-OMe)}2] isomer shown in
Figure 2a is enforced by the inversion center of the molecule being located in the central
U2O2 unit. Selected bond lengths and angles are given in Table 1 and are compared with
the values of the syn,syn isomer. A closer inspection of the values in this table reveals only
a marginal difference between the three isomers. This is not surprising with regard to their
close structural relationship and the fact that the isomerism found is characterized by only
minor energy differences between the species. Thus, the main structural features can be
shortly discussed for the three complexes together.

It is evident that the chelating ligands are doubly deprotonated by the absence of the
corresponding NH stretches in the infrared spectra of the compounds, but also by simple
charge considerations. Consequently, the carbonyl bonds in the complexes are parts of
the chelate rings. They range between 1.285 and 1.307 Å, which is in accord with their
considerable bathochromic shifts of the IR frequency by almost 100 cm−1 compared with
the value in the non-coordinated ligand (1680 cm−1 [44]). Similar shifts, which indicate
a large extent of electron delocalization within the chelate rings, have been observed for
other metal complexes after chelate formation with ligands of the type {LR}2− [42–46].



Molecules 2024, 29, 5001 4 of 26Molecules 2024, 29, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 2. Structures of the complex anions of (a) (HNEt3)2 anti,anti-[{UO2(LEt2)(µ-OMe)}2] (symmetry 
operation: 0.5–x, 1.5–y,–z) and (b) (EtPPh3)2syn,anti-[{UO2(LEt2)(µ-OMe)}2]. Thermal ellipsoids rep-
resent 30% probability. For color code see atom labelling scheme. 

Table 1. Selected Bond Lengths (Å) and Angles in the Different Isomers of [{UO2(LEt2)(µ-OMe)}2]2−. 

 U1–O10 U1–O20 U2–O30 U2–O40 U1–N46 U2–N56 U1–O5 U1–O15 U2–O25 
syn,syn (a) 1.765(6) 1.770(6) 1.776(6) 1.783(6) 2.579(7) 2.564(7) 2.357(6) 2.376(5) 2.380(6) 
anti,anti (b) 1.768(7) 1.762(7) - - 2.518(6) - 2.357(7) 2.348(8) - 
syn,anti (c) 1.782(3) 1.786(3) 1.788(3) 1.791(3) 2.537(4) 2.531(4) 2.359(3) 2.362(3) 2.357(3) 

 U2–O35 U1–O61 U1–O62 U2–O61 U2–O62 C2–S1 C12–S11 C22–S21 C32–S31 
syn,syn (a) 2.372(6) 2.348(6) 2.365(5) 2.336(6) 2.344(5) 1.686(7) 1.697(7) 1.674(7) 1.686(7) 
anti,anti (b) - 2.357(7) 2.377(8) - - 1.67(1) 1.68(1) - - 
syn,anti (c) 2.365(3) 2.332(3) 2.350(3) 2.351(3) 2.341(3) 1.687(5) 1.690(5) 1.686(5) 1.695(5) 

 C4–O5 C14–O15 C24–C25 C34–O35 U1…U2 O5–U1–O15 O25–U2–O35 
syn,syn (a) 1.305(5) 1.305(5) 1.302(6) 1.307(5) 3.772(5) 126.7(3) 126.8(3) 
anti,anti (b) 1.289(9) 1.280(12) - - 3.7825(7) 127.1(2) - 
syn,anti (c) 1.284(5) 1.291(5) 1.288(5) 1.291(5) 3.7343(3) 126.1(1) 127.1(1) 

(a) see Figure 1a, values taken from ref. [41], atom numbers adopted from Figure 2; (b) see Figure 2a, 
(c) see Figure 2b. 

It is evident that the chelating ligands are doubly deprotonated by the absence of the 
corresponding NH stretches in the infrared spectra of the compounds, but also by simple 
charge considerations. Consequently, the carbonyl bonds in the complexes are parts of the 
chelate rings. They range between 1.285 and 1.307 Å, which is in accord with their consid-
erable bathochromic shifts of the IR frequency by almost 100 cm−1 compared with the 
value in the non-coordinated ligand (1680 cm−1 [44]). Similar shifts, which indicate a large 
extent of electron delocalization within the chelate rings, have been observed for other 
metal complexes after chelate formation with ligands of the type {LR}2- [42–46].  

Expectedly, the uranyl groups are practically linear and their bond lengths are in the 
normal range. More interesting are the orientations of these linear groups on the binuclear 
complexes to each other. We find a perfectly parallel arrangement in the anti,anti-isomer, 
while a marked tilting is visible for the syn,syn and syn,anti-complexes. This situation can 
be quantified by an analysis of the bonding situation in the central U2O2 diamonds. An 
evaluation of the angles established between the planes formed by the uranium atoms 
with the two bridging oxygen atoms gives values of 0° for the anti,anti-isomer of Figure 1, 
15.4° for the syn,syn structure and 16.8° for the syn,anti compounds. The planar central 
unit in the first compound is of course the consequence of the crystallographic inversion 
center being located inside this unit, but this becomes only possible by the anti-confor-
mation for the two bridging methanolato ligands, which does not produce unilateral steric 
stress above or below this plane. This, however, is clearly the case for the two isomers 
having the bridging ligands in syn arrangement. Consequently the uranyl units are 
slightly bent bringing the uranyl oxygen atoms of the sterically unencumbered side of the 
molecules closer together. The resulting O…O distances differ for up to 2 Å. The 

Figure 2. Structures of the complex anions of (a) (HNEt3)2 anti,anti-[{UO2(LEt2)(µ-OMe)}2] (symmetry
operation: 0.5–x, 1.5–y,–z) and (b) (EtPPh3)2syn,anti-[{UO2(LEt2)(µ-OMe)}2]. Thermal ellipsoids
represent 30% probability. For color code see atom labelling scheme.

Table 1. Selected Bond Lengths (Å) and Angles in the Different Isomers of [{UO2(LEt2)(µ-OMe)}2]2−.

U1–O10 U1–O20 U2–O30 U2–O40 U1–N46 U2–N56 U1–O5 U1–O15 U2–O25

syn,syn (a) 1.765(6) 1.770(6) 1.776(6) 1.783(6) 2.579(7) 2.564(7) 2.357(6) 2.376(5) 2.380(6)

anti,anti (b) 1.768(7) 1.762(7) - - 2.518(6) - 2.357(7) 2.348(8) -

syn,anti (c) 1.782(3) 1.786(3) 1.788(3) 1.791(3) 2.537(4) 2.531(4) 2.359(3) 2.362(3) 2.357(3)

U2–O35 U1–O61 U1–O62 U2–O61 U2–O62 C2–S1 C12–S11 C22–S21 C32–S31

syn,syn (a) 2.372(6) 2.348(6) 2.365(5) 2.336(6) 2.344(5) 1.686(7) 1.697(7) 1.674(7) 1.686(7)

anti,anti (b) - 2.357(7) 2.377(8) - - 1.67(1) 1.68(1) - -

syn,anti (c) 2.365(3) 2.332(3) 2.350(3) 2.351(3) 2.341(3) 1.687(5) 1.690(5) 1.686(5) 1.695(5)

C4–O5 C14–O15 C24–C25 C34–O35 U1. . .U2 O5–U1–O15 O25–U2–O35

syn,syn (a) 1.305(5) 1.305(5) 1.302(6) 1.307(5) 3.772(5) 126.7(3) 126.8(3)

anti,anti (b) 1.289(9) 1.280(12) - - 3.7825(7) 127.1(2) -

syn,anti (c) 1.284(5) 1.291(5) 1.288(5) 1.291(5) 3.7343(3) 126.1(1) 127.1(1)
(a) see Figure 1a, values taken from ref. [41], atom numbers adopted from Figure 2; (b) see Figure 2a, (c) see
Figure 2b.

Expectedly, the uranyl groups are practically linear and their bond lengths are in the
normal range. More interesting are the orientations of these linear groups on the binuclear
complexes to each other. We find a perfectly parallel arrangement in the anti,anti-isomer,
while a marked tilting is visible for the syn,syn and syn,anti-complexes. This situation can
be quantified by an analysis of the bonding situation in the central U2O2 diamonds. An
evaluation of the angles established between the planes formed by the uranium atoms with
the two bridging oxygen atoms gives values of 0◦ for the anti,anti-isomer of Figure 1, 15.4◦

for the syn,syn structure and 16.8◦ for the syn,anti compounds. The planar central unit in
the first compound is of course the consequence of the crystallographic inversion center
being located inside this unit, but this becomes only possible by the anti-conformation
for the two bridging methanolato ligands, which does not produce unilateral steric stress
above or below this plane. This, however, is clearly the case for the two isomers having
the bridging ligands in syn arrangement. Consequently the uranyl units are slightly bent
bringing the uranyl oxygen atoms of the sterically unencumbered side of the molecules
closer together. The resulting O. . .O distances differ for up to 2 Å. The individual values
for the three isomers are indicated in Figure 1. The uranium–uranium distances are not
concerned by these structural differences (see Table 1).

The observed structural isomerization is not restricted to representatives with {LEt2}2−

ligands but has also been found for complexes with the morpholinoyl ligand {Lmorph}2−.
The variation of the alkyl moiety of the thiourea group may influence the stability of
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the different conformations of the ligand and steric effects due to the substituents might
obstructing the formation of the desired coordination compound. In this work, the chosen
substituents are restricted to diethylamine and morpholinoyl groups. A morpholinoyl unit
is a less flexible substituent than the NEt2 one and potentially provides an additional “hard”
oxygen donor atom in its periphery. It has already been demonstrated that such a unit is
suitable for the formation of intermolecular interactions in solid-state structures with the
coordination of “hard” Ba2+ ions [42]. Thus, we found it interesting to see if such a behavior
is also observed with the “hard” uranyl ions and conducted similar reactions between
different uranyl starting materials, H2Lmorph, and different amounts of NEt3. Generally,
the same behavior was observed as for H2LEt2, including different isomers of the dimeric
complexes. Details and the structures of some representative morpholinoyl compounds are
given in the Supplementary Materials.

More interesting is the question, which species are present in solution? The behavior
of both ligands strongly suggests a dissociative mechanism of the observed isomerization.
Evidence for this assumption is given by the NMR spectra recorded for such solutions.
The 1H-NMR spectra of (HNEt3)2[{UO2(LEt2)(µ-OMe)}2] in CDCl3 and (CD3)2SO indicate
an interesting behavior of the complex in these two solvents. Only the signals of the
deprotonated ligand {L2a}2− and the counter ions {HNEt3}+ were observed, while those of
the methanolato ligands could not be detected. This indicates a ready deconstruction of the
dimeric complex in solution. The labile U-O(Me)-U bonds are broken and most probably,
monomeric {UO2(L2a)(L)n}0,–,2− complexes with L = solvent or deprotonated solvents,
are formed. The missing signal for the coordinated methanolato ligands indicates a fast
exchange, possibly also with other donor ligands such as OH¯ or H2O. Unlike the spectrum
recorded in CDCl3, that measured in (CD3)2SO shows a remaining signal at 3.13 ppm, which
can be assigned to methanol released from the dimeric starting complex. The isolation
of a complex of the composition [UO2(LEt2)(DMSO)2] from such solutions [41] supports
the conclusion that in this solvent a stable complex is formed, which also dominates in
the solution.

