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Precise means of characterizing analog quantum simulators are key to devel-
oping quantum simulators capable of beyond-classical computations. Here,
we precisely estimate the free Hamiltonian parameters of a superconducting-
qubit analog quantum simulator from measured time-series data on up to 14
qubits. To achieve this, we develop a scalable Hamiltonian learning algorithm
that is robust against state-preparation and measurement (SPAM) errors and
yields tomographic information about those SPAM errors. The key sub-
routines are a novel super-resolution technique for frequency extraction from
matrix time-series, tensorESPRIT, and constrained manifold optimization. Our
learning results verify the Hamiltonian dynamics on a Sycamore processor up
to sub-MHz accuracy, and allow us to construct a spatial implementation error
map for a grid of 27 qubits. Our results constitute an accurate implementation
of a dynamical quantum simulation that is precisely characterized using a new

diagnostic toolkit for understanding, calibrating, and improving analog
quantum processors.

Analog quantum simulators promise to shed light on fundamental
questions of physics that have remained elusive to the standard
methods of inference”. Recently, enormous progress in controlling
individual quantum degrees of freedom has been made towards
making this vision a reality’ . While in digital quantum computers
small errors can be corrected’, it is intrinsically difficult to error-
correct analog devices. Yet, the usefulness of analog quantum simu-
lators as computational tools depends on the error of the imple-
mented dynamics. Meeting this requirement hinges on devising
characterization methods that not only yield a benchmark of the
overall functioning of the device [e.g.,*°], but more importantly pro-
vide diagnostic information about the sources of errors.

Developing characterization tools for analog quantum simulators
requires hardware developments as well as theoretical analysis and
method development. With the advent of highly controlled quantum
systems, efficient methods for identifying certain Hamiltonian

parameters from dynamical data have been devised for specific classes
of Hamiltonians. Key ideas are the use of Fourier analysis"" and
tracking the dynamics of single excitations'®?’, For general Hamilto-
nian models, specific algebraic structures of the Hamiltonian terms can
be exploited**”. Generalizing these ideas, a local Hamiltonian can be
learned from a single eigenstate or its steady state’*' or using
quantum-quenches®??, an approach dubbed “correlation matrix
method”**. Alternatively, one can apply general-purpose machine-
learning methods®*°. More recently, optimal theoretical guarantees
have been derived for Hamiltonian learning schemes**** based on
Pauli noise tomography****. Crucially, these protocols assume perfect
mid-circuit quenches, which—as we find here—can be a limiting
assumption in practice.

This recent rapid theoretical development is not quite matched by
concomitant experimental efforts. The effectiveness of some of these
methods has been demonstrated for the estimation of a small number
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of coupling parameters of fixed two- and three-qubit Hamiltonians in
nuclear magnetic resonance (NMR) experiments* %, While in NMR, the
dominant noise process is decoherence, in tunable quantum simula-
tors such as superconducting qubits, trapped ions or cold atoms in
optical lattices, state preparation and measurement (SPAM) errors, as
we also demonstrate here, play a central role. Initial steps at char-
acterizing such errors as well as the dissipative Lindblad dynamics for
up to two qubits in a superconducting qubit platform have been taken
recently***°. Hamiltonian learning of thermal states has recently also
been applied in many-body experiments as a means to characterize the
entanglement of up to 20-qubit subsystems whose reduced states are
parameterized by the so-called entanglement Hamiltonian®>. The
challenge remains to develop and experimentally demonstrate the
feasibility of scalable methods for a robust and precise identification of
Hamiltonian dynamics of intermediate-size systems subject to both
incoherent noise and systematic SPAM errors.

In this work, we develop bespoke protocols to robustly and pre-
cisely identify the full Hamiltonian of a large-scale bosonic system and
implement those protocols on superconducting quantum processors.
Given the complexity of the learning task, we focus on identifying the
non-interacting part of a potentially interacting system. We are able to
estimate the corresponding Hamiltonian parameters as well as SPAM
errors pertaining to all individual components of the superconducting
chip for up to 14-mode Hamiltonians tuned across a broad parameter
regime, in contrast to previous experiments. Given the identified
Hamiltonians, we quantify their implementation error. We demon-
strate and verify that a targeted intermediate-size Hamiltonian is
implemented on a large region of the superconducting processor with
sub-MHz accuracy in a broad parameter range.

To this end, building on previous ideas for Hamiltonian
identification'***, we devise a simple and robust algorithm that exploits
the structure of the system at hand. For the identification we make use
of quadratically many experimental time-series tracking excitations via
expectation values of canonical coordinates. Our structure-enforcing
algorithm isolates two core tasks that need to be solved in Hamiltonian
identification after suitable pre-processing of the data: frequency
extraction and eigenspace reconstruction.

To solve the first task in a robust and structure-specific way, we
develop a novel algorithm coined tensorESPRIT, which utilizes ideas
from super-resolving, denoised Fourier analysis®° and tensor net-
works to extract frequencies from a matrix time-series. For the second
task we use constrained manifold optimization over the orthogonal
group®’. Crucially, by explicitly exploiting all structure constraints of
the identification problem, our method allows us to distinguish and
obtain tomographic information about state-preparation and mea-
surement errors. In the quench-based experiment this information
renders identification and verification of the dynamics experimentally
feasible in the first place. We further support our method development
with numerical simulations of different noise effects and benchmark
against more direct algorithmic approaches. We find that in contrast to
other approaches our method is scalable to larger system sizes out of
the reach of our current experimental efforts.

Our work constitutes a detailed case study that lays bare and
provides solutions for the difficulties of practical Hamiltonian learning
in a seemingly simple system. It thus provides a blueprint and paves
the way for devising practical model-specific identification algorithms
both for the interaction parameters of bosonic or fermionic systems
and more complex settings.

