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Preface

Much of today’s speech and writing is channeled digitally, and computers are
increasingly able to disseminate, organize, and produce language along with the
information contained therein. Such capabilities make people’s lives easier: Now
everyone on the internet can correspond instantly with billions of people around
the globe, and access information far surpassing even the best research libraries
of the past. On the other hand, these tools may trigger a socio-economic transfor-
mation with losers as well as winners, and can harm people if used uncritically.

This book takes you on a tour of different real-world tasks and applications
where computers deal with language. During this tour, you’ll encounter essential
concepts relating to language, representation, and processing, so that by the end
of the book you will have a good grasp of key concepts in the field of language
technology (LT), computational linguistics (CL), and natural language process-
ing (NLP) – essentially names for the same thing, as viewed from the respective
perspectives of industry, linguistics, and computer science. The only background
you need to read this book is some curiosity about language and some everyday
experience with computers.

We explore tools that support writing; foreign language learning; the distil-
lation of information from text for research and business purposes; automatic
detection of spam, anti-social content, or emotional sentiment; web search; ma-
chine translation; and conversation. We assume that most of you will be famil-
iar with these applications and may wonder how they work or why they don’t.
What you may not realize is how similar the underlying processing is. For ex-
ample, there is a lot in common between how your email system filters spam
and how a dialog system identifies what you are asking it to do. By seeing these
concepts recur – in this case, a machine learning technique called classification
– we hope this will reinforce the importance of applying general techniques for
new applications.

This book aims to welcome humanities-confident students to learn technical
tools, and to invite computing-confident students to appreciate the social rich-
ness of language data. From the technical side, we explore the computational
underpinnings of language technology; from the humanistic side, we emphasize
the nuances of the linguistic data as well as social, economic, and ethical effects
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of such technology. Whether you feel more confident in humanistic or techni-
cal ways of thinking, we hope that this book empowers you to combine both
approaches to fully understand the value, limitations, and consequences of lan-
guage technology.

How to use the book

There are a number of features in this textbookwhich allow you to structurewhat
you learn, explore more about the topics and to reinforce what you are learning.
As a start, relevant keywords are typeset in bold and shown in the margins of
each page. You can also look those up in the Subject index at the end of the book.

The Under the Hood sections included in many of the chapters are intended to
give you more detail on selected advanced topics. For those interested in learn-
ing more about language and computers, we hope that you find these sections
enjoyable and enlightening, though the gist of each chapter can be understood
without reading those sections.

At the end of each chapter, there is aChecklist indicatingwhat you should have
learned in reading the chapter. The Exercises found at the end of each chapter
review the chapter’s material and give you opportunities to go beyond it. Our
hope is that the checklist and exercises help you to get a good grasp of each of
the topics and the concepts involved. Different exercises will appeal to different
students; you are welcome to choose the ones that seem most interesting to you,
or challenge yourself to try all of them.

If you enjoy the topic of a particular chapter, we also encourage you to make
use of the Further reading recommendations. You can also track the References at
the end of the book.

For more advanced students, we have had success combining this textbook
with a reading list of articles about digital humanities, computational social sci-
ence, and corpus linguistics, such as those discussed in Chapter 4, which students
are asked to present in class. (In one of our classes based on this book, the in-
structor gives a lecture every Tuesday to set up the topic; Thursdays begin with
a clicker quiz to test students’ understanding, and the rest of Thursday’s class is
spent on student presentations of articles). The reading list can be updated ev-
ery year and customized to the interests of the instructor and students, and the
presentations give students a chance to learn from one another while practicing
valuable humanistic skills in digesting and communicating research findings. Ad-
vanced students may also be assigned to pursue a final project, engaging with
the literature that they have read throughout the semester.

x



Finally, on the book’s companion website https://osf.io/v7uqm/, we offer an
example syllabus and slide decks corresponding to each chapter of this book,
which instructors are welcome to use and adapt.

xi

https://osf.io/v7uqm/




1 Encoding language on computers

1.1 What is language?

This book aims to introduce you to the different ways that computers are able
to process natural language. To start off, then, we can ask: What is language?
You’re using language to read this book, so you have some intuitive idea of what
it is, but if you’ve never studied linguistics before, you might not have a clear
definition in mind.

In an attempt to distinguish between language and other animal communica-
tion systems, the anthropologist Charles Hockett (1960) proposed some proper-
ties that together make language special:

1. Language is produced vocally and understood with the auditory system,
or in the case of signed languages, signed with the body and perceived
visually.

2. Language is produced intentionally. People intend to say what they say.

3. Language is transitory: Unless youwrite downwhat is said, it is ephemeral.
As we will explore in detail later, writing – crucially not transitory – is
distinct from language.

4. Language is interchangeable: Anything that you can hear, you can also say,
and vice versa, regardless of its truth or its relation to you. (In contrast, in
the realm of animal communication, queen ants produce a chemical signal
that other ants cannot produce, meaning that chemical communication for
ants is non-interchangeable.)

5. Language involves total feedback: Speakers can hear their own speech, and
signers can see their own signing. People know what they are saying.

6. When people speak or sign, the sounds/signs that they produce are specif-
ically intended for communication, not secondary to any other purpose.
(In contrast, a dog may indirectly convey that it is hot by panting, but the
primary purpose of panting is to cool the dog off, not to communicate.)
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7. Specific words/signs are attached to specific meanings.

8. The relation between sounds/signs and meaning is mostly arbitrary, cho-
sen by convention. There is no particular reason to call a dog a dog except
that our community has agreed to it; other communities have chosen other
conventions (perro, Hund, etc.).

9. Even if different people pronounce or sign the same word differently, these
variable realizations are mapped to discrete categories (distinct sounds,
signs, or words) in the mind.

10. Language can be used to talk about things that are absent, imaginary, or
false (in contrast to pointing, for example, which is restricted to entities
that are present).

11. Language can be used to lie.

12. Language is made of discrete units: Sentences/utterances are made of
words; words are made of morphemes (pieces of words such as un- or
-ing); morphemes are made of sounds.

13. Language is productive: You can use it to say and understand things that
have never been said before.

14. Language is learnable: You can learn a (new) language.

15. Language is culturally transmitted: You learn the language(s) surrounding
you.

16. Language is reflexive: As we’re doing here, you can use language to talk
about itself.

Using these distinctive features, you should now be able to explain why music,
mathematics, and programming languages – as amazing and useful as they are –
do not constitute language in Hockett’s sense, even if they share some elements
in common with it.

1.2 Language versus writing

Language is perhaps the most amazing technology that humans have ever cre-
ated: It allows us to teach and learn, explain complicated ideas, build social re-
lationships and societies, create laws and promises, ask and answer questions,

2



1.2 Language versus writing

make and respond to commands, tell stories, imagine alternate realities, under-
stand what other people believe, recount the past and plan for the future, and
collaborate to get things done.

It is important to understand that language is distinct from writing. As Hock-
ett notes, spoken/signed utterances are ephemeral; writing constitutes a further
amazing technologywhich represents speech/signing in a system of lasting phys-
ical or digital markings. Distinguishing language from its written representation,
language is universal across humans: All human societies use language, and ev-
ery single human child (except for rare cases of extremely severe neglect or dis-
ability) learns language without much formal instruction. In contrast, writing is
not universal: Some societies do not use writing. Indeed, of the seven thousand
known spoken languages listed in Ethnologue1, only about sixty percent have
writing systems; unwritten languages include the Gugu Badhun language of Aus-
tralia, the Southeastern Pomo language of California, and so on. Writing gener-
ally requires formal instruction, and some people do not learn it even if their soci-
ety uses it. Language is also much older than writing; language emerged around
100,000 to 200,000 years ago while writing arose around five or six thousand
years ago. Of course, language is transitory, so its age can only be inferred in-
directly, from archaeological artifacts such as decorative beads (Botha & Knight
2009), which indicate a desire to communicate (one’s status and appearance) that
presumably extends to language. So language is ancient and universal, whilewrit-
ing is new and localized to particular people and societies.

Although it is important to keep language and writing distinct, writing is ob-
viously intimately related to language. Writing allows us to do all the things that
language allows us to do – teach, learn, explain, build relationships, organize so-
cieties, talk about the past and future, collaborate – across distances and time.
With writing, you can learn from people you have never met, from past gener-
ations and other continents. You can also keep records of things, such as debts
and purchases, that are too complicated to remember; indeed, the first Sumerian
writing appears to record commercial transactions, involving both language and
numeracy (Glassner 2003). Today, thanks to computers and the internet, digital
writing allows us to disseminate language instantly around the globe.

The topics explored in this book involve the word language – natural language
processing, language technology – but they largely involvewriting, because writ-
ing is the primary medium through which computers represent and process lan-
guage. We begin our tour by introducing writing systems and their digital repre-
sentation, then end the chapter by briefly exploring sound.

1https://ethnologue.com, accessed 2024-04-19.
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1.3 Writing systems

A writing system is “a system of more or less permanent marks used to represent
an utterance in such a way that it can be recovered more or less exactly without
the intervention of the utterer” (Daniels & Bright 1996: 3). Historically, of course,
writing systems consisted of markings on clay, stone, or paper (originally made
by hand, later by the printing press); today, these markings are stored and dis-
seminated digitally, allowing for much more text to be written, read, and shared
than at any other time in history.

You are reading this book in the Latin alphabet: 26 letters, each of which has
an upper-case and a lower-case variant, plus ten numerals and various types of
punctuation: In total, a little over a hundred symbols. Simple enough?

But this book is called Language and computers, not English and computers! So
we also have to think about how to represent other languages and other writing
systems.

First, going back to the idea that writing systems are distinct from languages,
many different languages share the same writing system: The Latin alphabet
is used not just for English but also for French, German, Finnish, Vietnamese,
Yoruba, and many other languages.

(1) Same writing system, different languages:
a. English: What is your name?
b. French: Comment t’appelles-tu?

Conversely, the same language can be written in multiple different writing
systems. Mandarin Chinese can be written in the traditional characters still used
today in Taiwan; in the simplified characters of Mainland China; or transliterated
into the Latin alphabet through the Pinyin system.

mǎ
Traditional character Simplified character Pinyin Latinization

Figure 1.1: ‘Horse’ (mǎ) written in three different writing systems for
Mandarin Chinese.

As another example of how languages are distinct from writing systems, Yid-
dish and German are related to one another and somewhat mutually intelligible,
but German is written in the Latin alphabet while Yiddish is written in the He-
brew writing system (which, as we’ll discuss below, is not a traditional alphabet
because only the consonant sounds are written).
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Turkish and Vietnamese are examples of languages currently written in the
Latin alphabet but which historically used other systems (for Turkish, Arabic
and Greek alphabets; for Vietnamese, an adaption of the Chinese writing system).
Japanese is a single language currently written in three different writing systems,
all of which can be used for different purposes within the same document.

As discussed above, language comprises a set of mostly arbitrary, memorized
pairs of sound and meaning. A writing system can in principle reflect either or
both of these elements, sounds or meaning. We will explore three types of writ-
ing systems: alphabetic (where each symbol represents one sound), syllabic (each
symbol represents a syllable), and logographic (each symbol represents a concept
that language refers to). In any such system, some part of the sound/meaning
pairing is recorded, but other parts must be independently known to the reader.
Reading English in the Latin alphabet, the string of letters cat conveys informa-
tion about pronunciation, but you have to already know the meaning associated
with this string of sounds.

Writing systems vary not just inwhat information is or is not encoded, but also
in their direction (the Latin alphabet is conventionally written left to right; the
Hebrew and Arabic systems go right to left; Chinese used to be written vertically
but is now written left to right); in conventions about capitalization (if it exists)
and punctuation; and in whether words or syllables are separated (in the Latin
alphabet, by spaces) or contiguous.

1.3.1 Alphabetic systems

We start our tour of writing systems with what should be familiar to any reader
of English: alphabets. In alphabetic systems, a single character typically refers to
a single sound (a single articulatory gesture made by the vocal apparatus). In the
word cat, the three letters represent three sounds: an initial consonant, a vowel,
and a final consonant.

But there is not always a perfect one-to-one correspondence between a
word’s alphabetic spelling and its pronunciation. In English, the orthographic
string ough can be pronounced at least five different ways: cough, tough, through,
though, and hiccough. Letters are not consistently pronounced, and in fact,
sometimes they are not pronounced at all, as in in knee, debt, psychology, and
mortgage, among others. There are historical reasons for these silent letters,
which were by and large pronounced at one time, but the effect is that we now
have letters we do not speak.

The idealized one-to-one sound-letter correspondence is also disrupted when
single letters represent multiple sounds, such as the x in tax, which corresponds
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to a [k] sound followed by an [s] sound. Moreover, multiple letters can consis-
tently be used to represent one sound, as in sh in should or ti in revolution –
both of which represent a single articulatory gesture in which air is channeled
through a narrow passage created by raising the tongue to the roof of the mouth
(below, we’ll learn that this sound is known as a voiceless post-alveolar fricative).

Finally, we can alternate spellings for the same word, such as doughnut and
donut, and homophones show us different words which are spelled differently but
spoken the same, such as colonel and kernel. When the same letter represents
multiple distinct sounds, the same string represents multiple distinct words, or
the same word/sound represents multiple distinct meanings, we are dealing with
ambiguity – a recurring issue in dealing with human language that you will see
throughout this book.

But while there are exceptions to the idea that each unique articulatory ges-
ture is represented by one unique letter, that is still the organizing principle of
alphabetic writing systems.

Looking beyond the familiar Latin alphabet, the Cyrillic alphabet (Table 1.1) is
used for Russian and other languages in its geographic region. Although some
characters correspond well to Latin alphabetic letters, others are distinctive. The
characters within brackets specify how each letter is pronounced; we will return
to these in the discussion of phonetic alphabets later on.

Table 1.1: The Cyrillic alphabet used for Russian.

а б в г д е ё ж з и й
[a] [b] [v] [g] [d] [je] [jo] [ʒ] [z] [i] [j]

к л м н о п р с т у ф
[k] [l] [m] [n] [o] [p] [r] [s] [t] [u] [f]

х ц ч ш щ ъ ы ь э ю я
[x] [ts] [tɕ] [ʂ] [ɕɕ] [-] [ɨ] [ʲ] [e] [ju] [ja]

Some alphabets, such as Fraser used for the Lisu language spoken inMyanmar,
China, and India also include diacritics to indicate properties such as a word’s
tone (how high or low-pitched a sound is). A diacritic is added to a regular char-
acter to indicate more detail about how that sound is supposed to be realized. In
the case of Fraser, for example, M: refers to an [m] sound (written as M), which
has a low tone (written as :).
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You have hopefully noticed the notation used within the brackets ([]). The
characters used there are a part of the International Phonetic Alphabet (IPA).
Whereas most alphabetic writing systems offer an imperfect correspondence be-
tween letters and sound, a phonetic alphabet such as the IPA is designed by lin-
guists to capture those correspondences precisely, offering a way to represent
the sounds of all spoken languages in a unified and unambiguous framework.

At https://www.ipachart.com,2 you can view an interactive IPA chart and lis-
ten to all the sounds. Most of the English orthographic consonants correspond
transparently to the IPA (the IPA symbol [b] represents the sound used in the
orthographic word buy), but some are non-obvious. For example, [θ] stands for
the th in thigh; [ð] for the th in thy; and [ʃ] – the post-alveolar fricative pre-
viewed above! – for the sh in shy. Note that the orthographic strings th and sh
correspond to multiple letters in the Latin alphabet, but only one consonant in a
phonetic alphabet because they represent only one articulatory gesture.

If you remember the periodic table of the elements from chemistry class, you
remember that it is organized left to right by the number of electrons in the
atom’s outermost shell, and top to bottom by the number of electron shells that
orbit its nucleus, so that column-mates and row-mates share important distinc-
tive properties. The IPA consonant chart is similarly organized into meaningful
rows and columns: from top to bottom by howmuch the air expelled by the lungs
does or does not stop in the mouth in creating that sound, and from left to right
by the position in the mouth, from front to back, where the airflow is constricted.

As seen in Figure 1.2, the top left of the IPA consonant chart represents the
sounds [p] and [b] (which basically correspond to their pronunciations in the
Latin alphabet), where the air stops fully at the very front of the mouth on the
lips. Moving across, the place of articulation moves further back in the mouth

2Accessed 2024-07-01.

Table 1.2: IPA consonants

Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngal Glottal

Plosives p b t d ʈ ɖ c ɟ k g q g ʔ
Nasals m ɱ n ɳ ɲ ŋ n
Vibrants b r R
Taps and Flaps ɾ ɽ
Fricatives ɸ β f v θ ð s z ʃ ʒ ʂ ʐ ç ʝ x ɣ χ ʁ ħ ʕ h ɦ
Lateral fricatives ɬ ɮ
Approximants ʋ ɹ ɻ j ɰ
Lateral approxi-
mants

l ɭ ʎ l
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(e.g., [k] and [g] are formed by raising the back of the tongue); moving down,
the manner of articulation involves less and less stoppage of air, with sounds like
[f] and [v] allowing air to flow out of the mouth without stopping. The sounds
[p] and [b] both share the same place (bilabial, involving both lips) and manner
(fully stopping the air) of articulation, differing only in voicing: whether the vocal
cords are vibrating during the articulation of the sound. Whenever two sounds
share the same cell in the IPA consonant chart, the first one is unvoiced and the
second is voiced.

The IPA is designed to represent sounds from any human language, and each
individual language uses only a subset of the available possible sounds. So some
of the IPA sounds are not used in English at all, for example the velar fricative
[x] used in the German word for ‘book,’ Buch. (This [x] is distinct from the ortho-
graphic letter x of the Latin alphabet, used in tax and exit: in the IPA, the sound
represented by the orthographic x in tax is [ks], and in exit can be either [ks] or
[gz]! Which version do you use?).

Turning to the vowels, the IPA vowel chart in Figure 1.2 is organized to look
like the shape of the mouth, because vowels are distinguished by the place of the
tongue in the mouth when the air is expelled. The top left of the vowel chart is
the high, front vowel [i], as in the word bee – here, the tongue is raised and the
air is sent through the upper portion of the mouth. The other sound at the top
left of the chart is [y], which is high and front like [i] but also involves rounding
of the lips. This sound is not used in English; English only allows back vowels
(created at the back of the mouth, like the vowel [u] in boot), to be rounded. The
front rounded vowel [y] is used in French words such as tu ‘you’.

æ ɐ

ʊɪ ʏ

ɞ•ɜ•
ə
ɵ•ɘ•

ʉ•ɨ• u•ɯ•

o•ɤ•

ɔ•ʌ•

ɒ•ɑ•ɶ•a•

œ•ɛ•

ø•e•

y•i•

Figure 1.2: IPA vowels.

The IPA coheres perfectly to the idea (roughly true in all alphabetic systems)
that each symbol represents exactly one sound. It has the advantage of being
unambiguous: A given symbol is pronounced in the same way in all contexts.
And yet, despite these major advantages, the IPA is used mainly by linguists to
discuss specific sounds; no one actually uses it as a widespread writing system
for disseminating text in any language. We will explore why not in Chapter 2.
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Returning to writing systems used in the real world, the broad class of alpha-
betic systems also includes abjads (consonant alphabets), which represent con-
sonants only. Some prime examples are Arabic, Aramaic, and Hebrew. In abjads,
vowels are typically deduced from context or marked by diacritics, as illustrated
by the Hebrew word for computer shown on the left-hand side of Figure 1.3.

[maxʃev]
‘computer’

[mexuʃav]
‘is digitized’

[mexaʃav]
‘with + he thought’

Figure 1.3: Example of Hebrew (abjad) text.

The Hebrew word in its character-by-character transliteration bšxm (read
right to left) contains no vowels, so the reader must rely on outside knowledge to
supply the [a] and [e] vowels shown in the IPA rendering of the word [maxʃev].
(Hebrew is written right to left, so the rightmost m in the letter-by-letter
transliteration corresponds to the the first sound that is pronounced, matching
the leftmost symbol in the IPA. We wrote the letter-by-letter transliteration from
right to left to align with the Hebrew letters above.) As shown in the middle
and righthand side of Figure 1.3, the same string is also compatible with other
pronunciations and meanings: Only the consonants are written, so the vowels
have to be supplied by the reader’s wider knowledge of the language and the
context.

1.3.2 Syllabic systems

Syllabic systems are like alphabetic systems in that they involve a mapping be-
tween characters and sounds, but the units of sound are larger, comprising syl-
lables made from multiple articulatory gestures.

All human languages have syllables as basic building blocks of speech, but
the rules for forming syllables differ from language to language. For example, in
Mandarin Chinese, a syllable consists of a single vowel or diphthong (two vow-
els within the same syllable), optionally preceded by at most one consonant or
affricate (two consonants articulated as one), and optionally followed by a nasal
([n] or [ŋ]) or a rhotic sound [ɹ]. Syllables are also distinguished by tone, the con-
tour of pitch throughout the duration of the syllable. This system gives rise to
words, transliterated into the Latin alphabet using the Pinyin system, with tones
rendered as diacritics above vowels, such as túshūguǎn ‘library’, Měiguó ‘Amer-
ica’, and xīngqíwǔ ‘Friday’ (note that sh and ng each represent single phonetic
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consonants, [ʃ] and [ŋ], even though these are spelled with two orthographic
consonants in the Latin alphabet).

Most of the world’s languages have relatively simple syllables, like Mandarin.
This means that the total number of possible syllables in the language is quite
small, and that syllabic writing systems work well. In English, Russian, and other
languages, however, the beginning or end of the syllable may also include a so-
called consonant cluster, such as [sp] and [ɹk] in spark). This greatly expands
the number of possible syllables. You could design a syllabic writing system for
English, but it would be unwieldy and difficult to learn, because there are so
many different possible syllables.

There are two main variants of syllabic systems, the first being abugidas, or al-
phasyllabaries. In these writing systems, the symbols are organized into families.
All the members of a family represent the same consonant, but they correspond
to different vowels. The members of a family also look similar, but have extra
components that are added in order to represent the different vowels. The dis-
tinctive thing about an abugida is that this process is systematic, with more or
less the same vowel components being used in each family.

To write a syllable consisting of a consonant and a vowel, you go to the family
for the relevant consonant, then select the family member corresponding to the
vowel that you want. This works best for languages in which almost all syllables
consist of exactly one consonant and exactly one vowel. Of course, since writing
is a powerful technology, this has not stopped abugidas from being used, with
modifications, to represent languages that do not fall into this pattern. One of
the earliest abugidas was the Brahmic script, which was in wide use in the third
century BCE, and which forms the basis of many writing systems used on the
Indian subcontinent.

As an example, let us look at the writing system for Burmese, a Sino-Tibetan
language spoken in Myanmar. In Figure 1.4, we see a table displaying the base
syllables. Just as in the periodic table of the elements and the IPA of consonants,
the rows and columns are meaningful: The top row corresponds to various con-
sonants made by raising the back of the tongue to the velum (soft palate); the
leftmost column corresponds largely to voiceless consonants, formed without
vibration of the vocal cords.

As you can see in the table, every syllable has a default vowel of [ɐ̃]. This
default vowel can be changed by adding diacritics, as shown in Figure 1.5, for
syllables which start with [k].

We can see that the base character remains the same in all cases, while diacrit-
ics indicate the vowel change. Even though there is some regularity, the combi-
nation of the base character plus a diacritic results in a single character, which
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က  
[ka]̰ 

ခ 
[kʰa]̰ 

ဂ 
[ga]̰ 

ဃ
[ga]̰ 

င
[ŋa]̰ 

စ  
[sa]̰ 

ဆ 
[sʰa]̰ 

ဇ 
[za]̰ 

ဈ
[za]̰ 

ည
[ɲa]̰ 

ဋ  
[ta]̰ 

ဌ 
[tʰa]̰ 

ဍ 
[da]̰ 

ဎ
[da]̰ 

ဏ
[na]̰ 

တ  
[ta]̰ 

ထ 
[tʰa]̰ 

ဒ 
[da]̰ 

ဓ
[da]̰ 

န
[na]̰ 

ပ  
[pa]̰ 

ဖ 
[pʰa]̰ 

ဗ 
[ba]̰ 

ဘ
[ba]̰ 

မ
[ma]̰ 

ယ  
[ya]̰ 

ရ 
[ya]̰ ([ra]̰) 

လ 
[la]̰ 

ဝ
[wa]̰ 

သ
[θa]̰ 

 ဟ 
[ha]̰ 

ဠ 
[la]̰ 

အ
[a]̰ 

 

 
Figure 1.4: Base syllables of the Burmese abugida.

 

က  
[ka]̰ 

ကု 
[kṵ] 

ေကး 
[kéi]  

ကုိ
[kò] 

ကာ  
[kà] 

ကူ 
[kù] 

ကယ့် 
[kḛ] 

ကုိး
[kó] 

ကား 
[ká] 

ကူး 
[kú] 

ကယ် 
[kè] 

ေကာ့
[kɔ]̰ 

ကိ 
[kḭ] 

ေက့ 
[kḛi] 

ကဲ 
[ké] 

ေကာ်
[kɔ]̀ 

ကီ 
[kì] 

ေက 
[kèi] 

ကုိ့ 
[ko̰] 

ေကာ
[kɔ]́ 

ကီး 
[kí] 

   

 

Figure 1.5: Vowel diacritics of the Burmese abugida.
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distinguishes abugidas from the alphabets in Section 1.3.1. In this case, characters
are written from left to right, but the diacritics appear on any side of the base
character.

The second kind of syllabic system is the syllabary. These systems use distinct
symbols for each syllable of a language. An example syllabary for Vai, a Niger-
Congo language spoken in Liberia, is given in Figure 1.6.

Figure 1.6: The Vai syllabary (https://commons.wikimedia.org/wiki/
File:Vai.gif, uploaded by user Neal; public domain information with
no claim to original authorship).

Whereas the syllables in an abugida are organized into some sort of pattern,
the syllables of a general syllabary need not be. For example, in Vai, it is hard to
see a connection between the symbols for [pi] and [pa] even though they begin
with the same consonant, or any connection between the symbols for [pi] and
[di] even though they end with the same vowel.

12
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1.3.3 Logographic writing systems

The final kind of writing system to examine involves logographs, or logograms. A
logograph is a symbol which represents a unit of meaning, as opposed to a unit
of sound. Among writing systems for natural languages, some (such as Chinese)
use logographic elements, but cannot be considered purely logographic because
they include phonetic information as well.

A purely logographic system is exemplified by the symbols used on signs at
United States National Parks shown in Figure 1.7. These are referred to as picto-
graphs, or pictograms, because they essentially are pictures of the items they refer
to. The upper left symbol, for instance, refers to camping by means of displaying
a tent.

Figure 1.7: U.S. National Park Service pictographic symbols
(https://commons.wikimedia.org/wiki/File:National_Park_Service_
sample_pictographs.svg, uploaded by user Tkgd2007; public domain
as the work of the United States government).

Some modern written characters evolved from a more pictographic represen-
tation into a more abstract symbol. For example, we can look at the development
of the Chinese character for ‘horse’, pronounced (in the Pinyin romanization)
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as mǎ, as in Figure 1.8. Originally, the character very much resembled a horse,
but after evolving over the centuries, the modern character only bears a faint
resemblance to anything horse-like.

Oracle Bronze Big Seal Small Seal Traditional Simplified
script script script script script script

Figure 1.8: Evolution of the Chinese character for ‘horse’.
(https://commons.wikimedia.org/wiki/Commons:Ancient_Chinese_
characters_project, public domain because ancient scripts predate the
concept of copyright).

Not only has the logogram for horse become less horse-like over time, but it is
also used to encode the sound mǎ rather than the meaning “horse” in semantic-
phonetic compounds such as the character for ‘mother’, pronounced mā. The Chi-
nese words for ‘horse’ and ‘mother’ are pronounced the same except for their
tone, the pitch contour which distinguishes words in some languages:Mǎ ‘horse’
uses a down-up tone, whilemā ‘mother’ uses a high flat tone. In writing, the char-
acter formā ‘mother’ has a semantic element on the left, the character forwoman
(phonetically silent here, but pronounced nü on its own), and a phonetic element
on the right: The character for ‘horse’, pronounced mǎ. The semantic-phonetic
compound represents that mā ‘mother’ is semantically woman-like and phoneti-
cally horse-like. Both pieces of information are useful, but a Chinese reader still
has to memorize the specific sound-meaning correspondence evoked vaguely by
these clues.

mā
妈

女
nǚ ‘woman’
(semantic)

马
mǎ ‘horse’
(phonetic)

Figure 1.9: Semantic-phonetic compound character mā ‘mother’ in the
Chinese writing system.

More broadly, Chinese semantic-phonetic compounds illustrate that the Chi-
nese writing system is not purely logographic; the phonetic portion of the com-
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pound still provides information about pronunciation to complement the logo-
graphic representation of meaning.

1.3.4 More hybrid systems

You can already see from the Chinese writing system (a blend of syllabic and
logographic elements) that the boundaries between alphabetic, syllabic, and lo-
gographic writing systems can be blurred. Many systems use a hybrid of these
elements.

Thewriting system for Korean uses both alphabetic and syllabic concepts. This
writing system is referred to as Hangul (or Hangeul) and was developed in 1444
during the reign of King Sejong. The Hangul system contains 24 letter characters,
fourteen consonants and ten vowels. These alphabetic elements are grouped into
syllabic units. We can see an example in Figure 1.10, which shows how individual
alphabetic characters together form the syllabic characters for han and geul.

Figure 1.10: Composition of the characters for Hangeul (https:
//commons.wikimedia.org/wiki/File:Hangeul.png, uploaded by user
IGEL with CC share-alike license).

Within a syllable block, the alphabetic elements are organized mostly verti-
cally; but the syllables are written left to right. In South Korea, hanja (logographic
Chinese characters) were historically used too, for a blend of all three (alphabetic,
syllabic, and logographic) elements.

Braille is a writing system for people with vision impairments which makes it
possible to read through touch. We can see the basic alphabet in Figure 1.11.

The Braille system works by using patterns of raised dots arranged in cells of
up to six dots, in a three-by-two configuration. Each pattern represents a char-
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1 Encoding language

Figure 1.11: The Braille alphabet (https://commons.wikimedia.org/wiki/
File:Braille_alfabet.jpg, uploaded by user Maikel Honcoop; public do-
main information with no claim to original authorship).

acter, but some frequent words and letter combinations have their own pattern.
For instance, the pattern for f also indicates the number 6 (because it is the sixth
letter of the alphabet) and the word from (which starts with f ) – to be disam-
biguated by the context. So, even though it is at core an alphabet, it has some
logographic properties.

As one of the world’s oldest writing systems, Ancient Egyptian hieroglyphics
seem to record a brainstorming session in all the different ways that language can
be recorded in text. At different times, Ancient Egyptians tried writing right to
left, left to right, and top to bottom. Some Ancient Egyptian glyphs represented a
single sound, as in an alphabetic system; but vowelswere usually not represented,
as in an abjad. Others represented two or three consonants at once, similar to a
syllabic system in that one character reflects multiple sounds. Still others repre-
sented a meaning, as in a logographic system; some of these were pronounced as
words, but other “mute” logograms/pictograms were meant to clarify the mean-
ing of the text without being pronounced (a pictogram of a boat might be added
to clarify the meaning of the alphabetic spelling of the word for boat). These an-
cient pictograms share striking similarities to the non-pronounced emoji (see the
Under the Hood box) that have become increasingly popular in recent years to
enrich the socio-emotional meaning of text.
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1.3 Writing systems

Under the Hood 1: Emoji

After this discussion of writing systems, you might be wondering about
the status of modern digital symbolic systems, such as emoji. Emoji appear
logographic, in that they depict meaning: A smiley face depicts a cheerful
demeanor.

So do emoji constitute a logographic writing system? No, because they
are not a writing system! Recall that a writing system is “a system of more
or less permanent marks used to represent an utterance in such a way that
it can be recovered more or less exactly without the intervention of the
utterer” (Daniels & Bright 1996) – by representing some portion(s) of the
sound/meaning pairings of a particular language. Emoji do not represent
utterances or sound/meaning pairings in any particular language. Instead,
many emoji (at least the most common ones, such as the laughing-crying
face and the heart-eyes face ) represent the unpronounceable, non-
verbalized emotions (conveyed in real life by facial expressions, gestures,
and voice quality), which are otherwise absent from writing.

Emoji have historical antecedents in emoticons, such as the smiley face
rendered by punctuation :-), and web abbreviations for non-speech com-
municative acts, such as LOL. Emoji were added to some Japanese phones
in 1999 by the designer Shigetaka Kurita, and became part of Unicode in
2010 (see Section 1.4.3 for more on Unicode). To this day, the Unicode
Consortium manages the set of emoji, vets petitions for new emoji, and
records statistics about the most popular ones.

Like traffic-sign pictograms, emoji are relatively universal: Whether
you speak English or German, you know the meaning of the heart-eyes
emoji . In contrast, written representations of actual languages are not
universal; if you only speak English, you will not know the meaning of
the German (written) word Lächeln ‘smile’. Emoji can be universal specifi-
cally because they do not represent utterances in any particular language.

Illustrating the limited expressive power of emoji, Emoji Dick (Benen-
son 2010) gathers English-to-emoji “translations” (written by workers
on the Amazon Mechanical Turk gig platform, commissioned by the en-
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trepreneur Fred Benenson) of sentences from the classic novel Moby Dick
by Herman Melville. Imagine trying to read (2b) without the correspond-
ing English sentence! Since emoji do not constitute a writing system for
a language, much of the English sentence’s information is lost: There is
no first-person pronoun and no way of representing the name Ishmael
in emoji. Instead, the “emoji sentence” (2b) includes information about a
boat and a whale, not present in the English original.
(2) a. Call me Ishmael.

b.

In sum, emoji carry important communicativemeaning and can be used
to represent emotions, non-speech gestures, and some concrete entities
such as boats and whales – but they do not constitute a fully expressive
writing system for a human language.

