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Abstract
Mitigating	ongoing	losses	of	insects	and	their	key	functions	(e.g.	pollination)	requires	
tracking large- scale and long- term community changes. However, doing so has 
been hindered by the high diversity of insect species that requires prohibitively 
high	 investments	 of	 time,	 funding	 and	 taxonomic	 expertise	 when	 addressed	 with	
conventional tools. Here, we show that these concerns can be addressed through a 
comprehensive,	scalable	and	cost-	efficient	DNA	metabarcoding	workflow.	We	use	1815	
samples from 75 Malaise traps across Germany from 2019 and 2020 to demonstrate 
how metabarcoding can be incorporated into large- scale insect monitoring networks 
for less than 50 € per sample, including supplies, labour and maintenance. We validated 
the	detected	species	using	two	publicly	available	databases	(GBOL	and	GBIF)	and	the	
judgement	of	taxonomic	experts.	With	an	average	of	1.4 M	sequence	reads	per	sample	
we uncovered 10,803 validated insect species, of which 83.9% were represented by 
a	single	Operational	Taxonomic	Unit	 (OTU).	We	estimated	another	21,043	plausible	
species, which we argue either lack a reference barcode or are undescribed. The total of 
31,846	species	is	similar	to	the	number	of	insect	species	known	for	Germany	(~35,500).	
Because Malaise traps capture only a subset of insects, our approach identified many 
species likely unknown from Germany or new to science. Our reproducible workflow 
(~80%	OTU-	similarity	 among	years)	provides	 a	blueprint	 for	 large-	scale	biodiversity	
monitoring of insects and other biodiversity components in near real time.
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1  |  INTRODUC TION

Insects	are	the	most	diverse	animal	taxonomic	group	on	Earth	and	
contribute to many essential ecosystem processes and services, 
such as pollination, nutrient cycling and organic matter decom-
position	 (Cardoso	 et	 al.,	2020).	However,	 insect	 populations	 are	
declining	 (Wagner,	 2020)	 and	 our	 ability	 to	 mitigate	 these	 de-
clines is hindered by poor understanding of spatial distributions, 
habitat requirements, biotic interactions, dynamics and even the 
overall	number	of	extant	 species.	About	1	million	 insect	 species	
have been described to date, but recent estimates of total spe-
cies	 numbers	 stand	 at	 about	 5.5	 million	 (Stork,	 2018)	 or	 even	
more	 (IPBES,	 2019).	 Surprisingly,	 many	 new	 species	 are	 being	
reported even for very well- studied and generally species- poor 
areas	 with	 a	 long	 history	 of	 entomological	 research.	 For	 exam-
ple,	based	on	4000	species	caught	with	Malaise	traps	in	Sweden,	
Karlsson	et	al.	(2020)	reported	almost	700	insect	species	new	to	
science	and ~ 1300	new	to	Sweden.	Similarly,	in	a	DNA	barcoding	
analysis of about 62,000 specimens collected with Malaise traps, 
Chimeno	et	al.	(2022)	estimated	over	2000	dipteran	species	new	
to Germany, raising the total number of 33,341 known insect spe-
cies	 in	 the	country	 (Klausnitzer,	2005)	 to	 approximately	35,500.	
Thus, while many new insect species are being continuously re-
ported, the vast majority still remain unknown.

A	key	 constraint	 to	 closing	 the	 current	 information	 gap	on	 in-
sects is the vast number of species and specimen- rich samples that 
must be processed. Terrestrial and aquatic monitoring methods, 
like Malaise, canopy or light traps, as well as samples collected with 
nets from freshwater habitats, can collect thousands of specimens 
(e.g.	Habel	et	al.,	2023; Karlsson et al., 2020; Resh & Jackson, 1993),	
many	of	which	are	small	and	difficult	 to	 identify	even	for	experts,	
resulting	in	taxonomic	neglect	(Srivathsan	et	al.,	2023).	National	and	
international monitoring networks, such as the Global Malaise Trap 
programme	 (Geiger	et	al.,	2016),	BioScan	 (Hobern,	2021),	 LifePlan	
(www. helsi nki. fi/ en/ proje cts/ lifeplan)	 or	 the	 Swedish	Malaise	Trap	
programme	(Karlsson	et	al.,	2020),	have	started	coordinated	large-	
scale insect sampling initiatives based on standardized traps and 
procedures	 (e.g.	 Hallmann	 et	 al.,	 2017).	 However,	 classical	 taxo-
nomic analyses of these samples cannot keep pace with the rate of 
collection, particularly given the low and globally declining number 
of	taxonomic	experts	(European	Commission,	2022).	While	the	im-
portance	of	taxonomic	expertise	remains	undisputed,	there	is	a	clear	
need for alternative methods to assess insect species diversity both 
efficiently	and	reliably	(Chua	et	al.,	2023; van Klink et al., 2022).

DNA	metabarcoding	is	one	key	method	for	assessing	specimen-	
rich samples. Following more than a decade of research and trial 
applications, metabarcoding has now reached a high technology 
readiness	 level,	 presenting	 a	 promising	 solution	 for	 examining	 a	

fuller range of insect biodiversity in large- scale monitoring pro-
grammes.	 A	 range	 of	 suitable	 protocols	 for	 specimen	 collection,	
processing	 and	 data	 analysis	 are	 now	 available	 (Buchner,	Macher,	
et al., 2021; Montgomery et al., 2021).	This	includes	suitable	primer	
pairs	(Braukmann	et	al.,	2019;	Elbrecht	et	al.,	2019)	and	insect	bar-
code	reference	data	on	BOLD	(Ratnasingham	&	Hebert,	2007).	The	
key	strength	of	DNA	metabarcoding	is	that	it	rapidly	delivers	taxo-
nomically	highly	resolved	taxa	lists,	whereas	obtaiquantitative	infor-
mation	on	species	abundance	or	biomass	remains	a	challenge	(Sickel	
et al., 2023).

