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Abstract

Dynamical systems on networks, which can be seen as a special type of agent-based model,
are widely used to model systems that consist of many interacting entities called agents.
In this framework the nodes in the network represent the agents, the edges represent the
relations between them, and the state of each agent evolves over time in dependence on
the states of its neighbors, typically in a stochastic manner. Although the state evolution
of each single agent is often dictated by simple rules and mechanisms, the overall collective
or emergent behavior of the system, which is the result of many individual interactions,
can be incredibly hard to anticipate and understand. The investigation of this collective
behavior is the main focus of this thesis.

Even though the collective behavior is difficult to predict, it is typically much less
complex than the vast number of degrees of freedom would allow for and instead (ap-
proximately) follows some low-dimensional dynamics. The understanding of collective
behavior hence consists of two steps. Firstly, a projection that maps the high-dimensional
microscopic state, containing the state of each agent, to a low-dimensional macroscopic
state, containing only the essential aggregated information to describe the collective be-
havior, has to be found. This projection, which filters out unnecessary degrees of freedom
and quickly decaying processes of the original system, is called a collective variable (CV).
Secondly, the reduced macroscopic system that dictates the evolution of the macroscopic
state has to be derived. If the choice of CV was appropriate, this macroscopic system is
able to reproduce the low-dimensional projection of the original model, i.e., the collective
behavior. Akin to the law of large numbers, the aggregated random actions of many
agents sometimes lead to an approximately deterministic macroscopic dynamics, which is
referred to as a concentration effect.

This thesis mainly considers Markovian discrete-state dynamics on (random) networks
and addresses efficient simulation, discovery of CVs and macroscopic dynamics, and the
occurrence of concentration effects. In this setting the shares of each discrete state in the
system, or in certain subsystems, constitute an important choice of CVs. Conditions that
guarantee the convergence of the dynamics of the shares to a deterministic mean-field
ordinary differential equation in the large population limit are proved. These conditions
enable the derivation of parameter bounds for popular random graph models, e.g., Erdős–
Rényi random graphs, the stochastic block model, and random regular graphs, that ensure
convergence to the mean-field limit, which is demonstrated for a continuous-time noisy
voter model (CNVM). For systems that do not exhibit convergence to the mean-field
limit and for which the simple state shares are not appropriate CVs because they lack
essential state information, a data-driven method for algorithmically learning good and
interpretable CVs from model simulations is presented. This method permits to assess
the quality of the learned CVs and to infer their relation to topological features of the
network. In combination with established techniques for learning dynamics from data, an
automatic evaluation of the collective behavior can be achieved. This is demonstrated for
the CNVM on scale-free networks.
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1. Introduction

Systems containing a large number of interacting entities are the subject of agent-based
modeling. The relationships between these entities are commonly defined with the help of
a network, in which case the model is referred to as a dynamical system on a network. Due
to their numerous applications, these systems attract the attention of researchers from
various disciplines. However, understanding the collective behavior of complex agent-
based models is naturally difficult as the multitude of local interactions between the
many agents often has consequences on a macroscopic scale that are hard to predict. The
main focus of this thesis is to investigate the collective behavior of dynamical systems on
networks. This chapter motivates and describes the research questions addressed in this
thesis, gives an outline of the thesis, and discusses the main contributions.

Agent-based models. In agent-based models (ABMs) [4, 5, 6, 7] a collection of au-
tonomous decision-making entities called agents interact with each other and with a
shared environment based on a set of rules. The behavior of each agent may depend
on its individual properties, its relations to other agents, and its access to (local) informa-
tion about the environment. ABMs are also called microscopic models as they describe a
system in terms of its smallest parts. Macroscopic models on the other hand aim to de-
scribe a system on a global scale by examining the evolution of macroscopic or aggregated
variables like averages or densities, typically in the form of differential equations.
For many real-world phenomena, ABMs provide the most natural modeling framework.

They are typically the preferred choice for systems involving a possibly heterogeneous
population of behavioral entities that interact in complex ways, e.g., humans, human-
controlled organizations, or animals. It is often intuitive to specify the desired rules of
the ABM, and realistic behavior of agents can usually be guessed or inferred from data
or surveys. Stochasticity can easily be included in ABMs to take account of uncertainty
or variability of an agent’s behavior. Moreover, an ABM offers a lot of flexibility and
versatility as its rules can be modified at will and the complexity of the agents’ behaviors
and interactions can be varied immensely, from simple particle-like agents whose behavior
is predetermined by the physics of the simulation to complex agents that make decisions,
learn from their history, and adapt their strategies.
Although the actions of each agent may be intuitive and easy to understand, the macro-

scopic emergent or collective behavior of the system that results from the agents’ interac-
tions is often complex and unpredictable. Even a small change in the environment or in
the behavior of the agents may produce a qualitatively different and unexpected outcome
on a global scale. As a consequence, it is inherently difficult to directly define macroscopic
models for these types of systems as prior knowledge of the complex emergent behavior
would be necessary.
Due to their rule-based and modular structure, ABMs are well suited for numerical

simulation and are employed in numerous (scientific) fields and applications. For exam-
ple, in transportation engineering ABMs are used to model traffic and pedestrian flow. In
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1. Introduction

finance and economy, ABMs are frequently employed to model (stock) markets, supply
chains, customer management, and marketing strategies. Engineers model smart power
grids or the Internet of things within an ABM framework. Another common field of appli-
cation is computational social science, where opinion dynamics and innovation dynamics
are modeled using ABMs. Conceptually similar models are also employed in epidemiology
to study the spreading of diseases.

Despite its success, agent-based modeling also comes with several issues. Especially for
social systems involving human agents, which exhibit a complex decision-making process
and sometimes act irrationally, the model parameters and the agents’ exact behavior are
hard to quantify and verify. Although the rough mechanisms of the underlying system are
easily included in an ABM, specific parameter values can often only be guessed. Hence,
in most cases an ABM is restricted to providing a qualitative insight into real-world
processes; it is not able to produce a precise quantitative prediction. Furthermore, the
simulation time and memory requirements of ABMs typically scale at least linearly with
the number of agents. Thus, a large scale ABM containing thousands or millions of agents
can quickly become computationally intractable. To handle models of that amplitude, one
can try to find a reduced representation of the dynamics that keeps the interesting emer-
gent behavior intact, i.e., a fitting macroscopic model. Finding this reduced representation
for certain types of models is the main focus of this thesis.

Motivation and research questions. In this thesis, ABMs in the form of dynamical
systems on networks are considered. Each node of the network represents an agent and
the edges between nodes represent some kind of relation between the adjacent agents.
Additionally, each agent has a state that evolves over time depending on the states of its
neighbors in the network. Systems of this type are used across many disciplines, but they
are especially prominent in computational social sciences and epidemiology. The objective
of this work is to explore the macroscopic behavior of dynamical systems on networks in
two steps.

The first step addresses the question of finding a projection of the high-dimensional
microscopic system state containing the state of each agent into a low-dimensional space
that describes the macroscopic state of the system. Ideally, these projections filter out
unnecessary degrees of freedom and quickly decaying processes of the original system
while still allowing a description of the essential dynamics, in which case they are called
collective variables (CVs) or reaction coordinates. The mere knowledge of good CVs can
already provide a decent understanding of the macroscopic behavior as they describe the
information most relevant to the system’s dynamics. The aim of this thesis is to find
methods for discovering CVs for dynamical systems on networks and to investigate under
what conditions certain types of CVs work well.

The second step is concerned with actually finding a reduced macroscopic system, i.e.,
evolution equations for the macroscopic state given by the collective variables such that
the reduced model approximates the low-dimensional projection of the original dynamics.
Although the reduced system is generally still stochastic, in some cases the small random
actions of many agents may cancel each other out such that, in the fashion of the law of
large numbers, the macroscopic dynamics is approximately deterministic. This is referred
to as a concentration effect. A substantial part of the thesis studies conditions on the
system and on the network under which these concentration effects are observed, and the
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derivation of the resulting deterministic macroscopic dynamics in the form of an ordinary
differential equation (ODE). Moreover, macroscopic dynamics in the form of stochastic
differential equations (SDEs) and partial differential equations (PDEs) are also considered.
The benefits of obtaining a macroscopic system in such a simple form are obvious: a large
body of theory and tools designed for studying differential equations can be applied to
examine the macroscopic dynamics, e.g., analytical solution methods, stability analysis,
and bifurcation theory.

Consider for example the so-called SIS model from epidemiology. In the SIS model on
a network each node is either susceptible (S) or infectious (I). Assume that a susceptible
node randomly switches to being infectious at the rate λ > 0 times the percentage of
infectious nodes in its neighborhood. For instance, if a susceptible node has two susceptible
neighbors and one infectious neighbor, it becomes infectious at the rate 1

3λ. Moreover,
assume that infectious nodes randomly become susceptible again at the rate 1. With the
theory discussed in this thesis it is possible to show that, for specific networks that satisfy
certain conditions, the share of infectious nodes c(t) ∈ [0, 1] is a collective variable and
evolves according to the simple ODE

d

dt
c(t) = −c(t) + λ(1− c(t)) c(t) (1.1)

in the limit of infinitely many agents. For a finite but large number of agents, the above
equation is a good approximation of the macroscopic dynamics. Note the transcritical
bifurcation at the critical value λc = 1: for λ < λc the equilibrium c = 0 is stable, but
for λ > λc it is unstable and the equilibrium c∞ = (λ − 1)/λ is stable instead. As a
result, the disease will always die out if the infection rate is smaller than λc. If it is
larger than λc, the share of infectious agents converges to the steady-state c∞, i.e., the
disease becomes endemic in the population. Hence, the critical value λc is also called
the epidemic threshold. This example illustrates how the derivation of a simple reduced
dynamical model allows understanding the macroscopic behavior of a complex ABM by
applying classical tools, in this case bifurcation theory for ODEs.

Even if the reduced macroscopic system can not be treated easily with classical theory
because it is still too complicated, it is nevertheless much faster to evaluate or simulate
than the original microscopic model. The reason is that the reduced macroscopic system
typically has a much more favorable scaling than the microscopic model, for which the
simulation cost increases at least linearly with the number of agents. Hence, knowledge of
an approximating reduced system is crucial for understanding the macroscopic behavior
without the need for countless hours of simulation of the agent-based model. It is impor-
tant especially if many simulations of the model have to be conducted for a wide range
of parameters to obtain significant statistics, for example when evaluating the effect of
different countermeasures in an epidemiological model.

Thesis outline. The following two chapters, chapter 2 and 3, provide an introduction to
the topic and mainly contain general considerations, examples, and an overview of related
literature. The specific results of this thesis are then discussed in the subsequent chapters
4 to 7. The contents of each chapter are summarized below.

An introduction to dynamical systems on networks is offered in chapter 2. Commonly
studied models and their behavior are presented, including the continuous-time noisy
voter model (CNVM) that acts as guiding example throughout the thesis. Moreover, the
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1. Introduction

concepts of collective variables and concentration effects are discussed in the context of dy-
namical systems on networks. Finally, popular model reduction techniques for dynamical
systems on networks are introduced.
Random graphs, which are discussed in chapter 3, are an important tool for generating

networks with certain characteristics. Common random graph models and their properties
are presented. Moreover, a concept called graphons, which is useful for studying large
dense networks and defining their graph limit, is introduced.
Many popular dynamical systems on networks fall into the class of Markov jump pro-

cesses, where nodes switch between discrete states according to a continuous-time Markov
chain. As it is crucial to be able to examine their behavior and verify theoretical consider-
ations numerically, even for a large number of agents, chapter 4 discusses how to simulate
such systems efficiently on a computer. A simulation algorithm for the CNVM, which is
also a Markov jump process, is derived and its performance investigated.
For such Markov jump processes the shares of each discrete state in the system, e.g.,

the percentage of infectious agents in an epidemiological model, are obvious candidates
for collective variables. Chapter 5 addresses the question whether certain Markov jump
processes on networks possess a mean-field limit in the sense that the stochastic dynamics
of the shares of each discrete state concentrate around an ODE in the large population
limit. A main theorem that provides conditions for the convergence to this mean-field
limit is proven and the rate of convergence is studied. Moreover, this main theorem is
applied to the CNVM on several random graph models. For each of these graph models,
bounds for the specific parameters that guarantee the convergence to the mean-field limit
are derived. The mean-field limit only provides a reasonable approximation to the macro-
scopic dynamics if the number of nodes is quite large. However, it can be augmented
with a stochastic term such that the resulting SDE is able to approximate the dynamics
well even for medium-sized populations, which is also demonstrated in this chapter. Fi-
nally, an extension of the large population limit to leader-follower models, in which a few
very influential agents affect a large mass of ordinary agents, is presented. The resulting
reduced model has the form of a piecewise-deterministic Markov process (PDMP).
In chapter 5 it becomes apparent that these mean-field limits of the state shares are valid

only in the case of large and homogeneous networks of sufficient density. For networks
where the nodes have substantially varying degrees, e.g., scale-free networks, or for sparse
networks, the simple state shares are typically not a good choice of collective variables
as they do not carry sufficient information to describe the macroscopic dynamics. Thus,
in chapter 6 a data-driven method for automatically learning good collective variables
for discrete-state dynamical systems on networks is presented. It is applied to several
examples and a technique for the numerical validation of the results is discussed. While
this method is able to provide good collective variables, it does not generate the reduced
system. However, existing data-driven techniques for learning dynamics can be appended
to form a complete model reduction pipeline, which is demonstrated for the CNVM on
scale-free networks.
Chapter 7 contains several considerations regarding ring-shaped networks, i.e., the one-

dimensional periodic lattice and similar networks. The study of dynamical systems on
such sparse networks is much harder and generally requires different approaches than
the mean-field theory discussed in previous chapters. Instead of dealing with sparse
large population limits, this chapter focuses on approximations for the finite ring and the
connections to mean-field theory for dense networks. Firstly, it is demonstrated that the
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mean-field limit for dense networks is unsurprisingly a poor approximation for dynamics
on the ring. Moreover, the approximation error of the mean-field limit is examined when
interpolating between a ring network and a homogeneous random graph, i.e., in the so-
called small-world regime. Secondly, a so-called triplet approximation is derived for the
finite ring, and a novel data-driven approach to reduce the error of the associated moment
closure is presented. Thirdly, it is demonstrated that, when considering a dense version
of the ring graph, graphon theory can be applied to obtain a mean-field limit in the form
of a PDE describing the evolution of probability densities in the system. However, it is
shown that this graphon mean-field limit fails to produce a good approximation if the
graph becomes too sparse.
Finally, the thesis is concluded in chapter 8 where the most relevant aspects are sum-

marized and possible further research questions are discussed.

Main contributions. The two main contributions of this thesis are the considerations
about mean-field limits of Markov jump processes on networks presented in chapter 5 and
the data-driven algorithm for learning collective variables presented in chapter 6.
The main theorem for mean-field limits in section 5.1, whose proof was developed

mainly by the author, provides the foundation to derive bounds for the parameters of
several random graph models that guarantee a convergence to the mean-field limit, see
section 5.2. Note that sections 5.1 and 5.2 are motivated by and partially reprinted from
the author’s publication

[1]: M. Lücke, J. Heitzig, P. Koltai, N. Molkenthin, and S. Winkelmann.
Large population limits of markov processes on random networks. Stochastic
Processes and their Applications, 166:104220, 2023.

with the permission of the co-authors and the publisher. The remaining sections in chap-
ter 5 also build on this main theorem, for example to construct a stochastic limit equation
for medium-sized populations.

The data-driven algorithm presented in chapter 6 enables an automatic learning of good
collective variables for discrete-state dynamical systems on networks, which is especially
useful for network topologies where the mean-field results mentioned previously do not
apply. Sections 6.1 and 6.2 are motivated by and partially reprinted from the author’s
publication

[2]: M. Lücke, S. Winkelmann, J. Heitzig, N. Molkenthin, and P. Koltai.
Learning interpretable collective variables for spreading processes on networks.
Physical Review E, 109(2):L022301, 2024.

with permission of the co-authors and the publisher. In section 6.3 it is demonstrated that
this method can be used to construct a complete data-driven model reduction pipeline by
combining it with existing algorithms for learning dynamics. The thereby learned reduced
model for the CNVM on scale-free networks is a modification of the standard mean-field
limit, which, to the knowledge of the author, has not been discussed in the literature
before.
Another contribution of this thesis is the idea to complement moment closure methods

with data-driven techniques to minimize the error, which is demonstrated for a triplet
approximation of the continuous-time noisy voter model in section 7.2. The approach is
largely adopted from the author’s publication

5



1. Introduction

[3]: M. Lücke, P. Koltai, S. Winkelmann, N. Molkenthin, and J. Heitzig.
Discovering collective variable dynamics of agent-based models. In Extended
Abstracts presented at the 25th International Symposium on Mathematical
Theory of Networks and Systems MTNS 2022, pages 202-205. University of
Bayreuth, 2022.

with permission of the co-authors.
Finally, note that the simulation algorithm for the continuous-time noisy voter model

discussed in section 4.2 is implemented in the Python package

Spreading Processes on Networks (SPoNet), available at
https://github.com/lueckem/SPoNet,

which was developed by the author and is used for all simulations presented in this thesis.

1.1. Remarks on notation

Consider the following remarks:

• The terms network and graph are used synonymously to describe a pair G = (V,E).
The elements of V are commonly called vertices, nodes, sites, or points. In this
thesis the term nodes is used and in the context of dynamical systems on networks
the nodes are also referred to as agents. The set E contains pairs of nodes that are
commonly called edges, links, bonds, or lines. In this thesis the term edges is used.

• Random variables are set in bold typeface, e.g., x may denote a random variable
and x a realization of x. The notation x ∈ X is employed to specify that x is a
X-valued random variable.

• For two functions f, g : R→ R>0 the asymptotic dominance of f over g is denoted
by

f(x)≫ g(x) :⇔ f(x) = ω(g(x)) :⇔ lim
x→∞

f(x)

g(x)
=∞ (1.2)

and asymptotic dominance of g over f by

f(x)≪ g(x) :⇔ f(x) = o(g(x)) :⇔ lim
x→∞

f(x)

g(x)
= 0. (1.3)

• Given a number N ∈ N, the abbreviation [N ] := {1, . . . , N} is employed.

6
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2. Dynamical systems on networks

In this chapter an introduction to the types of dynamical systems considered in this
thesis will be presented, as well as an overview of common example systems and their
behavior. Furthermore, the concepts of collective variables and concentration effects will
be introduced in the context of dynamical systems on networks. Finally, some popular
model reduction techniques for such dynamical systems are discussed and their relation
to the notion of collective variables explained.

Let a simple graph G = (V,E) with N ∈ N nodes be given, where V := [N ] is the set of
nodes and E the set of edges. The symmetric adjacency matrix A ∈ {0, 1}N×N encodes
which edges are present and thus provides an equivalent representation of the graph G.
Every node i ∈ V is equipped with a state xi ∈ X, where X is the set of all possible states,
and the collection x := (x1, . . . , xN ) ∈ XN is called the system state. A dynamical system
on this network G describes how the state xi of each node changes over time, due to an
inherent dynamics and due to the influence of neighboring nodes [8, 9]. The system may
follow a deterministic law given by differential equations or update equations, or it may
be defined in the form of a stochastic process, in which case it is also commonly called an
interacting particle system [10].

In this setup, each node can be viewed as an agent and the edges as some form of
(social) interaction or relation between agents. The dynamics represents the behavior of
each agent, given its local interactions via the edges to neighboring agents. Thus, such a
dynamical system on a network can be considered as a special type of agent-based model.

This thesis mainly considers simple graphs, where each edge is undirected and connects
exactly two nodes, and self-loops and multiple edges between two nodes are not allowed.
Moreover, the network is assumed to be static, i.e., it does not change over time. These
restrictions make a mathematical analysis more feasible and there are still numerous inter-
esting and complex systems that fall into this category, see section 2.1 for some examples.
Extending this framework often leads to various mathematical and practical issues, mak-
ing the system substantially more difficult to analyze. The most commonly discussed
extensions are presented below. Due to their additional difficulty, these extensions will
not be considered in this thesis.

In higher-order networks or hypergraphs, an edge may join any number of nodes, and
hence they allow modeling complex interactions that require a group of three or more
agents, see [11] for an overview.

If the network structure evolves in dependence on the nodes’ states and in turn the
nodes’ states are influenced by the network structure, the system is often called an (adap-
tive) coevolutionary network [12, 13, 14]. This interplay between network dynamics and
state dynamics results in many interesting phenomena like self-organization or the forma-
tion of polarized clusters, but comes at the price of tremendous additional mathematical
(and numerical) challenges.

Finally, allowing directed or weighted edges adds the possibility of one-sided interac-
tions or interactions of different strengths. However, a similar effect can be achieved by
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2. Dynamical systems on networks

considering an undirected graph and including the strength at which agents influence each
other in the dynamical model. Many example systems and techniques that are discussed
later for undirected graphs can also easily be extended to directed or weighted graphs.
This chapter is structured as follows. Some of the most commonly studied examples of

dynamical systems on networks are presented in section 2.1. Section 2.2 contains a detailed
introduction to the continuous-time noisy voter model, which will serve as a guiding
example throughout this thesis. The concepts of collective variables and concentration
effects are discussed in section 2.3. Finally, common techniques for the model reduction
of dynamical systems on networks are presented in section 2.4, i.e., mean-field limits,
moment closure methods, and (automorphism-based) lumping.

2.1. An overview

In this section an overview of some of the most studied dynamical systems on networks is
presented. This overview is by no means an exhaustive survey, but gives an introduction
to a few selected prominent models or types of models. While there is an abundance
of different dynamical systems on networks that are studied in the context of numerous
applications, many of them are extensions of a small selection of basic models that cover
the most fundamental mechanisms. Extensions of these basic models are often developed
by introducing stochasticity (noise), external perturbations, a heterogeneous population,
a higher-dimensional system state, or more complex behavioral rules for the agents. Even
small modifications to a model can result in a qualitatively different collective behavior
and thus the investigation of this bulk of different models has been (and still is) of large
interest in many scientific communities. For instance, in discrete-time models a different
update order of nodes, e.g., synchronous updating (all nodes change their state in one
step) instead of asynchronous updating (one random node changes its state in one step),
may already produce a different outcome [8]. Still, the basic models described below
provide an overview of common mechanisms and their resulting behaviors that build the
foundation of understanding more complex models.
We first present three continuous-state models in section 2.1.1: systems of coupled

ODEs, the DeGroot model, and bounded confidence models. Then three types of discrete-
state models are discussed in section 2.1.2: voter models, threshold models, and random
walks.

2.1.1. Continuous-state models

Systems of coupled ODEs. Many popular continuous-state dynamical systems on net-
works have the form of a system of coupled ODEs, i.e., the state xi ∈ R of node i evolves
according to the ODE

d

dt
xi(t) = fi(xi(t)) +

N∑
j=1

Ai,j gi,j(xi(t), xj(t)), (2.1)

where the function fi describes the inherent dynamics of node i, A is the adjacency matrix
of the underlying network, and the function gi,j describes the influence of node j on node i.
Some models assume a simplified setup, in which every node is subject to the same internal
dynamics fi = f , or interactions are symmetrical and identical for every pair, i.e., gi,j = g

8
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for all i, j. Due to the generality of this model description, it is employed in numerous
biological, technological, and social systems, see [15] for an overview. It can be used to
study a variety of complex behaviors like spreading and propagation, cascades, critical
transitions, collective behavior, organization, and synchronization [16].

An important example of a system of the above form is the Kuramoto model [17], which
describes the synchronization of oscillators. The state of the i-th oscillator is given by its
phase θi, and its natural frequency is denoted by ωi. The oscillators are coupled such that
they influence each other based on the sine of their phase differences, i.e., each oscillator
follows the ODE

d

dt
θi(t) = ωi +

N∑
j=1

Ai,j λi,j sin(θj(t)− θi(t)), (2.2)

where λi,j denotes the coupling strength between oscillators i and j. Depending on the
network topology and the coupling strengths, the system may converge to a fully synchro-
nized state such that all oscillators rotate at the same frequency eventually (despite having
different natural frequencies). For smaller coupling strengths a partly or completely disor-
dered (incoherent) system state may be observed. Studying the phase transitions between
these regimes is still a focus of ongoing research [18].

The DeGroot model. In the (social network) DeGroot model [19] each agent i has an
opinion xi ∈ [0, 1] about a topic. It is convenient to describe the relations between
agents as a trust matrix T ∈ [0, 1]N×N , where Ti,j represents the weight that agent i puts
on agent j’s opinion. (T can equivalently be thought of as the adjacency matrix of an
underlying weighted directed graph.) The trust matrix is stochastic, i.e., its rows sum
to 1. Then the state x evolves according to the discrete-time update rule

x(t) = Tx(t− 1) = T tx(0). (2.3)

From the perspective of opinion dynamics, an important issue to investigate is the occur-
rence of consensus, that is, whether all agents converge to the same opinion. For example,
it has been shown from standard results in Markov chain theory that if the associated
graph is strongly connected and aperiodic, a consensus is always reached [20]. If on the
other hand the graph is not aperiodic, a periodic dynamics may be observed.

The DeGroot model can also be viewed as a model of a learning process within a
population. For instance, the initial state xi(0) of each agent could be given by a noisy
signal about some true value. Under the right conditions [20], the agents then collectively
converge to the true value during the update process (“wisdom of crowds”).

Bounded confidence models. The central characteristic of bounded confidence models in
opinion dynamics is that agents only interact if they already have a similar opinion. Agents
that fundamentally disagree with each other are not willing to compromise and hence do
not interact. Bounded confidence models are motivated by a sociological phenomenon
called homophily, which describes the tendency of individuals to prefer associating and
interacting with similar others [21]. The two most popular bounded confidence models
are the Deffuant model and the Hegselmann–Krause model.

In the Deffuant model [22] each agent i has an opinion xi ∈ [0, 1] about a topic. Two
agents i and j can interact with each other if they are neighbors in the underlying graph
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2. Dynamical systems on networks

and if the difference between their opinions does not exceed a threshold ε ∈ [0, 1]. The
dynamics of the Deffuant model follows a stochastic discrete-time update step, in which
first a random pair of two neighboring agents i and j is picked. If |xi(t) − xj(t)| > ε,
nothing happens. If however |xi(t) − xj(t)| ≤ ε, then the opinions of agents i and j are
updated as follows:

xi(t+ 1) = xi(t) + µ[xj(t)− xi(t)] (2.4)

xj(t+ 1) = xj(t) + µ[xi(t)− xj(t)] (2.5)

where µ ∈ [0, 12 ] is called the convergence parameter. Thus, agents i and j will compromise
so that after the update their opinions are closer together than before. In the extreme
case µ = 1

2 both agents adopt the average of the two opinions. The opinions of all other
agents k /∈ {i, j} do not change in this update step, i.e., xk(t+ 1) = xk(t).

The characteristic behavior of the Deffuant model involves the formation of polarized
clusters of agents. All agents inside a cluster converge to the same opinion and the opinion
differences between clusters are sufficiently large so that there is no interaction between
them [23]. Even though the update is stochastic, this state of polarized clusters constitutes
a stable equilibrium of the system. Given a connected network and the choice ε = 1, the
model always converges to a state of consensus where every node has the same opinion.
For smaller values of ε, a larger number of polarized clusters will form. A more precise
quantification of the number of clusters and the rate at which they form, depending on the
underlying graph and the initial conditions, can be found in [23]. However, the Deffuant
model and its variations are still not completely understood and continue to be the subject
of recent research.

The Hegselmann–Krause model [24] is similar to the Deffuant model but employs a
slightly different update rule in which an agent adapts to all opinions in its neighborhood
instead of compromising only with one adjacent agent. In the update step, a random
agent i is picked and its opinion set to the average of all suitable agents in its neighborhood

xi(t+ 1) =

∑N
j=1 δ|xi(t)−xj(t)|≤εAi,j xj(t)∑N

j=1 δ|xi(t)−xj(t)|≤εAi,j

. (2.6)

Again, only interactions with agents of a sufficiently similar opinion are considered due to
the factor δ|xi(t)−xj(t)|≤ε ∈ {0, 1}. This dynamics generally behaves similar to the Deffuant
model and also results in the characteristic formation of polarized opinion clusters, see [23]
for an overview.

A continuous-time version of the bounded confidence model can be defined by letting
each connected pair that has sufficiently similar opinions compromise continuously, which
leads to a system of coupled ODEs [25]

d

dt
xi(t) =

1

N

N∑
j=1

Ai,j w(xj(t)− xi(t)), w(ξ) :=

{
ξ, |ξ| ≤ ε
0, |ξ| > ε.

(2.7)

Alternatively, a stochastic continuous-time version can be formulated by drawing the time
points of interactions from exponential distributions.
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2.1.2. Discrete-state models

Voter models. The so-called voter model [26, 27] is one of the most studied models
of opinion dynamics. Each agent i has a discrete opinion xi ∈ {0, 1} that could for
instance describe which of two political parties the agent intends to vote for. There are
both discrete-time and continuous-time versions of the voter model. In the discrete-time
version, a random agent i is picked in each step. The agent i then chooses a random
neighbor j and adopts its opinion, i.e., xi(t + 1) = xj(t). The states of all other agents
are not changed in this update step. Due to this extremely simple imitation (or infection)
mechanism, the voter model is often considered as a paradigmatic model of a spreading
process on a network. Hence, it is not limited to opinion dynamics, but has also been
applied in numerous other applications related to spreading or diffusion phenomena (on
networks) [23]. Moreover, in many cases this simplicity enables an extensive mathematical
analysis, which has led to a great deal of research on its dynamics. However, it is also
questionable if the voter model is powerful enough to actually describe the behavior of
many real-world processes, especially involving complex issues like political voting [28].
Due to these concerns, many extensions and variations of the voter model have been
developed to better fit the mechanisms observed in certain applications, see [23, 8] for an
overview.

Given the update mechanism of the voter model, it is easy to see that the two consensus
system states, i.e., xi = 0 for all i or xi = 1 for all i, are absorbing states. Hence, on any
finite-size connected network the voter model will at some point reach consensus and stay
like that forever. Until consensus however, the dynamics of the voter model is complex
and interesting, and heavily depends on the underlying network structure. For example,
on so-called small-world networks (see section 3.1.4 for details) the voter model is stuck in
a metastable state of coexistence, where the shares of both opinions stay almost constant
for a long time, before suddenly one opinion dies out and consensus is reached [23]. The
voter model is also often studied on infinite-size networks like lattices, for which it is
possible that the two opinions coexist indefinitely [10].

The discrete-time voter model as introduced above is often referred to as the direct
voter model. A different popular variation is the reverse voter model, in which a random
agent i and a random neighbor j of agent i are picked as well, but then agent j adopts
the opinion of agent i instead of the other way around. Moreover, in the link-update voter
model, a random edge {i, j} is picked and then a coin toss decides whether agent i adopts
the opinion of agent j or vice versa. Depending on the underlying network topology,
these slight variations of the update process can already result in substantially different
(emergent) dynamics [23].

In the continuous-time version of the voter model, each agent starts a Poisson clock
which notifies the agent after a random exponentially distributed time has passed. If an
agent is notified by its clock, it adopts the opinion of a random neighbor and resets its
clock. Hence, the overall system can be described as a continuous-time Markov chain. By
employing different ways to calculate the transition rates in that Markov chain based on
the neighborhoods of agents, a whole class of diverse voter models can be defined [10]. In
this thesis such a variant, which is referred to as the continuous-time noisy voter model
(CNVM), will serve as a guiding example and will be examined in great detail. The
CNVM is introduced in section 2.2.
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Majority rule and threshold models. The sociological phenomenon of conformity de-
scribes how individuals tend to adjust their beliefs to match prevalent social norms in their
social group, and is the motivation for threshold models [29]. The central mechanism in
threshold models is that agents will change their opinion if and only if a sufficient number
(or fraction) of their neighbors share this new opinion. Otherwise, agents conform to the
status quo and keep their original opinion. For example, in the Watts model [30] each
node i has an opinion xi ∈ {0, 1} and a fixed threshold ri ∈ [0, 1]. Typically, ri is drawn
randomly from some distribution. Nodes with state xi = 0 are called inactive, and nodes
with state xi = 1 active. In the update step of the Watts model, a random node i is picked
and if it is not active, it becomes active if the fraction of its active neighbors exceeds its
threshold ri. If node i was already active, its state remains unchanged. Hence, the Watts
model is monotonic in the sense that agents can never become inactive again. It has been
used to study the occurrence of global cascades, i.e., the collective behavior that a large
number of inactive nodes suddenly become active after a small perturbation or shock [30].
A variety of different (non-monotonic) threshold models have been proposed and studied,
see [8] for an overview.

In majority rule models [31, 32] agents update their state to the majority state in
their neighborhood as if they were overruled by their neighbors. Thus, majority rule
models can be considered as a special case of threshold model in which every agent has
the same threshold ri = 0.5. However, the term threshold model is more frequently used
in applications involving spreading phenomena, whereas the term majority rule model is
preferred for models describing decision-making or voting processes.

Random walks and exclusion processes. In all previously presented models the nodes
of the graph represented agents that are connected to each other by the network edges
and have a state that evolves over time. In the context of random walks and exclusion
processes on networks the interpretation is fundamentally different. Here, the nodes of
the graph represent sites that an agent can occupy. The state xi of node i describes its
occupation status, for example xi = 1 if it is currently occupied by an agent and xi = 0
if it is free. If two sites i and j are connected by an edge, an agent can travel between
them such that its destination site becomes occupied while its origin site is freed. Hence,
an agent takes a “walk” on the network by traveling from one node to the other, and the
system state x describes which nodes are currently occupied by agents.

The most studied model of this type is the random walk [33, 34], in which a single agent
travels across the network by jumping to a uniformly random neighboring node in every
discrete time step. The random walk on networks has applications in various fields, one
of the most noteworthy being the ranking of websites for internet search engines [35]. If
several agents traverse the network simultaneously with the restriction that each site can
only hold one agent at the same time, the model is referred to as an exclusion process
[10, 36]. Continuous-state versions of these types of dynamics, where some continuous
quantity flows between the nodes, are often referred to as transport processes on networks,
see [37, 38] for details.

Since this thesis is more focused on dynamical systems in the context of the former
interpretation that the nodes represent the agents and the system state x contains the state
of each agent, random walks on networks and transport processes will not be discussed
further here.
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2.2. The continuous-time noisy voter model

In the continuous-time noisy voter model (CNVM) each node i ∈ [N ] of the simple
graph has one of M ∈ N different opinions xi ∈ [M ]. As before, the system state x =
(x1, . . . , xN ) ∈ [M ]N consists of the opinion of each node. The opinion of node i changes
over time in the form of a continuous-time Markov chain, such that the transition rate
matrix Qi(x) ∈ RM×M depends on the opinions of neighbors of node i, which is denoted by
the dependence of Qi on x. (Hence, the Markov chain induced by Qi is non-homogeneous
in the sense that the transition rates do not remain constant.) The rate at which node i
switches from one opinion m ∈ [M ] to a different opinion n ∈ [M ] is defined as

(Qi(x))m,n := rm,n
di,n(x)

(di)α
+ r̃m,n, (2.8)

where di,n(x) denotes the number of neighbors of node i with opinion n, di is the degree
of node i, and rm,n, r̃m,n ≥ 0 and α ∈ R are model parameters. Thus, the transition
rate consists of two terms. The first term, rm,n di,n(x)/(di)

α, describes the influence of
its neighborhood on node i, or equivalently the rate at which node i imitates (copies) its
neighbors. The more neighbors of agent i have opinion n, the higher is the rate at which
it transitions to opinion n. The second term, r̃m,n, is an additional transition rate that is
not dependent on the neighborhood. It results in “explorative” behavior of agents, which
can also be interpreted as noise.
The model parameter α controls the relation between the degree of a node and the

influencing force it experiences from its neighborhood. In particular the choices α = 0
and α = 1 allow a simple interpretation of the underlying mechanisms. For α = 0, the
transition rates to opinion n are proportional to the number of neighbors of opinion n.
This is for example a popular choice for infection modeling [39] as then each link to a
neighboring node potentially provides a cumulative increase in the infection rate. Nodes
with large degrees have the potential to be exposed to large transition rates, whereas
nodes with small degrees are rather inert.
The choice α = 1 on the other hand results in transition rates to opinion n that are

proportional to the share of neighbors of opinion n. To interpret the underlying interaction
mechanism, it is advantageous to rewrite the model parameters as rm,n = r̂ pm,n, where
r̂ ≥ 0 and pm,n ∈ [0, 1]. (For example, r̂ := maxm,n rm,n and pm,n := rm,n/r̂.) Then the
model reproduces the following procedure:

1. Each agent starts a Poisson clock that notifies the agent after a random, exponen-
tially distributed with parameter r̂, time has passed.

2. If an agent i is notified by its clock, it picks a random neighbor for interaction.
Hence, the probability to interact with a neighbor of opinion n is di,n(x)/di.

3. After the interaction, agent i adopts the opinion n of the chosen neighbor with
probability pm,n, and restarts its clock.

Thus, for α = 1 all nodes undergo transitions at the same rate, irrespective of their degree.
If not stated otherwise in the text, the default parameter α = 1 is used in the CNVM.
Although the local continuous-time Markov chains describing the behavior of individual

agents are non-homogeneous, the global process, i.e., the evolution of the system state x,
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can be described as a homogeneous continuous-time Markov chain on the state space
X = [M ]N . The generator Q of this global process is given by

Q(x, y) =

{(
Qi(x)

)
xi,yi

∃i ∈ [N ] ∀j ̸= i : xj = yj

0 else
(2.9)

and specifies the rate of transitioning to a state y ∈ [M ]N when starting in a different
state x ∈ [M ]N .

Remark 2.1. In the case of a complete graph, the CNVM is equivalent to a well-mixed
chemically reacting system [40, 41], in which the nodes now represent particles in a well-
stirred solution. Instead of describing an opinion, the state denotes that a particle belongs
to one of M chemical species that can undergo certain reactions. In the CNVM there are
two types of reactions: a particle of species A reacts with a different particle of species
B to form two particles of species B (imitation), typically written as A + B → 2B,
and a particle of species A spontaneously transitions to species B (noise/exploration),
typically written as A→ B. The term well-mixed implies that each particle has the same
probability to interact with any other particle, hence the complete graph. However, for a
non-complete graph that restricts which nodes can interact, the behavior of the CNVM
can become much more complex than what is observed in well-mixed chemically reacting
systems.

Many popular epidemiological models can be represented in the form of the CNVM as
the following example suggests.