Under the Hood 2: Online gig platforms

We just saw that the 2010 book Emoji Dick was created by paying gig
workers on Amazon’s Mechanical Turk platform to “translate” English
sentences from the novel into emoji. Mechanical Turk takes its name from
a toy created in the 1770s for the Austrian court, a doll dressed in stereotyp-
ical Turkish clothing, which was represented as a chess-playing robot but
actually concealed a human inside who moved the pieces. The Mechan-
ical Turk doll looked like artificial intelligence, but contained a human
at its core. Similarly, Amazon’s platform is meant to operate as easily as
an automated system – you can post a task online and download your
results in just a few hours – but leverages the human intelligence of gig
workers. Mechanical Turk is one of several such platforms, including Pro-
lific and CrowdFlower, which are widely used in language research and
technology.
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In psychology and linguistics research, it is common to conduct text-
based experiments. For example, Loftus (1975) played a video of a car driv-
ing on a road, and then asked some people, How fast was the car going on
the country road? while asking others, How fast was the car going when
it passed the barn?. Later, both groups were asked if they saw a barn. In
fact, the video did not show a barn – but the people who had read the
sentence mentioning a barn were far more likely to mis-remember one!
The study famously shows that the wording of a question can be used to
implant a false memory. Although the study was originally run in-person
with university students as participants, it serves as an example of a study
that could be run online – far more quickly and cheaply. To recruit two
hundred university students to come to a physical laboratory to do a pen-
and-paper experiment would take thousands of dollars and weeks; to re-
cruit the same number of people to do a study on their own device from
home would take a few hundred dollars and an afternoon.

Such web surveys can serve all sorts of purposes. A business might ask
people whether they’ve heard of their product or how much they like
it; a political campaign might ask what people think of a candidate or a
message. In language technology, one might recruit people to write cap-
tions for images (free text), flag comments as hateful or not (labels from a
closed class), or provide a rating for the politeness of a request (a contin-
uous scale). These data can provide insight on their own, but can further
be used as input for a system that “learns” to handle new data in the same
way – for example, learning to label new comments as hateful or not, gen-
eralizing the labels provided by humans. Such machine learning tools are
discussed further in Chapter 5.

When gathering such data on the web, researchers worry about qual-
ity: Are the workers actual humans, or are they bots? If they are hu-
mans, are they paying attention or clicking mindlessly through the task?
A researcher might add questions to their study specifically to flag poor-
quality respondents, but spammers may also find ways around these ques-
tions, creating an arms race. Moreover, who are these humans? Is this
sample biased in a way that might limit the generalizations that can be
drawn from their data?

Gig platforms also raise questions about ethics: Are workers being
fairly compensated for their labor? Are they earning minimum wage (in
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what location?) – hard to count when they may do ten different short
tasks in an hour? How many hours do they work on a gig platform, and
should they earn overtime or benefits? How should they be credited intel-
lectually for their output or the technologies built from it?

Over time, spammers get more sophisticated and gig-work regulations
evolve, so the future of such platforms remains in flux; but they are likely
to remain a crucial tool in language technology.

1.4 Digital writing

We have explored how language pairs sounds/signs with meaning, and howwrit-
ing systems encode some portion of that pairing (sound and/or meaning). Next,
we explore how writing systems are in turn encoded digitally, allowing comput-
ers to process text.

Before exploring how computers can encode diversewriting systems, we begin
with a more basic question: How do computers encode anything?

1.4.1 Bits and bytes

To answer that, we need to know that information on a computer is stored in
bits. We can think of the memory of a computer as, at its core, a large number of
on-off switches. A bit has two possible values, 1 (yes) or 0 (no), allowing us to flip
the switches on or off. A single bit on its own does not convey much information,
but multiple bits can come together to make meaningful patterns. It is thus often
more convenient to speak of a byte, or a sequence of 8 bits, e.g., 01001010.

These sequences of bits tell the computer which switches are on and which
are off, and – in the context of writing systems – a particular character will have
a unique pattern of on-off switches. Before we fully spell that out, though, let us
consider a better way to think of sequences of bits, other than just a sequence of
mindless 0s and 1s.

Bit sequences are useful because they can represent numbers, in so-called bi-
nary notation. They are called binary because there are only two digits to work
with. The base ten numbers we normally use have columns for ones, tens, hun-
dreds, etc.; likewise, binary numbers have their own columns, for ones, twos,
fours, eights, etc. In addition to base two and base ten, you can find encodings
such as hexadecimal, where there are 16 digits (0-9 and then the letters A-F).
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In Big Endian notation, the most significant bit is the leftmost one; this is the
standard way of encoding and is parallel to decimal (base ten) numbers. The
positions in a byte thus encode the top row of Table 1.3. As we can see in the
second row, the positions for 64, 8, and 2 are “on,” and 64+8+2 equals 74. The
binary (base two) number 01001010 therefore corresponds to the decimal number
74.

Table 1.3: The number 74 in Big Endian notation.

128 64 32 16 8 4 2 1

0 1 0 0 1 0 1 0

Little Endian notation is just the opposite, where the most significant bit is the
rightmost one, but it is less common. In both cases, the columns are all multiples
of two. This is just like with decimal numbers, where the columns are all multi-
ples of ten. As each digit is here limited to either 0 or 1 (two choices), we have to
use multiples of two.

1.4.2 Converting decimal numbers to binary

Although many of you are likely already familiar with binary numbers, it is in-
structive to see how to convert from decimal to binary notation.Wewill consider
the division method of conversion and walk through an example, converting the
decimal number 9 into a 4-bit binary number.

The division method is easy to calculate and moves from the least significant
to the most significant bit. Because every column has a value which is a multiple
of two, we divide by 2 with every step. In Table 1.4, for example, we divide 9 by
2 and find that we have a remainder. A remainder after dividing by 2 means that
we started with an odd number. Since 9 is odd, the rightmost bit should be 1.

The trick now is to take the resulting value, in this case 4, and divide it by 2.
The same principle is at work here: If there is no remainder, it means that the
starting number (4) was even, and this bit needs to be switched off for that to
happen. The remaining calculations work the same way, as shown in Table 1.4.

1.4.3 Using bytes to store characters

With 8 bits (a single byte) and each byte storing a separate character, we can
represent 256 different characters (= 28). This is a sufficient amount for many
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Table 1.4: The division method.

Decimal Remainder? Binary

9/2 = 4 yes 1
4/2 = 2 no 01
2/2 = 1 no 001
1/2 = 0 yes 1001

applications and more than enough for anyone wishing to simply type in Latin
characters for English. With 256 possible characters, we can store every single
letter used in English, plus all the auxiliary characters such as the comma, the
space, the percent sign, and so on.

ASCII

One of the first encodings for storing English text used only 7 bits, thus allowing
for 128 possible characters. This is the ASCII encoding, the American Standard
Code for Information Interchange. Figure 1.12 shows most of the ASCII chart.

32
33 !
34 “
35 #
36 $
37 %
38 &
39 ’
40 (
41 )
42 *
43 +
44 ,
45 -
46 .
47 /

48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <

61 =
62 >

63 ?
64 @

65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q

82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \

93 ]
94 ^

95 _

96 ‘

97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q

114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 —
125 }
126 ˜
127 DEL

Figure 1.12: The ASCII chart.
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Omitted from the chart are codes 1–31 since these are used for control charac-
ters, such as a backspace, line feed, or tab. The numeric order reflects alphabetic
ordering (e.g., 65 through 90 for uppercase letters), so it is easy to alphabetize the
letters by comparing numbers. Although we have written the base ten number,
for ease of reading, the binary number is what is used internally by the computer.

Youmight already be familiar with ASCII or other character encoding systems,
as many communications over email and the internet inform you as to different
encodings. Emails come with lots of information about themselves. Specifically,
Multipurpose Internet Mail Extensions (MIME) provide meta-information on the
text, or information which is part of the regular message, but tells us something
about that message. MIME information tells us, among other things, what the
character set is; en example can be seen in (3).

(3) Mime-Version: 1.0
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 7bit

Unicode

As you may recall, one of our goals is to be able to encode any language. With
only 128 possible characters, ASCII clearly is insufficient for encoding theworld’s
writing systems. How, then, do we go about encoding writing systems other than
the Latin alphabet?

One approach is to simply extend the ASCII systemwith various other systems.
For example, ISO-8859-1 is an 8 bit encoding that in addition to ASCII includes
extra letters needed for French, German, Spanish, and related languages; ISO-
8859-7 is for the Greek alphabet; ISO-8859-8 for the Hebrew alphabet; and JIS-
X-0208 encodes Japanese characters. While multiple encoding systems make it
possible to specify only the writing systems one wants to use, there are potential
problems. First, there is always the potential for misidentification. Two different
encodings can use the same number for two different characters or, conversely,
different numbers for the same character. If an encoding is not clearly identified
and needs to be guessed, e.g., by a web browser displaying a web page that does
not specify the encoding explicitly, the wrong characters will be displayed. Sec-
ondly, it is a hassle to install and maintain many different systems in order to
deal with various languages.

Unicode3 is a system that addresses these problems by having a single repre-
sentation for every character in any existingwriting system.While we have some

3https://unicode.org, accessed 2024-05-23.
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idea about the variety of writing systems, based on the earlier discussion, wemay
not have a good feel for how many characters there are to encode in the world.
Unicode, version 14.0, has codes for over 144,000 characters from alphabets, syl-
labaries, and logographic systems. While this sounds like a lot, it should be noted
that Unicode uses 32 bits to encode characters. The number of distinct characters
a system can encode is equal to 2𝑛, where 𝑛 is the number of bits: With 7 bits,
we had 27 (= 128) possibilities. With 32 bits, we can store 232 = 4, 294, 967, 296
unique characters.

In other words, Unicode allows for over four billion characters, yet only needs
about 150,000. If we use 32 bits to encode every character, that will take up a lot
of space. It seems like ASCII is better, at least for English, as it only takes 7 bits
to encode a character. Is there any way we can allow for many characters, while
at the same time only encoding what we really need to encode?

Unicode’s solution is to offer three different versions, which allow for more
compact encodings: UTF-32, UTF-16, and UTF-8. UTF-32 uses 32 bits to directly
represent each character, so we will face more of a space problemwith it. UTF-16,
on the other hand, uses 16 bits (216 = 65, 536), and UTF-8 uses 8 bits (28 = 256).

This raises the question: How is it possible to encode 232 possibilities in 8 bits,
as UTF-8 does? The answer is that UTF-8 can use several bytes to represent a
single character if it has to, but it encodes characters with as few bytes as possible
by using the highest (leftmost) bit as a flag. If the highest bit is 0, then this is
a single character or the final character of a multi-byte character. For example,
01000001 is the single-character code forA (i.e., 65). If the highest bit is 1, then it is
part of a multi-byte character. In this way, sequences of bytes can unambiguously
denote sequences of Unicode characters. One nice consequence of this set-up is
that ASCII text is already valid UTF-8.

More details on the encoding mechanism for UTF-8 are given in Table 1.5. An
important property here is that the first byte unambiguously tells you howmany
bytes to expect after it. If the first byte starts with 11110xxx, for example, we know
that with four 1’s, it has a total of four bytes, i.e., there are three more bytes to
expect. Note also that all non-starting bytes start with 10, indicating it is not the
initial byte.

To take one example, the Greek character 𝛼 (“alpha”) has a Unicode code
value of 945, which in binary representation is 11 10110001. With 32 bits, then,
it would be represented as: 00000000 00000000 00000011 10110001. The conver-
sion to UTF-8 works as follows: if we look at the second row of Table 1.5, we
see that there are 11 slots (represented by the repeated character x), and we have
10 binary digits. The ten-digit number 11 10110001 is the same as the 11-digit 011
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Table 1.5: UTF-8 encoding scheme.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

0xxxxxxx
110xxxxx 10xxxxxx
1110xxxx 10xxxxxx 10xxxxxx
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

10110001, and we can rearrange this as 01110 110001, so what we can do is in-
sert these numbers into the position held by the x characters in the second row:
11001110 10110001. This is thus the UTF-8 representation.

1.5 Spoken language

To review, we have explored how language pairs sounds/signs with meaning;
how different writing systems encode some portions of that pairing (sound and/
or meaning); and how writing systems are in turn encoded on computers in bits
and bytes. Next, we return to the sounds of spoken language and how these too
can be encoded digitally, allowing computers to process and produce speech.

1.5.1 The nature of speech

In order to deal with speech, we have to figure out what it looks like. As we saw
above in our tour of writing systems, we can transcribe speech into orthographic
text or the International Phonetic Alphabet, but first we have to understand the
input to such a transcription as a stream of sound.

We segment speech into words and sounds in our minds and write spaces
between words orthographically, but speech is actually a continuous and undif-
ferentiated stream of sound. Sounds are articulated in quick and overlapping
succession, so it is hard for a computer to tell where one sound ends and another
begins. Additionally, people have different accents and different vocal tracts and
thus say things differently. Two people can say the same word, and it will come
out differently.

Furthermore, the way a particular sound is realized is not consistent across
utterances, even for one person. What we think of as one sound is not always
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said the same. For example, there is the phenomenon known as coarticulation, in
which neighboring sounds affect the way a sound is uttered. The sound for k is
said differently in key and the first sound in kookaburra. (If you do not believe
this, stick one finger in your mouth when you say key and when you say koo;
for key the tongue touches the finger, but not for koo.) On the flipside, what we
think of as two sounds are not always very different. For instance, the s in see is
acoustically very similar to the sh in shoe, yet we hear them as different sounds.
This becomes clear when learning another language that makes a distinction you
find difficult to distinguish. Both articulatory and acoustic properties of speech
are thus relevant here; let’s now take a closer look at both of these.

1.5.2 Articulatory properties

Before we get into what sounds look like on a computer, we need to know how
sounds are produced in the vocal tract. This is studied in a branch of linguistics
known as articulatory phonetics. As we saw above in introducing the IPA chart,
there are three components to a consonant: the place of articulation, the manner
of articulation, and the voicing.

The place of articulation refers to where in the mouth the sound is uttered.
Consider where your tongue makes contact with your mouth when you say [t]
(t in tip) as opposed to when you say [k] (in key and cool). For [t], the tip of
your tongue touches the area of your mouth behind your upper teeth, what is
called the alevolar ridge (or a bit closer to the teeth for some dialects), whereas
for [k], the back of your tongue rises to the back of the roof of your mouth (i.e.,
the velum).

While place makes some distinctions, there are sounds said at nearly the same
point in the mouth which come out differently, due to the manner of articulation.
For example, [s] (in sip and nice), like [t], is an alveolar consonant, uttered with
the tongue behind one’s upper teeth. However, [t] involves a complete stoppage
of air (and thus is commonly called a stop consonant), whereas [s] allows a nar-
row stream of air to continually pass through the constriction (and is referred to
as a fricative).

The final distinction involves voicing, or whether or not one’s vocal cords vi-
brate during the utterance. Your vocal cords are in your throat, so you can easily
compare sounds by putting a hand on your throat and feeling whether there are
vibrations. For example, [s] (in sip) and [z] (in zip) are both alveolar fricatives,
but [s] is unvoiced and [z] is voiced.
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1.5.3 Acoustic properties

While studying articulation provides important distinctions, which we will con-
tinue to refer to in the following, to represent spoken language on a computer
we need speech properties we can quantify, which brings us to acoustic phonet-
ics. Acoustic properties of speech refer to the physical characteristics of sound.
Sound waves that we speak are simply “small variations in air pressure that occur
very rapidly one after another” (Ladefoged & Johnson 2014). When these waves
hit a recording device, we can measure how often they hit, how loud they are,
and other such properties.

As mentioned before, sound is continuous, but computers store data in discrete
points, as illustrated in Figure 1.13, and thus can only capture the general pattern
of the sound. The quality of a recording depends upon the sampling rate, or how
many times in a given second we extract a moment of sound. The sampling rate
is measured in samples per second, commonly referred to as hertz (Hz).

𝑥

𝑦

Figure 1.13: A continuous line with evenly-spaced discrete points.

The higher the sampling rate, the better the recording quality, though it takes
more space to store. 8,000 samples per second turn out to be adequate for cap-
turing the frequencies of language sounds when using the telephone, and 16,000
or 22,050 Hz is often used when recording speech.

One of the properties of speech we are interested in is the speech flow, the rate
of speaking and the number and length of pauses. This is easy enough tomeasure,
in units of time (i.e., seconds). Another property is the loudness, or amplitude,
the amount of energy a sound has. Again, we have an intuitive sense of what it
means to measure amplitude, and this loudness of sounds is typically measured
in decibels.
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Most important for classifying sound waves into individual speech sounds are
the frequencies associated with each sound. As we will see below, the frequency –
or, how fast the sound waves repeat – is the basis upon which we are able to tell
sounds apart. Frequency can be measured in terms of cycles per second, again
referred to as hertz.

To get a feel for how sounds are represented on a computer, we start with a
waveform, shown in an oscillogram. Figure 1.14 represents the word Thursday: As
time passes on the 𝑥-axis, we can observe the changes in amplitude, or loudness,
on the 𝑦-axis. (All phonetic figures in this chapter were produced using Praat, by
Boersma & Weenink 2006). The first vowel in the figure has the loudest sound,
and the middle of the word contains a fleeting silence due to the consonant [d]
which completely stops the air for that instant.
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Figure 1.14: A waveform for Thursday.

The pitch of a sound – how high or low it is – provides additional information,
especially for vowels. Speech is composed of different frequencies all at once (due
to the way sound reverberates in the vocal tract). The fundamental frequency F0
is also known as the pitch. Absolute pitch varies across humans depending on the
size of their vocal tract. Relative variations in pitch can distinguishes tones in lan-
guages such as Chinese, where the pitch contour of a syllable distinguishes word
meaning; rising pitch can indicate yes-no questions in English. On top of pitch,
other higher-frequency overtones, also known as formants, give unique character
to each vowel and convey information about the position of the tongue in the
mouth as it is articulated. The formant F1 corresponds to tongue height in the
mouth, while F2 reflects its front/back position.
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Finally, we can analyze spoken language using a spectrogram, which is a graph
to represent the frequencies of speech (𝑦-axis) over time (𝑥-axis). As we can see
in Figure 1.15, each sound is a complex unit made of different frequencies. In
fact, what we observe in a spectrogram will help us the most in automatically
determining what sound was uttered, which we turn to next.
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Figure 1.15: A spectrogram for Thursday.

1.5.4 Measuring speech

A spectrogram has various measurable properties which tell us what the sounds
are. The Under the Hood box on Reading a spectrogram provides more details, but
wewill sketch a few general properties here.When looking at a spectrogram, you
should ask:

1. How dark is the picture?

This tells us how loud each sound is and is measured in decibels. Differ-
ent sounds differ in their loudness, including some sounds – such as [d]
– which involve a moment of complete silence. Compare [θ] and [z] in
Figure 1.15 showing that [z] is louder than [θ]. These are both fricative
sounds, meaning that the air is channelled through a narrow passage in
the mouth without stopping, but [θ] is voiceless (the vocal cords aren’t vi-
brating) whereas [z] is voiced (with vibrating vocal cords) and thus sounds
louder.
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2. Where are the lines the darkest?

The darkest lines tell us which frequencies (measured in hertz) are the
loudest and the most important for determining the sound. Each vowel
has roughly three prominent frequency bands, and the vowels are distin-
guished by these bands. For voiced sounds, we typically also see a low dark
band.

3. How do these dark lines change?

One last point involves how the frequencies change over time. When we
have stop consonants like [t] or [k], there appears to be nothing in the
spectrogram by which we can distinguish the sounds, and yet we make
the distinction quite easily. It turns out that the transitions of the vowel
bands before and after the consonant are unique.

It is these measurements which represent speech on the computer. In other
words, to a computer, speech is nothing but a sequence of various numerical
measurements. After we discuss reading a spectrogram, we will delve into
turning these measurements of speech into text.

Under the Hood 3: Reading a spectrogram

The first thing to note about reading a spectrogram is that theword bound-
aries are not at all clear-cut. As mentioned before, there are no pauses
between words. To know what a word is, what is needed is information
about the structure of the language we are looking at. Consider, for exam-
ple, hearing a string in a foreign language such as skarandashom. Can you
tell where the word boundary is? If you speak Russian (and understand
the transliteration from Cyrillic), you might recognize the break between
s (‘with’) and karandashom (‘(a) pencil’). Otherwise, you probably did not
know the boundaries.

But what about the individual sounds? Let us start with the different
kinds of consonants. When discussing articulatory properties of speech,
we distinguished the manner of articulation – how air is passed through
the channel – and it turns out that sounds with similar manners have
commonalities in their acoustic properties. We will examine three kinds
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of consonants: fricatives, nasals, and stops. For each type of consonant, we
will give a brief articulatory description and then the acoustic distinctions
that make it prominent.

We start our analysis with fricatives – in English, these include [f] (f
in fist, ph in photo), [v] (v in vote), [s], [z], [θ] (th in thigh), [ð] (th in
thy), [ʃ] (sh in she), and [ʒ] (the final sound of rouge). All of these involve
air passing turbulently through the mouth: The tongue raises close to
a point of constriction in the mouth, but it does not completely touch.
With this turbulent air, we will see a lot of “noise” in the spectrogram. It
is not completely noise, however; you can look at where the shading is
darkest in order to tell the fricatives apart. For example, [s] generally has
its energy concentrated in the higher frequencies (e.g., close to 5000 Hz),
as illustrated in this spectrogram for fuss [fʌs]:
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Figure 1.16: A spectrogram for fuss.

On the other hand, [ʃ] peaks lower (e.g., around 3500 Hz), and [f] does
not really have a prominent peak, as also shown in the figure. The voiced
sounds [z], [ʒ], and [v] pattern mostly like [s], [ʃ], and [f], respectively.
The main difference is that these sounds are voiced. Voicing, which is
the movement of vocal cords, causes there to be low-frequency energy,
though it is a bit hard to see precisely in the spectrogram for the word
fuzz [fʌz]. (Note, however, that the voicing difference co-occurs with a
distinct difference in the length of the vowel.)
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Figure 1.17: A spectrogram for fuzz.

The next consonant type to look at is the set of stop consonants, also
called plosives: [p] (p in pad), [b] (b in boy), [t], [d], [k], and [g] (g in go).
As with fricatives, there are more stops in other languages. What all of
these sounds have in common is that, to make them, the tongue makes a
complete closure with part of the mouth.

But if there is a stoppage of air, then stops actually involve a lack of
sound. So, how is it that we hear differences? First of all, we should note
that stops are often accompanied by a burst of air – what is called aspira-
tion – which translates into noise (similar to a fricative) in a spectrogram
right after the stoppage. We can see aspiration on the final /t/ in this spec-
trogram for deet [dit].
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Figure 1.18: A spectrogram for deet.
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Second, more importantly, the way we hear a distinct stop sound – e.g.,
[t] vs. [k] – is in the surrounding vowels. The vowels surrounding a con-
sonant transition into the stop and then out of it again, i.e., their formants
(see below) move up or down, depending on the consonant.

We can now turn to vowels, which can be difficult to tell apart. In artic-
ulation, a key aspect of vowels is where in the mouth the tongue is raised:
front, middle, or back. We can also talk about vowel height: If the tongue
is raised high, low, or somewhere in between. Some of the vowels in En-
glish are given in Table 1.6: [i] (beet), [ɛ] (bet), [æ] (bat), [ə] (the a in sofa),
[u] (boot), [ow] (boat), and [ɑ] (the a in father).

Table 1.6: Some of the major vowels in English.

Front Middle Back
High i u
Mid ɛ ə ow
Low æ ɑ

Vowels are generally distinguished by their three bands (stripes) of fre-
quencies: These are the vowel formants. We refer to these as F1, F2, and
F3. Conveniently, there is a nearly direct correspondence between the
formant values and the location of the tongue in the mouth. F1 represents
tongue height: The higher the F1 value, the lower the tongue is. F2 repre-
sents tongue front/backness: The higher the F2 value, the further forward
in the mouth the tongue is. The top (third) band, F3, reflects information
about lip rounding and co-articulation of the consonant [ɹ].

In the spectrogram for deet, for example, the [i] in deet has a low F1
band and a high F2, representing the fact that it is a high, front vowel.

By measuring the formants F1 and F2, it is not just possible to distin-
guish between different vowels, but also to measure the accents (the posi-
tion of the tongue in the mouth) of different people who are pronouncing
the same vowel. The linguistic subfield of sociophonetics uses such mea-
surements to quantify how accents vary across people, regions, and time.
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1.5.5 Relating written and spoken language

Having explored how both writing and sounds are represented digitally, we turn
to the task of relating one to the other. Automatic speech recognition (ASR) maps
speech to text, and text-to-speech synthesis (TTS) maps text into sound.

Automatic speech recognition is the process by which a computer converts a
speech signal to text. Such systems are enormously practical, allowing for auto-
matic transcription of podcasts and video calls, real-time dictation of note-taking,
spoken conversations with digital assistants, and so on.

In general, ASR systems go through three steps. First, speech is digitally sam-
pled, as was discussed above. As this converts continuous speech into a discrete
representation, this will naturally involve information loss. Secondly, the speech
samples are converted into measurable units, as was also discussed above; this is
referred to as acoustic signal processing. Here, the digital samples are converted
into, among other things, recognizable frequencies, giving the computer a repre-
sentation of speech to work with. These frequencies are used for the third step,
the recognition of sounds, groups of sounds, and words. The frequencies can be
used to identify speech sounds, but, as we discussed before, the interpretation of a
given frequency is often ambiguous, since different people speak differently. For
example, a [t] might sound like a [d]. The system will have to choose the most
likely interpretation of an indeterminate sound by leveraging statistics about
what people are most likely to say.

Given these basics, there are different kinds of ASR systems. Speaker-dependent
systems work for a single speaker, whereas speaker-independent work for any
speaker of a given variety of a language, e.g., American English. Given the range
of pronunciations across different people, speaker-dependent systems are clearly
more accurate. This is why there are also speaker-adaptive systems, which start
out as independent systems but adapt over time to a single speaker in order to
improve accuracy.

The reverse process of automatic speech recognition is text-to-speech (TTS)
synthesis, which converts words into speech. This might seem like is a trivial
task: Couldn’t we simply record a voice saying phrases or words and then play
back those words in the appropriate order?

While this might work for talking toy dolls, when we deal with technology
such as dialog systems (see Chapter 8), the computer system generates written
sentences which need to be synthesized on the fly. Thus, we have to be able to
break the text down into smaller units that can be converted into speech. This
is challenging, given that writing system representations are often phonetically
ambiguous.
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The main idea behind speech generation is to adjust the values of the frequen-
cies, the loudness, and other such properties, to produce the correct sounds. Since
we know what frequencies correspond to which vowels, for example, we can
play those frequencies to make it sound like the right vowel. Of course, as we
mentioned before, sounds are always different, across time and across speakers.
Historically, one simple way to help in the process of generating speech is to use
a database of speech and to use diphones, i.e., two-sound segments, to generate
new utterances. The contextual information found in diphones is useful because
sounds are pronounced differently depending upon the neighboring sounds.

While these technologies are enormously useful and fascinating, they deserve
textbooks in their own right. Moving forward, we set speech aside and focus on
text.

1.6 Consequences

Spoken/signed language allows us to communicate face-to-face, while written
language allows us to communicate across space and time. Digital writing al-
lows us communicate with more people around the world than ever before, and
machine-readable text provides data for various applications of language tech-
nology to be explored throughout the book.

Foreshadowing some larger themes, this chapter also illustrates how linguistic
information (writing, sounds) can be interpreted qualitatively by humans but
must be represented quantitatively (in bits, in hertz) on a computer. Throughout
the book, we will encounter more ways that computers can quantify language.

Moreover, this chapter shows how text represents some, but not all, of the
information conveyed by language. A word is a pairing of sound and meaning,
but a phonetic writing system such as our Latin alphabet represents only sounds.
While a human knows the meaning independently, what semantic information
is available to a computer which has access only to the textual representation of
sound? The rest of the book will explore how computers, without access to the
outside world or the mental representations available to humans, can approxi-
mate meaning.
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Checklist

• Describe different types of writing systems (with examples) and
how they vary in their use of phonetic and semantic properties.

• Explain the meaning of the rows and columns in the International
Phonetics Alphabet for consonants. Explain the organization of the
vowel chart.

• Discuss why it is possible for a language to be written in several dif-
ferent writing systems, and what this shows about the relationship
between the written and spoken forms of language.

• Recognize that numbers can be represented in different ways, and
understand how to convert between representations, especially con-
verting numbers between base 2 and base 10 representations.

• Explain what Unicode is useful for and how the UTF-8 encoding
scheme works.

• Sketch how modern technology allows the acoustic properties of
speech sounds to be measured, and know how to recognize some
speech features by looking at spectrograms.

• Explain the tasks of automatic speech recognition and text-to-
speech synthesis, and distinguish between speaker-dependent,
speaker-independent, and speaker-adaptive approaches.

Exercises

1. Using the distinctive features of language from the beginning of the
chapter, discuss whether music, mathematics, programming lan-
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guages, or body language can be considered “language” in Hock-
ett’s sense.

2. Visit Omniglota and pick a syllabary. Take a paragraph from a novel
written in English and transliterate it into this syllabary.

a) What difficulties do you encounter?

b) Is there any information loss in your transliteration? If it were
transliterated back into the Latin alphabet, what ambiguities
would you find?

3. Assume you’ve been given power to alter the Latin alphabet for the
purposes of better writing down English words.

a) Keeping it as an alphabet, what would you change, add, or
remove? Why?

b) Could you just use the IPA to write down English?What prob-
lems might you encounter? Would it be easier or harder for
English speakers around the globe to communicate in writ-
ing?

c) Could you convert the alphabet into a system similar to
Hangeul for Korean? How would it work?

d) Assume you have to propose 100 words to be replaced by (lo-
gographic) emoji. What types of words would you select for
the first 100? Why?

3. As mentioned briefly, hexadecimal numbers have 16 digits: 0-9 and
then the letters A-F. They are commonly used in computing because
they more compactly represent the numbers which are often used
for bytes than binary numbers do.

a) Describe how hexadecimal numbers work, working through
the base ten number 46 as an example.

b) Describe a procedure for converting numbers from a binary
(base two) to a hexadecimal (base sixteen) representation.

4. Discuss the optimal way to design UTF-8, in terms of the average
number of bytes per character and the number of users of a given
writing system.
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5. The speech waveforms and spectrograms shown in this chapter
were produced using Praat, but there are other useful speech anal-
ysis software kits, such as Wavesurfer and VoiceSauce.

a) Explore one of these software packages and make yourself
comfortable with using it.

b) Pick your favorite book and record yourself reading the first
sentence (or 20 words, whichever comes first).

c) Record a friend saying the same thing.

d) Compare and contrast spectrograms of your different spoken
language examples, describing howwhat you see corresponds
to what you both said and what the differences are.

6. Explain why ASR is an irreversible process. Make reference to the
concept of information loss in your answer.

ahttps://omniglot.com, accessed 2024-05-23.

Further reading

Hockett’s design features of language are pioneered in Hockett (1960).
More information on writing systems, including various nice graphics,

can be gleaned from websites such as Omniglota. Additionally, there are
books on writing systems, such as Daniels & Bright (1996). Sproat (2000)
offers a unique treatment, which focuses on computational properties of
writing systems, and Sproat (2011) extends the writing system discussion
to language technology and its impact on society. Both are highly rec-
ommended. Turning from writing systems to language, a thorough set
of information on the world’s languages can be found in the Ethnologue
(Gordon 2005). For an accessible overview of topics related to language
and how language can be studied, check out the Language Files (The Ohio
State University Department of Linguistics 2022). As a reference book,
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you can find comprehensive information in David Crystal’s Encyclopedia
of Language (Crystal 2011).

McCulloch (2020) explores the influence of the internet on language
and writing, with detailed discussion of emoji.

For an introductory look at automatic speech recognition and language
modeling, the Jurafsky & Martin (2009) textbook is a valuable resource.
For a thorough introduction to the field of phonetics, we recommend Lade-
foged & Johnson (2014).

ahttps://omniglot.com, accessed 2024-04-19.
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2 Writers’ aids

2.1 Introduction

English has been written in the Latin alphabet since around the ninth century of
the Common Era, first by hand, then via the printing press (starting in the 1470s),
the typewriter (1860s), and ASCII (1960s) as discussed in Chapter 1. But English
spelling was not standardized until the mid-1600s into the 1700s, influenced by
the publication of the King James Bible as well as some of the first dictionaries. In
other words, English was written for seven hundred years without standardized
spelling. The playwright William Shakespeare (1564-1616) did not use a standard
spelling of his own name, writing it in different places as Willm Shakp, William
Shaksper, Wm Shakspe, William Shakspere, Willm Shakspere, and William Shaks-
peare.

Not only did the most famous English writer not need standardized spelling,
but it is also often easy to understand slightly misspelled text: to what extent do
the spellling errers in this setnence dirsupt your undertsanding? It’s often argued
(e.g., White et al. 2008) that readers focus mostly on the first letter and the over-
all shape of a word rather than processing each character sequentially. So why
have standardized spelling at all? What if we let everyone use whatever spelling
they want, as in Shakespeare’s time? Or, if that sounds too chaotic, what if we
replaced the notoriously confusing English orthography with the unambiguous
International Phonetic Alphabet introduced in Chapter 1?

On the one hand, if English were written in the IPA, it might be easier to
pronounce. We’d no longer have to wonder why epitome doesn’t rhyme with
tome, and we’d know from the spelling that tough rhymes cuff – eliminating the
silent letters which might be especially confusing to children or people learning
English as a second language.

But on the other hand, imagine a person named Leslie, pronounced by differ-
ent people as [lɛzli] ‘Lez-lee’ and [lɛsli] ‘Less-lee’. When you want to find Leslie’s
voter registration, tax documents, or publications, which spelling do you use?
How could you search using control-F for Leslie in a long document when their
name is spelled inconsistently? When you want to search for a pen on Amazon,
what if you find different listings under [pɛn] (the pronunciation used in the
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Northern United States) versus [pɪn] (used in the Southeastern region)? How
would you find the movie Harry Potter online if the word Potter is listed in some
places with the non-rhotic (r-less) British pronunciation and in other places with
the rhotic (r-ful) version? As you can see, standardized spelling is useful for
record-keeping (which is why dictionaries contributed to spelling standardiza-
tion) and for communicating across groups who use different pronunciations for
the same language.

So whether you find English spelling annoying or fun, it is here to stay. Luck-
ily, for those of us who can never remember how to spell Massachusetts or ono-
matopoeia, or who consistently confuse they’re and there, there is technological
support in the form of spell checkers, grammar checkers, and predictive auto-
completion of words and sentences.

