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Abstract
Mitigating ongoing losses of insects and their key functions (e.g. pollination) requires 
tracking large-scale and long-term community changes. However, doing so has 
been hindered by the high diversity of insect species that requires prohibitively 
high investments of time, funding and taxonomic expertise when addressed with 
conventional tools. Here, we show that these concerns can be addressed through a 
comprehensive, scalable and cost-efficient DNA metabarcoding workflow. We use 1815 
samples from 75 Malaise traps across Germany from 2019 and 2020 to demonstrate 
how metabarcoding can be incorporated into large-scale insect monitoring networks 
for less than 50 € per sample, including supplies, labour and maintenance. We validated 
the detected species using two publicly available databases (GBOL and GBIF) and the 
judgement of taxonomic experts. With an average of 1.4 M sequence reads per sample 
we uncovered 10,803 validated insect species, of which 83.9% were represented by 
a single Operational Taxonomic Unit (OTU). We estimated another 21,043 plausible 
species, which we argue either lack a reference barcode or are undescribed. The total of 
31,846 species is similar to the number of insect species known for Germany (~35,500). 
Because Malaise traps capture only a subset of insects, our approach identified many 
species likely unknown from Germany or new to science. Our reproducible workflow 
(~80% OTU-similarity among years) provides a blueprint for large-scale biodiversity 
monitoring of insects and other biodiversity components in near real time.
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1  |  INTRODUC TION

Insects are the most diverse animal taxonomic group on Earth and 
contribute to many essential ecosystem processes and services, 
such as pollination, nutrient cycling and organic matter decom-
position (Cardoso et  al., 2020). However, insect populations are 
declining (Wagner,  2020) and our ability to mitigate these de-
clines is hindered by poor understanding of spatial distributions, 
habitat requirements, biotic interactions, dynamics and even the 
overall number of extant species. About 1 million insect species 
have been described to date, but recent estimates of total spe-
cies numbers stand at about 5.5 million (Stork,  2018) or even 
more (IPBES,  2019). Surprisingly, many new species are being 
reported even for very well-studied and generally species-poor 
areas with a long history of entomological research. For exam-
ple, based on 4000 species caught with Malaise traps in Sweden, 
Karlsson et al. (2020) reported almost 700 insect species new to 
science and ~ 1300 new to Sweden. Similarly, in a DNA barcoding 
analysis of about 62,000 specimens collected with Malaise traps, 
Chimeno et al. (2022) estimated over 2000 dipteran species new 
to Germany, raising the total number of 33,341 known insect spe-
cies in the country (Klausnitzer, 2005) to approximately 35,500. 
Thus, while many new insect species are being continuously re-
ported, the vast majority still remain unknown.

A key constraint to closing the current information gap on in-
sects is the vast number of species and specimen-rich samples that 
must be processed. Terrestrial and aquatic monitoring methods, 
like Malaise, canopy or light traps, as well as samples collected with 
nets from freshwater habitats, can collect thousands of specimens 
(e.g. Habel et al., 2023; Karlsson et al., 2020; Resh & Jackson, 1993), 
many of which are small and difficult to identify even for experts, 
resulting in taxonomic neglect (Srivathsan et al., 2023). National and 
international monitoring networks, such as the Global Malaise Trap 
programme (Geiger et al., 2016), BioScan (Hobern, 2021), LifePlan 
(www.​helsi​nki.​fi/​en/​proje​cts/​lifeplan) or the Swedish Malaise Trap 
programme (Karlsson et al., 2020), have started coordinated large-
scale insect sampling initiatives based on standardized traps and 
procedures (e.g. Hallmann et  al.,  2017). However, classical taxo-
nomic analyses of these samples cannot keep pace with the rate of 
collection, particularly given the low and globally declining number 
of taxonomic experts (European Commission, 2022). While the im-
portance of taxonomic expertise remains undisputed, there is a clear 
need for alternative methods to assess insect species diversity both 
efficiently and reliably (Chua et al., 2023; van Klink et al., 2022).

DNA metabarcoding is one key method for assessing specimen-
rich samples. Following more than a decade of research and trial 
applications, metabarcoding has now reached a high technology 
readiness level, presenting a promising solution for examining a 

fuller range of insect biodiversity in large-scale monitoring pro-
grammes. A range of suitable protocols for specimen collection, 
processing and data analysis are now available (Buchner, Macher, 
et al., 2021; Montgomery et al., 2021). This includes suitable primer 
pairs (Braukmann et al., 2019; Elbrecht et al., 2019) and insect bar-
code reference data on BOLD (Ratnasingham & Hebert, 2007). The 
key strength of DNA metabarcoding is that it rapidly delivers taxo-
nomically highly resolved taxa lists, whereas obtaiquantitative infor-
mation on species abundance or biomass remains a challenge (Sickel 
et al., 2023).