Example 2.2 (SIS & SIR model). In epidemiology, the SIS model describes the spreading
of a disease on a network [39]. Each node i is either susceptible (xi = 1) or infectious (xi =
2). For each neighboring infectious node, a susceptible node also becomes infectious at the
infection rate λ > 0. An infectious node recovers at the rate 1 and becomes susceptible
again. Thus, the SIS model is a special case of the CNVM with model parameters

r =

− λ

0 −

 , r̃ =

− 0

1 −

 (2.10)

and (typically) α = 0.
A popular modification of this model is that infectious nodes become immune to the

disease after recovering, i.e., they are removed from the susceptible population. The
resulting SIR model is also a special case of the CNVM with an additional third state:

r =


− λ 0

0 − 0

0 0 −

 , r̃ =


− 0 0

0 − 1

0 0 −

 . (2.11)

Characteristic behavior. In the absence of noise (r̃m,n = 0 for all m,n) the consensus
states, where all nodes have an identical opinion, are absorbing states. Hence, the CNVM
will at some point reach consensus and stay like that indefinitely. If however r̃m,n > 0
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Figure 2.1.: Bimodal to unimodal transition of the invariant distribution due to varying
magnitude of noise. Trajectories of the share c1 of opinion 1 in a low noise (a)
and high noise (b) regime, and associated distributions (c) and (d). CNVM
with M = 2 opinions on Albert–Barabási network (see section 3.1.5 for de-
tails) of size N = 1000.

for all m,n, the underlying continuous-time Markov chain is irreducible and recurrent
(and thus ergodic), which implies the existence of a unique invariant distribution [42].
For many network topologies a characteristic transition from a bimodal to an unimodal
invariant distribution can be observed based on the magnitude of the noise parameters r̃
compared to the infection parameters r [43]. In the low noise regime the system spends
most time close to the consensus states, with rare transitions between them due to the
noise. This metastability results in a bimodal behavior in the sense that the share of each
opinion is close to zero or close to one most of the time, see figure 2.1. As the magnitude
of noise increases, the mutual influencing between neighbors becomes less important for
the system’s behavior. Thus, in the high noise regime the states of agents are essentially
uncorrelated because their state transitions are dominated by noise. Consequently, the
invariant distribution of the opinion shares becomes unimodal, as illustrated in figure 2.1.
In this regime, the system is predominantly found in a polarized state where no opinion
has the vast majority.

It should be noted that the transition from bimodal to unimodal behavior is a finite-size
effect that cannot be observed in the large population limit. For example, it has been
shown [43] that on a complete graph the noise threshold between bimodal and unimodal
decreases proportionally to 1/N as N → ∞ (given fixed infection rates rm,n). Hence,
even for small amounts of noise, the unimodal regime will be observed in the case of large
populations N . Furthermore, the variance of the invariant distribution also decreases
proportionally to 1/N as N →∞. As a result, for large N the trajectories of the opinion
shares converge to a (almost) deterministic steady state, which implies that in equilibrium
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the CNVM is found only in states x with essentially identical shares of opinions.
Similar phenomena can be observed for many dynamical models and network topologies.

The next section introduces collective variables and the concentration effect in order to
formalize the above observations.

2.3. Collective variables and the concentration effect

Collective Variables. Across many scientific fields it is observed that high-dimensional
and (seemingly) extremely complex dynamical systems actually exhibit an underlying
regularity such that their behavior is much simpler than the large number of degrees of
freedom would allow for. Collective variables (CVs) are projections from the original high-
dimensional system state into a low-dimensional reduced space that extract exactly this
regularity while filtering out the unnecessary degrees of freedom. They allow the definition
of a comparatively simple reduced model in this reduced state space that replicates the
essential dynamical properties of the original model.
The concept of CVs is widely established in computational physics and chemistry, espe-

cially in the field of molecular or atomistic dynamics [44, 45, 46]. For instance, describing
the position of each amino acid residue in a large protein results in a high-dimensional
and complex system. But, due to physical constraints, many proteins are at most times
found in only a few energetically advantageous configurations. Their dynamics is charac-
terized by metastability [47], i.e., they remain in one of the configurations for a long time
until suddenly transitioning to a different configuration. In this setting, it is an important
task to find CVs that resolve exactly these metastable configurations and the transition
paths [48] that the protein takes to switch between them. Due to this interpretation of
describing the paths between important regions of the state space (e.g., reactant state
and product state), CVs are also often called reaction coordinates [49, 50].
The theory of CVs, which was largely developed with applications like molecular dy-

namics in mind, is increasingly being applied in other disciplines as well, for example fluid
dynamics [51], coupled oscillators [52, 53], and agent-based models [54, 55]. It is a topic
of ongoing research to define CVs in a mathematically abstract manner and to deter-
mine what properties of a general dynamical system imply their existence. The approach
presented in [56, 57, 58] is outlined in the following.
Let a Markovian stochastic process x(t) on the state space X ⊂ RN be given. Assume

that for each x ∈ X and t > 0 the transition density function ptx : X→ R≥0 can be defined
as the density (w.r.t. Lebesgue) of the distribution of x(t) given x(0) = x. Furthermore,
assume that the stochastic process has a unique stationary distribution with density ρ
and that it is ergodic in the sense that for every x ∈ X the transition density ptx converges
to ρ as t→∞. In this setting, a d-dimensional CV is simply a map φ : X→ Rd. However,
to fulfil the purpose of a CV, the dimension d should be as small as possible while the
map φ still extracts the essential information of the state. More precisely, there should
exist functions p̃tφ(x) : X→ R≥0 such that

ptx ≈ p̃tφ(x) (2.12)

for all x ∈ X and times t of intermediate scale. Hence, the distribution of the system only
depends on the CV value φ(x) of the initial state x, and not the initial state itself. For very
small times t with respect to the system’s typical timescales, the transition densities ptx
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are close to Dirac delta distributions at x, and therefore it is never possible to find a
low-dimensional CV φ such that (2.12) holds. For very large times on the other hand,
any choice of φ is valid in the sense of (2.12) because all ptx are close to the stationary
density ρ. (For instance, choose φ ≡ 0 and p̃t0 = ρ.) Therefore, a good CV φ implies that
(2.12) holds for the intermediate time regime, such that the fast processes of the system
have already equilibrated but it has not yet converged to the stationary distribution.
A desirable property of a good CV is that important dynamical features are pre-

served when the process is projected down into the CV space. This statement can be
specified with the help of the transfer operator (also called Perron–Frobenius operator)
Pt : L1(X) → L1(X), which describes the density propagation due to the process x(t),
i.e., given an initial distribution over the state space with density u (w.r.t. Lebesgue)
at time 0, the system state is distributed according to the density Ptu at time t. The
transfer operator can be defined via the transition density functions

(Ptu)(y) :=

∫
X
u(x) ptx(y) dx. (2.13)

Moreover, the projection operator Πφ : L1(X) → L1(X) averages a density u over level
sets of the CV φ, such that Πφu is constant on each level set. It can be defined via the
conditional expectation

(Πφu)(x) = Ex∼ρ

[
u(x) | φ(x) = φ(x)

]
(2.14)

and is similar to the Zwanzig projection operator from statistical physics [59]. Note
however that Πφu is still a density over the original state space X, and not over the
reduced space φ(X). (Nevertheless, the image of Πφ is isomorphic to L1(φ(X)), which
can thus be embedded into L1(X).) This allows the definition of the effective transfer
operator Pt

φ : L1(X)→ L1(X), which applies the projection operator to a density, evolves
it according to the stochastic process, and then applies the projection operator again:

Pt
φu := Πφ PtΠφ u. (2.15)

The effective transfer operator describes the effective dynamics, i.e., the stochastic process
projected down into the CV space, but embedded into the original space. This has
the advantage that one can directly compare the original dynamics Pt and the reduced
dynamics Pt

φ as they are defined on the same space. In fact, for a good CV the original
and the effective dynamics match closely, i.e.,

Ptu ≈ Pt
φu for all u, (2.16)

which implies that a reduced model can be defined on the reduced space that is approxi-
mately Markovian and replicates the dynamics of the original system.

Finding collective variables. For most applications it is a rather difficult task to deter-
mine if low-dimensional good CVs (in the sense of (2.16)) exist, and an even more difficult
task to find them. As a consequence, oftentimes reasonable CVs of complex systems are
simply guessed by experts due to their knowledge of the underlying mechanisms. For
example, in the case of molecular dynamics typical guesses are certain bond angles or
residue distances based on the specific protein at hand. While in the past a mathematical
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justification of these guesses was often missing, a lot of theory and numerical (data-driven)
algorithms to find CVs have been developed in recent years.
For instance, in the special case of reversible metastable stochastic processes, it is known

that good CVs are given by the dominant eigenfunctions of the transfer operator Pt.
Assuming that the spectrum of Pt is discrete, let λti denote the eigenvalues of Pt, sorted
by decreasing absolute value, and θi the associated eigenfunctions. Due to the reversibility
of the process, the eigenvalues λti are real and lie between 0 and 1 [60]. The largest
eigenvalue is λt0 = 1 for all t, and the associated eigenfunction is the stationary density ρ.
The subsequent eigenvalues go to 0 for both increasing index and increasing time, i.e.,

lim
i→∞

λti = 0 and lim
t→∞

λti = 0 for i ≥ 1. (2.17)

Moreover, the metastability of the process implies a spectral gap [61, 62], i.e., there exists
a number K such that the K-th largest eigenvalue is much larger than the (K + 1)-th
largest eigenvalue

1 = λt0 > λt1 ≥ · · · ≥ λtK ≫ λtK+1 ≥ · · · ≥ 0. (2.18)

The eigenfunctions θi however do not depend on t. As a result, the propagation of a
density u =

∑∞
i=1 αiθi is given by

Ptu =
∞∑
i=0

λtiαiθi ≈
K∑
i=0

λtiαiθi, (2.19)

which has the following interpretation: the stochastic process can be seen as a superpo-
sition of decaying processes in the sense that any contribution to the density u that is
not aligned with the stationary density ρ = θ0, but with some other eigenfunction, decays
over time, with the rate of decay being larger the smaller the corresponding eigenvalue is.
Due to the spectral gap, the density propagation of the system is thus mostly determined
by the dominant spectrum of Pt, which is associated to the slowly decaying processes. It
is therefore not surprising that the CV containing the dominant eigenfunctions

φ(x) =


θ1(x)
...

θK(x)

 ∈ RK (2.20)

is good in the sense of (2.16), and the error introduced by the CV is smaller the more
pronounced the metastability of the system is, see [57, 58] for details. However, this choice
of CV might still not be optimal. For instance, if the system is characterized by only a
few transition pathways between the metastable sets, the K dominant eigenfunctions can
be parametrized by an even lower-dimensional CV [58, section 6.2].
Due to the significance of the transfer operator spectrum, a large number of (data-

driven) methods that focus on its approximation have been presented. They often share
many similarities but also exhibit subtle differences, which will not be specified in de-
tail in the following non-exhaustive selection. One of the earliest of these approaches is
called Perron cluster cluster analysis (PCCA) [63], which allows the clustering or coarse-
graining of discrete-state Markov chains based on the spectrum of the transfer operator.
Later, algorithms that are also suitable for continuous-state Markov processes have been
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2.3. Collective variables and the concentration effect

developed, for instance extended dynamic mode decomposition (EDMD) [64]. In EDMD
the best-approximation of the transfer operator within a finite-dimensional subspace is
approximated based on trajectory data. This subspace is spanned by basis functions that
can be freely chosen. If basis functions in the form of indicator functions that partition
the state space are chosen, EDMD results in a so-called Markov state model (MSM) [62],
which is especially popular in molecular dynamics. Similar to EDMD are Ulam’s method
[65] and time-lagged independent component analysis (TICA) [66]. In TICA, linear CVs
that maximize autocorrelation are calculated from trajectory data, but it has been shown
that it actually implicitly utilizes an approximation of the eigenvalues and eigenfunctions
of the transfer operator.

Recently, more and more algorithms involving artificial neural networks have been pro-
posed. For example, VAMPnets [67] are neural networks that represent the CVs and that
are trained to maximize a score based on the agreement between the subspace spanned
by the CVs and the subspace spanned by the dominant eigenfunctions of the transfer
operator. (This score is motivated by the variational approach for Markov processes
(VAMP) [68], which encompasses a similar theory to the one presented above.) Another
approach is called invariant subspaces of Koopman operators with artificial neural net-
works (ISOKANN) [69], where again the CVs are represented by a neural network and
are trained to agree with the subspace spanned by the dominant eigenfunctions, but using
a type of power iteration that eliminates the non-dominant spectrum.

The neural network architecture called autoencoder is another promising method for
the discovery of CVs. For instance, the time-lagged autoencoder (TLA) [46] learns an
encoding of the system state x into a low-dimensional latent vector (i.e., a CV), and a
decoding back from the latent vector to the original state space, such that the decoded
state approximates E[x(τ) | x(0) = x] as well as possible. The TLA can be seen as a
nonlinear extension of TICA. Another example is the SINDy autoencoder [70] for deter-
ministic dynamics, in which the encoder attempts to transform the original system state
into reduced coordinates that allow a representation of the dynamics in the form of a
simple ODE.

While many of the above-mentioned methods focus on specific use cases, for example
metastable systems in molecular dynamics, the theory of lumpability and decomposability
as presented in [58], and the closely related transition manifold approach [56, 57] offer a
more general framework to discover CVs. Moreover, it allows the formulation of explicit
dynamical conditions for finding good CVs that can be validated during the data-driven
computation, which is an advantage over the methods utilizing black-box approximators
like neural networks. The transition manifold approach will be discussed in more de-
tail later in chapter 6, where a modification for dynamical systems on networks will be
presented.

Collective variables for systems on networks. The most intuitive and also most popular
choice of observable to either quantify the state of a system on a network on a macroscopic
scale, or to even develop a reduced model in the space of that observable, is given by
forming an average over the agents’ states. For instance, in the Kuramoto model of
coupled oscillators the mean over the complex phases eiθj of oscillators j provides insight
into the global synchronization status of the system, and a reduced model in the form of
an ODE of this average can be formulated [71].
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2. Dynamical systems on networks

A similar concept is often applied to discrete-state systems. In the most simple case
that agents have a state of either 0 or 1, the average over states corresponds to the share
of state 1 in the system. This quantity is often of interest in the underlying application.
For example, in the SIS model (cf. example 2.2) it corresponds to the percentage of
infectious nodes. In statistical physics, these averages of states are often related to the
amount of order shown by the system. For example, in the Ising model of ferromagnetism
[72] the nodes’ states represent their spin and their average is called the magnetization
of the system. Hence, this average over states is also called the order parameter in this
context1. In the more general case that a node’s state is one of finitely many discrete
states, xi ∈ {1, . . . ,M}, the average contains the shares of each discrete state in the
system. For instance, in the SIR model (cf. example 2.2) the percentage of susceptible,
infectious, and removed agents would be observed.

However, the simple average often does not contain enough information to formulate
a reduced model that is able to replicate the behavior of the original system, i.e., it is
not a good CV. (Although it will be investigated under which conditions the shares are
good CVs for the voter model later in chapter 5.) Thus, many extensions to higher-
dimensional CVs have been proposed. For example, instead of measuring the global
average, one can partition the network into subnetworks and measure separate averages for
each subnetwork, which is especially useful for clustered networks [1]. Another approach
is to include higher order network motifs in the CV [8, 74, 75, 76, 77, 78]. A network
motif is a subgraph that occurs frequently in the network, for example a triangle, and the
CV counts the occurrences of this motif where the contained nodes have certain states,
e.g., the number of triangles where two nodes have state m and one node has state n.
The simplest network motif is just a single node, and the resulting CV produces the
aforementioned shares of the discrete states in the system. Increasing the complexity of
the network motif, one counts the number of connected pairs of nodes with certain states,
for example the number of pairs where one node has state m and the other state n, or
equivalently the number of m-n edges. Increasing complexity even further, one could
count the number of triplets with certain states, and so on. A popular modification is to
consider motifs that include the degree of nodes, e.g., instead of counting the number of
nodes in state m, one counts the number of nodes of degree k in state m separately for
all occurring degrees k. Techniques allowing to construct a reduced model that utilizes
these counts of network motifs will be discussed in section 2.4.

A common theme in the literature is that the CVs, for which a reduced model is
proposed, are simply guessed by investigating the properties of the underlying dynamical
model and network structure. While many reduced models of high quality have been
devised this way, the approach is very sensitive to changes of the network or dynamics, and
requires a lot of effort and numerical verification. Motivated by the success of data-driven
methods for algorithmically learning optimal CVs in the field of molecular dynamics, a
method tailored specifically to discrete-state dynamics on networks will be presented in
chapter 6.

Concentration Effects. Even though the microscopic dynamics describing the behavior
of single agents is stochastic in many models, the macroscopic behavior of the complete

1This is not limited to physical models. For example, in a bounded confidence model the number of
active edges between nodes that can influence each other can be seen as an order parameter [73].

20



2.3. Collective variables and the concentration effect

0 20 40 60 80 100
t

0.3

0.4

0.5

0.6

0.7

0.8
c 1

N = 1000
N = 10000

102 103 104 105

N

10 6

10 5

10 4

10 3

10 2

10 1

100

va
ria

nc
e

complete
Albert-Barabási
Watts-Strogatz
3-regular

ring
star
1/N

Figure 2.2.: Left: mean (solid line) ± standard deviation (shaded area) of the CNVM
on an Albert–Barabási network, estimated from 1000 simulations with iden-
tical initial state. Right: mean ensemble variance, i.e., the time average of
Var(c1(t)), for different network topologies.

system consisting of many agents can sometimes be characterized by an aggregate observ-
able that evolves (almost) deterministically. In the fashion of the classical law of large
numbers, the many random interactions of agents may produce an emergent outcome that
is no longer random – at least in the limit of infinitely many agents. This phenomenon
that the law of the stochastic process given by an aggregate observable of the system
concentrates around a deterministic trajectory as the number of agents increases will be
called a concentration effect.
The continuous-time noisy voter model (CNVM), see section 2.2, shows concentration

effects with respect to the shares of each discrete state for many underlying network
structures. As depicted in figure 2.2, the stochastic process c1(t), which describes the share
of opinion 1 in the CNVM, concentrates around a deterministic trajectory for Albert–
Barabási networks (see section 3.1.5 for details) of increasing size N . The variance2 of
trajectories tends to 0 at the rate N−1, not only for Albert–Barabási networks but for
many other network topologies as well. However, there are also networks for which c1(t)
does not concentrate. For example, on a star-shaped graph the variance of trajectories
remains approximately constant as N increases. This phenomenon will be discussed in
more detail later in section 5.4.
If concentration effects are observed with respect to some type of average over the nodes’

states, the macroscopic deterministic dynamics that the stochastic process converges to
can sometimes be derived with the help of mean-field theory, which will be explored in
the next section.

2The “variance of trajectories” refers to mean ensemble variance, i.e., the average over time of Var(c1(t)).
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2. Dynamical systems on networks

2.4. Techniques for model reduction

This section contains some popular techniques for the model reduction of dynamical sys-
tems on networks. First, the concepts of mean-field theory and mean-field limits are
discussed in section 2.4.1. The class of moment closure methods is presented in sec-
tion 2.4.2, where, amongst other things, a pair approximation for the continuous-time
noisy voter model is derived. Finally, section 2.4.3 addresses the notion of lumpability of
Markov chains, and, in particular, automorphism-based lumping for dynamical systems
on networks.

2.4.1. Mean-field limits

Inmean-field theory [9, 8] a system consisting of many interacting components is simplified
by considering only an average component that is exposed to an average interaction with
other components (i.e., a mean field), hence reducing a system of many agents to a system
that can be expressed in terms of only one average agent. For discrete-state systems,
where every agent i has a state xi ∈ {1, . . . ,M}, this average agent is often defined via
the probability vector c ∈ [0, 1]M that describes the concentration or share of each discrete
state in the system, i.e., cm is the percentage of agents with state m, or equivalently, the
probability that a randomly chosen agent has state m. In this setting, the dynamics of
the average agent c are often described as an ODE. For continuous-state systems on the
other hand, the average agent is usually defined by a probability distribution over the
state space, which describes the distribution of the states of all agents, or equivalently,
the probability distribution of the state of a randomly chosen agent. (For finitely many
agents, this distribution has the form of an empirical measure.) The dynamics of the
average agent are then often defined in the form of a PDE of the associated probability
density.

This extremely rough model reduction only works well for specific systems fulfilling
certain homogeneity assumptions. Generally, the application of mean-field theory can only
be successful if the interacting components of the system are sufficiently indistinguishable
and interchangeable [79]. In the case of dynamical systems on networks, this implies that
the network must have a homogeneous structure, i.e., no clustering and no communities,
and that states of neighboring nodes must exhibit a low stochastic correlation [80]. For
many dynamical models, such as the voter model, the latter is given if node degrees in the
network are large because then the influence on a node’s state by one of its many neighbors
is rather small. Hence, mean-field theory can often be successfully applied to dynamical
systems on large, dense, and homogeneous graphs, but fails to produce a reasonable model
reduction for more complex, heterogeneous, or sparse network topologies.

Assuming that the above assumptions hold, it is in many cases straightforward to apply
mean-field theory to generate a reduced model, which is why this approach is one of the
most popular methods in the field. Consider for instance the continuous-time noisy voter
model (CNVM) from section 2.2. To recap, in the CNVM an agent i transitions from its
current state m to a different state n at the rate

rm,n
di,n(x)

di
+ r̃m,n, (2.21)

where di,n(x) denotes the number of neighbors of node i with opinion n, di is the degree
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2.4. Techniques for model reduction

of node i, and rm,n, r̃m,n ≥ 0 are model parameters3. As it is a discrete-state system,
the average agent will be described by the shares c ∈ [0, 1]M , ∥c∥1 = 1. By applying
di,n(x) =

∑
j Ai,jδ{xj=n}, where A is the adjacency matrix, the mean-field that an agent i

with opinion m is exposed to is given by

E
[
rm,n

1

di

N∑
j=1

Ai,jδ{xj=n} + r̃m,n

∣∣∣xi = m
]

≈ rm,n
1

di

N∑
j=1

Ai,jE[δ{xj=n}] + r̃m,n

≈ rm,n
1

di

N∑
j=1

Ai,jcn + r̃m,n

= rm,ncn + r̃m,n.

(2.22)

In the second line of the above equation the assumption of stochastic independence of the
agents’ states was applied to remove the condition in the expectation, and in the third line
the interchangeability of agents was used to assume that all agents’ states are identically
distributed according to c. Hence, the average agent is in state m with probability cm
and changes to state n at the rate rm,ncn + r̃m,n, which yields a “flow” from cm to cn of
magnitude cm(rm,ncn+ r̃m,n). Aggregating these flows for all n ̸= m yields the differential
equation

d

dt
cm =

M∑
n=1
n̸=m

cn(rn,mcm + r̃n,m)− cm(rm,ncn + r̃m,n). (2.23)

The resulting system of ODEs can be written in compact form and will be called the
mean-field equation (MFE)

d

dt
c =

∑
m ̸=n

cm(rm,ncn + r̃m,n)(en − em), (2.24)

where en, em ∈ RM are the unit vectors and the sum is over all combinations of m and n.
(In literature focused on well-mixed chemically reacting systems, the MFE is commonly
called reaction-rate equation instead [40].) Although it was not difficult to derive this
mean-field approximation for the CNVM, it is hard to assess its quality for given model
parameters and underlying network.
As the assumptions for mean-field theory can never be truly fulfilled for finite size

systems, e.g., states of neighboring nodes might always be somewhat stochastically de-
pendent, the reduced model given by the mean-field approximation inevitably exhibits
an error. If one however considers the large population limit N → ∞, i.e., letting the
number of agents, and in our case the network, grow infinitely large, the mean-field ap-
proximation can become exact. In this case the mean-field approximation is also called
the mean-field limit, thermodynamic limit, or hydrodynamic limit. Section 5 discusses the
mean-field limit for the CNVM in detail, addressing the question of exactness and quality
of the approximation (2.24) as the number of nodes goes to infinity.

3The parameter α was set to 1 for convenience. For a general α ∈ R, an additional average over the
degrees has to be included in the mean-field below.

23



2. Dynamical systems on networks

An alternative approach to define the mean-field limit for discrete-state dynamics is
often applied to systems on lattices and similar regular structures: instead of the global
shares c ∈ [0, 1]M of each state, the state distribution in the form of a density function p
over the lattice is considered, i.e., p(x) ∈ [0, 1]M represents the concentration of each
discrete state at location x on the lattice. For example, given a one-dimensional lattice
with N nodes, the position x ∈ [0, 1] refers to the node i with i−1

N ≤ x < i
N , and

p(x) to the state distribution of this node i. It has been shown for some systems that,
as the number of nodes goes to infinity, the time evolution of p follows a (S)PDE of
heat equation or reaction-diffusion equation type, for instance a (stochastic) Fischer–
Kolmogorov–Petrovsky–Piskunov equation [81, 82, 83, 84]. Furthermore, an integro-PDE
can be derived for systems on certain dense graphs using Graphon theory [85], which will
be briefly addressed in section 3.2. In this case, the argument x ∈ [0, 1] of the density
function p does not have a spatial interpretation but can simply be seen as a generalization
of the node index for an infinitely large network. As these approaches do not facilitate a
dimension reduction in the fashion of collective variables (cf. section 2.3), but describe the
system in an infinitely dimensional function space, they will not be considered in detail
in this work.

Similarly, the mean-field limits of continuous-state dynamics like the bounded confi-
dence model are not the subject of this work. As mentioned before, the average agent is
often represented by a distribution over the state space. For certain deterministic models,
the evolution of this distribution has been shown to evolve according to a PDE in the form
of a continuity equation (or transport equation) [86, 79]. In the case of certain stochastic
systems, for example if each agent’s state evolves according to a SDE, the model converges
to a McKean–Vlasov process in the mean-field limit, which is an example of propagation of
chaos [87]. The probability distribution of the states then evolves according to the PDE
given by the associated Fokker–Planck equation (Kolmogorov forward equation) [25, 88].
There is a significant overlap with techniques used in related problems in soft matter
physics and statistical physics, for example dynamic density functional theory [89, 73].

2.4.2. Moment closure methods

When dealing with (infinitely) large systems of coupled ODEs that describe the evolu-
tion of so-called moments, i.e., statistically relevant quantities related to the underlying
system, moment closure methods [90] can be used to obtain a smaller and closed set of
equations. Typically, the evolution of lower-order moments depends on higher-order mo-
ments. By expressing this dependence only in terms of the lower-order moments, a closure
can be achieved. Hence, the application of moment closure methods usually entails an
approximation error whose magnitude depends on the quality of the closure, i.e., on how
well the higher-order moments could be expressed by the lower-order moments.

In the context of (discrete) dynamical systems on networks, moment closure methods
are often applied to the evolution equations of the frequency of network motifs [8, 39,
74], e.g., the frequency of single nodes in a certain state, the frequency of linked pairs
(neighbors) in certain states, or the frequency of triplets in certain states. These equations
are usually hierarchical, i.e., the equation for single nodes contains the frequency for pairs,
the equation for pairs contains the frequency of triplets, and so on. Hence, a closure of
the equations has to be performed to eliminate dependency on higher-order motifs.
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Moment closure for the voter model. In the following, this approach is demonstrated
for a simple example: the continuous-time noisy voter model (CNVM) from section 2.2,
with M = 2 discrete states and parameters

r =

− λ

0 −

 , r̃ =

− 0

0 −

 , α = 1. (2.25)

It can be seen as a SI-model without recovering, i.e., after a node has become infected
it will stay infected forever. Let xi(t) ∈ {0, 1} denote the stochastic process describing
the state of the i-th node over time, where 0 represents susceptible and 1 infected. Per
definition of the model, the rate at which a susceptible node i becomes infected is given
by λ 1

di

∑
j Ai,jxj , where A is the adjacency matrix of the underlying network. As the rate

for an infected node to become susceptible again is zero, the expected value of the state
of node i changes at the rate

d

dt
E[xi] = P(xi = 0) E

[
λ
1

di

∑
j

Ai,jxj

∣∣∣xi = 0
]

= P(xi = 0) λ
1

di

∑
j

Ai,jE[xj |xi = 0].

(2.26)

Inserting the equality

P(xi = 0) E[xj |xi = 0] = P(xi = 0,xj = 1) = E[(1− xi)xj ] (2.27)

yields the evolution equation for the first moment

d

dt
E[xi] = λ

1

di

∑
j

Ai,jE[(1− xi)xj ], (2.28)

which depends on the higher order moment E[(1−xi)xj ]. Hence, the probability of single
nodes being infected (lower-order motif) depends on the probabilities of neighboring pairs
consisting of one infected and one susceptible node (higher-order motif). A closure can
for example be achieved by assuming that all nodes are stochastically independent, from
which the closed system of equations

d

dt
E[xi] = λ

1

di

∑
j

Ai,j(1− E[xi])E[xj ], i = 1, . . . , N (2.29)

follows. Note that there is a large number N of equations; one for each node i. Further
simplifications can be conducted if more assumptions about the system are made. For
instance, assuming that all nodes are interchangeable and behave (on average) identically,
E[xi] can be replaced by the share c ∈ [0, 1] of infected nodes for all i, resulting in the
mean-field equation (cf. section 2.4.1 and eq. (2.24))

d

dt
c = λ

1

di

∑
j

Ai,j(1− c)c = λ(1− c)c. (2.30)

Hence, the reduced model obtained by closing after the first moment is often called the
mean-field approximation.
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However, the assumption that all nodes are stochastically independent is very strong
and thus can potentially introduce a large error if it is violated substantially. Therefore,
one might be motivated to investigate the higher-order equations instead of already closing
at the first moment to improve the accuracy of the approximation. The second order
moment E[(1 − xi)xj ] experiences a positive change if (xi,xj) = (0, 0) and then node j
transitions to state 1, and a negative change if (xi,xj) = (0, 1) and then node i transitions
to state 1. Thus, the rate of change of the second moment is given by

d

dt
E[(1− xi)xj ] = P(xi = 0,xj = 0) E

[
λ
1

dj

N∑
k=1

Aj,kxk

∣∣∣xi = 0,xj = 0
]

− P(xi = 0,xj = 1) E
[
λ
1

di

N∑
k=1

Ai,kxk

∣∣∣xi = 0,xj = 1
]
.

(2.31)

Applying the linearity of the expected value and considering the terms where k = i, j
separately yields

d

dt
E[(1− xi)xj ] = P(xi = 0,xj = 0) λ

1

dj

N∑
k=1
k ̸=i

Aj,kE[xk|xi = 0,xj = 0]

− P(xi = 0,xj = 1) λ
1

di

N∑
k=1
k ̸=j

Ai,kE[xk|xi = 0,xj = 1]

− P(xi = 0,xj = 1) λ
1

di
E[xj |xi = 0,xj = 1].

(2.32)

By the definition of the conditional expectation (analogously to (2.27)), the evolution
equation of the second moment follows:

d

dt
E[(1− xi)xj ] = λ

1

dj

N∑
k=1
k ̸=i

Aj,kE[xk(1− xi)(1− xj)]

− λ 1

di

N∑
k=1
k ̸=j

Ai,kE[xk(1− xi)xj ]

− λ 1

di
E[(1− xi)xj ].

(2.33)

After inserting E[xk(1−xi)(1−xj)] = E[xk(1−xj)]−E[xkxi(1−xj)], the only occurring
third order moments are of the form E[xk(1−xi)xj ], where node i is connected to node j
and to node k. They represent the probability that a connected triplet k − i − j has
states 1− 0− 1. To close these equations, one can for example assume that nodes k and
j of such a triplet are always stochastically independent. By the definition of conditional
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probability this yields

E[xk(1− xi)xj ] = P(xk = 1,xi = 0,xj = 1)

= P(xk = 1|xi = 0,xj = 1) P(xi = 0,xj = 1)

=
P(xk = 1,xi = 0)

P(xi = 0)
P(xi = 0,xj = 1)

=
E[xk(1− xi)]

1− E[xi]
E[(1− xi)xj ],

(2.34)

which only consists of first and second order moments. When inserting this into (2.33),
the so-called pair approximation [8, 78, 91] is obtained

d

dt
E[(1− xi)xj ] = λ

1

dj

N∑
k=1
k ̸=i

Aj,k

(
E[xk(1− xj)]−

E[xk(1− xj)]

1− E[xj ]
E[(1− xj)xi]

)

− λ 1

di

N∑
k=1
k ̸=j

Ai,k

(E[xk(1− xi)]

1− E[xi]
E[(1− xi)xj ]

)

− λ 1

di
E[(1− xi)xj ].

(2.35)

Together with the first order equations (2.28), the pair approximation contains a closed
system of N + 2E equations, where N is the number of nodes and E the number of
edges of the graph. The pair approximation generally has a lower error than the mean-
field approximation because it utilizes fewer assumptions about the system: While the
mean-field approximation requires pairwise stochastic independence of all nodes, the pair
approximation only requires that for all triplets the two outer nodes are stochastically
independent.4

If again the interchangeability of agents is assumed, all E[(1 − xi)xj ] can be replaced
by the same quantity s = 0.5Ea/E, where Ea denotes the number of active edges, i.e.,
edges between an infected and a susceptible node. Thus, Ea/E is the probability that
a randomly chosen edge {i, j} is between an infected and a susceptible node, and when
halved it corresponds to the probability E[(1−xi)xj ] that i is susceptible and j infected.
Inserting s into (2.35) yields

d

dt
s = λ

dj − 1

dj

(
s− s2

1− c

)
− λdi − 1

di

s2

1− c
− λ 1

di
s, (2.36)

which is not closed due to the dependence on the degrees di and dj of nodes i and j. In
the mean-field equation (2.30), this was not an issue because the degrees canceled out5.
However, as the interchangeability of nodes has already been assumed, it is plausible to
simply replace all degrees with the average degree d, leading to the pair approximation

d

dt
c = λs

d

dt
s = λ

d− 1

d

(
s− 2

s2

1− c

)
− λ1

d
s.

(2.37)

4If the triplet is a clique, this condition still implies pairwise stochastic independence.
5This is not a general property of the mean-field approximation but a consequence of the chosen dynamics.
If α ̸= 1 had been chosen instead in the CNVM, the degrees would not have canceled out.
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Figure 2.3.: Share of infected nodes c over time for the SI model (2.25), mean-field ap-
proximation (MF) (2.30), and pair approximation (PA) (2.37). a): Albert–
Barabási network, N = 1000. b): network with two sparsely connected com-
munities, N = 1000.

The quality of the mean-field approximation and the pair approximation is investigated
in figure 2.3 for an Albert–Barabási network (see section 3.1.5 for more details) and for a
network composed of two sparsely interconnected communities. For the scale-free Albert–
Barabási network, the 10% of nodes with the largest degrees are initially infected, and for
the clustered network the initially infected 10% all belong to the same community. In the
case of the Albert–Barabási network, the mean-field approximation exhibits a significant
error as it can not resolve the large number of active edges due to the initial state and
hence massively underestimates the rate of infection. The pair approximation on the
other hand has access to the share of active edges, resulting in a substantially smaller
approximation error. However, both the mean-field and the pair approximation fail in
the case of the clustered network, see figure 2.3 b). As the infection first spreads in
one of the clusters before jumping to the other one, both approximations overestimate
the global rate of infection. For such clustered networks it is crucial to choose collective
variables that are able to resolve this cluster structure, which the counts of network motifs
typically investigated in moment closure methods can not do. In some cases it is sufficient
to measure network motifs, e.g., the share of infected nodes, separately for each cluster,
which is discussed in more detail in section 5.2.3. However, for complicated network
structures it might not be apparent which choice of collective variables is appropriate. For
such cases a data-driven algorithm that is able to automatically derive optimal collective
variables is presented in chapter 6.

Heterogeneous approximations and the master equation. Previously, the assumption
that all nodes are interchangeable was used to reduce the number of equations to one
for the mean-field approximation and to two for the pair approximation. Hence, these
types of approximations are called homogeneous. They typically involve the substitution
of the different node degrees occurring in the equations with the mean node degree.
This can result in large errors especially when the underlying degree distribution is very
heterogeneous and contains degrees of vastly different sizes. In such cases it is common
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to only assume interchangeability of nodes of the same degree, which results in a larger
number of equations that resolve the possibly different behavior of nodes with different
degrees. The obtained approximations are thus called heterogeneous [75, 76, 77]. For
instance, instead of describing the share c of infected nodes as in the homogeneous mean-
field approximation (2.30), the heterogeneous mean-field approximation would describe
the share ck of nodes that have degree k and are infected, for each degree k occurring in
the graph. As a consequence, the number of equations in heterogeneous approximations
scales with the number of different degrees that can be found in the network.

A further refinement of these heterogeneous approximations is given by the approx-
imate master equation (AME) [92], which in addition to the node degree also resolves
the number of infected neighbors of nodes in order to produce an even more accurate
approximation. The AME provides evolution equations for the quantities ik,m and sk,m
denoting the share of infected and susceptible nodes that have degree k and exactly m
neighbors that are infected, m ∈ {0, . . . , k}. It has been shown that the AME is signif-
icantly more accurate than simple mean-field or pair approximations. In fact, they can
be obtained from the AME by aggregating appropriate quantities [93, 75]. However, the
AME still involves assumptions about stochastic independence and interchangeability of
nodes such that certain (local) structural correlations in the network are ignored, inducing
an approximation error.

2.4.3. Lumpability

In the context of continuous-time Markov chains, like the continuous-time noisy voter
model (CNVM) presented in section 2.2, the notion of lumpability [94] is of significant
importance when searching for model reductions.

Definition 2.3. A continuous-time Markov chain with generator matrix Q is called
lumpable with respect to a partition {Y1, . . . ,YL} of its finite state space if for every
pair of sets (Yk,Yl), k ̸= l, it follows

∀x, y ∈ Yk :
∑
w∈Yl

Qx,w =
∑
w∈Yl

Qy,w. (2.38)

Thus, every starting state in Yk has the same rate of transitioning to somewhere in Yl.

The significance of the above definition is explained by the fact that a lumpable Markov
chain allows the construction of an associated aggregated process that is itself Markovian.
More precisely, let x(t) denote the state of the continuous-time Markov chain. Given the
partition {Y1, . . . ,YL}, the aggregated process y(t) ∈ {1, . . . , L} is defined by tracking in
which set of the partition x(t) is in, i.e.,

y(t) = k :⇔ x(t) ∈ Yk. (2.39)

Theorem 2.4 ([94]). Given a partition {Y1, . . . ,YL} of the state space of x(t), the as-
sociated aggregated process y(t) is a continuous-time Markov chain if and only if x(t) is
lumpable with respected to {Y1, . . . ,YL}. In that case, the rate matrix of y(t) is given by
Q̃k,l =

∑
w∈Yl

Qx,w, where x ∈ Yk.

29



2. Dynamical systems on networks

Thus, in the case of a lumpable Markov chain, the aggregated process can be seen as a
reduced model, and the map assigning to a state x the index k such that x ∈ Yk can be
interpreted as the corresponding collective variable.

Note that the lumping together of states is always a trade-off between size reduction
and loss of information. For example, every Markov chain is lumpable with respect to
the partition consisting of only one set: the whole state space. However, the associated
aggregated process contains no information. On the other hand, every Markov chain is
also lumpable with respect to the partition containing only sets with cardinality one,
one for each state. However, the associated aggregated process offers no reduction in
size. As a consequence, lumpability itself is not a sufficient condition for the existence of
a meaningful reduced model, and the associated collective variable is not automatically
good, as defined in section 2.3. A common strategy to circumvent this issue is to propose a
partition P that contains the information one is interested in, and then to find the coarsest
lumpable partition that is at least as fine as P. Hence, the associated aggregated process
has minimal size while still containing the desired information and being Markovian.
However, for discrete-state dynamical systems on networks such as the CNVM the task

of finding lumpable partitions seems practically impossible. If each node has one of M
discrete states, the state space of the process contains MN elements, where N denotes
the number of nodes. Thus, the number of partitions of the state space is more than6

exp(MN ), which is astronomically large even for relatively small M and N . For instance,
given M = 2 and N = 10 there are substantially more than 10400 possible partitions.
Hence, a brute-force search for lumpable partitions is computationally infeasible.
Fortunately, the effective number of relevant partitions can be significantly reduced in

some cases by exploiting symmetries in the underlying network, which is discussed in the
following paragraph.