These tools, referred to collectively as writers’ aids, aim to automate the te-
dious part of writing, allowing the writer to focus on the ideas. We start our
exploration of language technology applications in this book with writers’ aids
because we assume they are familiar to everybody, and they also provide a plat-
form to introduce many linguistic concepts which recur in the rest of the book.

2.2 Kinds of spelling errors

We begin our tour of writers’ aids with spelling correction, in which a computer
automatically identifies spelling errors and suggests correctly-spelled replace-
ments. It is always useful in natural language processing (NLP) to start by ex-
ploring examples: here, the types of spelling errors that we may encounter.

2.2.1 Nonword errors

So-called nonword errors are errors resulting in words which do not exist in the
language, for example, when the article the is erroneously written as the non-
word hte.

One can characterize such errors in two ways: on the one hand, we can try to
determine why the error happened. On the other hand, we can describe how the
word that was written differs from the target word that the writer intended.

Looking first at the error cause, nonword errors are usually caused either by
mistakes in typing or by spelling confusions. Typographical errors (typos) arise
when the person knew how to spell the word correctly, but mistyped. Perhaps
they accidentally pressed an adjacent key (so the keyboard layout makes certain
typos more likely than others); perhaps they pressed the right keys in the wrong
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order (typing hte for the); or perhaps they misused the space bar (typing my-
phone for my phone). Spacing errors are tricky because they disrupt the default
assumption that spaces demarcate word boundaries: rather than just turning a
single non-word into a single real word, a spell-checker would have to find a way
to split the non-word string at the right place into two different real words.

Spelling confusions occur when the person does not know how to spell the
word. A writer might, for example, never have seen the word onomatopoeia or
might remember that scissors has something odd about it, but not be able to recall
the details. For the record, scissors has at least three odd features: it’s unusual for
sc to represent the [s] sound; for ss to represent [z], and for or to spell the suffix
that is more often written er. In English, when you know how to say a word, you
may still be a long way from knowing how to spell it correctly.

Spelling confusions based on sound are obviously a major problem; not only
do we spell based on analogy with other words, but we often use typical sound-
to-letter correspondences when a word is unknown. Thus, spellers may leave out
silent letters (nave for knave), may replace a letter with a similar sounding one (s
for c in deside in place of decide), or may forget nuances of a rule recieve: i before
e except after c). In languages with a more transparent writing system such as
Finnish or Korean, writers face fewer opportunities for such spelling confusions
than in a language like English which preserves various spelling irregularities as
historical vestiges.

In motivating the need for spell-checkers, it helps to understand why people
misspell words. It may also be useful to distinguish typos versus spelling confu-
sions in order to provide the most helpful feedback to a user. But for the practical
task of spelling correction, we can often ignore the error cause and focus instead
on how the error would need to be fixed. What modifications would we need to
turn the misspelled word into the correct spelling? With that perspective, there
are four types of operations that we can perform to get to the correctly spelled
word:

• Insertion: Add a letter.

aquire → acquire

• Deletion: Delete a letter.

arguement → argument

• Substitution: Replace one letter with another.

calandar → calendar
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• Transposition: Swap the position of two adjacent letters.

concsious → conscious

The edit distance between two strings quantifies the minimum number of op-
erations that it takes to transform one string into the other. For example, the edit
distance between Catherine and Kathryn is four:

1. Replace C with K [Katherine]

2. Delete the first e [Kathrine]

3. Delete the second e [Kathrin]

4. Replace i with y [Kathryn]

Note that the order of these operations often does not matter; we would get
the same result if we deleted the first e before swapping the initial C for a K. But
the order may matter in the case of transpositions, where two adjacent letters
are swapped: whether two letters are adjacent or not may depend on what other
operations have come before.

Actually, some people consider a transposition to have a cost of two, involving
one substitution and then another. And some give a substitution a cost of two,
equivalent to a deletion followed by an insertion. These decisions are arbitrary
value judgments based on what works best for a specific purpose.

When the operations used to calculate edit distance are insertion, deletion,
and substitution, the edit distance is sometimes called the Levenshtein distance,
after the Soviet mathematician who proposed it (Levenshtein 1966). This flexible
idea has also been used (Sankoff 1992) to quantify the similarity between DNA
sequences (represented as strings of letters). It is sometimes specified to refer to
the minimum number of operations in order to rule out perversely inefficient
pathways from one word to another, for example mapping Catherine to Kathryn
by replacing the letter a with x, then replacing it again with a.

We can use edit distance to quantify the steps to turn a misspelled word into
the correctly spelled target word, or inversely to quantify how the target word
can be turned into the misspelling. The edit distance should be the same in either
direction.
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2.2.2 Real-word errors

Normally, when the result of an error is a nonword, an automated system can
detect the error by trying to look up the word in a dictionary: if the word is
not found, it may very well be the result of a spelling error. But this will not
work for errors that result in real words, because real words are listed in the
dictionary. Here, the error can only be identified by considering the surrounding
context of the word. We can distinguish three different kinds of real-word errors,
each involving context in different ways. As the appeal to context becomes more
elaborate, the task of detecting the error becomes progressively more difficult.

First, there are local syntactic errors. Generally speaking, syntactic errors are
errors in how words are put together in a sentence: different parts-of-speech are
used in the wrong places in a sentence or the wrong grammatical forms are used.
Local syntactic errors are those where the syntactic violation is detectable by
looking within one or two words in the sentence. In 1, for example, a possessive
pronoun (their) takes the place where a noun phrase (there) should be. Normally,
we expect a possessive pronoun to be followed by a possessed noun, as in their
book, but here it is incorrectly followed by the past-tense singular verb was.

(1) *Their was a problem yesterday.

To flag that this is an example of an ungrammatical sentence, we mark it with
an asterisk (*). This is a common convention in linguistics – and also alerts editors
that the error in the example is intended, rather than something to be corrected
for publication.

In contrast to local syntactic errors, long-distance syntactic errors are those in-
volving syntactic violations spread out over many more words. In 2, the cabinets
are is a perfectly coherent string of English, but it is incorrect here because are
corresponds grammatically to the singular subject noun key, not to the plural
noun cabinets, which actually sits within a prepositional phrase. The erroneous
agreement with plural cabinets is called agreement attraction (Bock &Miller 1991),
and raises questions for psycholinguists about how people represent sentence
structure in their minds.

(2) The key to the cabinets are on the counter.

Finally, there are semantic errors. These are errors in meaning: The sentence
structure is grammatical, but the problem is that the sentence does not mean
what was intended. In 3, brook is a singular noun – just like the presumably
intended book – but it does not make sense in this context.
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(3) I checked out a brook from the library.

It is not always easy to decide whether an error is a spelling error or an error
in grammar. Example 2, for instance, could be thought of as a real-word spelling
error in which the typist simply omitted the s of keys, or it could be thought of as
a problem with subject-verb agreement, which is a grammatical error. Without
knowing what is going on in the writer’s mind, it is hard to know which expla-
nation is better. In 1, on the other hand, it seems obvious that the writer was
trying to produce There, so it is safer to classify this as a real-word spelling error.
The distinction between spelling errors and grammatical errors is not just philo-
sophical: A writers’ aid may be designed to give different feedback to writers
depending on the presumed nature of the error.

2.2.3 How common are spelling errors?

When proficient adult English speakers type on a full-size keyboard, they mis-
spell approximately two to three percent of all typed words (Flor et al. 2015).
About eighty percent of misspellings are non-word single-error misspellings, with
an edit distance of 1 from the intended spelling. Inmost cases, thewriter is correct
about the first letter of the word and the total number of letters. About twelve
percent of spelling errors involve real words (Flor et al. 2015).

On a mobile phone, however, as much as 42 percent of English words are mis-
spelled (according to 2022 blog post by the writers’ aid company Grammarly1),
and the rate is even higher for languages such as French where some letters are
accented (café), which people often rely on the phone to correct. In general, peo-
ple rely more heavily on auto-complete and auto-correct when typing on phones.
One might, therefore, expect a far greater proportion of multi-error misspellings
– those that are further in edit distance from the intended spelling. The rate of
real-word errors may also be higher if auto-complete inserts real words that the
author did not intend.

These trends are based on the writing of adults who are proficient in English;
but the pattern of errors may look different for children learning to write, people
with dyslexia, or people learning English as a second language (see Chapter 3 for
more on language learning). Such groupsmay benefit fromwriters’ aids designed
for their specific needs.

1https://www.grammarly.com/blog/mobile-communication-study/, accessed 2024-07-01.
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2.3 How to build a simple spell-checker

Having explored the sources and types of errors, we can now look at how to
automatically detect and correct them. We take inspiration from a classic 2007
blog post (Norvig 2007) by Google Research director Peter Norvig, who presents
a spell-checker in 22 lines of Python. For simplicity, we follow Norvig in illustrat-
ing the context-independent correction of non-word errors (e.g., correcting hte to
the) – setting aside real-word errors and those that can only be corrected with
reference to the surrounding context (e.g., too computers).

Under the Hood 4: Peter Norvig’s spell-checker

Here is Norvig’s spell-checker. To run it, you would need a big text file
of correctly-spelled English called “big.txt” saved in the same directory as
your Python code.

import re
from collections import Counter

def words(text):
return re.findall(r'\w+', text.lower())
#Split text into words, lower-case all words.

WORDS = Counter(words(open('big.txt').read()))
#Read in a big txt file of correctly-spelled words.

def P(word, N=sum(WORDS.values())):
#Probability of `word`.
return WORDS[word] / N

def correction(word):
#Most probable spelling correction for word.
return max(candidates(word), key=P)
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def candidates(word):
#Generate possible spelling corrections for word.
return (known(

[word]) or known(
edits1(word)) or known(
edits2(word)) or [word])

def known(words):
#The subset of `words` that appear in the dictionary of

WORDS.
return set(w for w in words if w in WORDS)

def edits1(word):
#All edits that are one edit away from `word`.
letters = 'abcdefghijklmnopqrstuvwxyz'
splits = [(word[:i], word[i:])

for i in range(len(word) + 1)]
deletes = [L + R[1:]

for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:]

for L, R in splits if len(R)>1]
replaces = [L + c + R[1:]

for L, R in splits if R for c in letters]
inserts = [L + c + R

for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)

def edits2(word):
#All edits that are two edits away from `word`.
return (e2 for e1 in edits1(word) for e2 in edits1(e1))

### Now try it:

>>> correction('speling')
'spelling'
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>>> correction('korrectud')
'corrected'

A simple spell-checker uses three steps: It detects errors; generates candidate
corrections; and ranks the candidate corrections to choose the best one.

2.3.1 Detecting errors

To detect a non-word error, we can compare a typed word to a list of correctly
spelled words. If the typed word is on the list, it is a real word. If it is not on the
list, it is taken as a non-word misspelling.

Where do we get the list of correctly spelled words? We could get it from a
dictionary, in which case we might have to generate rules to allow all inflections
(runs, running) of the word that appears in the dictionary as a lemma (run –
the uninflected form). We’d also have to decide what to do about capitalization:
Should Cat be considered the same word as cat or CAT? What about alex versus
Alex versus ALex? We could also get our list of correctly spelled words from a
corpus, a large dataset of (hopefully correctly-spelled) text from sources such as
books, news articles, and magazines.

Wherever we get the list of correctly spelled words, people who use the spell-
checker might feel that it includes too many or too few. Maybe the corpus con-
tains some typos that should actually be corrected (certainly true of corpora
based on Wikipedia, which is not professionally copy-edited). Maybe it includes
some words that technically appear in the dictionary but are so rare that they
are usually actually typos, such as teg (a sheep in its second year, but only sheep
farmers know this). Maybe it seems racist for the list of correctly spelled words
to include traditional Anglophone names such as Jane but not names from other
parts of the world such as Shalini (exemplifying the larger issue that text data
can perpetuate racial biases). And of course, new words are invented all the time
(for example, monoamorous – antonym to polyamorous), so any static word list is
inherently incomplete. The dictionary is sometimes invoked as the ultimate au-
thority on language (look it up in the dictionary!), but dictionaries have to keep
up with the usage and creativity of the wider society.

Oncewe have curated this list of correctly spelledwords, detecting a non-word
error is straightforward: If a word appears on the list, then it is a real word and
should not necessarily be spell-checked. If it is not on the list, then it is likely a
misspelling and so we want to generate candidates for the correct spelling.
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2.3.2 Generating candidates

We can generate candidates for the correct spelling using edit distance. In partic-
ular, given that most misspellings are single-error misspellings, we can compute
all alternative spellings that are within an edit distance of 1 from the misspelled
word – restricting our attention to those that actually appear on the list of cor-
rectly spelled words. For the misspelling catt, our candidate corrections would
be cat, cats, catty, cast, cart, and perhaps (depending on how we handle capital-
ization) the names Cato or Matt or the abbreviation Capt. We could also consider
alternatives within an edit distance of 2 (for catt, we’d entertain possibilities such
as hat or sat) or even 3 (can’t); but most misspellings are within an edit distance
of 1, and the more edits we allow, the more alternatives we have to sort through
(to check them against the list of correct spellings).

2.3.3 Ranking candidates

The candidate spellings also have to be ranked so that, depending on the user
interface of the spell-checker, the “best” candidate can be chosen automatically
or presented as the top suggestion for the writer to approve. Of course, the “best”
candidate is what the writer most likely intended. But we can’t see inside their
mind, so how do we figure out what they intended?

To answer this question, we introduce some ideas that will be important
throughout this book, namely the noisy channel model inspired by information
theory and Bayes’ Rule. We will take a close look at the mathematics in Chapter
5, but for now we will keep the explanation intuitive. The writer has an intended
message in their mind (the word they want to write), but this message is sent
through a “noisy channel” – typing it imperfectly on a keyboard. As the receiver
of this message, we (as readers and spell-checkers) have to make our best
guess of what this person meant (the clean message) given what they typed
(the distorted message that comes out of the noisy channel). We can use two
different pieces of information: The likelihood of a given intended message
overall; and the likelihood of typing what they typed given that particular
intended message. We combine these two pieces of information to arrive at the
most likely intended clean message (the correct spelling) given the noisy typed
signal (the misspelling) that we observe.

For example, imagine that someone types the word Dsvid. Let’s imagine three
candidates for what this person intended to type: Dsvid, Sara, and David. First:
did they mean to type Dsvid? On the one hand, it is extremely unlikely that
anyone would intend to send the message Dsvid, as we can infer from the fact
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that Dsvid does not appear on any list of correctly-spelled English words and
also is extremely infrequent in corpora of English text: The probability of Dsvid
being the intended message is quite low. On the other hand, if someone did for
some reason want to type the wordDsvid, it is very likely that they would indeed
type the string Dsvid (as reflected by the fact that the edit distance from Dsvid
to Dsvid is 0); the probability of observing the noisy message Dsvid given the
intended message Dsvid is pretty high. But overall, combining these two pieces
of information, Dsvid is probably not what they meant because Dsvid is a very
unlikely string for the writer to have intended.

Next, did they mean to type the word Sara? On the one hand, Sara is a pretty
likely string of English: It’s in a dictionary and it occurs somewhat frequently
in corpora of English text, so the probability of Sara being the intended message
is quite high. On the other hand, if someone intended to type the word Sara, it
is extremely unlikely that they would have typed the string Dsvid (as reflected
by the fact that the edit distance from Dsvid to Sara is 4): The probability of
observing the noisy message Dsvid given the intended message Sara is very low.
So Sara is probably not what they meant.

Finally, did they mean to type David? On the one hand, David is a pretty likely
string of English, appearing in dictionaries and corpora: The probability ofDavid
being the intendedmessage is high. Additionally, if someone intended to type the
word David, it’s quite likely that they would have typed Dsvid (as reflected by
the fact that the edit distance between them is 1): The probability of observing
the noisy message Dsvid given the intended message David is high. To arrive at
David, we combined two pieces of information: The probability of the intended
message, and the probability of the noisy signal that we observe given that in-
tended message. We choose the intended message that is most probable accord-
ing to these two combined metrics.

To automate this reasoning process, Norvig’s simple spell-checker first con-
siders all correctly-spelled candidates within an edit distance of 1 from the mis-
spelled word, and chooses as the “best” correction the one that is most frequent
in a corpus of English text. If there are no correctly-spelled candidates within an
edit distance of 1, then Norvig’s spell-checker considered all candidates within
an edit distance of 2, and again chooses as the “best” correction the one that is
most frequent in an English corpus. If there is no word within an edit distance
of 2, the spell-checker gives up and just returns the misspelling. Edit distance re-
flects the probability of the misspelling given the intended message, and corpus
frequency reflects the probability of the intended message.

If we wanted to make Norvig’s spell-checker more sophisticated, we might
note that s and a are right next to each other on a keyboard, so that Dsvid is a
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particularly likely mistyping of David, more likely than Dbvid even though they
are both equidistant from David by edit distance. Another way to improve this
spell-checker is to consider the linguistic context of each word, which we explore
in Section 2.4.1.

Under the Hood 5: Dynamic programming

The minimum edit distance problem (also referred to as the edit distance
problem) is to decide the minimum number of edit operations needed in
order to transform a misspelling into a candidate correction. It is an exam-
ple of an important class of problems that look hard but turn out, when
correctly viewed, to have exceedingly efficient solutions. Dynamic pro-
gramming is the technique that makes this possible.

The reason why minimum edit distance looks hard is that there are
many different sequences of edit operations that need to be considered.
However, by breaking up the problem into smaller sub-problems, it is
possible to find enough opportunities for saving time and space that the
problem becomes feasible. The key idea is to avoid solving the same
sub-problem over and over again. This can be done by solving each sub-
problem once, then storing away the answer in case it is needed again.
For an in-depth discussion on calculating minimum edit distances, see
chapter eight of Mitton (1996), on which we base this discussion.

To set up the problem, we need to ensure that there is a finite number
of steps involved. How could we end up with an infinite number of steps?
Consider the misspelling obe and the correction oboe: While we can intu-
itively see a distance of one between these strings, it is possible to derive
oboe from obe by (i) deleting o, (ii) changing b to o, (iii) inserting b, (iv)
inserting a, and (v) finally changing a to o. It is pretty obvious that the a
(step iv) was a pointless diversion, but not immediately obvious how to
fix this in a systematic way.

Things are actually far worse than this: We can also do it in six steps.
We again start by deleting o, then change b to o, then insert b, then in-
sert a, change a to b, then finally b to o. Or in seven, by converting the
b back into an a before turning it into an o. In fact, since you can make
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the pointless diversion as long as you want, there are an infinite number
of different ways of doing the conversion. Enumerating all these possibil-
ities is not just inefficient, it is actually impossible. We need to set up the
problem to avoid this pointless and infinitely repetitive enumeration of
silly possibilities.

Given this, wewant the algorithm for edit distance calculation to satisfy
two requirements:

1. Letters cannot be changed back and forth a potentially infinite num-
ber of times.

2. The number of changes that we consider should be reasonable. In
fact, we will show that the total number of changes we need to
consider – to find the single best sequence of changes – is propor-
tional to the product of the sizes of the two words being compared.
This is definitely efficient enough for spell checking, because words
are typically quite short (in English, 40 characters is a really long
word). If the sequences were much longer, as happens when com-
paring strands of DNA in biology, we might need a still cleverer
algorithm.

In other words, we never want to deal with a character in either word
more than once. With our basic operations, it is obvious that we could get
the desired result by deleting each character in the first word and then
inserting each character of the second word. This establishes an upper
bound on the number of edit operations we need. Mathematically, we can
state this upper bound as 𝑙𝑒𝑛𝑔𝑡ℎ(𝑤𝑜𝑟𝑑1) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑤𝑜𝑟𝑑2). In other words,
if we compare a three-letter word like tap to a misspelling like step, we
know that the edit distance cannot be more than 7. In fact, if you think a
little more, you will be able to find a better upper bound on the number
of operations needed. We will explain this tighter upper bound at the end
of this section.

To calculate minimum edit distance, we set up a directed, acyclic graph,
where a graph – which is a mathematical object that models relationships
between items – is represented by a set of nodes (circles) and arcs (arrows).
Arcs capture relationships between nodes: Directed means that the arcs
have a direction to them, pointing from one node to another, and acyclic
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means that there are no loops: We cannot return to a node once we have
left it.

We will set up the graph in the following way, as shown. Horizontal
arcs correspond to deletions; vertical arcs correspond to insertions; and
diagonal arcs correspond to substitutions (including the option that a let-
ter is substituted for itself). We leave out transpositions here, although
the graphs can be extended to allow them.

Delete x

Substitute y for xInsert y

Let us start by assuming that the user types in fyre. Given that fry is
one of the possible corrections, we want to calculate how far away fry
is. In other words, we want to calculate the minimum edit distance (or
minimum edit cost) from fyre to fry. As the first step, we draw the directed
graph:

f y r e

f

r

y

The worst case of first deleting every letter in fyre and then inserting
every letter of fry would be achieved by starting in the upper left, taking
every arc across the top, and then following the arcs down the right side.
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What is missing from the graph are identifiers for the nodes. If we add
an identifier to each state, that will allow us to define a topological order.

A E F G H

B I J K L

C M N O P

D Q R S T

f y r e

f

r

y

A topological order means that the nodes are loosely ordered, but not
completely ordered. Here, for example, node I comes after nodes A, B,
and E, but there is no ordering between nodes C and I: There is no way
to get from C to I or from I to C. The crucial property of this topological
ordering, as we will see below, is that at every node, all the incoming arcs
come from nodes prior in the ordering.

In order to actually calculate a distance, we need to add the costs in-
volved to the arcs. In the simplest case, the cost of deletion, insertion, and
substitution is 1 each (and substitution with the same character is free),
as shown. In other words, there is a distance of one for any non-trivial
operation. For example, from node A to node I, we substitute f for f with
a cost of zero, and from I to J, we delete y with a cost of one:
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A E F G H

B I J K L

C M N O P

D Q R S T

f
1

y
1

r
1

e
1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 1 1

1 1 0 1

1 0 1 1

f 1 1 1 1 1

r 1 1 1 1 1

y 1 1 1 1 1

Now, we are ready to get into dynamic programming. We want to find
the path from the start (A) to the end (T) with the least cost. How do we
do that efficiently?

We will start with a simple but inefficient way of doing it:

1. Follow every path from start (A) to finish (T).

2. See how many changes we have to make for each path.

This is very time-consuming, however. There are too many different
paths to check. We would have to check the path A→I→J→O→S→T and
then separately check the path A→I→J→O→P→T, and so on.

But note that these paths have a lot in common! In fact, based on this
insight, we should instead re-use results, which is exactly what dynamic
programming does:

1. Follow the topological ordering.

2. Calculate the least cost for each node:

• Add the cost of an arc to the cost of reaching the node this arc
originates from.

• Take the minimum of the costs calculated for all arcs pointing
to a node and store it for that node.
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The key point is that we are storing partial results along the way, in-
stead of recalculating everything every time we compute a new path. For
example, let’s say that we have already processed the nodes A-H and
stored the minimum cost at each of those nodes. We are now at node I
and need to examine all three incoming arcs (from nodes A, B, and E).
Node A has a cost of zero; node E has a minimum cost of one, and node B
also has a minimum cost of one. We add the cost of each node to the cost
of each incoming arc:

Source to Target Cost at Source +Cost of Arc = Total Cost

A to I 0 + 0 = 0
B to I 1 + 1 = 2
E to I 1 + 1 = 2

The least cost of these three incoming arcs is the one from node A, with
a cost of 0. So, we store 0 as the minimum cost at node I. This corresponds
to the fact that the paths going through nodes B or E are useless for us to
arrive at node I: They cost too much, and from this point onwards, we can
ignore those paths, keeping only the cheapest one. Now, anytime node I
is needed, we give the cost of 0, and we never have to re-calculate its cost.

In this way, the minimum cost at every node is computed, following
the ordering from A to T. At node T, we calculate costs in the same way.
You can verify that node O has a minimum cost of 1, node P a minimum
cost of 2, and node S a minimum cost of 2. Each of the arcs (O→T, P→T,
S→T) has a cost of 1, and so the final cost at node T will be 2, taking the
path coming from O. Since T is the final node in the graph, this means
that 2 is the minimum cost between fyre and fry.

Dynamic programming avoids infinite repetition, because it looks
things up in a table rather than recomputing them. It also satisfies the
stronger requirement to avoid all unnecessary repetition, because each
intermediate result is entered into the table exactly once. The number of
letter-letter comparisons needed is exactly the size of the table, which is
the product of the lengths of the source and target string, sowe also satisfy
the second requirement that the cost of the computation be in reasonable
proportion to the size of the problem.

57



2 Writers’ aids

The better upper boundwhichwementioned earlier is a simple one. Let
us decide to work on transforming the longer word into the shorter word.
First we replace all the letters of the shorter word with the corresponding
letters of the longer word, then we insert the leftover letters from the
longer word. To illustrate this, imagine that the shorter word is take and
the longer word is intake. The old upper bound said that we might need
4 + 6 = 10 operations. The new upper bound says that we should first
replace take with inta, then insert ke, for a total cost of 6. We say that
the new upper bound is tighter than the old one. The total number of
operations required by the new, tighter upper bound is the length of the
longer word.

Obviously, the real minimum cost path for this example is to first insert
in then match up take, for a minimum cost of 2. Dynamic programming
will indeed find this path. The upper bound is still useful, because it can
be calculated using nothing more than the length of the words. If a node
has a cost greater than the upper bound, it cannot possibly contribute to
the minimum cost path, so we could design a slightly cleverer version of
the minimum cost algorithm that avoids filling in nodes that would cost
more than the upper bound. The answer would still be correct, and some
time and effort would be saved, at the expense of making the algorithm
more complicated. It is usually better to keep algorithms simple, because
complicated ones are more likely to have bugs, but in this case, especially
if we are dealing with a language with very long words, the extra com-
plexity might be warranted.

2.4 𝑛-grams

Imagine that someone types the phrase You put the catt before the horse. The
word catt is misspelled, as we can tell from the fact that it does not appear in a
dictionary or corpus. Out of context, the simple spell-checker that we sketched
above would consider all candidates that appear on the list of correctly spelled
words and are within an edit distance of 1 from catt, and then choose the most
frequent one: cat. But of course, the most likely correction should actually be
cart, which is less frequent than cat but more likely in this particular context.

Intuitively, put the cart before the horse is more likely as a string of English
than put the cat before the horse. We can quantify that intuition using the idea
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of 𝑛-grams, which are sequences of elements. The elements can be characters
or words (both have their uses, but we use word-level 𝑛-grams here); and 𝑛 is a
number that goes up as high as you want. Unigrams are one-element sequences
(for word-level 𝑛-grams, this means single words: the). Bigrams are two-element
sequences (the cat), trigrams are three-element sequences (put the cat), and so
on.

If you’ve ever managed to correctly guess the next word before you turn the
page of a book, you are already an expert in reasoning about 𝑛-gram probabilities.
Let’s illustrate using bigrams (the cat). The idea is that we count all of the two-
word strings (bigrams) in a corpus, such as of the, to be, and so on. These simple
counts are surprisingly useful.

To start, take a look at Tables 2.1–2.3. Here, we’ve extracted the top twenty
most common unigrams, bigrams, and trigrams in two corpora of English text –
one million words of comments from January 2018 on the AskReddit web forum
(Baumgartner et al. 2020), and the comparably-sized Brown corpus (Francis &
Kucera 1979), which gathers data from a balanced blend of sources (newspapers,
novels, academic journals, and so on) from the 1960s. By comparing 𝑛-grams
drawn from two different corpora, you can investigate which 𝑛-gram statistics
are common to all English text, and which ones are specific to a particular corpus,
genre, or time period.

Consistent across both corpora, we see that the START token (indicating the
beginning of a sentence) appears in more of the most frequent 𝑛-grams than the
END token, which shows that the beginnings of English sentences tend to be
more predictable than the end. Distinguishing the two corpora, I is far more fre-
quent in Reddit than in the Brown Corpus, perhaps reflecting different patterns
in personal narratives versus expository writing. Notably, he and his are among
the top 20 unigrams in the 1960s-era Brown corpus, but not among the top 20
unigrams from 2018 Reddit data – perhaps indicating a historical shift in the so-
ciology of gender as well as a difference in genre.

To guess the next word of a book before turning the page, you might take
into account the last word on the previous page and then look at the most com-
mon bigrams that begin with that word. For example, the most common bigram
beginning with you is you are, so when you see the word you, the most likely
following word is are. The same idea can be used in a simple implementation of
auto-complete for texting: The phone can suggest are as the next word following
you.
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Table 2.1: Top-20 common unigrams (lower-cased, stripped of punctu-
ation) in two English corpora – one million words of comments from
AskReddit, and the one-million-word Brown corpus.

Reddit 1-gram Count % Brown 1-gram Count %

the 32404 3.34 the 69971 6.97
i 28940 2.99 of 36412 3.63
to 27629 2.85 and 28853 2.87
a 26724 2.76 to 26158 2.60
and 24795 2.56 a 23308 2.32
of 16106 1.66 in 21341 2.13
in 13649 1.41 that 10594 1.05
that 13636 1.41 is 10109 1.01
it 13281 1.37 was 9815 0.98
my 12412 1.28 he 9548 0.95
you 11404 1.18 for 9489 0.94
for 10350 1.07 it 8760 0.87
is 9790 1.01 with 7289 0.73
was 9541 0.98 as 7259 0.72
but 7313 0.75 his 6996 0.70
have 7295 0.75 on 6741 0.67
on 6588 0.68 be 6377 0.64
with 6446 0.67 at 5372 0.53
not 5912 0.61 by 5306 0.53
they 5794 0.60 i 5180 0.52

2.4.1 Spelling correction in context with 𝑛-grams

By telling us which strings of English are more or less likely, 𝑛-grams can also be
used to upgrade our simple spell-checker, which will help us identify cart as the
best correction for put the catt before the horse. Specifically, we can use 𝑛-grams
as a simple language model – a way of computing the probability of a sequence
of words, given a lot of data about the language.

In an 𝑛-gram language model, the probability of a full sentence is obtained
by breaking it down into strings of length 𝑛 and then multiplying the probabil-
ities of each 𝑛-gram. The probability of put given you is the percentage of all
bigrams starting with you that end in put. The probability of the given put is the
percentage of all bigrams starting with put that end in the.
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Table 2.2: Top-20 common bigrams (lower-cased, stripped of punctu-
ation) in two English corpora – one million words of comments from
AskReddit, and the one-million-word Brown corpus.

Reddit 2-gram Count % Brown 2-gram Count %

START i 10917 1.04 of the 9750 0.92
in the 3093 0.30 START the 7055 0.66
i was 2831 0.27 in the 6092 0.57
START the 2529 0.24 to the 3503 0.33
of the 2458 0.23 START he 3040 0.29
START my 2277 0.22 on the 2476 0.23
it END 1939 0.19 and the 2269 0.21
START it 1877 0.18 START it 2122 0.20
and i 1775 0.17 for the 1854 0.17
it was 1694 0.16 START i 1827 0.17
to be 1634 0.16 START in 1795 0.17
START its 1579 0.15 to be 1718 0.16
in a 1566 0.15 at the 1658 0.16
START im 1478 0.14 with the 1541 0.15
START you 1472 0.14 START but 1513 0.14
to the 1464 0.14 of a 1492 0.14
START and 1414 0.14 it is 1475 0.14
when i 1367 0.13 in a 1425 0.13
on the 1326 0.13 from the 1419 0.13
i have 1293 0.12 that the 1399 0.13

In a bigram language model, the probability of You put the cat before the horse
would be:

(4) 𝑃(you|START) × 𝑃(put|you) × 𝑃(the|put) × 𝑃(cart|the) × 𝑃(before|cart) ×
𝑃(the|before) × 𝑃(horse|the) × 𝑃(END|horse)

And in a trigram language model it would be:

(5) 𝑃(put|START, you)×𝑃(the|you, put)×𝑃(cart|put, the)×𝑃(before|the, cart)×
𝑃(the|cart, before) × 𝑃(horse|before, the) × 𝑃(END|the, horse)

According to the trigram language model, the trigrams the cart before and cart
before the should be more likely than the cat before and cat before the, so the

61



2 Writers’ aids

Table 2.3: Top-20 common trigrams (lower-cased, stripped of punctu-
ation) in two English corpora – one million words of comments from
AskReddit, and the one-million-word Brown corpus.

Reddit 3-gram Count % Brown 3-gram Count %

a lot of 851 0.09 START it is 604 0.06
START i was 697 0.07 START it was 579 0.06
when i was 602 0.06 START in the 471 0.05
START i dont 538 0.06 one of the 404 0.04
START i have 531 0.05 START he was 367 0.04
START it was 470 0.05 the united states 340 0.03
START i think 456 0.05 START this is 259 0.03
START if you 407 0.04 START there was 258 0.03
START i had 391 0.04 START he had 249 0.02
START when i 381 0.04 as well as 238 0.02
START this is 376 0.04 START there is 204 0.02
i grew up 361 0.04 some of the 179 0.02
one of the 289 0.03 out of the 174 0.02
START i know 275 0.03 the fact that 167 0.02
START i am 251 0.03 START but the 166 0.02
to go to 245 0.03 START on the 156 0.02
i was a 244 0.03 the end of 149 0.01
START i grew 244 0.03 part of the 145 0.01
i have a 242 0.02 START at the 145 0.01
START i just 234 0.02 it was a 143 0.01

languagemodel should give the sentence You put the cart before the horse a higher
probability than You put the cat before the horse. Such a language model therefore
would allow our spell-checker to take the context into account and choose the
desired correction, cart.

Now that you understand the idea of 𝑛-grams, you can see how it encompasses
even our simple context-free spell-checker from above. There, we computed the
frequency of each single word in a corpus and used it to decide which candidate
word is most likely. In the terminology of 𝑛-grams, we considered unigram fre-
quency and used it to estimate the probability of the writer’s intended message.
Here, we are using bigram or trigram frequency to do the same thing, but the
larger 𝑛 incorporates information about the linguistic context of the misspelling.
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But is a larger 𝑛 always better? Not necessarily: The larger the 𝑛, the fewer
examples of each 𝑛-gram will appear in a corpus, so that many 5-grams or 6-
grams (Samantha works as a party juggler) are totally unique and thus absent
from corpus statistics. You can see this yourself by considering the counts in
Tables 2.1–2.3 (unigrams are more frequent than bigrams, which are more fre-
quent than trigrams), or by searching the web in quotation marks for various
two-word string of English (Samantha works, works as) versus various six-word
strings (Samantha works as a party juggler), and comparing the number of hits.
Language is fascinating in part because it is productive: We can use it to generate
and understand infinite new utterances that we have never heard before. These
utterances will include 𝑛-grams that don’t appear in any corpus.