Results

Setup

We characterize the Hamiltonian governing analog dynamics of Goo-
gle Sycamore chips which consist of a two-dimensional array of
nearest-neighbor coupled superconducting qubits. Each physical
qubit is a non-linear oscillator with bosonic excitations (microwave

photons)*®. Using the rotating-wave approximation the dynamics
governing the excitations of the qubits in the rotating frame can be
well described by the Bose-Hubbard Hamiltonian*’

Hgy = Z (ﬂia?ai + ’Zia;-a;-aiai> - Z-/i,ja;aj' @
]

i#

where a! and @; denote bosonic creation and annihilation operators at
site i, respectively, # € R" are the on-site potentials,/ € R¥*" are the
hopping rates between nearest neighbor qubits, and 7 € R" are the
strength of on-site interactions. The qubit frequency, the nearest-
neighbor coupling between them, and the non-linearity (anharmoni-
city) set u, J/, and n. We are able to tune u and / on nanosecond
timescales, while n is fixed for a given setting of y and J. Hence, the
Sycamore chip can be used to implement time evolution under
Hamiltonians of the form (1) at various parameter settings and is
therefore an analog simulator. In a practical application such as in
Ref. 60, it is crucial to benchmark how accurately the implemented
dynamics is described by a targeted Hamiltonian.

Here, we focus on the specific task of identifying the values of y;
and J;;. The corresponding non-interacting part of the Hamiltonian
acting on N modes can be conveniently parametrized as

N
Hhy= - hjala; )
ij=1

with an N x N real symmetric parameter matrix h with entries h;;, which
is composed of the on-site chemical potentials y; on its diagonal and
the hopping energies J;; for i#j. The identification of the non-
interacting part H(h) of Hgy can be viewed as a first step in a
hierarchical procedure for characterizing dynamical quantum simula-
tions with tunable interactions and numbers of particles.

The non-interacting part H(h) of the Hamiltonian Hgy can be
inferred when initially preparing a state where only a single qubit is
excited with a single photon. For initial states with a single excitation,
the interaction term vanishes, hence effectively n = 0. Consequently,
only the two lowest energy levels of the non-linear oscillators enter
the dynamics. Therefore, referring to them as qubits (two-level sys-
tems) is precise. Specifically, we identify the parameters h;; from
dynamical data of the following form. We initialize the system in
[¥,) =(1+a})|0)®¥/~/2 and measure the canonical coordinates
X, =(a,+ay)/2 and p,=(a, —al,)/(2i) for all combinations of
m,n=1,...,N.Interms of the qubit architecture, this amounts to local
Pauli-X and Pauli-Y basis measurements, respectively. We combine
the statistical averages over multiple measurements to obtain an
empirical estimator for (an(0)y, = Xn(0)y, +i (Pm(D)y, . For particle-
number preserving dynamics, this data is of the form

(@0, = 5 €XD (~ith) 3

It therefore directly provides estimates of the entries of the time-
evolution unitary at time ¢ in the single-particle sector of the bosonic
Fock space.

In Fig. 1, we show an overview of the experimental procedure, and
the different steps of the Hamiltonian identification algorithm. Every
experiment uses a few coupled qubits, from the larger array of qubits
on the device (Fig. 1a). On those qubits, the goal is to implement the
time-evolution with targeted Hamiltonian parameters ho, which are
subject to connectivity constraints imposed by the couplings of the
qubits. To achieve this, we perform the following pulse sequence to
collect dynamical data of the form (3). Before the start of the sequence,
the qubits are at frequencies (of the |0) to |1) transition) that could be a
few hundred MHz apart from each other. In the beginning, all qubits
are in their ground state |0). To prepare the initial state, a r7/2-pulse is
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Fig. 1| Outline of the experiment and identification algorithm. a The time
evolution under a target Hamiltonian hg is implemented on an part of the Google
Sycamore chip (gray) using the pulse sequence depicted in the middle. b The
expected value of canonical coordinates x,, and p,, for each qubit m over time is
estimated from measurements using different ¢, as input states. ¢ The data shown
in (b) for each time ¢, can be interpreted as a (complex-valued) matrix with entries
indexed by measured and initial excited qubit, m and n. The identification algo-
rithm proceeds in two steps: 1. From the matrix time-series, the Hamiltonian
eigenfrequencies are extracted using our newly introduced algorithm coined
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tensorESPRIT, introduced in the Supplemental Material, or an adapted version of
the ESPRIT algorithm. The blue line indicates the denoised, high-resolution signal
as “seen” by the algorithm. 2. After removing the initial ramp using the data at some
fixed time, the Hamiltonian eigenspaces are reconstructed using a non-convex
optimization algorithm over the orthogonal group. We obtain a diagonal ortho-
gonal estimate of the final ramp. From the extracted frequencies and reconstructed
eigenspaces, we can calculate the identified Hamiltonian A that describes the
measured time evolution and a tomographic estimate of the initial ramp.

applied to one of the qubits, resulting in its Bloch vector moving to the
equator. Then ramping pulses are applied to all qubits to bring them to
the desired detuning around a common rendezvous frequency
(6500 MHz in this work). At the same time, pulses are applied to the
couplers to set the nearest-neighbor hopping to the desired value
(20 MHz in this work). The pulses are held at the target values for time
t, corresponding to the evolution time of the experiment. Subse-
quently, the couplers are ramped back to zero coupling and the qubits
back to their initial frequency, where (x,,,(t)) and (p,,(¢)) on the desired
qubit m is measured. The initial and final pulse ramping take place over
a finite time of 2-3 ns, and therefore give rise to a non-trivial effect on
the dynamics, which we take into account in the identification proce-
dure. In fact, we find that the effects of the ramping phase are the
domininant source of SPAM errors in the quench-based analog simu-
lation. The experimental data (Fig. 1b) on N qubits are N x N time-series
estimates of (an(0)y, fort=0,1, ..., Tns and all pairs n, m=1, ..., N.
Given those data, the identification task amounts to identifying the
“best” coefficient matrix h, describing the time-sequence of snapshots
of the single-particle unitary matrix J exp(—ith).