Automorphism-based lumping In [95] it was observed that graph automorphisms play
a central role when applying the concept of lumpability to discrete-state systems on net-
works.

Definition 2.5. A bijection f : V → V is called an automorphism on the simple graph
G = (V,E) if for all i, j ∈ V :

{i, j} ∈ E ⇔ {f(i), f(j)} ∈ E. (2.40)

The set of all automorphisms Aut(G) of the graph G forms a group with respect to
composition and is a subgroup of the symmetric group Sym(V ). The action of Aut(G)
on the state space [M ]N of the model is defined by

f · x = y :⇔ ∀i ∈ [N ] : xf(i) = yi, (2.41)

where x, y ∈ [M ]N and f ∈ Aut(G).

The action defined above induces an equivalence relation on [M ]N by associating states
that can be converted into one another by applying an automorphism, i.e.,

x ∼ y :⇔ ∃f ∈ Aut(G) : f · x = y. (2.42)

6The actual number of partitions is given by the Bell numbers, which even grow faster than exponentially.
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Given the assumption that the dynamical model is homogeneous in the sense that the
rate at which a node transitions from one state to another is calculated the same way for
every node and depends only on the states of neighboring nodes, the following theorem
can be shown.

Theorem 2.6 ([95]). The continuous-time Markov chain x(t) is lumpable with respect to
the partition given by the quotient space [M ]N/∼. Moreover, this partition is at least as
fine as the partition that merges all states with identical node state shares.

The above theorem does not only address the existence of a lumpable partition but
offers an explicit construction. For example, the equivalence class of a state x ∈ [M ]N ,
which is a member of the partition, is given by its orbit {f ·x | f ∈ Aut(G)}. In addition,
it is guaranteed that the partition contains at least the information of state counts, i.e.,
two states x and y with differing shares of each node state will never belong to the same
equivalence class. For instance, in an SI model the number of infected and susceptible
nodes can always be inferred from the aggregated process, which is an important and
meaningful observable for most applications.
Although the lumpable partition [M ]N/∼ is explicitly known, it is intractable to find it

for all but the simplest graphs. Two such simple examples are discussed below. For most
other graphs however, only a numerical solution is practical.

Example 2.7. For the sake of simplicity, assume that M = 2 in the following examples.
One node state will be referred to as infected and the other as susceptible.

a) In the case of a complete graph, it is easy to see that every permutation is an automor-
phism, i.e., Aut(G) = Sym([N ]). Hence, a state x ∈ {0, 1}N can be transformed into
every other state that has the same number of infected nodes by an automorphism,
and the lumpable partition consists of N + 1 sets {Y0, . . . ,YN}, where Yk contains all
the states x with k infected nodes.

b) For a star graph consisting of a central node and N − 1 outer nodes that are only
connected to the central node, the automorphism group consists of all permutations
that do not affect the central node, i.e., Aut(G) ≃ Sym([N − 1]). Hence, two states
are equivalent x ∼ y if the central node has the same state and the outer nodes have
the same count of infected nodes. The resulting lumpable partition therefore consists
of 2N sets, N for the case that the central node is infected and N for the case that it
is susceptible.

Discussion on lumpability. Although the approach of automorphism-based lumping
seems promising, there are several problems limiting its usefulness and restricting its
suitability for finding collective variables and reduced models. First of all, most networks
do not exhibit many symmetries, i.e., the automorphism group Aut(G) is small, which re-
sults in only an insignificant reduction in size of the aggregated process. It is not unusual
for large networks to even have no symmetries, Aut(G) = {id}, so that this approach
can not be applied at all. For instance, Erdős–Rényi random graphs (see section 3.1.1
for more details) have no symmetries asymptotically almost surely [96]. The cause of
these issues is the rigidity of the underlying concept of lumpability: per definition the
aggregated process is an exact projection of the original process. An approximation error
of the reduced dynamics is not allowed. Thus, lumpability requires much more than what
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the notion of collective variables is about, i.e., trading off a small approximation error in
the reduced model for a large reduction in size and complexity in an intelligent way.
To address this rigidity of lumpability some relaxations have been studied in the liter-

ature, see for example [97, 98, 99]. The most noteworthy extension in the given context
is presented in [96], where the approach of automorphism-based lumping is relaxed to
only require local symmetries of the graph. While this extends the number of cases where
the approach can be applied effectively, the underlying combinatorial and computational
issues, which were also briefly discussed above, still make employing the lumpability ap-
proach exceptionally hard or even infeasible for larger graphs.
To circumvent these combinatorial issues one can instead work with a continuous version

of lumpability, for instance as defined in [58] for continuous-state Markov processes. In
this setting, a Markov process is called lumpable if there exists a collective variable φ
such that every transition density function ptx (see section 2.3 for definition) depends
essentially only on the value φ(x) and not on the initial state x itself7. In a sense, the
level sets of the collective variable take the role of the partition in the discrete version of
lumpability, i.e., for initial states x and y with φ(x) ≈ φ(y) a lumpable system behaves
(almost) identically, ptx ≈ pty. Note that this definition of lumpability is very similar to the
intuitive conditions on a good collective variable that were introduced in section 2.3. The
concept of transition manifolds is closely related to lumpability [58] and will be discussed
in more detail in chapter 6, where a data-driven algorithm to find good collective variables
for dynamical systems on networks will be presented.

7For intermediate lag-times t.
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A crucial part of modeling real-world phenomena as dynamical systems on networks is an
appropriate choice of the underlying graph structure. In some areas of application highly
resolved network data is available. Typical examples are online social media, transport
networks (e.g. flights), and power grids. However, in many applications the acquisition
of such detailed network data is impractical or even impossible. For instance, in large
scale opinion dynamics it is challenging to measure the relation between every pair of
individuals. If reliable network data is not available, random graphs can be used to
construct surrogate networks that mimic the properties of the corresponding real-world
network.

The measurement and analysis of real-world social networks is the subject of social
network analysis [100]. Numerous studies (see [101, 102, 103] for an overview) indicate
that real (social) networks often have the following properties:

1. Heavy-tailed degree distribution. The degree distribution follows a power law,
i.e., f(d) ∝ d−α, where f(d) is the fraction of nodes with degree d and α > 0. In such
a graph, there are nodes with very large degree, which are called hubs. However,
the vast majority of nodes have rather small degree. Typically, the exponent takes
values 2 ≤ α ≤ 3, in which case the network is also called scale-free [103]. (Recent
work [104] argues that a log-normal distribution is often better suited to represent
real-world networks than a power law.)

2. Communities and clustering. Nodes can be grouped into communities such
that they are much more densely connected to nodes within their community than
to other communities, i.e., the graph exhibits a largemodularity [105]. Moreover, the
clustering coefficient [106], which measures how close on average the neighborhood
of a node is to be a clique (complete graph), is large in real networks. Intuitively,
a large clustering coefficient means that if two nodes share the same neighbor, they
are also likely connected.

3. Small-world property. The average path length and the diameter (i.e., the longest
of the shortest paths between any two nodes) are comparatively small. If at the
same time the clustering coefficient is not small, the network is said to exhibit the
small-world property [106].

Moreover, especially social networks tend to exhibit a large assortativity due to the ho-
mophiliy of nodes, i.e., edges are more likely to form between similar nodes (e.g., nodes
with similar degree) [23].

Using different random graph models it is possible to easily construct artificial networks
that emulate one or several of the above characteristics of real-world networks [107]. This
thesis focuses mainly on simple graphs, i.e., graphs with undirected and unweighted edges
between exactly two nodes.
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Definition 3.1 (Random graph). Let GN denote the set of all simple graphs G = (V,E)

with node set V = [N ]. There are |GN | = 2(
N
2 ) such simple graphs. Let (Ω,F ,P) be a

probability space. A random variable G : Ω→ GN is called a random graph.

A graph property PN ⊂ GN is fulfilled with probability P(G ∈ PN ). For example, if
PN = {G ∈ GN | G is connected}, then P(G ∈ PN ) specifies the probability that G is
connected. It is interesting to examine if certain graph properties hold as the size N of
the random graph increases.

Definition 3.2. Let (Gℓ)ℓ∈N be a sequence of random graphs Gℓ : Ω → GNℓ
, such that

limℓ→∞Nℓ =∞. Let P = (PNℓ
)ℓ∈N be a graph property. The sequence of random graphs

fulfills P asymptotically almost surely (a.a.s.) if

lim
ℓ→∞

P(Gℓ ∈ PNℓ
) = 1. (3.1)

The remaining part of this chapter is organized as follows. In section 3.1 the most
commonly used random graph models and their properties are discussed. Section 3.2
is concerned with graphons, which can be used to represent certain random graphs as
functions on the unit square. Finally, the property of a random graph to be invariant
under graph isomorphism is discussed in section 3.3.

3.1. Commonly used models

In this section some of the most commonly used random graph models are discussed, i.e.,
Erdős–Rényi random graphs, the stochastic block model, the Watts–Strogatz small world
model, the Albert–Barabási model, and the configuration model.

3.1.1. Erdős–Rényi random graphs

The Erdős–Rényi (ER) random graph or binomial random graph GN,p is the random
graph with N nodes where each edge is present with probability p ∈ [0, 1], independently
of the other edges [108]. Hence, for all G = (V,E) ∈ GN the ER random graph satisfies

P(GN,p = G) = p|E|(1− p)(
N
2 )−|E|. (3.2)

The degree distribution of GN,p is binomial, i.e., if the random variable di denotes the
degree of an arbitrary node i, it follows that

P(di = k) =

(
N − 1

k

)
pk(1− p)N−1−k. (3.3)

This results in homogeneous networks where most nodes have a degree close to the ex-
pected degree (N − 1)p, which is substantially different from the heavy-tailed degree
distributions of real-world networks. The concentration of node degrees is addressed in
the following lemma, which follows directly from the Chernoff bound (cf. Lemma A.1).

Lemma 3.3. Let GN,p denote the ER random graph and the random variable di the
degree of an arbitrary node i. Then for all ε > 0 it follows that

P
(
|di − µ| ≥ εµ

)
≤ 2 exp

(
−ε

2µ

3

)
, (3.4)

where µ := E[di] = (N − 1)p.
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Many properties of GN,p change drastically depending on p. It is implicitly assumed
that p = p(N) is a function of the number of nodes N in order to discuss the asymptotic
behavior. Some interesting properties are summarized below (see [109] for proofs):

1. If p ≪ 1
N , the random graph is a.a.s. not connected. Each connected component

consists of a vanishingly small share of nodes.

2. If 1
N ≪ p ≪ logN

N , the random graph is still a.a.s. not connected. There exists a
unique giant component of size O(N), i.e., it contains a non-vanishing fraction of
nodes. All other connected components have sizes of at most O(logN).

3. If p≫ logN
N , the random graph is a.a.s. connected. The diameter is approximately

diam(GN,p) ≈ logN/ logNp. For a constant p, the diameter equals 2 a.a.s.

4. If Np → ∞, all degrees are asymptotically equal, in the sense that for all ε > 0
every degree di is in the interval [Np(1 − ε), Np(1 + ε)] with high probability (see
Lemma 3.3).

5. The expected local clustering coefficient and average clustering coefficient of GN,p

is p. Thus, the resulting networks do not show clustering, as the coefficient only
reflects the overall edge density p.

Due to the outlined properties of the ER random graph, it is not suitable to generate
realistic (social) networks. While a small diameter can be realized by choosing a large p,
the degree distribution of GN,p remains substantially different from many real-world net-
works as it lacks a community structure (low modularity) and local clustering. However,
the ER random graph is still one of the most used and studied random graph models
because of its simplicity and the stochastic independence of edges.

3.1.2. The stochastic block model

The stochastic block model [110] is a generalization of the Erdős–Rényi random graph that
makes including a community structure possible. The set of nodes V = [N ] is partitioned
into K disjoint subsets V1, . . . , VK , which will form the communities. Given a symmetric
matrix P ∈ [0, 1]K×K of edge probabilities, a node i ∈ Vk is connected with a node j ∈ Vk∗
with probability Pk,k∗ . The choice K = 1 yields the standard ER random graph.
To generate a community structure in the sense of a large modularity, the intra-

probabilities Pk,k are typically chosen larger than the inter-probabilities Pk,k∗ , k ̸= k∗.
The remaining graph properties can largely be transferred from the ER random graph,
see section 3.1.1.

3.1.3. Random graphs with given expected degrees

Another generalization of the Erdős–Rényi random graph model is the random graph with
given expected degrees. After specifying the expected degree wi ≥ 0 for each node i =
1, . . . , N , an edge between nodes i and j is inserted with probability pi,j := wiwj/

∑N
k=1wk,

independently of other edges. The condition maxiw
2
i ≤

∑
iwi on the expected degrees

ensures that pi,j ∈ [0, 1]. As a result, the expected degree of node i is indeed wi. The
ER random graph GN,p is a special case of this procedure by choosing wi = Np for all i.
Many properties of the ER random graph can be extended to this model. For instance,
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if the average degree d :=
∑N

i=1wi/N is strictly larger than 1, there exists a unique
giant component of O(N) size [111]. Moreover, under certain conditions on the expected
degrees, the diameter is approximately logN/ log d̃, where d̃ :=

∑N
i=1w

2
i /
∑N

i=1wi is the
second order average degree [112]. This matches the diameter of ER random graphs
presented in section 3.1.1 when inserting wi = Np. Due to the independent sampling of
edges, random graphs with given expected degrees also lack a community structure and
have a low clustering coefficient.

Although the expected degrees are specified in this model, the actual degree of each
node varies in every realization. If the random graph should reproduce the degrees exactly,
the configuration model, which will be discussed in section 3.1.6, can be used instead.
Furthermore, random graphs with given expected degrees can themselves be considered
as a special case of an even more general model: the graphon model. In the graphon
model the probabilities pi,j for every edge {i, j} are dictated instead of the expected

degrees wi =
∑N

j=1 pi,j . Further details on the graphon model will be presented later in
section 3.2.

3.1.4. The Watts–Strogatz small-world model

Motivated to construct networks that exhibit the small-world property, i.e., have a small
diameter and a large clustering coefficient, Watts and Strogatz proposed the following
model [106]. Given the number of nodes N and the mean degree K, which has to be an
even number, a regular ring lattice is constructed such that every node is connected to
its nearest K/2 left and K/2 right neighbors on the ring. Then, for every node i iterate
through each of its K/2 right neighbors, and rewire it with probability β. Rewiring is
done by replacing the edge {i, j} with {i, k}, where k is chosen uniformly at random from
all possible nodes, but avoiding self-loops and link duplication.

By varying the rewiring probability β it is possible to interpolate between a very regular
lattice structure (β = 0), which exhibits a large clustering coefficient and large diameter,
and a random structure (β = 1, close to an ER random graph), which exhibits a small
clustering coefficient and small diameter. When increasing β, the diameter decreases
much quicker than the clustering coefficient [106]. Hence, for intermediate choices of β the
diameter is already small while the clustering coefficient is still comparatively large: the
small-world property. However, similarly to ER random graphs, the degree distribution
is concentrated, leading to networks where all nodes have similar degrees. Thus, the
Watts–Strogatz model is not able to generate realistic networks with heavy-tailed degree
distributions.

As mentioned before, the resulting random graph for β = 1 is similar to an ER random
graph with p = K

N−1 , but not identical. To generate exactly the same distribution, the
generation algorithm can be slightly modified. The resulting random graph model will
be called the binomial Watts–Strogatz model, see algorithm 1. In the binomial Watts–
Strogatz model, the probability of an edge {i, j} is (1− β)+ ββ̃ if i and j were connected
originally on the ring lattice, and β̃ else. The value β̃ is chosen such that setting β = 1
results in an Erdős–Rényi model with p = K

N−1 . Moreover, for every choice of β the
expected degree of every node is K.
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Algorithm 1 Binomial Watts–Strogatz model

1: Construct a regular ring lattice with N nodes, such that each node is connected to its
K/2 right and K/2 left neighbors.

2: Iterate through all KN/2 present edges and remove each with probability β. Denote
the resulting graph as G1.

3: Sample an ER random graph with edge probability

β̃ :=
βKN

2(
N
2

)
− (1− β)KN

2

=
βK

N − 1− (1− β)K
.

Denote the resulting graph as G2.
4: Return G = G1 ∪ G2. (G also has nodes [N ], and an edge is present in G if it is

present in G1 or G2.)

3.1.5. The Albert–Barabási model

The random graph models described in the previous sections all possess concentrated
degree distribution that are not heavy-tailed. The Albert–Barabási model [113] on the
other hand is specifically tailored to generate scale-free random networks with a power
law degree distribution. Given a parameter m ∈ N, the model starts with a small initial
graph of at least m nodes, typically a clique or a star graph. Then nodes are iteratively
added to the graph using the preferential attachment method until a desired number of N
nodes is reached. In the preferential attachment method a new node is connected to m
randomly chosen existing nodes. The probability pi of picking the existing node i to form
a new edge is proportional to its degree di, i.e.,

pi =
di∑
j dj

. (3.5)

Hence, nodes with high degree are likely to accumulate even more edges as the graph
grows, which results in the formation of the characteristic network hubs. Independently
of the parameter m, this procedure results (asymptotically) in a power law degree distri-
bution

P(d = k) ∼ k−3, (3.6)

where d is the degree of a uniformly randomly chosen node [113].
The diameter of the Albert–Barabási model grows slowly at the rate logN

log logN for m ≥ 2
and logN for m = 1 [114], and can thus be considered as small. However, the average

clustering coefficient decreases quickly at the rate log2 N
N [115], such that the model does

not satisfy the small-world property. Moreover, due to the stochastic correlation of node
degrees and edges, the Albert–Barabási random graph is substantially more difficult to
analyze than simpler models like the Erdős–Rényi random graph.

3.1.6. The configuration model

Generating a random graph with an arbitrary degree distribution is possible with the
configuration model [116]. Given the desired degree di for each node i ∈ [N ], such that
D :=

∑N
i=1 di is even, di half-edges are assigned to each node i. Then repeatedly two
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half-edges are picked uniformly at random from all remaining half-edges, joined together
to form an edge between the nodes they were assigned to, and removed from the set of
available half-edges. This procedure may yield a multigraph that contains self-loops and
multiple edges between two nodes, in which case the algorithm has to be rerun until a
simple graph is sampled.

A more precise definition of the configuration model is as follows [109]. Define the set

W = [D] =W1 ⊔ · · · ⊔WN (3.7)

with partition W1 = {1, . . . , d1}, W2 = {d1 + 1, . . . , d1 + d2}, and so on. The elements
of Wi label the half-edges attached to node i, and W is an enumeration of all half-edges.
Moreover, define the map

φ :W → [N ], φ(e) = i⇔ e ∈Wi. (3.8)

Joining two half-edges e, h ∈ W corresponds to adding an edge between the nodes φ(e)
and φ(h). A configuration is defined as a partition F of W into η := D/2 pairs. The
multigraph that is induced by the configuration F is denoted by

γ(F ) := (V,E), V = [N ], E = {{φ(e), φ(h)} | {e, h} ∈ F}. (3.9)

Let the random variable F denote a uniformly random configuration, i.e., every configu-
ration is equally likely. Then the output of the configuration model is γ(F ).
When repeatedly generating multigraphs with the configuration model until a simple

graph is sampled, each possible simple graph in GN with the required degree distribution
is equally likely to occur [109, Cor. 9.2]. Hence, the (simple) random graph induced
by this procedure samples uniformly over the set of valid graphs. Moreover, under the
sparsity condition max{d1, . . . , dN} < N1/7, it can be shown that [109, Thm. 9.3]

P(γ(F ) is simple) ≈ e−λ(λ+1), with λ :=

∑N
i=1 di(di − 1)

2
∑N

i=1 di
. (3.10)

Thus, in many cases only very few samples are sufficient to obtain a simple graph from
the configuration model.

It remains to find a feasible way to sample configurations F uniformly at random.
Define the set of η-tuples

Π :=
{
(t1, . . . , tη) | tr ∈ [D − 2r + 1] for all r

}
. (3.11)

A tuple t ∈ Π uniquely induces a configuration F = ψ(t), where the map ψ is defined via
the following algorithm. Let U1 := W and U r+1 := U r \ {ur0, urtr}, r = 1, . . . , η, where
uri := (i + 1)-th smallest element of U r. Then F = ψ(t) := {(ur0, urtr) | r = 1, . . . , η}. In
words, start with W and define an edge by connecting the nodes associated to the first
and t1-th element of W . Then remove this pair of elements from W and continue this
procedure on the remaining set with the first and t2-th element, and so on. An example
is shown in Figure 3.1. Let the random variable t sample uniformly from Π, i.e., each
component tr is picked uniformly at random and independently of the others. Then it
follows that

ψ(t)
d
= F . (3.12)
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Figure 3.1.: For N = 4, (d1, . . . , d4) = (3, . . . , 3), and an example tuple t ∈ Π, the induced
configuration ψ(t) and multigraph γ(ψ(t)) are shown. Reprinted from [1].

The averaged local clustering coefficient C of random graphs generated by the config-
uration model is given by [103]

C ≈ λ

N
, with λ :=

(
1
N

∑N
i=1 d

2
i − 1

N

∑N
i=1 di

)2
(

1
N

∑N
i=1 di

)3 . (3.13)

Moreover, the random graph is a.a.s. connected if di ≥ 3 for all i, although this condition
is not necessary for connectedness [117]. If the degrees are additionally chosen such that
the degree distribution converges to a limiting distribution with finite first and second
moments, the diameter fulfills [118]

diameter
(
γ(F )

)
= α logN + o(logN) as N →∞, (3.14)

where α is some constant depending on the degree distribution. Hence, for these sparse
random graphs generated by the configuration model, the diameter increases as logN
while the clustering coefficient decreases as 1/N , and they therefore do not fulfill the
small-world property.
An interesting class of random graphs are the uniformly random d-regular graphs, where

every d-regular graph has the same probability. A graph is called d-regular if every node i
has degree di = d. As this constitutes a special case of the configuration model, the
properties described above can be transferred to the random regular graphs. For instance,
given d ≥ 3, the resulting diameter is given by [119]

diameter
(
γ(F )

)
=

logN

log(d− 1)
+ o(logN) as N →∞. (3.15)

Due to the uniformly random drawing of (half-) edges in the configuration model,
the resulting random graphs have a very homogeneous edge density when controlling for
the dictated node degrees, which is also the reason for the small clustering coefficient
discussed above. Thus, especially for large given degrees the random graphs generated by
the configuration model are structurally quite similar to ER random graphs. For instance,
the distributions of the random regular graph for a sufficiently large degree d and the ER
random graph with p = d/N become asymptotically identical, which is the subject of the
sandwich conjecture [120]:
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3. Random graphs

Conjecture 3.4. If the degree d = d(N) is a function of the graph size N that satisfies
d ≫ logN , then there exist p∗ = (1 − o(1)) d/N and p∗ = (1 + o(1)) d/N as well as ER
random graphs G∗ ∼ GN,p∗ and G∗ ∼ GN,p∗, such that

P(G∗ ⊆ GN,d ⊆ G∗) = 1− o(1) as N →∞, (3.16)

where ⊆ denotes inclusion of edges.

Proof. The sandwich conjecture has only been proven for d ≫ log(N)4/ log(logN)3,
see [121]. It is an open question whether or not the conjecture is true for the missing
range logN ≪ d≪ log4N/ log3 logN .

3.2. Graphons

A useful tool for working with random graphs are graphons [122] (short for graph-
functions), which are commonly employed in the study of large and dense networks.

Definition 3.5. A measurable and symmetric function W : [0, 1]2 → [0, 1] is called a
graphon.

For all N ∈ N the graphon W induces a random graph GN on N nodes by the following
procedure. Define ui := i/N for i = 1, . . . , N . Then the edge {i, j} is present in GN with
probability W (ui, uj), independently of other edges. Note that the expected number of
edges |EN | in GN is asymptotically

E[|EN |] ≈
N2

2

∫ 1

0

∫ 1

0
W (x, y)dx dy. (3.17)

Thus, the random graphs induced by a graphon are dense.

Furthermore, given a graph G an associated graphon WG can be specified. Define the
interval Ii := (ui−1, ui], and set WG(Ii × Ij) ≡ 1 if the edge {i, j} is presented in G, and
WG(Ii × Ij) ≡ 0 else. Due to this block structure, the graphon WG can be seen as a
functional representation of the adjacency matrix of G.

Many popular random graph models can be represented as a graphon. The simplest
example isW ≡ p, which induces the Erdős–Rényi random graph GN,p (see section 3.1.1).
Moreover, partitioning [0, 1] into intervals J1, . . . , JK and setting W (Jk × Jk∗) ≡ Pk,k∗

yields the stochastic block model (see section 3.1.2) with K communities, whose sizes are
proportional to the length of the associated intervals, and probability matrix P . However,
due to the fact that edges are always independent in the induced random graph, any model
with stochastically dependent edges cannot be represented as a graphon. For example,
the Albert–Barabási model (section 3.1.5) and the configuration model (section 3.1.6) lack
a graphon representation.

Graphon operator. Given a graphon W , the graphon operator W, which acts on func-
tions f ∈ L1([0, 1]), is defined by

(Wf)(x) =

∫ 1

0
W (x, y)f(y)dy. (3.18)
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For the important special case f ≡ 1 the graphon operator yields the degree function

dW (x) := (W1)(x) =

∫ 1

0
W (x, y)dy. (3.19)

It describes how many neighbors a node at position x has on average asymptotically, from
dW (x) = 1 meaning that it is connected to all other nodes to dW (x) = 0 implying that it
is isolated. For large finite networks the expected degree of node i is given by

E[di] =
∑
j ̸=i

W (ui, uj) ≈ N dW (ui). (3.20)

Graph limits. Graphons can also be used to define the limit of a sequence of (random)
graphs. The distance between graphs is typically measured in the cut norm, although
other sensible choices exist [122]. The cut norm of a graphon W is defined as

∥W∥□ := sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T
W (x, y)dx dy

∣∣∣∣ . (3.21)

Hence, given two graphs G and H, and their associated graphons WG and WH , the
distance ∥WG −WH∥□ measures the maximum discrepancy of the edge density between
G and H over all subsets of nodes.
Let Gℓ be a graph on Nℓ nodes for all ℓ ∈ N and assume that Nℓ →∞. A graphon W

is called the graph limit of the sequence of graphs (Gℓ)ℓ if limℓ→∞∥WGℓ −W∥□ = 0. For
example, let Gℓ be a realization of the Erdős–Rényi random graph GNℓ,p, and W ≡ p.
Then it can be shown [122] that almost surely W is the graph limit of (Gℓ)ℓ.

To circumvent the density restriction of graphons and define the graph limit of a se-
quence of non-dense graphs, a scaling parameter κℓ > 0 can be used [85]. More precisely,
the convergence criterion is modified to limℓ→∞∥ 1

κℓ
WGℓ−W∥□ = 0. For instance, if Gℓ is

a realization of the ER random graph GNℓ,κℓ
with κℓ → 0, the sequence (Gℓ)ℓ has almost

surely the rescaled graph limit W ≡ 1.

Applications and Extensions. Graphons have been applied extensively in the study of
dynamical systems on networks (or interacting particle systems) [85, 123, 124], but also
in adjacent fields like control theory on networks [125] or dynamical game systems on
networks [126]. Graphons are especially well-suited for deriving a mean-field limit in the
form of a PDE, for instance a McKean–Vlasov or continuity equation, that describes the
evolution of probability densities. The above-mentioned graphon operator W often plays
a central role in these mean-field equations. An example application of this graphon
mean-field theory to the voter model will be demonstrated in section 7.3.
As graph limits of sparse networks cannot be handled using the notion of graphons as

introduced above, different theories have been developed to define sparse graph limits,
see for example [127, 128, 129]. A promising approach to unify the theories for dense
and sparse graph limits is to assess and compare graphs based only on the action of
the operator given by their adjacency matrix [130]. These positivity-preserving and self-
adjoint operators are called graphops (short for graph-operators). Under mild conditions
on a sequence of graphs, the associated sequence of graphops converges to a limit operator
in a certain metric that is related to their action and utilizes a concept called profiles.
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3. Random graphs

For instance, in the case that a sequence of dense graphs converges to a graphon, the
associated limit graphop is the graphon operator W. Mean-field limits for dynamical
systems on networks have also recently been formulated using graphops, see [131, 132].

3.3. Invariance under graph isomorphism

A useful property of some random graphs, which will be important later in section 5.2,
is the invariance under graph isomorphism [1]. Let GN denote the set of simple graphs
with node set [N ]. A graph isomorphism between two simple graphs G = ([N ], EG) and
H = ([N ], EH) is a permutation τ : [N ]→ [N ] such that

(i, j) ∈ EG ⇔ (τ(i), τ(j)) ∈ EH . (3.22)

Hence, we will denote H = τ(G) if H and G are isomorphic with permutation τ . Many
common random graph models are indifferent with respect to the specific node labels,
which motivates the following definition:

Definition 3.6. A random graph G ∈ GN is called invariant under isomorphism if for
any two isomorphic graphs G,H ∈ GN it holds

P(G = G) = P(G = H). (3.23)

Example 3.7. Erdős–Rényi random graphs (see section 3.1.1) are invariant under isomor-
phism as the probability of a graph depends only on the number of its edges, which is pre-
served under graph isomorphism. The uniformly random d-regular graph (section 3.1.6) is
also invariant under isomorphism as every d-regular graph has equal probability, any not
d-regular graph has probability 0, and d-regularity is preserved under graph isomorphism.

It is interesting to examine this invariance of the random graph together with a system
state x ∈ [M ]N , which assigns to every node i a discrete state xi ∈ [M ]. For a permutation
τ : [N ] → [N ], the permuted state τ(x) ∈ [M ]N is defined by τ(x)i := xτ−1(i). Then,
certain observables f are identical for (G, x) and (τ(G), τ(x)), for example the number of
edges between nodes of state m and nodes of state n.

Definition 3.8. A function f : GN × [M ]N → R is called invariant under isomorphism
if for all permutations τ : [N ] → [N ] and all (G, x) ∈ GN × [M ]N it holds f(G, x) =
f(τ(G), τ(x)).

Example 3.9. Let f(G, x) denote the number of edges between nodes of state m and
nodes of state n, m ̸= n, and dGi,n(x) the number of neighbors of node i that are of state
n. Then it follows

f(G, x) =
∑

i: xi=m

dGi,n(x) (3.24)

=
∑

i: xi=m

d
τ(G)
τ(i),n(τ(x)) (3.25)

=
∑

i: τ(x)i=m

d
τ(G)
i,n (τ(x)) = f(τ(G), τ(x)), (3.26)

i.e., f(G, x) is invariant under isomorphism.
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Consider the following useful proposition.

Proposition 3.10. Let both the random graph G ∈ GN and the function f : GN×[M ]N →
R be invariant under isomorphism. Let τ : [N ] → [N ] be a permutation and x ∈ [M ]N a
state. Then it holds

f(G, x)
d
= f(G, τ(x)). (3.27)

Proof. Define for some fixed β ∈ R

G := {G ∈ GN : f(G, x) = β} (3.28)

G∗ := {G ∈ GN : f(G, τ(x)) = β}. (3.29)

Due to the invariance under isomorphism of f , any G ∈ G satisfies

β = f(G, x) = f(τ(G), τ(x)), (3.30)

and thus τ(G) ∈ G∗. Now, let G∗ ∈ G∗. Then

f(τ−1(G∗), x) = f(G∗, τ(x)) = β, (3.31)

and thus τ−1(G∗) ∈ G. Altogether, we have τ(G) = G∗. Finally, by the invariance under
isomorphism of G, it follows

P(f(G, x) = β) = P(G ∈ G) = P(G ∈ G∗) = P(f(G, τ(x)) = β). (3.32)
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4. Simulation of Markov jump processes on
networks

Many popular discrete-state dynamical models on networks fall into the class of Markov
jump processes, including the continuous-time noisy voter model that was introduced in
section 2.2. Due to the complexity of these systems, a purely theoretical investigation of
their behavior is often out of reach. Instead, numerical simulations are readily employed
to generate system trajectories, to conduct statistical tests of proposed hypotheses about
the system’s characteristics, or to assess the quality of model reductions. Section 4.1
explores how these Markov jump processes on networks can be simulated efficiently on a
computer. Moreover, a specific simulation algorithm for the continuous-time noisy voter
model is developed in section 4.2.

Consider again a simple graph G with N nodes. Each node i ∈ [N ] has one of M ∈ N
discrete states, xi ∈ [M ]. It is assumed that the underlying model is such that each node i
changes its state over time due to a (inhomogeneous) continuous-time Markov chain with
transition rate matrix Qi(x), Qi : [M ]N → RM×M . For m ̸= n, the (m,n)-th entry of
the rate matrix, (Qi(x))m,n ≥ 0, specifies at which rate node i transitions from state
m to state n. The diagonal entries are such that each row sums to 0. Note that the
transition rates Qi(x) may depend on the full system state x, although in most popular
models they are calculated based only on the neighborhood of agent i. Moreover, each
node i may be subject to a different function Qi determining its transition rates. The
stochastic process referring to the state of node i at time t is denoted as xi(t), and the full
process as x(t) =

(
x1(t), . . . ,xN (t)

)
∈ [M ]N . The full system is then a time-homogeneous

Markov jump process with generator Q, which specifies the rate of transitioning to a state
y ∈ [M ]N when starting in a different state x ∈ [M ]N and is given by

Q(x, y) =

{(
Qi(x)

)
xi,yi

∃i ∈ [N ] ∀j ̸= i : xj = yj

0 else.
(4.1)

This process has the following interpretation: Given x(t) = x, the processes xi(s), i =
1, . . . , N , are independent continuous-time Markov chains with rate matrices Qi(x) for
s > t as long as no jump takes place, i.e., x(r) = x for all t < r < s. When a jump occurs
(almost surely no two jumps occur simultaneously), the state x is updated, with it the
rate matrices Qi(x), and the independent processes in the nodes start over with initial
conditions dictated by the updated state x.

4.1. The stochastic simulation algorithm

At first, the numerical simulation of a general continuous-time Markov chain is discussed.
This is extended to the special case of Markov jump processes on networks later in the
section.
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4. Simulation of Markov jump processes on networks

An obvious but inefficient way to sample realizations of a general Markov jump process
with rate matrix Q is given by the following procedure. Given an initial state m of the
process at time t, draw for each other state n ̸= m a random time ∆n ∼ exp(Qm,n) that
is exponentially distributed with the corresponding transition rate.1 Then at time t+∆,
∆ := mink ∆k, the process jumps to the new state n := argmink∆k, and the procedure is
started anew. As a time ∆k has to be sampled for each n and the minimum needs to be
calculated, this approach suffers from a linear complexity in the number of states.
A much more efficient procedure is given by the stochastic simulation algorithm (SSA;

also called Gillespie’s algorithm) [134], which exploits the property that the minimum of
independent exponentially distributed variables is again exponentially distributed, with
accumulated rate. In the SSA, the duration until the next transition event is drawn from
an exponential distribution corresponding to the accumulated rate, and then the new
state is drawn randomly with probabilities proportional to the associated transition rates,
see algorithm 2. As each row of the rate matrix sums to 0, these accumulated rates are
given by the diagonal entries of Q.

Algorithm 2 Stochastic simulation algorithm (SSA)

Input: rate matrix Q, state m, time t

1: draw ∆ ∼ exp(−Qm,m)
2: t← t+∆
3: draw n according to P(n = k) =

Qm,k

−Qm,m

4: m← n

An important step of the SSA is the sampling of the new state n according to the
magnitude of the respective transition rates (line 3 in algorithm 2). There are several
approaches one can employ to sample from such a non-uniform discrete distribution. A
popular method is sampling a uniformly distributed random number u ∈ [0, 1] and then
finding the smallest n such that F (n) ≥ u, where F denotes the cumulative distribution
function

F (n) =
n∑

k=1

Qm,k

−Qm,m
. (4.2)

This produces samples n with the correct distribution [133], and the values F (1), F (2), . . .
can be calculated beforehand. Determining the smallest n with F (n) ≥ u can be achieved
via a bisection approach, which results in a logarithmic complexity with respect to the
number of states. However, by utilizing a so-called index table, which requires some
additional setup cost, the correct n can be found with approximately constant complexity
[135].
A different family of methods for sampling from discrete distributions is based on lookup

tables. For example, if there are two states {1, 2} such that P(n = 1) = 1
4 and P(n =

2) = 3
4 , a uniform sample from the array (table) [1, 2, 2, 2] would generate the desired

distribution. Constructing these tables for a large number of states with potentially
inconvenient (e.g, irrational) probabilities poses many difficulties, but there are algorithms
that are able to utilize lookup tables for arbitrary distributions [136], again resulting in a
fast constant complexity sampling after some additional setup cost.

1Exponentially distributed samples can for example be generated from a uniform distribution via inverse
transformation [133].
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The algorithm that will be employed here is the alias method [137], which requires two
tables: the probability table U containing a probability Un ∈ [0, 1] for each state n, and
the alias table K containing an alias state Kn for each state n. A sample is generated
by uniformly drawing a state n and a number u ∈ [0, 1]. Then, if u < Un, the state n
is returned. Otherwise, the alias state Kn is returned. For a given distribution, there
can be multiple correct choices for the probability table and alias table. The optimal
choice is characterized by the probability table with the largest sum of entries as this
minimizes the number of lookups of the alias table. Generating (non-optimal) tables can
be achieved by the following simple procedure. First initialize the probability table with
values Un = S pn, where S is the total number of states and pn = −Qm,n/Qm,m the
desired probability of state n. Then pick a state n1 with Un1 > 1 and a state n2 with
Un2 < 1. Shift the excess probability mass of n1 to n2 by setting n1 as the alias of n2, i.e.,
Kn2 = n1, and decrease the probability Un1 to Un1 − (1 − Un2) to maintain the correct
distribution. Repeat this procedure until all states have Un ≤ 1.

By applying a sampling algorithm with constant time complexity like the alias method,
the complete SSA update step (cf. algorithm 2) also exhibits a constant complexity with
respect to the number of states S. However, some additional work is necessary once at
the start to set up the sampling method, typically with linear complexity in S per initial
state m. For instance, in the alias method the construction of the two tables using the
algorithm described above is O(S), and it has to be done for each initial state m, leading
to a total complexity of O(S2). Note also that the resulting memory requirement of O(S2)
is identical to that of the bisection approach presented in (4.2) if all values F (n) of the
cumulative distribution function are precomputed for each associated initial state.