The productive power of language leads to data sparsity: No matter howmuch
data we use, there will always be something we have never seen before. Data
sparsity is a core problem inmuch of statistical NLP, where the behavior is guided
by the data one has seen. Part of the solution to data sparsity is to look at more
data, from a larger corpus; but even then, you’re guaranteed to encounter new
𝑛-grams that you’ve never seen before. Another solution is to pretend you’ve
seen more data than you really have, for example using plus-one-smoothing –
adding 1 to the count of every single possible 𝑛-gram, pretending that you’ve
seen any novel 𝑛-grams once in the past instead of never. This way, you can avoid
multiplying by zero, or trying to take the log of zero (undefined), both of which
could cause problems for the calculation of a language model. A third solution
is to back off to 𝑛 − 1 if you have never seen a particular 𝑛-gram of length 𝑛: If
you’ve never seen the trigram my glamorous elephant, you can at least estimate
its probability in your language model by taking the probability of the bigrams
my glamorous and glamorous elephant.

Stepping back, 𝑛-gram techniques are a simple form of machine learning,
where a computer is able to generalize knowledge (𝑛-gram counts from a corpus)
to solve a new problem (deciding the probability of a sentence it has not seen
before). We will see much more of machine learning in Chapter 5.

We can also use 𝑛-grams to correct real-word errors. For example, encounter-
ing a sentence such as You put the cat before the horse, we could calculate the
𝑛-gram probability of this original sentence and compare it to alternative ver-
sions where we alter each word by an edit distance of 1 (restricting our attention
to edits that also appear on a word-list of correct spellings). This way, You put
the cart before the horse would be identified as a string with higher probability
than You put the cat before the horse.

Instead of using sets of candidates based only on spelling differences, these
techniques often use confusion sets consisting of words that are potentially con-
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founded with one another in any relevant property. For example, a set could
contain the words there, they’re, and their, so that the task of the system is to fig-
ure out which of the words was meant in a given context. The advantage of such
confusion sets is that the words do not have to be similar-looking: amount and
number, for instance, can make up a set of words which are commonly confused.
The disadvantage of these confusion sets is that someone usually has to define
them in advance.

2.4.2 𝑛-grams as a generative language model

So far, we have used 𝑛-grams to create a language model that represents the
probability of different strings, for example capturing the fact that put the cart
before is a more likely string of English than put the cat before. But we can also use
𝑛-grams as the basis for a very simple generative language model which creates
probable strings of text. The term language model is used in both senses.

To create a generative language model using bigrams, we would store all the
bigrams in our corpus alongwith their frequency. To generate a new sentence, we
begin with the START token. Next we choose a word 𝑤 to complete the bigram
⟨START, 𝑤⟩. We could choose the word that appears in the most frequent bigram
beginning with START, which would be The in the Brown Corpus (there are
6544 instances of ⟨START, 𝑡ℎ𝑒⟩ in Brown). But if we always chose the most likely
word, then our language model would generate the same sentence repeatedly,
beginning every sentence with The. If we want a bit more novelty, we can choose
a random bigram beginning with START, such as ⟨START,But⟩. We have seen
this bigram 1271 times in the corpus, so it’s a plausible way to a sentence, but it’s
not the most frequent one, so our language model will generate more interesting
and less predictable text. Next, we choose a new word 𝑤 to complete the bigram
⟨START,But⟩. Again, we could choose the most frequent bigram beginning with
But (which is the), or a random one for more creative text (such as there). And so
on. We keep generating text until we reach a final punctuation mark; then the
sentence ends.

Here is an example of some text generated by this bigram language model:

(6) But there should always particularly when finally convinced that nobody
else?

Here, the individual bigrams are reasonable (but there, there should, should al-
ways, and so on), but the full sentence is not very coherent.

When we use trigrams instead of bigrams in our language model, we generate
text like this:
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(7) But with the increasing complexity of markets and their importance in
the north, where no one had been allowed to go.

Here, individual pieces of the sentence make sense (increasing complexity of
markets and their importance), but again the full sentence seems to lose track of
itself partway through.

Already, we have created a very simple example of a generative language
model, which distills insights from a corpus to produce new sentences. We have
also seen that the sentences are more interesting if we add some randomness to
the process. These insights persist in modern generative language models, to be
introduced below.

2.5 Grammar checkers

When our context-sensitive spell-checker replaces their with there, we are mov-
ing from spell-checking into grammar checking – automatically identifying er-
rors in sentence structure. Before we investigate how to correct grammatical
errors, we first must unpack the idea of grammar.

2.5.1 What is grammar?

Linguists view grammar as the implicit set of rules that speakers use to create
and understand sentences in their language. For linguists, grammar is descriptive:
The rules describe how people actually use language, not how they should use
it. Thus, for linguists, I ain’t got no books is a perfectly grammatical sentence
in some varieties of English, because people use it and understand it, whereas
*book the read student is ungrammatical (indicated by the asterisk) because no
one would ever use it.

In contrast, educators and editors view grammar as a prescriptive set of rules
for how people should create sentences in a way judged by some authority to
be clear and correct. Educators and editors may argue that I ain’t got no books
does not follow the prescriptive rules of standardized English, likely because this
pattern is not used by the people who have historically had the power to declare
their usage conventions as the correct ones. *Book the read student would in
some sense be prescriptively incorrect too, but prescriptive grammarians might
not even think to prescribe against a sentence that no one would ever use.

While linguists focus on descriptive rules, in reality, commercially available
grammar checkers correct text according to both descriptive and prescriptive
rules, as writers generally want to adhere to both. To understand how such rules
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can be represented on a computer, we need to take a long look at how linguists
analyze grammar. In linguistics, grammar – as we have been using the term – is
studied largely within the subfield of syntax, where the goal is to identify rules
and representations that explain how speakers create and understand new sen-
tences.

Sentences are interesting because on the one hand, words are ordered linearly:
They are written from left to right (in the Latin alphabet used to write English),
and spoken one after another over time. But on the other hand, words are repre-
sented in the mind in a hierarchical structure, as we’re going to see: Groups of
words form chunks called constituents, and words are mentally and structurally
“closer” to their constituent-mates than to other words that may be equidistant
linearly. Such hierarchical structure is not directly reflected in speech or writ-
ing, but is important for understanding the meaning of a sentence, so a syntactic
theory must find a way to represent it.

In (8), for example, it seems like most of the reindeer forms a unit, and this in-
tuition is backed up by the fact that we can replace it with other, similar phrases,
like the children or two of the students. We can also ask questions about this sen-
tence for which most of the reindeer is the answer, such as: Who plays extremely
fun games? And we can conjoin most of the reindeer with other constituents us-
ing and: Most of the reindeer and some of the dogs play extremely fun games. So,
according to these constituency tests (replacement, answering of a question, con-
joining), most of the reindeer forms a constituent.

(8) Most of the reindeer play extremely fun games.

Large constituents are made up of smaller constituents. The reindeer is a con-
stituent too: We can replace it with other noun phrases (the puppies, my students).
It might be hard to phrase a question about (8) such that the reindeer is the an-
swer, but we can conjoin the reindeer with other similar constituents: Most of the
reindeer and the puppies play extremely fun games. So the reindeer is a constituent.

Just likemost of the reindeer, reindeer play extremely fun is a four-word string of
the same sentence, but this one does not behave like a meaningful unit. It cannot
serve as the answer to a question, nor can it be conjoined with or replaced by
any other constituent.

In syntax, one of the goals is to articulate a set of rules for how to assemble
words into constituents and constituents into sentences. Starting at the word
level, the way a given word fits into constituents and sentences is determined by
its part of speech (also known as its lexical category). The main parts of speech are
verbs (play, run, believe, throw), nouns (reindeer, game, government, basketball),
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adjectives (fun, beautiful, potential, brown), adverbs (heavily, well, later), prepo-
sitions (on, at, into), articles (also known as determiners: a, the, this, some), and
conjunctions (and, or, since).

To identify a word’s part of speech, the clearest evidence comes from its dis-
tribution: Where does it typically appear in a sentence? For instance, nouns like
reindeer can appear after articles, like some or the, while a verb like eat cannot.
The second criterion is the word’s morphology, the kinds of prefixes or suffixes a
word can have. For example, verbs like play can take an -ed ending to mark them
as past tense; but a noun like reindeer cannot. Words that share a similar distri-
bution and similar morphological patterns are put into the same lexical category.
Linguists use categories that are finer-grained than the familiar parts-of-speech,
but they still talk about nouns, verbs, adjectives and so on, meaning roughly the
same thing as an educated non-linguist does.

Turning to a word’s meaning, there is some truth to the common intuition that
nouns (reindeer) prototypically describe people, places, and things, while verbs
(play) describe actions and events, and adjectives (cute) describe properties. But
there are also exceptions: Earthquake is a noun but seems to describe an event
almost like a verb, and beauty is a noun but describes a property almost like an
adjective. Therefore, a word’s distribution distinguishes its part-of-speech more
clearly than its meaning.

In any case, a word’s part-of-speech determines the syntactic behavior of the
constituents built from it. Constituents are built by assembling words according
to their part-of-speech. The reindeer is a constituent because it follows a general
English rule of combining an article (the) with a noun (reindeer). Play games is
a constituent because it follows a general English rule of combining a transitive
verb (play) with a noun phrase (games). Just as words combine according to their
lexical category, constituents combine with other constituents according to their
phrasal category: A noun phrase (the reindeer) can combine with a verb phrase
(run, play extremely fun games, eat lunch) to create a sentence.

When we know a word’s part of speech, we know that we can substitute other
words from the same part of speech into a sentence in such a way that – even if
its meaning changes or even becomes nonsensical – the sentence still follows the
rules of English. Similarly, when we know the phrasal category of a constituent,
we can substitute any other constituent from the same category. (Try it!)

Chomsky (1957) observed that the sentence Colorless green ideas sleep furiously
is nonsense in terms of its meaning and contains very unlikely 𝑛-grams such as
colorless green, but still grammatical as a sentence of English because all of the
lexical and phrasal categories are combined correctly. From his perspective, this
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example shows that the rules for building grammatical sentences are based on
the sentence’s structure rather than its meaning.

All of this prose discussion of syntax can be more explicitly formalized and vi-
sualized in a particular syntactic framework.We introduce two such frameworks,
phrase structure grammar (influential in American formal linguistics) and depen-
dency grammar (widely used in NLP).

2.5.2 Phrase structure grammar

If you have taken a linguistics class, you have most likely encountered phrase
structure grammar, introduced by Noam Chomsky in the 1960s. Phrase struc-
ture grammar is a set of rules for breaking down a sentence into its constituents.
For this, we need two things – a lexicon of words categorized by their parts-
of-speech; and a set of syntactic rules for how to assemble or decompose con-
stituents according to the parts-of-speech of the words therein.

Of course, the lexicon is huge and new words are added all the time, so we
can’t write down all the words in every lexical category. And there are lots of
different syntactic rules for handling complex structures such as relative clauses,
questions, and so on. But we don’t necessarily need to engage with all of that
complexity to get started on a phrase structure grammar. Instead, we can start
with a grammar fragment, a toy grammar that includes just a few words and a
few syntactic rules, which serves as a model for how we think grammar works
more generally.

In our grammar fragment, we keep it simple with just a few words and phrase
structure rules:

“S → NP VP” is a rule meaning that a sentence (S) can be broken into a Noun
Phrase constituent and a Verb Phrase constituent. “NP → Det N” means that a
Noun Phrase constituent can be broken into a determiner followed by a noun.
“Det → the, a, some, many” means that a Determiner constituent can be instan-
tiated by these words. “N → reindeer, dragon, lunch, game” means that a Noun
node can be instantiated by these nouns. When a constituent is manifested by
an individual word, we call that constituent a terminal node, because it doesn’t
contain any further constituents.

“NP → Det (A*) N” means that a Noun Phrase can consist of a determiner;
an optional (indicated by parentheses) and unlimited (indicated by the aster-
isk) number of adjectives; and a noun. This rule parsimoniously captures Noun
Phrases with and without adjectives, such as the reindeer, the beautiful reindeer,
the beautiful interesting reindeer, and so on.
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Table 2.4: An English grammar fragment, including rules for words.

Lexicon:
N → reindeer, dragon, lunch, game, evening, morning
V(trans) → play, eat
V(intrans) → run, swim, dance
Adj → fun, beautiful, interesting
Det → the, a, some, many
P → for, in, to, at

Phrase structure rules:
S → NP VP
VP → V(trans) NP
VP → V(intrans)
NP → Det (A*) N
NP → N(plural)
NP → NP PP
PP → P NP

We can use these phrase structure rules to draw a phrase structure tree (Fig-
ure 2.1) for our sentence. These rules are meant to indicate both syntactic hierar-
chy and linear order. Concerning hierarchical structure, the idea is that if a given
string of words is a constituent, that string of words will share a so-called par-
ent node not shared by other words (e.g., the reindeer with its parent NP, played
games with its parent VP). If a string of words is not a constituent (e.g., reindeer
played), then these words will not share a parent node to the exclusion of other
words. As for linear order, the terminal nodes can be read from left to right to
arrive at the word order of the sentence.

In a formal sense, each phrase structure rule must have a left-hand side, which
is a single non-terminal element; non-terminals are defined as (phrasal and lexi-
cal) categories. So, NP is an acceptable left-hand side, while reindeer is not. Sec-
ondly, each rule must have a right-hand side, which is a mixture of non-terminal
and terminal nodes – terminal because they are the final nodes in a tree. So, Det
Noun or Noun and Noun or Preposition NP are acceptable right-hand sides.

Note one other property of phrase structure rules: the label of the parent (i.e.,
the left-hand side) reflects the lexical category of the word within it that is in
some sense the most important for determining its distribution. This most im-
portant word is called the head. So, a Noun Phrase is headed by a noun, a Verb
Phrase is headed by a verb, and so on.
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Figure 2.1: Phrase structure tree for The reindeer played games.

A grammar built on phrase structure rules is called a context-free grammar,
which means that each rule is designed to be independent of the others. These
rules can be used wherever the category on their left-hand side occurs. Rules
cannot be further restricted to only apply in some places but not others. So, for
example, you cannot have a rule which specifies that “PP → P NP” is applicable
only when there is a verb phrase (VP) above the PP. The real reason for this is
complexity: by having simple rules that apply everywhere, you can reason in
a modular fashion about what is going on inside a particular constituent. (For
more information on this topic, see the Under the Hood box on complexity of
languages.)

The larger idea is that a phrase structure grammar represents an attempt to
write down the implicit rules that explain how speakers create and understand
new sentences, and thus to represent the infinite possibilities of language using
a finite set of rules.

Note that these rules are one-to-many, meaning that the same left-hand side
can correspond to multiple right-hand sides of a rule. “VP → V NP” captures
the behavior of transitive (object-taking) verbs such as throw (throw the ball),
while “VP → V” captures intransitive (object-less) verbs (swam). “NP → Det N”
captures the reindeer ; “NP → N” captures bare (determiner-less) noun phrases
such as reindeer ; and “NP → Det A N” handles the beautiful reindeer. One-to-
many rules give phrase structure this important flexibility.

Phrase structure rules are also recursive, meaning that a rule can be used in
building its own sub-structure. In (9), for instance, NP is reapplied within itself,
thus allowing for phrases such as [ [ the dog ] [ on [ the porch ] ] ]: the whole
thing is an NP, with smaller NPs (the dog, the porch) inside it.
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(9) a. NP → NP PP
b. PP → P NP
c. NP → Det N

Similarly, the top S node can be embedded within a larger S node, for example
to deal with sentence-level conjunction (I ran and I swam) as well as embedded
clauses (They know that you won). Recursion is another way that phrase structure
rules capture the infinite possibilities of language.

Finally, phrase structure rules are language-specific, meaning that each lan-
guage has not just its own lexicon but also its own grammar. The English rule
“S→ NP VP” will not work for Irish, which uses VSO word order – meaning that
the verb comes first, the subject second, and the object last (Threw Alice the ball).

With phrase structure grammar, it is not obvious how to deal with sentences
where there is a long-distance dependency between words, meaning that the lin-
ear position of a word and its structural role seem to come apart. In (10), the
word what is far away from the word eat, and yet there is a sense in which what
is extremely closely related to eat, asking a question about the syntactic object
of the eating. Different syntactic theories handle long-distance dependencies in
different ways. Phrase structure grammar uses additional rules known as trans-
formations or movement, which allow a word to essentially be in two places at
once (one reflecting its linear order, another reflecting its structure); other theo-
ries add special rules for words like what. Such rules are interesting for linguists,
but tricky for practitioners because things get more complicated when the struc-
ture and the form of the sentence don’t match up.

(10) What did you eat?

In sum, phrase structure grammar is a hugely influential idea in linguistics,
and it can help build systems for grammar checking. However, in many NLP
applications, the grammar of a sentence is actually represented in a different
framework: dependency grammar.

2.5.3 Dependency grammar

Dependency grammar, introduced by the French linguist Lucien Tesnière (Tes-
nière 2015 [1929]), inspired by ideas dating back to the ancient Indian linguist
Panini, provides a way of representing the syntactic relations between words in
a sentence as a series of binary, asymmetric relations between pairs of words, a
head and a dependent.
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For example, Figure 2.2 shows a dependency representation for The reindeer
played games. Each word is labeled for its part of speech (the is labeled as DT,
which refers to determiners; reindeer is NN, which refers to a singular common
noun) and is linked to another word via a dependency relation. Here, the is the
dependent of the head word reindeer. The relation between these words is asym-
metric, in that the is the dependent of reindeer (and not vice versa), as represented
by the unidirectional arrow from reindeer to the. Each relation is also typed, mean-
ing that it has a specific label: here, the determiner relation (labeled det). In turn,
reindeer is the dependent of the head played (a past-tense verb, with the part of
speech VBD); in particular, the dependency relation between reindeer and played
is labeled with the nsubj relation type, which indicates a subject noun. Finally,
games (a plural common noun, with the part-of-speech tag NNS) is also the de-
pendent of the head played, related through the obj relation (for the syntactic
objects of transitive verbs). The verb played is the root of the sentence because
it does not depend on anything else.

The reindeer played games
DT NN VBD NNS

det nsubj obj

Figure 2.2: Dependency graph for The reindeer played games.

One big advantage of dependency grammar is that the same set of dependen-
cies can be used for any language, regardless of the word order. In a language
such as Irish where the verb comes first, the Irish equivalent of the verb played
could come at the beginning of the sentence, with both its nsubj dependency
and its obj dependency coming afterward. Indeed, dependency grammar was in-
spired in part by Lucien Tesnière’s work on Slavic languages such as Russian,
which allow many different word order options and use word endings known as
case markings rather than word order to indicate the relations between words in
a sentence. As a result, dependency grammar can be used to generate consistent
representations for sentences in a multilingual corpus. The Universal Dependen-
cies project (Nivre et al. 2016), based at Stanford, offers a corpus of sentences in
over 100 languages, all annotated for their dependency relations in a consistent
framework. Such a corpus helps linguists to study language typology – the ways
in which different languages are similar or different – and empowers technolo-
gists to build robustly multilingual language technologies.

Because dependency grammar can reflect dependencies between non-adjacent
words, it also offers a more transparent representation of long-distance syntactic
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dependencies.Whereas a phrase structure grammar needs special rules to handle
sentences like What did you eat?, a dependency grammar can just allow a long-
distance dependency, with an obj relation between what and eat (Figure 2.3).
Moreover, because dependency grammars are based on words (eat) rather than
phrases (VP), these representations invoke fewer invisible abstractions and stay
closer to what you see in the text.

What did you eat ?
WP VBD PRP VB .

obj
aux

nsubj
punct

Figure 2.3: Dependency graph for What did you eat?

In dependency grammar, the root of a sentence is generally a verb, reflecting
the idea that verbs are very important. The main verb of a sentence determines
many elements of its syntax: if it is a transitive verb such as throw, the sentence
will contain at least two noun phrases (the subject and the object of the verb),
whereas if it is an intransitive verb such as swim, it can contain only one (the
subject). The main verb is also important for understanding the event that the
sentence describes, which all other elements of the sentence are related to. The
syntactic relations between a verb and its dependent nouns (for example, the
nsubj relation between a verb and its noun subject) correspond roughly to seman-
tic relations between this event and its participants. For example, the syntactic
nsubj relation often corresponds to the semantic relation of agency: in the sen-
tence Alice swam, Alice is not just the subject but also the agent, the doer, of the
swimming event. And in languages such as English, the main verb is also marked
for tense, placing this event in time. So by building the sentence around the verb,
dependency grammar aims to highlight information relevant to the sentence’s
meaning.

In comparing phrase structure grammar to dependency grammar, it is impor-
tant to understand that each framework has different goals. Phrase structure is
aimed at capturing how speakers of a particular language can generate infinite
sentences from a finite set of words and rules; dependency grammar tries to cap-
ture the syntactic and semantic relations between words in a sentence in any
language. If you go on to study syntax within linguistics, you should know that
there is no single true theory of sentence structure; different theories capture
different pieces of the puzzle.
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In practice, for all the reasons described above, dependency grammar is widely
used in NLP. Tools are available to automatically generate a structural representa-
tion for a new sentence, a task known as parsing. To parse a sentence, the words
are first tagged with their parts of speech (noun, verb, adjective, determiner);
then the parser reads the sentence one word at a time, and at each word has to
decide whether to assign a dependency relation (choosing the direction, the head,
the dependent, and the type of the relation) between that word and a previous
word. Parsers are built using huge datasets of sentences already annotated for
their dependency structure, and are trained using machine learning to general-
ize this information to assign the right parse to new sentences. Two of the most
widely used dependency parsers are the Stanford Parser (available in Java and
Python; de Marneffe et al. 2006) and SpaCy (Python; Honnibal & Johnson 2015).
Both of these also offer web demos to visualize what is going on.

2.5.4 Fun with ambiguity

After this somewhat technical introduction to phrase structure grammar and de-
pendency grammar, we can pause to appreciate one of the insights that we gain
from a syntactic theory: it helps us to understand syntactic ambiguity. Syntactic
ambiguity arises when the same string of words could be assigned to multiple
distinct syntactic representations, each with a different meaning. Syntactic am-
biguity is possible because, as we have seen, sentences have structure above and
beyond the linear order of words.

In (11), for instance, wemight understand the sentence to mean that the person
whom I saw had a telescope (in which case with the telescope modifies the noun
phrase the person); or we might understand it to mean that I used the telescope to
see this person (in which case with the telescope modifies the verb phrase saw the
person). This ambiguity is known as a prepositional phrase attachment ambiguity
because it involves the position of the prepositional phrase with the telescope.
Using phrase structure or dependency grammar, we could draw two different
structures to reflect these two different meanings.

(11) I saw the person with the telescope.

Sometimes the effects of ambiguity are amusing. In (12), a Time headline from
2013, the author intends the headline as a noun phrase: the article describes the
incremental steps (plural noun) that the Pope has taken on LGBT issues. The
amusing alternative interpretation takes steps as a present-tense verb, meaning
that the non-existent Pope’s baby has stepped on some gay people. The ambiguity
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begins with the part-of-speech of the word steps (plural noun or present-tense
verb), with consequences for the structure of the whole sentence.

(12) Pope’s baby steps on gays.

Using the same thought process, you should be able to identify the source of
the ambiguity in (13a)–(13c):

(13) a. MBA studies mushroom.
b. Complaints about referees growing ugly.
c. Hospitals are sued by 7 foot doctors.

It is worth noting, though, that not all ambiguity comes from syntax. There
are also cases where the structure of the sentence is clear, but it is still compatible
withmultiple distinct meanings. In (14), the intendedmeaning is presumably that
the leader of Iraq is seeking military equipment; the amusing alternative is that
there is a disembodied Iraqi body part in search of additional body parts. Here,
the ambiguity stems not from the structure, but a lexical ambiguity: the multiple
(distantly related) meanings available to the words head and arms.

(14) Iraqi head seeks arms.

Another non-syntactic source of ambiguity is illustrated in (15a)–(15b). Here,
the structure of the sentence is clear, but what’s unclear is exactly what role is
played by the participants in the event. Oneway to replace a pillar is to purchase a
new one; another way is to physically stand in its place. A pleasant way to include
children in baking is to let them participate; a macabre way is to use them as
ingredients. Here, the ambiguity arises from multiple ways that individuals can
participate in the real-world event described by the sentence.

(15) a. Pillars replaced by alumni.
b. Include your children when baking cookies.

We hope that this exploration of syntax has given you the tools to explain
not just syntactic ambiguity, but also its cause. We also hope that you see the
importance of structure, above and beyond linear word order, in interpreting
sentences.
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Under the Hood 6: Complexity of languages

We discussed context-free grammars earlier, which can be used to process
natural languages and to assist in error detection. But what we did not
justify was that context-free grammars are: a) all we need (we call this
being sufficient) and b) nothing more than we need (necessary). In other
words, maybe there are simpler ways of analyzing language? On the other
hand, maybe context-free grammars are incapable of capturing all natural
language phenomena?

What we are discussing is linguistic complexity, or the limits of what
a particular type of grammar can do. Intuitively, the idea is that the phe-
nomenon under discussionmight be too complex to fit into the framework
that we have for characterizing it. But what exactly do we mean by being
too complex? To answer this, we need to sketch some formal language
theory. In formal language theory, we define a language as a set of accept-
able sentences (albeit, an infinite set). This is a technical use of the word
language, not the everyday one, but it turns out that there is a close par-
allel between the mathematical reasoning that we can do about formal
languages and the scientific reasoning that we want to do about natural,
human languages. In the same way, there is a formal definition of what a
grammar is, and a mathematical description of exactly what it means for
a language to be characterized by a grammar.

Formal grammars, such as context-free grammars, differ in terms of
which formal languages they can and cannot describe. Loosely, what we
are going to say is that a formal grammar is more powerful than another if
it can draw finer distinctions among formal languages. Instead of relying
on informal intuitions about power and complexity, we can use mathe-
matics. The point of the move to mathematics is to gain clarity by learn-
ing to view our scientific questions in an abstract way. For many of us,
this is a scary thing to do. Fortunately, in the case of formal language
theory, the results of doing the abstract thinking are so valuable, and so
obviously relevant to language, that overcoming the initial discomfort is
worthwhile.
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Formal grammars and languages are therefore useful tools in coming
to grips with the issues around the complexity of natural languages. You
should think of formal language theory – with its precise definitions for
what a grammar is, what a language is and what mathematical operations
are allowed – as a working model of aspects of the way that natural lan-
guage behaves. Real languages are obviously messier than this, but the
models are still useful.

For example, we can write a context-free grammar to capture the fol-
lowing kinds of center-embedded structures in English:
(16) a. The frog is happy.

b. The frog that the princess saw is happy.
c. The frog that the princess that the prince liked saw is happy.

At some point, these sentences become difficult to understand, but in
theory we can have an arbitrary number of sentences embedded within
other sentences in English. (As a side point, we can also remove that and
get a valid sentence.) The relevant context-free rules might look as in (17).

(17) a. S → NP VP
b. NP → NP S

It turns out that context-free grammars are more powerful than regular
grammars, such as those used towrite regular expressions, as in Chapter 6.
(Note that in regular grammar and regular expressionwe are using regular
in a technical sense.) There is no way to write a regular expression which
can capture an arbitrary number of center embeddings. Thus, it seems
like we need to at least use context-free grammars for natural language
syntax.

We have said that context-free grammars are more powerful than regu-
lar grammars. This is not the end of thematter: there are evenmore power-
ful grammar formalisms, capable of describing yet more complex formal
languages. namely context-sensitive grammars. It turns out that context-
free grammars cannot capture what are called cross-serial dependencies.
With center embeddings, as shown above, we have a noun phrase subject
which is associated with a verb phrase; in all three sentences, the frog and
is happy go together. When we look at it this way, we see that the last
sentence has a structure akin to abccba, as shown in (18), a repeat of (16c).
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(This tells us that we can use context-free grammars to write palindromes,
too!)

(18) The frog𝑎 that the princess𝑏 that the prince𝑐 liked𝑐 saw𝑏 is happy𝑎 .

Cross-serial dependencies, on the other hand, are of the form abcabc.
They are called cross-serial because, if we draw a dependency between
the two a’s, it has to cross over the dependency between the two b’s. If
we imagined English to have cross-serial dependencies, we would expect
(16b) to be rewritten as in (19).

(19) The frog𝑎 the princess𝑏 is happy𝑏 saw𝑎 .

This clearly does not happen in English, but does it happen in other
languages? Perhaps surprisingly, the answer is yes. In Swiss German, for
example, verbs and their direct objects cross. We can see this in (20), from
Shieber (1985), where em Hans (‘Hans’) is the object of hälfed (‘helped’),
and huus (‘house’) is the object of aastriiche (‘paint’). At least some lan-
guages, then, need more powerful grammars than context-free grammars.

(20) ...
...

mer
we

em
dative

Hans
Hans

es
the

Huus
house-acc

hälfed
helped

aastriiche.
paint

‘... we helped Hans paint the house’

2.5.5 From grammar to grammar checkers

After this long detour into syntax and the nature of grammar, we are finally ready
to explore how these ideas can be applied to grammar checking. And it turns out
that we’ve already done the heavy lifting by figuring out how to assign structures
to sentences!

To begin, a grammar checker can first try to assign a dependency parse to a
sentence. If the grammar checker cannot parse the sentence at all, it should prob-
ably be flagged as erroneous. If the grammar checker can assign a dependency
parse, it can check this parse against a set of hand-written grammatical rules
(a rule-based technique) corresponding to common errors: for example, it could
check that if a verb’s nsubj dependent is part-of-speech-tagged as a singular noun
(with the tag NN), the verb should also be part-of-speech-tagged as the singular

78



2.6 Style checkers

third-person form (with the tag VBZ). Such a grammar checker would flag The
dog swim and perhaps suggest that it should be corrected to The dog swims.

As an aside, it’s important to note that there are some varieties of English
(including Norfolk English and African American English) where The dog swim
is perfectly acceptable. So by treating it as an error to be corrected, our grammar
checker already blends together prescriptive grammar with descriptive grammar.

A grammar checker could also combine error detection and error correction.
For example, a grammar checker could automatically consider all alternative
spellings for common confusion sets (there, their, and they’re) and then suggest
the one that has the highest 𝑛-gram probability or yields the most probable de-
pendency parse. To build such a grammar checker, you would need a fast and
accurate dependency parser plus a (potentially hand-written) set of rules and
confusion sets corresponding to common errors. A grammar checker could also
be crafted not just to flag errors, but also to explain what grammatical rule is
violated, along with suggested corrections.

2.6 Style checkers

Moving further into prescriptive ideas about language, most modern grammar
checkers also incorporate suggestions for rephrasing a sentence to align with
prescriptive rules of writing style. Functionally, a style checker works just like
the grammar checker described above, checking a (dependency) parse against a
set of potentially hand-written rules; the only difference is the nature of these
rules.

For example, a style checker might suggest avoiding split infinitives, where an
adverb falls between to and a verb (to go boldly might be suggested as a correction
for to boldly go). A style checker might propose more socially inclusive language,
for example suggesting server as a replacement forwaitress. A style checker could
also suggest that very big noun phrases (the refusal of the advisors to consider the
downsides) should be replaced by sentences (the advisors refused to consider the
downsides), thought to be easier for readers to understand.

Sometimes, a style checker enforces subjective rules that a writer might dis-
agree with, such as the idea that the passive voice (The law was passed) should be
replaced by the active form (Congress passed the law). The popular Grammarly
tool even flags hedges such as I think that and somewhat, suggesting that “strong,
confident” writing is preferable. But there may be situations where it is actually
advisable to hedge one’s claims.
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Some stylistic norms would be easy to automate and yet are not commonly
flagged by modern grammar checkers: a writer should vary the length and struc-
ture of their sentences; the same adjective should not be used too often within
the same paragraph (unless it is a technical term).

Other stylistic norms would be very difficult to check automatically, at least
without amuch richer representation of textualmeaning: the idea that the syntac-
tic subject of a sentence should be a previously established discourse topic (a pref-
erence which sometimes conflicts with the avoidance of the passive voice!); that
parallel ideas should be discussed using parallel sentence/paragraph structure;
that the end of a sentence is a place of structural emphasis and should be used to
introduce new information or to advance one’s point. Modern grammar checkers
do not have a way of knowing what a writer’s point is, much less whether it is
a convincing one, and are therefore limited in their capacity to effectively style-
check writing. Grammarly’s advertisements have suggested that it can help you
to write a concise, heart-warming, and hilarious speech for your best friend’s
wedding, but in reality it will not help you with the content.

2.7 Auto-complete and beyond

So far, we have focused on writers’ aids that correct already-written text. But
some newer writers’ aids also help to generate text, suggesting completions for
words or sentences that the writer has begun to type.

Auto-complete suggests ways to type the current or subsequent word. A simple
auto-complete program could be written using an 𝑛-gram language model, for
example suggesting the word the after the word of because of the is a common
bigram. In an email client, a fancier version of auto-complete can identify the
name of the email recipient and auto-complete their name in the salutation, to
help avoid embarrassing mis-spellings of the addressee’s name.

In Google’s email client, the SmartReply feature “reads” an incoming email
(You’re invited to a birthday party) and suggests a variety of short replies (See
you there!, Sorry, we won’t be able to make it). SmartCompose suggests ways of
completing an entire sentence: when you type I ho…, it will suggest pe you are do-
ing well. SmartCompose also suggests subject lines for emails that you’ve drafted,
such asHappy Birthday in an email containing birthday greetings. These tools are
built by using various machine learning techniques (discussed further in Chap-
ter 5–Chapter 7) to generalize from all of the email data that Google has available.
To suggest ways of replying to an email, SmartReply looks for common replies to
similar emails in a humongous email corpus; to suggest a subject line, SmartCom-
pose looks for common subject lines of similar emails. Of course, the architects
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of such tools had to take care not to violate the privacy of the people who use
Gmail, so the researchers did not read or have access to any of the email data
themselves, and made sure that people’s private information such as names and
addresses would not be suggested. These modern writers’ aids blend together
error correction with language generation: automatically generating text, so that
the computer itself is in some sense taking advantage of the productive power of
language.