Further evidence for a dynamic equilibrium in solutions of the dimeric compounds is
given by mass spectrometry. Irrespective of the isomers or counter ions used, ESI(–) mass
spectra of the of [{UO2(LEt2)(µ-OMe)}2]2− salts show fragmentation patterns containing
fragments, which confirm the presence of a variety of monomeric and dimeric uranium-
containing species. One or two bridging units are formed by the used solvents (e.g.,
methanol or methanolate), but also species with bridging hydroxido units have been
detected. Figure 3 depicts a fraction of the [M]− peaks of such a spectrum, in which
peaks belonging to species such as [{UO2(LEt2)}2(µ-OH)]−, [{UO2(LEt2)}2(µ-OMe)]−, and
[{UO2(LEt2)}2(µ-ONa)]− are clearly resolved with the correct isotopic patterns.

Summarizing the information, it must be concluded that solutions containing uranyl
ions and H2LR ligands can contain a variety of monomeric and dimeric species. The for-
mation and potential reformation of the species depend on the solvents and pH of such
solutions and the presence of potential counter ions for the precipitation of ionic complex
species. Thus, the conformation of the ligands in solution as well as the nature of the
bridging ligands are subjects of various equilibria, which should not at least also have con-
sequences for reaction with additional metal ions as can be seen from Sections 2.2 and 2.3.

2.2. Mixed-Metal Complexes with Gold and Lead

The binuclear uranium complexes introduced in Section 2.1 possess uncoordinated
thiourea sulfur atoms. Obviously, the “hard” uranyl ions prefer tridentate coordination via
the central O,N,O donor set of the {LR}2− ligands. A few examples of the general formula
[UO2(LR)(solv)] (solv = H2O, MeOH, DMF) have been reported previously, in which the
2,6-dipicolinoylbis(N,N-dialkylthioureas) coordinate pentadentate [41]. In these products,
however, they adopt another conformation and bind via their S,N,N,N,S donor atoms.
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For potential mixed-metal complexes, the combination of “hard” uranyl ions with
“soft” metal ions should be interesting. Typical representatives of the latter are Au+ or Pb2+

ions. From reactions of these ions with H2LR ligands, hitherto no defined products could
be isolated and structurally characterized, but there are several reports with related aroylth-
ioureas including the parent, potentially O,S-bidentate benzoylthiourea ligand system,
where exclusively S-coordination has been observed with gold ions [48–51], while chelate
formation has been observed for Pb2+ ions [51–53]. Interesting, reactions patterns were
observed when Au(I) complexes were exposed to H2LR ligands together with other metal
ions such as lanthanide or other M3+ ions, alkaline earth M2+ ions or transition metal M2+

ions. Large metallacoronands consisting of {(AuLR)n}n− ring systems (n = 2–4) are formed,
which accommodate the mentioned M2+ or M3+ metal ions in their center [46,54–56]. Re-
cently, such compounds even found consideration for nuclear medical procedures using
the radioactive isotope 198Au [57]. The reactions of common gold or lead starting materials
with H2LEt2 conducted in the presence of uranyl compounds followed the previously
observed reaction patterns and gave the mixed-metal complexes summarized in Scheme 2.
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Yellow needles of the composition [{UO2(LEt2)(µ-OMe)}2{Au(PPh3)}2] were isolated
directly from a reaction mixture between the dimeric complex (HNEt3)2[{UO2(LEt2)(µ-
OMe)}2] and two equivalents of [Au(PPh3)Cl] in CH2Cl2. The same compound can be
obtained by a one-pot synthesis of equimolar amounts of H2LEt2, (NBu4)2[UO2Cl4], and
[Au(PPh3)Cl] in MeOH. The use of an excess of [Au(PPh3)Cl] did not yield products
with more than two sulfur atoms being coordinated to {Au(PPh3)}+ fragments. The IR
spectrum of [{UO2(LEt2)(µ-OMe)}2{Au(PPh3)}2] shows the νC=O vibration at 1587 cm−1

and the νU=O band at 914 cm−1. The frequencies correspond to the values found in the
dimeric complex (HNEt3)2[{UO2(LEt2)(µ-OMe)}2]. The presence of the triphenylphosphine
ligands is confirmed by 31P-NMR spectroscopy showing one broad signal at 36.1 ppm.
This corresponds to the chemical shift which is observed for the {Au(PPh3)}+ units in other
triphenylphosphine gold(I) complexes [58–60]. The compound crystallizes in the triclinic
space group P1. The centrosymmetric molecule contains two O,N,O coordinated {UO2(L2a)}
units, which are connected by two methanolato ligands establishing the conformation
with inversion symmetry, which has been assigned in Section 2.1 as anti,anti. {Au(PPh3)}+

units coordinate to two opposite thiourea sulfur atoms. A structural representation of
the resulting molecule is shown in Figure 4a. Details about the bond lengths shall not be
discussed here since it is not justified by the quality of the crystallographic data set. A
summary of the values is given as Supplementary Materials.
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Figure 4. (a) Structure of the [{UO2(LEt2)(µ-OMe)}2{Au(PPh3)}2] monomer, (b) visualization of
the linear polymer formed by Au. . .Au interactions (red circles), and (c) voids between the linear
chains shown along the crystallographic x-axis (left) and y-axis (right). For color code see atomic
labelling scheme.

The bonding situation inside the central [{UO2(LEt2)(µ-OMe)}2]2− unit of compound
2 shows only minor deviations from that in the parent anion 1c. Each Au(I) ion is co-
ordinated with one sulfur atom and the triphenylphosphine ligand. The S–Au–P bond
angles are 178.5(3)◦. In the solid-state structure of [{UO2(LEt2)(µ-OMe)}2{Au(PPh3)}2], one-
dimensional polymers are formed by weak Au. . .Au contacts. Such attractive “aurophilic
interactions” with Au...Au distances shorter than the sum of two van der Waals radii
(≈3.80 Å) play a role in almost all areas of gold chemistry [61–67]. A comprehensive
overview with a classification of such closed-shell interactions can be found in a review of
Schmidbaur and Schier [68]. According to the classification used in the latter, the Au. . .Au
interactions in compound 2 are “unsupported,” which means that the involved gold atoms
are not additionally connected by bridging ligands or hydrogen bonding. Au. . .Au dis-
tances in such compounds are frequently larger than 3 Å and differ depending on the
steric demands of the involved ligands. Figure 4b illustrates that such repulsing forces
cannot be excluded for the compound under study; thus, the observed value of 3.21(1) Å
for compound 2 is remarkably short. In the structurally related complex with tetraethyl-
N,N-isophthaloylbis(thiourea), no aurophilic interactions could be found [51], while short
Au. . .Au distances of 3.08 Å have recently been found for some [Au(PPh3)(thiazolidine



Molecules 2024, 29, 5001 8 of 26

thiourea)] derivatives [69]. The formation of polymeric chains with the sterically demand-
ing ligands of compound 2 produced relatively large voids between the chains, which
comprise almost 20% of the unit space. This is illustrated in Figure 4c.

Reactions of Pb(OAc)2 × 2 H2O with each one equivalent of H2LEt2 and uranyl acetate
in methanol give a yellow precipitate. The addition of a supporting base such as NEt3 is not
required. As for the other uranyl complexes of this study, deprotonation of the chelating
ligand is also indicated by the infrared spectrum of this product by the absence of the
NH vibrations of H2LEt2. A significant bathochromic shift of the νCO band of the ligand
strongly chelate formation with an extended delocalization of electron density. It appears
in the complex at 1597 cm−1. Crystals suitable for X-ray analysis were obtained from a
saturated CH2Cl2 solution of the yellow precipitate overlayered with MeOH. Figure 5
depicts the molecular structure of the complex. It possesses the unusual composition
[Pb2(UO2)3(LEt2)3(µ-OMe)2(MeOH)2] (3) with two different coordination environments
for the three uranium atoms contained. The molecular structure is composed of four
deprotonated ligands {LEt2}2−, three uranyl ions, two Pb2+ ions, two methanolato ligands
and two coordinated methanol molecules. This results in a neutral complex. All {LEt2}2−

ligands in compound 3 are coordinated to the uranyl ions tridentate with their O,N,O
donor atoms. Interestingly, the molecule is built up of two different uranyl-containing
subunits, which are connected by the Pb2+ ions as is shown in Figure 5. One subunit has
the composition syn,syn-[{UO2(LEt2)(µ-OMe)}2]2− (see Figure 1a). The second subunit has
the composition {UO2(LEt2)2}2−. A crystallographic mirror plane divides the molecule into
two identical parts. It is visualized in Figure 5b. Some selected bond lengths and angles are
summarized in Table 2.
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Table 2. Selected Bond Lengths (Å) in [Pb2(UO2)3(LEt2)3(µ-OMe)2(MeOH)2] (3).

U1–O10 U1–O20 U2–O30 U2–O40 U3–O50 U3–O60 U1–N60 U1–O25 U1–O3 U2–O35

1.778(4) 1.773(4) 1.806(4) 1.780(4) 1.770(4) 1.763(4) 2.527(5) 2.346(3) 2.359(3) 2.355(2)

U2–N76 U2-O3 Pb1–S31 Pb1–S11 Pb1–S1 Pb1-O13 Pb1–O15 Pb1–O5 U3–O15 U3–N46

2.541(4) 2.292(3) 2.795(1) 2.720(1) 2.883(1) 2.686(3) 2.735(3) 2.710(3) 2.470(2) 2.654(4)

U3–N76 U3–O5 U1. . .U2

2.647(4) 2.468(2) 3.7114(9)
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The two lead ions are coordinated monodentate with the sulfur atoms of the same
{LEt2}2− ligand of the dimeric [{UO2(LEt2)(µ-OMe)}2]2− subunit, while with the monomeric
subunit [{UO2(LEt2)2]2− an S,O chelate formation is established, sharing the oxygen atoms
with uranium. In contrast to the seven-coordinate uranium ions of the syn,syn-[{UO2(LEt2)(µ-
OMe)}2]2− subunit, in the monomeric subunit [UO2(LEt2)2]2− a hexagonal-bipyramidal
geometry around the uranium atom is found. The formation of S,O chelates of Pb2+ ions
with aroylthioureas aligns with previous findings [52,53].