Despite its potential, implementing DNA metabarcoding for 
large-scale and long-term insect biodiversity monitoring programmes 
is still in its infacy. There are several reasons. In particular sample 
throughput is still constrained by the need for significant manual la-
bour, expensive DNA kits and reagents, and difficulties in accessing 
information on lab and analysis procedures (McGee et al., 2019) and 
the lack of formal standards for the procedures (Chua et al., 2023). 
All these aspects present roadblocks to large-scale implementation. 
Furthermore, incomplete and partly inconsistent reference data-
bases impact the accuracy and quantity of species-level assignments 
and thus the completeness and validity of the resulting species lists 
(Chua et al., 2023). This problem remains particularly pervasive for 
highly diverse groups like Diptera and Hymenoptera that are un-
derrepresented in reference libraries because of those species that 
are difficult to distinguish based on morphological criteria. The un-
known (i.e. undescribed) species in these poorly explored groups 
are often referred to as ‘dark taxa’ (Hartop, 2021). However, in the 
absence of reference barcodes for species, or even when formal spe-
cies descriptions are lacking, DNA metabarcoding can still overcome 
these limitations using genetic distance thresholds to approximate 
entities that roughly reflect species, such as molecular Operational 
Taxonomic Units (OTUs) or Barcode Index Numbers (Ratnasingham 
& Hebert, 2013) (BINs). Even in the absence of species in databases, 
such distance-based entities can approximate species numbers 
and have been applied in ecological and ecotoxicological research 
for many years (Beermann et  al.,  2018; Hoppeler et  al.,  2016; 
Sturmbauer et al., 1999).

DNA metabarcoding analyses to date have been limited to ei-
ther a specific region within a country (e.g. Geiger et  al.,  2016; 
Habel et al., 2023; Uhler et al., 2021), short time spans (e.g. Huang 
et al., 2022; Li et al., 2023) or specific taxonomic groups (e.g. Huang 
et al., 2022). None has quantified the full extent of insect diversity—
including dark taxa—at the whole-country scale and through time. 
Thus, the present study fills this gap by presenting a robust DNA 
metabarcoding workflow for application to large-scale insect mon-
itoring programmes, combined with a new multi-level procedure to 
assess the validity of species records. We analysed 1815 Malaise 
trap samples collected in 2019 and 2020 from 75 individual traps 
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across Germany (Figure 1). Our principal aim was to (1) present the 
workflow as a resource for use by other researchers by providing 
detailed and publicly available laboratory procedures and bioinfor-
matic programmes. Additionally, we (2) quantified the time and cost 
investment required per sample for this workflow to evaluate its 
affordability, which is a key limitation to using any metabarcoding 
workflow. Furthermore, we (3) evaluated the reliability of the data 
provided by our workflow in terms of the number of known species 
detected, number of dark taxa and their likely validity, and variation 
in species detected between years.

The results obtained with the new workflow show that DNA 
metabarcoding is feasible for large-scale and long-term insect mon-
itoring, and providing insight into insect diversity at scales that have 
been challenging to study so far.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

Sampling was conducted as part of the nationwide German Malaise 
trap monitoring programme (Welti et  al.,  2022) comprising for-
ests, grassland, agricultural and urban areas (https://​www.​ufz.​de/​
lter-​d/​index.​php?​de=​46285​). Most of the 31 sites in which the 
Malaise traps were placed belong either to the German LTER-D net-
work (Haase et  al., 2016; Mirtl et  al.,  2018) (Long-Term Ecological 
Research) or to the network of national natural landscapes (https://​
natio​nale-​natur​lands​chaft​en.​de). At each site, one to six Malaise 
traps have been operated to monitor biomass and species composi-
tion of flying insects in different habitats. In the present study, we 
used a total of 1815 Malaise trap samples from 56 locations across 
Germany during 2019, with 19 locations added in 2020 (Figure 1). 
Traps were emptied every 2 weeks from the beginning of April until 
the end of October in both years (approx. 15 samples per year, de-
pending on site-specific climatic conditions). Insects were caught in 

80% denatured ethanol and their wet biomass was measured follow-
ing Welti et al. (2022). Samples were kept in 96% denatured ethanol 
and protected from light until later genetic analysis.

2.2  |  Sample processing

All samples were divided into two size classes (small ≤4 mm; large 
>4 mm) to increase taxon recovery rates of small taxa (Elbrecht
et al., 2021). Samples spread on a perforated plate sieve (4 mm hole
diameter) were stirred using a magnetic stirrer (750 rpm) in etha-
nol (Figure S1), so that small individuals passed through the holes,
whereas the large ones were retained on top of the sieve. The size
fractions were homogenized following the protocol described in
Buchner, Haase, and Leese (2021), except that the homogenization
time was reduced to 30 s. The two size fractions were subsequently
pooled at a ratio of 1:4 (large 200 μL:small 800 μL) as recommended 
by Elbrecht et al. (2021).

2.3  |  DNA extraction

Generally, the laboratory steps followed the workflow described in 
Buchner et al. (2021). All procedures are available as step-by-step 
protocols in a protocols.io repository (Buchner, 2022b). All subse-
quent steps after size-sorting and homogenization were completed 
on a Biomek FXP liquid handling workstation (Beckman Coulter, 
Brea, CA, USA). After sample lysis (Buchner, 2022e), samples were 
processed in duplicate during the entire library preparation to con-
trol for possible cross-contamination. Additionally, in each 96-well 
plate 12 negative controls were included. DNA was extracted using 
a magnetic bead protocol (Buchner, 2022a). Extraction success was 
verified on a 1% agarose gel. For all samples that did not amplify, the 
extraction was repeated with silica spin columns (Buchner, 2022a), 
which were always successful.