Identification method

We can identify the generator h of the unitary in two steps
(Fig. 1c), making use of the eigendecomposition of the Hamilto-
nian (see “Methods”). In the first step, the time-dependent part of
the identification problem is solved, namely, identifying the
Hamiltonian eigenvalues (eigenfrequencies). In the second step,
given the eigenvalues, the eigenbasis for the Hamiltonian of A is
determined. In order to make the identification method noise-
robust, we furthermore exploit structural constraints of the
model. First, the Hamiltonian has a spectrum such that the time-
series data has a time-independent, sparse frequency spectrum
with exactly N contributions. Second, the Fourier coefficients of
the data have an explicit form as the outer product of the
orthogonal eigenvectors of the Hamiltonian. Third, the Hamilto-
nian parameter matrix is real and has an a priori known sparse

support due to the experimental connectivity constraints. These
structural constraints are not respected by various sources of
incoherent noise, including particle loss and finite shot noise, and
coherent noise, in particular the SPAM error. Thereby, an identi-
fication protocol that takes these constraints into account is
intrinsically robust against various imperfections. Importantly, we
do not assume that the dynamics of the device is completely
governed by a non-interacting, particle-number preserving
Hamiltonian of the form (2). We rather impose this as a constraint
on the reconstructed Hamiltonian and, as such, identify the best-
fit Hamiltonian satisfying the constraint. Our approach thus
robustly identifies the non-interacting part of a potentially
interacting system.

To robustly identify the sparse frequencies from the experimental
data, we develop a new super-resolution and denoising algorithm
tensorESPRIT that is applicable to matrix-valued time series and uses
tensor network techniques in conjunction with super-resolution
techniques for scalar data®. Achieving high precision in this step is
crucial for identifying the eigenvectors in the presence of noise. To
robustly identify the eigenbasis, in the second step, we perform least-
square optimization of the time-series data under the orthonormality
constraint with a gradient descent algorithm on the manifold structure
of the orthogonal group®. Additionally, we can incorporate the con-
nectivity constraint on the coefficient matrix 2 by making use of reg-
ularization techniques®’.

Robustness against ramp errors

The initial and final ramping pulses result in a time-independent, linear
transformation at the beginning and end of the time series. It is
important to stress that such ramping pulses are expected to be gen-
eric in a wide range of experimental implementations of dynamical
analog quantum simulations. Robustness of a Hamiltonian identifica-
tion method against these imperfections is essential for accurate
estimates in practice. We can model the effect of such state prepara-
tion and measurement (SPAM) errors via linear maps S and M, which
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alters our model of the ideal data (3) to

(@m(0)y, 1(M exp(—ith) - S), ,. *)

N

These linear maps capture the effect of particle-number preserving
quenches, as well as the projection of more general channels to the
single-particle subspace. Any deviation of the observed experimental
dynamics from our model of the data (4) will be visible in the quality
of fit.

While for the frequency identification such time-independent
errors “only” deteriorate the signal-to-noise ratio, for the identification
of the eigenvectors of h it is crucial to take the effects of non-trivial S
and M into account. Given the details of the ramping procedure, we
expect that the deviation of the initial map S from the identity will be
significantly larger than that of the final map M and provide evidence
for this in the Methods. In particular, the final map will be dominated
by phase accumulation on the diagonal.

By pre-processing the data, we can robustly remove an arbitrary
initial map S. By post-processing, we can obtain an orthogonal diag-
onal estimate D,, of the final map M. We give numerical evidence that
the estimate D,, gives good results in the particular experimental
setting. From the identified Hamiltonian and an orthogonal diagonal
estimate D,, of M, we get an estimate S of S.

Error sources

There are two main remaining sources of error that affect the Hamil-
tonian identification. First, the estimate / has a statistical error due to
the finite number of measurements used to estimate the expectation
values. Second, any non-trivial final map M will produce a systematic
error in the eigenbasis reconstruction and the tomographic estimate S.
We partially remedy this effect with an orthogonal diagonal estimate
Dy, of M.

Predictive power

If the dynamics of the device is indeed coherent and particle-number
preserving, the learned model will allow us to accurately predict the
dynamics of the device in the single-particle subspace. If, additionally,
interactions are negligible, the predictive power of our model extends
to dynamics of more particles. This allows us to benchmark the Syca-
more chip as a programmable quantum simulator of the non-
interacting part of a Bose-Hubbard model. Accurately predicting the
dynamics of many particles requires a generalization of our method to
at least the two-particle sector.

Experimental implementation
We implement and characterize different Hamiltonians from time-
series data on two distinct quantum Sycamore processors—Sycamore
#1 and #2. The Hamiltonians we implement have a fixed overall hop-
ping strength J;;=20 MHz and site-dependent local potentials y; on
subsets of qubits. Specifically, we choose the local potentials quasi-
randomly i, =20 cos(2mqgb) MHz, for ¢ =1, ..., N, where b is a number
between zero and one. In one dimension, this choice corresponds to
implementing the Harper Hamiltonian, which exhibits characteristic
“Hofstadter butterfly” frequency spectra as a function of the dimen-
sionless magnetic flux b*.

We measure deviations in the identification in terms of the analog
implementation error of the identified Hamiltonian h with respect to
the targeted Hamiltonian kg as

. 10~
‘Sanalog(h'ho) = N Hh - ho .’ )

defined in terms of the #,-norm, which for a matrix A is given by
Al = (Z,JIA,J| ) % We also use the analog implementation error to

quantify the implementation error of the initial map Sas 5ana|og(5 1),
and of the eigenfrequencies elg(h) as Sana,og(elg(h) eig(hy)). Notice that
the analog implementation error of the frequencies in the data from
the targeted Hamiltonian eigenfrequencies give a lower bound to the
overall implementation error of the identified Hamiltonian. This is
because the £,-norm used in the definition (5) of &,y 0 is unitarily
invariant and any deviation in the eigenbasis, which we identify in the
second step of our algorithm, will tend to add up with the frequency
deviation.