The uranyl bond lengths are unexceptional. The distances between the uranyl ions
and the equatorial donor atoms are in the range between 2.294(3) and 2.471(3) Å for the
oxygen atoms and between 2.529(6) and 2.656(5) Å for the nitrogen atoms. The coordination
environment of lead is occupied by three sulfur atoms and three oxygen atoms and can be
described as monocapped square-pyramidal. Under consideration of the stereoactive 6s
lone-pair electrons, which is indicated by the large void around the metal ions, the donor
atoms are hemidirected and the description of the coordination sphere (including this lone
pair) around the Pb2+ ion would correspond to a monocapped octahedron as has been
observed previously for a number of lead(II) complexes [51,70–73] (see Figure 6). The Pb–S
bond length is in the range of 2.720(6)–2.882(5) Å, and the Pb–O bond length is in the range
between 2.685(6)–2.736(5) Å. As generally observed in hemidirected lead(II) compounds,
the bond lengths of the donor atoms converging to the lone pair are somewhat elongated. In
the present case, this concerns the Pb–S21, Pb–S11, and Pb–O25 bonds. The two intra-ligand
bond angles around Pb are similar with approximately 77◦. The inter-ligand bond angles,
however, are very variable with values between 53.9(1)◦ and 166.8(1)◦. This indicates a
highly distorted geometry. The S,O chelate rings of {LEt2}2− in the lead-containing subunit
show an unprecedented deviation from the planarity in aroylbenzoylthioureato complexes.
This is obviously due to the strongly bonded O,N,O chelate with uranium in the central
parts of the corresponding subunits.
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While the NMR spectra of compound 3 do not give a clear picture of the situation in
solutions, some information can be derived from the respective ESI(+) mass spectra. There
is no evidence for the molecular ion of the pentanuclear complex, but metal-containing
fragments with considerable intensity are displayed in mass range m/z > 2100. They
indicate a fragmentation pattern as has been observed for compound 1 by a ready cleav-
age of the methanolato bridges of the dimers, while the {UO2(LEt2)2}2− unit in com-
pound 3 seems to be more stable. Thus, the intense signals observed in the ESI(+)
spectra of complex 3 at m/z = 2166.4376 and m/z = 2152.4218 can be assigned to frag-
ments of the compositions [Pb2{UO2(LEt2)2}{UO2(LEt2)(OMe)}]+ (calcd. 2166.4408) and
[Pb2{UO2(LEt2)2}{UO2(LEt2)(OH)}]+ (calcd. 2152.4252). Negative mode ESI(–) mass spectra
support the assumption of the ready cleavage of the dimeric, µ-MeO-bridged building block
by the detection of a signal at m/z = 2829.6021, which can be assigned to a singly bridged
fragment of the composition [Pb2{UO2(LEt2)2}{UO2(LEt2)}2(OMe)]+ (calcd. 2829.6108).
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Summarizing the experiences with the structural variety found in the bimetallic
gold/uranium and lead/uranium complexes supports the observations made for the
dimeric uranyl complexes of Section 2.1 that minor modifications in the reaction condi-
tions (stoichiometry, solvents, pH etc.) may have significant influences on the products
obtained and that the structures determined for the isolated solids do not necessarily
completely describe the situation in solution. This brought us to similar reactions with
M2+ metal ions from the 3d transition metal family. There exists some experience with
mixed-metal complexes formed by such relatively “soft” metal ions in combinations with
“hard” metal ions coming from the groups of lanthanides, alkali metals or alkaline earth
metals [42,43,45,74–77]. For uranium, such experiments are not yet known.

2.3. Mixed-Metal Complexes with Various 3D Metal Ions

The nature of the products obtained from mixtures of H2LR ligands, uranyl compounds
and M2+ transition metal acetates is dependent on the ratio of the reactants, particularly
on the amount of the metal acetates (Scheme 3). The addition of a two-fold excess of
M(II) acetates (M = Ni, Co, Fe, Mn, Zn or Cd) dissolved in methanol to a dichloromethane
solution of (HNEt3)2[{UO2(L2a)(µ2-OMe)}2] gave an orange-red precipitate. The product
precipitates immediately from the reaction mixture and is almost insoluble in common
solvents, which restricts the analytical methods. The IR and elemental analysis data reveal a
compound with a composition, which is different from that of the dimeric starting complex.
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Scheme 3. Reactions of various uranyl starting materials with H2LR ligands and transition
metal acetates.

The exact composition of the product was determined by X-ray diffraction on single
crystals obtained by slow evaporation of the reaction mixture after filtering off the immedi-
ately formed solid. IR spectra and elemental analysis confirmed the identity of the crystals
with the separated orange-red powder. Surprisingly, no mixed-metal complex was formed
under the conditions applied. Obviously, the excess of metal acetate increased the pH of
the reaction mixture to the level that the formation of oligonuclear uranyl aggregates is
preferred and a sparingly soluble complex of the composition (HNEt3)2[{(UO2)2(LEt2)(µ2-
OAc)(µ3-O)}2] ({HNEt3}2[4]) precipitated. Figure 7 shows the molecular structure of the
[{(UO2)2(L2a)(µ2-OAc)(µ3-O)}2]2− anion. Selected bond lengths and angles are summarized
in Table 3.

The compound crystallizes in the centrosymmetric, triclinic space group P1 with
one- half of the molecule in the asymmetric unit. The [{(UO2)2(LEt2)(µ2-OAc)(µ3-O)}2]2−

anion consists of four uranyl cations and two {LEt2}2− ligands, which are coordinated in a
tetradentate O,N,O,S fashion. Each ligand coordinates two uranyl ions and the resulting
sub-units are bridged by two µ3-oxido and two bidentate-coordinated acetato ligands. This
results in a diamond-like arrangement of the four uranium atoms. The inversion center is
located in the center of the rhombus formed by the atoms U2, U2′, O1 and O1′ (Figure 7).
Each uranium atom establishes a pentagonal-bipyramidal geometry. The uranium atoms
U1 and U1′ are coordinated by two oxygen atoms and the pyridine nitrogen atoms of
{LEt2}2−, one oxygen atom of the acetato ligand and the µ3-oxido ligand. The uranium
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atoms U2 and U2′ are coordinated by the S,O chelate ring of the {LEt2}2− ligands, one
oxygen atom of the acetato ligand and two µ3-oxido ligands. It should be mentioned
that the coordinated sulfur atom S11 is subject of a partial hydrolysis and the structure is
best refined with a S/O disorder of 90/10. The hydrolysis of thiourea functionalities in
{LR}2− ligands is not without precedence and has been found for other uranium complexes,
where a complete S/O exchange obviously facilitates the coordination of such ligands to
the “hard” {UO2}2+ ions [78]. Since in the present example such an exchange is observed
to a minor degree, it should not be subject of an extended discussion. Nevertheless, the
formation of the tetranuclear uranium complex nicely illustrates the structural flexibility of
the products, which can be isolated from {UO2}2+/H2LR/metal acetate reaction mixtures
and the strong dependence of the preferred products on the pH value in such solutions.
Further support for this assumption is given by slight variations in the reaction conditions
in such mixtures.
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Table 3. Selected Bond Lengths (Å) and Angles in the [{(UO2)2(LEt2)(µ2-OAc)(µ3-O)}2]2− anion (4).

U1–O10 U1–O20 U2–O30 U2–O40 U1–O1 U2–O1 U1–O5 U1–N26 U1–O15

1.768(7) 1.774(7) 1.801(6) 1.775(6) 2.240(5) 2.254(5) 2.385(6) 2.558(7) 2.500(5)

U1–O32 U2–S11 U2–O15 U2–O33′ U1. . .U2 U1. . .U1′ U2. . .U2′ U1–O1–U2 U1–O31-U2′

2.374(7) 2.911(4) 2.509(6) 2.370(6) 3.8721(5) 7.089(8) 3.6555(8) 119.0(2) 131.6(2)

Finally, the formation of heterometallic uranyl compounds of the composition [M{UO2
(LR)(OAc)}2] (R = Et: 5, RR = morph: 6) (M = Ni2+, Co2+, Fe2+, Mn2+, Zn2+ or Cd2+) was
achieved by decreasing the amount of metal acetate to 0.5 equivalent per equivalent of the
uranyl source (Scheme 3). This is most probably due to a well-balanced lowering of the
pH in such solutions. Interestingly, the addition of a supporting base such as NEt3 to such
reaction mixtures induces the formation of the previously described dimeric complexes
(HNEt3)2[{UO2(LR)(µ-OMe)}2] (1).

The neutral mixed-metal complexes 5 or 6 can be obtained from CH2Cl2/MeOH
reaction mixtures of the dimeric complexes (HNEt3)2[{UO2(LR)(µ-OMe)}2] (1) with the
transition metal acetates or from one-pot reactions starting directly from the transition metal
acetates, H2LR and uranyl acetate in methanol. They precipitate from the reaction solutions
and can be crystallized from CH2Cl2/MeOH mixtures. The formation of the heterometallic
complexes is easily verified by IR spectroscopy. In contrast to the dimeric complexes 1,
the heterometallic complexes show four carbonyl absorption bands, clearly indicating the
presence of differently arranged carbonyl units (belonging to picolinoylthioureato and/or
acetato ligands) in the products. The asymmetric uranyl stretches appear in the spectra of
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the products between 916–924 cm−1, which corresponds to a moderate shift compared to
the position in compound 1 (910 cm−1).

The colors of the heterometallic compounds are slightly different depending on the
transition metal contained. The complexes with Zn2+ and Cd2+ are pale yellow; the
Ni2+ and Mn2+ complexes are deep yellow or light orange, while the complexes with
Fe2+ and Co2+ are brown. The UV/vis spectra of some [M{UO2(LEt2)(OAc)}2] complexes
are shown in Figure 8. For comparison, the electronic spectrum of the dimeric complex
(HNEt3)2[{UO2(LEt2)(µ-OMe)}2] is included in the figure. The spectra of the heterometallic
complexes with the transition metal ions Ni2+, Mn2+, Fe2+, and Co2+ are similar with three
main absorptions around 230, 290, and 370 nm. The complexes with the closed-shell metal
ions Cd2+ and Zn2+ are slightly different with a red shift of the absorption at 290 nm, which
appears around 305 nm in both complexes. The presence of the transition metal in the
complexes is indicated by the absence of absorption at 265 nm.
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NMR spectra of the diamagnetic representatives and ESI mass spectra of the complexes
6 and 7 are helpful tools to obtain information about the molecular dynamic in solution.
Representative spectra are shown as Supporting Material. The detection of molecular ions
in the ESI(+) mass spectra of the heterobimetallic complexes indicates a relatively high
stability of the compounds, which allows a transfer to the gas without decomposition. Such
a behavior is in contrast to that of the bi- and oligonuclear uranyl complexes with the same
ligands discussed vide supra.

Single crystals suitable for X-ray diffraction were obtained for the trinuclear complexes
of Ni2+ (compound 5a), Co2+ (compound 5b), Fe2+ (compound 5c), and Mn2+ (compound
5d) with {LEt2}2−

. Additionally, the solid-state structures of such compounds with Ni2+

(compound 6a), Co2+ (compound 6b), and Zn2+ (compound 6e) containing H2Lmorph have
been studied. Figure 9 depicts representative structures of the complexes, and selected
bond lengths are summarized in Table 4. The corresponding values of complexes 6a and 6e
are not contained in the table since the quality of the X-ray data does not justify a detailed
discussion of individual bond lengths and angles. But they clearly support a general
structural evaluation of general bonding features. Corresponding figures and tables are
contained in the Supporting Material for inspection.
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Table 4. Selected Bond Lengths (Å) in the [M{UO2(LEt2)(OAc)}2] (5) and [M{UO2(Lmorph)(OAc)}2]
(6) complexes.