F I G U R E  1 (a) Location of the in 
total 75 Malaise traps across Germany, 
(b) Lateral view of a Malaise trap with
collection bottle protected from sunlight
at the upper left end and (c) Top view of a
preserved Malaise trap sample spread in a
white tray.

https://www.ufz.de/lter-d/index.php?de=46285
https://www.ufz.de/lter-d/index.php?de=46285
https://nationale-naturlandschaften.de
https://nationale-naturlandschaften.de
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2.4  |  Sequencing library preparation

The PCR for the metabarcoding library followed a two-step PCR 
protocol (Zizka et al., 2019) targeting a 205-bp fragment (Vamos 
et  al.,  2017) of the cytochrome oxidase c subunit I (COI) gene. 
DNA was amplified in a first PCR using the Qiagen Multiplex 
Plus Kit (Qiagen, Hilden, Germany) with a final concentration of 
1x Multiplex Mastermix, 200 nM of each primer (fwh2F, fwhR2n 
(Vamos et  al., 2017)) and 1 μL of DNA, filled up with PCR-grade 
water to a final volume of 10 μL. The amplification protocol was 
5 min of initial denaturation at 95°C, 20 cycles of 30 s denatura-
tion at 95°C, 90 s of annealing at 58°C and 30 s of extension at 
72°C, followed by a final elongation step of 10 min at 68°C. Each 
of the PCR plates used in the first step was tagged with a unique 
combination of inline tags. Additionally, the primers contained 
a universal binding site for the primer used in the second PCR 
step to anneal (Table S1). The PCR products were purified using 
a bead-based protocol and a ratio of 0.8x and an elution volume 
of 40 μL to remove remaining primers and potential primer dimers 
(Buchner, 2022c).

In the second PCR, DNA was amplified at a final concentration 
of 1× Multiplex Mastermix, 100 nM of each primer (Table S1), 1× 
Corralload Loading Dye, 2 μL of the cleaned-up product of the first 
PCR in a final volume of 10 μL. The amplification protocol was 5 min 
of initial denaturation at 95°C, 25 cycles of 30 s denaturation at 
95°C, 90 s of annealing at 61°C and 30 s of extension at 72°C, fol-
lowed by a final elongation step of 10 min at 68°C. PCR success was 
visualized on a 1% agarose gel.

To achieve a similar sequencing depth, the PCR products were 
normalized to equal concentrations. Normalization was achieved 
with a bead-based protocol and a ratio of 0.7× (Buchner, 2022d) 
and an elution volume of 40 μL. The whole volume of the normalized 
samples was then pooled into the final libraries. Libraries were then 
concentrated using a silica spin-column protocol (Buchner, 2022a). 
Library concentrations were quantified on a Fragment Analyzer 
(High Sensitivity NGS Fragment Analysis Kit; Advanced Analytical, 
Ankeny, IA, USA). The libraries were sequenced at Macrogen Europe 
using the HiSeq X platform with a paired-end (2 × 150 bp, 15 lanes) 
kit or at CeGaT (Tübingen, Germany) using the MiSeq V2 platform 
(2 × 150 bp, 1 lane).

2.5  |  Bioinformatics

Raw data of the sequencing runs were delivered demultiplexed by 
index reads. Since no differences were detected between sequenc-
ing runs, they were all pooled before subsequent analyses. Additional 
demultiplexing of the inline tags was achieved with the Python pack-
age ‘demultiplexer’ (v1.1.0, https://​github.​com/​Domin​ikBuc​hner/​
demul​tiplexer). Reads were further processed with the APSCALE 
pipeline (Buchner et  al.,  2022) (v1.4.0, https://​github.​com/​Domin​
ikBuc​hner/​apscale) using default settings. Briefly, paired-end reads 
were first merged using vsearch (Rognes et al., 2016) (v2.21.1) before 

the primer sequences were trimmed using cutadapt (Martin, 2011) 
(v3.5). Only reads with a length of 205 bp (±10) and with a maximum 
expected error of 1 were retained. Identical reads less abundant 
than 4 were discarded prior to OTU clustering and globally derep-
licated before OTUs were clustered based on a similarity threshold 
of 97%. Reads were then mapped to OTUs. This included singletons. 
The resulting OTU table was filtered for erroneous OTUs with the 
LULU algorithm (Frøslev et al., 2017) as implemented in APSCALE. 
Taxonomic assignment was performed using BOLDigger (Buchner 
& Leese, 2020) (v1.5.4, https://​github.​com/​Domin​ikBuc​hner/​BOLDi​
gger). The best hit was determined with the BOLDigger method 
and the API verification method. This resulted in a raw OTU table 
(Table S2) that was used in subsequent analysis.

2.6  |  Data filtering

To control for possible contamination during the laboratory work-
flow, the technical replicates of each sample, as well as the negative 
controls, were merged by summing up the reads, provided that the 
reads were present in both replicates. Subsequently, the maximum 
number of reads per OTU present in all of the negative controls was 
subtracted from the respective OTU (Table S3). All OTUs were ana-
lysed for stop-codons, and any OTU containing stop-codons were 
removed. We analysed two datasets: (1) OTUs assigned at the spe-
cies level and (2) OTUs assigned to insects. To further clean dataset 
1, all OTUs sharing species assignments were merged by summing 
up their reads. Retrieved species names containing numbers or 
punctuation marks were also removed (e.g. incomplete database re-
cords). The resulting final species list (Table S4) for all samples was 
used for the validation procedure.