More recent generative language models do not just assist a human writer, but
to some extent replace them by generating full paragraphs of text. ChatGPT, re-
leased in 2022 by the company OpenAI (Ouyang et al. 2022), is a tool trained
to guess the next word in a string of text – checking whether it was correct,
and updating its representations to get closer to the right answer next time, so
that it has learned to distill a massive amount of information about language.
ChatGPT works like a much fancier version of predictive text on your phone:
given a string of words (How are …), it guesses possible next words along with
the probability of each one (the most probable one is you, then your, then we,
and so on). Just as previewed in our generative 𝑛-gram language model above
(Section 2.4.2), ChatGPT is designed to sometimes randomly choose slightly less
probable next words rather than always choosing the top-ranked one, because
this strategy leads to more contentful text. In your own text messages, you prob-
ably sometimes choose a word other than the top-ranked one, for example when
you write the slightly less probable, information-richer string How are your kids?
rather than the highly probable, emptier How are you doing?. ChatGPT does the
same thing to generate more realistic prose.

ChatGPT is trained on over 300 billion words of text. For comparison, a typi-
cal novel is about 100,000 words long, so if you read a novel a day for 80 years,
you would read 2.92 billion words (100,000 * 365 * 80) in your lifetime – less than
one percent of what ChatGPT has read! Moreover, the creators of ChatGPT fur-
ther trained the model to write text evaluated as “better” according to human
gig workers. Just like a human writer, ChatGPT learns from both practice (writ-
ing probable sentences word by word) and feedback (human evaluations of its
output).

Using sophisticated techniques for distilling such information, when a human
prompts ChatGPT with a few words to get it started, this tool is able to generate
extremely lucid text: grammatical sentences of English that flow into a cohesive
narrative, far more sophisticated than the 𝑛-gram examples above.

Can such large language models (LLMs) replace a human writer? The conse-
quences of generative LLMs are still unfolding, but it probably depends on what
the human writer wants to say. If they want to generate a few comprehensible
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paragraphs about Romeo and Juliet for a school assignment, or some pleasant
holiday wishes for a mass email, then a generative LLM may do the trick more
efficiently than a human – raising concerns about cheating in school! But if they
want to write a legal brief describing the facts of a particular case, or a news story
reporting a detailed investigation of a particular scandal, the LLM is unlikely to
be much help, because its vast general knowledge about text does not include
specific fact patterns from the outside world. For some tasks requiring a mix of
rote formality and situation-specific details, such as writing a cover letter for a
job, perhaps the LLM could generate a usable first draft to be tailored by a human,
leveraging the complementary abilities of humans and computers. As such tools
improve, digital writers’ aids may take over more and more pieces of the writing
process.

2.8 Consequences

Stepping back, this chapter has foreshadowed some larger themes of the book.
Edit distance quantifies the distance between two words, but because our writ-

ing system reflects sound rather than meaning as discussed in Chapter 1, two
words that are close by edit distance are unlikely to be close in meaning. When
we explore text as data in Chapter 4, we come back to the idea of quantifying
distance between words, but in a way that captures meaning rather than sound.
In spelling correction, candidate correct spellings are generated and then ranked;
in Chapter 6, the same process of generating and ranking candidates is applied
to relevant results for a given search term. Spelling correction can be seen as one
instantiation of the noisy channel model, whereby we reason about the most
likely intended message as well as the likelihood of the observed noisy signal
given that message; the same idea can also be applied to speech recognition in
Chapter 1 and to machine translation in Chapter 7. We have used 𝑛-grams to cre-
ate a simple language model, a representation of likely sentences learned in a
bottom-up manner from data, which comes back in Chapter 5.

Our discussion of grammar emphasizes that a sentence is not just a list of un-
differentiated words, but a structured grouping thereof. In future chapters such
as Chapter 5 on text classification, we will sometimes use the simpler unstruc-
tured view as a starting point, but it is important to realize what information is
lost when we ignore structure.

Moreover, recurring concerns about ethics and representation are raised when
we consider that spell-checkers may favor majority cultural groups or that gram-
mar-checkers may privilege the language variety spoken by people with power.
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Writers’ aids also have consequences for education. (Chapter 3 comes back
to education in the context of second-language learning). Would you consider
it a waste of time to memorize correct spellings when a computer can fix mis-
spellings for you? (If you didn’t spend time learning to spell, what would you
study instead?) Would you spend less time studying grammar if you knew that
you would always have access to a grammar checker? Would you learn to write
and type more easily with the assistance of writers’ aids? Should children should
spend more time learning to type than learning to write by hand? Would you
worry that they might over-rely on digital tools in such a way that they fail to
learn important skills?

On a more philosophical note, if writers’ aids can to some extent produce lan-
guage, what does this mean for the idea that language usage indicates intelli-
gence? To what extent do writers’ aids automate tedious tasks versus threaten to
make skilled human labor redundant? We will keep coming back to the question
of whether humans versus computers compete or complement one another.

Checklist

• Give two reasons why standardized spelling is useful.

• Give examples of various types of spelling errors and explain why
they occur.

• Calculate the edit distance between a misspelling and a correct
spelling.

• Explain some methods for generating and ranking spelling correc-
tions.

• Give examples of common unigrams, bigrams, and trigrams in En-
glish.

• Explain how 𝑛-grams can be used in a simple generative language
model.

• Give an example where a simple 𝑛-gram language model can help
to correct spelling errors in context.
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• Compare and contrast phrase structure grammar with dependency
grammar.

• Give an example of a syntactic ambiguity – a string of words that
can be assigned two different grammatical structures, each with a
different meaning – and use phrase structure grammar or depen-
dency grammar to distinguish these two structures.

• Give an example of how a dependency parse could be used to auto-
matically correct grammar.

• State the difference between descriptive and prescriptive grammar,
and explain why grammar checkers use both.

• Sketch some affordances and limitations of language-generation
tools such as ChatGPT.

• Explain why dynamic programming methods are efficient.

• Provide an example of how context-free grammars are insufficient
as mathematical descriptions of human languages.

Exercises

1. Phrase structure grammar is built on the idea that the grammatical
behavior of a word is not unique to that word, but can be general-
ized across all members of a lexical category. For example, the noun
phrase the reindeer manifests the more general rule that any deter-
miner can be combined with any noun to make a Noun Phrase, a
rule which applies equally to some games. You can try out this ex-
ercise with a partner, inspired by the children’s game of Mad Libs.
One partner begins with a sentence, which they keep secret from
the other partner. For each word in the sentence, the first partner
asks the second partner for a word of the same lexical category (de-
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terminer, adjective, noun, transitive verb, intransitive verb, and so
on), replacing the sentence word by word until it’s a totally new
sentence. Is this new sentence a grammatical sentence of English?
Does it make any sense?

2. Please draw a phrase structure tree and a dependency graph to
represent multiple interpretations of some humorously ambiguous
strings such as Pope’s Baby Steps On Gays.

3. Explore a web demo for a dependency parser, such as the Stanford
Parser or SpaCy. Try out some sentences and see how it visualizes
their dependencies. How does it handle Pope’s Baby Steps On Gays?
(Does it matter how you capitalize that string?) What happens if
you give it a sentence containing a grammatical error, such as The
key to the cabinets are on the counter?

4. Please write some pseudo-code sketching how you would identify
a subject-verb agreement error in sentences such as The dog swim
using a dependency parse such as (21). Next, please write some
pseudo-code sketching how you could do the same thing using a
phrase-structure parse (22). Please assume that in both cases, dog
is part-of-speech-tagged as NN (for singular nouns) and swim is
part-of-speech-tagged as VB (the bare form of a verb) when the cor-
rect subject-verb agreement would use swims, tagged as VBZ (3rd-
person present singular).

(21)
The dog swim
DT NN VB

det nsubj

(22) S

VP

VB

swim

NP

NN

dog

DT

the
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5. Explore the Google N-grams tool.a For example, search for cheese
and *, which gives the most common trigrams beginning with
cheese and. Are you able to correctly guess the most common next
word? How does the frequency of this trigram change over time (in
data from historical books)?

6. To get a firmer grasp on how 𝑛-grams work, write a program which
takes a large text file as input and stores all its unigrams and bi-
grams as well as their counts.

a) Write a program that takes in a starting word 𝑤0 and then
generates the next 19 words 𝑤1 …𝑤19, in each case choosing
the word 𝑤𝑛+1 with the highest bigram probability given 𝑤𝑛.

b) How sensible is the text generated by your word-prediction
program?

7. In our exploration of 𝑛-gram models, we discussed how these mod-
els rely on probability. To gain a more thorough understanding of
𝑛-grams, try out the below problems.

a) Can you estimate the unigram probability for the sentence You
put the {cat/cart} before the horse using the Maximum Likeli-
hood Estimate equation below?

𝑃(𝑤𝑖|𝑤𝑖−1) =
count(𝑤𝑖−1, 𝑤𝑖)
count(𝑤𝑖−1)

b) In actual implementation, the probabilities are usually log-
transformed and then added rather than multiplied; these op-
erations are equivalent because the log of a product is the sum
of the logs. Replicate the above calculation using logs to see
how these operations are equivalent.

c) We discussed using 𝑛-grams to correct real-word errors, as in
the example where You put the cart before the horse would re-
sult in a higher 𝑛-gram probability than You put the cat be-
fore the horse. As a thought exercise, how much higher do you
think the probability should be to make the correction?
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8. Select your favorite spell checker and evaluate its effectiveness by
designing a test suite of sentences with spelling errors. A test suite
is simply a list of cases which are used to test the effectiveness of a
system. Include 10-20 errors and include some non-errors, too.

a) What is the purpose of each error? In other words, what is
each type of error attempting to test about the spell checker’s
capabilities?

b) Of the number of words flagged by the checker as errors, how
many (what percentage) are actually errors? (This measures
error detection precision.)

c) Of the errors you introduced, how many (what percentage)
does the spell checker flag? (This measures error detection re-
call; precision and recall are discussed more in Chapter 6.1.3.)

d) Of the suggestions the checker makes, how often (what per-
centage of the time) is the first correction the correct, intended
word? (This measures error correction precision.)

9. Select your favorite spell checker and type in a number of mis-
spellings.

a) In terms of edit distance, how far off can your misspellings be
and still have the correct spelling suggested?

b) Select your second favorite spell checker and perform a com-
parison of their performances. For each of your misspellings,
which spell checker has a better ranking? Can themisspellings
be more or less farther off?

c) For each system, does it provide helpful feedback? Does it
make a correction for you automatically or just suggest it as
an option? Compare and contrast the user experience of both
systems.

10. Compare and contrast several different writers’ aids (grammar and
style checkers), including Grammarly, LanguageTool, and Ludwig
Guru (search online). Which one would be most useful for a person
who is not fully confident in English? Which one would be best for
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a person with dyslexia?What about an adolescent learning to write
on the computer?

11. Imagine that you’re interviewing for a job at Grammarly. They ask
you what new feature you’d propose. What is your response?

12. Examine the predictive text suggestions on your mobile device. To
what extent are these suggestions customized to your own specific
language usage? How can you tell?

13. A user types in folg when theymeant to type frog. Draw the directed
graph and describe how minimum edit distance is calculated, using
only deletions and insertions.

14. Describe how such a graph could be redrawn to allow for transpo-
sitions and substitutions.

15. We discussed edit distance techniques for generating correction
candidates (Section 2.3.2) and also discussed using confusion sets
(Section 2.4.1). But these aren’t the only methods for finding pos-
sible corrections. For example, the Soundex algorithm – developed
over 100 years ago for census data by Robert C. Russell and Mar-
garet King Odell (Russell 1918) – is another way to generate candi-
dates, based on phonetic properties of words. To take one example,
the word nub would be assigned the code N2: an N for the first let-
ter, a 0 (zero) (which is later eliminated) for the vowel, and a 2 for
a bilabial (b, p, f, v). The words nob, nap, and so on would thus be
put into the same bucket.

a) Read more about Soundex by searching online.

b) What is the point of Soundex and why is it different from edit
distance?

c) Why would Soundex be useful for analyzing (early twentieth-
century) census data in particular?

d) With computing techniques becoming faster, why not com-
pare a misspelling to every single word in the dictionary?
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e) We would argue that it’s better to have a handful of possible
corrections than just a single candidate: why is that? And how
many candidate corrections do you think is ideal?

f) Soundex doesn’t take into account anything like edit distance,
while edit distance is based on orthography and not phonetics:
can you think of ways to combine these techniques?

16. Let’s further explore the Soundex system for generating candidates
for correction.

a) Develop your own Soundex-like system for grouping similar
words into buckets by working out what rules you need to
map a word to the appropriate bucket. Can your rules handle
transposition errors?

b) If you’re a programmer, implement your Soundex rules. Make
sure that each of the following sets of words all get mapped
to the same bucket:

i. Catherine, Kathryn, Katherine

ii. principal, principle

iii. eye, I, aye

ahttps://books.google.com/ngrams, accessed 2024-07-01.

Further reading

Peter Norvig’s blog post How to write a spelling corrector (Norvig 2007) is
a classic.

Universal Dependencies, dependency representations for over 100 lan-
guages, is presented in Nivre et al. (2016).

For background on the types of spelling errors and their causes, Dam-
erau (1964), Kukich (1992) and Mitton (1996) are classic references; Flor
et al. (2015) discusses errors made by English learners. As for grammar
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correction, classic references include Wilcox-O’Hearn et al. (2008), Hirst
& Budanitsky (2005), and Leacock et al. (2010). For rule-based grammar
checking, Naber (2003) originally used 56 rules to achieve good perfor-
mance. This later developed into the open-source software Language
Tool.a

For more on formal language theory and complexity, see Chapter 16
of Jurafsky & Martin (2009). A comprehensive formal treatment of the
topic can be found in Hopcroft et al. (2007). For a deeper understanding
of dynamic programming, see Chapter 6 of Kleinberg & Tardos (2006).

To delve further into the privacy measures Google took for SmartRe-
ply and SmartCompose, see Carlini et al. (2019) on machine learning and
security measures.

Lingard (2023) evaluates the opportunities and limitations of using
large language models such as ChatGPT as writers’ aids.

ahttps://www.languagetool.org/, accessed 2024-04-17.
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3 Computer-assisted language learning

3.1 Introduction

At the intersection of language and educational technology, the field of computer-
assisted language learning (CALL) develops tools that help you learn a second
language. In this chapter, we explore how people learn languages, how digital
tools can support them, and what such tools need to know about language.

3.2 Learning language

You already picked up your first language (L1) as a baby. Later on, you probably
encountered a second language (L2) in a classroom or when you visited another
country. When we speak here of first and second language, we should not take
this literally. If you grew up bilingually, in a context where multiple languages
were spoken, you can have more than one L1; and L2 typically is used to refer
to all languages that you learned after your L1 was in place, even if this actually
was the third or fourth language you learned.

This chapter focuses on computer-assisted tools for learning an L2, but it is
informative to first compare and contrast how people learn an L1 versus an L2
in general.

3.2.1 Similarities between L1 and L2 learning

Learning any language involves many different aspects. You have to learn how to
articulate the sounds with your mouth (articulatory phonetics), or, for signed lan-
guages, how to form the signs with your body; how sounds can combine (phonol-
ogy), how to form words (morphology) and sentences (syntax), and what they
mean (semantics). You might not be able to state these rules explicitly unless you
have training in linguistics, but you know them implicitly as part of your ability
to speak a language.

You also have to learn a lot of vocabulary – thousands of sound/meaning pairs,
memorized so well that it feels subconscious – as well as statistics about what
words are likely to appear in sequence in which context. You have to learn social
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skills such as how to have a conversation, how to model someone else’s beliefs
and goals, and what you should say in different situations (competence in turn-
taking, pragmatics, and discourse). And you have to learn about the culture of
the people you talk to in this language – the history, politicians, holidays, music,
etiquette, and foods that people take for granted (cultural competence). Moreover,
to function in a literate society, you have to learn to read and write, and how to
write for different purposes, in different genres.

Whether you are learning an L1 or an L2, there are some similarities. Compre-
hension precedes production: At each stage of learning, you can understandmore
complicated vocabulary and sentences than you can produce yourself. Simple
sentences are learned before complex sentences, and frequent words are (mostly)
learned before infrequent ones. People learning their L1 or their L2 alsomake sim-
ilar types of “errors”, saying things that a full-grown L1 speaker would not say.
To use an example from articulatory phonetics, when learning English as an L1 or
an L2, people struggle to pronounce the [ð] fricative in the word the – sometimes
pronouncing it as the stop [d], which shares the same general tongue placement
and voicing. Interestingly, most languages do not use the sound [ð] in their sys-
tem of phonemes – and, indeed, it is often the case that the harder something is
to learn, the more rare it is across different languages. As for grammatical errors,
both L1 and L2 learners of English may over-regularize, for example applying the
rule for marking past tense even on irregular verbs (e.g., producing *I goed).

Turning to vocabulary, both L1 and L2 learners may make errors involving
over-extension of word meanings, for example using the word car to describe
trucks or golf carts. They might also struggle with under-extension, for example,
using car for road vehicles while not realizing this word can also apply to the
chunks of a train. Of course, under-extension may not give rise to obvious errors
the way over-extension can, which points to a deeper methodological question in
the study of language learning: even if a language learner appears to understand
a word or to use it sensibly, how do you know if they understand it the same way
as another speaker?

3.2.2 Unique elements of L1 learning

Even though L1 and L2 learning involve similar steps and error patterns, there
are also many differences between acquiring an L1 and learning an L2 in different
contexts. For their L1, a child understands and produces speech (or signs) long
before they learn to read andwrite. The child has to pick up a lot of non-linguistic
information at the same time: They have to develop concepts of themselves, other
people, and of physical and mental events and entities.
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As their first steps towards vocalizing and communicating, babies can cry at
birth and smile at around six weeks. They explore more complex vocalizations
soon after, and by about six months, babies typically begin using sequences of
consonants and vowels such as bababa, a stage referred to as babbling. Next, their
first words tend to be names for people and physical objects (Dada, doggie), with
other words – abstract nouns such as happiness, verbs such as walk, grammatical
markers such as the – coming later on. Children quickly start learning words by
their first birthday and can form simple two-word utterances by the time they
turn two. Children then make use of more and more of the language structure,
so that by the age of three they can already voice and understand sentences
of surprising complexity. In the following years of childhood, more and more
words and complex language structures are acquired, with some structures such
as passive sentences being added relatively late, around nine or ten years of age.
When learning their L1, the child has no other language experience to transfer,
neither to help them nor to confuse them.

Children learn their L1 from the input provided by their caregivers, which
takes the form of child-directed speech. Across many different cultures, adults
speak differently to children than to other adults: They use simple words, repet-
itive sentences, and highly variable pitch to capture the child’s attention; they
narrate daily activities, point at objects to name them, and rephrase the child’s
utterances in more adult terms.

Children all start learning their L1 in infancy. There are a few extremely tragic
cases where children were not exposed to any L1 until later in life and seemed to
struggle to learn it. These situations are confounded by other traumatic elements,
so it is hard to draw clear conclusions and unethical to run studies, but they are
sometimes taken as evidence that L1 learning must occur in a critical period of a
child’s life, before adolescence, to be fully successful.

A child learning their L1 gets quite a few hours of input and practice each
day, and – even if they can’t reflect on it – has an extremely strong incentive to
succeed, because they need to learn language to participate in society. As a result,
excluding cases of extremely serious disabilities, all children achieve “success” at
learning their L1 (at least in speaking and listening, if not reading and writing),
in the sense that they all become L1 speakers of it and can use it to say anything
they want.

Although children have a strong incentive to learn their L1 and get lots of prac-
tice, they do not receive much formal instruction. All children achieve essentially
the same level of “success” in learning their L1 even when the input that they re-
ceive varies widely across families and cultures. In this sense (as proposed by
Lenneberg 1967), learning an L1 is like learning to walk rather than learning to
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play the piano or dance ballet: All children learn language just like all children
(with working legs) learn to walk, regardless of how explicitly their family tries
to teach them, whereas children only learn to play the piano through dedicated
instruction. Like walking, therefore, L1 success is sometimes analyzed as an in-
nate human capacity rather than one that emerges from one’s experience. That is
why it is sometimes referred to as L1 acquisition rather than L1 learning, based on
the idea that acquisition is innate and automatic while learning requires explicit
instruction. But the idea of innateness is controversial, since it ties into a huge
debate (pervasive across social sciences) about nature versus nurture. If children
are said to be born with certain knowledge that helps them acquire language, it
is very difficult and contentious to spell out exactly what that knowledge would
be, and how it complements the input that they experience. Whether it is true or
not, the idea of innateness is inspired by the striking fact that children all learn
their L1 successfully and essentially automatically.

3.2.3 Unique elements of L2 learning

Whereas everyone learns their L1 as a child from their caregivers, people learn
L2s in different contexts, for example in a classroom or upon immigrating to a
new place.When learning an L2, a personmay learn to read andwrite at the same
time as they learn to speak and understand. The L2 learner already knows quite
a lot of general information (how the world works, how conversations work, the
idea that words refer to things) which is not obvious to a child learning an L1.
And while everyone learns their L1 as a child, people encounter L2s at all ages
after they’ve learned their L1.

Like L1 learners, L2 learners go through different stages and levels of sophis-
tication, but they can learn verbs, abstract nouns, and grammar from day one,
depending on the input that they receive. While a child’s first words might be
Dada and doggie, an L2 learner might start with hello and my name is.

Whereas children learn their L1 from the spoken input of caregivers, people
learn their L2 from all sorts of input – conversations, media, signage, and edu-
cational resources. The L2 learner may also transfer some knowledge of their
L1 to their L2, which can both help and hurt them. L1-to-L2 transfer is useful
in the case of cognates, which are words that are similar in both languages (due
to a common historical origin or borrowing from the same source); for exam-
ple, ‘coffee’ is kāfēi in Mandarin and café in French. L1-to-L2 transfer can also
help with some grammatical rules: If your L1 is English and you are learning
French or Chinese, you can carry over the Subject-Verb-Object rule of word or-
der. But L1-to-L2 transfer can also cause errors if you transfer something that is
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not shared between the L1 and the L2, for example incorrectly transferring the
Subject-Verb-Object word order to Irish, where the verb comes first.

A person learning an L2 in a classroom might get about five hours of practice
per week, and their incentive is most likely determined by their commitment to
the class. A person learning an L2 as an immigrant will get more or less practice
depending on their job and social network, and their incentive may derive from
how much they need the L2 to function. Because the incentives and the amount
of practice vary so widely across L2 learners, it is perhaps no surprise that people
achieve wildly different levels of “success”. Some people teach classes and write
award-winning books in their L2, while other people can barely check in to a
hotel after years of schooling.

3.2.4 Defining and achieving L2 success

What does it mean to succeed at learning an L2? Ultimately, success is defined
by your own priorities. It could mean that you can function professionally and
socially in the L2, that you can produce the L2 without “errors”, or that you can
translate accurately in both directions. (Which of these would you consider most
important?) Most people would not say that L2 success requires the learner’s
speech to be completely indistinguishable from that of an L1 speaker; even highly
proficient learners may still have an accent influenced by their L1.

Various language-teaching organizations have put forward scales of L2 suc-
cess. The American Council on the Teaching of Foreign Languages (ACTFL)
ranks speakers as Novice, Intermediate, Advanced, Superior, or Distinguished
(with some levels further subdivided into Low, Mid, and High). According to the
2024 ACTFL guidelines (with example interview videos at each level on their
website), speakers at the Novice level “can express basic personal information
and satisfy a limited number of personal needs using formulaic and rote utter-
ances, lists, and phrases” (American Council on the Teaching of Foreign Lan-
guage 2024). Their “limited language control may require a sympathetic audi-
ence to be understood”. At the other end of the spectrum, speakers at the Dis-
tinguished level “can negotiate, use persuasive and hypothetical discourse, com-
ment thoughtfully on a range of general topics, and tailor language to a variety
of audiences”.

Similarly, the Common European Framework of Reference for Languages
(CEFR; Council of Europe 2001) uses three levels (A=Basic, B=Independent,
C=Proficient), each subdivided into a higher and lower portion (A1, A2, B1,
B2, and so on). The lowest level A1 “can introduce him/herself and others and
can ask and answer questions about personal details such as where he/ she
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lives, people he/she knows and things he/she has”1. The highest level C2 “can
understand with ease virtually everything heard or read [and] can summarise in-
formation from different spoken and written sources, reconstructing arguments
and accounts in a coherent presentation”.

These functional can-do statements are designed to capture the vastly different
levels language learners have in making use of a foreign language. Among An-
glophone American high schoolers, even students who get the top score (5/5) on
an Advanced Placement foreign language exam only get to about an Advanced
Low ACTFL level (“able to participate in most informal and some formal con-
versations on topics related to school, home, and leisure activities […] can also
speak about some topics related to employment, current events, and matters of
public and community interest”). Among other Anglophones who don’t get a 5
on the exam, the level of proficiency is lower. After high school, a student’s L2
level may decline sharply when they stop taking classes; only a few dedicated
Anglophone L2 learners will go on to the Superior/Distinguished levels by seek-
ing opportunities to practice the language beyond the classroom. But across the
globe, it is very common for L2 learners to achieve “Distinguished” proficiency
in a language that they learn through immigration or in school to use as a lingua
franca (a language of commerce or higher learning).

Given that different people achieve such different levels of success, what fac-
tors contribute to it? The researcher Stephen Krashen (Krashen 1982) argues that
an L2 learner achieves greater success when they receive more “comprehensible
input” at the i+1 level, meaning input that goes just a bit beyond (+1) their current
level of understanding (i). This idea echoes the zone of proximal development, an
idea from the Soviet psychologist Lev Vygotsky (1978) used in education theory.
The idea is that the i+1-level input provides a built-in review of what the learner
already knows while also exposing them to new words and structures that they
can figure out from what they already understand. This theory is meant to ex-
plain, for example, why a person who already took two years of Spanish might
improve greatly after a summer in Mexico, because they receive a lot of language
exposure at their intermediate i+1 level from commercial transactions, friend-
ships, and so on. In contrast, a person with no Spanish experience might not
learn much, because most of this Spanish exposure lies far beyond their basic i+1
level and thus goes over their head. Krashen’s theory therefore predicts that a
classroom environment is especially important for the early stages of learning,
because it is one of the only places where a student will encounter input tailored

1https://www.coe.int/en/web/common-european-framework-reference-languages/table-1-
cefr-3.3-common-reference-levels-global-scale, accessed 2024-07-01.
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to their low i+1 level. While Krashen’s theory has been critiqued for focusing
on comprehension rather than production, it is certainly the case that students
learn best (in all areas) when they encounter surmountable challenges in their
zone of proximal development.

Another important factor is the learner’s attitude. L2 learners achieve greater
success when they are more motivated; when they have a positive attitude to-
wards the L2 and its culture; and when they are willing to make mistakes, using
a growth mindset (the belief that one’s mind is a muscle strengthened by exercise,
an idea proposed by the psychologist Carol Dweck and colleagues; Blackwell et
al. 2007). Of course, these attitudes are all intertwined, not just with each other
but with the amount of input at the i+1 level that the learner will seek out, as
well as their incentive for learning the L2.

The effect of the learner’s age remains controversial. On the one hand, one
might think that it would help to learn an L2 as a child during the pre-adolescent
“critical period”, the way people learn their L1, and the fact that adult L2 learners
usually retain a foreign accent suggests that there may be a critical period for
articulatory phonetics. On the other hand, mature learners have better study
skills, and people can learn grammar and vocabulary at all ages. In any case, the
effect of age is hard to isolate from all the other factors that correlate with it, such
as the amount of practice the learner receives and their incentive for learning the
language.

Researchers in L2 teaching evaluate various teaching techniques by exploring
the extent to which they advance L2 success by providing more i+1 input and/or
by sparking the learner’s motivation. Such techniques include tools in computer-
assisted language learning.

3.3 Why does CALL need to be “intelligent”?

In a broad sense, CALL encompasses all the ways in which computers pervade
education and society. As a general medium for information, computers are used
by L2 learners to find and present information – as a multimedia textbook, a
dictionary, a tool for writing and consumingmedia content, and away to connect
socially with speakers of the L2.

More narrowly, CALL describes tools used to present sequenced exercises for
language learners, along with feedback on the learner’s responses. The task of
CALL is to design these exercises and feedback in the most efficient and helpful
ways.

At a simple rote level, one could design a CALL system consisting of dozens of
handwritten fill-in-the-blank questions (also known as cloze or gap-fill exercises),
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which ask whether the learner understands a sentence well enough to complete
it sensibly. If these questions have multiple-choice answers as in (1), it might
take work for the CALL designer to write the distractors (the wrong answers)
as well as the correct answer (on), but at least it is easy for the CALL system to
grade the correct response from among these constrained options. Alternatively,
if the question offers a free-text box (2), then the CALL designer has even more
work to do: Instead of writing three distractors, they have to write a longer list of
potential right answers – on, near, by and so on – to assess the learner’s answer.

(1) The detective lives Baker Street.
a. at
b. on
c. in
d. with

(2) The detective lives Baker Street.

In a frame-based CALL system, a student’s answers are matched against a set
of correct and incorrect answers which are explicitly specified by an instructor in
a so-called frame such as (1)–(2). In addition to judging the answer as correct or
incorrect, the frame can be designed to include more elaborate pre-written feed-
back for each of the choices, also known as canned text. If the learner incorrectly
chooses in for (1), one could specify the feedback Incorrect: While the preposition
“in” can be used for cities, it cannot be used for streets as in this example. The sys-
tem might also need a fallback case if it receives totally unexpected input: If the
user types Help! in (2), the system could reply: You entered Help!, which is not a
preposition of English. Please enter a preposition of English.

The person designing these exerciseswill use their ownmetalinguistic insights
to organize the exercises at escalating levels of difficulty, for example placing sim-
ple sentences (The girl eats the apple) before complex ones (The boss didn’t realize
that the employees were unhappy) and choosing plausible distractors of the same
lexical category as the target answer (as in (1), where all the choices are prepo-
sitions). They will also use their knowledge of language to write metalinguistic
feedback as canned text. But so far, the simple frame-based CALL system that
we have described does not itself distill any insights about language. As a result,
such a system is very brittle and laborious. Without any deeper representation
of language, it just matches the characters entered by the learner against strings
stored as potential answers for the exercise. If the response matches an expected
answer, whether right or wrong, the system can trot out the prescribed action.
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But if the response is unexpected, the system will have to fall back on default
responses, which are unlikely to be very helpful. This simple system also does
not represent any information about the learner; it would just give all learners
the same exercises in the same order, which different people might find too easy
or too difficult.

In contrast to this hypothetical rote system, modern CALL tools aim to be
“intelligent” in that they represent information about both the structure of the
specific language and the progress of the specific learner. That way, they can
be designed efficiently to offer more exercises, handle more diverse input, and
give more helpful feedback that extends even to new or unexpected input. Such
systems also aim to customize the exercises and feedback for each specific learner,
so that it’s neither too difficult nor too easy. Next, we will explore how intelligent
CALL systems represent both language and learners.

3.4 Modeling language

Now that we have seenwhy it is useful to capture generalizations about language
instead of hand-specifying answers for individual questions, we explore what is
involved in realizing this idea. The application of CALL takes us on a tour of
many different tasks involved in text processing more generally.

3.4.1 Parts of speech

For starters, the words of the target L2 can be automatically labeled for their
part of speech (noun, verb, adjective, preposition, and so on), and such labels
can be used to give metalinguistic feedback that can be generalized across many
exercises.

In English, the transitive verb buy requires a direct object (I bought groceries)
while the intransitive verb shop cannot take a direct object (I shopped). If the
intelligent CALL system represents the allowable argument structures (subject/
object configurations) for each verb, then if the learner chooses shop in question
(3a), the system could reply: “Shop” is an intransitive verb, so it cannot combine
with an object. Please try again.

(3) Maya went to the store to flowers for Juan.
a. Fill in the blank: Buy, shop.
b. Who is going shopping?: Maya, Juan.
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In English, some verbs work like shop in that they cannot have a direct object;
others work like buy in that they need one; while others work like eat in that
they can go either way: I ate; I ate lunch. Researchers in lexical semantics have
worked to explain which verbs go which way. For example, why can we say I
ate but not *I devoured? Whatever the reason, a CALL system could record the
argument structure (syntactic potential) of each verb and use it to explain errors
identified from a dependency parse. Such feedback could be recycled any time a
learner tries to give a direct object to any verb that doesn’t take one (swim, run,
laugh, sleep, and so on). If a learner’s free-text answer is part-of-speech tagged,
this information could also be used to provide general, widely re-usable feedback
such as The sentence you entered is missing a verb.

In contrast, other feedback would depend on information explicitly specified
in a given exercise; (3b) hinges on the content of this specific example, where it is
stated that Maya rather than Juan went to the store, rather than any general fact
about English grammar. If the designer of an intelligent CALL system is writing
questions alongwith feedback for incorrect answers, it is probablymore strategic
for them to design the questions so that the metalinguistic feedback is general,
and thus can be used for other questions in the same system.

Expanding on ideas introduced in Chapter 2, parts of speech are labels for
classes of wordswhich behave alike. There are three dimensions of what it means
to behave alike. The first is distribution, by which we refer to the linear order
with respect to the other tokens, i.e., the slot a word appears in. For example,
in the sequence Maya gave him ball, the slot between him and ball is the
distributional slot of a determiner such as the or a.

When designing automatic part-of-speech taggers, distributional information
is typically collected in the form of statistics about which POS sequences are
how likely to occur, parallel to the 𝑛-gram statistics we saw in the discussion
of language models in Chapter 2. To be able to observe possible part-of-speech
sequences, one naturally needs a corpus that is already annotated with part-of-
speech tags. Such corpora with so-called gold-standard annotation are generally
created using significant manual effort to annotate or correct the annotation.
Such corpora are used to train a computer to automatically label parts of speech
in new data. To obtain gold-standard corpora of the size needed to train current
POS taggers (and supervised machine learning approaches in general – see Chap-
ter 5) thus requires large, long-term projects. Correspondingly, they so far only
exist for less than ten percent of the roughly six thousand human languages; it
is much more difficult to find good training data for lower-resourced languages
such as Navajo, making it harder to develop CALL tools for such languages.
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The second type of evidence is the one you use every time you look up a word
in a dictionary. For some words, lexical stem lookup provides an unambiguous
part-of-speech category. For example, claustrophobic is only listed as an adjective.
Yet, manywords are ambiguous and belong tomore than one part-of-speech class.
For example, the word can occurs as an auxiliary in The baby can walk, as a full
verb in I can tuna for a living, and as a noun in Passme that can of beer, please! Even
a word like some, where at first glance one might think that it unambiguously is
a determiner (e.g., some cars), it can also be used as an adverb (e.g., the cut bled
some, you need to work on it some) or a pronoun (e.g., Some like it hot).