U1–S1 U1–N3 U1–N26 U1–O15 U1–O31 U1–O32 U2–S41 U2–N33

5a (Ni) 2.864(4) 2.47(1) 2.56(1) 2.49(1) 2.52(1) 2.45(1) - -

5b (Co) 2.855(1) 2.578(4) 2.565(4) 2.493(3) 2.525(3) 2.449(3) - -

5c (Fe) 2.859(1) 2.468(4) 2.561(4) 2.494(3) 2.535(4) 2.462(3) - -

5d (Mn) 2.871(1) 2.472(4) 2.549(4) 2.518(3) 2.511(3) 2.475(3) 2.886(1) 2.480(4)

6b (Co) 2.872(2) 2.460(4) 2.549(4) 2.487(4) 2.517(4) 2.462(4) 2.854(2) 2.465(5)

U2–N66 U2–O35 M1–S11 M1–S51 M1–O15 M1–O55 M1–O32 M1–O72

5a (Ni) - - 2.350(5) - 2.08(1) - 2.07(1) -

5b (Co) - - 2.362(2) - 2.133(3) - 2.093(4) -

5c (Fe) - - 2.410(2) - 2.155(3) - 2.119(4) -

5d (Mn) 2.557(4) 2.480(4) 2.540(1) 2.515(1) 2.216(3) 2.228(3) 2.177(3) 2.164(3)

6b (Co) 2.562(5) 2.490(4) 2.397(2) 2.441(2) 2.168(4) 2.139(4) 2.0754) 2.120(4)

U1. . .M1 U2. . .M1 U1. . .U2/U1′ (a) C4–O5 C14–O15 C44–O45 C54–O55

5a (Ni) 3.702(1) - 6.115(1) 1.24(2) 1.27(2) - -

5b (Co) 3.766(1) - 6.376(1) 1.220(6) 1.286(6) - -

5c (Fe) 3.779(1) - 6.290(1) 1.228(6) 1.300(6) - -

5d (Mn) 3.926(1) 3.922(1) 6.645(1) 1.228(6) 1.302(5) 1.223(6) 1.297(5)

6b (Co) 3.817(1) 3.760(1) 6.759(1) 1.223(7) 1.301(6) 1.222(7) 1.257(7)
(a) Symmetry operation: −x,y,1.5–z.

Although their molecular structures are very similar, two different modes of crystal-
lization are observed for the [M{UO2(LR)(OAc)}2] complexes. Some of the compounds
(5a, 5b, and 5c) crystallize in the C-centered space group C2/c with similar unit cell pa-
rameters (Figure 9a). Their asymmetric units each contain half of the complex molecule,
and the second half is generated by a twofold axis (Figure 9b), on which the respective
transition metal ion is located. For another group of complexes (5d, 6a, 6b, and 6e), obvi-
ously, the high local symmetry could not be established, and they crystallize with complete
[M{UO2(LR)(OAc)}2] molecules in their asymmetric unit. An example containing the atomic
labeling scheme for this group of compounds is shown in Figure 9c with the structure of
[Co{UO2(Lmorph)(OAc)}2].

Independent of their mode of crystallization and their peripheral residues (NEt2 or mor-
pholinyl groups), the [M{UO2(LR)(OAc)}2] molecules are composed of two {UO2(LR)(OAc)}−
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units, which are linked to each other by the transition metal M2+ ion. Each uranium atom
is coordinated in a tetradentate manner with the S,N,N,O donor sets of a {LR}2− ligand.
The hexagonal equatorial coordination spheres of the uranyl ions are completed by acetato
ligands. The axial U=O bond lengths are unexceptional. The equatorial U–O bond lengths
are in the range between 2.449(3) and 2.535(4) Å. The U–N distances span from 2.460(4) to
2.562(5) Å, while the uranium–sulfur bond lengths are between 2.854(2) and 2.886(1) Å. The
equatorial coordination spheres of the two uranium atoms are almost perfectly planar (with
minor deviations due to the acetate ligands) and are arranged perpendicular to each other.

The central M2+ ions are coordinated with two S,O chelating units of the {LR}2− ligands
and two oxygen donor atoms of the acetato ligands. This results in distorted octahedral co-
ordination spheres. The M–O and M–S bond lengths are in the range of the values observed
in other octahedral M2+ chelates with aroylbisthioureato ligands [42,45]. The uranium and
transition metal ions are connected by the carbonyl groups of one S,O chelating unit of
the {LR}2− ligands and the acetato ligands. This brings them relatively close together with
uranium–M2+ distances between 3.702(1) and 3.926(1) Å. The uranium–uranium distances
are between 6.1 and 6.8 Å. Interestingly, the longest metal–metal distances are found for
the representatives without symmetrical restraints (5d, 6b), (see Table 4).

An interesting structural feature of complexes 5 and 6 is the coordination mode estab-
lished by the {LR}2− ligands. Unlike the situations in complexes 1, 2, 3 and 4, an S,N,N,O
donor atom set is used for the coordination of the uranium atoms and one of the carbonyl
oxygen atoms remains uncoordinated. Such a behavior may underline the structural flex-
ibility of the potentially pentadentate ligands and their ability to adopt the sterical and
electronic demands of the metal ions as well as their preferred coordination modes, but
also arises the question for the inherently preferred conformation. To determine the most
stable conformers, the geometries were optimized at the B3LYP/6-311G level of theory and
the energies of the final geometries were calculated at the PBE0-GD3BJ/def2-TZVPPD. The
results indicate that the conformation suitable for potential N,N,N or S,N,N,N,S chelate
formation is the thermodynamically most stable one within the specified energy differences
between the conformers. Stable molecular conformations of H2LEt2 and those observed in
the solid-state structures of its transition metal complexes are shown in Figure 10.

Molecules 2024, 29, x FOR PEER REVIEW 14 of 26 
 

 

[M{UO2(LR)(OAc)}2] molecules in their asymmetric unit. An example containing the 
atomic labeling scheme for this group of compounds is shown in Figure 9c with the struc-
ture of [Co{UO2(Lmorph)(OAc)}2].  

Independent of their mode of crystallization and their peripheral residues (NEt2 or 
morpholinyl groups), the [M{UO2(LR)(OAc)}2] molecules are composed of two 
{UO2(LR)(OAc)}– units, which are linked to each other by the transition metal M2+ ion. Each 
uranium atom is coordinated in a tetradentate manner with the S,N,N,O donor sets of a 
{LR}2– ligand. The hexagonal equatorial coordination spheres of the uranyl ions are com-
pleted by acetato ligands. The axial U=O bond lengths are unexceptional. The equatorial 
U–O bond lengths are in the range between 2.449(3) and 2.535(4) Å. The U–N distances 
span from 2.460(4) to 2.562(5) Å, while the uranium–sulfur bond lengths are between 
2.854(2) and 2.886(1) Å. The equatorial coordination spheres of the two uranium atoms 
are almost perfectly planar (with minor deviations due to the acetate ligands) and are ar-
ranged perpendicular to each other. 

The central M2+ ions are coordinated with two S,O chelating units of the {LR}2- ligands 
and two oxygen donor atoms of the acetato ligands. This results in distorted octahedral 
coordination spheres. The M–O and M–S bond lengths are in the range of the values ob-
served in other octahedral M2+ chelates with aroylbisthioureato ligands [42,45]. The ura-
nium and transition metal ions are connected by the carbonyl groups of one S,O chelating 
unit of the {LR}2- ligands and the acetato ligands. This brings them relatively close together 
with uranium–M2+ distances between 3.702(1) and 3.926(1) Å. The uranium–uranium dis-
tances are between 6.1 and 6.8 Å. Interestingly, the longest metal–metal distances are 
found for the representatives without symmetrical restraints (5d, 6b), (see Table 4).  

An interesting structural feature of complexes 5 and 6 is the coordination mode es-
tablished by the {LR}2- ligands. Unlike the situations in complexes 1, 2, 3 and 4, an S,N,N,O 
donor atom set is used for the coordination of the uranium atoms and one of the carbonyl 
oxygen atoms remains uncoordinated. Such a behavior may underline the structural flex-
ibility of the potentially pentadentate ligands and their ability to adopt the sterical and 
electronic demands of the metal ions as well as their preferred coordination modes, but 
also arises the question for the inherently preferred conformation. To determine the most 
stable conformers, the geometries were optimized at the B3LYP/6-311G level of theory and 
the energies of the final geometries were calculated at the PBE0-GD3BJ/def2-TZVPPD. The 
results indicate that the conformation suitable for potential N,N,N or S,N,N,N,S chelate 
formation is the thermodynamically most stable one within the specified energy differ-
ences between the conformers. Stable molecular conformations of H2LEt2 and those ob-
served in the solid-state structures of its transition metal complexes are shown in Figure 
10. 

 
Figure 10. Stable molecular conformations of the free ligand H2LEt2. Two unstable configurations of 
the free ligand that have been observed in transition metal complexes of the ligand are additionally 
provided in red. Further details are given as Supporting Information. 

This information is somewhat misleading with regard to the coordination chemistry 
with deprotonated {LEt2}2− ligands. Four out of the five conformers shown in Figure 10 can 

Figure 10. Stable molecular conformations of the free ligand H2LEt2. Two unstable configurations of
the free ligand that have been observed in transition metal complexes of the ligand are additionally
provided in red. Further details are given as Supporting Information.

This information is somewhat misleading with regard to the coordination chemistry
with deprotonated {LEt2}2− ligands. Four out of the five conformers shown in Figure 10
can establish one (conformers B2 and C2) or two (conformers D1 and D3) hydrogen
bonds between the amide units and the central pyridine nitrogen atom. As stated for the
conformers of the uranium complexes above, the relatively small energetic differences
between conformers could easily be overcome by solvation, packing effects or, as in this
case, hydrogen-bonding, all of which may play a key role in the evaluation of their relative
thermodynamic stability. Indeed, such hydrogen bonding has been found in the crystal
structure of the compound [44]. Thus, it might be more instructive to have a look at the
situation of the related isophthaloylbis(N,N-diethylthiourea), which has a central phenyl
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ring instead of pyridine and, consequently, for which such NH. . .N interactions cannot
be formed. Analog DFT calculations for the related conformers effectively confirm the
analogous structure to A1 as the most stable isomer [41]. A similar sequence should also
be expected for the deprotonated ligand {LEt2}2− and explains that most of the hitherto
structurally studied complexes with this ligand and “hard” metal ions establish a neutral
O,N,O coordination. Metal complexes with the conformations B2, C2 and D3 have also
been reported [42,43]. Examples for the pentadentate coordination with conformer D3 are
known for rhenium and technetium complexes [79,80]. The same coordination mode has
recently also been found for monomeric uranyl complexes [UO2(LEt2)(solv)] (solv = MeOH,
DMF) [41].

Most of the hitherto studied bimetallic complexes with {LR}2− ligands and M2+ and
M3+ metal ions have been prepared from metal acetates and a screening of their structures
confirms that almost all of them contain acetato co-ligands. With the exceptions of the
[MM’(LR)3]0,+ complexes [42–44,76,81] and a few examples, in which the coordination
spheres of the transition metal ions are completed by solvent molecules [42], the acetato
ligands act as bridges between the different metal ions. A typical example is shown in
Scheme 4 with the structure established with lanthanide and M2+ ions [45].
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Scheme 4. Formation of [LnMII(LEt2)2(OAc)3] complexes [45] and [(UO2)(NiI)2(LEt2)2].