Applying the SSA to Markov jump processes on networks. For the Markov processes
on networks described in the beginning of the chapter, the plain SSA is computationally
not feasible for all but very small networks. The generator Q (4.1) can be interpreted as
a rate matrix of dimension MN ×MN by enumerating the states x ∈ [M ]N . This rate
matrix is quite sparse as only transition rates between two states that differ in exactly one
coordinate can be nonzero. Hence, in each row of Q the number of nonzero elements is at
most N(M − 1). Nevertheless, computing or storing all the transition rates beforehand is
not feasible due to the huge number MN of different states. (For instance, if M = 2 and
the graph hasN = 100 nodes, then the number of nonzero entries isMNN(M−1) ≈ 1032.)
As a consequence, also the calculation of lookup tables for constant complexity sampling
is not feasible.

This issue can be circumvented by only computing the necessary rates during the SSA
update step, i.e., if the system is in a given state, compute the transition rates to the
N(M − 1) possible next states, calculate their sum to obtain the accumulated rate, and
execute the SSA update from algorithm 2. Unfortunately, the repeating calculation of
the accumulated rate in the update step again implies a linear time complexity in the
number of nodes N . As the expected number of update steps required to simulate a
given time horizon also increases linearly with N (assuming that each node has identical
rates Qi), the complexity of the whole simulation scales with N2M , which again makes
this approach unfeasible for larger networks.

A possible solution is to employ an approximation technique such as τ -leaping [41]
that offers better performance at the cost of accuracy. Instead of simulating every single
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transition like in the SSA, the τ -leaping method aims to aggregate all jumps that occur in
a short time τ into one update step. This introduces an error whose magnitude depends
on the size of τ , but it removes the scaling of the number of required update steps in a
given time horizon with N .

However, given a specific model with known transition rates there are a number of tricks
that can be employed to potentially improve the performance of the SSA significantly.
Using the SSA compared to approximation methods like τ -leaping should be preferred if
it is computationally feasible because the SSA produces statistically correct samples of the
process. The next section illustrates some modifications to the SSA for the continuous-
time noisy voter model, making simulations with more than a hundred thousand agents
viable.

4.2. Simulating the continuous-time noisy voter model

In the continuous-time noisy voter model (CNVM), which was discussed in detail in section
2.2, each node i switches from one opinion m ∈ [M ] to a different opinion n ∈ [M ] at the
rate

(Qi(x))m,n := rm,n
di,n(x)

(di)α
+ r̃m,n, (4.3)

where di,n(x) denotes the number of neighbors of node i with opinion n, di is the degree of
node i, and rm,n, r̃m,n ≥ 0 and α ∈ R are model parameters. For an easier formulation of
the stochastic simulation algorithm (SSA), the noise parameters r̃m,n are at first assumed
to be 0, but the general case will be discussed later.
It is advantageous to rewrite the rates as follows. The parameter rm,n is replaced by

r̂ pm,n, where r̂ := maxm,n rm,n ≥ 0 and pm,n := rm,n/r̂ ∈ [0, 1]. Moreover, di,n(x)/d
α
i is

replaced by d
(1−α)
i di,n(x)/di, which yields

(Qi(x))m,n = r̂d
(1−α)
i pm,n

di,n(x)

di
. (4.4)

Now the rates consist of a factor r̂d
(1−α)
i that only depends on i, and two factors pm,n ∈

[0, 1] and di,n(x)/di ∈ [0, 1] that can be interpreted as probabilities (see section 2.2). Thus,
the accumulated rate can be easily bounded,∑

i,m,n

(Qi(x))m,n ≤
∑
i

r̂d
(1−α)
i =: racc, (4.5)

and the bound racc is fixed and can be precomputed. This gives rise to the following
modification of the SSA. The time of the next transition is sampled according to the
rate racc and the agent i that undergoes the transition is drawn randomly with probabil-

ity d
(1−α)
i /

∑
j d

(1−α)
j . Then each transition from agent i’s current opinion m to a new

opinion n has a probability of pm,n di,n(x)/di to occur. Note that the sum of these prob-
abilities over n can be less than 1. The remaining probability mass corresponds to the
case that no transition takes place. Hence, either a new opinion n is drawn for agent i or
its opinion remains unchanged after the update step.
Although the costly calculation of the accumulated rate in each update step is averted

by this modification due to the precalculation of racc, the evaluation of di,n(x)/di for
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4.2. Simulating the continuous-time noisy voter model

each n still constitutes a substantial cost (scaling with the degree of nodes). Luckily,
another trick can be applied to circumvent this evaluation: the new opinion n can also be
sampled by picking a random neighbor j of node i and setting n to its opinion xj . Thus,
the probability to pick each opinion n is di,n(x)/di, and sampling n exhibits a constant
complexity because the neighborhoods of each node can be calculated beforehand. After
sampling the new opinion n, the transition is conducted if and only if a coin toss with
probability pm,n succeeds. This modified version of the SSA for the CNVM is summarized
in algorithm 3. (Note that in this procedure also a neighbor j with the same state as
agent i can be drawn, in which case the opinion of agent i remains unchanged irrespective
of the subsequent coin toss.)

Algorithm 3 Stochastic simulation algorithm for the CNVM (r̃ = 0)

1: draw ∆ ∼ exp(racc)
2: t← t+∆

3: draw i from {1, . . . , N} according to P(i = k) =
r̂d

(1−α)
k
racc

4: draw random neighbor j of node i uniformly
5: draw u ∼ Unif[0, 1]
6: if u < pxi,xj then
7: xi ← xj
8: end if

The modified SSA in algorithm 3 again has a constant complexity in the number of
nodes, making it viable for large networks. (For the non-uniform sampling in line 3,
the before mentioned alias method can for example be employed to achieve constant
complexity.) It should be noted however that this tremendous decrease in complexity of
the update step comes at a (small) price: due to the coin toss in line 6 of algorithm 3, the
update step has a chance to not result in any state change, hence “wasting” an iteration.
The number of wasted iterations is large if many pm,n are small, which occurs when the
imitation rates rm,n differ substantially for different m,n. If on the other hand all rm,n

are equal, no iterations are wasted as all pm,n = 1.
The exploration rates r̃m,n, which were assumed to be zero up to now, can easily be

included in the above algorithm, retaining a constant complexity update. Rewriting the
rates in an analogous way yields

r̃m,n = r̂expl p̃m,n
1

M
, (4.6)

where r̂expl := M maxm,n r̃m,n and p̃m,n := r̃m,n/maxm,n r̃m,n. Taking account of these
additional rates in the calculation of the accumulated rate, a coin toss can be utilized to
determine if the next transition is due to the influence of neighbors or due to exploration
(noise). Algorithm 4 shows the complete simulation algorithm for the CNVM.

Performance. As mentioned before, the average number of state updates in a given
time horizon increases linearly2 with the number of nodes N . The expected number of
iterations of algorithm 4 also increases linearly due to the linear growth of the accumulated
rate racc. Because of the above-mentioned wasted iterations that do not yield a state

2Assuming that the newly added nodes have similar rates r, r̃ and, if α ̸= 1, also similar degrees di.
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Algorithm 4 Simulation algorithm for the CNVM

Input: initial state x, end time T

1: t← 0
2: racc ←

∑N
i=1 r̂d

(1−α)
i +Nr̂expl ▷ accumulated transition rate

3: pexpl ← Nr̂expl/racc ▷ probability for transition due to exploration
4: while t < T do
5: draw ∆ ∼ exp(racc)
6: t← t+∆
7: draw u ∼ Unif[0, 1]
8: if u < pexpl then ▷ transition due to exploration
9: draw i from {1, . . . , N} uniformly

10: draw n from {1, . . . ,M} uniformly
11: draw u ∼ Unif[0, 1]
12: if u < p̃xi,n then
13: xi ← n
14: end if
15: else ▷ transition due to imitation

16: draw i from {1, . . . , N} according to P(i = k) =
r̂d

(1−α)
k
racc

17: draw random neighbor j of node i uniformly
18: draw u ∼ Unif[0, 1]
19: if u < pxi,xj then
20: xi ← xj
21: end if
22: end if
23: end while
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Figure 4.1.: Normalized execution time of the CNVM simulation (algorithm 4) for different
numbers of nodes N and CNVM parameter α = 1.
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4.2. Simulating the continuous-time noisy voter model

change, the expected number of iterations is an upper bound of the expected number of
state updates, i.e., it may grow linearly with a larger than necessary factor. Anyhow,
the overall expected execution time of algorithm 4 is still O(N) due to the constant
complexity update step, and the larger than necessary factor due to the wasted iterations
is negligible compared to the O(N2) scaling of the standard SSA. The linear complexity of
algorithm 4 is verified by numerical experiments conducted using the SPoNet3 (Spreading
Processes on Networks) Python package, which was developed by the author and is used
for all simulations presented in this thesis. The code employs algorithm 4 together with
the alias method for non-uniform sampling. Figure 4.1 illustrates the execution time for
networks of different sizes, given a fixed end time T . Results for two different types of
networks are shown: random 3-regular graphs (see section 3.1.6) and Albert–Barabási
graphs (see section 3.1.5). As expected, the execution time increases linearly with N .
However, for the largest examined networks (N = 105) performance seems to degrade,
which is probably caused by the larger memory requirements, e.g., due to the size of the
neighborhood data exceeding the size of the CPU cache.

3https://github.com/lueckem/SPoNet
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5. Mean-field limits of Markov jump
processes on random graphs

This chapter addresses the question whether certain Markov jump processes on networks
possess a mean-field limit in the sense that the stochastic dynamics of the shares of each
discrete state concentrate around an ordinary differential equation (ODE) in the large
population limit.

The Markov jump processes discussed here are of the same type as in chapter 4: each
node i ∈ [N ] of the simple graph G has one ofM ∈ N discrete states, xi ∈ [M ]. It changes
its state over time according to a (inhomogeneous) continuous-time Markov chain with
transition rate matrix Qi(x), Qi : [M ]N → RM×M . Again, the transition rates Qi(x) of
node i may depend on the full system state x (although in most models they are calculated
based only on the neighborhood of node i), and each node i may be subject to a different
function Qi. The stochastic process referring to the state of node i is denoted as xi(t),
and the full process as x(t) =

(
x1(t), . . . ,xN (t)

)
∈ [M ]N . While the Markov chains

describing the dynamics of single nodes are inhomogeneous, the global process x(t) is
given by a homogeneous Markov chain with generator

Q(x, y) =

{(
Qi(x)

)
xi,yi

∃i ∈ [N ] ∀j ̸= i : xj = yj

0 else,
(5.1)

describing the rate at which the global process transitions from a system state x ∈ [M ]N

to a different state y ∈ [M ]N . Many popular continuous-time discrete-state systems
on networks can be defined within this framework, for instance voter models, including
infection spreading models like the SIS or SIR model, and threshold models (see sections
2.1.2 and 2.2 for more details). In the following, a superscript will be employed to specify
to which graph G a rate matrix is associated to, e.g. QG

i (x).

Random graphs. The existence of a mean-field limit largely depends on the properties
of the underlying networks. In this chapter, the above defined Markov jump processes are
considered on random graphs. A random graph G with N nodes is defined as a random
variable with values in the set of all 2N(N−1)/2 possible simple graphs with node set [N ],
see chapter 3. The stochastic process x(t) then depends on both the random selection of
an underlying graph according to G and the stochastic transitions of the Markov jump
process. More precisely, a realization of x(t) is given by first sampling a graph G from G,
initializing the node states according to x(0), and then letting the Markov jump process
run on G.
Random graphs are an important tool used to generate networks with certain character-

istics, especially when real-world network data is difficult to obtain, making it interesting
to consider them in combination with stochastic dynamics as defined above. Moreover,
for the discussion of mean-field limits it will be necessary to define infinite increasing
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5. Mean-field limits of Markov jump processes on random graphs

sequences of graphs, which is more easily done by using graph construction mechanisms
like random graph models than by specifying each single graph in the sequence. Still,
deterministic sequences of graphs are included as a special case in this setting and the
results shown below can be applied to those sequences as well.

Collective variables and classes. As explained in section 2.4.1, the most important
collective variables in the context of mean-field theory are the shares or concentrations
of the different states, for instance the percentage of infected nodes in an epidemiological
model. Instead of only considering the global shares in the whole system, it will be allowed
to measure the shares separately for certain subsets of nodes, leading to a more versatile
set of collective variables. In order to define these subsets, each node is assigned to one of
K ∈ N classes. The classification of node i is denoted as si ∈ [K], and is fixed over time
and does not depend on the realization of the random graph1. The tuple (xi, si) is called
the extended state of node i. Finally, the collective variable C : [M ]N → RMK is defined
by measuring the shares of each extended state, i.e.,

C(x) =
(
C(m,k)(x)

)
m∈[M ],k∈[K]

, C(m,k)(x) :=
#{i ∈ [N ] : (xi, si) = (m, k)}

N
. (5.2)

Mean-field approximations, i.e., expressing the dynamics only in terms of these concen-
trations, work best if nodes are as indistinguishable and interchangeable as possible, see
section 2.4.1 for details. Hence, these classes should be utilized to group nodes together
if they have similar traits or similar functions in the network, and thus may become in-
distinguishable in the large population limit. Some examples of the choice of classes are
presented below.

Example 5.1. Common examples for the choice of classes:

1. In the case K = 1, the extended states are the states themselves, (xi, si) = (xi, 1) ∼=
xi. The collective variable C(x) measures the global share of each state in the
system, which is the most commonly discussed setting in mean-field literature, see
section 2.4.1. A necessary and sufficient condition on the random graph sequence
such that a mean field limit exists has been derived in [138] for processes where the
transition rates Qi are affine-linear in the so-called neighborhood vector. However,
the continuous-time noisy voter model does not fall into this category of processes
and neither do so-called “complex contagion” models in which the infection rates
are nonlinear functions of the infection prevalence in the node’s neighborhood.

2. If the random graph exhibits a fixed modular structure with K communities or
clusters, it is a natural choice to measure the shares of the states in each cluster
separately, i.e., a node located in cluster k is assigned to class k. Hence, the ex-
tended state (xi, si) = (m, k) refers to a node with state xi = m located in cluster
k. An example is shown in figure 5.1. This technique of differentiating nodes by
their community is frequently used in the literature, see for example [139, 140, 54].
Random graphs exhibiting this clustered structure can for instance be generated
using the stochastic block model, see section 3.1.2.

1The restriction that classes must not depend on the realization of the random graph is made for ease of
presentation. It can be lifted at the cost of more technical notation and proofs.
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cluster 1 cluster 2

C(1,1) =
2
20

C(2,1) =
8
20

C(1,2) =
6
20

C(2,2) =
4
20

Figure 5.1.: Example graph G of size N = 20, sampled from a stochastic block model with
two clusters. Each node has one of two states, state 1 is indicated by blue
color and state 2 by green color. A node is assigned to class k if it is located
in cluster k, k = 1, 2. The collective variable C(x) measures the shares of the
two states separately for each cluster. Reprinted from [1].

3. If nodes differ by their transition rate matrices QG
i , i.e., the population is heteroge-

neous, it is reasonable to assign them to different classes. As an example, there could
be very active nodes (large transition rates) and rather inactive nodes (small or zero
transition rates, often referred to as “zealots” in the literature [141, 139, 142]). The
case of such a heterogeneous population is discussed further in section 5.2.2.

Due to the dynamics, a node with extended state (m, k) may transition to any other
state n ̸= m, such that after the transition it has extended state (n, k). This transition will
be referred to as (m, k)→ n and there areMK(M−1) transitions in total. Each transition
has an associated state-change vector v(m,k)→n ∈ ZMK and an associated propensity

function αG
(m,k)→n : [M ]N → R≥0. The state-change vector

v(m,k)→n := e(n,k) − e(m,k), (5.3)

where e(m,k) denotes the (m, k)-th unit-vector, describes the changes in extended state
populations due to the transition (m, k)→ n, i.e., the number of nodes in extended state
(m, k) decreases by one and the number of nodes in extended state (n, k) increases by
one. The propensity function αG

(m,k)→n measures the cumulative rate of the transition

(m, k)→ n, i.e., the sum of the transition rates of all nodes with extended state (m, k) to
state n

αG
(m,k)→n(x) :=

∑
i∈[N ]:(xi,si)=(m,k)

(
QG

i (x)
)
m,n

. (5.4)

In the following, the summation over all MK(M − 1) transitions will be abbreviated
with the symbol ∑

(m,k)→n

:=
M∑

m=1

K∑
k=1

M∑
n=1
n̸=m

, (5.5)

and analogously the symbol “max(m,k)→n” is used for the maximum over all transitions.
The remainder of this chapter is structured as follows. Section 5.1 contains the main

theorem for the convergence to a mean-field limit and some considerations regarding the
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5. Mean-field limits of Markov jump processes on random graphs

rate of convergence. In section 5.2 this main theorem is applied to the continuous-time
noisy voter model to show convergence for several graph models, i.e., Erdős–Rényi random
graphs, the stochastic block model, and random regular graphs, including bounds for the
specific parameters of the graph models. Moreover, the case of a heterogeneous population,
where nodes have varying transition rate functions Qi, is discussed. In section 5.3 the
above-mentioned mean-field limit is augmented with a stochastic term. The resulting SDE
is able to approximate the dynamics well even for medium-sized populations for which
the mean-field limit is too inaccurate. Finally, in section 5.4 the large population limits
of leader-follower dynamics are discussed. In such systems, a few very influential agents
called leaders affect a large mass of ordinary agents called followers.
Sections 5.1 and 5.2 are largely adopted from the author’s publication [1].

5.1. Convergence conditions

In this section conditions for the convergence to a mean-field limit are derived. Before
proving the main theorem 5.2, which precisely formulates these conditions, an intuitive
derivation is presented.
The conditions of the main theorem state that it has to be possible to choose classes

such that the collective variables (5.2) are good as discussed in section 2.3, that is, they
capture the most important dynamical information. This translates to the condition
that the propensities (5.4) of the transitions can be approximated well by using only the
macroscopic information C(x) of the state, i.e., there exist propensity functions α̃(m,k)→n :

RMK → R such that

1

N
αG
(m,k)→n(x) ≈ α̃(m,k)→n

(
C(x)

)
∀x ∈ [M ]N . (5.6)

It is assumed that all α̃(m,k)→n are Lipschitz continuous. The existence of such an appro-
priate choice of classes and reduced propensity functions α̃(m,k)→n for a given dynamical
system on a certain network is not clear, and finding them is no trivial task. However, if
classes and propensity functions can be found such that the approximation (5.6) becomes
exact in the large population limit, then there exists a mean-field ODE describing the
projected system state C(x), which is shown in theorem 5.2.

In order to specify the large population limit, consider a sequence of random graphs
(Gℓ)ℓ∈N, such that Gℓ has Nℓ nodes and the sequence (Nℓ)ℓ∈N is strictly increasing.
Furthermore, let sℓi ∈ [K] denote the class of node i of the random graph Gℓ and define
the collective variables

Cℓ
(m,k)(x) :=

#{i ∈ [Nℓ] : (xi, s
ℓ
i) = (m, k)}

Nℓ
. (5.7)

Let xℓ(t) denote the stochastic jump process on the random graph Gℓ, and

cℓ(t) := Cℓ(xℓ(t)) (5.8)

the projected process. In order to quantify the approximation (5.6), define the difference

∆Gℓ(x) := max
(m,k)→n

∣∣∣ 1
Nℓ
αGℓ

(m,k)→n(x)− α̃(m,k)→n

(
Cℓ(x)

)∣∣∣ (5.9)
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5.1. Convergence conditions

for x ∈ [M ]Nℓ . Moreover, it is assumed that the transition rate matrices QG
i (x) have

bounded entries, i.e., there is a bound B > 0, such that for any graph G with any number
of nodes

QG
i (x) < B element-wise for any system state x and all i ∈ [N ]. (5.10)

If this assumption of bounded rates would not be satisfied, the dynamics could become
“infinitely fast” such that a meaningful large population limit can not be defined. For
models where the rates QG

i increase with the total number of nodes or with the (average)
degree of nodes, an appropriate rescaling factor may be applied to the rates to achieve
boundedness.
The above-mentioned mean-field ODE, which will be called the mean-field equation

(MFE) in the following, is then given by

d

dt
c(t) =

∑
(m,k)→n

α̃(m,k)→n(c(t)) v(m,k)→n =: F
(
c(t)
)
, (5.11)

where c : R→ RMK describes the trajectory of the shares. The infinitesimal change in c is
characterized by the propensities of each transition α̃(m,k)→n times their effect on the ex-
tended state populations v(m,k)→n. Due to the assumption that the α̃(m,k)→n are Lipschitz
continuous, the mean-field ODE has a unique solution, given initial condition c(0) = c0.
The following main theorem of the section is inspired by work about the concentration

of Markov processes by Kurtz [143], which can be applied to a sequence of complete graphs
increasing in size. The proof below generalizes the proof of Kurtz’s result presented in [40,
Thm. A.14] to the framework of random graphs, and is relying on combining the law of
large numbers and Gronwall’s lemma.

Theorem 5.2. Assume that for all ε > 0 there exists a function fε : N → R≥0 with
limℓ→∞ fε(ℓ) = 0 such that

∀ℓ ∈ N : P
(

max
x∈[M ]Nℓ

∆Gℓ(x) ≥ ε
)
≤ fε(ℓ). (5.12)

Furthermore, let there be initial conditions xℓ(0), such that cℓ(0)
p−→ c0 ∈ RMK as

ℓ→∞. Let c(·) denote the solution of the mean-field equation (5.11) with initial condition
c(0) = c0. Then

∀t ≥ 0 : sup
0≤s≤t

∥∥cℓ(s)− c(s)∥∥ p−→
ℓ→∞

0. (5.13)

Proof. Let
(
P(m,k)→n(t)

)
m,k,n

denote independent unit-rate Poisson processes. Then the

projected process can be written as (see [40, section 1.2])

cℓ(t) = cℓ(0) +
∑

(m,k)→n

P(m,k)→n

(∫ t

0
αGℓ

(m,k)→n(x
ℓ(s)) ds

)v(m,k)→n

Nℓ
. (5.14)

Defining the centered Poisson processes P̃(m,k)→n(t) := P(m,k)→n(t)− t yields

cℓ(t) = cℓ(0)

+
∑

(m,k)→n

P̃(m,k)→n

(∫ t

0
αGℓ

(m,k)→n(x
ℓ(s)) ds

)v(m,k)→n

Nℓ︸ ︷︷ ︸
=:δℓ(t)

+

∫ t

0
Fℓ(x

ℓ(s))ds, (5.15)
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5. Mean-field limits of Markov jump processes on random graphs

where

Fℓ(x) :=
∑

(m,k)→n

αGℓ

(m,k)→n(x)
v(m,k)→n

Nℓ
. (5.16)

Note that due to the assumption (5.10) that transition rates are bounded by B > 0, it
follows

αGℓ

(m,k)→n(x) =
∑

i:(xi,si)=(m,k)

(
QGℓ

i (x)
)
m,n
≤ NℓB (5.17)

and thus

δ̂ℓ(t) := sup
0≤s≤t

∥δℓ(s)∥ (5.18)

≤
∑

(m,k)→n

sup
0≤s≤t

∣∣∣ 1
Nℓ

P̃(m,k)→n(sNℓB)
∣∣∣∥v(m,k)→n∥. (5.19)

By the law of large numbers, one can show that (see for example [144, Theorem 1.2])

sup
0≤s≤t

∣∣ 1
Nℓ

P̃(m,k)→n(sNℓB)
∣∣ p−→ 0 as ℓ→∞ (5.20)

and hence

∀t : δ̂ℓ(t)
p−→

ℓ→∞
0. (5.21)

Furthermore, consider that

∥∥∥∫ t

0
Fℓ(x

ℓ(s))− F (cℓ(s))ds
∥∥∥

≤
∫ t

0

∑
(m,k)→n

∣∣∣ 1
Nℓ
αGℓ

(m,k)→n(x
ℓ(s))− α̃(m,k)→n(c

ℓ(s))
∣∣∣∥v(m,k)→n∥︸ ︷︷ ︸

=:zℓ(s)

ds =: δ̃ℓ(t) (5.22)

and

zℓ(s) ≤
∑

(m,k)→n

∆Gℓ
(
xℓ(s)

)
v̄ =MK(M − 1) ∆Gℓ

(
xℓ(s)

)
v̄, (5.23)

where v̄ := max(m,k)→n∥v(m,k)→n∥. Let ε > 0 and define ε̃ := ε
MK(M−1)v̄ . Then it follows

that

P(zℓ(s) ≥ ε) ≤ P
(
∆Gℓ

(
xℓ(s)

)
≥ ε̃
)

(5.24)

≤ P
(

max
x∈[M ]Nℓ

∆Gℓ(x) ≥ ε̃
)

(5.25)

≤ fε̃(ℓ)
ℓ→∞−→ 0. (5.26)

Hence, from lemma A.2 it follows that

δ̃ℓ(t) =

∫ t

0
zℓ(s)ds

p−→
ℓ→∞

0. (5.27)
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5.1. Convergence conditions

Now, writing c(t) = c(0) +
∫ t
0 F (c(s))ds and cℓ(t) as in (5.15) yields

∥cℓ(t)− c(t)∥ =
∥∥∥cℓ(0)− c(0) + δℓ(t) +

∫ t

0
Fℓ(x

ℓ(s))− F (c(s))ds
∥∥∥ (5.28)

≤ ∥cℓ(0)− c(0)∥+ ∥δℓ(t)∥+
∥∥∥∫ t

0
Fℓ(x

ℓ(s))− F (cℓ(s))ds
∥∥∥ (5.29)

+
∥∥∥∫ t

0
F (cℓ(s))− F (c(s))ds

∥∥∥
≤ ∥cℓ(0)− c(0)∥+ δ̂ℓ(t) + δ̃ℓ(t) + L

∫ t

0
∥cℓ(s)− c(s)∥ds, (5.30)

where L denotes the Lipschitz constant of F . (F is Lipschitz continuous because of the
assumption that all α̃(m,k)→n are.) Note that δ̂ℓ(t) and δ̃ℓ(t) are monotonically increasing
in t. Thus, by the Gronwall lemma it follows that

∥cℓ(t)− c(t)∥ ≤
(
∥cℓ(0)− c(0)∥+ δ̂ℓ(t) + δ̃ℓ(t)

)
exp(Lt)

p−→
ℓ→∞

0 (5.31)

due to (5.21) and (5.27). Because of the monotonicity of the above bound, the theorem
follows.

Remark 5.3. The case of a sequence of deterministic graphs (Gℓ)ℓ∈N (as opposed to
random graphs) is also contained in the previous theorem. In this case, the condition of
the theorem collapses to

max
x∈[M ]Nℓ

∆Gℓ(x)
ℓ→∞−→ 0. (5.32)

Theorem 5.2 provides conditions that guarantee the convergence of the projected process
cℓ(t) to a mean field limit. As mentioned before, this projected process contains both the
randomness of the graph and of the dynamics, and thus theorem 5.2 is called the annealed
result. The quenched result on the other hand describes the setting that the realization
of the random graph is fixed and only the randomness of the dynamics is considered.

Corollary 5.4 (Quenched result). If the function fε from theorem 5.2 additionally sat-
isfies

∀ε > 0 :
∞∑
ℓ=1

fε(ℓ) <∞, (5.33)

the convergence to the mean-field limit holds for almost all realizations of the sequence
of random graphs. More precisely, if cℓG(s) denotes the stochastic process given by the
dynamics on a fixed graph G, then for almost all realizations (Gℓ)ℓ of the sequence of
random graphs (Gℓ)ℓ it follows

∀t ≥ 0 : sup
0≤s≤t

∥∥cℓGℓ
(s)− c(s)

∥∥ p−→
ℓ→∞

0. (5.34)

Proof. Due to the Borel–Cantelli lemma, with probability 1 the event{
max

x∈[M ]Nℓ

∆Gℓ(x) ≥ ε

}
(5.35)
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only occurs for finitely many ℓ. As the choice of ε > 0 was arbitrary, it follows

P

(
max

x∈[M ]Nℓ

∆Gℓ(x) −→
ℓ→∞

0

)
= 1. (5.36)

Hence, remark 5.3 can be applied for almost all realizations of the sequence of random
graphs.

Rate of convergence. The proof of theorem 5.2, in particular the bound (5.31)

sup
0≤s≤t

∥cℓ(s)− c(s)∥ ≤
(
∥cℓ(0)− c(0)∥+ δ̂ℓ(t) + δ̃ℓ(t)

)
exp(Lt)

allows the specification of the rate of convergence of the stochastic process cℓ(t) to the
mean-field solution c(t).
First of all, note that the factor exp(Lt) implies that the deviation between the stochas-

tic process cℓ(t) and the mean-field solution c(t) may increase over time for a fixed ℓ. The
rate L of this deterioration is proportional to the Lipschitz constants of the propensities
α̃(m,k)→n. Hence, for practical purposes, if a good match between model and mean-field
solution is desired for a longer time, the network size Nℓ may have to be increased sub-
stantially. However, since the factor exp(Lt) does not depend on ℓ, it is not relevant
for the rate of convergence. Moreover, the first term inside the brackets, ∥cℓ(0) − c(0)∥,
merely quantifies the difference of initial conditions and is typically not a limiting factor.
For example, for any target initial condition c0 ∈ [0, 1]MK , there exist (deterministic)
initial conditions cℓ(0) on the graph with an error ∥cℓ(0) − c0∥ = O(N−1

ℓ ). Hence, the

two relevant quantities for the rate of convergence are δ̂ℓ(t) and δ̃ℓ(t).
The convergence of the term δ̂ℓ(t) to 0 is essentially given by the law of large numbers,

applied to normalized and centered Poisson processes. Thus, a rate of convergence of√
Nℓ

−1
is dictated by the central limit theorem, see the following lemma.

Lemma 5.5. Let δ̂ℓ(t) be as defined in the proof of theorem 5.2. Then

E[δ̂ℓ(t)] = O
(√

Nℓ
−1)

. (5.37)

Proof. Neglecting constant factors, it follows from (5.19) that E[δ̂ℓ(t)] is bounded by

E
[
sup
0≤s≤t

∣∣∣ 1
Nℓ

P̃ (sNℓB)
∣∣∣] , (5.38)

where P̃ is a centered Poisson process and B > 0 is the bound of the transition rates,
see (5.10). One can show [144, Lemma 1.3] that the centered Poisson process is approxi-
mated well by Brownian motion W , i.e., for all ℓ ∈ N

Γ := sup
t≥0

|P̃ (tNℓB)−W (tNℓB)|
log(max(2, tNℓB))

<∞ a.s., E[Γ] <∞, (5.39)

from which follows (assuming ℓ large enough so that tNℓB ≥ 2)

sup
0≤s≤t

∣∣∣P̃ (sNℓB)−
√
Nℓ W (sB)

∣∣∣ ≤ Γ log(tNℓB). (5.40)
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This implies

sup
0≤s≤t

∣∣∣ 1
Nℓ

P̃ (sNℓB)
∣∣∣ ≤ Γ

log(tNℓB)

Nℓ
+ sup

0≤s≤t

∣∣∣ 1√
Nℓ

W (sB)
∣∣∣ (5.41)

and

E
[
sup
0≤s≤t

∣∣∣ 1
Nℓ

P̃ (sNℓB)
∣∣∣] ≤ E[Γ]

log(tNℓB)

Nℓ
+

1√
Nℓ

E
[
sup
0≤s≤t

|W (sB)|
]
, (5.42)

from which the claim E[δ̂ℓ(t)] = O(
√
Nℓ

−1
) follows.

The other relevant term, δ̃ℓ(t), captures the influence of the random graph. The smaller
the functions fε in theorem 5.2 can be chosen, the faster is the convergence of δ̃ℓ(t). More
precisely, the rate of convergence depends on how fast ε can be sent to 0 while ℓ goes to
infinity, such that fε(ℓ) still falls sufficiently quickly.

Lemma 5.6. Let fε(ℓ) and δ̃ℓ(t) be as defined in theorem 5.2. Assume that there exists
a function ε(ℓ) > 0 with limℓ→∞ ε(ℓ) = 0 such that fε(ℓ)(ℓ) = O(ε(ℓ)) as ℓ→∞. Then

E
[
δ̃ℓ(t)

]
= O(ε(ℓ)) as ℓ→∞.

Proof. By applying Tonelli’s theorem to interchange integral and expected value, it follows
that

E
[
δ̃ℓ(t)

]
= E

[ ∫ t

0
zℓ(s)ds

]
=

∫ t

0
E
[
zℓ(s)

]
ds. (5.43)

From the proof of lemma A.2 it can be seen that E[zℓ(s)] ≤ ε+ fε(ℓ) for all ε > 0, which
implies

E
[
δ̃ℓ(t)

]
≤ t ε+ t fε(ℓ). (5.44)

Inserting the function ε(ℓ) yields

E
[
δ̃ℓ(t)

]
≤ t ε(ℓ) + t fε(ℓ)(ℓ) = O(ε(ℓ)), (5.45)

which concludes the proof.

The overall rate of convergence is summarized in the following proposition.

Proposition 5.7. Assuming that initial conditions are chosen appropriately and that the
function ε(ℓ) from lemma 5.6 exists, the rate of convergence of the stochastic process cℓ(t)

to the mean-field solution c(t), as discussed in theorem 5.2, is the slower one of
√
Nℓ

−1

and ε(ℓ), i.e.,

E
[

sup
0≤s≤t

∥cℓ(s)− c(s)∥
]
= O

(√
Nℓ

−1
+ ε(ℓ)

)
as ℓ→∞. (5.46)
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5. Mean-field limits of Markov jump processes on random graphs

5.2. Application to the voter model

In this section large population limits of the continuous-time noisy voter model (CNVM)
are analyzed for a selection of popular random graphs by verifying the conditions for the
existence of the mean-field limit presented in theorem 5.2. First, Erdős–Rényi random
graphs are discussed in section 5.2.1 and a lower bound for the edge density is derived
that guarantees convergence to the mean-field limit. These results are modified in sec-
tion 5.2.2 to incorporate a heterogeneous population where the agents may have varying
transition rates. Graphs generated by the stochastic block model are examined in section
5.2.3. Finally, in section 5.2.4 uniformly random regular graphs are discussed and it is
investigated how large the degree of nodes has to be for convergence to the mean-field
limit.

To conform to the assumption (5.10) of bounded transition rates, the CNVM will be
considered with parameter α = 1, i.e., the rate at which an agent transitions from opinion
m to n is given by (

QG
i (x)

)
m,n

:= rm,n

dGi,n(x)

dGi
+ r̃m,n, (5.47)

where dGi,n(x) denotes the number of neighbors of node i with opinion n, dGi is the degree
of node i, and rm,n, r̃m,n ≥ 0 are model parameters. Again, the superscript G is used to
denote the dependence on the underlying graph G.

5.2.1. Erdős–Rényi random graphs

Recall that the Erdős–Rényi (ER) random graphGN,p, also called binomial random graph,
is defined as the random graph where each possible edge appears independently with
probability p > 0, see section 3.1.1 for more details. In the following it is implicitly
assumed that the edge probability p = p(N) may depend on the number of nodes N . It
is especially interesting to investigate convergence to the mean-field limit depending on
the asymptotic behavior of p, i.e., depending on how fast p converges to 0 as N →∞.

In this section it is shown that the CNVM on ER random graphs converges to a mean-
field limit with respect to the shares of each opinion, provided p is large enough. Thus,
there is only one class K = 1 and the extended states (xi, si) = (xi, 1) collapse to just
the states xi. For easier notation, the transition (m, 1) → n is referred to as m → n.
Moreover, the sequence of random graphs

(
GN,p

)
N∈N is considered, such that the index

N is used instead of ℓ from the previous section.

Heuristic derivation of the mean-field equation. In the setting described above, con-
sider the propensity functions for a fixed graph G

αG
m→n(x) =

∑
i:xi=m

(
QG

i (x)
)
m,n

(5.48)

=
∑

i:xi=m

(
rm,n

dGi,n(x)

dGi
+ r̃m,n

)
(5.49)

describing the cumulative rate at which an opinion change m → n occurs in the entire
system. Because of the homogeneous nature of an ER random graphG, the share of agents
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5.2. Application to the voter model

of opinion n in the neighborhood of agent i, dGi,n(x)/d
G
i , is expected to be approximately

equal to the share of opinion n in the whole system, Cn(x) =: cn. This leads to the
following choice of reduced propensity function α̃m→n:

1

N
αG
m→n(x) ≈

1

N

∑
i:xi=m

(
rm,ncn + r̃m,n

)
(5.50)

= cm
(
rm,ncn + r̃m,n

)
=: α̃m→n(c). (5.51)

Inserting into (5.11) yields the associated mean-field ODE

d

dt
c(t) =

∑
m̸=n

cm(t)
(
rm,ncn(t) + r̃m,n

)
(en − em), (5.52)

where the sum is over all pairs (m,n) ∈ [M ]× [M ] with m ̸= n. Not surprisingly, this is
the same equation as was derived in section 2.4.1 by considering the general principles of
mean-field theory.

Auxiliary concentration results. To show that the conditions of theorem 5.2 are indeed
fulfilled for the above choice of propensity functions α̃m→n, the following auxiliary results
are useful.

Lemma 5.8. Let G = GN,p denote the ER random graph and x ∈ [M ]N an arbitrary
but fixed state. Define the random variable Em,n as the number of edges between nodes of
opinion m and nodes of opinion n ̸= m in G, according to x, i.e., Em,n :=

∑
i:xi=m d

G
i,n(x).

Then the concentration inequality

P
( 1

N2p
|Em,n − cmcnN2p| ≥ ε

)
≤ 2 exp

(
− ε2N2p

3

)
, (5.53)

where c := C(x), holds for all ε > 0.

Proof. There are u := cmcnN
2 possible edges betweenm-opinion and n-opinion nodes. As

every edge in GN,p is present with probability p independently of all other edges, it follows
that Em,n is binomial distributed with u trials and success probability p. In particular,
this implies E[Em,n] = up = cmcnN

2p, and applying the Chernoff bound (see lemma A.1)
yields

P(|Em,n − cmcnN2p| ≥ ε) ≤ 2 exp
(
− ε2

3up

)
(5.54)

≤ 2 exp
(
− ε2

3N2p

)
, (5.55)

where the last inequality follows from u ≤ N2.

Furthermore, recall that in GN,p the node degrees concentrate around the mean degree.
The following modified version of lemma 3.3 will be useful later.

Lemma 5.9. For all ε > 0 and i ∈ [N ] it holds that

P
(∣∣dGN,p

i −Np
∣∣ ≥ εNp) ≤ 2 exp

(
− ε2Np

3
+

2ε

3

)
. (5.56)
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Proof. Application of the Chernoff bound (see lemma A.1) yields

P
(∣∣dGN,p

i −Np
∣∣ ≥ εNp) ≤ P

(∣∣dGN,p

i − (N − 1)p
∣∣+ p ≥ εNp

)
(5.57)

≤ 2 exp
(
− (εNp− p)2

3(N − 1)p

)
(5.58)

≤ 2 exp
(
− ε2N2p2 + 2εNp2

3Np

)
, (5.59)

from which the lemma follows.

Large population limit. Using the above auxiliary results the conditions of theorem 5.2
are verified in the following proposition.