Despite	 its	 potential,	 implementing	 DNA	 metabarcoding	 for	
large- scale and long- term insect biodiversity monitoring programmes 
is still in its infacy. There are several reasons. In particular sample 
throughput is still constrained by the need for significant manual la-
bour,	expensive	DNA	kits	and	reagents,	and	difficulties	in	accessing	
information	on	lab	and	analysis	procedures	(McGee	et	al.,	2019)	and	
the	lack	of	formal	standards	for	the	procedures	(Chua	et	al.,	2023).	
All	these	aspects	present	roadblocks	to	large-	scale	implementation.	
Furthermore, incomplete and partly inconsistent reference data-
bases impact the accuracy and quantity of species- level assignments 
and thus the completeness and validity of the resulting species lists 
(Chua	et	al.,	2023).	This	problem	remains	particularly	pervasive	for	
highly diverse groups like Diptera and Hymenoptera that are un-
derrepresented in reference libraries because of those species that 
are difficult to distinguish based on morphological criteria. The un-
known	 (i.e.	 undescribed)	 species	 in	 these	 poorly	 explored	 groups	
are	often	referred	to	as	‘dark	taxa’	(Hartop,	2021).	However,	in	the	
absence of reference barcodes for species, or even when formal spe-
cies	descriptions	are	lacking,	DNA	metabarcoding	can	still	overcome	
these	 limitations	using	genetic	distance	thresholds	to	approximate	
entities that roughly reflect species, such as molecular Operational 
Taxonomic	Units	(OTUs)	or	Barcode	Index	Numbers	(Ratnasingham	
& Hebert, 2013)	(BINs).	Even	in	the	absence	of	species	in	databases,	
such	 distance-	based	 entities	 can	 approximate	 species	 numbers	
and	have	been	applied	 in	ecological	 and	ecotoxicological	 research	
for	 many	 years	 (Beermann	 et	 al.,	 2018; Hoppeler et al., 2016; 
Sturmbauer	et	al.,	1999).

DNA	metabarcoding	 analyses	 to	 date	 have	 been	 limited	 to	 ei-
ther	 a	 specific	 region	 within	 a	 country	 (e.g.	 Geiger	 et	 al.,	 2016; 
Habel et al., 2023; Uhler et al., 2021),	short	time	spans	(e.g.	Huang	
et al., 2022; Li et al., 2023)	or	specific	taxonomic	groups	(e.g.	Huang	
et al., 2022).	None	has	quantified	the	full	extent	of	insect	diversity—
including	dark	 taxa—at	 the	whole-	country	scale	and	through	time.	
Thus,	 the	present	 study	 fills	 this	 gap	by	presenting	a	 robust	DNA	
metabarcoding workflow for application to large- scale insect mon-
itoring programmes, combined with a new multi- level procedure to 
assess the validity of species records. We analysed 1815 Malaise 
trap samples collected in 2019 and 2020 from 75 individual traps 
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across	Germany	(Figure 1).	Our	principal	aim	was	to	(1)	present	the	
workflow as a resource for use by other researchers by providing 
detailed and publicly available laboratory procedures and bioinfor-
matic	programmes.	Additionally,	we	(2)	quantified	the	time	and	cost	
investment required per sample for this workflow to evaluate its 
affordability, which is a key limitation to using any metabarcoding 
workflow.	Furthermore,	we	(3)	evaluated	the	reliability	of	the	data	
provided by our workflow in terms of the number of known species 
detected,	number	of	dark	taxa	and	their	likely	validity,	and	variation	
in species detected between years.

The	 results	 obtained	 with	 the	 new	 workflow	 show	 that	 DNA	
metabarcoding is feasible for large- scale and long- term insect mon-
itoring, and providing insight into insect diversity at scales that have 
been challenging to study so far.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

Sampling	was	conducted	as	part	of	the	nationwide	German	Malaise	
trap	 monitoring	 programme	 (Welti	 et	 al.,	 2022)	 comprising	 for-
ests,	 grassland,	 agricultural	 and	 urban	 areas	 (https:// www. ufz. de/ 
lter-		d/	index.	php?	de= 46285 ).	 Most	 of	 the	 31	 sites	 in	 which	 the	
Malaise	traps	were	placed	belong	either	to	the	German	LTER-	D	net-
work	 (Haase	et	 al.,	2016; Mirtl et al., 2018)	 (Long-	Term	Ecological	
Research)	or	to	the	network	of	national	natural	landscapes	(https:// 
natio nale-  natur lands chaft en. de).	 At	 each	 site,	 one	 to	 six	 Malaise	
traps have been operated to monitor biomass and species composi-
tion of flying insects in different habitats. In the present study, we 
used a total of 1815 Malaise trap samples from 56 locations across 
Germany	during	2019,	with	19	 locations	added	 in	2020	 (Figure 1).	
Traps	were	emptied	every	2 weeks	from	the	beginning	of	April	until	
the	end	of	October	in	both	years	(approx.	15	samples	per	year,	de-
pending	on	site-	specific	climatic	conditions).	Insects	were	caught	in	

80% denatured ethanol and their wet biomass was measured follow-
ing	Welti	et	al.	(2022).	Samples	were	kept	in	96%	denatured	ethanol	
and protected from light until later genetic analysis.

2.2  |  Sample processing

All	 samples	were	divided	 into	 two	size	classes	 (small	≤4 mm;	 large	
>4 mm)	 to	 increase	 taxon	 recovery	 rates	 of	 small	 taxa	 (Elbrecht
et al., 2021).	Samples	spread	on	a	perforated	plate	sieve	(4 mm	hole
diameter)	 were	 stirred	 using	 a	magnetic	 stirrer	 (750 rpm)	 in	 etha-
nol	 (Figure S1),	so	that	small	 individuals	passed	through	the	holes,
whereas the large ones were retained on top of the sieve. The size
fractions were homogenized following the protocol described in
Buchner,	Haase,	and	Leese	(2021),	except	that	the	homogenization
time	was	reduced	to	30 s.	The	two	size	fractions	were	subsequently
pooled	at	a	ratio	of	1:4	(large	200 μL:small	800 μL)	as	recommended	
by	Elbrecht	et	al.	(2021).

2.3  |  DNA extraction

Generally, the laboratory steps followed the workflow described in 
Buchner	et	al.	 (2021).	All	procedures	are	available	as	 step-	by-	step	
protocols	 in	 a	protocols.io	 repository	 (Buchner,	2022b).	All	 subse-
quent steps after size- sorting and homogenization were completed 
on a Biomek FXP	 liquid	 handling	 workstation	 (Beckman	 Coulter,	
Brea,	CA,	USA).	After	sample	lysis	(Buchner,	2022e),	samples	were	
processed in duplicate during the entire library preparation to con-
trol	 for	possible	cross-	contamination.	Additionally,	 in	each	96-	well	
plate	12	negative	controls	were	included.	DNA	was	extracted	using	
a	magnetic	bead	protocol	(Buchner,	2022a).	Extraction	success	was	
verified on a 1% agarose gel. For all samples that did not amplify, the 
extraction	was	repeated	with	silica	spin	columns	(Buchner,	2022a),	
which were always successful.