2.7  |  Validation of taxonomic assignment

To validate the resulting species-level list, three different approaches 
were used. First, the occurrences in conjunction with their specific 
locations of all named species were checked for plausibility by taxo-
nomic experts at the Entomological Society Krefeld, Germany. As 
a basis, the experts used the digitally available insect species cata-
logue from the Entomofauna Germanica (Klausnitzer, 2005), which 
is best resembled through the list from the German Barcode of Life 
portal (https://​gbol.​bolge​rmany.​de). This plausibility check included 
fixing problems related to synonymy and incorporated the primary 
scientific literature available to the experts. Second, all detected 
named species were checked for GBIF records within a 200-km ra-
dius around the given trap. This value was selected to be sufficiently 
high to accommodate the often patchy and rare species records in 
GBIF, the large size of the study area and the fact that many fly-
ing insect species are highly mobile. To do so, a polygon was drawn 
around all trap locations with occurrences of the respective spe-
cies, and the border of this polygon was then extended by 200 km 
(Figure S2). Records were extracted from the GBIF database using 

https://github.com/DominikBuchner/demultiplexer
https://github.com/DominikBuchner/demultiplexer
https://github.com/DominikBuchner/apscale
https://github.com/DominikBuchner/apscale
https://github.com/DominikBuchner/BOLDigger
https://github.com/DominikBuchner/BOLDigger
https://gbol.bolgermany.de
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the ‘rgbif’ package (Chamberlain et al., 2022). Lastly, all named spe-
cies were checked against the German Barcode of Life database, 
which was downloaded with a custom Python script (Script S1). If 
a species name occurred in the German Barcode of Life database, 
it was accepted as valid. Additionally, this step potentially identi-
fied species that are unlikely to occur in Germany, supplementing 
the information obtained from GBIF. A record was accepted as valid 
when two of the three validation criteria were met, which also helps 
to control for false positives (Table S5). Such multi-critera validation 
approaches have been used elsewhere (Pereira et al., 2021).

2.8  |  Statistical analysis

To assess if sequencing depth was sufficient across all samples, we 
conducted a read-based rarefaction using a custom python script. 
This approach involved randomly sampling reads without replace-
ment from each sample in increments of 0.1% (with 50 iterations per 
step) of the total read count. Subsequently, we fitted a Michaelis–
Menten-type equation to the resulting rarefaction curve. Using this 
function, we computed OTU richness when doubling the sequencing 
depth. If OTU richness increased by less than 5% when doubling the 
sequencing depth, the sequencing depth was considered sufficient 
(Figure S3; Table S6).

In addition to examining sequencing rarefaction curves, we also 
examined rarefaction curves for both validated and plausible species 
using the iChao2 (Chiu et al., 2014) estimator. We did so to determine 
the potential influence of collecting more samples from each site, 
such as by sampling for a longer time period or more frequently, on 
the number of detected insect species. This was done by randomly 
drawing subsets of samples (50 iterations each) from the dataset 
without replacement in increments of 5 from 5 to 1815.

2.9  |  Plausible species and dark taxa estimation

To address the potential over-estimation of species diversity based 
on OTU numbers we computed the mean number of OTUs per vali-
dated species for each of the 20 insect orders within the dataset. 
This mean was then used to normalize the OTU count for each order. 
Specifically, we divided the number of OTUs per order by the cal-
culated mean, providing an estimate of additional species present 
in the dataset that have not yet been assigned a species name. We 
refer to these additional species as plausible species. Furthermore, 
we obtained data from the Barcode of Life data systems (accession 
date: 14 April 2023), including the number of species barcoded with 
a voucher specimen collected in Germany, along with the total num-
ber insect species known from Germany (Klausnitzer, 2005). This 
additional information allowed us to distinguish plausible species 
lacking a reference sequence from potential dark data within the 
dataset. The described correction was performed on order as well as 
on family level, but for simplicity we focused the subsequent analy-
sis on the order level.

2.10  |  Time and cost estimations

To estimate the time and costs needed for our nationwide insect di-
versity assessment via metabarcoding, we used vendor list prices for 
materials, as well as runtimes on the liquid handler plus estimates 
for laboratory set-up before and after each step of the workflow. 
These costs include all labware and chemicals needed to complete 
the respective step of the protocol. Incubation times are not included 
in the time estimates because the time can be used to process other 
samples. The calculated price per sample is based on 1815 samples 
including replicates and negative controls, resulting in a total number 
of 4149 individual reactions spread across 44 96-well PCR plates. 
A total of 10 blenders were used for homogenization, which are in-
cluded in the cost estimate. For sequencing, cost estimates are based 
on the current costs of 1100 € for 110 Gb output at a commercial 
service provider (Macrogen Europe) using the NovaSeq 6000 S4, 
which has replaced the HiSeq platform, and a sequencing depth of 
at least 1.5 million reads per sample (~817 Gb). Labour costs were 
estimated at 60 € per hour, corresponding to an experienced scien-
tist in Germany. The costs for the use of the liquid handler were esti-
mated based on a linear depreciation over a total expected lifetime of 
10 years. Annual gross maintenance costs of 40,000 € were assumed 
for instruments, resulting in total depreciation and maintenance 
costs of approximately 4000 € for the present study. No rental and 
auxiliary costs needed to be applied in this study.