In Fig. 2, we illustrate the properties of a single Hamiltonian
identification instance in terms of both how well the simulated time
evolution fits the experimental data (a,d,e) and how it compares to the
targeted Hamiltonian (b) and SPAM (c). We find that most entries of
the identified Hamiltonian deviate from the target Hamiltonian by less
than 0.5 MHz with a few entries deviating by around 1-2 MHz. The
overall implementation error is around 1 MHz. The error of the iden-
tification method is dominated by the systematic error due to the final
ramping phase that is around 1 MHz for the individual entries, see the
Supplemental Material for details. Small long-range couplings
exceeding the statistical error are necessary to fit the data well even
when penalizing those entries via regularization. These entries are
rooted in the effective rotation by the final ramping before the mea-
surement and within the estimated systematic error.

The fit deviation from the data (Fig. 2e) exhibits a prominent
decrease within the first few nanoseconds of the time evolution. This
indicates that the time evolution differs during the initial phase of the
experiment as compared to the main phase of the experiment, which
we can attribute to the initial pulse ramping of the experiment. The
identified initial map describing this ramping (Fig. 2c) is approximately
band-diagonal and deviates from being unitary, indicating fluctuations
of the effective ramps between different experiments.

We find a larger time-averaged real-time error (Fig. 2d) in all data
series (@m)y, in which Q4 was measured, indicating a measurement
error on Q4. We also observe a deviation between the parameters of
the target and identified Hamiltonian in qubits Q; and Q and the
coupler between them. Since the deviation of the eigenfrequencies is
much smaller than of the full Hamiltonian, we attribute those errors
also to a non-trivial final ramping phase at those qubits that leads to a
rotated eigenbasis.

In Fig. 3, we summarize multiple identification data of this type to
benchmark the overall performance of a fixed set of qubits. In panel
(a), we show the measured Fourier domain data for 51 different values
of the magnetic flux b € [0, 1]. In panel (b), we plot the deviation of the
frequencies identified from the data. Most implemented frequencies
deviate by less than 1 MHz from their targets. Importantly, the fre-
quency identification is robust against systematic measurement
errors. When comparing the analog implementation errors of the full
Hamiltonian (Fig. 3c) to the corresponding frequency errors, we find
an up to fourfold increase in implementation error. The Hamiltonian
implementation error is affected by a systematic error due to the non-
trivial final ramp. We estimate this error using a linear ramping model;
see the Supplemental Material for details. Since the deviation lies
outside of the combined systematic and statistical error bars, our
results indicate that the targeted Hamiltonian has not been imple-
mented exactly.

In Fig. 3d, we show the median of the entry-wise deviation of the
identified Hamiltonian from its target over all magnetic flux values.
Thereby, the ensemble of Hamiltonians defines an overall error
benchmark. This benchmark can be associated to the individual con-
stituents of the quantum processor, namely, the qubits, corresponding
to diagonal entries of the Hamiltonian deviation, and the couplers,
corresponding to the first off-diagonal matrix entries of the deviation.

We use this benchmark over an ensemble of two flux values to
assess a 27-qubit array of superconducting qubits. To do so, we repeat
the analysis reported in Fig. 3 for 5-qubit dynamics on different subsets
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Fig. 2 | A single Hamiltonian recovery of a 5-mode Hamiltonian and the cor-
responding time domain data. a The full experimental time-series data Xn(©))y,
form, n=1, ..., 5 and the best fit of those data in terms of our model

1(M exp(—ith)S),,, for a diagonal and orthogonal M and linear map S (solid lines).
b The target Hamiltonian matrix Ao, the identified Hamiltonian k, and the deviation
between them. The error of each diagonal entry is +(0.16 + 0.99) MHz and of each
off-diagonal entry +(0.12+0.50) MHz and comprises of the statistical and the
systematic error, respectively. The analog implementation error Sanalog(iz,h(,) is
0.73 £(0.07 + 0.62) MHz, and 0.32 + 0.00 MHz for the eigenfrequencies. The ana-
log implementation error Eanalog(S,Tl) of the identified initial map is

0.61+(0.00 + 0.12). ¢ The real part of the initial map S and the diagonal orthogonal

estimate D,, of the final map M, inferred from the data using the identified
Hamiltonian A. d Absolute value of the time-domain deviation of the fit from the full
experimental data for each time series, given by

deviation[A,$,Dy1(O)mn = (@(®) 4, — 3Dy exp(—ith)S. The insets represent the
root-mean-square deviation of the Hamiltonian fit from the experimental data per
time series, averaged over the evolution time for each matrix entry (m, n), resulting
in an entry-wise summarized quality of fit. We find a total root-mean-square
deviation of the fit of 0.14. e Instantaneous root-mean-square deviation of the
identified Hamiltonian A, initial map $ and final map D,, and of the target Hamil-
tonian ho with initial map fit So from the experimental data averaged over the
distinct time series.

of qubits and extract average errors of the individual qubits and cou-
plers involved in the dynamics, both in terms of the identified Hamil-
tonian and the initial and final maps. Summarized in Fig. 4, we find
significant variation in the implementation error of different couplers
and qubits. While for some qubits the effects of the initial and final
maps are negligible, for others they indicate the potential of a sig-
nificant implementation error. From a practical point of view, such
diagnostic data allows to maximally exploit the chip’s error for small-
scale analog simulation experiments. Let us note that within the error
of our method the overall benchmark for the qubits and couplers for
5-qubit dynamics agrees with that of 3- and 4-qubit dynamics.

All of the Hamiltonian identification experiments discussed so far
(Figs. 2, 4) were implemented on the Sycamore #1 chip. In order to
compare these results to implementations on a physically distinct chip
with different calibration, and to demonstrate the scalability of our
method, we implement Hamiltonian identification experiments for an
increasing number of qubits on the Sycamore #2 chip. More precisely,
for a given number of qubits N, we implement many different Hamil-
tonians with quasi-random local potentials, as shown in Fig. 3¢ for
N=6. We then average the analog implementation errors of the
Hamiltonians and frequencies for several system sizes. The results are
shown in Fig. 5. Notably, comparing the two different processors, the
overall quality of fit does not depend significantly on either the num-
ber of qubits or the processor used. This indicates, first, that our
reconstruction method works equally well in all scenarios and, second,
that both quantum processors implement Hamiltonian time evolution

that closely fits our model assumption. We also notice that the overall
analog implementation error does not significantly depend on the
system size. This signifies that no additional non-local errors are
introduced into the system as the size is increased. At the same time,
the overall error of Hamiltonian implementations on Sycamore #2 is
much worse compared to those on Sycamore #1, indicating that
Sycamore #2 was not as well calibrated. Hamiltonian identification
thus allows us to meaningfully compare Hamiltonian implementations
across different physical systems and system sizes.