Acetato bridges also play a role in the mixed-metal complexes 5 and 6 of the present
study (Scheme 3). They fill the coordination spheres of the S,N,N,O coordinated {UO2(LR}
fragments and connect them with the central M2+ ions. It would be interesting to see, if
similar reactions also proceed with acetate-free starting materials and which structures
are stabilized. Thus, we conducted a first, preliminary reaction between H2LEt2, the low-
valent uranium compound [UI3(dioxane)1.5] and nickel iodide in methanol. Since the
reaction was conducted in air, uranium was oxidized and the resulting uranyl product,
[(UO2)(NiI)2(LEt2)2] (7), precipitated directly from the reaction mixture. It contains one
central uranyl unit, which is coordinated by the O,N,O donor atom sets of two {LEt2}2−

ligands, and two five-coordinate Ni(II) ions. The equatorial coordination spheres of the
transition metal ions are occupied by two S,O chelating units of the picolinoylbis(thioureas).
An ellipsoid representation of the resulting complex structure is shown in Figure 11 and
some bond lengths are summarized in Table 5.

Table 5. Selected Bond Lengths (Å) in [(UO2)(NiI)2(LEt2)2] (7).

U1–O10 U1–O20 U1–O5 U1–O15 U1–O25 U1–O35 U1–N46 U1–N56 Ni1–I1

1.775(7) 1.767(6) 2.485(6) 2.405(6) 2.476(6) 2.553(6) 2.600(7) 2.588(7) 2.642(3)

Ni1–S11 Ni1–S31 Ni1–O15 Ni1–O35 Ni2–I2 Ni2–S1 Ni2–S21 Ni2–O5 Ni2–O25

2.308(4) 2.282(3) 2.052(6) 2.040(6) 2.702(3) 2.288(3) 2.301(3) 2.055(6) 2.036(6)

C14–O15 C34–O35 C4–O5 C24–O25 Ni1. . .U1 Ni2. . .U1 Ni1. . .Ni2

1.30(1) 1.29(1) 1.30(1) 1.30(1) 3.569(2) 3.708(2) 7.199(1)
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The bond lengths in compound 7 are unexceptional and similar to those found in the 
other uranium complexes with {LEt2}2– ligands. An interesting feature, however, is given 
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Figure 11b. The lower symmetry in [(UO2)(NiI)2(LEt2)2] is also expressed by two different 
uranium-nickel differences and by clear differences in the coordination environments of 
the nickel atoms. Both Ni2+ ions are five-coordinate, but the established coordination pol-
yhedra are clearly different as can be seen in Figure 11c. A more quantitative evaluation 
becomes available by an analysis by means of the Continuous Shape algorithm [82–85], 
which allows the evaluation of the bonding situations, even in the case of simple visuali-
zation giving no unambiguous results. Five polyhedra are relevant for the coordination 
number five, but most coordination compounds establish a trigonal bipyramid or square 
pyramid as the two Ni2+ ions in compound 7. While the environment of Ni1 is intermedi-
ate between these two shapes with continuous shape measures of 3.394 for a trigonal bi-
pyramid and 3.169 for a square pyramid, a clear preference for a square pyramid with the 
iodine atom as the apex (continuous shape measure 1.892) is found for the nickel atom 
Ni2 (value for a trigonal bipyramid: 3.394).  

It should be interesting to extend this work to other acetate-free precursors in order 
to obtain a more complete overview about the structural chemistry of such uranium-con-
taining mixed-metal complexes. 
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Figure 11. Molecular structure of [(UO2)(NiI)2(LEt2)2] (7): (a) general view with atomic labeling
scheme, (b) view along the N46-U1-N56 axis, (c) coordination polyhedral of the Ni atoms. For color
code see atomic labelling scheme in (a).

The bond lengths in compound 7 are unexceptional and similar to those found in the
other uranium complexes with {LEt2}2− ligands. An interesting feature, however, is given
with the distortions inside the chelating ligands. In contrast to the situation in the previously
discussed complexes with essentially planar ligands, the sulfur atoms in compound 7 show
marked deviations from the planes of the central pyridine rings, as illustrated in Figure 11b.
The lower symmetry in [(UO2)(NiI)2(LEt2)2] is also expressed by two different uranium-
nickel differences and by clear differences in the coordination environments of the nickel
atoms. Both Ni2+ ions are five-coordinate, but the established coordination polyhedra are
clearly different as can be seen in Figure 11c. A more quantitative evaluation becomes
available by an analysis by means of the Continuous Shape algorithm [82–85], which allows
the evaluation of the bonding situations, even in the case of simple visualization giving no
unambiguous results. Five polyhedra are relevant for the coordination number five, but
most coordination compounds establish a trigonal bipyramid or square pyramid as the two
Ni2+ ions in compound 7. While the environment of Ni1 is intermediate between these two
shapes with continuous shape measures of 3.394 for a trigonal bipyramid and 3.169 for a
square pyramid, a clear preference for a square pyramid with the iodine atom as the apex
(continuous shape measure 1.892) is found for the nickel atom Ni2 (value for a trigonal
bipyramid: 3.394).

It should be interesting to extend this work to other acetate-free precursors in order
to obtain a more complete overview about the structural chemistry of such uranium-
containing mixed-metal complexes.

3. Materials and Methods

Unless otherwise stated, reagent-grade solvents and starting materials were used. Sol-
vents were dried and distilled prior to use. H2LEt2 and H2Lmorph were prepared according
to a literature procedure [86].

3.1. Radiation Precaution

All synthetic work with uranium was performed in a laboratory approved for the
handling of radioactive material. All personel working on this project were permanently
monitored for potential contaminations.

3.2. Physical Measurements

IR spectra were measured as KBr pellets on a Shimadzu IR Affinity-1 spectrometer (Shi-
madzu, Kyoto, Japan). The NMR spectra were recorded on JEOL 400 MHz spectrometers
(JEOL, Kyoto, Japan). ESI mass spectra were measured with an Agilent 6210 ESI-TOF (Agi-
lent Technology, Santa Clara, CA, USA) spectrometer. All MS results are given in the form
of m/z assignment. Elemental analysis of carbon, hydrogen, nitrogen, and sulfur was deter-
mined using a Heraeus vario EL elemental analyzer (Elementar, Langensebold, Germany).
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3.3. Syntheses

(HNEt3)2[{UO2(LEt2)(µ-OMe)}2] ((HNEt3)2[1]). H2LEt2 (20 mg, 0.05 mmol) was dissolved
in MeOH (3 mL) at room temperature and added to a stirred solution of (NBu4)2[UO2Cl4]
(90 mg, 0.1 mmol) or UO2(CH3COOH)2 × 2 H2O (42 mg, 0.1 mmol) in MeOH (3 mL).
After 10 min, 2 drops of NEt3 were added and the reaction mixture was stirred for
1 h. The obtained precipitate was filtered off, washed with MeOH and dried under
vacuum. Single crystals for X-ray diffraction containing the syn,syn conformer of the
anion were obtained after evaporation of a CH2Cl2/MeOH (1:2, v/v) solution at room
temperature. Yield: 74% (59 mg). Elemental analysis: Calcd. for C48H84N12O10S4U2:
C, 35.8; H, 5.2; N, 10.7; S, 8.1%. Found: C, 35.6; H, 5.23; N, 10.4; S, 8.1%. IR (KBr,
cm−1): 3429(m), 3070(w), 2974(m), 2933(w), 2874(w), 2681(w), 1589 (vs), 1497(m), 1462(w),
1425(m), 1382(s), 1309(m), 1278(m), 1247(s), 1201(w), 1145(m), 1120(m), 1070(m), 1016(m),
950(w), 912 (vs), 868(w), 766(s), 678(w), 638(m). 1H NMR (400 MHz, DMSO, ppm): 8.50
(d, 4H, J = 8.0 Hz, py); 8.41 (t, 2H, J = 8.0 Hz, py); 3.95 (q, 8H, J = 7.0 Hz, CH2); 3.53
(q, 8H, J = 7.0 Hz, CH2); 2.37 (q, 12H, J = 7.2 Hz, CH2_HNEt3); 1.24 (t, 12H, J = 7.0
Hz, CH3); 1.02 (t, 12H, J = 7.0 Hz, CH3); 0.87 (t, 18H, J =7.2 Hz, CH3_HNEt3). UV/Vis
(CH2Cl2, nm): 230 (ε = 8.3 × 103 L mol−1 cm−1), 265 (ε = 7.8 × 103 L mol−1 cm−1), 304
(ε = 4.9 × 103 L mol−1cm−1), 368 (ε = 1.2 × 103 L mol−1 cm−1).

(EtPPh3)2[{UO2(LEt2)(µ-OMe)}2] ((EtPPh3)2[1]). A solution of (EtPPh3)Cl (33 mg,
0.1 mmol) in MeOH (2 mL) was added dropwise to a solution of (HNEt3)2[{UO2(LEt2)(µ-
OMe)}2] (159 mg, 0.1 mmol) in CH2Cl2 (2 mL). The reaction mixture was evaporated
slowly at room temperature. The obtained yellow crystals were collected, washed with
MeOH and dried under vacuum. Yield: 12% (24 mg). Elemental analysis: Calcd. for
C76H92N10O10P2S4U2: C, 46.3; H, 4.7; N, 7.1; S, 6.5%. Found: C, 45.9; H, 4.9; N, 7.1; S,
6.5%. IR (KBr, cm−1): 3425(m), 3057(w), 2974(m), 2929(m), 2855(w), 2810(w), 2601(w),
1591(vs), 1492(s), 1433(s), 1377(s), 1311(m), 1280(m), 1248(s), 1146(w), 1113(s), 1001(m),
949(w), 905(vs), 843(w), 758(m), 691(m), 631(w), 530(m). UV/Vis (CH2Cl2, nm): 232
(ε = 6.3 × 103 L mol−1cm−1), 264 (ε = 5.3 × 103 L mol−1cm−1), 304 (ε = 3.8 × 103 L
mol−1cm−1), 358 (ε = 0.9 × 103 L mol−1cm−1).

[{UO2(LEt2)(µ-OMe)}{Au(PPh3}2] (2). A solution of [Au(PPh3)Cl] (50 mg, 0.1 mmol)
in CH2Cl2 (2 mL) was added dropwise to a solution of (HNEt3)2[{UO2(LEt2)(µ-OMe)}2]
(80 mg, 0.05 mmol) in CH2Cl2 (2 mL). The reaction mixture was stirred for 1 h at room
temperature, MeOH (2 mL) was added and the mixture was allowed to evaporate slowly
at room temperature. The obtained yellow crystals were collected, washed with MeOH
and dried under vacuum. Yield: 85% (96 mg). Elemental analysis: Calcd. for C72H82Au2–
N10O10P2S4U2: C, 37.5; H, 3.6; N, 6.1; S, 5.6%. Found: C, 36.9; H, 3.5; N, 5.9; S, 5.5%. IR (KBr,
cm−1): 3445(m), 3051(w), 2974(m), 2932(m), 2872(w), 1587(vs), 1562(vs), 1431(vs), 1393(vs),
1358(w), 1310(m), 1281(m), 1248(s), 1202(m), 1146(m), 1121(m), 1099(s), 1072(w), 1020(m),
949(w), 914(vs), 845 (m), 756(vs), 692(vs), 635(m), 538(vs), 505(vs). 1H NMR (DMSO-D6,
ppm): 8.23 (d, 4H, J = 7.6 Hz, py); 7.64 (t, 2H, J = 7.6 Hz, py); 7.41–7.07 (m, 30H, Ph);
4.21–3.72 (m, 16H, CH2); 3.09 (s, 3H, CH3O); 1.67–1.21 (m, 24H, J = 7.5 Hz, CH3). 31P
NMR (DMSO-D6, ppm): 36.1. UV/Vis (CH2Cl2, nm): 230 (ε = 5.3 × 103 L mol−1 cm−1),
251 (ε = 4.2 × 103 L mol−1cm−1), 266 (ε = 3.6 × 103 L mol−1cm−1), 305 (ε = 1.8 × 103 L
mol−1cm−1), 366 (ε = 0.5 × 103 L mol−1cm−1).