Proposition 5.10. Let GN,p denote the ER random graph and r̂ := maxm ̸=n rm,n. For
all ε ∈ (0, r̂) it holds that

∀N ∈ N : P
(

max
x∈[M ]N

∆GN,p(x) ≥ ε
)
≤ fε(N), (5.60)

where

fε(N) := 4MN+2 exp
(
− 1

12
N2p

(ε
r̂
− ε2

r̂2

)2)
+ 2N exp

(
−N ε2p

12r̂
+

ε

3r̂

)
. (5.61)

Proof. Fix any N ∈ N and denote G := GN,p. By inserting the propensity functions
(5.49) and (5.51), it follows that

∆G(x) = max
m ̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− Cm(x)Cn(x)

∣∣∣. (5.62)

Let ε ∈ (0, r̂), δ ∈ (0, 1), and define the events

A :=
{

max
x∈[M ]N

∆GN (x) ≥ ε
}

=
{

max
x∈[M ]N

max
m ̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− Cm(x)Cn(x)

∣∣∣ ≥ ε}, (5.63)

B :=
{
∀i : (1− δ)Np ≤ dGi ≤ (1 + δ)Np

}
. (5.64)

From the concentration of degrees in G, see lemma 5.9, and the union bound it follows
that

P(BC) ≤ 2N exp
(1
3
(−δ2Np+ 2δ)

)
, (5.65)

where BC denotes the complement of B. The goal is now to derive a bound for P(A) (from
which the proposition follows) by showing that P(A∩B) is small and combining that with
(5.65). Define the number of m to n edges Ex

m,n :=
∑

i:xi=m d
G
i,n(x) like in lemma 5.8. For
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any fixed state x ∈ [M ]N and any opinions m ̸= n, it follows that

P
(
rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

(1± δ)Np
− Cm(x)Cn(x)

∣∣∣ ≥ ε) (5.66)

= P
( 1

(1± δ)N2p
rm,n

∣∣Ex
m,n − Cm(x)Cn(x)(1± δ)N2p

∣∣ ≥ ε) (5.67)

≤ P
(∣∣Ex

m,n − Cm(x)Cn(x)N
2p
∣∣+ Cm(x)Cn(x)︸ ︷︷ ︸

≤1

δN2p ≥ r−1
m,n(1± δ)N2pε

)
(5.68)

≤ P
(∣∣Ex

m,n − Cm(x)Cn(x)N
2p
∣∣ ≥ r−1

m,n(1± δ)N2pε− δN2p
)

(5.69)

≤ P
(∣∣Ex

m,n − Cm(x)Cn(x)N
2p
∣∣ ≥ N2p(r̂−1ε− r̂−1εδ − δ)

)
. (5.70)

This also holds after applying the maximum over states x:

P
(

max
x∈[M ]N

max
m̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

(1± δ)Np
− Cm(x)Cn(x)

∣∣∣ ≥ ε) (5.71)

≤ P
(

max
x∈[M ]N

max
m ̸=n

∣∣Ex
m,n − Cm(x)Cn(x)N

2p
∣∣ ≥ N2p(r̂−1ε− r̂−1εδ − δ)

)
. (5.72)

In order to ensure that r̂−1ε− r̂−1εδ − δ > 0 for the given ε ∈ (0, r̂), choose δ = r̂−1ε/2,
i.e., (r̂−1ε − r̂−1εδ − δ) = (r̂−1ε − r̂−2ε2)/2. Applying the union bound and lemma 5.8
yields

P
(

max
x∈[M ]N

max
m̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

(1± δ)Np
− Cm(x)Cn(x)

∣∣∣ ≥ ε) (5.73)

≤ 2MNM(M − 1) exp
(
− (N2p(r̂−1ε− r̂−2ε2)/2))2

3N2p

)
(5.74)

≤ 2MN+2 exp
(
− 1

12
N2p

(ε
r̂
− ε2

r̂2

)2)
. (5.75)

Moreover, consider that

P(A ∩ B) = P
(

max
x∈[M ]N

max
m ̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− Cm(x)Cn(x)

∣∣∣ ≥ ε
and ∀i : (1− δ)Np ≤ dGi ≤ (1 + δ)Np

)
(5.76)

≤ P
(

max
x∈[M ]N

max
m ̸=n

max
ξ1,...,ξN∈[−1,1]

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

(1 + ξiδ)Np
− Cm(x)Cn(x)

∣∣∣ ≥ ε).
Since the right term in the absolute value, Cm(x)Cn(x), is independent of i, the maximum
is reached by either making the left term,

∑
i:xi=m d

G
i,n(x)/(1 + ξiδ)Np, as large as possible

or as small as possible, i.e., either all ξi = 1 or all ξi = −1. This implies, again using the
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union bound, that

P(A ∩ B)

≤ P
(

max
ξ∈{−1,1}

max
x∈[M ]N

max
m̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

(1 + ξδ)Np
− Cm(x)Cn(x)

∣∣∣ ≥ ε) (5.77)

(5.75)

≤ 4MN+2 exp
(
− 1

12
N2p

(ε
r̂
− ε2

r̂2

)2)
. (5.78)

Finally, combing the above bounds yields

P(A) ≤ P(A ∩ B) + P(BC) (5.79)

(5.65),(5.78)

≤ 4MN+2 exp
(
− 1

12
N2p

(ε
r̂
− ε2

r̂2

)2)
+ 2N exp

(
−N ε2p

12r̂
+

ε

3r̂

)
, (5.80)

which concludes the proof.

By examining the bounding function fε that was derived in the previous proposition, it
can be shown for which edge densities p = p(N) the mean-field result holds. The following
theorem states that ER random graphs of intermediate density are sufficient to obtain the
mean-field limit. Interestingly, the derived threshold for the edge density p is exactly the
sharp threshold that yields (asymptotically almost surely) connectedness of GN,p [109].

Theorem 5.11. Let the edge probability p = p(N) of the ER random graph GN,p be a
function of the number of vertices N . If p dominates log(N)/N asymptotically, i.e.,

p = ω
( logN

N

)
as N →∞, (5.81)

then the dynamics of the opinion shares in the CNVM converges to a mean-field limit as
N → ∞, in the sense of both theorem 5.2 (annealed result) and corollary 5.4 (quenched
result). The mean-field solution satisfies the ODE

d

dt
c(t) =

∑
m̸=n

cm
(
rm,ncn + r̃m,n

)
(en − em). (5.82)

Proof. Recall the bounding function derived in proposition 5.10

fε(N) = 4MN+2 exp
(
− 1

12
N2p

(ε
r̂
− ε2

r̂2

)2)
+ 2N exp

(
−N ε2p

12r̂
+

ε

3r̂

)
. (5.83)

In order to apply theorem 5.2, fε(N) has to converge to 0 as N →∞. For the right-hand
term in fε to converge to 0, it is necessary that Np dominates logN , which is given for
p = ω

( logN
N

)
. Similarly, for the left-hand term in fε to converge to 0, it is necessary

that N2p dominates N , which is less restrictive and also true for p = ω
( logN

N

)
. Moreover,

neglecting constants, the right-hand term of fε satisfies N exp(−Np)≪ N−2, from which
the condition

∑
N fε(N) <∞ of the quenched result (corollary 5.4) follows.

66



5.2. Application to the voter model

0 50 100 150 200
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8
c 1

MFE
ER, N=1000
ER, N=10000

(a) M = 2 opinions

0 50 100 150 200
t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

c 1

MFE
ER, N=10000

(b) M = 3 opinions

Figure 5.2.: Mean (dashed line) ± standard deviation (shaded area) of the CNVM on
ER random graphs with edge probability p = 0.01, estimated from 200 nu-
merical simulations of the model, in comparison with the mean-field solution
(MFE) (5.82). Reprinted from [1].

Example. Numerical results for two example models can be found in figure 5.2, indicating
how the derived mean-field solution becomes a good approximation of the stochastic
process c(t) for large numbers of agents N . For every sample of the process, a new
random graph was generated and then the CNVM was simulated on that graph using the
stochastic simulation algorithm presented in chapter 4. The first example (see figure 5.2a)
shows the CNVM with M = 2 opinions, initial conditions c(0) = (0.2, 0.8), and rate
constants

r =

− 0.99

1 −

 , r̃ =

 − 0.01

0.01 −

 . (5.84)

In the second example (see figure 5.2b) there are M = 3 opinions, the initial condition is
c(0) = (0.2, 0.5, 0.3), and rate constants are

r =


− 0.8 0.2

0.2 − 0.8

0.8 0.2 −

 , r̃m,n = 0.01 for all m ̸= n. (5.85)

For both examples the edge density was set to p = 0.01. Note that if the number of agents
is too small, the mean-field equation fails to approximate the dynamics well because of
the high variance of c(t), and also the mean of c(t) may not be close to the mean-field
solution. As the number of agents increases, the variance of the process decreases and the
mean moves closer to the mean-field solution, see figure 5.2a. Moreover, note that the
quality of the approximation of c(t) by the mean-field limit may deteriorate over time, as
indicated by equation (5.31), which can be seen in figure 5.2b.

Rate of convergence. Investigation of the function fε also allows to bound the rate of
the convergence to the mean-field limit.
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Proposition 5.12. Consider ER random graphs GN,p with a fixed constant edge proba-
bility p. Let the stochastic process cN (t) denote the CNVM on GN,p, and c(t) the solution
of the mean-field equation. Then

E
[

sup
0≤s≤t

∥cN (s)− c(s)∥
]
= O

( logN√
N

)
as N →∞. (5.86)

Proof. Due to proposition 5.7, it remains to be shown that fε(N)(N) = O(ε(N)) for

ε(N) := logN/
√
N . Neglecting constants, the bounding function is asymptotically

fε(N) ≈ exp(N −N2(ε− ε2)2) +N exp(−Nε2). (5.87)

Inserting ε(N) into the right-hand term yields N exp(−(logN)2). Consider that for suf-
ficiently large N

logN + log
( √N
logN

)
≤ (logN)2 (5.88)

=⇒ logN − (logN)2 ≤ log
( logN√

N

)
(5.89)

=⇒ N exp(−(logN)2) ≤ logN√
N

= ε(N), (5.90)

i.e., the right-hand term is O(ε(N)). Furthermore, the left-hand term is bounded by

exp(N + 2N2ε(N)3 −N2ε(N)2) = exp(N + 2
√
N(logN)3 −N(logN)2), (5.91)

which is O(ε(N)) due to (for sufficiently large N)

N + 2
√
N(logN)3 + log

( √N
logN

)
≤ N(logN)2 (5.92)

=⇒ N + 2
√
N(logN)3 −N(logN)2 ≤ log

( logN√
N

)
(5.93)

=⇒ exp(N + 2
√
N(logN)3 −N(logN)2) ≤ logN√

N
= ε(N). (5.94)

It should be noted that, as the above proof suggests, the bound logN/
√
N for the

rate of convergence is not sharp. It was chosen out of convenience such that the proof is
relatively simple. However, as proposition 5.7 shows, a bound for the rate of convergence
can never be smaller than 1/

√
N due to the central limit theorem. Thus, the sharp bound

is somewhere in between.
These theoretical findings are confirmed by numerical simulations of the model, see

figure 5.3. The figure shows that the error between stochastic process and mean-field
limit decreases approximately at the rate 1/

√
N for the edge densities p = 1 (complete

graph) and p = log(N)2/N . Although the error seems to also decrease at that rate for
p = 10/N initially, it stops decreasing for larger N . This initial reduction of the error
is merely due to the decrease of variance. But, as the right-hand plot shows, there is a
discrepancy between the mean realization for p = 10/N and the mean-field limit that does
not seem to vanish as N increases. Hence, the data suggests that in the sparse setting
p = 10/N convergence to the MFE can not be observed.
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Figure 5.3.: Left: error E[sup0≤s≤100∥cN (s)− c(s)∥] as the number of nodes N increases,
for different edge densities p, estimated from numerical model simulations.
Right: mean (dashed line) ± standard deviation (shaded area) of the first
opinion share c1 for N = 105.

5.2.2. Heterogeneous population

Similarly to the previous section, consider a sequence of Erdős–Rényi (ER) random graphs
(GN,p)N∈N. However, it is now allowed that the population is heterogeneous, i.e., there
are K distinct classes of agents that differ by their rate constants rkm,n and r̃km,n, k =
1, . . . ,K. Thus, for a given graph G an agent i of class k has the rate matrix

(
QG

i (x)
)
m,n

= rkm,n

dGi,n(x)

dGi
+ r̃km,n , m ̸= n. (5.95)

As a consequence, the collective variable C(m,k)(x) then measures the share of agents
that have opinion m and class k. Note that the quantity of agents in each class and the
assignment of agents to the classes can be arbitrary, as long as the initial shares cN (0)
converge to a constant vector c0 in the large population limit N →∞ (see the conditions
of theorem 5.2). This implies that also the shares of each class k, i.e., the percentages
of agents in each class, have to converge in the large population limit. Note however
that, as mentioned in the beginning of this chapter, the class assignment is not allowed
to depend on the realization of the random graph. In other words, for each N there is a
deterministic assignment of the nodes to the classes, while the edges are drawn afterwards
and at random.
Again, the mean-field solution will first be derived in a heuristic manner. Consider the

propensity functions

αG
(m,k)→n(x) =

∑
i:(xi,si)=(m,k)

(
QG

i (x)
)
m,n

(5.96)

=
∑

i:(xi,si)=(m,k)

(
rkm,n

dGi,n(x)

dGi
+ r̃km,n

)
. (5.97)
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Because of the homogeneous nature of the ER random graph G, the share of agents of
opinion n in the neighborhood of agent i, dGi,n(x)/d

G
i , is expected to be approximately

equal to the share of opinion n in the whole system, cn :=
∑

k∈[K]C(n,k)(x). Hence, it
follows that

1

N
αG
(m,k)→n(x) ≈

1

N

∑
i:(xi,si)=(m,k)

(
rkm,ncn + r̃km,n

)
(5.98)

= c(m,k)

(
rkm,ncn + r̃km,n

)
=: α̃(m,k)→n(c) (5.99)

which yields the following mean-field ODE when inserted into (5.11):

d

dt
c(t) =

∑
(m,k)→n

c(m,k)(t)
(
rkm,n

∑
k′∈[K]

c(n,k′)(t) + r̃km,n

)(
e(n,k) − e(m,k)

)
. (5.100)

Theorem 5.13. Consider the heterogeneous CNVM as introduced above on the sequence
of Erdős–Rényi random graphs (GN,p)N∈N. Let the edge probability p = p(N) be a function
of the number of vertices N . If p dominates log(N)/N asymptotically, i.e.,

p = ω
( logN

N

)
as N →∞, (5.101)

then the dynamics of the collective variables c = C(x), where c(m,k) denotes the share of
agents that have opinion m and class k, converges to a mean-field limit as N → ∞, in
the sense of both theorem 5.2 (annealed result) and corollary 5.4 (quenched result). The
mean-field solution satisfies the ODE (5.100).

Proof. The proof is analogous to the proof for a homogeneous population in section 3.1.1.
First define

Ex
(m,k)→n :=

∑
i:(xi,si)=(m,k)

d
GN,p

i,n (x) (5.102)

as the number of edges between nodes of extended state (m, k) and nodes of opinion n.
Then, analogously to lemma 5.8, it can be shown using the Chernoff bound (lemma A.1)
that

P
(∣∣∣Ex

(m,k)→n − C(m,k)(x)Cn(x)N
2p
∣∣∣ ≥ ε) ≤ 2 exp

(
− ε2

3N2p

)
, (5.103)

where Cn(x) :=
∑

k∈[K]C(n,k)(x). By inserting the propensity functions into (5.9), it
follows that

∆G(x) = max
(m,k)→n

rkm,n

∣∣∣ 1
N

∑
i:(xi,si)=(m,k)

dGi,n(x)

dGi
− C(m,k)(x)Cn(x)

∣∣∣. (5.104)

Analogously to the proof of proposition 5.10, define the events A and B. Then it can be
shown by means of (5.103) that

P(A) ≤ P(A ∩ B) + P(BC) (5.105)

≤ fε(N) := 4KMN+2 exp
(
− 1

12
N2p

(ε
r̂
− ε2

r̂2

)2)
+ 2N exp

(
−N ε2p

12r̂
+

ε

3r̂

)
.

The bounding function fε is identical to the homogeneous case (5.61) except for the
additional factor K, due to the additional maximum over the classes before applying the
union bound.

Numerical results for an example model are shown in figure 5.4.
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Figure 5.4.: Mean (dashed line) ± standard deviation (shaded area) of the CNVM (M = 2
opinions) with heterogeneous population on ER random graphs with p = 0.01,
estimated from 200 numerical simulations of the model, in comparison with
the mean-field solution (5.100). The population consists of K = 2 different
classes, and the rates rk are such that class 1 slightly prefers opinion 2 and
class 2 prefers opinion 1, i.e., r11,2 > r12,1 and r21,2 < r22,1. Initial conditions are
(c(1,1), c(1,2), c(2,1), c(2,2)) = (0.25, 0.25, 0.25, 0.25). Reprinted from [1].

5.2.3. Stochastic block model

In this section the CNVM (with homogeneous population) is discussed on random graphs
given by the stochastic block model. As mentioned in section 3.1.2, in the stochastic
block model the population of agents is split into several clusters (blocks) and there are
different edge probabilities for connections inside the clusters and for connections between
clusters; see figure 5.1 for an example with two clusters. More precisely, let there be K
blocks with sizes b1, . . . , bK ∈ (0, 1] ∩Q, such that

∑
k bk = 1. The graphs will be defined

on Nℓ = ℓ ·LCD(b1, . . . , bk) nodes, where LCD refers to the lowest common denominator,
such that nodes {1, . . . , Nℓb1} belong to block 1, nodes {Nℓb1 + 1, . . . , Nℓ(b1 + b2)} to
block 2, and so on. Furthermore, let a symmetric matrix of probabilities (pk,k′)

K
k,k′=1 be

given, such that pk,k′ ≥ 0 is the probability of an edge between a node in block k and a
node in block k′. The edges are then drawn randomly and independently according to
these probabilities. It is assumed that for all k ∈ [K] there is at least one k′ ∈ [K] such
that pk,k′ > 0.

The class of node i is defined as si = k if node i is located in the k-th block. Hence,
the collective variable C(m,k)(x) measures the share of agents that are located in cluster k
and have opinion m.

Heuristic derivation of the mean-field equation. Again, the mean-field solution will
first be derived in a heuristic manner. Consider for a given graph G the propensity
functions

αG
(m,k)→n(x) =

∑
i:(xi,si)=(m,k)

(
rm,n

dGi,n(x)

dGi
+ r̃m,n

)
. (5.106)
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5. Mean-field limits of Markov jump processes on random graphs

(Note that the population is homogeneous, i.e., every node has the same rate constants r
and r̃. It would be straightforward to extend this to the case where nodes have different
rate constants rk and r̃k depending on the class k, similarly to section 5.2.2.) For a
random graph G generated by the stochastic block model, the degree dGi of node i in
block k is expected to be concentrated around

dGi ≈ Nℓ

∑
k′∈[K]

bk′pk,k′ =: Nℓp̄k . (5.107)

Thus, the propensity functions can be approximated by

αG
(m,k)→n(x) ≈

rm,n

Nℓp̄k

∑
i:(xi,si)=(m,k)

dGi,n(x) +
∑

i:(xi,si)=(m,k)

r̃m,n . (5.108)

Furthermore, the random variable
∑

i:(xi,si)=(m,k) d
G
i,n(x), which counts the number of

edges between nodes in cluster k that have opinion m and nodes anywhere that have
opinion n, is expected to concentrate around its mean∑

i:(xi,si)=(m,k)

dGi,n(x) ≈
∑

k′∈[K]

c(m,k)c(n,k′)N
2
ℓ pk,k′ , (5.109)

where c(m,k) := C(m,k)(x). Hence, it follows that

1

Nℓ
αG
(m,k)→n(x) ≈ c(m,k)

(
rm,n

∑
k′∈[K] c(n,k′)pk,k′

p̄k
+ r̃m,n

)
=: α̃(m,k)→n(c), (5.110)

from which the mean-field ODE can be obtained by inserting into (5.11):

d

dt
c(t) =

∑
(m,k)→n

c(m,k)(t)
(
rm,n

∑
k′∈[K] c(n,k′)(t) pk,k′

p̄k
+ r̃m,n

)(
e(n,k) − e(m,k)

)
, (5.111)

where p̄k :=
∑

k′∈[K] bk′pk,k′ .

Auxiliary concentration results. Analogously to section 5.2.1, the following auxiliary
results are useful to show that the above propensity functions fulfill the conditions of
theorem 5.2.

Lemma 5.14. Given a fixed state x ∈ [M ]N and the stochastic block model random graph
G = GNℓ

, define

Ex
(m,k)→n :=

∑
i:(xi,si)=(m,k)

dGi,n(x) (5.112)

as the number of edges between nodes of extended state (m, k) and nodes of opinion n.
Then it follows that

E[Ex
(m,k)→n] =

∑
k′∈[K]

C(m,k)(x)C(n,k′)(x)N
2pk,k′ =: µ. (5.113)

Furthermore, Ex
(m,k)→n satisfies the concentration inequality

P
(∣∣∣Ex

(m,k)→n − µ
∣∣∣ ≥ ε) ≤ 2 exp

(
− ε2

3N2p̄k

)
, (5.114)

where again p̄k :=
∑

k′∈[K] bk′pk,k′.
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5.2. Application to the voter model

Proof. The number of edges between a node with extended state (m, k) and a node with
extended state (n, k′) is binomial distributed with C(m,k)(x)C(n,k′)(x)N

2 trials and success
probability pk,k′ , i.e.,

Ex
(m,k)→n ∼

∑
k′∈[K]

Bin
(
C(m,k)(x)C(n,k′)(x)N

2, pk,k′
)
. (5.115)

From the Chernoff bound (see lemma A.1) it follows that

P
(∣∣∣Ex

(m,k)→n − µ
∣∣∣ ≥ ε) ≤ 2 exp

(
− ε2

3µ

)
≤ 2 exp

(
− ε2

3N2p̄k

)
, (5.116)

where the last inequality is due to C(m,k)(x)C(n,k′)(x) ≤ bk′ .

Moreover, the node degrees are also concentrated in the stochastic block model as the
following lemma shows.

Lemma 5.15. Let node i ∈ [N ] be in cluster k and let di := dGi denote the degree of
node i in the stochastic block model. Then for all ε > 0 it holds that

P
(
|di −Nℓp̄k)| ≥ εNℓp̄k

)
≤ 2 exp

(
−Nℓ

ε2p̄

3
+

2ε

3

)
, (5.117)

where p̄ := mink∈[K] p̄k.

Proof. Note that di is the sum of independent binomial random variables

di ∼
∑

k′∈[K]\{k}

Bin(Nℓbk′ , pk,k′) + Bin(Nℓbk − 1, pk,k). (5.118)

Using the abbreviation µ := E[di], it follows that Nℓp̄k = µ+ pk,k and

P
(
|di −Nℓp̄k)| ≥ εNℓp̄k

)
≤ P

(
|di − µ)|+ pk,k ≥ εNℓp̄k

)
(5.119)

≤ 2 exp
(
−

(εNℓp̄k − pk,k)2

3µ

)
(5.120)

≤ 2 exp
(
−

(εNℓp̄k − pk,k)2

3Nℓp̄k

)
(5.121)

≤ 2 exp
(
−Nℓ

ε2p̄k
3

+
2εpk,k

3

)
(5.122)

≤ 2 exp
(
−Nℓ

ε2p̄

3
+

2ε

3

)
(5.123)

where the second inequality is due to the Chernoff bound (see lemma A.1).

Large population limit. Using the above auxiliary results the conditions of theorem 5.2
are verified in the following proposition.
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5. Mean-field limits of Markov jump processes on random graphs

Proposition 5.16. Let Gℓ denote the stochastic block model random graph on Nℓ nodes,
as introduced earlier, and let r̂ := maxm ̸=n rm,n and p̄ := mink∈[K] p̄k. Then for all
ε ∈ (0, r̂) it holds that

∀ℓ ∈ N : P
(

max
x∈[M ]Nℓ

∆GNℓ (x) ≥ ε
)
≤ fε(ℓ), (5.124)

where

fε(ℓ) := 4MNℓ+2K exp
(
−N2

ℓ p̄
(ε
r̂
− ε2

r̂2

)2/
12
)
+ 2Nℓ exp

(
−Nℓ

ε2p̄

12r̂
+

ε

3r̂

)
. (5.125)

Proof. Fix any ℓ ∈ N and denote G := Gℓ. Inserting the propensity functions for the
stochastic block model given in (5.106) and (5.110) yields

∆G(x) = max
(m,k)→n

rm,n

∣∣∣ 1
Nℓ

∑
i:(xi,si)=(m,k)

dGi,n

dGi
− C(m,k)(x)

∑
k′∈[K]C(n,k′)(x)pk,k′

p̄k

∣∣∣. (5.126)

Let δ ∈ (0, 1) and define the events

A :=
{

max
x∈[M ]N

∆G(x) ≥ ε
}

(5.127)

B :=
{
∀i : (1− δ)Nℓp̄si ≤ dGi ≤ (1 + δ)Nℓp̄si

}
. (5.128)

From lemma 5.15 and the union bound it follows that

P(BC) ≤ 2Nℓ exp
(
− δ2Nℓp̄

3
+

2δ

3

)
, (5.129)

where BC denotes the complement of B. The goal is now to derive a bound for P(A) (from
which the proposition follows) by showing that P(A∩B) is small and combining that with
(5.129). Let Ex

(m,k)→n be as defined in lemma 5.14. For any fixed state x ∈ [M ]N and

any transition (m, k)→ n, it follows, using the abbreviation c(m,k) := C(m,k)(x), that

P
(
rm,n

∣∣∣ 1
Nℓ

∑
i:si=(m,k)

dGi,n(x)

(1± δ)Nℓp̄k
− c(m,k)

∑
k′∈[K] c(n,k′)pk,k′

p̄k

∣∣∣ ≥ ε) (5.130)

= P
( rm,n

(1± δ)N2
ℓ p̄k

∣∣Ex
(m,k)→n − c(m,k)

∑
k′∈[K]

c(n,k′)pk,k′(1± δ)N2
ℓ

∣∣ ≥ ε) (5.131)

≤ P
(∣∣Ex

(m,k)→n − c(m,k)

∑
k′∈[K]

c(n,k′)pk,k′N
2
ℓ

∣∣+ c(m,k)

∑
k′∈[K]

c(n,k′)pk,k′︸ ︷︷ ︸
≤p̄k

δN2
ℓ

≥ r−1
m,n(1± δ)N2

ℓ p̄kε
)

(5.132)

≤ P
(∣∣Ex

(m,k)→n − c(m,k)

∑
k′∈[K]

c(n,k′)pk,k′N
2
ℓ

∣∣ ≥ r−1
m,n(1± δ)N2

ℓ p̄kε− δN2
ℓ p̄k

)
(5.133)

≤ P
(∣∣Ex

(m,k)→n − c(m,k)

∑
k′∈[K]

c(n,k′)pk,k′N
2
ℓ

∣∣ ≥ N2
ℓ p̄(r̂

−1ε− r̂−1εδ − δ)
)
. (5.134)
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5.2. Application to the voter model

Thus, choosing δ = r̂−1ε/2, as was done in the proof of proposition 5.10 for ER graphs,
adding the maxima, and applying lemma 5.14 and the union bound yields

P
(

max
x∈[M ]N

max
(m,k)→n

rm,n

∣∣∣ 1
N

∑
i:si=(m,k)

dGi,n(x)

(1± δ)Nℓp̄k

− C(m,k)(x)

∑
k′∈[K]C(n,k′)(x)pk,k′

p̄k

∣∣∣ ≥ ε)
≤ 2MNℓ+2K exp

(
− 1

12
N2

ℓ p̄
(ε
r̂
− ε2

r̂2

)2)
. (5.135)

With the same arguments as in the proof of proposition 5.10, this leads to

P(A) ≤ P(A ∩ B) + P(BC) (5.136)

≤ 4MNℓ+2K exp
(
− 1

12
N2

ℓ p̄
(ε
r̂
− ε2

r̂2

)2)
+ 2Nℓ exp

(
−Nℓ

ε2p̄

12r̂
+

ε

3r̂

)
, (5.137)

which concludes the proof.

To address the question of how small the edge probabilities pk,k′ may become as ℓ→∞
so that convergence to the mean-field limit is guaranteed, it is first assumed that all edge
probabilities scale with the same factor. The case that each pk,k′ may decrease at its own
rate is discussed later.

Theorem 5.17. Consider the CNVM on a sequence of stochastic block model random
graphs (Gℓ)ℓ∈N as defined above. The random graph Gℓ is generated using the scaled edge
probabilities κℓ pk,k′, where κℓ ∈ [0, 1] is a scaling factor and pk,k′ the fixed edge probability
between clusters k and k′. If κℓ dominates log(Nℓ)/Nℓ asymptotically, i.e.,

κℓ = ω
( logNℓ

Nℓ

)
as ℓ→∞, (5.138)

then the dynamics of the collective variables c = C(x), where c(m,k) measures the share
of agents that have opinion m and are located in the k-th block, converges to a mean-
field limit as ℓ→∞, in the sense of both theorem 5.2 (annealed result) and corollary 5.4
(quenched result). The mean-field solution satisfies the ODE

d

dt
c(t) =

∑
(m,k)→n

c(m,k)(t)
(
rm,n

∑
k′∈[K] c(n,k′)(t) pk,k′

p̄k
+ r̃m,n

)(
e(n,k) − e(m,k)

)
, (5.139)

which was derived earlier in equation (5.111).

Proof. The derived bounding function

fε(ℓ) = 4MNℓ+2K exp
(
− 1

12
N2

ℓ p̄
ℓ
(ε
r̂
− ε2

r̂2

)2)
+ 2Nℓ exp

(
−Nℓ

ε2p̄ℓ

12r̂
+

ε

3r̂

)
, (5.140)

where p̄ℓ := κℓmink∈[K] p̄k, is identical to the bounding function for ER random graphs

(see proposition 5.10), except for the additional factor K and the value p̄ℓ instead of p.
Hence, the proof is analogous.

75



5. Mean-field limits of Markov jump processes on random graphs
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Figure 5.5.: Mean (dotted line) ± standard deviation (shaded area) of the CNVM on a
stochastic block model (SBM) with two equal size blocks and p1,1 = p2,2 =
0.01 and p1,2 = 0.0001, estimated from numerical simulations, in comparison
with the mean-field solution (5.139). M = 2 opinions with initial conditions
(c(1,1), c(1,2), c(2,1), c(2,2)) = (0.5, 0, 0, 0.5). Reprinted from [1].

In the previous theorem the case that all edge probabilities pk,k′ are scaled using the
same factor κℓ was considered. It is also possible to let each edge probability scale inde-
pendently. Let pℓk,k′ define the edge probabilities used to construct the graph Gℓ. For the
bounding function fε(ℓ) in (5.140) to converge to 0 it is then required that

p̄ℓ := min
k∈[K]

p̄ℓk := min
k∈[K]

∑
k′∈[K]

bk′p
ℓ
k,k′ = ω

( logNℓ

Nℓ

)
, (5.141)

which yields the following condition on the pℓk,k′ for convergence to a mean-field limit:

∀k ∈ [K] ∃k′ ∈ [K] : pℓk,k′ = ω
( logNℓ

Nℓ

)
as ℓ→∞. (5.142)

Moreover, the mean-field equation (5.139) has to be adapted to this setting: the factor
pk,k′/p̄k in (5.139) has to be replaced by the limit limℓ→∞ pℓk,k′/p̄

ℓ
k and hence the edge

probabilities pℓk,k′ may only be chosen in such a way that these limits exist for all k, k′.
All in all, this means that for the mean-field limit to hold it is sufficient that every cluster
is well-connected to at least one other cluster or itself. If a cluster k is only sparsely
connected to another cluster k′ (or itself), the two are not coupled in the MFE as the
factor pℓk,k′/p̄

ℓ
k vanishes in the limit ℓ→∞.

Numerical results for an example stochastic block model are shown in figure 5.5. In the
example, there are two equal size blocks andM = 2 opinions. Initially, every agent in block
1 has opinion 1 and every agent in block 2 has opinion 2. Over time the concentrations
in both blocks equilibrate.
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5.2. Application to the voter model

5.2.4. Random regular graphs

In this section mean-field results for the CNVM on uniformly random regular graphs are
derived. A simple graph is called d-regular if every node has exactly the degree d. Denote
by GN,d the uniformly random d-regular graph on N nodes, i.e., every d-regular graph has
equal probability and every other graph has probability 0. It is again implicitly assumed
that the degree d = d(N) may depend on the size of the graph N . Similarly to Erdős–
Rényi random graphs, uniformly random d-regular graphs likely have a homogeneous
edge density, which indicates a mean-field limit with respect to the simple shares without
any further distinction into classes (K = 1). Thus, the same propensity functions as in
section 5.2.1 will be employed, resulting in the same MFE

d

dt
c(t) =

∑
m̸=n

cm(t)
(
rm,ncn(t) + r̃m,n

)
(en − em). (5.143)

However, due to the stochastic dependence of edges in GN,d (in contrast to ER random
graphs), working with random d-regular graphs is more intricate, especially in the case
of small d. In the case of large degrees d on the other hand, the distributions of the
random regular graph and the ER random graph with p = d/N become asymptotically
identical, which is the subject of the sandwich conjecture (see conjecture 3.4). Given that
the degrees are large enough such that the sandwich conjecture applies, e.g., d ≈ Na for
any fixed a > 0, the convergence to the mean-field limit is hence automatically obtained
by our previous theorem 5.11 for ER random graphs.

As stated before, the case of small degree d is substantially more difficult. It is easier to
deal with the configuration model instead, which was discussed in detail in section 3.1.6,
and then transfer the results back to the regular simple graph setting. Recall that in
the configuration model d half-edges are assigned to each node. Then repeatedly two
half-edges are picked uniformly at random from all remaining half-edges, joined together
to form an edge between the nodes they were assigned to, and removed from the set of
available half-edges, until all half-edges are used up. This procedure yields a multigraph.
A configuration F is defined as a partition of the set of half-edges W into pairs, and
a configuration F induces a multigraph γ(F ). Moreover, every configuration F can be
constructed from a tuple t ∈ Π = {(t1, . . . , tη) | tr ∈ [Nd − 2r + 1] for all r}, which is
denoted by F = ψ(t). Finally, recall that the random variable t that is uniform over Π
induces multigraphs γ(ψ(t)) with the same distribution as the configuration model.
Similarly to the auxiliary concentration results in the previous sections, the following

lemma addresses the probability that the number of edges between nodes of different
opinions deviates from its expectation.

Lemma 5.18. Let x ∈ [M ]N and fix two distinct opinions m,n ∈ [M ]. Assume that the
state x is ordered, such that the m-opinion nodes are first, the n-opinion nodes come after
that, and then the rest. Define the random variable g(t) as the number of edges between
nodes of opinion m and nodes of opinion n in the induced multigraph γ(ψ(t)), with respect
to x. Then it follows that

P

(∣∣∣∣g(t)− cmcnN
2d2

Nd− 1

∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− ε2

4Nd

)
, (5.144)

where cm, cn denote the shares of opinions m,n in the state x.
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5. Mean-field limits of Markov jump processes on random graphs

Proof. Assume that there is at least one node with opinion m and at least one node with
opinion n in x; otherwise the lemma is trivially true. Consider two tuples t, t′ ∈ Π that
only differ in one coordinate l, i.e., t = (t1, . . . , tη), t

′ = (t1, . . . , tl−1, t
′
l, tl+1, . . . , tη). Let

bm ∈ W denote the maximal element such that xφ(bm) = m (recall equation (3.8)), and
define bn analogously. Note that, due to the ordering of x, it is bm < bn. The values bm and
bn act as important boundaries because the edges counting towards g(t) have to cross bm
but must not cross bn. (An edge (s, e) with s, e ∈W is defined to be crossing the boundary
b if s ≤ b < e.) Lemma A.3 shows that the number of edges crossing any boundary can
vary by at most 2 between t and t′. Hence, it follows that |g(t)− g(t′)| ≤ 4 because there
are the two boundaries bm, bn to consider for g(t). As the random vector t = (t1, . . . , tη)
has independent components, McDiarmid’s inequality [145] can be applied:

P
(∣∣∣g(t)− E[g(t)]

∣∣∣ ≥ ε) ≤ 2 exp
(
− 2ε2

16η

)
= 2 exp

(
− ε2

4Nd

)
. (5.145)

Finally, note that there are cmNd half-edges attached to nodes of opinion m, and each
of these has a cnNd/(Nd − 1) chance to get matched with a half-edge of a node with
opinion n. Hence, it follows that

E[g(t)] = cmNd
cnNd

Nd− 1
, (5.146)

which completes the proof.

Next, the bounding function fε from the conditions of theorem 5.2 is derived. Consider
a sequence of uniformly random regular graphs Gℓ := GNℓ,dℓ , ℓ ∈ N, where dℓ := d(Nℓ).
Note that for a given degree d not all graph sizes N are possible, hence the sequence (Nℓ)ℓ
is necessary.