Discussion

We have implemented analog simulation of the time-evolution of non-
interacting bosonic Hamiltonians with tunable parameters for up to 14
qubit lattice sites. A structure-exploiting learning method allows us to
robustly identify the implemented Hamiltonian that governs the time-
evolution. To achieve this, we have introduced a new super-resolution
algorithm, referred to as tensorESPRIT, for precise robust identifica-
tion of eigenfrequencies of a Hermitian matrix from noisy snapshots of
the one parameter unitary subgroup it generates. Thereby, we diag-
nose the deviation from the target Hamiltonian and assess the accu-
racy of the implementation. We achieve sub-MHz error of the
Hamiltonian parameters compared to their targeted values in most
implementations. Combining the average performance measures over
ensembles of Hamiltonians we associate benchmarks to the compo-
nents of the superconducting qubit chips that quantify the perfor-
mance of the hardware on the time evolution and provide specific

Nature Communications | (2024)15:9595


www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-024-52629-3

(a)

N

T

=

¢ S
2 3
c =
g Q.
g g
4= 3
& 5
i g
(b) Deviation

MHz

= 40 20
=

=20

XS] 1.5
()

S 0

) 1.0
g .
HE '20 \’r

&

o -40 0.5

0.0
(c)
2 * [ ] ganalog( )

E * L] ganalog( g(i‘l) elg(ho))

=

S

; W g w

[«

g My 8 + b

o _ ¢+

o .

g i .¢ + ks

< W N. owd'o

0 0.0 0.2 0.4 0.6 0.8 1.0
Magnetic flux b

(d Median entrywise deviation [MHz]

Sy M Q%C HEEEEN

S H EEEN | .
§ < % % EE_EEE)
L Anmana .
TRA G S 05
% O mnmmEm b,

Fig. 3 | Comparing frequency and full identification errors. a In an N = 6 subset of
connected qubits, by varying b from O to 1, we implement 51 different Hamiltonians.
The plot shows the Fourier transform of the time domain data. b The extracted
eigenfrequencies (denoised peaks in (a)) are shown as colored dots, where the
assigned color is indicative of the deviation between targeted eigenfrequencies
(gray lines) and the identified ones from position of the peaks. ¢ Analog imple-
mentation error Eanalog(h hy) of the identified Hamiltonian (dark red) compared to
the implementation error £analog(elg(h) eig(hy)) of the identified frequencies
(golden). Colored (gray) error bars quantify the statistical (systematic) error.

d Layout of the six qubits on the Sycamore processor and median of the entry-wise
absolute-value deviation of the Hamiltonian matrix entries from their targeted
values across the ensemble of 51 different values of b € [0, 1].

diagnostic information. Within our Hamiltonian identification frame-
work, we are able to identify SPAM errors due to parameter ramp
phases as a severe limitation of the architecture. Importantly, such
ramp phases are present in any analog quantum simulation of quen-
ched dynamics. Our results show that minimizing those is crucial for
accurately implementing a Hamiltonian.

(a) Two examples of 5-qubit sets
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Fig. 4 | Error map of Hamiltonian implementation across the Sycamore pro-
cessor. Over the grid of 27 qubits, we randomly choose subsets of connected
qubits and couplers of size N=35. On each subset we implement two Hamiltonians
with b =0, 0.5 and run the identification algorithm. Two instances are shown in (a).
For each subset, we compute the deviation of the identified Hamiltonian and initial
map from their respective target and assign it to each qubit or coupler involved.
Due to overlap of subsets, each qubit or coupler has been involved in at least five
different choices of subsets. b, ¢ Show the median deviation for the Hamiltonian
and initial map implementations, respectively. d Shows the mean of the sign flips in
the identified (diagonal +1) final map for each qubit.

+1

The experimental and computational effort of the identification
method scales efficiently in the number of modes of the Hamiltonian.
We have also numerically identified the limitations of more direct
algorithmic approaches and demonstrated the scalability of our
method under empirically derived noise and error models.

We have demonstrated and custom-tailored our approach here to
a superconducting analog quantum simulation platform. It can be
applied directly to any bosonic and fermionic analog simulation plat-
form which allows for accurate preparation and measurement of single
particle excitations at specific lattice sites. Generalizing our two-step
approach developed here, we expect a polynomial scaling with the
dimension of the diagnosed particle sector and therefore remain effi-
cient for diagnosing two-, three- and four-body interactions, thus
allowing to build trust in the correct implementation of interacting
Hamiltonian dynamics as a whole. Furthermore, it is in some cases
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Fig. 5| Analog implementation error scaling and comparing different quantum
processors. We measure the analog implementation error of the implemented
Hamiltonians (dark red) and their eigenfrequencies (golden) as well as the devia-
tion (Zf:o I deviation[IA1,$,I.A),V,](L‘,)||fz JIN*(L+ 1)))1/ of the fit from the experimental
data (dark blue) all averaged over implementations of Hamiltonians with quasi-
random local potential on an increasing number of qubits on two different quan-
tum processors—Sycamore #1 (circles) and #2 (diamonds). Each point is the mean
of the respective quantity over 51 Hamiltonian implementations (21 for N=5 and 20
for N=14 on Sycamore #2). The data points at N=6 on Sycamore #1 summarizes
Fig. 3c. The error bars represent one standard deviation.

possible to adapt the method to Hamiltonians with general non-
particle number preserving free part. From a broader perspective, with
this work, we hope to contribute to the development of a machinery
for precisely characterizing and thereby improving analog quantum
devices.