F I G U R E  1 (a)	Location	of	the	in	
total 75 Malaise traps across Germany, 
(b) Lateral	view	of	a	Malaise	trap	with
collection bottle protected from sunlight
at	the	upper	left	end	and	(c)	Top	view	of	a
preserved Malaise trap sample spread in a
white tray.

https://www.ufz.de/lter-d/index.php?de=46285
https://www.ufz.de/lter-d/index.php?de=46285
https://nationale-naturlandschaften.de
https://nationale-naturlandschaften.de
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2.4  |  Sequencing library preparation

The PCR for the metabarcoding library followed a two- step PCR 
protocol	 (Zizka	et	al.,	2019)	 targeting	a	205-	bp	fragment	 (Vamos	
et al., 2017)	 of	 the	 cytochrome	 oxidase	 c	 subunit	 I	 (COI)	 gene.	
DNA	 was	 amplified	 in	 a	 first	 PCR	 using	 the	 Qiagen	 Multiplex	
Plus	Kit	 (Qiagen,	Hilden,	Germany)	with	 a	 final	 concentration	of	
1x	Multiplex	Mastermix,	200 nM	of	each	primer	 (fwh2F,	 fwhR2n	
(Vamos	et	 al.,	2017))	 and	1 μL	of	DNA,	 filled	up	with	PCR-	grade	
water	 to	a	 final	volume	of	10 μL. The amplification protocol was 
5 min	of	 initial	denaturation	at	95°C,	20	cycles	of	30 s	denatura-
tion	 at	 95°C,	 90 s	 of	 annealing	 at	 58°C	 and	30 s	 of	 extension	 at	
72°C,	followed	by	a	final	elongation	step	of	10 min	at	68°C.	Each	
of the PCR plates used in the first step was tagged with a unique 
combination	 of	 inline	 tags.	 Additionally,	 the	 primers	 contained	
a universal binding site for the primer used in the second PCR 
step	 to	anneal	 (Table S1).	The	PCR	products	were	purified	using	
a	bead-	based	protocol	and	a	ratio	of	0.8x	and	an	elution	volume	
of	40 μL to remove remaining primers and potential primer dimers 
(Buchner,	2022c).

In	the	second	PCR,	DNA	was	amplified	at	a	final	concentration	
of 1×	Multiplex	Mastermix,	 100 nM	of	 each	 primer	 (Table S1),	 1× 
Corralload	Loading	Dye,	2 μL of the cleaned- up product of the first 
PCR	in	a	final	volume	of	10 μL.	The	amplification	protocol	was	5 min	
of	 initial	 denaturation	 at	 95°C,	 25	 cycles	 of	 30 s	 denaturation	 at	
95°C,	90 s	of	annealing	at	61°C	and	30 s	of	extension	at	72°C,	fol-
lowed	by	a	final	elongation	step	of	10 min	at	68°C.	PCR	success	was	
visualized on a 1% agarose gel.

To achieve a similar sequencing depth, the PCR products were 
normalized to equal concentrations. Normalization was achieved 
with a bead- based protocol and a ratio of 0.7×	 (Buchner,	2022d)	
and	an	elution	volume	of	40 μL. The whole volume of the normalized 
samples was then pooled into the final libraries. Libraries were then 
concentrated	using	a	silica	spin-	column	protocol	 (Buchner,	2022a).	
Library	 concentrations	 were	 quantified	 on	 a	 Fragment	 Analyzer	
(High	Sensitivity	NGS	Fragment	Analysis	Kit;	Advanced	Analytical,	
Ankeny,	IA,	USA).	The	libraries	were	sequenced	at	Macrogen	Europe	
using	the	HiSeq	X	platform	with	a	paired-	end	(2 × 150	bp,	15	lanes)	
kit	or	at	CeGaT	(Tübingen,	Germany)	using	the	MiSeq	V2	platform	
(2 × 150	bp,	1	lane).

2.5  |  Bioinformatics

Raw	data	of	 the	sequencing	 runs	were	delivered	demultiplexed	by	
index	reads.	Since	no	differences	were	detected	between	sequenc-
ing	runs,	they	were	all	pooled	before	subsequent	analyses.	Additional	
demultiplexing	of	the	inline	tags	was	achieved	with	the	Python	pack-
age	 ‘demultiplexer’	 (v1.1.0,	 https:// github. com/ Domin ikBuc hner/ 
demul	tiplexer).	 Reads	 were	 further	 processed	 with	 the	 APSCALE	
pipeline	 (Buchner	 et	 al.,	 2022)	 (v1.4.0,	 https:// github. com/ Domin 
ikBuc hner/ apscale)	using	default	settings.	Briefly,	paired-	end	reads	
were	first	merged	using	vsearch	(Rognes	et	al.,	2016)	(v2.21.1)	before	

the	primer	sequences	were	trimmed	using	cutadapt	 (Martin,	2011)	
(v3.5).	Only	reads	with	a	length	of	205 bp	(±10)	and	with	a	maximum	
expected	 error	 of	 1	 were	 retained.	 Identical	 reads	 less	 abundant	
than 4 were discarded prior to OTU clustering and globally derep-
licated before OTUs were clustered based on a similarity threshold 
of 97%. Reads were then mapped to OTUs. This included singletons. 
The resulting OTU table was filtered for erroneous OTUs with the 
LULU	algorithm	(Frøslev	et	al.,	2017)	as	 implemented	 in	APSCALE.	
Taxonomic	 assignment	 was	 performed	 using	 BOLDigger	 (Buchner	
& Leese, 2020)	(v1.5.4,	https:// github. com/ Domin ikBuc hner/ BOLDi 
gger).	 The	 best	 hit	 was	 determined	 with	 the	 BOLDigger	 method	
and	 the	API	verification	method.	This	 resulted	 in	a	 raw	OTU	table	
(Table S2)	that	was	used	in	subsequent	analysis.

2.6  |  Data filtering

To control for possible contamination during the laboratory work-
flow, the technical replicates of each sample, as well as the negative 
controls, were merged by summing up the reads, provided that the 
reads	were	present	in	both	replicates.	Subsequently,	the	maximum	
number of reads per OTU present in all of the negative controls was 
subtracted	from	the	respective	OTU	(Table S3).	All	OTUs	were	ana-
lysed for stop- codons, and any OTU containing stop- codons were 
removed.	We	analysed	two	datasets:	(1)	OTUs	assigned	at	the	spe-
cies	level	and	(2)	OTUs	assigned	to	insects.	To	further	clean	dataset	
1, all OTUs sharing species assignments were merged by summing 
up their reads. Retrieved species names containing numbers or 
punctuation	marks	were	also	removed	(e.g.	incomplete	database	re-
cords).	The	resulting	final	species	list	(Table S4)	for	all	samples	was	
used for the validation procedure.