Another problem of lexical lookup arises from the fact that there are words
we do not find in the lexicon. Even if we tried very hard and got the world’s best
dictionary resource, there still would be words not listed there since new words
are added to the language all the time; words such as googling or facebooked
clearly did not occur in texts from the eighties (as mentioned in Section 2.3.1).
But even with such limitations, lexical information is useful for an automatic
part-of-speech tagger.

The third type of evidence for part-of-speech classification presents itself
when we take a closer look at the form of words, their morphology. Certain
markings, such as suffixes added to the end of stems, encode information that
is only appropriate for particular parts of speech. For example, -ed is a suffix
indicating a past-tense marking of words as, e.g., in walked or displayed. Thus, if
we find a word such as brachiated in a sentence, even if we know nothing about
this word or its context, we can infer based on the -ed suffix, that it is likely to
be a past-tense verb.

Apart from such inflectional suffixes indicating information such as the tense
or agreement markers (e.g., the -s found on verbs in the third person singular),
other potential sources of information include derivational affixes, such as, for
example, -er which is used to turn verbs into nouns (e.g., walk – walker, catch
– catcher, love – lover). In automatic POS-taggers, such suffix analysis is often
included in a fallback step. Whenever a word has not been seen before in the
training data, so that no lexical or distributional information is available for that
word, handwritten suffix analysis rules are used to determine the most likely part
of speech. If none of the suffix rules apply, then as a last resort, part-of-speech
taggers generally assign the most common option, usually a noun tag.

While we already discussed parts of speech in Chapter 2, these concepts en-
counter new challenges in the context of CALL. Here, learners do not write like
the text (newspapers, books, and so on) used to train part-of-speech taggers;
instead, they make “errors” as they use a so-called interlanguage derived from
their nascent L2 along with the influence of their L1. Consider the following two
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sentences written by Spanish learners of English (from the NOCE corpus, Díaz
Negrillo et al. 2010):

(4) a. … to be choiced for a job …
b. RED helped him during he was in the prison.

In (4a), the word choiced distributionally appears in a verbal slot, and morpho-
logically it carries verbal inflection (-ed), whereas lexically the stem choice is a
noun (or adjective). And in (4b), the meaning of the sentence is fine, but during
distributionally is a preposition, which cannot appear in the distributional slot
of a conjunction. To apply part-of-speech tags to L2 writing, our system must
account for potentially mismatching evidence.

3.4.2 Tokenization

Of course, to represent a word’s part of speech, the first step is to identify the
words – a task known as tokenization or word segmentation. Here, we describe
the complexity of this task and its relevance for CALL.

In English, tokenizationmay seem easy:Wemight think that a word is just any
string between spaces. But some writing systems do not use spaces. As we saw
in Chapter 1, Chinese uses characters (called zi, each one representing a syllable
along with some logographic information about its meaning) which are written
without spaces. Thus, the same string of characters will have different meanings
depending on how one groups the characters together into words.

Take for example the two-character string yào hài. If we segment it as two
words of one character each (yào hài), it means ‘will hurt’; if we segment it as a
single word consisting of two characters (yàohài), it means ‘vitals’. Which tok-
enization is chosen depends on the context – much like the context determines
whether an occurrence of the English word bank refers to a financial institution
or a river bank. Such a segmentation problem, where two or more characters
may be combined to form one word or not, is referred to as a covering ambiguity.

A second kind of tokenization problem is overlapping ambiguity, which
refers to cases where a given character may either combine with the previous
or with the next word. Lu (2007: 72) illustrates this ambiguity with the string

Lu

A primary source of difficulty for Chinese word segmentation comes from segmen-
tation ambiguities, including covering ambiguity and overlapping ambiguity (Liang,
1987). Covering ambiguity refers to the case where two segments may or may not be
combined to form a larger segment. For example, the string �� may be segmented
into two units �/� will/hurt ‘will hurt’ or one unit �� ‘vitals’, depending on con-
text. Overlapping ambiguity refers to the case where a segment may combine with
either its preceding or following segment. For example, in the string �������
�, the segment� can potentially combine with either the preceding segment� or the
following segment �, as shown in (1) and (2) respectively. In this case, however, only
the segmentation in (2) is acceptable.

∗ �� � �� �� �
Bush at talk middle-finger out (1)

�� � �� � ��
Bush at talk middle point-out
‘Bush pointed out in his talk’

(2)

Unknown words constitute a second source of difficulty for Chinese word segmen-
tation. These are words that are not registered in the dictionary used by the word seg-
menter and/or are not found in the training data used to train the segmenter. While
the size and domain specificity of the dictionary and training data may well affect the
proportion of unknown words in real texts, unknown words will always exist, both
because any dictionary creation effort has limited resources and because new words
are constantly created. Chen and Bai (1998) report that 3.11% of the words in the Sinica
Corpus (Chen et al., 1996), one of the largest word-segmented and POS-tagged Chi-
nese corpora, are not listed in the CKIP lexicon, a Chinese lexicon with over 80,000
entries used for processing the corpus. These include unknown words of the categories
of noun, verb, and adjective only, but not numeric type compounds or non-Chinese
words. Xue (2003) partitions the 250K-word Penn Chinese Treebank (Xue et al., 2002)
into training and test sets at a rather skewed ratio of 9.5:0.5 and finds that 4% of the
words in the test set are unknown. Meng and Ip (1999) partition a smaller 72K-word
corpus from Tsinghua University (Bai et al., 1992) at a 9:1 ratio, and report that 13% of
the words in the test set are unknown.

Most previous studies treat word segmentation and unknown word identification
as two separate problems, using a mechanism to identify unknown words in a post-
processing step after word segmentation is done. However, determining where word
boundaries are necessarily involves understanding how characters relate to and interact
with each other in context, and it is desirable to capture this dynamic interaction by in-
tegrating unknown word identification with word segmentation. Several recent studies
have taken a unified approach to unknown word identification and word segmentation
(e.g., Sproat et al., 1996; Xue, 2003; Gao et al., 2005)

We describe a hybrid model that combines machine learning with linguistic and
statistical heuristics for integrating unknown word identification with Chinese word
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are constantly created. Chen and Bai (1998) report that 3.11% of the words in the Sinica
Corpus (Chen et al., 1996), one of the largest word-segmented and POS-tagged Chi-
nese corpora, are not listed in the CKIP lexicon, a Chinese lexicon with over 80,000
entries used for processing the corpus. These include unknown words of the categories
of noun, verb, and adjective only, but not numeric type compounds or non-Chinese
words. Xue (2003) partitions the 250K-word Penn Chinese Treebank (Xue et al., 2002)
into training and test sets at a rather skewed ratio of 9.5:0.5 and finds that 4% of the
words in the test set are unknown. Meng and Ip (1999) partition a smaller 72K-word
corpus from Tsinghua University (Bai et al., 1992) at a 9:1 ratio, and report that 13% of
the words in the test set are unknown.

Most previous studies treat word segmentation and unknown word identification
as two separate problems, using a mechanism to identify unknown words in a post-
processing step after word segmentation is done. However, determining where word
boundaries are necessarily involves understanding how characters relate to and interact
with each other in context, and it is desirable to capture this dynamic interaction by in-
tegrating unknown word identification with word segmentation. Several recent studies
have taken a unified approach to unknown word identification and word segmentation
(e.g., Sproat et al., 1996; Xue, 2003; Gao et al., 2005)

We describe a hybrid model that combines machine learning with linguistic and
statistical heuristics for integrating unknown word identification with Chinese word
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Bùshí zài jiǎnghuà zhōng zhǐchū / zhōngzhǐ chū.
Depending on whether the second-to-last character

Lu
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into two units �/� will/hurt ‘will hurt’ or one unit �� ‘vitals’, depending on con-
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either its preceding or following segment. For example, in the string �������
�, the segment� can potentially combine with either the preceding segment� or the
following segment �, as shown in (1) and (2) respectively. In this case, however, only
the segmentation in (2) is acceptable.

∗ �� � �� �� �
Bush at talk middle-finger out (1)

�� � �� � ��
Bush at talk middle point-out
‘Bush pointed out in his talk’

(2)

Unknown words constitute a second source of difficulty for Chinese word segmen-
tation. These are words that are not registered in the dictionary used by the word seg-
menter and/or are not found in the training data used to train the segmenter. While
the size and domain specificity of the dictionary and training data may well affect the
proportion of unknown words in real texts, unknown words will always exist, both
because any dictionary creation effort has limited resources and because new words
are constantly created. Chen and Bai (1998) report that 3.11% of the words in the Sinica
Corpus (Chen et al., 1996), one of the largest word-segmented and POS-tagged Chi-
nese corpora, are not listed in the CKIP lexicon, a Chinese lexicon with over 80,000
entries used for processing the corpus. These include unknown words of the categories
of noun, verb, and adjective only, but not numeric type compounds or non-Chinese
words. Xue (2003) partitions the 250K-word Penn Chinese Treebank (Xue et al., 2002)
into training and test sets at a rather skewed ratio of 9.5:0.5 and finds that 4% of the
words in the test set are unknown. Meng and Ip (1999) partition a smaller 72K-word
corpus from Tsinghua University (Bai et al., 1992) at a 9:1 ratio, and report that 13% of
the words in the test set are unknown.

Most previous studies treat word segmentation and unknown word identification
as two separate problems, using a mechanism to identify unknown words in a post-
processing step after word segmentation is done. However, determining where word
boundaries are necessarily involves understanding how characters relate to and interact
with each other in context, and it is desirable to capture this dynamic interaction by in-
tegrating unknown word identification with word segmentation. Several recent studies
have taken a unified approach to unknown word identification and word segmentation
(e.g., Sproat et al., 1996; Xue, 2003; Gao et al., 2005)

We describe a hybrid model that combines machine learning with linguistic and
statistical heuristics for integrating unknown word identification with Chinese word
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zhǐ is part of the last
word or the word before that – zhōngzhǐ chū ‘middle-finger out’ or zhōng zhǐchū
‘in the middle (of the talk) point out’ – the meaning of the sentence changes
significantly, as illustrated by (5) (even though in Chinese only the second seg-
mentation option is a grammatical sentence).
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(5) A potential overlapping ambiguity in Chinese.

a. *布什
Bush

在
at
谈话
talk

中指
middle-finger

出
out

b. 布什
Bush

在
at
谈话
talk

中
middle

指出
point-out

‘Bush pointed out in his talk’

You may consider yourself lucky that the writing system used for English
makes it so much easier to determine what the words are by simply starting
a new word whenever there is a space. But even for English, life is not that sim-
ple. After all, inasmuch as and insofar as would then be split into two tokens and
in spite of into three – but to process them further or even just to look them up
in a dictionary, clearly identifying them as a single token would be most useful!
For an even more common case, let’s start with a simple sentence such as (6a),
where starting a new token for every word is straightforward.

(6) a. I got my car fixed yesterday.
b. I got my flu shot yesterday.
c. I got my jacket yesterday.

If we hear (6a), we assume the speaker hired someone to fix their car. But if we
see (6b) on the lapel sticker of someone in the street, we do not think that they
hired someone to shoot their flu! We immediately interpret flu shot as a single
token, parallel to occurrence of jacket in (6c), even though it contains a space.
Naturally, this is very much language-dependent, as a compound noun such as
flu shot is written without spaces as Grippeimpfung in German. So spaces should
presumably be allowed in some English tokens, which immediately raises the
question of when exactly a tokenizer should identify words that include spaces
and when not.

The opposite problem is posed by strings such as I’m, cannot, or gonna. None of
these tokens contains a space, but we know that I’m is nothing but a short form,
a so-called contraction, of I am. Similarly, gonna occurs in the same places and is
interpreted in the same way as going to. And a word such as dunno (which might
well appear in an English text to be processed even if some prescriptive writing
instructorswould say not to use it) seems to be equivalent to do not know. So, does
it make sense to treat them as one token in the contracted form and as two or
three tokens in the form including a space? Clearly, treating the two variants in
such radically different ways would complicate all later processing, which would
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not be necessary if we, e.g., tokenized I’m as two tokens I and ’m. This naturally
raises the general question of when exactly a tokenizer should split up English
strings that do not contain spaces into multiple tokens.

In sum, processing text requires us to separate it into word tokens. This task
may seem straightforward in writing systems that use spaces; but even in En-
glish, there are challenging cases such as flu shot (which contains a space but
functions grammatically as a single noun) and dunno (which contains no spaces
but functions grammatically as three words, do not know). The challenges are
even greater in writing systems that do not use spaces, such as Chinese, and in
lower-resourced languages for which we can find less data to train an automatic
tokenizer.

Returning to CALL as an application, an intelligent CALL system needs to
tokenize the L2 text in order to provide metalinguistic feedback on it. Depending
on the language and the writing system, that task might be more or less difficult.
Tokenization might also be harder in the free-text writings of L2 learners, who
are still figuring out how to use the target language’s conventions for spelling
and spacing.

3.4.3 Grammar and syntax

Once we have tokenized and part-of-speech-tagged the words of a language, it
can also be helpful for an intelligent CALL system to create a syntactic repre-
sentation for each sentence, using a dependency parser as introduced in Chap-
ter 2. Then, just as with the writers’ aids discussed in Chapter 2, this representa-
tion could be used to provide metalinguistic feedback leveraging general insights
about the grammar of the language.

A syntactic representation could be used in a CALL system to offer helpful
explanations of spelling errors (Chapter 2), for example correcting *la casa rojo
in Spanish to la casa roja ‘the red house,’ making sure that the adjective roja ‘red’
agrees in gender and number with the noun casa ‘house’ that it modifies. Rojo
is a real Spanish word, so the only way to identify it as an error is to recognize
that its gendered suffix -o mismatches with the gender of the noun casa that it
modifies. A dependency parse of this sentence could be used by the CALL system
to flag the error and explain why roja is the correct form.

The gendered adjective endings in Spanish represent one type of inflectional
morphology – the way that a word changes form depending on its grammatical
context. Inflectional morphology also extends to verbs, which inflect in English
for tense as well as agreement with their subjects, as in Holly swims; a CALL sys-
tem could use a dependency representation to explain why *Holly swim uses the
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prescriptively incorrect inflection. Similarly, a dependency representation could
be used to explain why *Me love pizza is incorrect: English pronouns take differ-
ent forms (called case) depending on their grammatical role in the sentence; I is
the nominative form used for grammatical subjects, while me is the accusative
form used for objects. The structure and functions of such word forms are inves-
tigated in morphology, a subfield of linguistics.

Beyond the form of individual words, a dependency representation could also
be used in a CALL system to flag and explain errors in how the words are orga-
nized into a sentence. As mentioned above, if the learner writes *Maya shopped
flowers for Juan, an intelligent CALL system could explain that shop does not
combine with a direct object such as flowers; if the learner writes *Maya bought,
it could explain that buy does need a direct object.

Of course, to give such metalinguistic feedback, the CALL system would have
to map a past-tense inflected form such as shopped to the lemma (also known
as the citation form) shop, the form given in a dictionary or a list of intransitive
English verbs.

The grammar of a language is in some ways rigid (Me love pizza is rigidly un-
grammatical in standard English), but also flexible in that it allows many options.
For example, the fill-in-the-blank exercise (7) should allow the particle down to
appear right after the verb as well as at the end of the sentence. An intelligent
CALL system should allow such options not just for this exercise and this phrasal
verb (turn down), but for all exercises using any phrasal verb (set up, put in, and
so on).

(7) Maya, the radio is much too loud. Please !
a. turn down the radio.
b. turn the radio down.
c. *down turn the radio.

While phrasal verbs allowmultiple grammatical options, the syntax of English
is generally quite rigid: Sentences follow a strict Subject-Verb-Object word order
(Maya bought flowers, not *Bought flowers Maya). But other languages such as
Russian and Latin allow free word order, using case-marking suffixes on nouns
rather than word order to indicate their grammatical role. In (8), we know that
puella ‘girl’ is the grammatical subject of the sentence, no matter where it occurs,
because it uses the nominative case marking. Canem ‘dog’ is the object because it
uses the accusative case. A CALL system for Latin should allow all these options
in the learner’s writing.
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(8) a. Canem
dog-acc

puella
girl-nom

amat
love-3sg

‘The girl loves the dog.’
b. Puella

girl-nom
amat
love-3sg

canem
dog-acc

‘The girl loves the dog.’
c. Puella

girl-nom
canem
dog-acc

amat
love-3sg

‘The girl loves the dog.’

The sentences in (8) are glossed, meaning that they are written in three lines
such that the top line reflects the target Latin orthography; the second line offers
a literal word-by-word translation space-aligned with the top line, including an
analysis of case marking and inflection (nominative, accusative, third singular);
and the third line provides an ordinary English translation. This format is used
whenever linguists represent data from other languages.

All three options in (8) are grammatical, but one might be preferred over an-
other depending on the larger context. Generally (Clark & Clark 1977), people
prefer to follow the given-before-new principle, placing information earlier in
the sentence when it is already related to the prior conversation, and later in the
sentence when it introduces new individuals or ideas. For a human or a com-
puter to implement that constraint, one would need a rich representation of the
discourse above and beyond the syntax of a particular sentence.

Returning to the value of syntactic representations for CALL, such tools could
also help the CALL designer to design further exercises efficiently. For exam-
ple, if the CALL system already uses the sentence The girl eats the apple in its
question bank, it could automatically suggest further sentences by swapping out
the noun phrase the girl for any other noun phrase denoting an animate (living)
entity –my dog, your brother, and so on; or replacing the apple with other vocabu-
lary words from a unit on food (pizza, breakfast, and so on). Multiple-choice dis-
tractors could be automatically suggested from among other words in the same
part-of-speech category as the target answer; perhaps the system could even use
a language model (a fancier version of the 𝑛-gram probability model sketched in
Chapter 2) to ensure that the distractors would result in a markedly less probable
sentence than the correct answer, thus automatically recognizing pizza as a bet-
ter completion than phone for Your brother eats the…. Leveraging such insights,
an instructional designer could automatically generate a suite of questions and
example sentences rather than writing each one by hand.
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Expanding on the utility of language models, a generative language model
could also be prompted to offermetalinguistic feedback automatically, or to write
further questions and example sentences. For well-resourced languages such as
English, such tools hold great promise for CALL because they are able to dis-
till information about grammar from large-scale data even without making di-
rect reference to explicit representations such as dependency parses. For lower-
resourced languages without generative language models, CALL designers may
need to use more traditional handwritten exercises and feedback. But in either
case, distilling insights about the language helps an intelligent CALL system to
give more general, flexible feedback across more diverse, unexpected input from
the learner.

3.4.4 Representations of meaning

So far, we have explored how a CALL system can providemetalinguistic feedback
about grammar. As another way that CALL tools can represent language, we
introduce some simple tools aiming to capture not just structure, but meaning.

We saw above that a CALL system should allowmultiple different word orders
(turn down the radio, turn the radio down) as correct answers, because English
word order is flexible for phrasal verbs. Similarly, a CALL system should allow
many different answers to a question such as (9), because all of these different
formats (9a)–(9f) refer to the same date. (Americans prefer towritemonths before
days, as in 11/6, whereas Europeans prefer the opposite order 6/11).

(9) Today is November 5. So tomorrow is .
a. November 6.
b. the sixth.
c. November the sixth.
d. 6/11.
e. 11.6.
f. 6 November.

Of course, if (9) were framed as a multiple-choice question, then the pre-
determined answer choices could be hand-labeled as correct or incorrect; but if
it is a free-text fill-in-the-blank question, then the CALL system would have to
handle all the different possible formats for dates. In language processing, dates
are one example of named entities; they refer to specific real-world entities such
as dates on a digital calendar. Other examples of named entities include names
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of people, companies, countries, addresses, and so-called deictic words such as
today, tomorrow, and so on, whose reference depends on the context in which
they are used. The task of named entity recognition aims to identify such phrases
in text, for example to help extract structured information (discussed further
in Chapter 6) from text, or to use digital assistants for scheduling purposes
(Chapter 8). For CALL, named entity recognition would allow many different
formats for a date to be understood as synonyms.

At this point, one might object that the different ways of formatting dates is
not a particularly interesting aspect of language learning. But the goal of repre-
senting meaning is much more broadly useful. For example, consider fill-in-the-
blank exercise (10), modeled on a German exercise in the E-Tutor system of Heift
(2010).

(10) John works in New York City, but his family lives in Boston. On the
weekend, he drives home. Fortunately, John has a new .

The possible correct answers go far beyond different formatting for dates. For
one thing, the possible correct answers include synonyms such as car and au-
tomobile. And as we discuss in the context of machine translation in Chapter 7,
there are various other lexical semantic relations between words. In our context,
another relevant lexical semantic relation is hyponymy; this is the option of pick-
ing a more specific term, a so-called hyponym, such as pick-up, SUV, or Volkswa-
gen in place of the more general term car, the hypernym. Finally, though the
people designing exercises generally try to avoid this, there may also be multi-
ple different meanings that make sense for a slot in a given exercise; in (10) the
context would also be compatible with inserting helicopter or even audiobook (to
listen to in the car!) – and for each one of them, various semantically related
words could be used.

Rather than simply trying to brainstorm all possible answers for (10), an intel-
ligent CALL system could count any vehicle-related words as correct, either by
using a hand-built resource such as WordNet (Fellbaum 1998), which represents
hypernym and hyponym relations, for example specicifying that trucks and cars
are vehicles; or a representation learned bottom-up from text in ways to be ex-
plored further in Chapter 4.

3.4.5 Types of CALL exercises

Having explored some text-processing tools used in CALL, we turn to the types
of questions typically used in CALL systems. For each one, it is useful to con-
sider: How would a CALL system automatically recognize the learner’s answer

108



3.5 Modeling the learner

as correct?What sorts of metalinguistic feedback could be given for incorrect an-
swers? How could text-processing tools or generative language models be used
to create further questions? Finally, how difficult is each type of question – for
a CALL designer to write, for a CALL system to grade; or for a learner to com-
plete correctly? Turning from the language to the learner, which questions will
be most useful, fun, or frustrating for them?

• Matching a (spoken or written) word in the L2 to an image or a translation
in the learner’s L1, or vice versa.

• Fill-in-the-blank exercises where a learner has to complete a sentence with
an appropriate missing word or provide the correct form/conjugation of a
given lemma. These could take the form ofmultiple-choice or free-text-box
exercises.

• Given a set of options, choosing the one that constitutes the most sensible
reply to a previous conversational turn.

• Testing the comprehension of spoken or written material through true-
false or multiple-choice questions.

• Dictation exercises, where the learner is asked to transcribe a sound clip –
using a word bank or a free-text box.

• Pronunciation exercises, where the learner is asked to say something into
a microphone, graded for accuracy via a speech-to-text system.

• Translation exercises, where the learner is asked to translate from the L2
to the L1 or vice versa – with a word bank or a free-text box.

• Correct-the-error exercises, where a learner is asked to select an erroneous
word in a sentence that they are given.

• Open-ended free-text or free-speech questions, like Hello, welcome to our
café, what would you like to order? or What was your favorite part of this
story? – to be graded for length, grammatical correctness, and whether the
learner’s answer makes sense in context.

3.5 Modeling the learner

CALL systems aim to model not just language, but also learners and learning.
Here, we explore how CALL tools can represent exercises and learners to offer
the most motivating and helpful curriculum for each learner.
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3.5.1 Sequencing of material

At the most rudimentary level, a linear CALL system would give all students the
same exercises in the same order. Even here, we face design choices: If a student
gets a question wrong, should they still just move to the next question, or should
they get another chance to get it right before proceeding? Either way, a linear
CALL system runs the risk that advanced students may get bored, and struggling
students may feel overwhelmed.

In contrast, in branching CALL systems, the sequencing of the exercises de-
pends on what the student does. If a student answers one question right, the
system offers a slightly harder question; if the student gets it wrong, the system
reverts to a simpler question and might provide additional feedback or practice
related to the student’s mistake. Like giving each student their own one-on-one
tutor, a CALL system could offer instruction precisely tailored to learners’ indi-
vidual needs.

This type of dynamic sequencing is also used in computer adaptive testing, such
as the GRE (Graduate Record Examination, offered by the Educational Testing
Service). Here too, the sequence of questions depends on the test-taker’s previ-
ous answers. But this time, the goal is different: If the system can make sure
that strong students do not spend time on questions that are much too easy for
them, and weak students do not spend time on questions that are much too hard,
then it will be able to assess each student’s ability accurately using fewer ques-
tions and less time. This adaptive strategy is only feasible if the test is delivered
electronically.

To sequence questions dynamically by difficulty, a CALL system would have
to associate each question with a difficulty level – perhaps the level that it targets
according to a metric of L2 success such as the ACTFL or CEFR scales mentioned
above; a unit in the course curriculum (Level 3 Spanish); or – leveraging the CALL
system’s own usage data rather than a human-assigned label – the percentage
of learners (overall or at a given level) who get it right.

3.5.2 Characteristics of individual learners

In addition to modeling the target language and the difficulty of each exercise, it
is also useful for a CALL system to represent information about the individual
learner. This endeavor is known as learner modeling.

For one thing, a given learner is associated with more or less stable properties
such as their L1 and their motivation for learning the L2 (school, travel, immigra-
tion, and so on). Other relatively stable properties might include their technical
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setup (whether they use a desktop or a mobile phone; whether they avoid talk-
ing out loud because they are doing their CALL exercises in a silent library);
their preferred learning style (whether they want to focus on speaking or writ-
ing, whether they enjoy longer stories or quick flashcards). Some of these learner
traits might be inferred from how the learner interacts with the CALL system,
but others could be gathered through a survey when they sign up.

Then a CALL system could customize itself to these traits, for example focus-
ing on travel vocabulary for future travelers, or avoiding speech-to-text exer-
cises for people who don’t have a sound setup. More importantly, the L1 of the
learner strongly influences the mistakes that they might make when learning an
L2. For example, languages such as Chinese and Czech do not use determiners
(also called articles; the, a), so English learners from those L1 backgrounds may
need more feedback and exercises related to determiners. For an English learner
from a determiner-using L1 such as German, though, the absence of a determiner
might be a minor typo, so perhaps it should not be emphasized as much by the
CALL system. In other words, tutoring systems are often designed to focus on
the learner’s most important errors rather than overwhelming themwith dozens
of corrections at once (prioritization of feedback).

Of course, L1 transfer can also be helpful, as when learners can take advantage
of cognates shared across languages (English coffee, French café). Thus, modeling
each learner’s L1 can be used to tailor the CALL curriculum to their strengths as
well as their areas for improvement.

Beyond the learner’s stable personal traits, a CALL system might also analyze
their dynamic interactions with the CALL system – the questions they get right
and wrong; the number of days and minutes per day they have spent learning;
and the words and structures they seem to know versus the ones they struggle
with. To draw inferences about a learner’s knowledge of structure, a CALL sys-
tem has to abstract away from specific questions/answers to distill information
about both the learner and the structure of the language.

For example, one might want to assess whether a learner knows present-tense
subject-verb agreement (in English, I swim versus Maya swims). If so, the CALL
sequence could move on to more advanced topics; if not, it could offer further
instruction. If they have clearly mastered subject-verb agreement but seem to
get it wrong unexpectedly, perhaps the CALL system should take this error as
a typo rather than a true confusion (echoing the discussion of spelling errors in
Chapter 2).

But it is not trivial to infer from a learner’s behavior whether they have learned
a target pattern such as subject-verb agreement. To draw such an inference, each
question would have to be labeled (perhaps automatically) for the patterns that it
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tests. For intelligent tutoring as well as language testing, instructional designers
have to be wary of construct under-representation – drawing incorrect inferences
when the learner has not answered enough questions to assess what they truly
know, for example inferring that they know subject-verb agreement when they
just made a lucky guess in a multiple-choice question. This problem can only be
avoided by giving the learner more questions pinpointing the target knowledge.

To ensure valid inferences, it also is not enough to consider the learner’s an-
swers themselves. Instead, we also need to include information on the exercise
the learner was completing and the strategies learners may employ to succeed
in such a task. For example, a particular learner answer may simply have been
copied from the context of the question, which is known as lifting. A student
who responds with (11b) might not be truly confident in creating relative clauses
(places I’ve visited) if they are just lifting that phrase from the question.

(11) a. What is your favorite place you’ve visited?
b. I like many places I’ve visited.

To be able to interpret learner answers in terms of what they allow us to infer
about the learner’s abilities, an intelligent tutoring system thus also needs to
take into account learner strategies such as lifting or avoiding structures that the
learner is unsure about.

Such inferences constitute one example of learner modeling. More broadly, by
amassing data on what the learner gets right and wrong, a tutoring system can
draw inferences about the words or grammatical structures they can understand;
the words or grammatical structures they can produce spontaneously; the prob-
ability of them answering a given question correctly; the maximum length or
difficulty level of a sentence that they can write/translate correctly; the probabil-
ity of them quitting or persevering; the amount of time they will choose to spend
learning; and so on. The tutoring system could customize the curriculum to these
traits, for example offering exercises to each learner that they have about an 80
percent chance of getting right. Of course, harder exercises can be both instruc-
tive and discouraging, and easy exercises can be both boring and affirming, so
CALL researchers analyze learner data to strike the right balance.

In sum, in modeling both language and learners, intelligent CALL systems also
have to model both general and specific facts. CALL systems model general facts
about the structure of the language as well as how those facts are manifested in
specific exercises to be sequenced, tagged with the words/structures that they
test, and associated with metalinguistic feedback. They also represent general
facts about how L2 learning progresses along with specific inferences about the
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progress, preferences, strengths, and weaknesses of individual learners drawn
from the history of their interaction with the CALL system. The key to success
lies in synthesizing all this information to create the most effective and enjoyable
system.

3.6 Example: FeedBook

To illustrate how CALL systems actually work, we explore the example of Feed-
Book, an intelligent language tutoring system (ILTS) developed at the University
of Tübingen (Rudzewitz et al. 2017, Meurers et al. 2019), based on an official text-
book for seventh-grade English in Germany. It is called FeedBook because it aug-
ments the textbook with intelligent, individualized metalinguistic feedback.

The exercises are inspired by task-based language learning – the idea that stu-
dents should learn to use the L2 to accomplish authentic tasks in context, such
as booking travel or stating one’s opinion about a news article, rather than sim-
ply drilling words and rules in the abstract. But the exercises also target specific
grammatical forms of the L2. Therefore, FeedBook is built to provide feedback
on both form and meaning.

Looking first at feedback on form, in Figure 3.1, the learner sees information
about two options for a flight to Greece. Which flight would they choose, and
why? In a free-text box (parallel to a written response on a paper homework
assignment), the learner has written (12a). Here, a pop-up box responds with
(12b).

(12) a. *The tickets at Air-Con are expensiver than at Midair.
b. When an adjective has three or more syllables, we form the

comparative with “more” and the superlative with “most.”

The student has an opportunity to rate this feedback as hilfreich ‘helpful’ or
not; then they have a chance to revise their answer. Here, the feedback does not
just say that something is wrong, nor does it provide the full solution (which
might be optimal for a grammar checker for native speakers, as discussed in
Chapter 2). Instead, FeedBook gives a hint by explaining the general pattern that
the learner is missing, which the learner can then apply to the specific word
expensive, so that the learner has to consider the pattern and apply it themselves.

As for feedback on meaning, in Figure 3.2, the learner sees a multi-paragraph
autobiographical narrative about a kayaker, and is asked an open-ended compre-
hension question (13). The learner has written (13a); FeedBook has replied with
(13b).
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Figure 3.1: FeedBook: “Focus on form” feedback.

(13) How did James feel when he first came to St David’s?
a. James was a student.
b. There seems to be important information missing in your answer.

Please have a look at the highlighted passage in the text.

The beginning of the narrative is highlighted in green, including the sentence
I wasn’t very confident when I first arrived. Again, FeedBook does not just say
that the answer is wrong, nor does it give the correct answer; instead, it gives
a hint by narrowing down the long text to the portion containing the answer.
The student still has to figure out for themselves that when I first arrived aligns
with when he first came to St David’s, and that I wasn’t very confident answers the
question How did James feel? The exercise becomes more manageable, but the
learner still has to use their brain.

FeedBook aims to supplement rather than replace an in-person class with a
live teacher. Whereas teachers historically had to correct students’ work by hand
and then return it to them days later, FeedBook provides immediate grading and
feedback at scale, so that the teacher can focus on preparing the in-person class
sessions. FeedBook also functions as a learning management system such as Can-
vas or Blackboard (used in schools as a platform for course material, homework,
grading, discussions, and so on), in that it sends reminders about missing home-
work to students and compiles statistics for the teacher on what students know
and don’t know. Whereas the earliest such intelligent tutoring systems were built
for math instruction, where students’ answers are more constrained (i.e., to nu-
merals), FeedBook leverages language technology to handle the unconstrained
domain of language.
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Figure 3.2: FeedBook: “Focus on meaning” feedback.

3.7 Example: Duolingo

As an example of a very popular language tutoring system, we turn to Duolingo,
which offers online language lessons.

3.7.1 Duolingo as a business

Duolingo was founded in 2009 and released to the public in 2012 by Luis von
Ahn, a Guatemalan-American computer science professor, and Severin Hacker,
a Swiss graduate student, both at Carnegie Mellon University. Luis von Ahn had
previously founded ReCAPTCHA, a web verification tool for distinguishing hu-
mans from bots by asking them to transcribe a few characters of text from an
image, which – in an attempt to kill two birds with one stone – was used to digi-
tize portions of old books and newspapers that were too illegible to be processed
automatically. Duolingo was originally designed around the same two-birds-one-
stone idea, aiming to teach people L2s while also gathering translations for the
web, but the translation portion was eventually abandoned to focus on L2 teach-
ing alone.
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As of 2023, Duolingo claims to have been downloaded over 500 million
times, with 4.2 million paid premium users and 54 million monthly active users.
Duolingo offers 43 different languages in over 100 different L1/ L2 pairings.
Courses for lower-resourced languages are shorter and not as fully developed,
but Duolingo advertises as a point of pride that they teach minority languages
such as Navajo, Hawaiian, and Irish. They even offer constructed languages,
those consciously crafted as part of a fictional world-building exercise: Klingon
(created for the television show Star Trek), High Valyrian (fromGame of Thrones),
and Esperanto (invented with the goal of fostering global understanding and
peace). Globally, the most popular language on Duolingo is English, followed
by Spanish and French; in the United States, it is Spanish followed by French or,
in some states with high immigration rates, English.