Proposition 5.19. Assume dℓ ≪ N
1/7
ℓ and denote r̂ := maxm̸=n rm,n. Then for all ε > 0

there exists a function fε : N→ R≥0 such that

∀ℓ ∈ N : P
(

max
x∈[M ]Nℓ

∆Gℓ(x) ≥ ε
)
≤ fε(ℓ), (5.147)

and

fε(ℓ) = (2 + o(1))MNℓ+2 exp
(
d2ℓ −Nℓdℓ

ε2

4r̂2
+

ε

4r̂

)
as ℓ→∞. (5.148)

Proof. Let ℓ ∈ N and for simpler notation denote G := Gℓ, N := Nℓ, d := dℓ. Inserting
the propensity functions (see equations (5.49) and (5.51)) yields

∆G(x) = max
m ̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− Cm(x)Cn(x)

∣∣∣. (5.149)

Fix two opinions m ̸= n and let x ∈ [M ]N be ordered as in lemma 5.18. As all realizations
of G are d-regular, it follows that

1

N

∑
i:xi=m

dGi,n(x)

dGi
=

1

Nd

∑
i:xi=m

dGi,n(x) =:
1

Nd
Em,n , (5.150)
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5.2. Application to the voter model

where Em,n denotes the number of edges between nodes of opinionm and nodes of opinion
n in G, with respect to the state x. Consider also the number of edges between nodes of
opinion m and nodes of opinion n in the configuration model, which is denoted by g(t) as
in lemma 5.18. These two quantities are related as follows, provided d < N1/7 [109, Thm
11.3]:

P
(∣∣∣Em,n −

cmcnN
2d2

Nd− 1

∣∣∣ ≥ ε) ≤ (1 + o(1))eλ(λ+1)P
(∣∣∣g(t)− cmcnN

2d2

Nd− 1

∣∣∣ ≥ ε) (5.151)

≤ (1 + o(1))eλ(λ+1)2 exp
(
− ε2

4Nd

)
, (5.152)

where λ := d−1
2 and the abbreviation cm := Cm(x) is used. With the notation r̂ :=

maxm ̸=n rm,n, it follows that

P
(
rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− cmcn

∣∣∣ ≥ ε) (5.153)

≤ P
(∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− cmcnNd

Nd− 1

∣∣∣+ ∣∣∣cmcnNd
Nd− 1

− cmcn
∣∣∣ ≥ ε

r̂

)
(5.154)

= P
( 1

Nd

∣∣∣Em,n −
cmcnN

2d2

Nd− 1

∣∣∣+ cmcn
Nd− 1

≥ ε

r̂

)
(5.155)

= P
(∣∣∣Em,n −

cmcnN
2d2

Nd− 1

∣∣∣ ≥ Nd(ε
r̂
− cmcn
Nd− 1

))
(5.156)

(5.152)

≤ (1 + o(1))eλ(λ+1)2 exp
(
−
(
Nd( εr̂ −

cmcn
Nd−1)

)2
4Nd

)
(5.157)

≤ (1 + o(1))eλ(λ+1)2 exp
(
−Nd ε

2

4r̂2
+

ε

4r̂

)
. (5.158)

Recall that an ordered state x was assumed. However, due to the indifference of the
random regular graph with respect to the specific node numbering, a certain regular
graph is just as likely as the same graph but with permuted node labels, i.e., the random
regular graph is invariant under graph isomorphism as defined in section 3.3. Using this
property, it follows from proposition 3.10 that the bound (5.158) also holds for general
states x. Finally, applying the union bound yields

P
(

max
x∈[M ]N

∆G(x) ≥ ε
)

(5.159)

= P
(

max
x∈[M ]N

max
m̸=n

rm,n

∣∣∣ 1
N

∑
i:xi=m

dGi,n(x)

dGi
− Cm(x)Cn(x)

∣∣∣ ≥ ε) (5.160)

(5.158)

≤ (1 + o(1))MNM(M − 1)eλ(λ+1)2 exp
(
−Nd ε

2

4r̂2
+

ε

4r̂

)
(5.161)

≤ (2 + o(1))MN+2 exp
(
d2 −Nd ε

2

4r̂2
+

ε

4r̂

)
, (5.162)

which concludes the proof.
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5. Mean-field limits of Markov jump processes on random graphs

Theorem 5.20. Consider the CNVM on a sequence of uniformly random regular graphs
Gℓ = GNℓ,dℓ, ℓ ∈ N, such that

lim
ℓ→∞

dℓ =∞. (5.163)

Then the dynamics of the opinion shares in the CNVM converges to a mean-field limit
as ℓ→∞, in the sense of both theorem 5.2 (annealed result) and corollary 5.4 (quenched
result). The associated mean-field ODE is

d

dt
c(t) =

∑
m̸=n

cm(t)
(
rm,ncn(t) + r̃m,n

)
(en − em). (5.164)

Proof. In the case of small degrees dℓ ≪ (Nℓ)
1/7, proposition 5.19 applies. Neglecting

constants, the function fε(ℓ) ≈ exp(Nℓ+d
2
ℓ−Nℓdℓ) from the proposition is asymptotically

bounded from above by (Nℓ)
−2 since dℓ →∞. Hence, the conditions from theorem 5.2 and

corollary 5.4 are satisfied. In the case of large degrees, e.g., dℓ ≫ (Nℓ)
1/8, the statement

follows from the sandwich conjecture 3.4 as explained at the beginning of this section.

Recall that in section 5.2.1 the convergence to the MFE for Erdős–Rényi random graphs
was shown under the condition that the average node degree grows faster than log(N),
whereas the above result for d-regular graphs only requires unboundedness of the degree d,
i.e., it can grow arbitrarily slowly. Intuitively, the regularity of the graphs allows for the
mean-field limit to hold under more sparsity.

A numerical example for uniformly random regular graphs is shown in figure 5.6. The
rates r and r̃ were chosen so that the CNVM produces a so-called SIRS model, i.e.,
susceptible nodes are infected by infectious neighbors, infectious nodes randomly become
recovered, and recovered nodes randomly become susceptible again. Written in the order
(S,I,R), the rate matrices are of the form

r =


− rS,I 0

0 − 0

0 0 −

 , r̃ =


− 0 0

0 − r̃I,R

r̃R,S 0 −

 . (5.165)

In the example, a steep wave of infections is observed followed by a smaller second wave.
The figure illustrates how the discrepancy between model realizations and mean-field
solution decreases when the degree d increases, as indicated by theorem 5.20. For d = 10,
the approximation quality of the mean-field solution is poor, even though the number
of agents N = 10000 is quite large. (Increasing N reduces the variance of the model
realizations, but does not necessarily move the mean closer to the mean-field solution.)
For d = 100 on the other hand, the mean-field limit is a reasonable approximation. Hence,
in order to achieve a certain approximation quality it is crucial that both N and d are
sufficiently large.

5.3. Medium-sized populations

In the previous sections it was shown that, for certain networks, the mean-field equation
(MFE) describes the dynamics of the shares c(t) in the large population limit. In the
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Figure 5.6.: Mean (dotted line) ± standard deviation (shaded area) of an SIRS model
on uniformly random regular graphs with N = 10000 nodes, estimated from
100 realizations, in comparison to the mean-field solution (5.164) (solid line).
Initial shares (cS , cI , cR) = (0.99, 0.01, 0). Reprinted from [1].

context of medium-sized populations however, an approximation by the MFE is not ad-
visable due to the significant stochastic fluctuations that are not captured by the MFE. It
is not even guaranteed that the MFE is close to the mean of the process c(t), especially for
smaller populations. The objective of this section is to derive an approximation similar
to the MFE that is better-suited for this mesoscopic scale.
For simplicity, assume that there is only one class K = 1, i.e., c(t) describes the global

shares in the system. Recall the propensity functions

αm→n(x) :=
∑

i:xi=m

(
Qi(x)

)
m,n

(5.166)

and assume again that there exist reduced propensity functions α̃m→n such that

1

N
αm→n(x) ≈ α̃m→n(C(x)), (5.167)

where C(x) are the shares associated to x. Then the MFE is given by

d

dt
c(t) =

∑
m→n

α̃m→n(c(t)) vm→n =: F (c(t)), (5.168)

where vm→n are the state-change vectors, see section 5.1. Moreover, recall that the pro-
jected process c(t) := C(x(t)) can be written as

c(t+ τ) = c(t) +
∑
m→n

Pm→n

(∫ t+τ

t
αm→n(x(s)) ds

)vm→n

N
. (5.169)

By assuming that τ > 0 is small enough such that the propensity functions stay approxi-
mately constant between t and t+ τ , this simplifies to

c(t+ τ) ≈ c(t) +
∑
m→n

Pm→n

(
τ αm→n(x(t))

)vm→n

N
. (5.170)
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5. Mean-field limits of Markov jump processes on random graphs

Note that the random variable Pm→n

(
τ αm→n(x(t))

)
is Poisson distributed with parame-

ter λ := τ αm→n(x(t)). If the parameter λ is large enough, the Poisson distribution can be
approximated well by a normal distribution Nm→n(λ,λ) with mean λ and variance λ, see
for example [146, Appendix A]. As τ is assumed to be small, the propensity αm→n(x(t))
has to be quite large for λ to be large enough such that this approximation holds. Hence,
the larger the number of agents is, the larger the propensities are, and the better the
above approximation works. Inserting into (5.170) yields

c(t+ τ) ≈ c(t) +
∑
m→n

Nm→n

(
τ αm→n(x(t)), τ αm→n(x(t))

)vm→n

N
(5.171)

and by converting to the standard normal distribution it follows that

c(t+ τ) ≈ c(t) +
∑
m→n

τ αm→n(x(t))
vm→n

N

+
∑
m→n

√
τ αm→n(x(t)) Nm→n(0, 1)

vm→n

N
. (5.172)

In the next step, the reduced propensity functions Nα̃m→n(c(t)) ≈ αm→n(x(t)) are in-
serted, which yields

c(t+ τ) ≈ c(t) +
∑
m→n

τ α̃m→n(c(t)) vm→n

+
∑
m→n

√
τ α̃m→n(c(t)) Nm→n(0, 1)

vm→n√
N

. (5.173)

Thus, written in the form of a stochastic differential equation, the evolution of the shares
c(t) is approximately given by

dc(t) =
∑
m→n

α̃m→n(c(t)) vm→n︸ ︷︷ ︸
F (c(t))

dt+
∑
m→n

1√
N

√
α̃m→n(c(t)) vm→n dWm→n(t), (5.174)

where Wm→n are independent Wiener processes. In the context of chemical reaction sys-
tems the above equation (5.174) is known as the chemical Langevin equation (CLE) [146,
40]. The CLE extends the mean-field equation given by F (c(t)) by adding a stochastic
diffusive term that vanishes at the rate N−1/2 as N → ∞. This diffusive term not only
allows the replication of the stochastic fluctuations for intermediate populations, but also
results in a mean of the CLE that is closer to the mean of the actual model than the
solution of the MFE.

From the derivation of the CLE presented above it is apparent that the CLE is a valid
approximation under similar conditions like the conditions for the MFE, e.g., the exis-
tence of reduced propensity functions Nα̃m→n(c(t)) ≈ αm→n(x(t)) is required. Due to
the considerations presented previously this tends to be the case for sufficiently homo-
geneous and dense networks like Erdős–Rényi random graphs or random regular graphs
with large enough (expected) node degrees, see section 5.2. A precise investigation of
the approximation error of the CLE depending on the underlying network could be the
subject of future work.
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Figure 5.7.: CNVM on Erdős–Rényi random graphs of different sizes N and p = 0.05, and
approximation with CLE (5.174) and MFE (5.168). The plot shows the mean
and a shaded area that contains 2/3 of the probability mass.

Instead, a numerical example is presented in the following. Consider the CNVM with
M = 2 opinions and parameters

r =

 − 1.01

0.99 −

 , r̃m,n = 0.01. (5.175)

Simulations on Erdős–Rényi random graphs of different sizes and a fixed edge density
p = 0.05 are compared with the CLE and the MFE in figure 5.7. For N = 50 and
N = 100, the CLE is already a decent approximation as both the mean and the variance
match quite closely. Note also that the MFE is a bad estimation for the mean of the process
for these small N . This changes at N ≈ 500, where the mean of the CNVM, the mean of
the CLE, and the MFE are all close together. However, the CLE still has the advantage
of capturing the variance of the process in contrast to the MFE. Not surprisingly, for large
N > 105 the variance is virtually negligible such that the CLE offers no advantage over
the much simpler MFE.

5.4. Hybrid models for leader-follower dynamics

This section explores the scenario of a few distinguished and very influential agents called
leaders affecting a large mass of ordinary agents called followers. Especially since “influ-
encers” became relevant in social media, this theme is studied extensively in the literature,
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5. Mean-field limits of Markov jump processes on random graphs

see for example [147, 148, 149]. However, the leaders can also be utilized to model a gen-
eral sentiment slightly pulling the system into a certain direction, for instance due to
external perturbations that are not modeled in the system itself [150]. The considerations
presented in this section are motivated by reference [151], where a similar hybrid model
is derived for systems describing chemical reactions.

Motivating example: star graph. On a star graph, where node 1 is the central node
and all other nodes i > 1 are connected only to that central node, it is apparent that
the central node has a much larger impact on the macroscopic dynamics than the others.
Consider for instance the continuous-time noisy voter model (CNVM) on such a star
graph. Recall that in the CNVM the rate at which a node i transitions from one opinion
m ∈ [M ] to a different opinion n ∈ [M ] is given by

rm,n
di,n(x)

di
+ r̃m,n, (5.176)

see section 2.2 for details. For the star graph it is easy to see that

di =

{
1, i ̸= 1

N − 1, i = 1
and di,n(x) =


1, i ̸= 1, x1 = n

0, i ̸= 1, x1 ̸= n

Ncn − 1, i = 1, x1 = n

Ncn, i = 1, x1 ̸= n

(5.177)

where cn := C(x)n again denotes the global share of opinion n in the system. Thus, the
propensity functions are

1

N
αm→n(x) :=

1

N

∑
i:xi=m

rm,n
di,n(x)

di
+ r̃m,n (5.178)

=

{
rm,ncm + r̃m,ncm, x1 = n

rm,n
cn

N−1 + r̃m,ncm, x1 ̸= n
(5.179)

which leads to the following reduced propensity functions as N →∞

α̃m→n(c) =

{
rm,ncm + r̃m,ncm, x1 = n

r̃m,ncm, x1 ̸= n.
(5.180)

Note that the above equation is not closed due to the dependence on the state x1 of the
central node. Hence, even as the population N goes to infinity, the central node influences
the macroscopic dynamics significantly whereas the impact of each single ordinary node
vanishes.
In the case of M = 2 opinions, which will be denoted as 0 and 1, the resulting infinites-

imal change of the share c0 of opinion 0 is thus given by

d

dt
c0(t) = α̃1→0

(
c(t)
)
− α̃0→1

(
c(t)
)

(5.181)

=

{
c1(t)(r1,0 + r̃1,0)− c0(t)r̃0,1, x1 = 0

c1(t)r̃1,0 − c0(t)(r0,1 + r̃0,1), x1 = 1.
(5.182)
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5.4. Hybrid models for leader-follower dynamics

It is clear that, between the stochastic jump events of the central node x1, the above
equation constitutes a deterministic mean-field limit. As a consequence, the collective
variables used to describe the macroscopic dynamics are required to not only contain
the shares c of each opinion but also the state x1 of the central node. The associated
reduced system hence contains the stochastic jumps of the central node in addition to a
deterministic mean-field limit describing the large population of ordinary nodes.
In the following a modification of the CNVM is presented that allows a more refined

modeling of leaders and followers.

The Leader-Follower CNVM. Written in the framework presented in the beginning of
this chapter, consider K = 2 classes that will be denoted as F for follower and L for
leader, e.g., a node in extended state (m,F ) is a follower with opinion m. Recall also that
classes are fixed, i.e., leaders stay leaders and followers stay followers, but their opinionsm
change over time. The rate at which the opinion of node i changes depends on its class si.
Consider the following rates that can be seen as an extension of the continuous-time noisy
voter model (CNVM):

(
Qi(x)

)
m,n

:=


r̃Fm,n + rF,Fm,n

di,n,F (x)

di
+ rL,Fm,n

di,n,L(x)

di
, si = F

r̃Lm,n + rL,Lm,n
di,n,L(x)

di
+ rF,Lm,n

di,n,F (x)

di
, si = L

(5.183)

where di,n,k(x) is the number of neighbors of node i that have opinion n and class k, and
di is the degree of node i. Each class k is exposed to a specific amount of noise r̃k and
has specific imitation rates rk,k for copying the opinion of members of their own class.
Imitation across classes is dictated by the rates rL,F and rF,L, e.g., a follower imitates a
leader in its neighborhood at the rate specified in rL,F .
It is assumed that in the large population limit N → ∞ the number of leaders NL

is constant and finite, NL = O(1), while the number of followers NF grows linearly,
NF = O(N). This is a distinctive difference to the heterogeneous population considered
in section 5.2.2, where it was assumed that each class makes up a non-vanishing share
of the total population. As a consequence of the finite number of leaders, the collective
variable C(x) has to be modified. In the original setting C(x) measures the share of each
extended state (m, k) in the system, such that the impact of the finite number of leaders
would vanish for large N . Hence, the opinions of leaders will be counted in absolute
numbers, while the opinions of followers remain as shares, i.e.,

C(m,k)(x) :=


#{i ∈ [N ] : (xi, si) = (m, k)}

N
, k = F

#{i ∈ [N ] : (xi, si) = (m, k), k = L.
(5.184)

Analogously to the original setting, the projected process c(t) := C(x(t)) can then be
written as

c(t) = c(0) +
∑
m→n

[
P(m,L)→n

(∫ t

0
α(m,L)→n(x(s)) ds

)(
e(n,L) − e(m,L)

)
(5.185)

+P(m,F )→n

(∫ t

0
α(m,F )→n(x(s)) ds

) 1

N

(
e(n,F ) − e(m,F )

)]
, (5.186)
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5. Mean-field limits of Markov jump processes on random graphs

where the P(m,k)→n are independent Poisson processes and the propensity functions
α(m,k)→n calculate the cumulative rate of the transition (m, k)→ n in the system. Now,
assume again the existence of reduced propensity functions α̃ that only depend on the
projected state, i.e.,

1

N
α(m,F )→n(x) ≈ α̃(m,F )→n(C(x)) (5.187)

α(m,L)→n(x) ≈ α̃(m,L)→n(C(x)). (5.188)

Note that due to the finite number of leaders the reduced propensities α̃(m,L)→n do not
have to be scaled with N . By the same concentration arguments as before, this implies
that the shares of the large number of followers show an almost deterministic behavior
that is characterized by a mean-field equation. The states of the leaders however remain
a stochastic quantity due to their low number. As a result, the limiting behavior of the
system is characterized by a piecewise-deterministic Markov process (PDMP) [152]

c(t) = c(0) +
∑
m→n

P(m,L)→n

(∫ t

0
α̃(m,L)→n(c(s)) ds

)(
e(n,L) − e(m,L)

)
+
∑
m→n

∫ t

0
α̃(m,F )→n(c(s))

(
e(n,F ) − e(m,F )

)
ds. (5.189)

consisting of a stochastic part that describes the leaders and a deterministic part describing
the mean-field behavior of the followers. The resulting trajectories are deterministic in
the time intervals between the random transition events of the leaders. Because leaders
and followers are modeled differently, the above approximation is a hybrid model.
For the PDMP (5.189) to provide a meaningful approximation, the leader nodes have

to have an impact in the large population limit even though their number is vanishingly
small by comparison. This can for example be achieved by linearly scaling their influence
rL,F on followers with N . However, if it is desired that all rate matrices remain constant
with respect to N , as was always the case in this chapter, it is easy to see that the node
degrees of followers have to stay bounded. If they grew unrestrictedly, the influence of
leaders on followers vanishes due to the finite number of leaders, see equation (5.183),
making them irrelevant in the model.

Example. A uniformly random d-regular graph with NF nodes is sampled as in sec-
tion 5.2.4, and all nodes get assigned to the follower class. Then, NL leader nodes are
added and connected to all other nodes. This yields the reduced propensity functions

α̃(m,F )→n(c) = c(m,F )

(
rFm,n + rF,Fm,nc(n,F ) + rL,Fm,n

c(n,L)

d

)
(5.190)

α̃(m,L)→n(c) = c(m,L)

(
rLm,n + rL,Lm,n

c(n,L)

N
+ rF,Lm,nc(n,F )

)
. (5.191)

Hence, in the time interval between two jumps of leaders the shares c approximately evolve
according to the mean-field equation (MFE)

d

dt
c(t) =

∑
m→n

α̃(m,F )→n(c(t))
(
e(n,F ) − e(m,F )

)
(5.192)

=
∑
m→n

c(m,F )

(
rFm,n + rFF

m,nc(n,F ) + rLFm,n

c(n,L)

d

)(
e(n,F ) − e(m,F )

)
. (5.193)
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Figure 5.8.: Single trajectory of the CNVM with NL leaders on a 10-regular graph. The
background color describes the states of the leaders and c1 the share of fol-
lowers with opinion 1. The MFE (5.193) is used to approximate c between
the jumps of leaders.

As was shown in section 5.2.4, the MFE can only become exact in the large population
limit if the degree d grows unbounded, which is explicitly not allowed here. Thus, in this
case the above PDMP and MFE are only approximations, not exact limits. However, it
was also described earlier that the larger d is, the better the mean-field approximation
becomes. Hence, the error of the approximation can be controlled by increasing d.

Consider the parameters d = 10, NF = 5000, M = 2, and the rates

r̃Fm,n = r̃Lm,n = 0.01, rF,Fm,n = rL,Fm,n = 1, rL,Lm,n = rF,Lm,n = 0. (5.194)

In this setup, the leaders only change their opinions due to noise r̃L. Figure 5.8 shows that
the MFE (5.193) is indeed a good approximation between the jumps of leaders. After a
single trajectory of the CNVM has been simulated, the time points of transitions of leaders
and their new states are used to solve the MFE in between. Note that the initial condition
for the MFE is not reset after each leader jump, but the last value for c of the last interval
is used as the initial value in the next interval, leading to a continuous trajectory. Still,
even after several jumps of leaders the MFE matches the simulated trajectory closely.
However, this experiment does not show if the jumps of leaders are distributed correctly

in the PDMP (5.189), which depends on the approximation error of the reduced propen-
sities α̃(m,L). A more thorough investigation of the PDMP, including a detailed analysis
of the errors, could be the subject of future work.
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6. Learning collective variables

The shares of each state in a discrete-state dynamical system on a network are appropriate
collective variables (CVs) for large, dense and homogeneous networks, which was discussed
in detail in the previous chapter. In the case of more complicated heterogeneous or sparse
networks, other choices of CVs are often necessary to describe the macroscopic behavior.
As finding good CVs purely analytically is an intricate task, or even infeasible for very
complex systems, and typically involves expert knowledge about the emergent mechanisms
combined with some guesswork, this chapter focuses on a data-driven method instead.
This data-driven method for automatically learning good collective variables for discrete-
state dynamical systems on networks is based on the transition manifold approach, which
is introduced in section 6.1. The extension of this approach to dynamical systems on
networks is presented in section 6.2, including several examples and a technique for the
validation of the results. The CVs learned by this method agree well with the literature
in cases where good CVs are already known, but novel results for cases that have not
been solved analytically yet are also presented.

While the method is able to provide good collective variables, it does not generate a
reduced system. However, to find the reduced system, for example in the form of a differ-
ential equation, existing data-driven techniques for learning dynamics can be appended
to form a complete model reduction pipeline. This is demonstrated in section 6.3, where
a reduced system for the voter model on Albert–Barabási networks is learned based on
CVs that are derived by the transition manifold approach.

Section 6.2, i.e., the presentation of the method and the application to examples, is
largely adopted from the author’s publication [2].

6.1. The transition manifold approach

The transition manifold approach [56, 57, 58] allows the data-driven calculation of collec-
tive variables (CVs) by examining the geometry of the set of transition density functions.
Given a series of short burst simulations of the underlying system started in different
initial states, the distances between transition density functions can be estimated, which
enables the derivation of optimal CVs. In comparison to black-box learning algorithms
utilizing neural networks, the transition manifold approach has the advantage that ex-
plicit dynamical conditions for the existence of good CVs can be stated and validated
during the data-driven computation, making the resulting CVs more comprehensible and
interpretable.

Let a Markovian stochastic process x(t) on the compact connected state space X ⊂ RN

be given. Assume that for each x ∈ X and t > 0 the transition density function ptx :
X→ R≥0 can be defined as the density (w.r.t. Lebesgue) of the distribution of x(t) given
x(0) = x. Furthermore, assume that the stochastic process is reversible and ergodic such
that it exhibits a unique stationary distribution with density ρ. The transition manifold
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approach works by examining the set

Mτ := {pτx | x ∈ X} ⊂ L1(X) (6.1)

for an appropriate lag-time τ . If τ is very small compared to the relevant timescales of
the system, the transition density functions are close to Dirac distributions, pτx ≈ δx for
all x. Hence, the set Mτ is clearly one-to-one to the state space X, i.e., it is an up to
N -dimensional manifold. In the limit of large lag-times τ →∞ on the other hand, all pτx
converge to the stationary distribution ρ ∈ L1(X) of the process. As a consequence, for
very large lag-times compared to the relevant timescales it is essentially Mτ ≈ {ρ}, i.e., a
0-dimensional space. Thus, as one lets the lag-time increase from small to large, the set
Mτ changes from a potentially N -dimensional object to essentially a single point.
It has been observed that, if the stochastic process can be reduced to a smaller d-

dimensional system as described in section 2.3, the set Mτ (for appropriate τ) will be
close to a d-dimensional submanifold M ⊂ L1(X) called the transition manifold, i.e., there
exists a small ε > 0 with

inf
f∈M
∥f − pτx∥ ≤ ε (6.2)

for all x ∈ X. This phenomenon is robust in the sense that Mτ , on its journey from N -
dimensional to 0-dimensional, will be close to a d-dimensional manifold for a wide range
of lag-times τ .
The reason for this observation is that, if good collective variables φ : X → Rd exist

such that (compare eq. (2.12))
ptx ≈ p̃tφ(x) (6.3)

for all x, then Mτ is “almost parametrizable” in d coordinates. On the other hand, if there
exists a d-dimensional transition manifold M fulfilling (6.2), it can be shown [57, theorem
2.5] that good d-dimensional CVs are given by a parametrization of that manifold. To
specify this, consider the projection Q onto M,

Q : X→M, Q(x) := argminf∈M∥f − pτx∥. (6.4)

Furthermore, assume that an injective parametrization γ : M → Rd of the transition
manifold is known. Then the CV φ : X → Rd, φ := γ ◦Q, is good in the sense that it is
able to parametrize the dominant spectrum of the transfer operator of the process x(t).
More precisely, let θi : X → R denote the eigenfunction of the i-th largest eigenvalue λi
of the transfer operator. Then there exists a function θ̃i : Rd → R such that

∥θi − θ̃i ◦ φ∥ ≤
ε

|λi|
. (6.5)

Thus, especially the eigenfunctions of the dominant spectrum are well represented by the
CV. As explained in section 2.3, this allows the definition of a reduced effective dynamical
system that closely replicates the original dynamics, i.e., the CVs are good.

Approximating the transition manifold from data. As the theoretical considerations
outlined above suggest, collective variables could be obtained in practice by learning a
parametrization of the transition manifold M ⊂ L1 from data. Because the transition
densities pτx are infinite dimensional objects, this endeavor seems futile at first. How-
ever, it is not necessary to explicitly calculate the pτx. Instead, it is sufficient to estimate
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6.1. The transition manifold approach

the distances between them, which can be achieved efficiently using a kernel-based ap-
proach presented in [57]. The distance metric employed is the maximum mean discrepancy
(MMD) [153], which measures the difference between the means of two distributions after
mapping them into a reproducing kernel Hilbert space H that is also called the feature
space. The feature space is induced by a positive definite kernel function κ : X× X→ R.
This kernel κ also induces a feature map ϕ : X→ H such that

κ(x, y) = ⟨ϕ(x), ϕ(y)⟩H. (6.6)

The MMD between two transition densities pτx and pτy is then defined as

MMD2
(
pτx, p

τ
y

)
:=

∥∥E[ϕ(x(τ, x))]− E
[
ϕ
(
x(τ, y)

)]∥∥2
H, (6.7)

where x(τ, x) ∼ pτx denotes the stochastic process at time τ when starting in x at time 0.
Here, E

[
ϕ
(
x(τ, x)

)]
=
∫
ϕ(z)pτx(dz) is a Hilbert-space valued integral. Its computation is,

however, not required for the evaluation of the MMD: Given (6.6), the definition of the
MMD can be rewritten using the kernel, which is often referred to as the “kernel trick”

MMD2
(
pτx, p

τ
y

)
= E

[
κ
(
x(τ, x), x̃(τ, x)

)]
+ E

[
κ
(
x(τ, y), x̃(τ, y)

)]
− 2 E

[
κ
(
x(τ, x), x̃(τ, y)

)]
, (6.8)

where x(τ, x), x̃(τ, x) ∼ pτx and x(τ, y), x̃(τ, y) ∼ pτy are stochastically independent. This
allows the approximation of the MMD by averaging over kernel function evaluations at
samples of pτx and pτy .

Let a set of initial states x1, . . . , xK ∈ X, which are called the anchor points in the
following, be given. Define the distance matrix ∆ ∈ RK×K as the matrix containing the
squared MMD associated to all pairs of anchor points, i.e.,

∆k1,k2 := MMD2
(
pτ
xk1
, pτ

xk2

)
. (6.9)

To estimate ∆, perform S ∈ N simulations of duration τ starting in each anchor point xk

and denote the end points of these S simulations by y(k,1), . . . , y(k,S) ∈ X. Then construct
the kernel matrix M ∈ RK×K with

Mk1,k2 :=
1

S2

S∑
s1,s2=1

κ
(
y(k1,s1), y(k2,s2)

)
, (6.10)

which yields the estimation

∆k1,k2 ≈Mk1,k1 +Mk2,k2 − 2 Mk1,k2 . (6.11)

Finally, apply a distance-based manifold learning algorithm to the distance matrix ∆. In
the following, the diffusion maps method [154] is employed for this purpose. This yields
an approximation to the d-dimensional CV φ evaluated at the anchor points xk, i.e., the
output is the evaluations φ(x1), . . . , φ(xK) ∈ Rd.
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Further considerations. Regarding the choice of kernel κ in the above algorithm, it is
recommended to use a kernel that is characteristic [153], which implies that the MMD is
indeed a metric, i.e., it is zero if and only if the distributions are exactly equal. A popular
example is the Gaussian kernel

κ(x, y) := exp
(
− ∥x− y∥

2
2

σ2

)
, (6.12)

where the parameter σ is called the bandwidth.
Furthermore, an appropriate choice of anchor points x1, . . . , xK ∈ X is crucial for the

success of the method. It is required that they are sufficiently diverse in the sense that
their respective transition densities coverMτ well. Otherwise, the learned parametrization
would be biased by the insufficient coverage and thus could fail to produce a good CV
for the entire process. A precise quantification of sufficient coverage cannot be stated in
generality as it depends on the system at hand and on the desired quality of the CVs.

The manifold learning technique called diffusion maps, which was mentioned above,
works by applying a kernel to the distance matrix ∆ to estimate local similarity between
data points. A popular choice is again the Gaussian kernel, i.e., the local similarity
between points k1 and k2 is evaluated as exp(−∆k1,k2/σ̃

2). Here an optimal bandwidth
σ̃ can actually be inferred from the distances ∆, see [51, appendix B] for details. In the
next step, a Fokker–Planck diffusion is employed to construct a random walk on these
points such that the jump probabilities between points are proportional to their local
similarity calculated above. (This means the diffusion maps normalization parameter is
α = 1/2 in [154].) A low-dimensional representation of the data is then obtained from the
dominant eigenvectors of the resulting diffusion matrix. By examining the distance matrix
and the dominant spectrum of the diffusion matrix it is possible to deduce a reasonable
estimate of the dimension d of the transition manifold [155, 51].

6.2. Interpretable collective variables for dynamical systems on
networks

In this section the transition manifold approach described above is extended in order to
learn CVs for discrete-state dynamical systems on networks and to systematically find the
relationship between the learned CVs and topological features of the network. To make
the method applicable to such processes on networks, a technique for evenly sampling
anchor points is developed and a linear regression step is added to make the learned CVs
more interpretable. To demonstrate the method, it is then applied to several examples: a
clustered network generated by the stochastic block model in section 6.2.1, a ring graph in
section 6.2.2, a random regular network in section 6.2.3, and an Albert–Barabási network
in section 6.2.4. Finally, a technique to validate the quality of the calculated CVs is
presented in section 6.2.5.
Consider again a fixed network of N nodes, on which each node i ∈ [N ] has a discrete

state xi ∈ [M ]. The state space of the process is thus X := [M ]N , and its elements
are system states x = (x1, . . . , xN ). Moreover, let some Markovian dynamics be given
that dictates the stochastic evolution of the system. As a consequence of the discrete
state space, the transition density functions pτx are technically not density functions but
probability vectors, i.e., pτx(y) is the probability that the system is in state y at time τ
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Figure 6.1.: Illustration of the method. Left: The random process is described by its dis-
tribution, sampled through S samples per initial network state (anchor point).
Middle: These distributions are used to learn a low-dimensional parametriza-
tion of the transition manifold. Right: A regression step allows for inter-
pretability of the learned CV. Reprinted from [2].

after having started in state x at time 0. Thus, each pτx is an MN -dimensional probability
vector. Nevertheless, even though the original theory is for continuous state spaces, the
transition manifold approach outlined in the previous section can easily be translated to
the discrete state setting. For instance, while the set Mτ is now a finite subset of RMN

,
the transition manifold as a submanifold of RMN

can still be defined as in (6.2), and the
subsequently discussed considerations regarding the existence of good collective variables
still apply1. In the following, only binary-state dynamics, i.e., M = 2 and xi ∈ {0, 1}, will
be considered. The method presented below could certainly be extended to an arbitrary
number of states but at the cost of significant additional technicalities, which will be
addressed further at the end of the section.
The method consists of three steps, which are explained in detail below and are sum-

marized in figure 6.1. The first step addresses the sampling of anchor points. In the
second step, the kernel-based approach discussed in the previous section is applied to
learn a parametrization of the transition manifold. Finally, in the third step the learned
collective variable is extended to unseen states via linear regression, making it easier to
comprehend and interpret.

Step 1: sampling anchor points. The aim is to choose a diverse set of dynamically
relevant anchor points x1, . . . , xK ∈ X in which the CV is going to be computed in the
first instance. Diversity of the points is crucial in the sense that their respective transition
densities have to cover Mτ sufficiently well. For example, simply picking random states
xk ∼ Unif({0, 1}N ) does often not produce a desirable set of anchor points, as mostly
states with about 50% 1’s are sampled (by the law of large numbers). Thus, no insights
would be provided on the behavior of the system in states that have substantially more
or less 1’s than 50%. Instead, the idea is to construct states x that contain communities
of nodes with the same state because these are especially dynamically stable for most
types of spreading processes. For instance, in an SI model a community of almost exclu-
sively susceptible nodes is “stable” in the sense that it is not changing quickly over time,
whereas a community consisting of half susceptible and half infectious nodes would likely

1Although, strictly speaking the proof in [57] that the parametrization of the transition manifold is a
good CV does not apply to the CNVM because it is not reversible.
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6. Learning collective variables

quickly become mostly infectious. Thus, as configurations of nodes that involve many
alternating states tend to dissolve quickly under most spreading dynamics, the system
is predominantly observed in states with uniform clusters (if there are clusters), and the
best understanding of long term dynamics is extracted by putting emphasis on such more
relevant states.
In order to sample such a set of anchor points, algorithm 5 is employed. It works as

follows. Start with an empty (uninitialized) state x and assign some random seed nodes
to be of state 0 and 1. Then, iteratively assign the state 0 to neighbors of nodes with state
0, and 1 to neighbors of nodes with state 1, until a random target count c ∈ {0, ..., N} of
1’s and N − c of 0’s is reached. For each sample xk a random number of seeds between 1
and Nseed = 5 is used. Larger or more intricate networks may require a bigger number of
seeds. The purpose of the random target counts is that states with all possible counts of
1’s and 0’s are sampled.

Algorithm 5 Sampling an anchor point x

1: x← empty array of size N
2: c← sample Unif({0, . . . , N}) ▷ target count of state 1
3: n← sample Unif({1, . . . , Nseed}) ▷ number of seeds
4: n← min{n, c,N − c} ▷ reduce num. of seeds (if necessary)
5: i1, . . . , i2n ← random indices from {1, . . . , N}
6: x[i1], . . . , x[in]← 0 ▷ initialize seed points
7: x[in+1], . . . , x[i2n]← 1 ▷ initialize seed points
8: while (count of state 0) < N − c or (count of state 1) < c do
9: if (count of state 0) < N − c then

10: i← index of random uninitialized neighbor of a node with state 0
11: (If no such i exists, pick any random uninitialized node)
12: x[i]← 0
13: end if
14: if (count of state 1) < c then
15: i← index of random uninitialized neighbor of a node with state 1
16: (If no such i exists, pick any random uninitialized node)
17: x[i]← 1
18: end if
19: end while
20: return x

Step 2: transition manifold. Next, a “parametrization” φ of the transition manifold M
is learned from simulation data using the kernel-based method discussed in the previous
section. To this end, S ∈ N simulations of length τ are conducted for each anchor
point xk, yielding S samples for each transition density pτ

xk . Using this data, evaluations

of the collective variable φ at the anchor points x1, . . . , xK are obtained by applying the
diffusion maps manifold learning technique to the calculated distance matrix.
The necessary number K of anchor points and S of simulations per anchor point depend

on the size and complexity of the network. For the examples that are presented later
(N < 1000), K ≈ 1000 and S ≈ 100 are adequate choices. This very small number of
anchor points compared to the number 2N of all possible states is sufficient due to the
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targeted sampling method employed in the first step of the method. Furthermore, as
many model simulations of length τ must be sampled, it is generally advantageous to
choose a rather small value for τ . However, one should be aware that if the lag-time is too
small, the fast processes of the system will not equilibrate in that time frame, resulting
in an unnecessarily large dimension d and a CV that is too fine-grained. In the case of
systems with unknown timescales, it is therefore advisable to examine trajectories to infer
a suitable lag-time and to approximate the transition manifold for different τ , comparing
their dimensions d. For the CNVM, which will be used in the examples later, a lag-
time of the order such that nodes are expected to experience approximately one state
transition typically produces satisfactory results, i.e., τ ≈ (rm,n + r̃m,n)

−1. Nevertheless,
minor modifications may be required for specific examples due to effects of the network
topology. Although the results of the method exhibit a substantial robustness in varying
the above hyperparameters, an entirely automatic procedure for their optimal selection
has yet to be designed.

The output of this second step of the method is evaluations of the d-dimensional CV φ
at the anchor points, φ(x1), . . . , φ(xK) ∈ Rd.

Step 3: linear regression. The third step of the method aims at discovering the meaning
of the CV and finding a reasonable map φ̄ : {0, 1}N → Rd that extends it to states x
outside of the original data set. Motivated by the fact that, for binary-state dynamics, the
share of nodes in state 1 in (parts of) the network is known to be a good CV in specific
cases [1], maps φ̄ of the form

φ̄(x) =


φ̄1(x)

...

φ̄d(x)

 , φ̄j(x) =
N∑
i=1

Λj,i xi, (6.13)

where Λ ∈ Rd×N is a parameter matrix, are considered. For example, choosing d = 1 and
Λ = (1, . . . , 1) yields a map describing the total count of state 1 in the system, i.e., the
standard shares which were discussed many times earlier in this thesis. In the different
context of continuous-state dynamics given by coupled ODEs, a CV similar to (6.13) was
also examined in [156, 157].

Optimal parameters Λ are found by employing linear regression to fit φ̄ to the computed
CV values in the anchors, φ(x1), . . . , φ(xK), from step 2. To this end, define the matrix
Φ := (φ(x1), . . . , φ(xK)) ∈ Rd×K , the matrix X ∈ RN×K , Xi,k := xki , and note that

Φ̄ :=
(
φ̄(x1), . . . , φ̄(xK)

)
= ΛX ∈ Rd×K . (6.14)

Optimal parameters Λ, that yield a maximal correlation between the fit Φ̄ and the data Φ,
are then found by solving the centered linear regression problem for the rows of Λ

Λj,: = argmin
λ∈RN

∥EXTλ− EΦj,:∥22, j = 1, . . . , d. (6.15)

Here, the operator E := I − 1
K1(1T ) ∈ RK×K , where I denotes the identity matrix and

1 := (1, . . . , 1)T , centers a vector around its mean.
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To prevent overfitting of the parameters Λ to the data, the graph total variation regu-
larizer

TV(Λj,:) :=
∑

(i,k)∈E

|Λj,i − Λj,k|, (6.16)

is employed, where E denotes the edge set of the graph. The reason for this choice of
regularizer that penalizes variation of Λ along edges of the graph is that each node in
densely interconnected clusters is expected to contribute similarly to the CV. This yields
the generalized LASSO [158] regression problem

Λj,: = argmin
λ∈RN

∥EXTλ− EΦj,:∥22 + α · TV(λ). (6.17)

The strength α > 0 of the penalty can be optimized for a given data set via cross-
validation [159]. Due to the regularization, the solution Λj,: tends to be constant within
network communities, which reinforces the interpretation of φ̄ to measure the count of 1’s
in densely connected regions of the network. The optimization problem (6.17) is convex
and can be efficiently solved using off-the-shelf solvers. In the examples discussed below,
the OSQP solver [160] is used.