2.7  |  Validation of taxonomic assignment

To validate the resulting species- level list, three different approaches 
were used. First, the occurrences in conjunction with their specific 
locations	of	all	named	species	were	checked	for	plausibility	by	taxo-
nomic	 experts	 at	 the	Entomological	 Society	Krefeld,	Germany.	As	
a	basis,	the	experts	used	the	digitally	available	insect	species	cata-
logue	from	the	Entomofauna	Germanica	(Klausnitzer,	2005),	which	
is best resembled through the list from the German Barcode of Life 
portal	(https:// gbol. bolge rmany. de).	This	plausibility	check	included	
fixing	problems	related	to	synonymy	and	incorporated	the	primary	
scientific	 literature	 available	 to	 the	 experts.	 Second,	 all	 detected	
named species were checked for GBIF records within a 200- km ra-
dius around the given trap. This value was selected to be sufficiently 
high to accommodate the often patchy and rare species records in 
GBIF, the large size of the study area and the fact that many fly-
ing insect species are highly mobile. To do so, a polygon was drawn 
around all trap locations with occurrences of the respective spe-
cies,	and	the	border	of	this	polygon	was	then	extended	by	200 km	
(Figure S2).	Records	were	extracted	from	the	GBIF	database	using	

https://github.com/DominikBuchner/demultiplexer
https://github.com/DominikBuchner/demultiplexer
https://github.com/DominikBuchner/apscale
https://github.com/DominikBuchner/apscale
https://github.com/DominikBuchner/BOLDigger
https://github.com/DominikBuchner/BOLDigger
https://gbol.bolgermany.de
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the	‘rgbif’	package	(Chamberlain	et	al.,	2022).	Lastly,	all	named	spe-
cies were checked against the German Barcode of Life database, 
which	was	downloaded	with	a	custom	Python	script	 (Script	S1).	 If	
a species name occurred in the German Barcode of Life database, 
it	 was	 accepted	 as	 valid.	 Additionally,	 this	 step	 potentially	 identi-
fied species that are unlikely to occur in Germany, supplementing 
the	information	obtained	from	GBIF.	A	record	was	accepted	as	valid	
when two of the three validation criteria were met, which also helps 
to	control	for	false	positives	(Table S5).	Such	multi-	critera	validation	
approaches	have	been	used	elsewhere	(Pereira	et	al.,	2021).

2.8  |  Statistical analysis

To assess if sequencing depth was sufficient across all samples, we 
conducted a read- based rarefaction using a custom python script. 
This approach involved randomly sampling reads without replace-
ment	from	each	sample	in	increments	of	0.1%	(with	50	iterations	per	
step)	of	the	total	read	count.	Subsequently,	we	fitted	a	Michaelis–
Menten- type equation to the resulting rarefaction curve. Using this 
function, we computed OTU richness when doubling the sequencing 
depth. If OTU richness increased by less than 5% when doubling the 
sequencing depth, the sequencing depth was considered sufficient 
(Figure S3; Table S6).

In	addition	to	examining	sequencing	rarefaction	curves,	we	also	
examined	rarefaction	curves	for	both	validated	and	plausible	species	
using the iChao2	(Chiu	et	al.,	2014)	estimator.	We	did	so	to	determine	
the potential influence of collecting more samples from each site, 
such as by sampling for a longer time period or more frequently, on 
the number of detected insect species. This was done by randomly 
drawing	 subsets	 of	 samples	 (50	 iterations	 each)	 from	 the	 dataset	
without replacement in increments of 5 from 5 to 1815.

2.9  |  Plausible species and dark taxa estimation

To address the potential over- estimation of species diversity based 
on OTU numbers we computed the mean number of OTUs per vali-
dated species for each of the 20 insect orders within the dataset. 
This mean was then used to normalize the OTU count for each order. 
Specifically,	we	divided	the	number	of	OTUs	per	order	by	the	cal-
culated mean, providing an estimate of additional species present 
in the dataset that have not yet been assigned a species name. We 
refer to these additional species as plausible species. Furthermore, 
we	obtained	data	from	the	Barcode	of	Life	data	systems	(accession	
date:	14	April	2023),	including	the	number	of	species	barcoded	with	
a voucher specimen collected in Germany, along with the total num-
ber	 insect	 species	 known	 from	Germany	 (Klausnitzer,	2005).	 This	
additional information allowed us to distinguish plausible species 
lacking a reference sequence from potential dark data within the 
dataset. The described correction was performed on order as well as 
on family level, but for simplicity we focused the subsequent analy-
sis on the order level.

2.10  |  Time and cost estimations

To estimate the time and costs needed for our nationwide insect di-
versity assessment via metabarcoding, we used vendor list prices for 
materials, as well as runtimes on the liquid handler plus estimates 
for laboratory set- up before and after each step of the workflow. 
These costs include all labware and chemicals needed to complete 
the respective step of the protocol. Incubation times are not included 
in the time estimates because the time can be used to process other 
samples. The calculated price per sample is based on 1815 samples 
including replicates and negative controls, resulting in a total number 
of 4149 individual reactions spread across 44 96- well PCR plates. 
A	total	of	10	blenders	were	used	for	homogenization,	which	are	in-
cluded in the cost estimate. For sequencing, cost estimates are based 
on the current costs of 1100 € for 110 Gb output at a commercial 
service	 provider	 (Macrogen	 Europe)	 using	 the	 NovaSeq	 6000	 S4,	
which	has	replaced	the	HiSeq	platform,	and	a	sequencing	depth	of	
at	 least	1.5	million	reads	per	sample	 (~817	Gb).	Labour	costs	were	
estimated	at	60	€	per	hour,	corresponding	to	an	experienced	scien-
tist in Germany. The costs for the use of the liquid handler were esti-
mated	based	on	a	linear	depreciation	over	a	total	expected	lifetime	of	
10 years.	Annual	gross	maintenance	costs	of	40,000	€	were	assumed	
for instruments, resulting in total depreciation and maintenance 
costs	of	approximately	4000	€	for	the	present	study.	No	rental	and	
auxiliary	costs	needed	to	be	applied	in	this	study.