[Pb2(UO2)3(LEt2)4(MeOH)2(µ-OMe)2] (3). A solution of Pb(OAc)2 · 2 H2O (33 mg,
0.1 mmol) in MeOH (1 mL) was added to a solution of UO2(OAc)2 · 2 H2O (43 mg, 0.1 mmol)
in MeOH (2 mL). H2LEt2 (40 mg, 0.1 mmol) was added and the solution was stirred at room
temperature for 1 h. The formed precipitate was filtered off, washed with MeOH and Et2O
and dried in vacuum. Single crystals for X-ray diffraction were obtained after slow evapo-
ration of a CH2Cl2/MeOH (1:1, v/v) solution at room temperature. Yield: 70% (56 mg). El-
emental analysis: Calcd. for C75H118N20O21S8U3Pb2 ([Pb2(UO2)3(L2a)4(MeOH)2(µ-OMe)2]
· 3 MeOH): C, 29.2; H, 3.6; N, 9.3; S, 8.5%. Found: C, 28.2; H, 3.7; N, 9.4; S, 8.5%. IR (KBr,
cm−1): 3443(m), 3084(w), 2974(m), 2934(m), 2874(w), 1597(vs), 1566(vs), 1514(vs), 1429(vs),
1385(vs), 1362(w), 1310(m), 1285(m), 1252(s), 1206(m), 1148(m), 1099(m), 1074(m), 1015(m),
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955(w), 916(vs), 845 (m), 758 (s), 696(m), 638(w). 1H NMR (CD2Cl2, ppm): 8.91–7.88 (m,
12H, py); 4.25–4.15 (m, 8H, CH2); 3.40–3.53 (m, 32H, CH2); 3.47 (m, 12H, MeOH); 1.59–0.93
(m, 48H, CH3). UV/Vis (CH2Cl2, nm): 231 (ε = 7.6 × 103 L mol−1 cm−1), 258 (ε = 7.6 × 103

L mol−1cm−1), 296 (ε = 5.5 × 103 L mol−1 cm−1), 369 (ε = 1.1 × 103 L mol−1 cm−1).
(HNEt3)2[{(UO2)2(LEt2)(µ2-OAc)(µ3-O)}2] (4). A solution of M(OAc)2 · n H2O (0.2 mmol)

in MeOH (1 mL) was added to a stirred solution of UO2(OAc)2 · 2 H2O (42 mg, 0.1 mmol)
in MeOH (2 mL). H2LEt2 (40 mg, 0.1 mmol) was added and the solution was stirred at
room temperature for 1 h. The formed precipitate was filtered off, washed with MeOH
and dried in vacuum. Single crystals were obtained from slow evaporation of the reaction
mixture after removal of the precipitate. Yield (60%). Elemental analysis: Calcd. for
C50H84N12O18S4U4: C, 27.03 H, 3.81; N, 7.57; S, 5.77%. Found: C, 25.72; H, 3.75; N, 7.13;
S, 5.28%. IR (KBr, cm−1): 3445(m), 3032(w), 2976(m), 2933(w), 2873(w), 2812(w), 2742(w),
1593(vs), 1552(vs), 1525(w), 1429(s), 1385(vs), 1355(w), 1307(w), 1280(m), 1250(s), 1151(m),
1120(m), 1072(m), 1016(m), 954(w), 907 (vs), 872(m), 843(w), 791(w), 759(m), 654(m), 503(m).

[M{UO2(LR)(OAc)}2] complexes (5 and 6), general procedure. A solution of M(OAc)2
· n H2O (0.05 mmol) in MeOH (1 mL) was added to a stirred solution of UO2(OAc)2 ·
2 H2O (42 mg, 0.1 mmol) in MeOH (2 mL). H2LEt2 (40 mg, 0.1 mmol) or H2Lmorph (42 mg,
0.1 mmol) was added and the solution was stirred at room temperature for 1 h. The formed
precipitate was filtered off, washed with MeOH and Et2O and dried in vacuum. Single
crystals for X-ray diffraction were obtained by slow evaporation of a CH2Cl2/MeOH (1:1,
v/v) solution at room temperature.

[Ni{UO2(LEt2)(OAc)}2] (5a). Yield: 70% (53 mg). Elemental analysis: Calcd. for
C40H58Cl2N11O12S4U2Ni ([Ni{UO2(LEt2)(OAc)}2] · 2 CH2Cl2 · H2O): C, 28.7; H, 3.4; N, 8.4;
S, 7.7%. Found: C, 28.7; H, 3.4; N, 7.3; S, 7.7%. IR (KBr, cm−1): 3445(m), 3084(w), 2976(m),
2936(m), 2874(w), 1653(s), 1597(vs), 1558(vs), 1518(vs), 1427(vs), 1385(vs), 1348(s), 1314(m),
1290(m), 1256(s), 1206(m), 1149(m), 1082(m), 1013(m), 955(m), 922(vs), 868 (m), 843(m),
762(s), 685(m), 662(w). UV/Vis (CH2Cl2, nm): 229 (ε = 13.1 × 103 L mol−1 cm−1), 289
(ε = 10.4 × 103 L mol−1cm−1), 369 (ε = 1.9 × 103 L mol−1cm−1).

[Co{UO2(LEt2)(OAc)}2] (5b). Yield: 78% (59 mg). Elemental analysis: Calcd. for
C40H56Cl4N10O12S4U2Co ([Co{UO2(LEt2)(OAc)}2] · 2 CH2Cl2): C, 28.7; H, 3.4; N, 8.4; S,
7.6%. Found: C, 28.9; H, 3.6; N, 8.2; S, 7.5%. IR (KBr, cm−1): 3443(m), 3078(w), 2978(m),
2936(m), 2874(w), 1651(s), 1595(vs), 1560(vs), 1516(vs), 1427(vs), 1387(vs), 1346(s), 1314(w),
1290(m), 1258(s), 1206(m), 1149(m), 1086(m), 1015(m), 955(m), 922(vs), 866 (m), 843(m),
760(s), 685(m), 662(w). UV/Vis (CH2Cl2, nm): 230 (ε = 12.3 × 103 L mol−1cm−1), 292
(ε = 10.5 × 103 L mol−1cm−1), 369 (ε = 1.9 × 103 L mol−1cm−1).

[Fe{UO2(LEt2)(OAc)}2] (5c). Yield 56% (42 mg). Elemental analysis: Calcd. for
C38H58N10O15S4U2Fe ([Fe{UO2(LEt2)(OAc)}2]·3 H2O): C, 29.4; H, 3.8; N, 9.0; S, 8.3%. Found:
C, 29.7; H, 3.5; N, 8.95; S, 8.0%. IR (KBr, cm−1): 3429(m), 3076(w), 2976(m), 2936(m),
2874(w), 1647(s), 1599(vs), 1562(vs), 1518(vs), 1427(vs), 1385(vs), 1348(s), 1314(w), 1290(m),
1258(s), 1206(m), 1149(m), 1086(m), 1016(m), 955(m), 924(vs), 866 (m), 843(m), 762(s), 685(m),
662(w). 1H NMR (400 MHz, CD2Cl2, ppm): 8.64 (m, 4H, py); 8.34 (m, 2H, py); 4.19–4.07
(m, 8H, CH2); 3.97–3.85 (m, 8H, CH2); 2.54 (s, 6H, CH3, OAc); 1.40–1.32 (t, 12H, CH3),
1.26–1.22 (m, 12H, CH3). UV/Vis (CH2Cl2, nm): 229 (ε = 11.2 × 103 L mol−1 cm−1), 288
(ε = 8.9 × 103 L mol−1 cm−1), 370 (ε = 1.8 × 103 L mol−1 cm−1).

[Mn{UO2(LEt2)(OAc)}2] (5d). Yield: 87% (62 mg). Elemental analysis: Calcd. for
C40H56Cl2N10O12S4U2Mn ([Mn{UO2(LEt2)(OAc)}2] · 2 CH2Cl2): C, 28.7; H, 3.4; N, 8.4; S,
7.7%. Found: C, 28.7; H, 3.4; N, 8.3; S, 7.6%. IR (KBr, cm−1): 3445(w), 3075(w), 2974(m),
2936(m), 2874(w), 1649(s), 1600(vs), 1558(vs), 1518(vs), 1423(vs), 1387(vs), 1348(s), 1314(w),
1292(m), 1258(s), 1206(m), 1149(m), 1082(m), 1016(m), 956(m), 924(vs), 868 (m), 843(m),
760(s), 685(m), 662(w). UV/Vis (CH2Cl2, nm): 231 (ε = 10.3 × 103 L mol−1 cm−1), 289
(ε = 8.5 × 103 L mol−1cm−1), 369 (ε = 1.7 × 103 L mol−1 cm−1).

[Zn{UO2(LEt2)(OAc)}2] (5e). Yield: 72% (54 mg). Elemental analysis: Calcd. For
C39H54Cl2N10O12S4U2Zn ([Zn{UO2(LEt2)(OAc)}2] · (CH2Cl2): C, 29.4; H, 3.4; N, 8.8; S,
8.0%. Found: C, 29.4; H, 3.5; N, 8.8; S, 8.1%. IR (KBr, cm−1): 3445(m), 3080(w), 2976(m),
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2936(m), 2874(w), 1647(s), 1597(vs), 1562(vs), 1516(vs), 1431(vs), 1395(vs), 1358(w), 1312(m),
1287(m), 1256(s), 1204(m), 1149(m), 1123(m), 1078(m), 1013(m), 962(w), 916(vs), 847 (m),
758(s), 680(m), 659(w). UV/Vis (CH2Cl2, nm): 234 (ε = 11.1 × 103 L mol−1 cm−1), 309
(ε = 9.1 × 103 L mol−1 cm−1), 369 (ε = 1.6 × 103 L mol−1 cm−1).

[Cd{UO2(LEt2)(OAc)}2] (5f). Yield: 70% (54 mg). Elemental analysis: Calcd. for:
C40H60N10O16S4U2Cd ([Cd{UO2(LEt2)(OAc)}2] 2 MeOH): C, 29.6; H, 3.7; N, 8.6; S, 7.9%.
Found: C, 30.0; H, 3.7; N, 8.8; S, 7.9%. IR (KBr, cm−1): 3446(m), 3078(w), 2974(m),
2933(m), 2874(w), 1649(s), 1599(vs), 1566(vs), 1518(vs), 1431(vs), 1396(vs), 1360(w), 1310(m),
1287(m), 1254(s), 1204(m), 1149(m), 1123(m), 1076(m), 1013(m), 962(w), 916(vs), 847 (m),
758(s), 679(m), 654(w). 1H NMR (CD2Cl2, ppm): 8.67 (d, 4H, J = 7.6 Hz, py); 8.41
(t, 2H, J = 7.6 Hz, py); 4.25–4.15 (m, 8H, CH2); 3.98–3.88 (m, 8H, CH2); 2.29 (s, 6H,
CH3_OAc); 1.30 (t, 12H, J = 7.4 Hz, CH3), 1.09 (t, J = 7.4 Hz, 12H, CH3). ESI(+) MS
(m/z): 1581.2603 (calcd. 1581.2596) [M+Na]+, 1559.2914 (calcd. 1559.2776) [M+H]+. UV/Vis
(CH2Cl2, nm): 231 (ε = 13.1 × 103 L mol−1 cm−1), 305 (ε = 9.5 × 103 L mol−1 cm−1), 369
(ε = 1.5 × 103 L mol−1 cm−1).