Duolingo uses a freemium business model. The free basic version cuts the
learner off after they make five mistakes in a session and makes them watch
ads, while the paid premium version allows unlimited mistakes, no ads, and of-
fline lessons. Duolingo can be considered a form of edutainment because it tries
to gamify language learning. Learners can follow friends, congratulate one an-
other on their progress, jockey for positions on a leaderboard, maintain their
“streak” (number of consecutive learning days), earn points to spend in an on-
line store (to buy an additional lesson on flirting, or to miss a day without losing
their streak), and win badges to be shared on social media. Duolingo is also no-
torious for sending persistent push notifications and emails (sent at the time of
day when each learner usually logs on!) to keep learners coming back every day.
In other words, Duolingo is optimized not just for language learning, but equally
for user retention.

3.7.2 How does Duolingo teach language?

Duolingo is organized into five-minute lessons of about 17 questions each. Each
lesson automatically self-extends to give the learner another chance at what they
got wrong, and the lesson is only complete when all questions have been an-
swered correctly. Lessons are organized into topics (content topics such as greet-
ings, travel, clothing, and current events; and grammar topics such as pronouns,
future, past, and so on) and difficulty levels. In the L1-English-to-L2-Spanish
course, for example, the first level of a lesson on clothing might focus on match-
ing words to pictures of clothing, and translating sentences from Spanish to En-
glish with a word bank, while further levels of that lessonwould emphasize trans-
lating the same sentences from English to Spanish, first with a word bank and
later into a free text box. In addition to matching and translation, the questions
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also involve multiple choice, comprehension questions for text and audio, fill-
in-the-blank, dictation, and repeating sentences out loud. Even for exercises in-
volving text rather than speech, the app plays text in the L2 out loud (leveraging
text-to-speech tools) so the learner sees and hears it at the same time. To move
to the next level of a lesson, the last portion of each level requires the student
to review their previous mistakes until they can answer them all correctly. If a
learner makes no mistakes on an early level of a lesson, the premium version of
Duolingo allows them to skip to the next level.

The lessons are organized into units, each one ending with a test that the
learner must pass to unlock the next unit. For learners who already have some
experience with the L2, Duolingo offers a placement test so that they can skip
the units that they already know. Early units focus on greetings, basic vocabu-
lary, and simple grammar such as the present tense, while more advanced units
use sentences about politics, religion, and complex grammar such as the sub-
junctive and not only …but also. Some lessons start with an optional section of
grammar tips, where a grammatical rule is stated explicitly and illustrated with
examples. Leveraging language-aware generalizations, the same grammar tips
recur as feedback if a learner makes a mistake on that grammatical pattern.

Within a lesson, the variety of question types (matching, fill-in-the-blank, mul-
tiple choice, dictation, saying a sentence out loud, different types of translation
exercises) are chosen to keep learners engaged, and sequenced so that the hard-
est exercises come at the end of the lesson when a learner is least likely to give up.
If a learner makes multiple mistakes in a row, Duolingo fosters a growth mind-
set with encouraging messages about how making mistakes is part of learning.
The lessons feature cute animations of Duolingo’s characters, each associated
with their own voice, and correct answers are rewarded with a pleasant chim-
ing sound plus an animation of one of the characters dancing or celebrating. In
all these ways, Duolingo is designed around the idea that a learner’s attitude
matters.

In contrast to the long text-comprehension questions used by FeedBook,
Duolingo’s exercises are much shorter and simpler, constrained by the size of a
phone screen. Because FeedBook is assigned by schools while Duolingo requires
self-motivation, perhaps Duolingo’s users are more likely to give up and thus
prefer their work to be bite-sized.

Duolingo is also structured around the fact that comprehension precedes pro-
duction. Exercises are sequenced to move from comprehending L2 sentences
(translating L2-to-L1, with a word bank) to eventually producing the same sen-
tence freely (L1-to-L2 in a free text box). In the same way, Duolingo’s “story”
exercises first ask learners to answer comprehension questions from material

117



3 Computer-assisted language learning

Figure 3.3: Screenshots from the Duolingo Spanish course: A multiple-
choice comprehension question; a translation question from the L2 to
the L1, with a word bank; and a translation question from the L2 to the
L1, with a free text box. As indicated by the progress bar, the questions
get harder as the lesson progresses.

that is both spoken and written, and then at the next level uses only spoken ma-
terial with no transcript, leveraging the fact that it is easier to understand paired
speech and text compared to speech alone.

The sentences used in Duolingo exercises (such as My grandmother loves
videogames) are constructed carefully – originally by hand, now presumably
also leveraging language-generation tools (which may result in a trade-off
between quality and quantity, especially for less-resourced languages). Each
sentence is designed to be cheerful, inoffensive, consistent with the brand’s
identity, and sensible out of context. (When Duolingo’s creators abandoned the
idea of translating text from the web, perhaps part of the reason was that the
out-of-the-blue sentences from web text – wow this is quite the analysis; That’s
one way to reach midlife crisis! – don’t fit into clear lesson topics, might create
a scattered brand identity, and often do not make sense out of context.) Using a
blend of human labor and automatic tools, each sentence is also associated with
a topic (for example, travel), various grammatical structures (past tense), a set of
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vocabulary words, and a difficulty level. With different types of questions and
directions of translation, the same sentence can also be recycled at escalating
levels of difficulty.

The recycling of material uses spaced repetition – the idea, rooted in the work
of the 19th-century German psychologist Hermann Ebbinghaus and central to
Duolingo, that learners forget information over time but are more likely to re-
member it if they keep reviewing it. By reusing different versions of the same
questions and recycling old vocabulary in new lessons, Duolingo is designed to
mix review with new material.

Figure 3.4: Spaced repetition: Memory declines over time, but a learner
is more likely to remember something if they review it across multi-
ple days (https://commons.wikimedia.org/wiki/File:Forgetting_curve_
and_work_of_Ebbinghaus.png, uploaded and dedicated to the univer-
sal public domain by user Productive.Fish).

3.7.3 Evaluating Duolingo

Like any popular product, Duolingo has critics as well as devoted fans. Critics of
Duolingo would note that it can only get learners to an Advanced Beginner or
Low Intermediate ACTFL level (“able to handle successfully a limited number of
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uncomplicated communicative tasks by creating with the language in straight-
forward social situations”). Courses on less-resourced languages are shorter and
must promise an even lower proficiency level. Learners may find it frustrating
for a translation to bemarked as wrongwhen the gist is correct or when only one
word is mis-typed. Moreover, translating pre-written sentences on Duolingo is
arguably not as useful as learning to make oneself understood in a spontaneous
conversation. According to Forbes2, the Chief Revenue Officer of Duolingo could
not respond to the spoken question ¿Hablas español? ‘Do you speak Spanish?’
after six months of Duolingo Spanish.

Finally, like many other online courses, Duolingo struggles with attrition. Ex-
act numbers are elusive and depend on the length of the course, but course com-
pletion rates fall far below one percent. (After 1277 consecutive days of studying
Spanish, one of the authors of this textbook is working through “Intermediate
Spanish, part 1,” so completing a course requires an extremely sustained commit-
ment).

On the other hand, fans of Duolingo would argue that Duolingo is better than
nothing and teaches asmuch as can be expected in one or two five-minute lessons
per day. The app is user-friendly, fun, and always improving as researchers an-
alyze data from millions of users. Spontaneous production is the hardest, but
Duolingo certainly improves passive spoken and written comprehension and
can serve as a valuable complement or stepping stone to other exposure through
schooling, work, travel, socializing, or consuming media (including Duolingo’s
own associated podcast) in the L2. Through Duolingo for Schools, teachers can
assign Duolingo exercises as homework and track their students’ progress. But
should language teachers be grateful for Duolingo as a supplementary tool, or
should they feel threatened that it may replace them? This question – about
whether humans and language technologies compete or complement one an-
other – will keep coming back.

3.8 Evaluation

Stepping back to CALL systems as a whole, how good are they? They are surely
better than nothing, but how do they compare to a traditional classroom? Taking
inspiration from the still timely discussion of Meskill (2002), such systems have
advantages and disadvantages compared to in-person instruction. Looking first
at the advantages, CALL tools can provide self-paced, dynamically sequenced,

2“Game of tongues: How Duolingo built a $700 million business with its addictive language-
learning app,” 16 July 2019, by Susan Adams, Forbes.
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automatically graded exercises to any number of students across regions and
time zones at scale, making L2 learning accessible. CALL tools can judge prede-
termined right-or-wrong answers and provide immediate feedback in the form
of pre-written hints or corrections matched to the student’s input. Such tools can
record detailed information about the learner’s progress, providing data to both
learners and researchers of L2 learning and allowing for learner modeling and
dynamic sequencing. CALL tools can provide authentic multimedia language us-
age and can motivate the student’s persistence through encouraging canned text,
push notifications, integration with “likes” on social media, and other digital re-
wards.

As for the disadvantages, CALL tools still struggle to evaluate unexpected in-
put. In an in-person introductory language class, students learn to introduce
themselves and to describe their own biography and opinions, but such exer-
cises are harder to automate in a CALL system because there is no single correct
answer. CALL tools therefore do not offer as many opportunities for a learner
to practice producing language extemporaneously. Finally, the social element
of language learning is missing: The learner cannot engage in the process – ar-
guably the end goal of L2 learning – of trying to make themselves understood in
a real-life conversation.

To give learners greater opportunities for extemporaneous production, some
language instructors have leveraged the dialog capabilities (discussed in Chap-
ter 8) of generative language models so that students can practice open-ended
conversation in the target language, via speech or writing. The dialog system
could in principle be prompted to adjust its output to the student’s L2 level. Di-
alog systems allow the student to practice producing language at any time and
frequency, without the logistical challenges or potential social anxiety of a hu-
man interlocutor. But dialog systems do not currently grade the student’s output
for correctness, so they cannot model the learner’s strengths and weaknesses as
more structured CALL systems can. It remains an open question how dialog sys-
tems will be integrated with other CALL tools.

The more people who use a CALL system, the more its designers can use large-
scale usage data to improve. User-experience researchers use A/B testing, an ex-
periment where learners are assigned randomly to one of two conditions (A or B)
which are compared with respect to some outcome variable (for example, proba-
bility of passing a certain test, number of minutes spent learning, probability of
continuing or giving up, and so on) that the researcher wants to maximize. One
condition serves as the control group, where the system is kept as-is, while the
other condition pilots a new feature. If the people who encounter the new feature
have a better outcome, the feature might be deemed successful and implemented
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for all learners. A/B testing is a type of between-subjects experiment, meaning that
the experiment compares the outcome across different groups of people, each
assigned to a different condition. Between-subjects experiments contrast with
within-subjects experiments, where the same person encounters multiple differ-
ent conditions at different times. A/B testing is used widely beyond CALL, in
any context where a company wants to use evidence to decide whether a new
feature would improve users’ experience, but in a CALL context it could be used
to choose the exact exercises and feedback that are most instructive or motivat-
ing.

In a similar spirit, education researchers might conduct a randomized con-
trolled field trial. Here, students – or entire classrooms – are randomly assigned
to one teaching method or another. For example, perhaps one classroom uses
CALL tools as additional homework, while the other classroom does not; or per-
haps some students are given a simpler CALL system, while others get a fancier
version. Then researchers might test whether the two groups differ meaningfully
in their performance on a year-end exam. The students or classrooms must be as-
signed randomly to each condition, to control for confounding variables such as
the students’ starting level, socioeconomic status, and so on; that way, any differ-
ence that is found can be attributed to the intervention (the instruction method)
rather than underlying differences between the learners. (A careful researcher
will also gather data on such variables to make sure that they are controlled
across the randomized groups.) The trial will also be more robust if it includes
many students or many classrooms, so that the results are not skewed by, for
example, one classroom having a particularly good teacher.

Such trials take inspiration from medicine, where it is common to assign pa-
tients randomly to take a drug or a placebo to then test whether the drug-taking
patients heal faster or live longer than the placebo group (in a randomized con-
trolled clinical trial). The phrase field trial indicates that the trial takes place in
a real-world setting such as a classroom, rather than a clinical medical setting
such as a hospital. A/B testing is a type of randomized (field) trial because users
are randomly assigned to one condition or the other, and then compared with
respect to some outcome. The phrase A/B testing tends to be used more often
in a corporate context, while randomized trials are discussed by academics, but
they are essentially the same idea – using data to quantify the effectiveness of
different teaching strategies.

Across both in-person learning and CALL tools, one of the biggest challenges
in L2 instruction is motivating the learners to continue learning. Therefore,
designers of CALL tools focus on creating a friendly user experience. Error-
correction messages are written to be encouraging as well as metalinguistically
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illuminating; push notifications are piloted via A/B testing to find the one most
likely to get the learner to open a CALL app; learners are modeled and exercises
are sequenced to optimize perseverance. Example sentences are designed to be
socially inclusive and appropriate for children, and might describe interesting
characters, stories, or cultural knowledge to keep learners engaged.

In sum, designing a good CALL system requires insight from many differ-
ent areas, including the study of how people learn and what motivates them
(drawing on education, psychology, and behavioral economics) as well as human-
computer interaction, applied linguistics, and language technology.

3.9 Consequences

By exploring all the things you learn when you learn a new language, we hope
to illuminate the richness of language both in its own right and as a domain to be
tackled computationally. We might suggest reading this chapter in tandem with
Chapter 7 on machine translation to compare what it means, for a human versus
a computer, to be multilingual. As machine translation improves, do you think
humans have less incentive to learn a new language?

Computer-assisted language learning also evokes larger debates in education
technology more generally. On the one hand, web platforms have made educa-
tion more accessible than ever. Whatever you want to learn, you can most likely
find a helpful video tutorial about it. There are platforms that teach program-
ming languages and music using the same principles that underlie CALL, offer-
ing progressively difficult bite-sized exercises in the learner’s zone of proximal
development to be checked for objective correctness. These tools are cheap and
can be accessed by millions of people around the world.

On the other hand, online learners often give up, and the people who learn
online most successfully are often those who were already highly motivated and
self-sufficient at the outset. It remains difficult to retain learners who have less
commitment or confidence. Moreover, to the extent that education provides so-
cialization as well as information transmission, that element is diluted online.

Education technology took on new significance when some schools were
closed during the coronavirus pandemic. Some students adapted to online
learning, but others suffered tragically. What tools could have helped those
students, and what tools can help them improve now? As education evolves,
to what extent should education technology be seen as a complement or a
competitor to in-person schooling? Moreover, as artificial tools get better at
integrating language with the larger visual and social context, will robots ever
take over the role of in-person language teachers?
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Each form of education has distinct pros and cons. Whereas a single teacher
may struggle to teach multiple levels at once, education technology can offer self-
paced exercises customized to the zone of proximal development of each learner.
And while a generalist teacher may not know every topic deeply, high-budget
educational technology tools can leverage the knowledge of specialized content
experts as well as the insights from large-scale A/B testing. In contrast, online
learning can be notoriously isolating and depressing, while an in-person class-
room can offer a socio-intellectual community where students can feel welcome,
motivated, connected, and understood through person-to-person conversations.
It remains an open question how the pros and cons of education technology
should be balanced with those of in-person schooling.

Checklist

• Compare and contrast L1 and L2 learning.

• Discuss metrics for measuring L2 success, and whether such met-
rics are applicable to L1 learning.

• Identify the factors that contribute to success in L2 learning.

• Explain why learning is advanced by input pitched to one’s zone of
proximal development.

• Explain the idea of spaced repetition and how it is used in Duolingo.

• Give examples of the types of questions used by language tutoring
systems.

• Give examples of ways that a tutoring system can use learner mod-
eling to teach more effectively.

• Compare and contrast the capabilities of intelligent CALL systems
versus dialog systems for L2 learning.

• Discuss the pros and cons of Duolingo and explain whether you see
it as a supplement or a threat to L2 learning in a classroom.
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• Discuss the affordances and limitations of practicing an L2 by con-
versing with a dialog system.

• Give examples of A/B testing and why it might be useful in educa-
tion as well as business.

Exercises

1. Search online to find videos from ACTFL at each proficiency level.
Can a partner correctly guess a speaker’s ACTFL level from a video
that you play them?

2. Explore www.wordbank.stanford.edua for data and visualizations
of the words that children learn at various ages around the world.
Can you find an example of a word that is learned much earlier in
one language/culture than another? (Can you propose an explana-
tion?)What factors are predictive of a child’s productive vocabulary
size (the number of unique words that they produce) at each age?

3. A friend comes to you with a business idea: They want to make a
Duolingo-like app to help babies learn their L1. Do you think there
is a market for such an app? How would it compare or contrast to
tutoring systems designed for an L2?

4. Read online about some of Duolingo’s competitors, Babbel and
Rosetta Stone. What are the pros and cons of each compared to
Duolingo?

5. Choose a grammatical construction of English that L2 learners
might struggle to learn (talk to a linguistics student for ideas!).
Write a multiple-choice question with plausible distractor items to
test this construction. Ask a friend or classmate to answer the ques-
tion and offer feedback.

aAccessed 2024-04-26.
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Futher reading

A general overview of the use of NLP in the context of language learning
is provided in Meurers (2020). A detailed discussion of ICALL projects,
including a historical overview and a characterization of the techniques
used, can be found in Heift & Schulze (2007).

Munday (2016) describes Duolingo and argues that is a useful comple-
ment to classroom instruction.

Huang et al. (2022) review the literature about dialog systems for lan-
guage learning.

On tutoring systems more generally, some classic references include
Swartz & Yazdani (1992) and Holland et al. (2013), as well as Heift (2010)
and Amaral & Meurers (2011) for language in particular.
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So far, our tour of language technology has incorporated a great deal of linguistic
theory and representations. We used the International Phonetic Alphabet when
we introduced writing systems in Chapter 1; we invoked theories about syntax
when we discussed writers’ aids in Chapter 2; and we leveraged research in L1
and L2 learning when we explored CALL in Chapter 3. So you might be getting
the impression that language technology always builds on constructs created by
linguists. But actually, there is also a lot to be gained from letting the language
data itself tell us about language, independent of any particular theory.

And there is a wealth of language data out there to learn from! Every day, hu-
mans produce billions of words of electronic text – social media content, emails,
journalism, schoolwork, scholarly papers, lawsuits, Wikipedia pages, books, tele-
vision scripts, product reviews, doctors’ notes, and more. Such text contains a
wealth of information about society, politics, economics, science, and language
itself. Text as data describes a cross-disciplinary endeavor to extract this infor-
mation and distill its insights.

In other words, this chapter pivots from more top-down knowledge-driven ap-
plications, like writers’ aids (Chapter 2) and CALL (Chapter 3), to the use of more
bottom-up data-driven technology. There is rarely a clean split between using
knowledge and using information from data, but focusing on language data as
an object of study can help us when we explore applications in later chapters
that often use language as a means to an end – and that often seek to extract
some kind of meaning automatically from the text. That meaning will be used to
conduct searches, classify texts, translate between languages, and build systems
that can engage in dialog.

4.1 Introduction

We begin with a tour of examples of questions answered using text in various
scholarly and practical fields – digital humanities, corpus linguistics, computa-
tional social science, and author profiling (overlapping domains with no strict
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boundaries). A question might be as simple as “Do people still use the abbrevia-
tion lol (laughing out loud)?” or much more elaborate, such as “How do journal-
ists for different kinds of publications reveal their ideological orientation through
word choice?” Of course, our examples (focused on English-language text) rep-
resent only a tiny portion of these massive and growing domains.

For each example in this brief tour, please consider the type of text that is used,
which is often referred to as a corpus (see Section 2.3.1). How large is the corpus?
How large does it need to be for the task at hand? Does the corpus include anno-
tations – additional information on top of the text itself, such as part-of-speech
tags or grammatical structure? What metadata are required to answer the ques-
tion – data about the data itself, such as dates, locations, authors/speakers and
their attributes, or the intended readers of the text?What methodology is used to
extract information from the text and what statistics are used to draw inferences
from it? In other words, think about how different kinds of textual data present
both opportunities and challenges for answering such real-world questions.

4.1.1 Digital humanities

Digital humanities describes the study of humanities – literature, culture, and
history – using digital tools. Here are some examples:

• Moretti (2013) observes that any one scholar of literature can only read a
very small portion of the books ever published, and an even smaller portion
in close detail. As a complement to traditional close reading, he proposes
distant reading – seeking a macro-level view of literature through digitally-
generated “graphs, maps, and trees”, such as a map of all the places men-
tioned in various novels; a diagram of which characters in a play talk to
each other and how much; a graph of the number of novels published in
each genre in each year; or a table of the books purchased by libraries
in each year. Note that the last two examples are strictly questions about
metadata and not about the text itself. It remains an open debate how such
quantitative findings might or might not be useful to scholars of literature.

• Underwood et al. (2018) explore gender in fiction from the 1800s to the
2000s. They use a program that automatically recognizes named entities
(characters) in digitized books along with their gender, then they gather
all of the nouns (doctor), verbs (smiled), and adjectives (young) predicated
of each character, and use that information to try to predict the charac-
ter’s gender. Interestingly, the words smile and laugh are associated with
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women, while grin and chuckle are associated with men! Over time, they
find that it becomes harder to predict a character’s gender from the words
predicated of that character, showing that character descriptions have be-
come less gender-stereotyped over time. They observe that the percent-
age of women authors declines between the mid-1800s and the mid-1900s
– perhaps because fiction became more prestigious and started to attract
more men during that period, or because intellectual women began to en-
joy career opportunities beyond fiction-writing. They also report that male
and female characters are equally represented in works written by women,
while male characters predominate in works written by men.

• Klein (2013) explores a digital archive of the papers of the American pres-
ident Thomas Jefferson (author of the Declaration of Independence, and
owner of enslaved people). She finds that the archive provides rich, search-
able metadata about the people who exchanged letters with Jefferson, but
very little about the enslaved people mentioned therein. Klein uncovers
all mentions of the enslaved cook James Hemings in Jefferson’s papers (in-
cluding all irregular renderings of his names, such as Jim and Jimmy) to
recover a picture of his life. She argues that digital archives must confront
the question of whose stories are structurally privileged or erased, and
work to avoid reproducing historical inequities.

Essentially any computer-aided study of text (literature, newspapers, archives)
can be considered part of the digital humanities if the research question is framed
as a humanistic one.

4.1.2 Computational social science

Computational social science, as the name implies, is the use of large datasets
(often text) to study some area of the social sciences. Some examples:

• Danescu-Niculescu-Mizil et al. (2013) gather a corpus of requests (Do you
have any code that we can look at?) from Stack Exchange question-answer
forums andWikipedia talk pages. They payworkers on Amazon’sMechan-
ical Turk gig platform to rate the requests for politeness, and then train an
automatic system to generalize those ratings to new data. As predicted by
linguistic theories of politeness (Brown & Levinson 1987), they find that
requests using greetings (hey) and apologies (sorry) are rated as more po-
lite. They also find that Wikipedia editors become less polite after being
elected to positions of power on the site.
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• Demszky et al. (2019) study tweets about mass shootings in the United
States. They classify tweeters as Republicans or Democrats based on the
politicians that they follow on Twitter, finding (among other things) that
Republican tweeters prefer the word crazy for white mass shooters and the
word terrorist for mass shooters of color, while Democratic tweeters show
the opposite preference. They also find that Democrats tend to tweet about
gun laws in response to mass shootings more than Republicans do. The
study confirms several intuitive hypotheses about the public’s polarized
response to mass shootings.

• Jurafsky et al. (2018) use a corpus of restaurant menus (with the type of
food and dollar-sign price range taken from Yelp) to explore differences
between cheap and expensive menus motivated by theories of social class.
They find that cheap menus highlight what they call “traditional” authen-
ticity (Grandma’s recipe – touting a connection with the past) while ex-
pensive restaurants focus on “natural” authenticity (wild-caught salmon –
emphasizing a connection to the environment). Moreover, cheap menus
use more words, more frequent words, and more adjectives emphasizing
quality (juicy burger with real cheese), while expensive menus use fewer
words, less frequent words, and constructions that presume the quality of
their food goes without saying (Oceanaire burger).

Computational social scientists also might visualize what topics get the most
attention from which news outlets; explore how ideas spread through social net-
works using social media; study which people fit in or stick out in online commu-
nities; or quantify anti-social internet behavior such as trolling and fake news.

4.1.3 Author profiling and identification

Author profiling describes the attempt to draw inferences about a person using
text that they wrote – their likely gender, age, mental health status, personality
traits, political ideology, or native language. Often, one begins with a dataset of
documents (for example, tweets) correctly labeled for certain properties of their
author and then learns to generalize these labels to new data – a problem known
as text classification (to be introduced in Chapter 5). In tweets, women are more
likely than men to use first- and second-person pronouns (I, you; Bamman et al.
2014); older people may use more standardized spelling than younger people;
people with depression may use fewer we-pronouns than people without depres-
sion; and so on. Perhaps a person who leaves out determiners (the, a) in their
English writing may be a native speaker of a language that lacks determiners.
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These findings are intriguing, and systems trained on such data can achieve
good results. But author profiling also raises questions about data privacy:Where
did these data come from? How do you gather a corpus of tweets labeled for the
author’s age/gender while respecting their privacy and perhaps getting their con-
sent? Researchers engaged in author profiling should also think critically about
the nature of the labels that they assign. What is gender? If a person’s gender
can be inferred from their tweets, why might that be? If certain people are “out-
liers” – diverging from the behavior of the majority of those who share a label
with them, as when a younger person tweets more like a older person, or a “man”
tweets more like a “woman” – these outliers should be considered carefully for
what they can tell us about the assumptions underlying these labels, the bound-
aries between the labels, and the hypothesized causal relation (if any) between
a person’s label and the text they might author. Moreover, if a person’s demo-
graphic traits can be predicted from their tweets, how could this information be
used? What if a company wants to sell certain products or advertise certain job
opportunities to people whose tweets suggest that they possess certain demo-
graphic traits? How worried would you be about the potential for intentional or
accidental discrimination?

Author profiling is also used in forensic linguistics to infer properties of a crim-
inal from a text they authored. The celebrity pilot Charles Lindbergh’s baby was
kidnapped in the 1930s and murdered by someone who wrote in a ransom note
that the baby would be in “gut [good] care” – bolstering suspicion of a German
immigrant carpenter, because gut means ‘good’ in German. The Unabomber ter-
rorist, who sent bombs in the mail from 1978–1995, was identified through a man-
ifesto that he sent to a newspaper, which indicated his high level of education
and used distinctive phrasings (cool-headed logicians) recognized by his relatives.

When the author of a text is unknown, author identification is the attempt to
infer who wrote it – usually from a closed set of candidates, each of whom al-
ready has other writings attributed to them. Most famously, Mosteller &Wallace
(1963) analyzed some of the Federalist Papers, which might have been written by
the American “founding fathers” Alexander Hamilton or James Madison. They
found that the papers in question patterned with Madison’s writing style rather
than Hamilton’s: Madison preferred the wordwhilst but Hamilton favoredwhile;
Madison used the word for far more often than Hamilton did. Similar techniques1

were used to substantiate a tip that Harry Potter author J.K. Rowling had written
a crime novel under a pen name.

1Scientific American, 20 August 2013, by Patrick Juola: “How a computer program helped show
J.K. Rowling wrote A Cuckoo’s Calling”.
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Even when the author of a text is known, the same techniques can be used to
quantify elements of their style – taking us back to the digital humanities. What
are the most common unigrams, bigrams, and trigrams in an author’s work?
What verbs, adjectives, or nouns do they use more often than other authors do?
How diverse is their vocabulary, i.e., what ratio of word types (unique words) to
word tokens (total words including repetitions) do they use? How long are their
sentences, on average, and what words do they like to use to start one? These
facts – which you can compute yourself, if you have some machine-readable text
and a working knowledge of a programming language – can shed light on an au-
thor’s literary voice, which can also lead to the identification of further texts that
they wrote. In 20202, the historian Scott Sandage found a previously unknown
article written by the 19-century American anti-slavery activist Frederick Dou-
glass by searching historical newspapers for a rare adjective, couchant, that the
historian knew Douglass uniquely favored.

4.1.4 Corpus linguistics

So far, we have seen examples of how information is distilled from text to illumi-
nate society and culture. Corpus linguistics, on the other hand, uses repositories
of attested language use in order to study the nature of the language itself.

Often, such studies explore not just the corpus itself but also annotations –
additional information – added on top. Chapter 2 already introduced the anno-
tated Universal Dependencies project of Nivre et al. (2016), which provides cross-
linguistic corpora (from news, books, and so on) in which each word is annotated
for its part-of-speech tag and each sentence is annotated for its grammatical de-
pendency structure. Nivre et al. (2016) present detailed annotation guidelines –
rules and examples – to standardize the annotations gathered from different an-
notators and across different languages. We also already mentioned the study by
Danescu-Niculescu-Mizil et al. (2013) which gathered annotations of the polite-
ness of requests.

Who are these annotators? In the case of Universal Dependencies, the anno-
tators are human experts – people (often, paid graduate students) who speak
and read the language that they are annotating, and are trained to implement
the detailed annotation guidelines for a sentence’s dependency structure. Other
studies, such as the one on politeness of requests (Danescu-Niculescu-Mizil et al.
2013), may gather annotations from novices on paid gig platforms such as Me-
chanical Turk or Prolific, requiring short, simple instructions. The fastest and

2The Guardian, July 5, 2020: “Discovery of Frederick Douglass letter sheds light on contested
Lincoln statue” by Martin Pengelly.
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cheapest annotations come from automatic tools, such as part-of-speech taggers
and dependency parsers that can be applied to any sentence you want. Lever-
aging the ability of computers to generalize patterns, such tools are trained to
extend human annotations (such as those provided in Universal Dependencies)
to new data.

Annotated corpora empower researchers to test predictions of various linguis-
tic theories, and/or build tools to extract meaning from language computation-
ally. Here are some examples of studies using annotated corpora to illuminate
linguistic theory:

• Futrell et al. (2015) show that words are generally closer to their syntac-
tic dependents in the Universal Dependencies corpus than in computer-
generated sentences with randomly scrambled words. For example, in the
real sentence The manager ran the company, the verb ran is one word away
from its subject (manager) and two words away from its object (company).
In the computer-generated scrambled sentence *Ran the the company man-
ager, the verb ran is four words away from its subject (manager) and three
words away from its object (company). Across many languages and many
sentences, real sentences show shorter dependencies than scrambled ones.
This study demonstrates a robust quantitative pattern in the structure of
sentences across many languages.

• Rosenbach (2005) explores the choice between the two English genitive
(possessive) constructions, ’s (the baby’s legs) and of (the legs of the chair).
In both a fill-in-the-blank experiment and a corpus study of 6000 genitive
constructions taken from transcribed speech, she finds that people prefer
the ’s genitivewhen the possessor is annotated as animate (a sentient being
– the baby’s legs), and the of genitive when the possessor is annotated as
inanimate (the legs of the chair) – even controlling for other factors such as
the number of words describing the possessor and whether it has already
been mentioned in the prior discourse.

• Levin et al. (2019) consider the relation between the two words in a com-
pound noun, such as water jug (used to hold water) and water spinach
(spinach that grows in wet conditions). They gather over 1500 attested
compound nouns from the domains of edible plants and cooking as well
as gemstones and jewelry, taken from the websites of online retailers, and
then recruit graduate students to annotate the relation between the two
words in the compound according to detailed annotation guidelines. In
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compounds referring to artifacts (things made by humans for a purpose),
the relation tends to involve an event in which the artifact is used (a wa-
ter jug is used to hold water), whereas in compounds referring to natural
kinds, the relation tends to involve essential properties of the kind such
as its appearance, habitat, or place of origin (water spinach grows in wet
conditions). Humans interact with artifacts and natural kinds in different
ways, and these differences are reflected in the interpretation of the com-
pounds used to name them.

• Potts (2010) shows in a corpus of Internet Movie Database reviews that
the negation marker not is most prevalent in reviews with low star ratings
– perhaps surprising for a word with a purely logical meaning. He finds
in the Switchboard Dialog Act Corpus (a corpus of conversations with
each turn annotated for its discourse function, such as apology, thanking,
agreeing) that not is over-represented in face-threatening rejecting turns
(disagreeing with people’s opinions, declining offers), perhaps explaining
why not is associated with negative sentiment.

In the simplest case, a corpus can be used just to show that a certain grammat-
ical construction exists and is attested (not just as a typo), with no specific claims
about its frequency, which is especially interesting if other literature has claimed
it to be impossible. For example, White (2021: 12) shows that think actually can
appear with the complementizer whether in corpus examples such as (1).

(1) And it does cause you to think whether or not it makes sense for us to be
there.

But a prototypical quantitative corpus study involves making and testing a
prediction about frequency – that one construction should bemore frequent than
another, or more frequent in one sort of text compared to another, as when Potts
(2010) shows that negation appears more frequently in negative movie reviews.

To sketch just a few more examples, corpus linguists also study how language
has changed over time: For example, the word gay used to appear in contexts
similar to happy, now it appears in contexts similar to lesbian (Hamilton et al.
2016). Corpus linguistics explores differences between writing and speaking and
different genres thereof (also known as stylistics – the study of genre, register,
and grammatical style across contexts). One can also investigate what distinctive
patterns are used in thewritings of people learning a second language at different
levels of proficiency. Furthermore, a corpus can be used to uncover how language
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usage varies across different people (of different genders, ages, socio-economic
status), across locations, or over time, shedding light on sociolinguistic variation.