3  |  RESULTS

3.1  |  Sequencing results and species validation

We	performed	high-	throughput	DNA	metabarcoding	including	rep-
licates and negative controls on 1815 Malaise trap insect samples 
(775	for	2019	and	1040	for	2020;	Table 1)	using	a	205-	bp	fragment	
of the mitochondrial cytochrome c	oxidase	I	(COI)	gene	as	a	marker.	
All	 samples	 and	 sequencing	 runs	 combined	yielded	3,999,082,169	
demultiplexed	 read	pairs.	The	average	 read	number	per	 sample	 in	
the	 final	 read	 table	was	 1,401,469	 (±SD	 of	 618,631).	 Sequencing	
depth was sufficient for all samples, with a mean increase in richness 
of	0.17%	by	doubling	the	sequencing	depth	(0%–1.46%;	Table S6).

Sequencing	 yielded	 a	 total	 of	 52,981	 raw	 OTUs,	 50,087	 of	
which were assigned to insects. We were able to assign 11,776 
species names to a total of 15,042 OTUs. Two thirds of these spe-
cies	(10,803)	were	validated	via	three	different	criteria	involving	(i)	
expert	 judgement	from	entomologists	with	particular	knowledge	
of long- term Malaise trap community data from German Malaise 
traps,	(ii)	a	comparison	with	an	online	database	that	includes	the	
known	German	species	(Klausnitzer,	2005)	(GBOL)	and	(iii)	a	GBIF	
record	 check	within	 a	 200-	km	 radius.	 Species	were	 regarded	 as	
‘validated’	 when	 two	 of	 the	 three	 validation	 criteria	 supported	
them. The three different validation criteria showed a pairwise 
agreement	exceeding	80%.	Taxonomic	experts	validated	an	addi-
tional 355 species not yet not in the list of species reported from 
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Germany	 (Table 1),	 leading	 to	an	overlap	of	97%	with	 the	GBOL	
database.	GBIF	 and	 taxonomic	 expert	 validation	 had	 an	 overlap	
of	84%,	and	GBIF	and	GBOL	of	82%	(Table S7).	Consequently,	a	
total of 35,045 insect OTUs remained unassigned, either because 
species- level reference data are lacking or the species are truly 
unknown	(i.e.	dark	taxa;	Table 1),	resulting	in	a	large	discrepancy	
between the number of named species and recorded insect OTUs. 
Although	sometimes	several	OTUs	were	assigned	to	the	same	spe-
cies,	9061	(83.9%)	of	our	validated	species	were	represented	by	a	
single	OTU	(Table S8).

3.2  |  Species richness estimation

Our sampling effort captured the majority of OTUs. Based on rare-
faction curves, a greatly increased sampling effort in each site, for in-
stance by sampling more frequently or for a longer period at all sites, 
may	have	only	resulted	in	detecting	an	additional	4725	OTUs	(+9.4%)	
and	 934	 validated	 species	 (+8.6%; Figure 2).	 Additionally,	most	 of	
the	OTUs	were	found	in	both	sampling	years	(36,932 = 73.7%)	with	
more	insect	OTUs	occurring	exclusively	in	2020	(10,720)	than	in	2019	
(2435).	The	same	is	true	for	the	validated	insect	species.	Most	were	
found	 in	 both	 years	 (8456 = 78.3%)	 but	 more	 than	 three	 times	 as	
many	occurred	exclusively	in	2020	(1820)	compared	to	2019	(527).

3.3  |  OTU distribution across insect groups and 
unknown taxa

The	 four	 most	 diverse	 insect	 orders	 in	 Germany	 (Diptera,	
Hymenoptera,	Lepidoptera	and	Coleoptera)	were	well	represented	
in	the	dataset	 (Figure 3,	 top	row).	Diptera	and	Hymenoptera	were	

the	 most	 common	 orders	 both	 at	 the	 OTU	 (22,732 = 45.4%	 and	
12,823 = 25.6%)	and	species	level	(3851 = 35.6%	and	2370 = 21.9%).	
The 10,803 validated insect species represent 33.5% of the 35,500 
insect	 species	 known	 in	 Germany	 (Klausnitzer,	 2005)	 and	 82.6%	
of the 13,076 barcoded insect species recorded in the country 
(Table S9).

The percentage of OTUs assigned to named species differed con-
siderably	among	insect	orders,	being	highest	for	Lepidoptera	(75%),	
followed	by	Coleoptera	(59%).	Less	than	a	fifth	of	the	OTUs	identi-
fied as Diptera and Hymenoptera could be assigned names at the 
species-	level	(17%	and	18%	respectively).	The	lowest	percentage	of	
OTUs	assigned	to	named	species	was	for	Orthoptera	(<1%)	(Figure 3, 
bottom	left	panel).	The	mean	number	of	OTUs	per	validated	insect	
species varied slightly among insect orders and families, typically 
between	1	and	1.5,	but	Orthoptera	(specifically	the	Acrididae)	were	
represented by >4	and	Zygentoma	(specifically	Lepismatidae)	by	~2 
OTUs	per	species	(Figure 3,	bottom	right	panel).

Based on the mean number of OTUs per validated insect spe-
cies calculated at either the order or family level, we estimated that 
our data set respectively included either an additional 22,496 or 
21,043	plausible	 insect	species	 (Table S10).	All	OTUs	belonging	to	
Orthoptera were removed for these estimates to avoid artificially 
inflating	 the	 total	 number	 of	 species	 (Information S1).	 The	 lower	
of the two numbers is a more conservative estimate, but since we 
identified	 435	 different	 families	 (see	Table S11 for further family 
level	 information),	 our	 analysis	 focuses,	 for	 simplicity	 reasons,	 on	
the order level. The additional plausible species could be those that 
either	(a)	could	not	be	identified	to	species	level	due	to	a	lack	of	a	
reference	in	the	present	reference	database,	(b)	had	not	previously	
been	 recorded	 from	Germany	or	 (c)	 represent	new	 species	 to	 sci-
ence.	 Examples	 of	 species	 not	 reported	 from	Germany	or	 new	 to	
science	(‘potential	dark	taxa’	in	Figure 3; Table S10)	were	particularly	
evident in the Diptera and Hymenoptera, for which we respectively 
found ~6600 and ~1200 species, while the missing reference data 
aspect	affected	 the	assignment	 in	all	orders	except	 the	Mantodea	
(with	1	species	only).