[Ni{UO2(Lmorph)(OAc)}2] (6a). Yield: 60% (47 mg). Elemental analysis: Calcd. for
C39H46Cl2N10O16S4U2Ni ([Ni{UO2(Lmorph)(OAc)}2] · CH2Cl2): C, 29.0; H, 3.0; N, 8.0; S,
7.4%. Found: C, 29.0; H, 3.0; N, 8.0; S, 7.4%. IR (KBr, cm−1): 3445(s), 2963(w), 2922(w),
2856(w), 1647(s), 1601(s), 1560(s), 1504(vs), 1429(s), 1387(vs), 1341(m), 1290(m), 1269(w),
1232(m), 1113(m), 1032(m), 955(m), 924(vs), 845 (m), 764(m), 687(w), 607(m). UV/Vis
(CH2Cl2, nm): 231 (ε = 12.8 × 103 L mol−1 cm−1), 298 (ε = 11.7 × 103 L mol−1 cm−1), 369
(ε = 2.6 × 103 L mol−1 cm−1), 398 (ε = 1.9 × 103 L mol−1cm−1).

[Co{UO2(Lmorph)(OAc)}2] (6b). Yield: 76% (59 mg). Elemental analysis: Calcd. for
C40H50Cl2N10O17S4U2Co ([Co{UO2(Lmorph)(OAc)}2] · CH2Cl2 · CH3OH): C, 29.9; H, 3.2;
N, 8.3; S, 7.3%. Found: C, 29.9; H, 3.2; N, 8.3; S, 7.3%. IR (KBr, cm−1): 3427(vs), 2966(w),
2922(w), 2858(w), 1647(s), 1600(s), 1562(s), 1504(vs), 1431(s), 1388(vs), 1342(m), 1292(m),
1232(m), 1113(m), 1032(m), 953(m), 924(vs), 844 (m), 764(m), 683(w), 607(m). UV/Vis
(CH2Cl2, nm): 235 (ε = 12.2 × 103 L mol−1 cm−1), 298 (ε = 12.3 × 103 L mol−1 cm−1), 369
(ε = 2.5 × 103 L mol−1 cm−1), 399 (ε = 1.5 × 103 L mol−1 cm−1).

[Fe{UO2(Lmorph)(OAc)}2] (6c). Yield: 53% (42 mg). Elemental analysis: Calcd. for
C38H44N10O16S4U2Fe: C, 29.3; H, 2.9; N, 9.0; S, 8.2%. Found: C, 29.3; H, 2.9; N, 9.0;
S, 8.2%. IR (KBr, cm−1): 3433(vs), 2959(w), 2920(w), 2855(w), 1639(s), 1589(s), 1555(vs),
1506(s), 1431(vs), 1391(vs), 1346(m), 1285(m), 1227(m), 1111(s), 1067(w), 1026(m), 951(m),
916(vs), 841 (m), 758(m), 675(m), 637(w). 1H NMR (CD2Cl2, ppm): 8.72 (m, 4H, py); 8.38
(m, 2H, py); 4.35–3.70 (32H, CH2); 2.59 (s, 6H, CH3, OAc). UV/Vis (CH2Cl2, nm): 231
(ε = 12.2 × 103 L mol−1 cm−1), 284 (ε = 10.8 × 103 L mol−1 cm−1), 368 (ε = 2.2 × 103 L
mol−1 cm−1).

[Mn{UO2(Lmorph)(OAc)}2] (6d). Yield: 80% (62 mg). Elemental analysis: Calcd. for
C40H48N10O18S4U2Mn ([Mn{UO2(Lmorph)(OAc)}2]·2 CH3OH): C, 30.9; H, 3.5; N, 8.6; S,
7.9%. Found: C, 30.9; H, 3.5; N, 8.6; S, 7.8%. IR (KBr, cm−1): 3429(m), 2965(w), 2922(w),
2857(w), 1647(s), 1598(s), 1564(vs), 1506(s), 1429(s), 1391(vs), 1344(m), 1288(m), 1234(m),
1115(m), 1069(w), 1032(m), 953(m), 922(vs), 843 (m), 764(m), 685(m), 607(w). UV/Vis
(CH2Cl2, nm): 233 (ε = 12.1 × 103 L mol−1 cm−1), 293 (ε = 11.4 × 103 L mol−1cm−1), 369
(ε = 2.3 × 103 L mol−1 cm−1), 399 (ε = 1.4 × 103 L mol−1 cm−1).

[Zn{UO2(Lmorph)(OAc)}2] (6e). Yield: 74% (58 mg). Elemental analysis: Calcd. for
C39H46Cl2N10O16S4U2Zn ([Zn{UO2(Lmorph)(OAc)}2]·CH2Cl2): C, 29.6; H, 3.0; N, 8.4; S,
7.7%. Found: C, 29.7; H, 3.0; N, 8.4; S, 7.7%. IR (KBr, cm−1): 3443(s), 2967(w), 2924(w),
2858(w), 1647(s), 1597(s), 1560(vs), 1506(vs), 1429(s), 1394(vs), 1344(m), 1292(m), 1234(m),
1115(m), 1069(w), 1032(m), 953(m), 922(vs), 843 (m), 764(m), 687(m), 607(w). ESI(+) MS
(m/z): 1603.1741 (calcd. 1603.1758) [M+K]+; 1587.2003 (calcd. 1587.2019) [M+Na]+. UV/Vis
(CH2Cl2, nm): 230 (ε = 12.8 × 103 L mol−1 cm−1), 301 (ε = 11.5 × 103 L mol−1 cm−1), 369
(ε = 2.5 × 103 L mol−1 cm−1).

[Cd{UO2(Lmorph)(OAc)}2] (6f). Yield: 72% (58 mg). Elemental analysis: Calcd. for
C40H48Cl2N10O16S4U2Cd ([Cd{UO2(Lmorph)(OAc)}2]·2 CH2Cl2): C, 29.3; H, 2.8; N, 8.7; S,
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8.0%. Found: C, 29.3; H, 2.8; N, 8.7; S, 8.0%. IR (KBr, cm−1): 3441(s), 2964(w), 2922(w),
2857(w), 1647(s), 1595(s), 1562(vs), 1506(vs), 1429(s), 1394(vs), 1342(m), 1292(m), 1233(m),
1113(m), 1069(w), 1030(m), 951(m), 920(vs), 843 (m), 762(m), 685(m), 606(w). 1H NMR
(CD2Cl2, ppm): 8.82 (d, J = 7,6 Hz, 4H, py); 8.46 (t, J = 7.6 Hz, 2H, py); 4.40–3.50 (m, 32H,
CH2); 2.32 (s, 6H, CH3_ OAc). ESI(+) MS (m/z): 1653.1428 (calcd. 1653.1500) [M+K]+;
1637.1689 (calcd. 1637.1761) [M+Na]+. UV/Vis (CH2Cl2, nm): 230 (ε = 12.4 × 103 L mol−1

cm−1), 300 (ε = 10.1 × 103 L mol−1 cm−1), 369 (ε = 2.2 × 103 L mol−1 cm−1).
[(UO2)(NiI)2(LEt2)2]. [UI3(dioxane)1.5] (76 mg, 0.1 mmol) was suspended in THF

(5 mL), and NiI2 (78 mg, 0.25 mmol) and H2LEt2 (80 mg, 0.2 mmol) were added as solids. The
mixture was stirred at room temperature until a clear solution was formed (approximately
2 h). Brown crystals were deposited upon slow evaporation of the solvent. Yield: 45%
(71 mg). Elemental analysis: Calcd. for C42H62I2N10Ni2O8S4U ([(UO2)(NiI)2(LEt2)2] × 2
THF); C, 32.0;H, 3.9; N, 8.9; S, 8.1%. Found: C, 31.5; H, 3.8; N, 8.6; S, 8.2%. IR (KBr, cm−1):
3450(m), 2966(m), 2933(w), 2870(w), 2813(w), 2745(w), 1591(vs), 1550(vs), 1422(s), 1389(vs),
1358(w), 1307(w), 1271(m), 1252(s), 1148(m), 1120(m), 1070(m), 1014(m), 906 (vs), 873(m),
839(w), 788(w), 757(m), 664(m). ESI(+) MS (m/z): 1427.3901 (calcd. 1426.9867) [M+H]+;
1301.0630 (calcd. 1301.0822) [M–I+H]+ 1174.1608 (calcd. 1174.1778) [M–2I+H]+.

3.4. X-Ray Crystallography

The intensities for the X-ray determinations were collected on STOE IPDS-2T (STOE,
Darmstadt, Germany) or Bruker CCD instruments (BRUKER, Billerica, MA, USA) with
Mo/Kα radiation. The various temperatures applied are due to the experimental setup
of the different diffractometers. Semi-empirical or numerical absorption corrections were
carried out by the SADABS or X-RED32 programs [87,88]. Structure solution and refinement
were performed with the SHELX programs [89,90] included in the OLEX2 program package
(version 1.5) [91]. Hydrogen atoms were calculated for idealized positions and treated
with the “riding model” option of SHELXL. The solvent mask option of OLEX2 was
applied to treat diffuse electron density due to disordered solvents. Details are given in the
Supplementary Materials. The representation of molecular structures was conducted using
the program Mercury [92].

3.5. Computational Chemistry

Density Functional Theory (DFT) calculations were performed with the high-performance
computing system of the ZEDAT [93] using the program package GAUSSIAN 16 [94]. The
gas phase geometry optimizations were performed using coordinates derived from the X-
ray crystal structures. The calculations for the ligand molecules H2LEt2 and H2Lmorph were
performed without any restrictions on the structures by using the hybrid density functional
B3LYP [95–97] together with the 6-311G basis set for all atoms as implemented in Gaus-
sian [98,99]. For initial optimization of uranium-containing compounds, the LANL2DZ
basis set and the corresponding effective core potential (ECP) was used for uranium [100],
while 6-311G was initially kept for the other atoms. The bigger 6-311++G** basis set
was used for the other atoms to obtain more reliable geometries [98,99,101–103]. Rela-
tivistic, dispersion corrected, all-electron calculations on the PBE0-DKH2-GD3BJ/SARC-
DKH2(uranium)+aug-cc-pVTZ-DK(others) level as suggested in ref. [104] were attempted
but the system size proved prohibitive. For comparable accuracy as outlined in ref. [105],
calculations using the PBE0 hybrid functional ([106]) with Grimme dispersion and Becke-
Johnson damping ([107]) using the Stuttgart relativistic large core ECP for uranium [108,109],
and the def2-TZVPPD basis set for all other atoms [110,111] were attempted. Although
some SCF calculations for the N,N-diethyl derivatives did not converge (see main text), the
energetic trends are reasonably close to those obtained at the B3LYP level. The same level of
theory (PBE0-GD3BJ/def2-TZVPPD) was applied in single point calculations of the ligand
isomers with geometries obtained at the B3LYP/6-311G to obtain more reliable relative
energy difference estimated between the different conformers. Further details are given
in the Supporting Information. All basis sets were obtained from the EMSL database or
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the Basis Set Exchange repository [108,109]. Frequency calculations after the optimizations
confirmed the convergence through the absence of imaginary frequencies.