Methods

Experimental details

Details on the quantum processor. We use the Sycamore quantum
processor composed of quantum systems arranged in a two-
dimensional array. This processor consists of gmon qubits (trans-
mons with tunable coupling) with frequencies ranging from 5 to 7 GHz.
These frequencies are chosen to mitigate a variety of error mechan-
isms such as two-level defects. Our coupler design allows us to quickly
tune the qubit-qubit coupling from O to 40+ MHz. The chip is con-
nected to a superconducting circuit board and cooled down to below
20 mK in a dilution refrigerator. The median values of the T; and T,
times of the qubits are 7;=16.1 s, 7, =5.3 s (Ramsey interferometry)
and T, =17.8 ps (after CPMG dynamical decoupling). Each qubit has a
microwave control line used to drive an excitation and a flux control
line to tune the frequency. The processor is connected through filters
to room-temperature electronics that synthesize the control signals.
We execute single-qubit gates by driving 25ns microwave pulses
resonant with the qubit transition frequency, resulting in single-qubit
gate fieldity of 99.8% as measured via randomized benchmarking.

Ramping pulses. The pulses used in the experiment are pre-distorted
in order to compensate for filters on the control lines. In order to
calibrate this distortion, we send rectangular pulses to the qubits and
monitor the frequency change of the qubits. This allows us to know the
response of the microwave lines at the qubits (i.e., the deviation from a
rectangle) and compensate for distortions. The ramp time can be as
fast as 2-3ns and the distortions take the form of overshoot and
undershoots with a long response time of 100ns. After compensating
for the distortions, the qubit frequency remains fixed.

Experimental read-out and control. The qubits are connected to a
resonator that is used to read out the state of the qubit. The state of all

qubits can be read simultaneously by using a frequency-multiplexing.
Initial device calibration is performed using “Optimus”®® where cali-
bration experiments are represented as nodes in a graph.

Details of the identification algorithm
Succinctly written, our data model is given by

(M - exp(—it;h) - S),, s ©)

N[ =

ymn[l] = <am(tl)>(‘p,l =

where m, n=1, ..., N label the distinct time series, [=0, ..., L labels the
time stamps of the L + 1 data points per time series. The matrices S and
M are arbitrary invertible linear maps that capture the state prepara-
tion and measurement stage, as affected by the ramping of the
eigenfrequencies of the qubits and couplers to their target value and
back (see Fig. 1). In the experiment, we empirically estimate each such
expectation value with 1000 single shots.

Our mindset for solving the identification problem is based on the
eigendecomposition 1= S%_, Alvg ){vy ] of the coefficient matrix A in
terms of eigenvectors |uk> and eigenvalues A;. We can write the data (6)
in matrix form as

1 . 1,
y[l]=§exp(—|t,h):§;e o) (el @

where we have dropped S and M for the time being. This decomposition
suggests a simple procedure to identify the Hamiltonian using Fourier
data analysis. From the matrix-valued time series data y[l] (7), we
identify the Hamiltonian coefficient matrix A in two steps. First, we
determine the eigenfrequencies of h. Second, we identify the eigenbasis
of h. To achieve those identification tasks with the largest possible
robustness to error, it is key to exploit all available structure at hand.

Step 1: Frequency extraction. In order to robustly estimate the
spectrum, we exploit that the signal is sparse in Fourier space. This
structure allows us to substantially denoise the signal and achieve
super-resolution beyond the Nyquist limit®**. A candidate algorithm
for this task, suitable for scalar time-series, is the ESPRIT algorithm,
which comes with rigorous recovery guarantees®™, To extract the
Hamiltonian spectrum from the matrix time-series y[/], we apply
ESPRIT to the trace of the data series (for S=M=1)

N 1N
F[l1: =Trpy[lN= Zym,m[l]= 2Ze—”-’lflk_ 8)
m=1 k=1

The drawback of this approach is that if the spectrum of the Hamil-
tonian is sufficiently crowded, which will happen for large N, the
Fourier modes in F[/] become indistinguishable and ESPRIT fails to
identify the frequencies. In particular, ESPRIT is not able to identify
degeneracies in the spectrum.

To overcome this issue and obtain a truly scalable learning pro-
cedure applicable to degenerate spectra, we develop a new algorithm
coined tensorESPRIT. TensorESPRIT extends the ideas of ESPRIT to the
case of matrix-valued time series using tensor network techniques.
Using tensorESPRIT also improves the robustness of frequency esti-
mation to SPAM errors. For practical Hamiltonians, tensorESPRIT
becomes necessary for systems with N=12; as we find in numerical
simulations summarized in Section C and detail in Section IV.B of the
Supplemental Material.

TensorESPRIT (ESPRIT) comprises of a denoising step, in which
the rank of the Hankel tensor (matrix) of the data is limited to its
theoretical value. Subsequently, rotational invariance of the data is
used to compute a matrix from the denoised Hankel tensor (matrix),
the spectrum of which has a simple relation to the spectrum of A. In the
case of ESPRIT, this amounts to a multiplication of the denoised Hankel
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matrix by a pseudoinverse of its shifted version. Contrastingly, ten-
sorESPRIT uses a sampling procedure to contract certain sub-matrices
of the denoised Hankel tensor with the pseudoinverse of other sub-
matrices. Details on both algorithms can be found in the Supplemental
Material.

Step 2: Eigenspace identification. To identify the eigenspaces of the
Hamiltonian, we use the eigenfrequencies found in Step 1 to fix the
oscillating part of the dynamics in Eq. (7). What remains is the problem
of finding the eigenspaces |v; ) (v, | from the data. This problem is a non-
convex inverse quadratic problem, subject to orthogonality of the
eigenspaces, as well as the constraint that the resulting Hamiltonian
matrix respects the connectivity of the superconducting architecture.
Formally, we denote the a priori known support set of the Hamiltonian
matrix as Q, so that we can write the support constraint as hy =0,
where Q denotes the complement of Q and subscripting a matrix with
a support set restricts the matrix to this set. We can cast this problem
into the form of a least-squares optimization problem

L

minimise Z

2
(|Vk)) =0 p;

2 9
subjectto  (Uylv,)=6,, and (Z)lkvk><uk|> =0,
k Q

W= e Mo ) (v
k

equipped with non-convex constraints enforcing orthogonality, and
the quadratic constraint restricting the support. In order to approxi-
mately enforce the support constraint, we make use of regularization®’.
It turns out that this can be best achieved by adding a term [*°, App. Al

10)

)

alle,
to the objective function (9), where > 0 is a parameter weighting the
violation of the support constraint. We then solve the resulting mini-
mization problem by using a conjugate gradient descent on the
manifold of the orthogonal group™’, see also the recent work®®"° for
the use of geometric optimization for quantum characterization.