3.4  |  Time and cost estimation

The total costs of the laboratory workflow for duplicate sample pro-
cessing	and	negative	controls—including	all	needed	labware,	chemi-
cals,	sequencing	and	salaries—were	estimated	at	88,000	€,	equivalent	
to	about	46	€	per	sample	(Table 2; Table S12).	Costs	for	laboratory	
materials	accounted	for	12	€	(26%)	of	the	total	costs	per	sample,	and	
salaries	for	34	€	(74%).	Sequencing	was	the	most	expensive	step	(con-
tributing	4.85	€	per	sample),	followed	by	enzymatic	steps	such	as	PCR	
(1.65	€)	 and	 sample	 lysis	 (1.54	€).	The	 total	processing	 time	 for	 all	
1815	samples	was	1030	working	hours	or	27.5 weeks,	equivalent	to	
141	samples	within	2 weeks	for	one	person	working	full	time	and	sup-
ported by one liquid handling robot. Most of the processing time was 
needed	for	sample	size-	sorting	and	homogenization.	All	subsequent	
steps	were	completed	within	6 weeks.

TA B L E  1 Summary	statistics	of	OTUs,	assigned	insect	species	
and OTUs assigned to validated insect species according to the 
two- out- of- three validation criterion.

2019 
(n = 775)

2020 
(n = 1040) Σ (n = 1815)

Raw OTUs 41,189 50,166 52,981

Insect OTUs 39,367 47,652 50,087

Insect species 9728 11,183 11,776

Validated	species	according	to:

Expert	
validation

9132 10,475 11,030

GBIF validation 7969 8867 9254

GBOL validation 8777 10,056 10,574

Validated	species 8983 10,276 10,803

Plausible species 21,043

Total species 31,846

Note: Plausible species calculated from the average number of OTUs 
per validated species and family. n = number	of	Malaise	trap	samples.
Abbreviation:	OTUs,	Operational	Taxonomic	Units.
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4  |  DISCUSSION

4.1  |  A metabarcoding workflow for large- scale 
biodiversity monitoring

We	 here	 present	 a	 scalable	 and	 cost-	efficient	 DNA	 metabarcod-
ing workflow which allows analysing thousands of specimen-  and 
species- rich samples within several weeks to months depending on 
the	available	workforce.	The	proposed	DNA	metabarcoding	work-
flow	 differs	 from	 others	 (e.g.	 Braukmann	 et	 al.,	 2019; Hardulak 
et al., 2020; Hausmann et al., 2020)	in	several	important	aspects	that	
are key to high sample throughput at reduced costs and process-
ing time while ensuring high- quality data. Key differences include: 
(i) homogenization	of	samples	in	preservative	liquid	to	avoid	a	time-	
consuming	drying	step	(Buchner,	Haase,	&	Leese,	2021);	(ii)	process-
ing	of	all	samples	in	duplicate	before	DNA	extraction	as	an	essential
quality assurance measure to reduce the probability of false positive 
signals;	(iii)	completion	of	all	laboratory	procedures	by	an	automated

liquid	handling	robot	to	minimize	processing	time	(Buchner,	Macher,	
et al., 2021)	(except	for	the	gel	electrophoresis)	and	maximize	con-
sistency;	 (iv)	 a	mean	 sequencing	 depth	 increased	 to	 ~1.4 M	 reads	
per	sample	 to	boost	species	detectability	and	 (v)	publication	of	all	
laboratory	 procedures	 as	 open-	source	 protocols	 (Buchner,	2022b)	
or	 programmes	 (Buchner	 et	 al.,	2022; Buchner & Leese, 2020)	 to	
ensure	full	transparency	and	reproducibility	following	the	FAIR	prin-
ciples	(Wilkinson	et	al.,	2016).

Labour and material costs of metabarcoding protocols are often 
considered prohibitively high for large- scale monitoring programmes 
(Borrell	et	al.,	2017; Montgomery et al., 2021),	frequently	exceeding	
200	€	per	 sample	 and	up	 to	400	€	 (Aylagas	et	 al.,	2018;	 Elbrecht	
et al., 2017; Ji et al., 2013).	The	workflow	presented	here	consider-
ably reduces these costs, down to <50 €. This is primarily achieved 
by automating crucial laboratory steps and by preparing all required 
solutions	 instead	 of	 purchasing	 expensive	 commercial	 kits.	 Costs	
could be further cut in future large- scale programmes by ordering 
chemicals and consumables in bulk and by further reducing reaction 

F I G U R E  2 Top	row:	Rarefaction	curves	showing	richness	of	insect	OTUs	and	validated	species	richness	that	were	either	observed	(solid	
lines)	or	estimated	(dotted	lines).	Bottom	row:	Shared	and	unique	absolute	numbers	and	proportions	of	the	insect	OTUs	(left	circles)	and	
validated	insect	species	(right	circles)	collected	in	2019	and	2020.
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volumes for all laboratory steps involving enzymes, wherever pos-
sible	(Buchner,	Beermann,	et	al.,	2021).	An	important	consideration	
to lower labour costs is to reduce the processing time per sample, 

notably for size- sorting and homogenization, ideally by automating 
these	 steps	 as	well.	 Furthermore,	 expenses	 related	 to	 sampling	 in	
the field are not included in our analysis, although they can easily 

F I G U R E  3 Top	panels:	Number	of	total	insect	OTUs,	plausible	and	validated	insect	species	per	order	identified	in	the	present	study	
compared	to	the	total	number	of	species	reported	from	Germany	or	sampled	in	Germany	and	included	in	the	BOLD	database	(data	accessed	
on	14	April	2023).	Bottom	left	panel:	Percentage	of	OTUs	assigned	to	species.	Bottom	right	panel:	Mean	number	of	distinct	OTUs	assigned	
to a given plausible species.

missing reference potential dark taxa
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match	laboratory	costs.	For	example,	in	our	monitoring	programme,	
costs for Malaise trap installation, maintenance and biweekly sam-
pling	 from	April	 to	October	 (15	samples	per	site	and	year	 in	 total)	
amounted to about 12 working hours or 240 € for a student aid. 
Adding	travel	time	(highly	variable	but	assumed	here	to	average	15 h	
or	300	€)	 and	material	 (approx.	 450	€)	would	 result	 in	 total	 costs	
for field sampling of 66 € per sample, unless much of the work is 
accomplished	by	volunteers.	This	sum	ignores	expenses	for	rent	and	
additional	costs	 (heating,	electricity,	etc.),	which	need	to	be	added	
when commercial providers are solicited.