For many networks that have been studied, the ansatz functions presented in (6.13)
resulted in CVs of good quality. In some cases however, it can be beneficial to pre-weight
each node. For example, for networks containing hubs, like Albert–Barabási networks, a
strong correlation of the optimal (in the sense of (6.17)) weights Λ with the node degree
can sometimes be found. This conflicts with the graph total variation regularizer because
the network contains many edges between nodes of substantially different degree. A
solution to this issue, which will be demonstrated later for Albert–Barabási networks in
section 6.2.4, is to incorporate a pre-weighting of each node with its degree into the ansatz
functions:

φ̄j(x) =
N∑
i=1

Λj,i di xi, (6.18)

where di denotes the degree of node i. Transferring this pre-weighting to the regression
problem (6.17) yields

Λj,: = argmin
λ∈RN

∥EXTDλ− EΦj,:∥22 + α · TV(λ), (6.19)

where D := diag(d1, . . . , dN ) ∈ RN×N .

If the ansatz functions suggested above still do not yield satisfying results for a particular
network or a particular system, they could also be modified using a different pre-weighting
or even completely replaced by other ansatz functions that are better suited for that
problem. An interesting idea would for example be to complement the suggested ansatz
functions with functions that can resolve the counts of network motifs that are used in
moment closure methods (see section 2.4.2), e.g., the count of links between nodes in state
0 and in state 1, or the counts of certain triplets.

Extension to more than two states. The steps 1 and 2 of the method can be applied
without significant modification to systems where nodes have one ofM ∈ N discrete states.
Step 3 however is specifically tailored to binary-state systems due to the specific choice
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of ansatz functions (6.13). A straightforward way to generalize these ansatz functions to
M states is by checking each node i for its state and then adding a weight depending on
that state, i.e., the j-th coordinate of the CV is given by

φ̄j(x) =

N∑
i=1

M∑
m=1

Λj,i,m δ{xi=m}(x), (6.20)

where δ{xi=m}(x) ∈ {0, 1}. For instance, if the j-th coordinate should count the number
of nodes with state m, one would set Λj,i,m = 1 for all i and Λj,i,n = 0 for all n ̸= m
and all i. It would be interesting to examine these or different ansatz functions for the
case M > 2 in future work by adapting the linear regression problem and the regularizer.
However, in the following examples still only the case M = 2 is considered.

Numerical examples. In the subsections below, numerical examples for different types
of networks are presented. Each example contains results for the continuous-time noisy
voter model (CNVM) and for a threshold model. Recall that in the CNVM a node i
transitions from its opinion m to a different opinion n at the rate

rm,n
di,n(x)

di
+ r̃m,n, (6.21)

where di,n(x) denotes the number of neighbors of node i with opinion n, and di is the
degree of node i, see section 2.2 for details. In every example the same parameters r and
r̃ are used:

r =

 − 0.99

1.01 −

 , r̃ =

 − 0.005

0.005 −

 . (6.22)

In contrast to the voter model, where transition rates are proportional to the share of
opinions in the neighborhood, the threshold model assumes that a switch to a different
opinion only occurs if that opinion is already sufficiently established in the neighborhood.
More precisely, in the threshold model a node i transitions from state m ∈ {0, 1} to state
n = 1−m at the rate {

rm,n + r̃m,n, if
di,n(x)

di
≥ bm,n

r̃m,n, else
(6.23)

where again rm,n, r̃m,n ≥ 0 are rate parameters. The parameter bm,n ∈ [0, 1] is the thresh-
old at which a node changes its opinion from m to n due to the influence of neighbors.
Similarly to the voter model, the rates r̃m,n control the noise in the system. In the
examples presented below, the following parameters are used:

r0,1 = r1,0 = 1, r̃0,1 = r̃1,0 = 0.1, b0,1 = b1,0 = 0.5. (6.24)

In many cases (and when not specified in the text) the results obtained for the CNVM
and for the threshold model are qualitatively identical, e.g., the same dimension and
shape of the transition manifold and the same collective variables. This implies that,
even though the CNVM and the threshold model have different dynamics, the relevant
macroscopic information about the system state is often the same. The properties of the
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Table 6.1.: Parameter values used in the examples.

stoch. block model ring 3-regular Albert–Barabási

num. of nodes N 900 50 500 500

num. of anchors K 2000 2000 1000 1000

samples per anchor S 100 300 100 100

τ (voter model) 2 5 4 4

τ (threshold model) 1 3 8 2

CV dim. d 3 5 1 1

underlying network on the other hand have a large impact on the CVs learned by the
method, as the following examples show.

For the calculation of the distance matrix ∆, see (6.11), the Gaussian kernel with
bandwidth σ =

√
N/2 was used, where N is the number of nodes of the respective

network. The other parameter values of the examples are summarized in table 6.1. The
experiments were conducted on a 16-core CPU with 32 GB of memory and took less
than 20 minutes each, including the simulations of the CNVM (or threshold model),
the manifold learning, and the linear regression with cross-validation. The most costly
step (∼ 70% of runtime) in these examples is the calculation of the transition manifold
parametrization, i.e., the calculation of the distance matrix and application of the diffusion
maps algorithm. The Python code for all examples is available at https://github.com/
lueckem/spreading-processes-CVs.

6.2.1. Application to the stochastic block model

In this section a network of N = 900 nodes that is constructed using the stochastic block
model is considered. The network consists of three equal size clusters such that cluster
1 and 2 are densely connected, cluster 1 and 3 are connected only sparsely, and cluster
2 and 3 are not connected at all, see figure 6.2. Based on the theoretical considerations
presented in section 5.2.3, the optimal CV is expected to be d = 3-dimensional and
contain the counts of 1’s in each cluster. Recall that this CV is exact in the sense that for
N → ∞ the projected dynamics converges to a mean-field limit. Applying the learning
method and plotting the resulting CV point cloud {φ(x1), . . . , φ(xK)} ⊂ R3 yields an
approximately cuboid shaped transition manifold. The vertices of this cuboid correspond
to extreme states x in which for each cluster either all or no nodes have state 1, see
figure 6.2. To discover the meaning of the three coordinates φ1, φ2, φ3, the optimal fit
according to the regression problem proposed in step 3 of the method is calculated, which
yields a collective variable φ̄(x) = Λx with optimal parameters Λ shown in figure 6.3. The
entries of the first row Λ1,: are all approximately equal and thus φ̄1 describes the count
of 1’s in the whole network. The optimal Λ2,: is positive and constant within cluster 3
and negative and constant within clusters 1 and 2. Thus, φ̄2 calculates how the 1’s are
distributed between clusters {1, 2} and {3}. (For example, a large positive value of φ̄2

indicates that there are many 1’s in cluster 3 and few in clusters 1 and 2). Finally, Λ3,: is
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2

Figure 6.2.: For the stochastic block model network (left), the transition manifold is a 3-
dimensional cuboid (right). The vertices of the cuboid correspond to extreme
states x where for each cluster either all (filled circle) or no nodes (empty
circle) have state 1. Reprinted from [2].
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Figure 6.3.: Optimal Λ from (6.13) for the stochastic block model example. (a): Data
φ1(x

k) versus optimal fit φ̄1. (b)-(d): Optimal Λ entries for the respective
coordinates plotted as color values on the network. Reprinted from [2].
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positive in cluster 1, negative in cluster 2, and approximately 0 in cluster 3, which implies
that φ̄3 measures how the 1’s are distributed between clusters 1 and 2, regardless of the
number of 1’s in cluster 3. Hence, the learned CV φ̄ includes exactly the information that
was predicted by the mean-field theory, i.e., the counts of 1’s for each cluster, but the
coordinates are ordered by dynamical prevalence. For instance, coordinate 3 is the least
prevalent because information flows quickly between the two densely connected clusters
1 and 2.

Further numerical examples, which are not shown here, indicate that this result gen-
eralizes as the theory predicts, e.g., for a stochastic block model with two clusters a
two-dimensional CV is learned were the first coordinate is again the global count of 1’s
and the second coordinate describes the distribution of 1’s between the clusters. For an
Erdős–Rényi random graph, i.e., a stochastic block model with only one cluster, the CV
is one-dimensional and describes the count of 1’s.

An interesting question would be to consider the change of the CV and especially
its dimension when increasing the edge density between two clusters. In particular, do
structural transitions in the CV coincide with the so-called detectability threshold of the
stochastic block model [161, 162], where the edge statistics become indistinguishable from
an Erdős–Rényi random graph model? This could be addressed in future work.

6.2.2. Application to the ring graph

In this section the method is applied to a ring-shaped network of N = 50 nodes. Ex-
amining the point cloud {φ(x1), . . . , φ(xK)} for different choices of d, a low-dimensional
transition manifold can not be identified as increasing d keeps adding important informa-
tion. To keep the CV dimension reasonably small, a dimension of d = 5 is chosen and
the larger dimensions are clipped. (This still yields CVs of reasonable quality as will be
shown later in section 6.2.5.)

Solving the regression problem in step 3 yields a Λ that is constant in the first coordi-
nate, i.e., the most important information is again the total count of 1’s, see figure 6.4.
The subsequent Λj,i are pairs of sine and cosine functions of the node index i, starting with
one oscillation for coordinates j = 2, 3 and then doubling the frequency for coordinates
j = 4, 5. Hence, the collective variable φ̄ measures the distribution of 1’s on the ring,
with increasing precision as d increases. This structure mimics Fourier coefficients, which
suggests that (in the limit of infinitely many nodes) the optimal collective variable mea-
sures the position-dependent concentration of 1’s as a density function on the ring. This
result agrees well with other works considering ring-shaped or lattice networks, e.g. [82,
83, 84], which find that the concentration of 1’s is governed by a diffusive PDE in the
hydrodynamic limit. The CV of the system thus being a function on the ring, any finite-
dimensional approximation has a truncation error. However, orthogonal trigonometric
polynomials are a natural (and in an L2-sense optimal) choice, found by our method.

6.2.3. Application to regular networks

A challenge in reduced modeling of spreading processes on random regular graphs is that
edges are correlated. If the degree grows indefinitely with the network size, it was shown
for the CNVM that the share of state 1 is an asymptotically perfect CV in section 5.2.4.
It can be observed numerically that for small degrees this CV still seems to support an ef-
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Figure 6.4.: Left: optimal Λi,: plotted as color values on the ring-shaped network. Right:
Λi,: (blue crosses) and a sine fit (orange line). The collective variables φi rep-
resent the real Fourier coefficients of the distribution of 1’s on the ring, since
φi(x) ≈ Λi,: x with the Λi,: being sines and cosines of increasing frequencies.
Reprinted from [2].
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(a) Voter model.
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(b) Threshold model.

Figure 6.5.: For the random 3-regular graph the transition manifold is one-dimensional.
The color represents the share of 1’s in the associated state.

fective dynamics, but it deviates from the one obtained by mean-field approximation. The
CV learning method applied to a random 3-regular network with N = 500 nodes validates
these observations. The resulting transition manifold is approximately one-dimensional
and the learned CV again calculates the global share of 1’s, see figure 6.5. Hence, the
CV is identical to the optimal CV in the complete graph and Erdős–Rényi random graph
setting. However, the dynamics on random 3-regular graphs behaves (quantitatively) dif-
ferently than on a complete graph. In particular, the known mean-field equation, which
constitutes the large population limit of the CNVM on complete networks, is not valid for
random regular graphs of small degree. The existence of a dynamical equation similar to
the mean-field equation that describes the random regular graph setting is indicated by
the one-dimensionality of the transition manifold and could be examined in future work.

6.2.4. Application to Albert–Barabási networks

In this section the method is applied to a network generated by the Albert–Barabási
model, see section 3.1.5 for details. In the preferential attachment algorithm each new
node is connected to m = 2 existing nodes that are randomly picked with probability
proportional to their degree. This procedure yields (asymptotically) a scale-free network.
Applying the method results in a point cloud {φ(x1), . . . , φ(xK)} that indicates a d = 1-
dimensional transition manifold. The optimal Λ ∈ RN according to the linear regression
problem in step 3 assigns a large positive weight to nodes of high degree, whereas nodes
with small degree have small or even negative weight, as illustrated in figure 6.6. This
conflicts with the graph total variation regularizer that favors solutions for which Λ is
equal for neighboring nodes. As described earlier, this issue can be tackled by applying a
pre-weighting of each node i with its degree di:

φ̄(x) =

N∑
i=1

Λi di xi. (6.25)
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Figure 6.6.: (a) For the Albert–Barabási network, the optimal Λ as in (6.17) assigns a
large weight to nodes with high degree. (b) After pre-weighting with node
degree, cf. (6.19), the optimal Λ is constant. Hence, the collective variable
describes the degree-weighted count of 1’s. Reprinted from [2].

As a result, the optimal Λ becomes approximately constant, and hence the CV measures
the degree-weighted count of state 1 in the system, see figure 6.6. Multiple experiments for
varying parameters confirmed this result, provided the preferential attachment parameter
is chosenm ≥ 2. (Form = 1 the resulting networks exhibit a significantly larger diameter.
As a consequence, the degree-weighted count does not seem to sufficiently characterize the
dynamics.) To the best of the author’s knowledge, there are currently no theoretical works
showing that the degree-weighted count is a good CV for (binary-state or other) spreading
processes on Albert–Barabási networks, although refs. [163, 164] hint at the significance
of this observable. A data-driven technique to derive an ODE for the dynamics of the
degree-weighted count is presented in section 6.3.

6.2.5. Validation of numerical examples

While the CVs that were learned in the previous examples seem reasonable, it is important
to check and validate if they are indeed good. Recall that the transition manifold approach
is seeking for a low-dimensional parametrization φ of the set of all transition densities pτx,
x ∈ {0, 1}N . Thus, for two states x and y the distance between pτx and pτy should correlate
with the distance between φ(x) and φ(y). The quality of a collective variable φ can
hence be assessed using the following heuristic. Given a small ε > 0 and two states
x1, x2 ∈ {0, 1}N with φ(x1) ≈ φ(x2), define the time t∗ as

t∗ := inf{t ≥ 0 | ∀τ ≥ t : ∥pτx1 − pτx2∥ < ε}. (6.26)

This is well-defined because all pτx are assumed to converge to a unique stationary distribu-
tion for τ →∞. If t∗ is rather large, this implies that the CV is very coarse because initial
states with similar CV values may lead to quite different behavior over long timescales.
But a good CV has the property that starting the system in x1 versus in x2 should make
almost no difference after a short time, and hence, good CVs exhibit a small t∗. However,
this property alone does not sufficiently characterize the quality of the CV (for example,
φ(x) = x implies t∗ = 0, but it does not simplify the state at all). Hence, consider a third
state x3 with a clearly distinct CV value φ(x3) ̸≈ φ(x1). Then the CV is of good quality
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if the associated distributions pτx1 and pτx3 are also substantially different for a long time,
i.e.,

t̂ := inf{t ≥ 0 | ∀τ ≥ t : ∥pτx1 − pτx3∥ < ε} (6.27)

should be large. If t̂ is rather small, this implies that the CV is too fine-grained because
it assigns different values to initial states that lead to a similar dynamics after a short
time. The best possible CV achieves both the smallest t∗ for all choices of x1, x2 and
the largest t̂ for all choices of x1, x3, as it exactly filters out the state information with a
short timescale impact, but keeps the information that leads to fundamentally different
dynamics on a long timescale.
The following numerical method can be employed for the validation of CVs. After

the approximation φ̄ of the collective variable has been calculated, pick three states
x1, x2, x3 ∈ {0, 1}N as discussed above, i.e, such that φ̄(x1) ≈ φ̄(x2) and φ̄(x3) is sub-
stantially different.2 Then compare the distributions pτx1 , p

τ
x2 , and p

τ
x3 via their maximum

mean discrepancy (MMD)

MMD2(xi, xj ; t) := E
[
κ
(
x(t, xi), x̃(t, xi)

)]
+ E

[
κ
(
x(t, xj), x̃(t, xj)

)]
− 2 E

[
κ
(
x(t, xi), x̃(t, xj)

)]
, (6.28)

where x(t, x), x̃(t, x) are independent random variables with distribution ptx, and κ(·, ·)
is a Gaussian kernel. If the learned CV φ̄ is good, MMD(x1, x2; t) should decrease to 0
quickly (as t∗ is small), while both MMD(x1, x3; t) and MMD(x2, x3; t) stay large for a
long time (as t̂ is large). The three MMDs are estimated by replacing the expectation in
(6.28) with averages from model simulations.
To really prove the quality of the learned CV φ̄, one would have to conduct this exper-

iment for all possible choices of x1, x2, x3, which is of course not feasible. However, doing
it for a few (random) choices is a good indicator of whether the CV is correct.
A weaker (but easier to compute) indicator of the quality of a CV is given by the

differences between the projected distributions, i.e.,

MMD2
φ(x

i, xj ; t) := E
[
κ
(
φ̄(x(t, xi)), φ̄(x̃(t, xi))

)]
+ E

[
κ
(
φ̄(x(t, xj)), φ̄(x̃(t, xj))

)]
− 2 E

[
κ
(
φ̄(x(t, xi)), φ̄(x̃(t, xj))

)]
. (6.29)

In contrast to (6.28), MMDφ(x
1, x2; t) should be close to 0 for all times t, as states with

the same CV value should lead to identical effective (projected) dynamics. The differences
MMDφ(x

1, x3; t) and MMDφ(x
2, x3; t) should again be large for small and intermediate t.

For very large t, even they should approach zero due to the convergence to the stationary
distribution.

Results. For the stochastic block model example, states x1 and x2 were constructed such
that the share of 1’s is 10% in cluster 1, 0% in cluster 2, and 50% in cluster 3, see fig-
ure 6.7. In state x3 the total number of 1’s is the same but they are distributed uniformly,
irrespective of the clusters. For both the voter model dynamics and the threshold model

2Given x1, the state x2 can for instance be sampled using a Markov chain Monte Carlo method. Starting
with a uniformly random x2, randomly flip states of nodes until φ̄(x1) ≈ φ̄(x2).
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Figure 6.7.: Validation for the stochastic block model example. For a definition of MMD
and MMDφ see (6.28) and (6.29).

dynamics the time t∗ is very small (t∗ ≈ 5) compared to t̂. This indicates that the learned
CV is good, as discussed above. An interesting difference between the voter model and
the threshold model on this network is that the metastable states (where each cluster is
dominated by one opinion) persist much longer in the threshold model. As x1 and x3

typically move into different metastable states, their MMD stays large much longer in the
threshold model.

For the ring network, state x1 is chosen randomly (i.i.d. for every node), x2 is chosen
such that the collective variable matches, and x3 is given by a random permutation of node
states of x1, see figure 6.8. Hence, state x1 and x3 have the same number of 1’s. Here,
the time t∗ is rather large compared to t̂, which shows that this CV is too coarse. This
is not surprising because the CV dimension was capped at 5, even though the transition
manifold approach suggested a higher dimension. One could improve the quality of this
CV (i.e., reduce t∗) at the cost of increasing its dimension and hence complexity.

For the Albert–Barabási network, state x2 is such that the top 10% of nodes with
the largest degrees are in state 1, whereas in x3 the 10% of nodes with the smallest
degrees are in state 1, see figure 6.9. Hence, the total number of 1’s is identical, but
the CV, which measures the degree-weighted count of 1’s, differs substantially. State x1

is chosen randomly such that it has the same degree-weighted count of 1’s as state x2.
This experiment indicates that the learned CV is good because t∗ is small compared to t̂.
Moreover, it is again observed that due to the longer persistence of metastable states in
the threshold model, the MMD between x1 and x3 stays much larger in the threshold
model than in the voter model.
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(c) Threshold model.

Figure 6.8.: Validation for the ring network example. For a definition of MMD and MMDφ

see (6.28) and (6.29).
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Figure 6.9.: Validation for the Albert–Barabási network example. For a definition of
MMD and MMDφ see (6.28) and (6.29).
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Figure 6.10.: Validation for the random 3-regular network. For a definition of MMD and
MMDφ see (6.28) and (6.29).

Finally, figure 6.10 shows that the simple share of 1’s is indeed a good CV in the case
of the random 3-regular network. States x1 and x2 are random permutations with the
same number of 1’s, whereas x3 has a different number of 1’s. The time t∗ is again small
compared to t̂, which implies that the CV is good.
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6.3. Surrogate collective dynamics for the Albert–Barabási
model

The standard mean-field equation (2.24), which describes the infinite population dynamics
of the continuous-time noisy voter model (CNVM) on sufficiently dense and homogeneous
graphs, see section 5.2, is not valid for scale-free networks generated by the Albert–
Barabási model. Due to the highly varying node degrees in scale-free networks, the
simple state shares, i.e., the percentages of each discrete state in the system, do not
contain sufficient information. If for instance the 10% of nodes with the largest degrees
are infected in an SI model, the infection spreads much faster than if the 10% of nodes
with the smallest degrees would be infected. This intuition was confirmed in the previous
section, where the optimal CV that was learned from data actually contained the degree-
weighted shares. Hence, one could speculate that there exists an equation similar to the
mean-field equation (MFE), but applied to the degree-weighted shares, that yields a good
approximation for Albert–Barabási networks. The objective of this section is to learn this
equation from data and validate it numerically.

Even if the different states, e.g., infected and susceptible, are distributed evenly across
nodes of all degrees, the standard MFE does not match the dynamics of the model,
as depicted in figure 6.11. Recall the parameter m of the Albert–Barabási model that
dictates how many new nodes are added in each iteration of the preferential attachment.
Especially for small m the discrepancy between MFE and actual dynamics is large. For
larger m on the other hand, the MFE is a much better match. The reason for that
is presumably that, as each node has at least m neighbors and the local clustering in
Albert–Barabási networks is small, the neighborhood of each node likely represents the
global shares quite well if m is large, and hence mean-field theory can be applied.

In the literature, most macroscopic equations for scale-free networks are very high-
dimensional as they treat the state shares separately for each node degree occurring in
the network [165, 93], i.e., they are heterogeneous approximations (see section 2.4.2).
Moreover, they are not exact because in the theoretical derivation some form of stochastic
correlation is always ignored, for example the node degree correlation of neighboring
nodes, leading to an approximation error. As of now, a low-dimensional equation for
the degree-weighted shares can not be found in the literature, neither in the form of a
theoretical derivation nor learned from data-driven methods. Due to the difficult nature
of the Albert–Barabási model, e.g., because of degree and edge correlations, an analytical
derivation is exceptionally hard. Thus, the following data-driven technique will be applied
to learn the dynamics of the degree-weighted shares instead.

Sparse identification of nonlinear dynamics (SINDy). In SINDy [166], governing equa-
tions of dynamical systems are learned from trajectory data by solving a regression prob-
lem using a sparsity-promoting optimizer. Assume that trajectory data from a system
c(t) ∈ RM is given, i.e., c(t1), . . . , c(tn). The goal is to find a function f : RM → RM such
that

ċ(t) :=
d

dt
c(t) = f

(
c(t)
)
. (6.30)

Let C ∈ Rn×M , Ci,m := cm(ti) denote the data matrix and Ċ ∈ Rn×M , Ċi,m := ċm(ti)
the matrix of derivatives. When the partial derivatives ċm(ti) are not known, they are
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Figure 6.11.: Mean (dashed line) ± standard deviation (shaded area) of the CNVM
on Albert–Barabási networks for different preferential attachment param-
eters m, in comparison with the mean-field solution (MFE).

simply approximated from the trajectory data via finite differences. Furthermore, let a
set of library functions θ1, . . . , θℓ, with θj : RM → R, be given and let the library matrix
Θ(C) ∈ Rn×ℓ be defined by Θ(C)i,j := θj

(
c(ti)

)
. Now, the function f is constructed via

linear combinations of library functions, i.e., f(c) = Θ(c)TΞ where Θ(c) ∈ Rℓ contains the
evaluations of the library functions at c and Ξ ∈ Rℓ×M is the matrix of linear coefficients.
The optimal coefficients Ξ are then found by solving the regression problem

Ċ
!
= Θ(C) Ξ , (6.31)

most commonly using a sparse optimizer like the sequentially thresholded least squares
algorithm (STLSQ) [166] or the stepwise sparse regressor (SSR) [167].

Applying SINDy to the CNVM. To acquire the necessary trajectory data, the CNVM
with parameters

r =

 − 1.01

0.99 −

 , r̃m,n = 0.05 (6.32)

is simulated on an Albert–Barabási network of size N = 105 with preferential attachment
parameter m = 3. From the simulations, trajectories of the degree-weighted share c(t) ∈
[0, 1] of nodes in state 1 are calculated. These trajectories still exhibit some variance, i.e.,
they fluctuate slightly around their mean, which would obstruct the learning algorithm.
Hence, to make it easier for SINDy, a few trajectories starting in the same initial state are
sampled and then averaged to even out the fluctuations. The set of training data then
consists of several of these averaged trajectories, starting in different initial states with
varying degree-weighted shares. In this example, three averaged trajectories are used as
the training data, and a fourth trajectory is sampled to test if the learned equation is
valid. The set of monomials up to degree four is employed as the function library and
the regression problem is solved using the STLSQ optimizer. Given these inputs, the
following equation is obtained by SINDy

d

dt
c(t) = 0.0049 + 0.0063c(t)− 0.0163c(t)2. (6.33)
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Figure 6.12.: Model simulations of the degree-
weighted share c1, in comparison
with the modified mean-field equation
(6.33) learned by SINDy.
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Figure 6.13.: Estimation of the fac-
tor α in the modified
MFE (6.36) depend-
ing on m.

This equation successfully replicates the three training trajectories but also generalizes
well to the fourth trajectory with unseen initial state, see figure 6.12.
Note that there are no third and fourth order terms present in the learned equation. In

fact, it closely resembles the standard MFE (2.24), which for these parameters is given by

d

dt
c(t) = r̃0,1 +

(
r0,1 − r1,0 − r̃0,1 − r̃1,0

)
c(t) +

(
r1,0 − r0,1

)
c(t)2 (6.34)

= 0.005 + 0.01 c(t)− 0.02 c(t)2. (6.35)

(Recall however that in the context of the standard MFE the shares c are not degree-
weighted.) When comparing these two equations, it becomes apparent that the learned
equation (6.33) can be obtained from the standard MFE (6.35) by multiplying the rates
r (but not r̃) with the factor α = 0.8, i.e.,

d

dt
c(t) = r̃0,1 +

(
α r0,1 − α r1,0 − r̃0,1 − r̃1,0

)
c(t) +

(
α r1,0 − α r0,1

)
c(t)2. (6.36)

Hence, the coefficient of the linear term becomes (α r0,1−α r1,0− r̃0,1− r̃1,0) = 0.006 and
the coefficient of the quadratic term (α r1,0−α r0,1) = −0.016, which closely matches the
learned equation. This suggests that, while the noise remains the same, the infection (or
imitation) in the CNVM is effectively about 20% slower on the Albert–Barabási network
compared to the standard MFE.

Interestingly, this phenomenon can also be observed for larger values of the preferential
attachment parameter m, but the factor α changes based on m. For instance, the same
application of SINDy to an Albert–Barabási network withm = 5 yields the modified MFE
(6.36) with α = 0.88, and for m = 16 the value α = 0.96 is obtained, which agrees well
with the earlier observation that the larger m is the more similar the dynamics becomes
to the standard MFE. Based on these experiments, an estimation of α in dependence of m
is shown in figure 6.13.

It remains to be verified that this modified MFE with rate parameters αr instead of r
is not just valid for the specific CNVM parameters used above, but for all choices of r
and r̃, or at least a wide range of choices, and for any number of node states M . This
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would require a substantial amount of thorough testing which is left for future work. In
the following only one further example is considered as a verification: the CNVM with
M = 3 states and parameters

r =


− 8 2

2 − 8

8 2 −

 , r̃ =


− 0.09 0.07

0.07 − 0.09

0.09 0.07 −

 . (6.37)

Figure 6.14 illustrates how accurate the modified MFE is in this example for 9 trajec-
tories started in different initial states. The underlying Albert–Barabási network was
constructed with parameter m = 3 and α = 0.8 was used in the modified MFE as this
was the optimal choice in the previous example. It is obvious that the modified MFE
produces a much better approximation than the standard MFE and the qualitative be-
havior matches closely as well. However, there are still some discrepancies with varying
severeness depending on the initial state. While these could be finite size effects that
vanish as N →∞ to some extent, it is probable that the modified MFE does not become
completely exact, unlike the standard MFE which constitutes a true mean-field limit for
certain networks as shown in chapter 5. The small errors that can be seen in figure 6.14
are by no means contradictory to the weighted shares being good CVs, as it is precisely
the concept of CVs to facilitate an optimal trade-off between approximation error and
dimension reduction. While the errors seem to be quite small, further experiments are
necessary to quantify them more thoroughly and to compare them to the errors of other
approximations like the pair approximation (see section 2.4.2). It is also possible that,
depending on the specific rates r and r̃, other (simple) modifications to the MFE can be
performed to further reduce the approximation error. This could also be considered in
future work.
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Figure 6.14.: Test of the modified MFE for the CNVM with parameters specified in (6.37)
in comparison with model simulations. Blue dotted: CNVM, black solid:
standard MFE, black dotted: modified MFE.
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7. Ring-shaped networks

This chapter contains several considerations regarding dynamical systems on ring-shaped
networks, i.e., the one-dimensional periodic lattice and similar networks. Generally, study-
ing dynamical systems and especially their large population limits on such sparse networks
is much harder and requires different approaches than the mean-field theory for dense
networks [168]. There are however numerous results for varying dynamical models and
underlying graphs in the literature. For ring and lattice structures it is common to derive
a large population limit in the form of a PDE resembling the heat equation or diffusion
equation that describes the evolution of probability densities in the system [84, 169]. Be-
cause the limit dynamics is not necessarily deterministic, extensions to stochastic PDEs
have also been studied [82, 83]. It should be noted that these results typically assume a
rescaling of time as the population N increases which effectively makes the dynamics run
faster. The reason for this rescaling is that, if average path lengths in the sparse network
increase rapidly with the number of nodes, the time that information needs to spread
through the network also increases. For instance, in an epidemiological model the average
time for an infection to spread from a seed node at angle 0◦ on the ring to any other node
at angle α > 0 typically scales linearly with N , and hence in the limit dynamics on an
“infinite” ring the infection does not spread at all. Hence, the rate of infection has to be
increased with N , or equivalently time rescaled, to produce a meaningful limit.

Instead of dealing with these types of large population limits, this chapter focuses on
approximations for spreading processes on a finite ring and the connection to mean-field
theory for dense networks.

First, it is demonstrated in section 7.1 that the mean-field limit of the continuous-time
noisy voter model (CNVM) is a poor approximation for the dynamics on the ring, which is
not surprising. However, recall that the binomial Watts–Strogatz model (see section 3.1.4)
can continuously interpolate between a ring-shaped network and the Erdős–Rényi (ER)
model. As the standard mean-field equation (MFE) is the large population limit on ER
networks, which was shown in section 5.2.1, but is a poor approximation on the ring, it is
interesting to study the approximation error of the MFE in the intermediate small-world
regime. In this section it becomes apparent that, even if a decent amount of random edges
are added to the ring, the approximation error of the MFE is large. This result confirms
that different approaches have to be employed to treat ring-shaped networks.

One possible approach to obtain a reduced model is given by moment closure methods,
which were introduced in section 2.4.2. Here, in section 7.2, a moment closure method
is applied to the CNVM on the ring to obtain a so-called triplet approximation. This
well-known approach is complemented with a novel data-driven technique to decrease the
approximation error by optimizing the closure of equations. The resulting method is more
robust than other data-driven algorithms that have to learn the complete dynamics from
scratch, and has a lower approximation error than the classical triplet approximation.

Finally, a dense version of the ring graph in which each node is connected to a fixed
percentage of its left and right neighbors on the ring is considered in section 7.3. Due to
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the density, a rescaling of time is not necessary to obtain a meaningful large population
limit. Instead, graphon theory (see section 3.2) can be applied to derive a limit PDE
describing the evolution of probability densities in the system, which is demonstrated in
this section. Furthermore, it is shown that the graphon mean-field limit fails to produce
a good approximation if the network becomes too sparse.

7.1. Watts–Strogatz networks and mean-field limits

Recall from section 3.1.4 that the binomial Watts–Strogatz model interpolates between
a regular ring lattice (rewiring probability β = 0), where every node is connected to its
nearest K/2 left and K/2 right neighbors on the ring, and the Erdős–Rényi (ER) model
with edge density p = K

N−1 (rewiring probability β = 1). Moreover, in chapter 5 it was
shown that the standard mean-field equation (5.82) is the large population limit of the
continuous-time noisy voter model (CNVM) on ER graphs if p ≫ log(N)/N . Thus, if
K ≫ logN in the binomial Watts–Strogatz model, the mean-field equation is the large
population limit in the case β = 1, but for the regular ring (β = 0) it does not describe
the macroscopic dynamics well and is a rather bad approximation. In this section the
behavior of the CNVM for intermediate rewiring probabilities 0 < β < 1 is discussed,
with a special focus on the approximation quality of the mean-field equation. Recall that,
as β increases from 0 to 1, first the average path length becomes small while the clustering
coefficient remains large, which is called the small-world property. The question whether
the mean-field equation constitutes a good approximation in that small-world setting is
addressed by the following numerical experiment.
Consider the CNVM with M = 2 opinions {0, 1} and parameters

r =

 − 1.01

0.99 −

 , r̃m,n = 0.01. (7.1)

The parameter K is chosen such that the mean degree is sufficiently large, K = log(N)2.
Figure 7.1 shows averaged trajectories of the share c1 of 1’s for different rewiring probabil-
ities β of the binomial Watts–Strogatz model on N = 2500 nodes. For each experiment,
20% of nodes are in state 1 and the rest in state 0 initially. As expected, the trajectory for
β = 1 is very close to the solution of the mean-field equation (MFE). For smaller β, the
trajectories move further away from the MFE and converge to a different steady-state.
Experiments with different network sizes N confirm this behavior, as figure 7.2 illus-

trates. Interestingly, for all N the approximation error of the MFE is constant or decreases
only slightly for small β until it starts to drop rapidly at about β = 10−2. The error then
falls quickly until about β = 10−1, after which it again remains constant or decreases only
slightly. The small-world regime however is in the range 10−4 < β < 10−2, where the
average path length has already dropped but the average clustering remains large. Hence,
the error is still quite large in the small-world regime implying that the MFE is not a
suitable approximation for small-world networks.
Moreover, it also becomes apparent from figure 7.2 that the range 10−2 < β < 10−1 in

which the MFE decreases the most coincides with the range where the average clustering
coefficient begins to drop off quickly. Considering the principles of indistinguishability
and interchangeability in mean-field theory (see section 2.4.1), it is not surprising that the

114



7.1. Watts–Strogatz networks and mean-field limits

0 25 50 75 100 125 150 175 200
t

0.2

0.4

0.6

0.8

c 1

N=2500, K=62

MFE
=1.0
=0.1

=0.01
=0.001
=0.0

Figure 7.1.: CNVM on Watts–Strogatz networks of varying rewiring probability β, in
comparison with the mean-field equation (MFE). The plot shows the share c1,
averaged over 1000 simulations.

error of the MFE only starts to decrease when local structures become less prevalent in
the network, which is detected by the falling clustering coefficient.
While this numerical experiment clearly indicates that the MFE is not a good approx-

imation for the ring or for small-world networks, it is an open question whether the MFE
is an exact large population limit only for rewiring probability β = 1 or if there is a phase
transition at some critical value βc such that the MFE is valid for all β > βc. Since β < 1
implies that some local structure of the ring remains, it seems more likely that the MFE
is only an exact limit for β = 1 and merely an approximation for β < 1 with an error that
is smaller the closer β is to 1. Further investigation is required to answer this question
definitely.
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Figure 7.2.: The L1-error between mean-field equation and mean of CNVM (top), the
normalized average path length (center), and the average cluster coefficient
(bottom), for binomial Watts–Strogatz networks of varying rewiring proba-
bility β and varying size N .
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7.2. Learning a moment closure

7.2. Learning a moment closure

This section is concerned with finding a low-dimensional approximation to the macroscopic
behavior of the continuous-time noisy voter model (CNVM) on a standard ring network.
A triplet approximation (see section 2.4.2) is a natural choice for this setting but requires
a closure of the evolution equations that introduces an error. First, in section 7.2.1 a
classical approach is presented for which the closure is based on assumptions of stochastic
independence. While this classical triplet approximation generally works quite well, it can
show a large approximation error in some cases. “Off-the-shelf” algorithms for learning
dynamics from data, like SINDy, can be used to learn better evolution equations, which is
demonstrated in section 7.2.2. However, since these general purpose algorithms are very
flexible, it is often hard to find optimal hyperparameters for a specific setting, and the
learned dynamics may show behavior that is unwanted or unrealistic for a certain system.
For example, in this specific case of the CNVM on a ring, SINDy often learns dynamics
where the sum of the shares of nodes in each state can not only exceed 1, but even explodes
to infinity. A novel and more robust strategy for improving the approximation error is to
only apply a data-driven learning algorithm to the part of the triplet approximation that
introduces an error: the closure. This method of only learning the closure is presented in
section 7.2.3.

The contents of this section are strongly inspired by the author’s publication [3].

7.2.1. A classical triplet approximation

Consider again the continuous-time noisy voter model (CNVM), see section 2.2 for details.
It is assumed that nodes have one ofM = 2 states, xi ∈ {0, 1}. For a standard ring network
with N nodes, in which each node is connected to one left and one right neighbor, a
triplet approximation is a natural choice. Given a state x ∈ {0, 1}N , define the collective
variables C(x) := (C0

0 (x), C
1
0 (x), C

2
0 (x), C

0
1 (x), C

1
1 (x), C

2
1 (x)), where C

k
m(x) denotes the

share of nodes that have state m and have k neighbors of the other state n = 1−m. For
abbreviation the reduced state will be denoted as C(x) = c. Note that c0m+c1m+c2m =: cm
is the total share of opinion m and hence c0 + c1 = ∥c∥1 = 1. Inspecting the propensity
functions for the CNVM on the ring yields

αm→n(x) :=
∑

i:xi=m

(
rm,n

di,n(x)

di
+ r̃m,n

)
(7.2)

=
rm,n

2

∑
i:xi=m

di,n(x) +Ncmr̃m,n (7.3)

= N
(rm,n

2
(c1m + 2c2m) + cmr̃m,n

)
. (7.4)

Thus, a reduced propensity function α̃m→n(c) = N−1αm→n(x) for the collective variable
c = C(x) that counts triplets occurs naturally due to the special structure of the ring.
However, in order to derive an evolution equation for c, it is necessary to specify the state-
change vectors for the possible transitions, which is where the moment closure becomes
necessary.