4. Conclusions

2,6-Dipicolinoylbis(N,N-dialkylthioureas) are versatile ligands, which form a variety
of uranium complexes. The structures of the dimeric compounds of the composition
[{UO2(LR)(µ-OMe)}2]2− are flexible, and different conformations are established depending
on the solvents used for crystallization and the counter ions. The dimers readily dissociate
in solution. [{UO2(LR)(µ-OMe)}2]2− building blocks are also structural components of
bimetallic complexes with gold and lead; thus, the corresponding products display a
similar dissociation behavior in solution. More stable are bimetallic products with M2+

transition metal ions, in which a different bonding mode of the {LR}2− ligands to the uranyl
centers is established. Generally, a strong pH dependence was observed during the complex
formation, which makes such compounds interesting for metal extraction processes in
nuclear waste solutions. Additionally, information is delivered about potential distribution
pathways and chemical species conversions in biological systems in which pH changes
play a decisive role.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29215001/s1: Table S1: Crystallographic data and
data collection parameters. Table S2: Crystallographic data and data collection parameters for
inspection only. Figure S1: Ellipsoid representation of the structure of (HNEt3)2anti,anti-[1], also
illustrating the disordered parts of the molecule. The thermal ellipsoids are set at a 30% probability
level. Hydrogen atoms are omitted for clarity. Table S3: Bond lengths (Å) in (HNEt3)2anti,anti-[1].
Table S4: Bond angles (◦) in (HNEt3)2anti,anti-[1]. Figure S2: Ellipsoid representation of the structure
of (EtPPh3)2syn,anti-[1], also illustrating the disordered parts of the molecule. The thermal ellipsoids
are set at a 30% probability level. Hydrogen atoms are omitted for clarity. Table S5: Bond lengths (Å)
(EtPPh3)2syn,anti-[1]. Table S6: Bond angles (◦) (EtPPh3)2syn,anti-[1]. Figure S3: Ellipsoid represen-
tation of the structure of [Pb2(UO2)3(LEt2)3(µ-OMe)2(MeOH)2] (3), also illustrating the disordered
parts of the molecule. The thermal ellipsoids are set at a 30% probability level. Hydrogen atoms are
omitted for clarity. Table S7: Bond lengths (Å) [Pb2(UO2)3(LEt2)3(µ-OMe)2(MeOH)2] (3). Table S8:
Bond angles (◦) [Pb2(UO2)3(LEt2)3(µ-OMe)2(MeOH)2] (3). Figure S4: Ellipsoid representation of
the structure of [{(UO2)2(LEt2)(µ2-OAc)(µ3-O)}2] (4), also illustrating the partial S/O (90/10) ex-
change. The thermal ellipsoids are set at a 30% probability level. Hydrogen atoms are omitted for
clarity. Table S9: Bond lengths (Å) of [{(UO2)2(LEt2)(µ2-OAc)(µ3-O)}2] (4). Table S10: Bond angles
(◦) in of [{(UO2)2(LEt2)(µ2-OAc)(µ3-O)}2] (4). Figure S5. Ellipsoid representation of the structure
of [Ni{UO2(LEt2)(OAc)}2] (5a) x MeOH. The thermal ellipsoids are set at a 30% probability level.
Hydrogen atoms are omitted for clarity. Table S11: Bond lengths (Å) of [Ni{UO2(LEt2)(OAc)}2] (5a).
Table S12: Bond angles (◦) in [Ni{UO2(LEt2)(OAc)}2] (5a). Figure S6: Ellipsoid representation of the
structure of [Co{UO2(LEt2)(OAc)}2] (5b) x CH2Cl2. The thermal ellipsoids are set at a 30% probability
level. Hydrogen atoms are omitted for clarity. Table S13: Bond lengths (Å) of [Co{UO2(LEt2)(OAc)}2]
(5b). Table S14: Bond angles (◦) in [Co{UO2(LEt2)(OAc)}2] (5b). Figure S7: Ellipsoid representation
of the structure of [Fe{UO2(LEt2)(OAc)}2] (5c). The thermal ellipsoids are set at a 30% probability
level. Hydrogen atoms are omitted for clarity. Table S15: Bond lengths (Å) of [Fe{UO2(LEt2)(OAc)}2]
(5c). Table S16. Bond angles (◦) in [Fe{UO2(LEt2)(OAc)}2] (5c). Figure S8: Ellipsoid representa-
tion of the structure of [Mn{UO2(LEt2)(OAc)}2] (5d) x CH2Cl2. The thermal ellipsoids are set at a
30% probability level. Hydrogen atoms are omitted for clarity. Table S17: Bond lengths (Å) of
[Mn{UO2(LEt2)(OAc)}2] (5d). Table S18: Bond angles (◦) in [Mn{UO2(LEt2)(OAc)}2] (5d). Figure S9:
Ellipsoid representation of the structure of [Co{UO2(Lmorph)(OAc)}2] (6b) x CH2Cl2. The thermal
ellipsoids are set at a 30% probability level. Hydrogen atoms are omitted for clarity. Table S19: Bond
lengths (Å) of [Co{UO2(Lmorph)(OAc)}2] (6b). Table S20: Bond angles (◦) in [Co{UO2(Lmorph)(OAc)}2]
(6b). Figure S10: Ellipsoid representation of the structure of [(UO2)(NiI)2(LEt2)2] (7) x THF, also
illustrating the disordered parts of the molecule. The thermal ellipsoids are set at a 30% probability
level. Hydrogen atoms are omitted for clarity. Table S21: Bond lengths (Å) of [(UO2)(NiI)2(LEt2)2]
(7). Table S22: Bond angles (◦) in [(UO2)(NiI)2(LEt2)2] (7). Figure S11: Ellipsoid representation
of the structure of (EtPPh3)2anti,anti-[{UO2(Lmorph)(µ-OMe)}2], (EtPPh3)2anti,anti-[8], also illus-
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trating the disordered parts of the molecule. The thermal ellipsoids are set at a 30% probability
level. Hydrogen atoms are omitted for clarity. Table S23: Bond lengths (Å) of (EtPPh3)2anti,anti-
[{UO2(Lmorph)(µ-OMe)}2], (EtPPh3)2anti,anti-[8]. Table S24: Bond angles (◦) in (EtPPh3)2anti,anti-
[{UO2(Lmorph)(µ-OMe)}2], (EtPPh3)2anti,anti-[8]. Figure S12: Representation of the structure of
(HNEt3)2anti,anti-[{UO2(Lmorph)(µ-OMe)}2] x MeOH, (HNEt3)2anti,anti-[8]. The thermal ellipsoids
are set at a 30% probability level. Hydrogen atoms are omitted for clarity. Table S25: Bond lengths (Å)
of (HNEt3)2anti,anti-[{UO2(Lmorph)(µ-OMe)}2], (HNEt3)2anti,anti-[8]. Table S26: Bond angles (◦) in
(HNEt3)2anti,anti-[{UO2(Lmorph)(µ-OMe)}2], (HNEt3)2anti,anti-[8]. Figure S13: Representation of the
structure of [{UO2(LEt2)(µ-OMe)}2{Au(PPh3)}2] (2). The thermal ellipsoids are set at a 30% probability
level. Hydrogen atoms are omitted for clarity. Table S27: Bond lengths (Å) of [{UO2(LEt2)(µ-
OMe)}2{Au(PPh3)}2] (2). Table S28: Bond angles (◦) in [{UO2(LEt2)(µ-OMe)}2{Au(PPh3)}2] (2).
Figure S14: Ellipsoid representation of the structure of [Ni{UO2(Lmorph)(OAc)}2] (6a), also illus-
trating the disordered parts of the molecule. The thermal ellipsoids are set at a 30% probability level.
Hydrogen atoms are omitted for clarity. Table S29: Bond lengths (Å) of [Ni{UO2(Lmorph)(OAc)}2]
(6a). Table S30: Bond angles (◦) in [Ni{UO2(Lmorph)(OAc)}2] (6a). Figure S15: Ellipsoid representa-
tion of the structure of [Zn{UO2(Lmorph)(OAc)}2] (6e), also illustrating the disordered parts of the
molecule. The thermal ellipsoids are set at a 30% probability level. Hydrogen atoms are omitted for
clarity. Table S31: Bond lengths (Å) of [Zn{UO2(Lmorph)(OAc)}2] (6e). Table S32: Bond angles (◦)
in [Zn{UO2(Lmorph)(OAc)}2] (6e). Figure S16: 1H NMR spectra of (HNEt3)2[{UO2(LEt2)(µ-OMe)}2],
(HNEt3)2[1], in CDCl3 and DMSO. Figure S17: ESI(–) mass spectrum of (HNEt3)2[{UO2(LEt2)(µ-
OMe)}2], (HNEt3)2[1]. Figure S18: ESI(+) mass spectrum of [Pb2(UO2)3(LEt2)3(µ-OMe)2(MeOH)2] (3).
Figure S19: ESI(+) mass spectrum of [Zn{UO2(LEt2)(OAc)}2] (5e). Figure S20: 1H NMR spectrum of
[Cd{UO2(LEt2)(OAc)}2] (6f) in CDCl3. Figure S21: ESI(+) mass spectrum of [Cd{UO2(LEt2)(OAc)}2]
(6f). Figure S22: ESI(+) mass spectrum of [(UO2)(NiI)2(LEt2)2] (7). Figure S23: Considered (po-
tential) conformers of H2LPhthal. Table S33: DFT calculations of the different conformations of
H2LEt2 and H2Lmorph. Level of theory: B3LYP; basis sets: 6-311G. Figure S24: Considered (po-
tential) conformers of H2LEt2. Stable conformers are black, while unstable conformers are given
in red. Grey conformers have not been considered. Table S34: DFT calculations of the different
conformations of H2LPhthal. Level of theory: B3LYP; basis sets: 6-311G. Figure S25: Considered
(potential) conformers of H2Lmorph. Stable conformers are black, while unstable conformers are
given in red. Grey conformers have not been considered. Table S35: DFT calculations of the dif-
ferent conformations of H2Lmorph. Optimization level B3LYP/6-311G. Single-point level: PBE0-
GD3BJ/def2-TZVPPD. The most stable isomer is bold. Table S36: DFT calculations of the different
conformations of H2Lmorph. Level: B3LYP/LANL2DZ(uranium)+6-311++G**(others). The most
stable isomer is bold. Table S37: DFT calculations of the different conformations of H2Lmorph.
Optimization level: B3LYP/LANL2DZ(uranium)+6-311++G**(others). Single-point level: PBE0-
GD3BJ/StuttgartRLC(uranium)+def2-TZVPPD(others). The most stable isomer is bold.
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