Without the support constraint this gives rise to an optimization
algorithm that converges well, as shown in the Supplemental Material.
However, the regularization term makes the optimization landscape
rugged as it introduces an entry-wise constraint that is skew to the
orthogonal manifold. To deal with this, we consecutively ramp up u
until the algorithm does not converge anymore in order to find the
Hamiltonian that best approximates the support constraint while
being a proper solution of the optimization problem. For example, for
the data in Fig. 2 the value of i is 121. In order to avoid that we identify a
Hamiltonian from a local minimum of the rugged landscape, we only
accept Hamiltonians that achieve a total fit of the experimental data
within a 5% margin of the fit quality of the unregularized recovery
problem, and use the Hamiltonian recovered without the regulariza-
tion otherwise.

Robustness to state preparation and measurement errors
The experimental design requires a ramping phase of the qubit and
coupler frequencies from their idle location to the desired target
Hamiltonian and back for the measurement. In effect, the data model
(6) includes time-independent linear maps M and S that are applied at
the beginning and end of the Hamiltonian time-evolution. The maps
affect both the frequency extraction and the eigenspace reconstruction.
For the frequency extraction using ESPRIT, the Fourier coeffi-
cients of the trace signal F[{] become (vi|SM|uvy). While the frequencies
remain unchanged the Fourier coefficients now deviate from unity,
significantly impairing the noise-robustness of the frequency

identification. This effect is still present, albeit weaker, in tensorE-
SPRIT, in the case of non-unitary SPAM errors. The eigenspace
reconstruction is affected much more severely and requires careful
consideration, as detailed below and in the Supplemental Material.

Ramp removal via pre-processing. We can remove either the initial
map S or the final map M from the data. To remove S, we apply the
pseudoinverse (-)" of the data y[lo] at a fixed time ¢, to the entire (time-
dependent) data series in matrix form. For invertible S and M this gives
rise to

N .
YO = 0MD " =Y e Miw, ) (v M.
k=1

an

The caveat of this approach is that the shot noise that affected the
single time point y[lo] can lead to correlated errors in every entry of the
new data series y(o).

We can reduce the error induced by these correlations by effec-
tively averaging over “corrected” data series y'o) with different l,. To
this end, we compute the concatenation of data series for different
choices of [y, e.g., for every s data points 0, s, 2s, ..., | L/s|s giving rise to
new data y, = (00 YO ¥, ... y1L/519) ¢ CH/SILIf the data suffers
from drift errors, it is also beneficial to restrict each data series y% to
entries y0)[k] with x € [lp-w, [, +w], i.e., the entries in a window of
size w around [o. In practice, we use s=1 and w =50 for the recon-
structions on Sycamore #1, and s=1, w =L for those on Sycamore #2.

As we argue below, the final map M is nearly diagonal here. Hence,
Wwe €an use Yiorals from Eq. (9) and it is justified to apply the support
constraint in the eigenspace reconstruction step. However, the
eigenspace reconstruction will suffer from systematic errors due to the
final map, even in the case when it is nearly diagonal. Below, we explain
a method to partially remove this error.

Tomographic estimate of S and M. The systematic error in the
reconstructed Hamiltonian eigenbasis can be expressed as an ortho-
gonal rotation D, from the eigenbasis that is actually implemented.
Due to the gauge freedom in the model (6), we cannot hope to identify
Dy, fully without additional assumptions. However, as elaborated on in
the Supplemental Material, we can find a diagonal orthogonal estimate
D,, of the true correction Dy, and hence remove a sign of the sys-
tematic error. To this end, we assume that the experimental imple-
mentation of the target Hamiltonian does not flip the sign in the
hopping terms and remedy the sign of systematic error due to the final
map by fitting a diagonal orthogonal rotation of the Hamiltonian
eigenbasis D,, that minimizes the implementation error. We update
the reconstructed Hamiltonian to
h=Dy,hD,,, 12)
where h = S Aklvg) (el and {Jv, )} is the eigenbasis obtained by solving
the problem (9), and use D, as an estimate of M. We can now obtain a
tomographic estimate of the initial map through
2 ¢ P
= m{; explit;AIDyyII].

wy

13)

Imbalance between initial and final ramping phase. As explained
above, the pre-processing step allow us to remove either the initial
map S or final map M from the data, while we can only find a diagonal
orthogonal estimate of the remaining map. A priori it is unclear which
one of the two maps should be removed in order to reduce the sys-
tematic error more.

We have already treated the initial and final ramping phases on a
different footing, however. The reason for this is rooted in the specifics
of the ramping of the couplers compared to the qubits. The couplers
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Fig. 6 | Initial ramp removal versus final ramp removal. We identify Hamiltonians
of a set of 5-qubit Hamiltonians with Hofstadter butterfly potentials

Hg =20 cos(2mgb) MHz for qubits g=1, ..., 5 and flux value b in without regular-
ization. a Deviation of the orthogonal part Os (O,,) of the identified initial map S
(final map M) from the closest diagonal orthogonal matrix D (D,,). b Analog
implementation error of the corresponding identified Hamiltonians fls (ﬁM). cTotal
root-mean-square deviation of the time series data from the Hamiltonian fit.

need to be ramped from their idle frequencies to provide the desired
target frequencies of 20 MHz. This is why we expect the time scale of
the initial ramping to be mainly determined by the couplers, namely
the delay until they arrive around the target frequency and the time it
takes to stabilize at the target frequency. In contrast, the final ramping
map becomes effectively diagonal as soon as the couplers are again
out of the MHz regime. We therefore expect that the initial map has a
sizeable non-diagonal orthogonal component, whereas the final map is
approximately diagonal.