The difficulty of deriving the state-change vectors, i.e., the impact of the state transi-
tions on c, and their associated rates is illustrated best using an example. Consider the
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7. Ring-shaped networks

case that a node i transitions from opinion m to n and has k = 0 neighbors of opinion n.
This transition occurs at the rate r̃m,n, purely due to noise. It is clear that before the
transition it is (xi−1, xi, xi+1) = (m,m,m) and that because of the transition of node i
the share c0m decreases by 1/N and the share c2n increases by 1/N . Additionally, the
neighborhoods of node (i − 1) and node (i + 1) change as well, but it is not possible
to say how this impacts c because that depends on the unknown states of nodes (i − 2)
and (i + 2). If for instance (xi−2, xi+2) = (m,m), then nodes (i − 1) and (i + 1) would
count towards c0m before and towards c1m after the transition of node i, which would lead
to the total state-change vector N−1(−3, 2, 0, 0, 0, 1). The other three possible scenarios
(xi−2, xi+2) = (m,n), (n,m), (n, n) lead to other potentially different state-change vectors.
The question is therefore how to distribute the total rate r̃m,n of this transition to the
four possible scenarios.

A standard theme in moment closure methods is to close equations by assuming stochas-
tic independence of certain quantities. For instance, in the example above it could be
assumed that the state of node (i − 2) is independent of the other nodes and is sim-
ply randomly distributed according to the relative frequencies dictated by c. Hence,
node (i − 2) is assumed to have state m with probability c0m/(c

0
m + 0.5c1m). The same

reasoning applied to node (i+2) yields a probability of the scenario (xi−2, xi+2) = (m,m)

of
(
c0m/(c

0
m+0.5c1m)

)2
, which will be the percentage of the total rate r̃m,n that is assigned

to the associated state-change vector.

Following this procedure for all possible cases, i.e., node i having opinion m = 0, 1 and
having k = 0, 1, 2 neighbors of opinion n, and nodes (i − 2) and (i + 2) having opinions
(xi−2, xi+2) = (m,m), (m,n), (n,m), (n, n) yields a total of 2 · 3 · 4 = 24 state-change
vectors vj with associated rates α̃j(c). The rates are given by multiplying a base rate for
that transition, which would be c0mr̃m,n in the above example, with a probability that is
assigned to the scenario j by assuming stochastic independence of certain node states.
Due to the symmetry of the cases (xi−2, xi+2) = (m,n) and (xi−2, xi+2) = (n,m) if k = 0
or k = 2, the total number of cases can be reduced from 24 to 20. An overview is presented
in table 7.1. Finally, combining everything yields the evolution equation

d

dt
c(t) =

20∑
j=1

α̃j

(
c(t)
)
vj . (7.5)

Although the collective variable c is 6-dimensional, there are actually only 4 degrees of
freedom due to the periodicity of the ring introducing certain symmetries. Consider any
fixed system state on the ring and define the random variable X = (X1,X2,X3) such
that P(X = (x1, x2, x3)) is the probability of seeing (x1, x2, x3) when randomly picking
3 consecutive nodes from the ring. Then it is easy to see that P(X = (0, 0, 0)) = c00 and
P(X ∈ {(0, 0, 1), (1, 0, 0)}) = c10. Note that, due to periodicity, the number of occurrences
of (0, 0, 1) and (1, 0, 0) are always exactly equal. Thus, it follows that

P(X = (0, 0, 1)) = P(X = (1, 0, 0)) =
1

2
c10, (7.6)

and with the same argumentation

P(X = (0, 1, 1)) = P(X = (1, 1, 0)) =
1

2
c11. (7.7)
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Table 7.1.: The 20 state-change vectors and associated rates for the triplet approximation
can be obtained from this table by setting m = 0, n = 1 or m = 1, n = 0.
The state-change vectors are written in the format (c0m, c

1
m, c

2
m, c

0
n, c

1
n, c

2
n). For

k = 0 and k = 2, two of the four cases can be merged into one due to symmetry;
hence there are only three entries.

k (xi−2, . . . , xi+2) state-change vector vj rate α̃j(c)

0 (m,m,m,m,m) (−3, 2, 0, 0, 0, 1) c0mr̃m,n ·
(

c0m
c0m+0.5c1m

)2
0 (m,m,m,m, n) (−2, 0, 1, 0, 0, 1) c0mr̃m,n · 2 c0m0.5c1m

(c0m+0.5c1m)2

0 (n,m,m,m, n) (−1,−2, 2, 0, 0, 1) c0mr̃m,n ·
(

0.5c1m
c0m+0.5c1m

)2
1 (m,m,m, n,m) (−1, 0, 0, 0, 2,−1) c1m(0.5 rm,n + r̃m,n) · c0m

c0m+0.5c1m

c2n
c2n+0.5c1n

1 (m,m,m, n, n) (−1, 0, 0, 1, 0, 0) c1m(0.5 rm,n + r̃m,n) · c0m
c0m+0.5c1m

0.5c1n
c2n+0.5c1n

1 (n,m,m, n,m) (0,−2, 1, 0, 2,−1) c1m(0.5 rm,n + r̃m,n) · 0.5c1m
c0m+0.5c1m

c2n
c2n+0.5c1n

1 (n,m,m, n, n) (0,−2, 1, 1, 0, 0) c1m(0.5 rm,n + r̃m,n) · 0.5c1m
c0m+0.5c1m

0.5c1n
c2n+0.5c1n

2 (m,n,m, n,m) (0, 0,−1, 1, 2,−2) c2m(rm,n + r̃m,n) ·
(

c2n
c2n+0.5c1n

)2
2 (n, n,m, n,m) (0, 0,−1, 2, 0,−1) c2m(rm,n + r̃m,n) · 2 c2n0.5c

1
n

c2n+0.5c1n

2 (n, n,m, n, n) (0, 0,−1, 3,−2, 0) c2m(rm,n + r̃m,n) ·
(

0.5c1n
c2n+0.5c1n

)2
As a consequence, it is

P((X1,X2) = (0, 1)) = P(X = (0, 1, 0)) + P(X = (0, 1, 1)) = c21 +
1

2
c11 (7.8)

and

P((X1,X2) = (1, 0)) = P(X = (1, 0, 0)) + P(X = (1, 0, 1)) =
1

2
c10 + c20. (7.9)

But again, due to the periodicity, the number of occurrences of (0, 1) and (1, 0) are exactly
equal, which implies

c20 +
1

2
c10 = c21 +

1

2
c11. (7.10)

Thus, the triplet approximation derived above is effectively 4-dimensional. For example,
if (c00, c

1
0, c

2
0, c

1
1) are given, then c21 is determined by (7.10), and then c01 by ∥c∥1 = 1.

Numerical example. Consider the ring with N = 2000 nodes and the CNVM with
parameters

r =

 − 1.01

0.99 −

 , r̃m,n = 0.01. (7.11)

Figure 7.3 shows the triplet approximation (7.5) in comparison with the actual model for
two different initial conditions. While the qualitative behavior including the steady state
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Figure 7.3.: Mean (dashed line) ± standard deviation (shaded area) of the CNVM on
the ring with N = 2000 nodes, in comparison with the triplet approximation
(7.5), for two different initial states.

matches very well, there is a slight approximation error in the transient phase. As the
figure illustrates, the magnitude of this error may differ substantially depending on the
initial state. This implies that the assumption of a certain stochastic independence, which
was used to close the equations, is clearly not always satisfied to a sufficient extent.

An interesting characteristic of the CNVM on a ring is that it is reminiscent of a fast-
slow dynamical system [170], i.e., in this example the system quickly moves to a slow
manifold that satisfies c11 ≈ 0.09 and c21 ≈ 0.005. After that initial relaxation only c00
and c01 continue to evolve, but at a slower timescale. The reason for this behavior of the
CNVM is that state configurations (xi−1, xi, xi+1) = (n,m, n) are dynamically short-lived,
i.e., the central node will very likely switch to n resulting in the more stable configuration
(n, n, n). As a result, in the initial phase large sections where all nodes have the same
state will form on the ring. Although one of these sections can be broken up into two
due to noise, and two sections can merge to form one larger section, the overall number
of sections does not change much over time, as can be seen by the quick stabilization
of c11. After the formation of these consecutive sections in the initial phase, the dynamics
is largely characterized by neighboring sections of different opinion moving their border
by “infecting” the next node behind the interface, leading to an increase or decrease of c00
and c01.

7.2.2. Learning an approximation with SINDy

In this section, the popular technique called SINDy (Sparse Identification of Nonlinear
Dynamics) [166] is applied to learn the dynamics of the CV c from data. The aim is to
discover a better approximation than the triplet approximation that was derived in the
previous section.

Recall from section 6.3 that SINDy works as follows: Given a time-series of trajec-
tory data and a library of basis functions, the derivatives at the trajectory points are
approximated numerically (e.g., via finite differences), and then an optimal linear combi-
nation of basis functions is calculated to approximate the derivatives (i.e., the dynamics),
typically via regression including a sparsity promoting regularization. Hence, there are
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Figure 7.4.: The training data consists of 9 trajectories of the CVs c(t), starting from
different initial conditions and averaged over an ensemble of 500 simulations
each. The trajectories are labeled from a) to i).

many hyperparameters to be considered when applying SINDy: the method to generate
derivatives, the library of basis functions, and the optimizer and optimizer parameters
(especially regarding the desired sparsity of coefficients).

In this experiment, the data set consists of 9 trajectories of c with different initial
conditions, obtained by averaging over an ensemble of CNVM simulations, see figure 7.4.
In order to find optimal hyperparameters, a grid search is combined with leave-one-out
cross-validation, i.e., for every choice of hyperparameters 9 models are trained, so that
model i has access to all except the i-th trajectory, and the error associated with these
hyperparameters is measured as the deviation from the data in infinity norm1 on the
validation trajectory i, averaged over all 9 models. This procedure showed that SINDy
is rather sensitive to the choice of hyperparameters. For many choices the dynamics
produced by SINDy is vastly unstable such that the system state has to be artificially
bounded to not produce an extremely large error. The best choice of hyperparameters was
found using central finite differences for calculating the derivatives, polynomials of degree
less than 2 as basis functions, and the SSR optimizer [167]. The dynamics produced by
SINDy and its error is visualized in figure 7.5. Note that the average error is significantly
lower than the error of the triplet approximation from the previous section. However,
for some trajectories the dynamics learned by SINDy has a bigger error than the triplet
approximation. As discovering the macroscopic dynamics using SINDy was not robust
and required a lot of trial and error in selecting working hyperparameters, a more informed
learning approach will be discussed in the next section.

1over time and over the components of c
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7.2.3. Learning only the closure

In the derivation of the triplet approximation in section 7.2.1 an error was introduced
by distributing a transition rate among four associated scenarios under independency
assumptions that are not correct. In this section, a data-driven method is presented to
learn a better way of distributing the transition rates. While the SINDy technique from
the previous section has to learn the complete dynamics without prior knowledge, the
method presented here targets precisely the unknown part in the triplet approximation,
thus learning an optimal closure of the equations.
In the triplet approximation in section 7.2.1, the distribution of transition rates is dic-

tated by a vector σ(c) ∈ R20 that can be derived based on certain independency assump-
tions. The first three entries of σ(c) are associated to the case (xi−1, xi, xi+1) = (0, 0, 0)
and describe how the transition rate c00r̃0,1 should be distributed among the scenar-
ios of different node states (xi−2, xi+2). For example, the case (0, 0, 0, 0, 0) receives a
share of σ(c)1 = (c00/(c

0
0 + 0.5c10))

2, and the case {(0, 0, 0, 0, 1), (1, 0, 0, 0, 0)} a share of
σ(c)2 = 2·c000.5c10/(c00+0.5c10)

2, see table 7.1. The aim is to learn a better function c 7→ σ(c)
to specify these shares of transition rates, which would result in a closed evolution equa-
tion for c with a smaller approximation error. To obtain the required training data, the
occurrences of all possible 5-tuples of consecutive node states (xi−2, . . . , xi+2) ∈ {0, 1}5
are counted in every snapshot of the training trajectories, which enables the calculation
of the shares of the transition rates. Hence, for each snapshot x(ti) ∈ {0, 1}N the CVs
c(ti) ∈ R6 and the relative frequencies σ(c(ti)) ∈ R20 of the 20 cases (see table 7.1) are
calculated. For example, the first three entries of σ(c(ti)) describe how often the three
cases (0, 0, 0, 0, 0), {(0, 0, 0, 0, 1), (1, 0, 0, 0, 0)}, and (1, 0, 0, 0, 1) occur, given that the cen-
tral three nodes are (0, 0, 0). Thus, these three entries sum to 1 and will be used as the
shares when distributing the total transition rate c00 r̃0,1 among the three cases.

To learn the function c 7→ σ(c), an L1-regularized linear regression is applied. Given a
library of functions θ1, . . . , θℓ, θj : R6 → R, define again the data library matrix Θ(C) ∈
Rn×ℓ by Θ(C)i,j := θj

(
c(ti)

)
. Moreover, store the frequencies of the 20 cases for each

snapshot in a matrix Σ ∈ Rn×20, Σi,: := σ(c(ti)). Then optimal sparse coefficients Ξ ∈
Rℓ×20 with

Θ(C) Ξ ≈ Σ (7.12)

are calculated via the LASSO method [158]. The learned distribution σ(c) = Θ(c)TΞ of
the transition rates is then employed to close the evolution equations.
A grid search combined with leave-one-out cross-validation is again applied to find

optimal hyperparameters. In this example, the best results have been obtained using
a library of polynomials with degree smaller than four. As hoped for, this approach of
learning only the closure is significantly more robust than SINDy as it never produced
unstable dynamics, see table 7.2. However, the error of this method is slightly larger than
the error of SINDy, but still lower than the standard triplet approximation, see figure 7.5.
This is somewhat expected as this method has a more restricted search space compared
to SINDy learning the complete dynamics. Note also that it is not inferior to SINDy on
all 9 trajectories, e.g., it is superior to SINDy on trajectory b).
Further testing also showed that this approach of learning the closure requires signifi-

cantly less data than SINDy to produce good results, i.e., it is possible to outperform the
standard triplet approximation using only 5 of the 9 training trajectories while SINDy
needs at least 7.
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7.2. Learning a moment closure

optimizer
library of polynomials of degree

1 2 3

STLSQ 33% | 0% 44% | 0% 67% | 0%

SSR 0% | 0% 67% | 0% 100% | 0%

Table 7.2.: Instability of SINDy | closure. The entries show for how many of the 9 training
trajectories (see figure 7.4) the learned dynamics is not stable. The depicted
hyperparameters (optimizer and library) are only a subselection of all tested
hyperparameters.
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Figure 7.5.: Comparison of triplet approximation (section 7.2.1), SINDy (section 7.2.2),
and triplet approximation with learned closure (section 7.2.3).
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7. Ring-shaped networks

7.3. A graphon approximation

In section 7.1 it was discussed that the standard mean-field equation (5.82) is a poor
approximation of the continuous-time noisy voter model (CNVM) on a ring graph where
each node is connected to its K/2 nearest left and K/2 nearest right neighbors on the ring.
If the node degree K is O(N), i.e., each node is connected to a non-vanishing percentage
of all nodes, the resulting graphs are dense and converge to a graphon in the graph limit,
see section 3.2 for more details on graphons. This allows the formulation of a mean-field
limit in the form of a partial differential equation (PDE) that describes the evolution of
the state probability distribution at each location on the ring. While this PDE is an exact
large population limit (not an approximation), it is reliant on the density of the graphs
and fails to provide a good approximation for finite networks if K is chosen too small
compared to N , which will be demonstrated in this section.

The graphon mean-field limit. In reference [85], which provides a proof for the con-
vergence to a graphon mean-field limit for certain systems, a slightly different definition
of the transition rate matrix Qi ∈ RM×M of node i is employed. Instead of taking the
system state x as an input like previously in this thesis, the rate matrix is based on the
neighborhood vector

ϕi :=
1

N

(
di,1, . . . , di,M

)T ∈ RM , (7.13)

where as before di,m is the number of neighbors of node i that have state m ∈ [M ]. Thus,
the transition rates of node i can only depend on the number of each state in the direct
neighborhood of i, which is more restrictive than the definition here in chapter 5 that
allows dependence on the whole state x. However, many popular models fit into this
framework. Another restriction is that each node is assumed to have the same transition
rate function Qi = Q for all i. Then, if a system of this type is considered on a sequence
of graphs that converges to a graphon W : R2 → R, the mean field limit is given by the
integro-PDE

∂tu(t, x) = Q
(
Wu(t, x)

)T
u(t, x), (7.14)

where u(t, x) ∈ [0, 1]M , ∥u(t, x)∥1 = 1, describes the probability distribution of the state
at location x ∈ [0, 1] on the ring, and the graphon operator W is defined by

(Wf)(x) =

∫ 1

0
W (x, y)f(y)dy. (7.15)

Application to the ring. To achieve sufficient density, it is assumed that each node is
connected to its εN left and εN right neighbors on the ring for a fixed ε ∈ (0, 12), i.e.,
K = 2εN . The resulting graphon

W (x, y) =

{
1, min

(
|x− y|, 1− |x− y|

)
≤ ε

0, else
(7.16)

is 1 on a diagonal band of width 2ε. Since every node has the same degree 2εN , the
transition rate matrix of the CNVM (with parameter α = 0, see (2.8)) based on the
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7.3. A graphon approximation

neighborhood vector is given by

Q(ϕi)m,n := rm,n
ϕi,m
2ε

+ r̃m,n (7.17)

= rm,n
di,n
2εN

+ r̃m,n. (7.18)

Inserting everything into (7.14) yields the mean-field equation.

Numerical example. Consider an SIS model with infection rate β > 0 and recovery
rate 1, which is a special case of the CNVM with M = 2 states denoted by {S, I}. The
associated transition rate matrix is given by

Q(ϕi) =

−β ϕi,I

2ε β
ϕi,I

2ε

1 −1

 . (7.19)

Because M = 2, it is sufficient to consider the one-dimensional variable u(t, x) describing
the probability of being infected, i.e., in state I. Inserting into (7.14) yields the mean-field
limit

∂tu(t, x) = β
1

2ε
Wu(t, x)

(
1− u(t, x)

)
− u(t, x). (7.20)

A finite-element approach will be utilized to solve this PDE numerically. The spatial
domain [0, 1] is discretized intoN intervals of length 1/N and a piecewise-constant solution
on these intervals is assumed. Let ûi(t) ∈ [0, 1] denote the value on the i-th interval. This
also has the interesting interpretation that, when considering the finite-size ring graph
with N nodes and K = 2εN , the value ûi(t) approximates the probability that node i is
infected. The associated adjacency matrix A can be used to define the discretization WN

of the graphon operator

(WNv)i :=
N∑
j=1

Ai,jvj
1

N
, (7.21)

where v ∈ RN . Thus, the discretized mean-field limit is given by the system of N coupled
ODEs

d

dt
ûi(t) = −ûi(t) +

β

2ε
(1− ûi(t))(WN û(t))i (7.22)

= −ûi(t) +
β

2ε
(1− ûi(t))

∑
j

Ai,j ûj(t)
1

N
(7.23)

for i = 1, . . . , N .
Figure 7.6 illustrates the approximation error of the mean-field limit (7.20) for a ring

graph with N = 1000 nodes. The correct probability ûi(t) that node i is infected at
time t is estimated from 1000 model simulations. The initial conditions are such that 100
consecutive nodes are infected and the rest are susceptible. It is apparent from the figure
that the mean-field limit only provides a reasonable approximation if ε is large enough
in relation to N . While the mean-field limit approximates the correct dynamics well for
ε = 0.1 (every node has degree K = 200), the error is already quite large for ε = 0.05.
For ε = 0.01 (every node has degree K = 20), the evolution predicted by the mean-field
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7. Ring-shaped networks
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Figure 7.6.: Comparison of SIS dynamics on a ring with N = 1000 and K = 2εN (left
column) with graphon PDE mean-field limit (7.20) (central column), for dif-
ferent ε (rows). The heatmaps depict for each node the probability of being
infected, yellow = 1, black = 0. The right column shows the average share c1
of infected nodes over time.

limit does not match the model at all. The mean-field limit predicts a much larger rate at
which the infection spreads on the ring than the actual spreading rate observed in model
simulations. This is likely due to the low number of neighbors in the finite-size network
hindering the spreading of the infection that is reliant on the occurrence of several dis-
crete infection events, whereas in the “infinite-size” mean-field PDE infection is a smooth
process that occurs instantly. Again, recalling the requirements of indistinguishability
and interchangeability for mean-field theory this result is not surprising; although for the
graphon mean-field limit they do not have to be fulfilled globally like before, but instead
locally around each “node” x ∈ [0, 1].
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8. Conclusion

In this chapter the most relevant contributions of this thesis are recapitulated. Possible
extensions and further research questions are discussed. Finally, a more general outlook
is given concerning the overall topic of this thesis.

Main contributions. In chapter 4 it was discussed that the standard stochastic simula-
tion algorithm (SSA) for continuous-time Markov chains is not feasible for Markov jump
processes on networks due the exponentially scaling number MN of system states, where
N denotes the number of nodes and M the number of node states. The resulting memory
requirements make the precomputation of rates and lookup tables, which is necessary for
efficient simulation in O(N) time, impossible. As a consequence, in the standard SSA
the needed rates have to be computed during the simulation, leading to an unwieldy time
complexity of O(N2M). However, as nothing is precomputed, the memory requirements
are mild: only the network data of size O(

∑N
i di), where di is the degree of node i, has

to be stored. The modified version of the SSA for the continuous-time noisy voter model
(CNVM) that was presented in this chapter (see algorithm 4) achieves both fast simula-
tion in O(N) time and low memory requirements of O(

∑N
i di) by exploiting the specific

structure of the transition rates in the CNVM. This efficient simulation algorithm made
many numerical examples discussed in this thesis and the resulting insights possible. It
also plays an important role in the data-driven method for learning collective variables
from chapter 6, which requires the execution of simulations for data acquisition.
The convergence of Markov jump processes on networks to a mean-field limit was dis-

cussed in chapter 5. The main theorem 5.2 provides conditions under which the stochastic
dynamics of the shares of each node state concentrates around a deterministic mean-field
equation (MFE). It is a generalization of a well-known concentration result for well-
mixed systems to the setting of random graphs. Recall that both the setting of sampling
graph and dynamics simultaneously (annealed result), and the setting of first sampling a
sequence of graphs and then the dynamics (quenched result, see corollary 5.4) were dis-
cussed. Moreover, it was shown that the error between model and MFE never decreases
faster than N−1/2 due to the central limit theorem, but can decrease arbitrarily slowly
depending on the dynamical model and network, see proposition 5.7.
In section 5.2 the main theorem was utilized to derive parameter bounds for several

random graph models that guarantee convergence to the mean-field limit for the CNVM.
More specifically, it was shown that the edge density p in Erdős–Rényi random graphs has
to dominate log(N)/N asymptotically. In the stochastic block model, for each cluster k
there has to be a cluster k′ such that the edge probability pk,k′ dominates log(N)/N ,
and only the asymptotically largest cluster to cluster connections remain present in the
mean-field equation. For the uniformly random d-regular graph, even an arbitrarily slow
convergence of the degree d to infinity already yields convergence to the mean-field limit.

Another main contribution of this thesis is the data-driven method for learning collective
variables (CVs) discussed in chapter 6. Instead of relying on guesswork for the discovery
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8. Conclusion

of CVs, this method is able to explicitly test dynamical conditions for the existence
of good CVs during the data-driven computation, i.e., whether the transition density
functions exhibit a low-dimensional submanifold structure, and automatically extract the
best choice of CVs. The particular design of the ansatz functions in the regression step
allows to assess the relationship between the learned CVs and topological features of the
network, making the CVs easy to interpret. This was demonstrated in several examples.
In the case of a stochastic block model network the learned CVs essentially measure
the state shares in each cluster, which is known to be an asymptotically optimal choice
of CVs (see section 5.2.3). For a ring network, the method indicated that no definite
set of low-dimensional good CVs exist, but instead increasing the dimension allows a
progressively better resolution of the state density as a function on the ring, which also
agrees well with the literature. For scale-free networks generated by the Albert–Barabási
model, a one-dimensional CV was learned that describes the degree-weighted state shares
in the system, which is a novel CV in the sense that an associated reduced system has
not been discussed in the literature. This reduced system utilizing the degree-weighted
shares was investigated in section 6.3 using a common data-driven technique for learning
differential equations. It became apparent that a good approximation is systematically
given by a modification of the standard mean-field equation that employs slightly reduced
interaction rates compared to the actual model parameters. However, more thorough
testing is required to verify this observation and a theoretical justification is still missing.

Finally, the notion of complementing moment closure methods for discrete-state systems
on networks with data-driven methods to minimize the error of the closure constitutes
another contribution of this thesis. This idea was successfully demonstrated in section 7.2
for a triplet approximation of the CNVM on a ring network. The learned optimal closure
was able to reduce the error of the original triplet approximation considerably, and this
technique was significantly more robust than learning a complete dynamical model from
scratch.

Contributions inspiring further work. In the following, the smaller contributions that
have been presented in this thesis are summarized. They would often require some further
work or extensions to make a significant impact. Some possibilities are outlined below.

In section 5.3, the mean-field equation was combined with a stochastic term such that
the resulting SDE delivers a viable approximation even for medium-sized populations,
which was verified via numerical experiments. However, a precise analysis of the resulting
approximation error in dependence on the dynamical model and the underlying network
topology was not conducted and could be the subject of future work.

Similarly, the hybrid model in the form of a piecewise-deterministic Markov process,
which was derived in section 5.4 as the large population limit of leader-follower dynamics,
was only tested numerically and would benefit from a theoretical analysis of its approxima-
tion error. Moreover, the network employed in the numerical example was created rather
artificially by inserting “leader nodes” with maximum connectivity. Instead, it would be
interesting to consider network models that naturally generate such high degree leader
nodes, for instance the Bianconi–Barabási model [171] in which a modified preferential
attachment method creates nodes that attract a large portion of the links.

Furthermore, the results of the data-driven method to learn CVs that have been pre-
sented in section 6.2 also inspire further investigation. For instance, it has been shown
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that in the case of two sparsely connected network communities the shares have to be mea-
sured separately for each community. It would be interesting to study how the transition
manifold and associated CVs transform from being two-dimensional to one-dimensional as
one increases the edge density between the communities. Moreover, recall that for the ring
the coordinates of the learned CV represented Fourier modes of the state density function
on the ring. After deriving or learning a reduced model in these coordinates, it would
be interesting to compare it to the triplet approximation on the ring from section 7.2 in
future work, in order to assess which set of CVs is able to produce an approximate model
with smaller error.

Lastly, in section 7.1 it was examined numerically how the approximation error of the
mean-field equation decreases from large to small when interpolating from a ring network
through the small-world regime to an Erdős–Rényi random graph. Deriving an analytical
estimate of this error could elucidate how exactly certain network properties impact how
well a system can be approximated by mean-field theory and when convergence in the
large population limit occurs.

Outlook. Although the main theorem 5.2 was successfully applied to prove convergence
to the mean-field limit for several examples, its practicality is limited due to the require-
ment of having to choose classes and reduced propensity functions beforehand. A desirable
long-term objective would be to find a more general theorem that instead states explicit
conditions on the dynamical model and the network.
It is also not well-understood yet which properties of dynamical model and network lead

to the occurrence of concentration effects in the sense that the evolution of state shares
(or some other relevant collective variables) becomes deterministic in the large population
limit. This phenomenon has been observed for systems that converge to the mean-field
limit, e.g., the CNVM on Erdős–Rényi random graphs, but also for systems that do not,
e.g., the CNVM on Albert–Barabási networks. For some systems, like the CNVM on a
star graph, a concentration effect can not be observed at all as the state shares remain
stochastic even in the large population limit. In the cases where the shares concentrate
but the limiting dynamics is not given by the standard mean-field equation, it is not
clear if a different ODE exists that constitutes an exact limit and, if so, which collective
variables it uses and how to derive it.
The problems and questions mentioned above will certainly not be easy to tackle. An

important and useful tool to elevate our understanding of these issues is given by data-
driven methods like the technique for learning collective variables presented in this thesis.
They will likely play a vital role in advancing the field by enabling us to systematically
and automatically form and test new hypotheses, hopefully inspiring novel analytical
approaches and theory.
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A. Appendix

This appendix contains several auxiliary lemmas that are used throughout the thesis.

Lemma A.1 (Chernoff bound). Let X1, . . . ,Xn be independent random variables with
values in {0, 1} and denote X :=

∑
iXi. Then for all ε > 0

P
(
|X − E[X]| ≥ ε

)
≤ 2 exp

(
− ε2

3 E[X]

)
. (A.1)

Proof. See for example [172, Corollary 4.6].

Lemma A.2. Let (Ω,F ,P) be a probability space and zℓ : Ω×R→ [0, 1], ℓ ∈ N, a sequence
of stochastic processes with Lebesgue-measurable realizations, i.e., zℓ(ω, ·) is measurable
for all ω. We denote the random variable describing the process at time t ∈ R as zℓ(t).
Assume that for all ε > 0 there exists a function fε : N→ R such that

a) ∀ℓ ∈ N ∀s ∈ R : P(zℓ(s) ≥ ε) ≤ fε(ℓ)

b) limℓ→∞ fε(ℓ) = 0.

Then it follows that

1) ∀s ∈ R : limℓ→∞ E[zℓ(s)] = 0

2) ∀t ∈ R≥0 : limℓ→∞ E[
∫ t
0 z

ℓ(s)ds] = 0

3) ∀t ∈ R≥0 :
∫ t
0 z

ℓ(s)ds
p−→ 0 as ℓ→∞.

Proof. Let ε > 0 and define for every ℓ ∈ N the stochastic process ẑℓ(s) by

ẑℓ(s) :=

{
ε, zℓ(s) < ε

1, else.
(A.2)

Thus, zℓ(s) ≤ ẑℓ(s) and

E[zℓ(s)] ≤ E[ẑℓ(s)] = εP(zℓ(s) < ε) + P(zℓ(s) ≥ ε) (A.3)

≤ ε+ fε(ℓ). (A.4)

By assumption b) this yields limℓ→∞ E[zℓ(s)] ≤ ε. As ε > 0 was arbitrary, statement 1)
follows.
In order to prove statement 2), Tonelli’s theorem is applied to interchange integral and
expected value, i.e.

E
[ ∫ t

0
zℓ(s)ds

]
=

∫ t

0
E[zℓ(s)]ds, (A.5)
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since the integrand is non-negative. As E[zℓ(s)] ≤ 1, the dominated convergence theorem
can be applied, which yields

lim
ℓ→∞

∫ t

0
E[zℓ(s)]ds =

∫ t

0
lim
ℓ→∞

E[zℓ(s)]ds = 0 (A.6)

by statement 1). Statement 3) follows directly from 2), as convergence in L1 is stronger
than convergence in probability.

Lemma A.3. The symbols used in this lemma are defined in section 3.1.6. Let 1 ≤ b ≤
Nd and for a tuple t ∈ Π let h(t) := |{(s, e) ∈ ψ(t) | s ≤ b < e}| denote the number
of edges that cross the boundary b. Let t, t′ ∈ Π only differ in one coordinate l, i.e.,
t = (t1, . . . , tη), t

′ = (t1, . . . , tl−1, t
′
l, tl+1, . . . , tη). Then it follows that

|h(t)− h(t′)| ≤ 2. (A.7)

Proof. Define

δr :=

{
1, if ur0 ≤ b < urtr
0, else

(A.8)

and note that h(t) =
∑η

r=1 δ
r. Moreover, let ir := max{i | uri ≤ b} be the index of the

largest element in U r that is not larger than b. (Assign max ∅ := −1.) The following
relations between δr and ir hold:

0 ≤ ir < tr ⇔ δr = 1 (A.9)

ir ≥ tr or ir = −1 ⇔ δr = 0 (A.10)

δr = 1 ⇒ ir+1 = ir − 1 (A.11)

δr = 0 ⇒ ir+1 =

{
−1, if ir = −1
ir − 2, else.

(A.12)

Relation (A.11) holds because δr = 1 implies that exactly one element that is smaller or
equal to b is removed from U r, and hence ir+1 is one less than ir. Relation (A.12) holds
because δr = 0 implies that either two elements that are smaller or equal to b are removed
from U r, which yields a reduction of ir+1 by 2 compared to ir, or both removed elements
are larger than b, which is the case if ir = −1.
Let the respective analogous objects for t′ be denoted as (U ′)r, (u′)ri , (δ

′)r, and (i′)r.
W.l.o.g., it is assumed that tl < t′l.
Clearly, for r ≤ l it follows that U r = (U ′)r and ir = (i′)r, and for r < l it follows that

δr = (δ′)r. Consider the case that it also holds δl = (δ′)l. Due to equations (A.11) and
(A.12), this yields il+1 = (i′)l+1, and as tr = t′r for r > l, it is δl+1 = (δ′)l+1 via equations
(A.9) and (A.10). By iteration, this implies δr = (δ′)r for all r > ℓ and hence h(t) = h(t′).

Now consider the case that δl ̸= (δ′)l, i.e., by tl < t′l and (A.8), δl = 0 and (δ′)l = 1. Due
to (A.10) this implies il = (i′)l ̸= −1. Also, by equations (A.11) and (A.12) it follows that
(i′)l+1 = il+1 + 1. Depending on the value of (i′)l+1, one of the following three outcomes
occurs:

1. (i′)l+1 = 0: It follows from (A.9) that (δ′)l+1 = 1, and because il+1 = −1 it is
δl+1 = 0. Moreover, in the next step from (A.11) it follows that (i′)l+2 = −1 = il+2

and thus, (i′)r = ir also for all subsequent steps r > l + 2. As a result, for all
r > (l + 1) it is δr = (δ′)r = 0. All in all, this yields h(t′) = h(t) + 2.

132



2. (i′)l+1 = tl+1: It follows from (A.10) that (δ′)l+1 = 0, and because il+1 = tl+1 − 1
it is δl+1 = 1. Hence, by equations (A.11) and (A.12) it follows that (i′)l+2 = il+2

and thus, by iteration also (i′)r = ir for all subsequent steps r > l + 2. As a result,
for all r > (l + 1) it is δr = (δ′)r. All in all, this yields h(t′) = h(t) + 1− 1 = h(t).

3. Else: For all other values of (i′)l+1, it is δl+1 = (δ′)l+1. Thus, in the next step the
relation (i′)l+2 = il+2 + 1 is still true due to (A.11) if δl+1 = 1, or due to (A.12)
if δl+1 = 0. By iteration, either case 1. or 2. occur in one of the subsequent steps
r > (l + 1), i.e., either (i′)r = 0 or (i′)r = tr, which yields h(t′) = h(t) + 2, or
h(t′) = h(t) respectively.
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Zusammenfassung

Dynamische Systeme auf Netzwerken werden häufig verwendet, um Systeme zu modellie-
ren, die aus vielen interagierenden Einheiten, welche Agenten genannt werden, bestehen.
Hierbei stellen die Knoten im Netzwerk die Agenten dar, die Kanten repräsentieren die
Beziehungen zwischen den Agenten, und der Zustand jedes Agenten entwickelt sich im
Laufe der Zeit in Abhängigkeit von den Zuständen seiner Nachbarn, in der Regel auf
stochastische Weise. Obwohl die Zustandsentwicklung jedes einzelnen Agenten oft durch
einfache Regeln und Mechanismen bestimmt wird, kann das kollektive oder emergente
Verhalten des gesamten Systems, welches das Ergebnis vieler individueller Interaktionen
ist, sehr schwer zu antizipieren und zu verstehen sein. Die Untersuchung dieses kollektiven
Verhaltens ist der Schwerpunkt dieser Arbeit.
Obwohl das kollektive Verhalten schwer vorherzusagen ist, ist es in der Regel deutlich

weniger komplex als es die große Anzahl von Freiheitsgraden zulassen würde und folgt
stattdessen (ungefähr) einer niedrigdimensionalen Dynamik. Das Verständnis des kollek-
tiven Verhaltens besteht daher aus zwei Schritten. Erstens muss eine Projektion gefunden
werden, die den hochdimensionalen mikroskopischen Systemzustand, der den Zustand je-
des einzelnen Agenten enthält, auf einen niedrigdimensionalen makroskopischen System-
zustand abbildet, der nur die wesentliche aggregierte Information zur Beschreibung des
kollektiven Verhaltens enthält. Diese Projektion, die unnötige Freiheitsgrade und schnell
abklingende Prozesse des ursprünglichen Systems herausfiltert, wird als kollektive Varia-
ble bezeichnet. Zweitens muss das reduzierte makroskopische System hergeleitet werden.
Wenn die Wahl der kollektiven Variable angemessen war, ist das makroskopische System
in der Lage die niedrigdimensionale Projektion des ursprünglichen Modells, also das kol-
lektive Verhalten, zu reproduzieren. Ähnlich wie beim Gesetz der großen Zahlen führen
die aggregierten zufälligen Aktionen der vielen Agenten manchmal zu einer annähernd de-
terministischen makroskopischen Dynamik, was als Konzentrationseffekt bezeichnet wird.

Diese Arbeit befasst sich hauptsächlich mit gedächtnislosen dynamischen Systemen mit
diskretem Zustandsraum auf (zufälligen) Netzwerken und behandelt die effiziente Simu-
lation, die Herleitung von kollektiven Variablen und makroskopischer Dynamik sowie das
Auftreten von Konzentrationseffekten. Für solche Systeme stellen die Anteile jedes dis-
kreten Zustands im System (oder in bestimmten Teilsystemen) eine wichtige Wahl der
kollektiven Variablen dar. Es werden Bedingungen nachgewiesen, welche die Konvergenz
der Dynamik dieser Anteile zu einer deterministischen

”
mean-field“ Differentialgleichung

im Limit unendlich vieler Agenten garantieren. Diese Bedingungen ermöglichen die Herlei-
tung von Parameterschranken für populäre Zufallsgraphenmodelle, zum Beispiel Erdős–
Rényi Zufallsgraphen, das stochastische Blockmodell und reguläre Zufallsgraphen, sodass
die Konvergenz zum

”
mean-field“ Limit gewährleistet ist. Dies wird für ein zeitkontinu-

ierliches
”
voter model“ demonstriert. Für Systeme, die keine Konvergenz zum

”
mean-

field“ Limit aufweisen und für welche die oben genannten Anteile keine geeigneten kol-
lektiven Variablen sind, wird eine datengesteuerte Methode zum algorithmischen Lernen
interpretierbarer kollektiver Variablen aus Modellsimulationen vorgestellt. Diese Metho-
de ermöglicht es die Qualität der gelernten kollektiven Variablen zu bewerten und ihre
Beziehung zu topologischen Merkmalen des Netzwerks abzuleiten. In Kombination mit
etablierten Techniken zum Lernen von Dynamik aus Daten kann eine automatische Eva-
luation des kollektiven Verhaltens erreicht werden. Dies wird beispielhaft für das

”
voter

model“ auf skalenfreien Netzwerken demonstriert.
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[38] B. Tadić, G. J. Rodgers, and S. Thurner. Transport on complex networks: flow, jamming and
optimization. International Journal of Bifurcation and Chaos, 17(07):2363–2385, 2007.

[39] I. Z. Kiss, J. C. Miller, and P. L. Simon. Mathematics of Epidemics on Networks. Springer
International Publishing, 2017.
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