3  |  RESULTS

3.1  |  Sequencing results and species validation

We performed high-throughput DNA metabarcoding including rep-
licates and negative controls on 1815 Malaise trap insect samples 
(775 for 2019 and 1040 for 2020; Table 1) using a 205-bp fragment 
of the mitochondrial cytochrome c oxidase I (COI) gene as a marker. 
All samples and sequencing runs combined yielded 3,999,082,169 
demultiplexed read pairs. The average read number per sample in 
the final read table was 1,401,469 (±SD of 618,631). Sequencing 
depth was sufficient for all samples, with a mean increase in richness 
of 0.17% by doubling the sequencing depth (0%–1.46%; Table S6).

Sequencing yielded a total of 52,981 raw OTUs, 50,087 of 
which were assigned to insects. We were able to assign 11,776 
species names to a total of 15,042 OTUs. Two thirds of these spe-
cies (10,803) were validated via three different criteria involving (i) 
expert judgement from entomologists with particular knowledge 
of long-term Malaise trap community data from German Malaise 
traps, (ii) a comparison with an online database that includes the 
known German species (Klausnitzer, 2005) (GBOL) and (iii) a GBIF 
record check within a 200-km radius. Species were regarded as 
‘validated’ when two of the three validation criteria supported 
them. The three different validation criteria showed a pairwise 
agreement exceeding 80%. Taxonomic experts validated an addi-
tional 355 species not yet not in the list of species reported from 



6 of 15  | BUCHNER et al.

Germany (Table 1), leading to an overlap of 97% with the GBOL 
database. GBIF and taxonomic expert validation had an overlap 
of 84%, and GBIF and GBOL of 82% (Table S7). Consequently, a 
total of 35,045 insect OTUs remained unassigned, either because 
species-level reference data are lacking or the species are truly 
unknown (i.e. dark taxa; Table 1), resulting in a large discrepancy 
between the number of named species and recorded insect OTUs. 
Although sometimes several OTUs were assigned to the same spe-
cies, 9061 (83.9%) of our validated species were represented by a 
single OTU (Table S8).

3.2  |  Species richness estimation

Our sampling effort captured the majority of OTUs. Based on rare-
faction curves, a greatly increased sampling effort in each site, for in-
stance by sampling more frequently or for a longer period at all sites, 
may have only resulted in detecting an additional 4725 OTUs (+9.4%) 
and 934 validated species (+8.6%; Figure  2). Additionally, most of 
the OTUs were found in both sampling years (36,932 = 73.7%) with 
more insect OTUs occurring exclusively in 2020 (10,720) than in 2019 
(2435). The same is true for the validated insect species. Most were 
found in both years (8456 = 78.3%) but more than three times as 
many occurred exclusively in 2020 (1820) compared to 2019 (527).

3.3  |  OTU distribution across insect groups and 
unknown taxa

The four most diverse insect orders in Germany (Diptera, 
Hymenoptera, Lepidoptera and Coleoptera) were well represented 
in the dataset (Figure 3, top row). Diptera and Hymenoptera were 

the most common orders both at the OTU (22,732 = 45.4% and 
12,823 = 25.6%) and species level (3851 = 35.6% and 2370 = 21.9%). 
The 10,803 validated insect species represent 33.5% of the 35,500 
insect species known in Germany (Klausnitzer,  2005) and 82.6% 
of the 13,076 barcoded insect species recorded in the country 
(Table S9).

The percentage of OTUs assigned to named species differed con-
siderably among insect orders, being highest for Lepidoptera (75%), 
followed by Coleoptera (59%). Less than a fifth of the OTUs identi-
fied as Diptera and Hymenoptera could be assigned names at the 
species-level (17% and 18% respectively). The lowest percentage of 
OTUs assigned to named species was for Orthoptera (<1%) (Figure 3, 
bottom left panel). The mean number of OTUs per validated insect 
species varied slightly among insect orders and families, typically 
between 1 and 1.5, but Orthoptera (specifically the Acrididae) were 
represented by >4 and Zygentoma (specifically Lepismatidae) by ~2 
OTUs per species (Figure 3, bottom right panel).

Based on the mean number of OTUs per validated insect spe-
cies calculated at either the order or family level, we estimated that 
our data set respectively included either an additional 22,496 or 
21,043 plausible insect species (Table S10). All OTUs belonging to 
Orthoptera were removed for these estimates to avoid artificially 
inflating the total number of species (Information S1). The lower 
of the two numbers is a more conservative estimate, but since we 
identified 435 different families (see Table  S11 for further family 
level information), our analysis focuses, for simplicity reasons, on 
the order level. The additional plausible species could be those that 
either (a) could not be identified to species level due to a lack of a 
reference in the present reference database, (b) had not previously 
been recorded from Germany or (c) represent new species to sci-
ence. Examples of species not reported from Germany or new to 
science (‘potential dark taxa’ in Figure 3; Table S10) were particularly 
evident in the Diptera and Hymenoptera, for which we respectively 
found ~6600 and ~1200 species, while the missing reference data 
aspect affected the assignment in all orders except the Mantodea 
(with 1 species only).