Another	 crucial	 but	 often	 neglected	 step	 in	 metabarcoding	
workflows	 is	species	validation.	Validating	species	records	poses	a	
significant	challenge	for	many	taxa	due	to	the	dearth	of	reference	
sequences,	 few	 checklists	 and	 experts,	 and	 diverse	 algorithmic	
approaches	 (Hleap	 et	 al.,	2021).	 However,	 these	 challenges	 could	
be partly addressed by using publicly available species databases, 
as suggested by the remarkably close agreement we found among 
our	three	validation	procedures	of	insect	experts,	GBIF	and	GBOL	
matching.	The	taxonomic	experts	added	further	species	to	the	 list	
of known species from Germany based on recent scientific evi-
dence. This agreement suggests that relying solely on public da-
tabases,	 like	GBIF	 (Telenius,	2011)	and	the	GBOL	database,	which	
most	closely	resembles	the	reports	of	the	Entomofauna	Germanica	
(Klausnitzer,	2005),	 is	sufficiently	accurate	for	 large-	scale	monitor-
ing	where	expert	validation	tends	to	be	prohibitive.	This	is	not	to	ad-
vocate	disregarding	expert	knowledge,	which	is	critical	to	minimize	
the well- known errors inherent in automated validation methods 
(e.g.	Meiklejohn	et	al.,	2019).	Instead,	we	would	like	to	raise	aware-
ness	that	acceptable	alternatives	exist	to	overcome	time	constraints,	
as they typically arise in large biodiversity monitoring programmes. 
FAIR	 and	 curated	 reference	 databases	with	 up-	to-	date	 taxonomic	
names and integration of synonyms is essential for harmonized bio-
diversity monitoring and establishing such systems is a key challenge 
(Keck	&	Altermatt,	2023).

4.2  |  A reliable account of biodiversity

Rarefaction indicates that the 10,803 named insect species identi-
fied	with	 our	 protocol	would	 increase	 by	 only	 934	 species	 (8.6%)	
if sampling efforts were ramped up at the established study sites. 
However, we acknowledge that higher species numbers would be 
obtained if more sites were sampled, in particular including new hab-
itat	types.	This	expectation	is	consistent	with	the	larger	number	of	
validated	insect	species	in	2020	(+14.4%)	when	19	more	sites	were	
sampled compared to 2019. The 10,803 detected named species 
represent one- third of all insect species reported from Germany and 
~83.1% of all barcoded insects from this country. This includes nearly 
100% of the up- to- date barcoded Hymenoptera and Hemiptera, in-
dicating that with just 75 sampling sites our approach captures a 
large portion of the known insect biodiversity of Germany. Other 
metabarcoding studies from regions within Germany have identified 
~5900	species	(Uhler	et	al.,	2021)	and	~11,984	insect	OTUs	(Habel	

et al., 2023).	Similarly,	a	DNA	barcoding	study	investigating	1%	of	the	
samples	 from	 the	 Swedish	Malaise	Trap	programme	 found	>4000 
species	 (Karlsson	et	al.,	2020),	 and	another	 recent	DNA	barcoding	
study based on Malaise traps across eight countries from four con-
tinents found >25,000	 species	 (Srivathsan	 et	 al.,	2023).	While	we	
acknowledge that comparisons of insect species and OTUs numbers 
among studies are difficult due to differences in protocols, these 
examples	indicate,	along	with	the	high	proportion	of	known	or	bar-
coded insects from Germany, that rapid and cost effective metabar-
coding can provide a robust inventory of biodiversity.

At	 the	 scale	 of	 our	 nationwide	 sampling	 network,	 we	 consis-
tently	 found	 the	 same	 species	 in	 two	 consecutive	 years	 (~75% 
species and ~80%	 OTU-	similarity	 among	 years),	 highlighting	 the	
spatiotemporal	 reliability	of	 taxa	 lists	derived	from	metabarcoding	
when used in large- scale monitoring. One of the principal concerns 
in large- scale sampling is that high community variability in space 
and time, and sampling idiosyncrasies, make it difficult to detect the 
same	species	even	in	spatially	or	temporally	proximate	samples.	This	
issue is particularly relevant when using methods, like metabarcod-
ing, that can identify thousands of species, most of which will be 
rare	 and	 so	may	 only	 occur	 sporadically	 in	 a	 single	 site	 (Jeliazkov	
et al., 2022).	For	example,	traps	just	tens	of	metres	apart	(e.g.	Steinke	
et al., 2021)	or	in	successive	sampling	periods	(e.g.	Sinclair	et	al.,	in	
prep, Information S1)	can	capture	very	different	insect	communities.	
However, the between- year consistency of our data suggests this 
issue may diminish as the spatial scale of sampling for metabarcoding 
increases, such as in larger- scale biodiversity monitoring conducted 
across whole countries.

4.3  |  Assessing dark taxa biodiversity

A	 key	 finding	 of	 our	 study	 is	 the	 discovery	 of	 approximately	 five	
times more insect OTUs than validated insect species, demonstrat-
ing the potential value of cost- effective metabarcoding for uncover-
ing as of yet unknown biodiversity in large- scale monitoring. One 
explanation	for	the	higher	number	of	OTUs	we	found	is	that	many	
unassigned OTUs represent described species that cannot be as-
signed to the species level because reference sequences are lacking. 
Alternatively,	many	of	 these	OTUs	could	represent	dark	taxa,	 that	
is,	 species	new	to	science,	as	highlighted	by	Karlsson	et	al.	 (2020)	
and	 Srivathsan	 et	 al.	 (2023).	 While	 it	 is	 difficult	 to	 estimate	 the	
number of OTUs attributed to either known species without a ref-
erence barcode or to new species, we can roughly quantify this by 
comparing OTU- to- species ratios. Our mean number of OTUs per 
validated	 insect	 species	 of	 1.0–1.5	 suggests	 that	 our	 chosen	 cut-	
off of 3% sequence identity generally delineates different spe-
cies	 accurately.	 The	 only	 exception	 is	 the	 Orthoptera,	 which	 are	
known	to	exhibit	many	pseudogenes	(see	 Information S1)	and	that	
would	 inflate	the	OTU-	to-	species	ratio.	Specific	correction	factors	
for	 different	 taxonomic	 groups	 can	 also	be	 estimated	 to	 infer	 the	
portion of undescribed species in the OTU datasets, which our re-
sults suggest is a large proportion. This is particularly true for the 
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Hymenoptera and Diptera, where, after correcting the OTU num-
bers, we estimate about 6600 and 1200 potential new species to 
science for the two groups. This result agrees with reports from the 
Swedish	Malaise	Trap	programme	where	most	of	the	observed	700	
species	new	to	science	(Karlsson	et	al.,	2020)	belonged	to	Diptera	
and	Hymenoptera	(Ronquist	et	al.,	2020).	However,	our	estimate	of	
putatively undiscovered species in Germany is obviously a signifi-
cant underrepresentation for two main reasons: First, while Malaise 
traps capture many different insect species, they likely miss many 
non-	flying	 insects,	 insects	 flying	 high	 above	 ground,	 for	 example,	
in	 tree	canopies,	or	avoiding	or	escaping	Malaise	 traps	 (e.g.	Habel	
et al., 2023).	Second,	while	our	75	Malaise	traps	reflect	almost	en-
tirely	the	north–south	and	east–west	gradients	of	Germany,	they	do	
not cover all regions in the country. Consequently, there is likely a 
trove of undiscovered species, even in countries like Germany and 
Sweden	with	a	relatively	species-	poor	fauna	and	a	 long	taxonomic	
tradition.	DNA	metabarcoding	can	help	discover	the	extent	of	this	
unknown	 biodiversity	 and	 identify	 taxa	 and	 sites	 that	 require	 ad-
ditional	taxonomic	work.