We build trust in this assumption using experimental data in
Fig. 6. We observe that the deviation of the orthogonal part O of the
identified initial map S from its projection D; to diagonal orthogonal
matrices is much larger than the corresponding deviation for the final
map (Fig. 6a). Moreover, both the root-mean-square fit of the data
(Fig. 6¢) and the analog implementation error of the identified
Hamiltonian with its target (Fig. 6b) are significantly improved when
removing the initial ramp, as compared to removing the final ramp.
This indicates that S induces a larger systematic error than M. Corre-
spondingly, it is indeed more advantageous to remove the initial map
in the pre-processing and fit the final map with a diagonal orthogonal
matrix, validating the approach taken here.

Overall, the recovered model (iz,S,DM) fits the experimental data
well, as demonstrated in Figs. 2, 5, 6, and gives good prediction
accuracy on simulated data, as demonstrated in Fig. 7 in the next
section as well as the Supplemental Material. In the Supplemental
Material, we provide further numerical evidence that this approach
leads to small systematic errors and recovers a model with good pre-
dictive power.

Benchmarking the algorithm

We benchmark our identification algorithm against more direct
approaches in numerical simulations including models for statistical and
systematic errors in the Supplemental Material VI. We find that, indeed,
already for small system sizes, the regularized manifold optimization
algorithm developed here features an improved robustness against
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Fig. 7 | Numerical benchmarks for larger system sizes. Recovery error of fre-
quencies (golden) and Hamiltonians (red) from simulated time series averaged
over 20 instances of Harper Hamiltonians for different system sizes. The error bars
represent one standard deviation. The evolution is simulated for up to 0.6 ps and
sampled at a rate of 250 MHz. Statistical noise is simulated using 10° shots per
expected value and SPAM is modeled by using randomly chosen idle qubit and
coupler frequencies, linear ramping of 1.5 GHz/s padded by 0.05 ns. The fitting
error of the time series is depicted in blue, right y-axis. We refer to the Supple-
mental Material, Sec. VII A for details.

state preparation and measurement errors compared to (post-pro-
jected) linear inversion. For intermediate system sizes (N> 10), exploit-
ing structure in the recovery algorithm then becomes an imperative. In
particular, for larger system sizes the eigenspectrum of the Hamiltonian
becomes unavoidably narrower spaced, leading to (near-)degeneracies.
We find that on instances of the Harper Hamiltonian studied here linear
inversion approaches cannot be applied at all for N>20. Regularized
conjugate gradient decent in contrast yields good recovery perfor-
mance even for larger systems. The same limitations apply to a direct
Fourier analysis of the cumulative time series data using ESPRIT, as
described above. For different families of Hamiltonians, we find that
above a system size of N=20 tensorESPRIT still consistently recovers
the frequency spectrum, while the ESPRIT algorithm fails to do so.

Using structure not only allows our algorithm to denoise the data
and achieve error robustness, it also makes precise Hamiltonian
identification possible even with the number of measurements dra-
matically reduced in the spirit of compressed sensing. As described
above, the number of measurements scales quadratically with the
system size. We find that using the conjugate gradient algorithm the
identification procedure reliably recovers Hamiltonians even when it
has access to only about 3% of the measurements. In this regime, the
linear inverse problem of finding the eigenvectors is underdetermined.
Thus, the required experimental resources can be significantly
reduced for large system sizes.

To demonstrate our method’s scalability, Fig. 7 shows the recov-
ery performance of the structure-exploiting algorithm on simulated
data under realistic models for SPAM errors and with finite measure-
ment statistics in the regime where the baseline approaches could not
be applied anymore.

As detailed in the Supplemental Material, tensorESPRIT has com-
putational complexity in O(L>N>). It is not straight-forward to bound
the computational complexity of the conjugate gradient descent, as it
depends on the required precision of the matrix exponential and the
number of descent steps until convergence. The entire identification
algorithm consumes O(LN?) memory. In practice, we find that the
algorithm can be easily deployed on a consumer-grade laptop com-
puter, e.g., reconstructing Hamiltonians of size N=50 in around 5 min.

Error estimation

We here discuss how we estimate the systematic and statistical con-
tributions to the error on the identified Hamiltonian & and initial map
S. Note that the impact of the systematic error on predicting results of
experiments with the same initial and final ramps is reduced due to the
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gauge invariance of the model (6). Due to this freedom, some of the
error in identifying D,, ~ M gets accounted for by a corresponding
error in the identification h~handS~Sin expressions of the type
Me~ith$, This prediction error can be further decreased by running the
algorithm twice—removing the initial map in the first run and the final
map in the second run, using the first ramp estimates to partially
remove the ramps from the data before running the second iteration
of the identification. This procedure is detailed and supported by
numerical evidence in the Supplemental Material.

Systematic error: final ramp effect estimation. In order to estimate
the magnitude of the systematic error that is induced by the non-trivial
final map, we use a linear model of the final ramping phase with a
constant ramping speed and constant wait time between the coupler
and qubit ramping. We detail and present validation of this ramping
model with a separate experiment in the Supplemental Material, where
we also provide empirical estimates of the model parameters.

Given a Hamiltonian matrix & and the initial ramp $ obtalned from
experimental data, we recover the Hamiltonian matrix R from data
simulated using the model hS M), where M is the final ramp given by
our ramping model. We use [f(h) f(h )| as an estimate of the sys-
tematic error on quantities of the form f h) e R,

Statistical error: bootstrapping. We estimate the effect of finite
measurement statistics on the Hamiltonian estimate that is returned
by the identification method via parametric bootstrapping. To this
end, we simulate time series data with statistical noise using Haar-
random unitaries S as initial ramps, the identified Hamiltonian A and
final ramp M =1, as detailed in the Supplemental Material.

Data availability

The experimental data is available from the authors upon request.

Code availability

The code is available from the authors upon request.
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