3.4  |  Time and cost estimation

The total costs of the laboratory workflow for duplicate sample pro-
cessing and negative controls—including all needed labware, chemi-
cals, sequencing and salaries—were estimated at 88,000 €, equivalent 
to about 46 € per sample (Table 2; Table S12). Costs for laboratory 
materials accounted for 12 € (26%) of the total costs per sample, and 
salaries for 34 € (74%). Sequencing was the most expensive step (con-
tributing 4.85 € per sample), followed by enzymatic steps such as PCR 
(1.65 €) and sample lysis (1.54 €). The total processing time for all 
1815 samples was 1030 working hours or 27.5 weeks, equivalent to 
141 samples within 2 weeks for one person working full time and sup-
ported by one liquid handling robot. Most of the processing time was 
needed for sample size-sorting and homogenization. All subsequent 
steps were completed within 6 weeks.

TA B L E  1 Summary statistics of OTUs, assigned insect species 
and OTUs assigned to validated insect species according to the 
two-out-of-three validation criterion.

2019 
(n = 775)

2020 
(n = 1040) Σ (n = 1815)

Raw OTUs 41,189 50,166 52,981

Insect OTUs 39,367 47,652 50,087

Insect species 9728 11,183 11,776

Validated species according to:

Expert 
validation

9132 10,475 11,030

GBIF validation 7969 8867 9254

GBOL validation 8777 10,056 10,574

Validated species 8983 10,276 10,803

Plausible species 21,043

Total species 31,846

Note: Plausible species calculated from the average number of OTUs 
per validated species and family. n = number of Malaise trap samples.
Abbreviation: OTUs, Operational Taxonomic Units.
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4  |  DISCUSSION

4.1  |  A metabarcoding workflow for large-scale 
biodiversity monitoring

We here present a scalable and cost-efficient DNA metabarcod-
ing workflow which allows analysing thousands of specimen- and 
species-rich samples within several weeks to months depending on 
the available workforce. The proposed DNA metabarcoding work-
flow differs from others (e.g. Braukmann et  al.,  2019; Hardulak 
et al., 2020; Hausmann et al., 2020) in several important aspects that 
are key to high sample throughput at reduced costs and process-
ing time while ensuring high-quality data. Key differences include: 
(i) homogenization of samples in preservative liquid to avoid a time-
consuming drying step (Buchner, Haase, & Leese, 2021); (ii) process-
ing of all samples in duplicate before DNA extraction as an essential
quality assurance measure to reduce the probability of false positive 
signals; (iii) completion of all laboratory procedures by an automated

liquid handling robot to minimize processing time (Buchner, Macher, 
et al., 2021) (except for the gel electrophoresis) and maximize con-
sistency; (iv) a mean sequencing depth increased to ~1.4 M reads 
per sample to boost species detectability and (v) publication of all 
laboratory procedures as open-source protocols (Buchner, 2022b) 
or programmes (Buchner et  al., 2022; Buchner & Leese,  2020) to 
ensure full transparency and reproducibility following the FAIR prin-
ciples (Wilkinson et al., 2016).

Labour and material costs of metabarcoding protocols are often 
considered prohibitively high for large-scale monitoring programmes 
(Borrell et al., 2017; Montgomery et al., 2021), frequently exceeding 
200 € per sample and up to 400 € (Aylagas et  al., 2018; Elbrecht 
et al., 2017; Ji et al., 2013). The workflow presented here consider-
ably reduces these costs, down to <50 €. This is primarily achieved 
by automating crucial laboratory steps and by preparing all required 
solutions instead of purchasing expensive commercial kits. Costs 
could be further cut in future large-scale programmes by ordering 
chemicals and consumables in bulk and by further reducing reaction 

F I G U R E  2 Top row: Rarefaction curves showing richness of insect OTUs and validated species richness that were either observed (solid 
lines) or estimated (dotted lines). Bottom row: Shared and unique absolute numbers and proportions of the insect OTUs (left circles) and 
validated insect species (right circles) collected in 2019 and 2020.
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volumes for all laboratory steps involving enzymes, wherever pos-
sible (Buchner, Beermann, et al., 2021). An important consideration 
to lower labour costs is to reduce the processing time per sample, 

notably for size-sorting and homogenization, ideally by automating 
these steps as well. Furthermore, expenses related to sampling in 
the field are not included in our analysis, although they can easily 

F I G U R E  3 Top panels: Number of total insect OTUs, plausible and validated insect species per order identified in the present study 
compared to the total number of species reported from Germany or sampled in Germany and included in the BOLD database (data accessed 
on 14 April 2023). Bottom left panel: Percentage of OTUs assigned to species. Bottom right panel: Mean number of distinct OTUs assigned 
to a given plausible species.

missing reference potential dark taxa
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match laboratory costs. For example, in our monitoring programme, 
costs for Malaise trap installation, maintenance and biweekly sam-
pling from April to October (15 samples per site and year in total) 
amounted to about 12 working hours or 240 € for a student aid. 
Adding travel time (highly variable but assumed here to average 15 h 
or 300 €) and material (approx. 450 €) would result in total costs 
for field sampling of 66 € per sample, unless much of the work is 
accomplished by volunteers. This sum ignores expenses for rent and 
additional costs (heating, electricity, etc.), which need to be added 
when commercial providers are solicited.