4.4  |  Technical challenges and ways forward

Metabarcoding comes with some drawbacks and technical chal-
lenges that must be considered when proposing future insect 
biodiversity	 monitoring	 strategies	 (Chua	 et	 al.,	 2023).	 First,	 our	
approach is a compromise between improving feasibility for large- 
scale	monitoring	 and	 the	 chances	of	 detecting	 all	 taxa.	Additional	
sample	processing,	such	as	complementary	mild	lysis	(Iwaszkiewicz-	
Eggebrecht	et	al.,	2023; Marquina et al., 2022),	greater	replication	
(Zizka,	Geiger,	et	al.,	2022)	and	using	multiple	gene	markers	or	prim-
ers	(Elbrecht	et	al.,	2019; Hajibabaei et al., 2019),	as	well	as	increas-
ing	sequencing	depth	(this	study),	would	undoubtedly	recover	more	
species. However, the additional effort required must be weighed 
against	the	extra	information	gained,	which	may	not	be	substantial	
(Buchner,	 Haase,	 &	 Leese,	 2021).	 Second,	 the	 incompleteness	 of	
regional and interregional reference sequence databases, and the 
generation of reference sequences of unknown species, remains a 
persistent	 challenge	 (e.g.	Chua	et	 al.,	2023; Karlsson et al., 2020).	
Poorly studied groups present the largest hurdle, such as Diptera, 
Hymenoptera and various beetle families. Thus, to implement and 
facilitate insect biodiversity monitoring at large scales a clear road-
map	is	needed.	First,	DNA	metabarcoding	could	be	used	to	monitor	
insect biodiversity at hundreds of sites to identify the priority sites. 
Second,	in-	depth	analysis	are	needed	at	priority	sites	utilizing	high-	
throughput	 single-	specimen	barcoding	 (Hebert	 et	 al.,	2018; Meier 
et al., 2016)	 coupled	with	additional	methods	 to	gain	 insights	 into	
abundance,	biomass	and	phenotypic	data	(Høye	et	al.,	2021; Wührl 
et al., 2022).	Improved	collaboration	between	taxonomists,	molecu-
lar	ecologists	but	also	experts	from	other	fields,	such	as	computer	
vision and deep learning, are needed to implement this roadmap of 
large-	scale	biodiversity	monitoring.	Specifically,	sequence	data	need	
to	be	 linked	with	valid	 taxonomic	names	and	undescribed	 species	

need	to	be	described	(Hartop	et	al.,	2022).	An	additional	advantage	
of incorporating these methods is their ability to provide data on 
species abundance and biomass, thereby complementing the bio-
diversity	 data	 for	 priority	 sites	 identified	 through	 DNA	 metabar-
coding.	Alternatively,	 techniques	 like	mild	 lysis	need	 to	be	 further	
developed, to allow a similar high coverage of species directly from 
the metabarcoding bulk samples while also allowing for subsequent 
morphological	 identification.	Vouchers	would	 also	help	obtain	 the	
ecological trait information needed to link biodiversity changes with 
ecosystem function changes. Here, digital specimen vouchers have 
the benefit of massively increasing analysis speed. Lastly, a key ad-
vantage	of	molecular	methods	is	that	tissue	and	DNA	samples	can	
easily be stored in miniaturized formats and reanalysed in the fu-
ture	 (Zizka,	Koschorreck,	 et	 al.,	2022).	 Emerging	methods	 such	 as	
metagenomics can thus be applied in the future to stored samples 
to gain additional insights through reanalysis by eliminating biases 
introduced by PCR. This also makes direct intercalibration of differ-
ent methods possible enabling harmonized biodiversity monitoring 
despite methodological advancements.

4.5  |  Implications beyond insect monitoring

We used insects collected with Malaise traps to demonstrate the 
value	of	a	new	DNA	metabarcoding	workflow	that	is	reliable,	scal-
able, fast, cost- effective and particularly well- suited for large- scale 
monitoring	 of	 highly	 diverse	 taxonomic	 groups.	 The	 approach	 is,	
however, by no means limited to insects from Malaise traps, given 
that	many	of	the	key	advances	we	highlight	 (e.g.	automated	work-
flow,	 robust	 species	validation)	are	applicable	 to	a	variety	of	 sam-
pling	 methods,	 other	 invertebrate	 and	 vertebrate	 taxa,	 and	 even	
environmental	 DNA	 from	 various	 sources	 including	 soil	 and	 sedi-
ment	(Pawlowski	et	al.,	2022),	by	aligning	all	post-	sampling	process-
ing steps with the requirements for robotic high sample throughput 
(Buchner,	Macher,	et	al.,	2021).	The	presented	workflow	thus	moves	
us closer to realizing the overall vision for metabarcoding, that is, 
to generate and link high- throughput biodiversity analyses with 
large-	scale	monitoring	 (Bush	 et	 al.,	2017).	 Such	 integration	would	
greatly enhance assessments of the massive ongoing changes in 
global	biodiversity	experienced	at	the	present	(e.g.	Sinclair	et	al.,	in	
prep, Information S2)	and	biodiversity	protection	(e.g.	the	Kunming-	
Montreal	Global	Biodiversity	Framework	of	the	CBD),	including	Red	
List and invasive species assessments as part of policy frameworks 
on	biodiversity	 conservation	 (e.g.	Wetzel	 et	 al.,	2015).	As	demon-
strated here, integrating metabarcoding into large- scale monitoring 
networks is a powerful means to improving our understanding of 
biodiversity change and supporting conservation actions.
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