Another crucial but often neglected step in metabarcoding 
workflows is species validation. Validating species records poses a 
significant challenge for many taxa due to the dearth of reference 
sequences, few checklists and experts, and diverse algorithmic 
approaches (Hleap et  al., 2021). However, these challenges could 
be partly addressed by using publicly available species databases, 
as suggested by the remarkably close agreement we found among 
our three validation procedures of insect experts, GBIF and GBOL 
matching. The taxonomic experts added further species to the list 
of known species from Germany based on recent scientific evi-
dence. This agreement suggests that relying solely on public da-
tabases, like GBIF (Telenius, 2011) and the GBOL database, which 
most closely resembles the reports of the Entomofauna Germanica 
(Klausnitzer, 2005), is sufficiently accurate for large-scale monitor-
ing where expert validation tends to be prohibitive. This is not to ad-
vocate disregarding expert knowledge, which is critical to minimize 
the well-known errors inherent in automated validation methods 
(e.g. Meiklejohn et al., 2019). Instead, we would like to raise aware-
ness that acceptable alternatives exist to overcome time constraints, 
as they typically arise in large biodiversity monitoring programmes. 
FAIR and curated reference databases with up-to-date taxonomic 
names and integration of synonyms is essential for harmonized bio-
diversity monitoring and establishing such systems is a key challenge 
(Keck & Altermatt, 2023).

4.2  |  A reliable account of biodiversity

Rarefaction indicates that the 10,803 named insect species identi-
fied with our protocol would increase by only 934 species (8.6%) 
if sampling efforts were ramped up at the established study sites. 
However, we acknowledge that higher species numbers would be 
obtained if more sites were sampled, in particular including new hab-
itat types. This expectation is consistent with the larger number of 
validated insect species in 2020 (+14.4%) when 19 more sites were 
sampled compared to 2019. The 10,803 detected named species 
represent one-third of all insect species reported from Germany and 
~83.1% of all barcoded insects from this country. This includes nearly 
100% of the up-to-date barcoded Hymenoptera and Hemiptera, in-
dicating that with just 75 sampling sites our approach captures a 
large portion of the known insect biodiversity of Germany. Other 
metabarcoding studies from regions within Germany have identified 
~5900 species (Uhler et al., 2021) and ~11,984 insect OTUs (Habel 

et al., 2023). Similarly, a DNA barcoding study investigating 1% of the 
samples from the Swedish Malaise Trap programme found >4000 
species (Karlsson et al., 2020), and another recent DNA barcoding 
study based on Malaise traps across eight countries from four con-
tinents found >25,000 species (Srivathsan et  al., 2023). While we 
acknowledge that comparisons of insect species and OTUs numbers 
among studies are difficult due to differences in protocols, these 
examples indicate, along with the high proportion of known or bar-
coded insects from Germany, that rapid and cost effective metabar-
coding can provide a robust inventory of biodiversity.

At the scale of our nationwide sampling network, we consis-
tently found the same species in two consecutive years (~75% 
species and ~80% OTU-similarity among years), highlighting the 
spatiotemporal reliability of taxa lists derived from metabarcoding 
when used in large-scale monitoring. One of the principal concerns 
in large-scale sampling is that high community variability in space 
and time, and sampling idiosyncrasies, make it difficult to detect the 
same species even in spatially or temporally proximate samples. This 
issue is particularly relevant when using methods, like metabarcod-
ing, that can identify thousands of species, most of which will be 
rare and so may only occur sporadically in a single site (Jeliazkov 
et al., 2022). For example, traps just tens of metres apart (e.g. Steinke 
et al., 2021) or in successive sampling periods (e.g. Sinclair et al., in 
prep, Information S1) can capture very different insect communities. 
However, the between-year consistency of our data suggests this 
issue may diminish as the spatial scale of sampling for metabarcoding 
increases, such as in larger-scale biodiversity monitoring conducted 
across whole countries.

4.3  |  Assessing dark taxa biodiversity

A key finding of our study is the discovery of approximately five 
times more insect OTUs than validated insect species, demonstrat-
ing the potential value of cost-effective metabarcoding for uncover-
ing as of yet unknown biodiversity in large-scale monitoring. One 
explanation for the higher number of OTUs we found is that many 
unassigned OTUs represent described species that cannot be as-
signed to the species level because reference sequences are lacking. 
Alternatively, many of these OTUs could represent dark taxa, that 
is, species new to science, as highlighted by Karlsson et al.  (2020) 
and Srivathsan et  al.  (2023). While it is difficult to estimate the 
number of OTUs attributed to either known species without a ref-
erence barcode or to new species, we can roughly quantify this by 
comparing OTU-to-species ratios. Our mean number of OTUs per 
validated insect species of 1.0–1.5 suggests that our chosen cut-
off of 3% sequence identity generally delineates different spe-
cies accurately. The only exception is the Orthoptera, which are 
known to exhibit many pseudogenes (see Information S1) and that 
would inflate the OTU-to-species ratio. Specific correction factors 
for different taxonomic groups can also be estimated to infer the 
portion of undescribed species in the OTU datasets, which our re-
sults suggest is a large proportion. This is particularly true for the 
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Hymenoptera and Diptera, where, after correcting the OTU num-
bers, we estimate about 6600 and 1200 potential new species to 
science for the two groups. This result agrees with reports from the 
Swedish Malaise Trap programme where most of the observed 700 
species new to science (Karlsson et al., 2020) belonged to Diptera 
and Hymenoptera (Ronquist et al., 2020). However, our estimate of 
putatively undiscovered species in Germany is obviously a signifi-
cant underrepresentation for two main reasons: First, while Malaise 
traps capture many different insect species, they likely miss many 
non-flying insects, insects flying high above ground, for example, 
in tree canopies, or avoiding or escaping Malaise traps (e.g. Habel 
et al., 2023). Second, while our 75 Malaise traps reflect almost en-
tirely the north–south and east–west gradients of Germany, they do 
not cover all regions in the country. Consequently, there is likely a 
trove of undiscovered species, even in countries like Germany and 
Sweden with a relatively species-poor fauna and a long taxonomic 
tradition. DNA metabarcoding can help discover the extent of this 
unknown biodiversity and identify taxa and sites that require ad-
ditional taxonomic work.

4.4  |  Technical challenges and ways forward

Metabarcoding comes with some drawbacks and technical chal-
lenges that must be considered when proposing future insect 
biodiversity monitoring strategies (Chua et  al.,  2023). First, our 
approach is a compromise between improving feasibility for large-
scale monitoring and the chances of detecting all taxa. Additional 
sample processing, such as complementary mild lysis (Iwaszkiewicz-
Eggebrecht et al., 2023; Marquina et al., 2022), greater replication 
(Zizka, Geiger, et al., 2022) and using multiple gene markers or prim-
ers (Elbrecht et al., 2019; Hajibabaei et al., 2019), as well as increas-
ing sequencing depth (this study), would undoubtedly recover more 
species. However, the additional effort required must be weighed 
against the extra information gained, which may not be substantial 
(Buchner, Haase, & Leese,  2021). Second, the incompleteness of 
regional and interregional reference sequence databases, and the 
generation of reference sequences of unknown species, remains a 
persistent challenge (e.g. Chua et  al., 2023; Karlsson et  al.,  2020). 
Poorly studied groups present the largest hurdle, such as Diptera, 
Hymenoptera and various beetle families. Thus, to implement and 
facilitate insect biodiversity monitoring at large scales a clear road-
map is needed. First, DNA metabarcoding could be used to monitor 
insect biodiversity at hundreds of sites to identify the priority sites. 
Second, in-depth analysis are needed at priority sites utilizing high-
throughput single-specimen barcoding (Hebert et  al., 2018; Meier 
et al., 2016) coupled with additional methods to gain insights into 
abundance, biomass and phenotypic data (Høye et al., 2021; Wührl 
et al., 2022). Improved collaboration between taxonomists, molecu-
lar ecologists but also experts from other fields, such as computer 
vision and deep learning, are needed to implement this roadmap of 
large-scale biodiversity monitoring. Specifically, sequence data need 
to be linked with valid taxonomic names and undescribed species 

need to be described (Hartop et al., 2022). An additional advantage 
of incorporating these methods is their ability to provide data on 
species abundance and biomass, thereby complementing the bio-
diversity data for priority sites identified through DNA metabar-
coding. Alternatively, techniques like mild lysis need to be further 
developed, to allow a similar high coverage of species directly from 
the metabarcoding bulk samples while also allowing for subsequent 
morphological identification. Vouchers would also help obtain the 
ecological trait information needed to link biodiversity changes with 
ecosystem function changes. Here, digital specimen vouchers have 
the benefit of massively increasing analysis speed. Lastly, a key ad-
vantage of molecular methods is that tissue and DNA samples can 
easily be stored in miniaturized formats and reanalysed in the fu-
ture (Zizka, Koschorreck, et  al., 2022). Emerging methods such as 
metagenomics can thus be applied in the future to stored samples 
to gain additional insights through reanalysis by eliminating biases 
introduced by PCR. This also makes direct intercalibration of differ-
ent methods possible enabling harmonized biodiversity monitoring 
despite methodological advancements.

4.5  |  Implications beyond insect monitoring

We used insects collected with Malaise traps to demonstrate the 
value of a new DNA metabarcoding workflow that is reliable, scal-
able, fast, cost-effective and particularly well-suited for large-scale 
monitoring of highly diverse taxonomic groups. The approach is, 
however, by no means limited to insects from Malaise traps, given 
that many of the key advances we highlight (e.g. automated work-
flow, robust species validation) are applicable to a variety of sam-
pling methods, other invertebrate and vertebrate taxa, and even 
environmental DNA from various sources including soil and sedi-
ment (Pawlowski et al., 2022), by aligning all post-sampling process-
ing steps with the requirements for robotic high sample throughput 
(Buchner, Macher, et al., 2021). The presented workflow thus moves 
us closer to realizing the overall vision for metabarcoding, that is, 
to generate and link high-throughput biodiversity analyses with 
large-scale monitoring (Bush et  al., 2017). Such integration would 
greatly enhance assessments of the massive ongoing changes in 
global biodiversity experienced at the present (e.g. Sinclair et al., in 
prep, Information S2) and biodiversity protection (e.g. the Kunming-
Montreal Global Biodiversity Framework of the CBD), including Red 
List and invasive species assessments as part of policy frameworks 
on biodiversity conservation (e.g. Wetzel et  al., 2015). As demon-
strated here, integrating metabarcoding into large-scale monitoring 
networks is a powerful means to improving our understanding of 
biodiversity change and supporting conservation actions.
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