Turning to its real-world applications, corpus linguistics can be applied in
the legal field to offer evidence about the meaning of laws. The United States
v. Costello court case (2012) involved a federal statute which made it a crime
to harbor undocumented immigrants. A woman picked up her undocumented
boyfriend at a bus stop and let him stay with her for several months until he was
later arrested on drug charges. Did she harbor him? The verb harbor is derived
from the noun denoting a place to dock boats; which elements of a marine har-
bor are extended to the metaphorical meaning of the verb derived from it? Does
harbor mean hosting someone (as she did), or does it require actively shielding
them from pursuing authorities (which she did not do)? In his opinion for the
Seventh Circuit, Judge Richard Posner did a simple corpus study, finding that
most of the Google hits for the string harbor friends describe cases of helping
Quakers (Friends) hide from persecution, not just providing lodging for friends,
so he determined that the woman did not criminally harbor her boyfriend. Of
course, a corpus study cannot substitute for legal judgment, because one must
exercise judgment in designing the study and interpreting the results – an im-
portant caveat for any inference drawn from the use of text as data.

4.1.5 And more!

In proportion to the amount of text available, the exploration of text as data is
massive and growing. Other areas include bibliometrics – the study of what schol-
arly papers get cited and why, in turn illuminating how ideas spread across dis-
ciplines and through time; automatically extracting information from scholarly
articles; attempting to predict the stock market based on news articles or tweets
taken to reflect economic sentiment; automatically finding incriminating state-
ments in documents turned over as part of a legal proceeding (legal document
review); flagging abusive language (content moderation); updating dictionaries
based on current language usage (computational lexicography); predicting a pa-
tient’s prognosis from the text of their medical records (NLP for healthcare); and
much more.

135



4 Text as data

Under the Hood 7: The Voynich Manuscript

The mysterious, undeciphered Voynich Manuscript illustrates that one
can explore quantitative patterns in text even without knowing what lan-
guage or writing system the text might be written in. This manuscript,
housed at Yale University and handwritten on animal skin carbon-dated
to the 1400s, remains undeciphered. Because it uses a totally unknown
writing system, it is not clear whether the text represents a particular hu-
man language (which one?), some sort of code, or perhaps nonsense.

Figure 4.1: A page from the Voynich Manuscript (https://commons.
wikimedia.org/wiki/File:Voynich_Manuscript_(32).jpg, uploaded by
user JovanCormac; public domain because the creator has been de-
ceased for over a century).

The manuscript features colorful paintings of plants, stars, and nude
women in pipes (it looks as odd as it sounds). A page is shown in Figure 4.1.
The imagery would suggest that the book might discuss recipes, potions,

136

https://commons.wikimedia.org/wiki/File:Voynich_Manuscript_(32).jpg
https://commons.wikimedia.org/wiki/File:Voynich_Manuscript_(32).jpg


4.1 Introduction

astrology, and medicine. As shown in Figure 4.2, the text appears to be
written from left to right without punctuation. Groups of characters are
separated by spaces, just like words in the Latin alphabet, but it is not
clear whether these groupings can be considered meaningful words.

Researchers have struggled with the Voynich Manuscript for centuries.
Some people have claimed to have deciphered it, but only by telling stories
after the fact. If the manuscript has a meaning at all, then it can only be
truly deciphered by a specific, reproducible process for mapping the text
to a particular human language and back again.

Figure 4.2: A close-up of some writing in the Voynich Manuscript
(https://commons.wikimedia.org/wiki/File:Voynich_manuscript_
recipe_example_107r_crop.jpg, uploaded by user Tomhannen; public
domain because the creator has been deceased for over a century).

One way to make progress on the Voynich Manuscript is to study it as
a historical artifact – who owned it, who wrote about it in the past, who
would have had access to thematerials used to produce it, how it compares
to other historical manuscripts, and so on. From such investigations, it
appears that the Voynich Manuscript originated in Europe in the 1400s,
perhaps in the Alpine region, although it is still an open question who
produced it and why. As we will see, the Voynich Manuscript is full of
contradictions from every angle: Here, it is puzzling that the manuscript
is physically clearly European while the content appears alien.

Another way forward is to start from the illustrations, assuming that
some “word” (space-separated string) on the page may refer to the picture
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– perhaps one of the first words, one that appears frequently on that page,
or one written near the illustration. Just as children learn early words
from pointing and naming physical objects, this strategy would leverage
the fact that language refers to entities in the world. But without knowing
which words to associate with the picture, it is not easy for this strategy to
get off the ground. Among the illustrations, more contradictions emerge:
The paintings use expensive material but also look slapdash, and the de-
picted plants are a mix of real and fantastical.

Most relevant for our purposes here, a third strategy is to explore the
manuscript as a (digitized) text, asking to what extent it resembles other
texts. This strategy builds on the idea that we can identify quantitative
patterns within text even without reading it or knowing how it relates to
the outside world. That is, techniques employed to treat text as worthy
of research in and of itself can be used to help decipher the nature of
mysterious texts.

There is no Unicode mapping for the unusual handwritten character
system used in the Voynich Manuscript, so in order to digitize the text,
each Voynich character has been mapped to an ASCII version – involving
difficult judgment calls about whether multiple subtly distinct markings
should be grouped as one character or two. The Voynich writing system
uses about 22 different characters, suggesting that the writing system is
an alphabet or an abjad rather than a syllabary or a logographic system
(which require more distinct characters).

From the standpoint of textual statistics, we find even more contradic-
tions. Just like in text of known languages such as English, some charac-
ters are muchmore frequent than others, and some tend to appear in pairs
or in certain positions of a word. A fewwords appear very frequently, and
manywords appear very infrequently (Zipf’s power law; see Section 4.3.1).
A relatively infrequent wordmay appear quite frequently on a given page,
which occurs in known-language text with words relevant to a particular
topic. But unlike text of known languages, there are also characters with
a striking tendency to appear at the beginning or end of a line, which is
highly unusual in prose, where line breaks are generally not meaningful.
And while text in known languages tends to include highly frequent bi-
grams (e.g., of the, it is), the Voynich Manuscript surprisingly lacks such
predictable bigrams. Instead, the same word is often repeated twice or
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three times in a row, or repeated with a difference of only one character,
which is highly unusual.

In otherwords, the Voynich text does not pattern like text in any known
language, but has enough in common with known-language texts that it
is unlikely to be gibberish. It remains mysterious whether it is a hoax,
a cipher, or a meaningful document. If you explore this mystery further
(which we recommend!), you will learn more about language, writing, his-
tory, and digital humanities.

4.2 Available (English) corpora

Here are some of examples of English-language corpora that you can explore.
For each one, it is useful to consider who built it and why, and thus what kinds
of questions the corpus can help to answer.

• The million-word Brown Corpus (Francis & Kucera 1979) is the earliest
machine-readable corpus of American English. It is a balanced corpus,
meaning that it aims to represent a balance of different genres – news,
editorials, religious texts, fiction, magazines, academic articles, and so on.
If you know Python, you can access this corpus through Python’s Natural
Language Toolkit (Loper & Bird 2002).

• Project Gutenberg digitizes various books old enough to be in the public
domain. Some of these texts are available through the Natural Language
Toolkit in Python (Loper & Bird 2002).

• The British National Corpus (Bunard & Aston 1998) comprises one hun-
dred million words of British English from the late 20th century. Ninety
percent of the data comes from a balance of different written sources and
ten percent comes from transcribed speech. The corpus can be browsed
through a web interface, or downloaded in XML format.

• CHILDES (MacWhinney 2000) is a suite of corpora offering transcripts,
audio, and video of interactions between children and their care-givers in
several languages. This corpus, which can be browsed and downloaded
from the CHILDES website, is used to study the language exposure and
development of children.
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• The website English-Corpora.org houses dozens of different English cor-
pora, many of them spearheaded by Mark Davies. Most of these corpora
can be browsed through a free web interface, but require a paid license to
download all the data. The corpora include:

– The Corpus of Contemporary American English (Davies 2009) – a
billion words from a balance of both written and spoken genres from
1990 until the present. This is a monitor corpus, meaning that it is
updated each year.

– The Corpus of Historical American English (Davies 2012) – four hun-
dred million words, balanced across genres, from 1810 to the present.
All texts in this corpus are annotated with dates, allowing historical
comparisons.

– The Coronavirus Corpus – comprising media text annotated by date
throughout the pandemic – recording the frequency over time of
phrases such as anti-mask, reopen, and social distancing.

• Social media data (from Reddit, Yelp, Stack Exchange, and so on) is often al-
ready available in a user-friendly format online; search online before you
try to scrape such data yourself. But some such repositories were taken
down around 2023 after large language models were trained on them with-
out compensation.

You can explore further publicly available corpora at repositories hosted by
Lancaster University (https://cqpweb.lancs.ac.uk/) and Georgetown University
(https://gucorpling.org/cqp/). This chapter focuses on text, but there are also au-
dio and video corpora, which are important, for example, in the study of pronun-
ciation and the relation of language to embodied action.

As you can guess, choosing a corpus beginswith one’s research question.What
data do you need? Are you doing exploratory research – looking for interesting
patterns, getting a sense of the data, trying to generate hypotheses? Are you
doing confirmatory research – testing a falsifiable claim?What corpus data would
verify or falsify that claim? What numbers will you collect, what other numbers
will you compare them to, and how will you analyze them statistically? To what
extent will your findings generalize beyond your particular corpus?

Imagine that you are looking for an extremely low-frequency phenomenon,
such as the bigram think whether explored by White (2021). In this case, you
might simply use a web search as a corpus: One can search for a phrase online
to see if people use it, or compare the number of hits for two alternative phrases.
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The web is massive, which is good for finding low-frequency phenomena. It may
also, however, contain typos, duplicates, and gibberish, which are less likely to
be found in a curated corpus.

Your research question might also require certain metadata or annotations:
Above, we encountered corpora of sentences annotated for their dependency
structure, requests annotated for their politeness, compound words annotated
for the relation between the two words, and menus from cheap versus expensive
restaurants. Usually, a corpus with such features tends to be smaller than one
without.

If you need metadata or annotations that are not already available, you might
have to construct the corpus yourself. How will you gather annotations – from
whom, at what rate of pay, with what annotation guidelines? If you gather anno-
tations from multiple people, how do you ensure that they are consistent with
one another? As the researcher, it might be quickest to annotate data yourself,
but will your annotations be biased by your hypothesis? You may have to con-
sider privacy concerns (whose data are you using, and what have these people
consented to?) alongside principles of open science, and weigh these factors to
decide whether you will make your data available to the community.

You will also have to consider how you need to access the corpus. If you
are new to working with data, it may seem like clicking around on a free web-
interface tool is sufficient – and for many tasks, it is – but for some questions,
you may need to write code to process the data yourself.

In choosing or creating a corpus, it is also important to consider how the cor-
pus may be biased. How were the data selected? Whose data does it represent?
Many corpora favor the standardized form of a language over varieties spoken
by people who have less power. Our discussion has also been biased towards
English; in general, the more geo-politically powerful a language is, the more
corpora are available in that language. Low-resource languages by definition do
not have large corpora, which makes it harder to study them and to build lan-
guage technologies for their speakers. Like any other data, corpora reproduce
the inequalities of the society in which they were created.

4.3 How are words distributed in text?

Investigating text as data often involves counting words in the text. But what are
words, how do we count them, and how are words distributed in text?

A “word” may seem obvious to you, but, from a theoretical standpoint, it is not
easy to define. Shouldmother-in-law count as one word or three?What about flu
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shot, mentioned in Section 3.4.2? What about languages such as Chinese, where
bisyllabic “words” consist of two meaningful morphemes, each of which acts
word-like itself (similar to the English compound verb kickstart)? But from a
practical standpoint, it is simple enough to define a Latin-alphabet “word” as
the text between spaces – the process of word tokenization mentioned in Chap-
ter 3 (recognizing that tokenization is harder in writing systems that do not use
spaces). Then you have to decide if you want to lemmatize the words by remov-
ing grammatical inflection (e.g., standardizing running and ran into basic verb
form run), or whether you might want to stem the words by removing morpho-
logical markers that determine its part-of-speech (standardizing democracy and
democratic into democra-).

Some words are extremely frequent across all English texts (the, a, for), while
other words (horse, dance, stoic) are infrequent or vary widely in frequency de-
pending on the particular text. These two types of wordsmap onto the distinction
proposed in linguistics between function words and content words.

Function words (determiners such as the, a, and every; prepositions such as
for, to, and with) are difficult to paraphrase, very rarely admit borrowings or ne-
ologisms (thus are said to be a closed class), and provide information about the
grammatical structure of a sentence. Function words comprise the stop words
that are sometimes filtered out of text on the grounds that they do not make rel-
evant distinctions between documents. On the other hand, function words can
be crucial for tasks such as author profiling and author identification.

Content words (nouns, verbs, adjectives, and adverbs – unicorn, run, pretty,
slowly) are much easier to paraphrase, allow endless borrowings and neologisms
such as quaranteam (thus, they constitute an open class), and supply the content
of a sentence. The boundary between function words and content words is fuzzy
– with borderline cases such as have in have eaten or take in take a shower – but
the prototypical examples on each side are clear.

Having introduced these qualitative concepts of what a word is, let us turn to
counting words, and to the principles underlying the quantitative distribution of
words in text.

4.3.1 Zipf’s laws

The American linguist George Kingsley Zipf (1902-1950; Zipf 1932) formulated
two fundamental observations about word frequencies: Zipf’s power law and
Zipf’s brevity law (each of which, confusingly, is sometimes just called “Zipf’s
law”).
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Zipf’s power law observes that the frequency of a word is inversely propor-
tional to its frequency rank. To step back, one must first understand the type-
token distinction: A word type is a unique word, no matter how many times it is
repeated, while a word token is a specific usage of a word, counting all iterations
thereof. For example, a rose is a rose is a rose (a poem fragment by the American
modernist poet Gertrude Stein) contains three word types (a, rose, is) and eight
word tokens. The type-token distinction allows us to explore how various word
types differ in their token frequency.

Instantiating Zipf’s power law, the first-ranked English word by frequency in
the Brown Corpus is the, and this word type accounts for about six percent of
all word tokens. The is about twice as frequent as the second-ranked word, of,
which accounts for about three percent of word tokens. The is roughly three
times as frequent as the third-ranked word, and, which comprises 2.6 percent of
tokens. The is about four times as frequent as the fourth-ranked word, in, which
comprises 1.8 percent of tokens. And so on. This pattern is observed across all
texts and languages, for reasons that are still not fully understood.

When we plot a word’s frequency rank on the 𝑥-axis and its frequency on the
𝑦-axis (Figure 4.3), we observe that the frequency of words falls steeply from the
top few very frequent (function) words to the long tail of very many infrequent
(content) words. This graph represents a power law distribution, generated by a
mathematical function where 𝑦 is a function of 𝑥 raised to some power 𝛼 (usually,
a negative value).

While first observed in the domain of words, Zipf’s power law extends tomany
other phenomena. The distribution of wealth, social media followers, citations of
articles, the populations of cities, the number of workers at companies, and other
phenomena involving the unequal distribution of scarce resources follow a sim-
ilar pattern: A few individuals have an enormous amount (of wealth, followers,
citations, population, workers, etc.), and most have very little.

In contrast, other phenomena follow the familiar normal distribution: Most
people are of about average height/weight, with a few very small and very large
people at the edges of a bell curve. The lengths of words, in characters, roughly
follow a bell curve, albeit an asymmetrical one, with a defined lower bound of
one character and an upper bound which is unlimited in principle, given that
new words are created all the time and can be lengthened by adding productive
morphemes such as un-, anti-, or -able. In reality, most Englishwords are between
four and ten characters, with a few very short and very long words at the edges
of the curve, as in Figure 4.4.

As a consequence of Zipf’s power law, a few word types represent a plurality
of word tokens, andmany word types appear once or never in a given text, as can
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Figure 4.3: Per-million-word frequency of words in the Brown Corpus
as a function of their frequency rank (ordered from left to right as the
first most frequent word, the second most frequent, and so on).

be seen by the trailing long tail in Figure 4.3. Heap’s Law (Heaps 1978) predicts
the number of distinct word types appearing at least once in a document as a
function of its length: That is, the longer the document, the more word types it
will contain, but, as a document gets longer, the marginal likelihood of encoun-
tering a new word type diminishes. Researchers use techniques such as Laplace
(add-one) smoothing – pretending you have seen a word type once rather than
zero times, to avoid dividing by zero in various equations – to account for the
reality that any NLP technique will encounter new word types in new data. A
hapax legomenon (‘said once’ in Greek) is a word that occurs only once in a doc-
ument. About 38 percent of words in the Brown Corpus (such as mirthless and
pastels) are hapax legomena, and another 14 percent are dis legomena (such as
syndicated and lamentations), occurring only twice.

The second of Zipf’s laws, Zipf’s brevity law, observes that across all languages
and texts, more frequent words tend to be shorter (in characters or syllables)
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Figure 4.4: Histogram of the length (number of characters) of all word
types in the Brown Corpus.

than less frequent words. Figure 4.5 shows that the shortest words are most fre-
quent, while longer words are less frequent. For example, the top ten most fre-
quent words in the Brown Corpus (the, of, and, a, in, to, is, was, I, for) are all one
syllable, three letters or less – lower than the most common length of four to
ten characters – while the hapax legomena (mirthless, pastels) are longer. The
precise mechanisms are debated, but intuitively Zipf’s brevity law suggests that
languages evolve for efficiency: When the most frequent words are short, com-
munication takes less effort. Imagine how onerous it would be if the meanings
for the words the and therefore were swapped!

4.3.2 Topic models

So far, we have considered the distribution of words at a large scale. But how
are words distributed across smaller documents, such as individual paragraphs,
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Figure 4.5: Log per-million-word frequency of English words in the
Brown Corpus as a function of their length in characters.

chapters, articles, tweets, or product reviews? Documents can differ by genre
(e.g., personal anecdotes versus news articles versus fiction) and by topic (e.g.,
text about pets versus politics versus travel); of course, there is some interaction
between genre and topic, as different genres favor different topics. Crucially, texts
about different topics are likely to differ in the distribution of content words: A
text about animals will contain words like cat, dog, and fish, while a text about
politics will mention words like election, poll, and candidate.

Topic modeling is a technique used to discover how different documents and
words reflect these different topics. A topic, on this view, is a probability distri-
bution of words associated with that topic: In the “pets” topic, for instance, the
words cat and dog are quite likely to appear. A document is also a probability
distribution over the topics that it discusses, as conveyed by the words therein
and the topics that they evoke. A tweet about dogs and cats is most probably
associated with the topic of pets, less probably associated with politics.

Topic modeling is generally used as an exploratory technique when you have
a lot of documents, with no topic labels assigned to them at the outset, and
you do not know in advance which different topics they discuss. For example,
maybe you are an attorney reviewing a thousand emails turned over as part of a
court proceeding, looking for emails about a particular project which may have
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involved fraud. Instead of reading all the emails by hand, you might use topic
modeling to cluster the emails into different topics (office-wide announcements,
hiring, projects) to get a bird’s-eye view of the data before you dive in, and to
target your attention to emails discussing the most relevant topics. As for other
applications, perhaps you have surveyed customers asking them for open-ended
feedback about your product, and you want to gauge the different topics dis-
cussed; or perhaps you want to show users more social media posts about the
topics that seem to interest them.

One of the classic topic modeling techniques is called Latent Dirichlet Alloca-
tion, LDA for short (Blei et al. 2003). Latent (which means ‘hidden’) refers to the
idea that a document’s topic, in many cases, is implicitly inferred rather than
explicitly labeled. Dirichlet, named after a German mathematician, is a type of
probability distribution; as we’ll see, the idea is to associate: (i) each topic with a
probability distribution over the words associated with it, and (ii) each document
with a probability distribution over the topics it discusses.Allocation refers to the
fact that we allocate each word and each document to the topic(s) most strongly
associated with it. LDA is a type of unsupervised learning, because we never pro-
vide any labels or “right answers” for the algorithm to generalize; instead we just
give it some data and ask it to find the meaningful topic groupings therein. We
will see more examples of both supervised and unsupervised learning in Chap-
ter 5.

LDAworks as follows:We begin with a set of documents – for example, emails
turned over during legal proceedings. Next, we choose the number of topics we
want to find. When you are using topic modeling for exploratory purposes, it is
common to try different numbers of topics, settling on the one that yields the
most intuitive results; for our purposes, let us imagine that we want two topics.
Then we randomly assign every word token in every document to one of those
topics. With two topics, we essentially assign each word token to a topic by a
coin flip. As is common in topic modeling, we lemmatize all words and filter out
stop words.

Next, we build a matrix, as in Table 4.1, where the rows are word types, the
columns are topics, and the values are the number of tokens of that word type
assigned to that topic. The columns (topics) are labeled with numerals; any de-
scriptive label (pets, politics, etc) must be provided by a human who interprets
the output of the topic model once it is complete.

After we have gone through this process of assigning words to topics at ran-
dom, we iterate through each word token in each document, meaning that we
just look at each word individually rather than any grammatical or semantic re-
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Table 4.1: Topic modeling with two topics, stage one: Random assign-
ment of words to topics.

Topic1 Topic2

dog 5 4
cat 8 7
election 7 8
candidate 2 4
walk 5 5
weekend 10 14
pet 2 3

lations between them. Each word token has already been assigned a topic by a
coin flip, represented by the parenthetical numbers in (2).

(2) dog(2) walk(1) weekend(2) pet(1)

We begin with the token dog in (2). This token of dog has previously been
randomly assigned to Topic 2; we now un-assign the topic of this word token.
We update our term-by-topic matrix to reflect this change (decrementing the first
row, second column of our matrix to 3 instead of 4). Next, we re-assign a topic to
this token of dog token by considering two factors: (i) the topicsmost prevalent in
this particular document; and (ii) the topics most commonly associated with the
particular word type dog. To quantify the topics most prevalent in this document,
we observe that two of the remaining three words (walk and pet) have been
assigned to Topic 1, so Topic 1 is twice as prevalent in this document as Topic 2.
To quantify the topics most commonly associated with dog, we observe that dog
is used five times in Topic 1 and three times in Topic 2 (which we read from the
first row of our matrix, with the 4 decremented to a 3, as we have un-assigned
the topic of the current token of dog). Both this document and the word type dog
favor the assignment of Topic 1 to this token of dog. So we update the assignment
of dog, and update our term-by-topic matrix, as in Table 4.2.

(3) dog(1) walk(1) weekend(2) pet(1)

We keep going through each word token in each document, and then go
through it all again as many times as we want (perhaps 50 or 100 times).
Eventually, the words that tend to co-occur within the same document will end
up being assigned to the same topic, perhaps something like in Table 4.3.
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Table 4.2: Topic modelingwith two topics, stage two: New values based
on data-driven reassignments.

Topic1 Topic2

dog 6 3
cat 8 7
election 7 8
candidate 2 4
walk 5 5
weekend 10 14
pet 2 3

Table 4.3: Topic modeling with two topics, final stage: Final numbers
after some set number of iterations.

Topic 1 Topic 2

dog 9 0
cat 14 1
election 1 14
candidate 0 6
walk 8 2
weekend 12 12
pet 5 0

The output of the topic modeling yields, for each document, a distribution of
the topics most strongly associated with it; and for each topic, a distribution of
the words most strongly associated with it. Then you have to look at each topic
and its associated words, and decide if these words (cat, dog, pet) indeed evoke a
cohesive theme. You can use your own human judgment to give a name to each
topic. In our toy example, Topic 1 involves pets.

While it is important to understand how topic modeling words under the hood,
in real life you will probably use one of the many libraries (in Python or R) which
does it for you. You might also use a fancier version of topic modeling that lever-
ages richer information about which words are similar to one another, in ways
to be explored later in this chapter.

Because topic modeling is a way of exploring your data, you may want to try
it several different times for a fuller exploration. You can try different numbers of
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topics; in general, themore documents you have, and themore diverse you expect
them to be, the more topics you will need. In addition to lemmatizing words
and filtering stop-words, you can also focus on only certain parts of speech –
perhaps only nouns, or only nouns and adjectives. You know you have succeeded
when the topics make intuitive sense, and when the topic modeling procedure
has given you a landscape view of the data.

More broadly, topic modeling illustrates that you can learn a lot about words
and documents simply by counting which words appear in which documents.
This general idea underlies a great deal of NLP.

4.4 Word meanings as vectors

In our exploration of topicmodels, we have used amatrix of numbers to represent
information about different topics and the words that are associated with them.
We have also represented a sentence as a list of numerals (a vector) reflecting
the topics associated with each word. In this book and in the study of NLP more
generally, we will keep coming back to the idea of representing language (topics,
words, sentences, documents, etc.) through vectors and matrices of numbers. We
illustrate with the key idea of representing a word as a vector that represents
some information about its meaning.

To start off, what is themeaning of a word? The philosopher of language David
Lewis (Lewis 1972) suggests that the way to define meaning is to focus on what
meaning allows you to do. When you know the meaning of a word, you can iden-
tify the thing, event, or idea that it refers to; for example, you can point to the
furry animals denoted by dog. You can use the word in a sentence (I have a dog),
and reason logically about the sentences in which it is used; you know that I
have a dog entails I have a pet. You can identify its synonyms and antonyms (dog
does not really have clear synonyms or antonyms; but in the realm of adjectives,
pleasant and nice are roughly synonyms to each other, and antonymous with un-
pleasant). You also know the word’s hypernyms (more general words – animal is
a hypernym of dog) and hyponyms (more specific words: poodle is a hyponym of
dog). You can provide other words (cat, bark, walk) that fit into the same concep-
tual domain. If you know the meaning of a word that describes a relationship or
a transaction, you know which other words describe alternate perspectives on
the same relation: You know how parent relates to child and how buy relates to
sell. You can also identify the formality level and emotional sentiment associated
with the word: You know that doggie is informal and that win feels positive. In
other words, knowing the meaning of a word means knowing how it relates to
other words.
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For a computer, however, the string of characters dog reflects none of that
information. Of course, a computer could look up dog in a dictionary, but the
dictionary would provide a prose definition which is just a longer string of char-
acters.

The problem is that to a computer, text is categorical: A string of characters is
just a string of characters, with no organizing principle relating it to any other
string of characters or any other information. Humans can interpret text by imag-
ining the real-world situation that it describes, but such mental representations
and real-world situations are not legible to a computer. Moreover, the idea of edit
distance from Chapter 2 quantifies the difference in spelling between one word
and another, but – given that an alphabetic writing system represents sound only
– captures nothing about meaning.

In contrast to text, numbers are continuous, meaning that they can be orga-
nized on a number line (or, for a vector of numbers, plotted in a coordinate space)
in ways that representmeaningful relations between them.While there is noway
to carry out mathematical operations on strings of characters, numbers and vec-
tors can be added and multiplied in ways that capture meaningful information.
To a human, it is hard to hold too many numbers in one’s mind at once, and a
number is not meaningful unless it refers to something. But computers are de-
signed to process large quantities of numbers, and without any representation of
the outside world, the relations between numbers provide valuable information.

In other words, a computer could get more information out of text – and even
“reason” about the relations between texts – if it were represented as vectors of
numbers rather than strings of characters. But how can a word like dog be turned
into a numerical representation?

Actually, even before ASCII was invented in 1963, numerical representations
had been proposed for certain words. In the domain of (words for) colors, the-
orists of vision proposed in the 1800s to represent each color as a three-valued
vector denoting the strength (out of a maximum of 255) of red, green, and blue
light that it uses. For example, red is denoted as (255, 0, 0), meaning that it is
maximally red and contains no green or blue.

As shown in Table 4.4, purple is (128, 0, 128), meaning that it uses equal
amounts of red and blue light, but no green. By using vectors like (255, 0, 0) and
(128, 0, 128) rather than character strings like red and purple, we can capture
quantitative relations and operations: For example, the fact that the color violet
(127, 0, 255) is closer to purple (128, 0, 128) than to red (255, 0, 0); and the fact
that red (255, 0, 0) plus green (0, 255, 0) yields yellow (255, 255, 0). Of course,
the RGB color scheme only applies to color words, but within that realm it
transforms categorical text into meaningful continuous quantities.
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Table 4.4: Color words represented as three-valued RGB vectors.

color word R G B

red 255 0 0
yellow 255 255 0
green 0 255 0
purple 128 0 128
violet 127 0 255

Converging from a different perspective on the same key insight, a line of
work spearheaded by the psychologist Charles Osgood (Osgood et al. 1957) pro-
poses to capture the emotional meaning of a word as a three-valued vector denot-
ing human annotations, gathered from experimental participants, of the word’s
valence (positive versus negative), arousal (high versus low energy), and domi-
nance (high versus low human control). Using data from Mohammad (2018) in
which each rating ranges from 0 to 1,win is represented as (0.9, 0.7, 0.8), meaning
that it is positive, high-arousal, and high-dominance, as shown in Table 4.5.

Table 4.5: Values for valence, arousal, and dominance.

valence arousal dominance

win 0.9 0.7 0.8
compete 0.6 0.7 0.8
lose 0.1 0.5 0.2

The word lose is (0.1, 0.5, 0.2) – negative, medium-arousal, and low-dominance,
while compete is (0.6, 0.7, 0.8) – somewhat positive, high-arousal, and high-
dominance. Again, these numbers capture important commonalities between
words: On an emotional level, win is more similar to compete than to lose,
sharing high values along the same dimensions. These vectors represent only
emotional dimensions of meaning, without capturing any information about the
events that they describe. The lexicon is transformed into quantities that can be
plotted on a three-dimensional plane.

In each system, the vectors have a length of three, which is about the maxi-
mum vector length that humans can keep in mind and represent visually on a
three-dimensional plane. But a computer can handle vectors of essentially any
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size, so what further information can be captured that way? Moreover, the RGB
system is limited to colors and the emotion-vector system is limited to the words
and meaning dimensions that have been laboriously annotated by humans. How
could these systems be expanded to cover all words, ideally using information
that already lies within text?

The answer is inspired by a famous claim from the corpus linguist J.R. Firth
(Firth 1957) that “You shall know a word by the company it keeps”. In corpus
linguistics, the “company” that a word keeps consists of its collocations – the
other words that appear near it in a corpus. In Table 4.6, you can see some exam-
ples (adapted, with a few modifications, from 2014 comments on the web forum
AskReddit, gathered by Baumgartner et al. 2020) of collocational contexts – here,
within a window of five words to the left and to the right – for dog, cat, and elec-
tion.

Table 4.6: Collocation contexts for dog, cat, and election in AskReddit.

Left context Word Right context

friends are pretty annoying. Their dog is cute though. (END)
cute when it’s a small dog. Also people who encourage their

dog meat industry. You American dog lovers would be heart sickened

loneliness. Usually, a good cute cat pic can cheer me up
on with me the cute cat pictures. I almost never browse
but if you’ve got a cat that’s an asshole I don’t

elected in a South American election is testament to that. It
and talk about the American election because I have trouble imagining

kid, they had a family election on what toy got to

We can turn these data into a word-context matrix where the entry at row
i, column j records the number of times that word i appears in a context that
includes j. As shown in Table 4.7, for example, the top left corner of this matrix
(the cute row, dog column) represents the fact that in our tiny data snippet, the
word dog appears near cute twice. The cute row, cat column reflects that cat
appears near cute twice; and so on.

In reality, this matrix would be massive, with as many rows and columns as
there are words in our vocabulary. Because suchmassive vectors can be unwieldy
even for a computer, there are ways to compress the information in the word-
context matrix so that it is smaller than the size of the vocabulary, yielding vec-
tors of a few hundred elements rather than thousands.
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Table 4.7: A small word-context matrix.

dog cat election (…)

cute 2 2 0 (…)
American 1 0 2 (…)

For example, Word2Vec (Mikolov, Chen, et al. 2013) does not just build word-
context matrices like Table 4.7, but instead generates vectors by trying to guess
the target word from its collocational context, or – as an alternative way of set-
ting things up – trying to guess the collocation context from the target word.
Another method, GloVe (short for Global Vectors; Pennington et al. 2014), distills
the word’s “global” distribution in the word-context matrix as in Table 4.7 by
generating vectors that aim to capture the probability of two words occurring
as neighbors to one another. Both Word2Vec and GloVe yield vectors of a few
hundred elements rather than thousands. Rather than using these tools to build
new vectors on a given corpus, you can also download vectors that researchers
have already built on massive corpora. These packaged vectors are known as
pre-trained because you do not have to build (train) them yourself.

The important point is that we now have a mathematical implementation of
Firth’s idea that we can “know a word by the company it keeps”. Each word is
represented as a vector (the vector of its row or column) which captures informa-
tion about its meaning. These vectors are calledword vectors orword embeddings,
because they reflect how a word is embedded into its collocation contexts.

Our word vectors capture the intuition that dog is more similar to cat than to
election, as evidenced by the fact that dog and cat both are used near cute while
election is not. We will learn how to calculate the similarity between two vectors
mathematically in Chapter 6, but for now we can capture the same information
visually by plotting dog, cat, and election as vectors on a plane where the 𝑥-axis
represents the number of times the word occurs near American and the 𝑦-axis
represents the number of times it occurs near cute (Figure 4.6), Here, we see that
the vectors for dog and cat are closer to each other on this plane than the vector
for election. Leveraging the mathematical operations that quantitative vectors
enable, we can even do addition and subtraction, so that the wordwith the closest
vector representation to the output of king -man +woman is queen (Mikolov, Yih,
et al. 2013)!

You may already see a problem here, though: By capturing the meaning of
a word through its collocations, this framework assumes that a word has one
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American

cute

dogcat

election

Figure 4.6: Illustration of word vectors in two-dimensional space.

single meaning. But some words have more than one meaning. The word mouse
can refer to a rodent or a pointer on a computer – each with distinct collocation
patterns (using data from Reddit):

(4) One night my housemate and I found a dying mouse on the floor.

(5) The sophomore dorm had a mouse problem, and one student caught one
in his trash can and kept it as a pet for about a week.

(6) things change size and move around while you move the mouse pointer
over them, and they do so at inconsistent speeds.

(7) That’s absolutely true but there is a PC mod for it or something that
allows you to use a mouse and play it like a real first person shooter.

When it describes a house pest, mouse appears in contexts discussing housing
situations. When it describes a digital pointer, it appears in contexts discussing
computers and as the direct object of verbs like move and use. Still other uses
of the word mouse might involve the Disney character of Mickey Mouse. Rather
than considering mouse to have a single meaning captured by all its collocations,
it is more accurate to see it as having several different meanings, each with its
own collocations. Therefore, instead of generating a single vector for each word
type, modern techniques will often generate a contextual vector representation,
meant to capture the meaning of the word token in context rather than the word
type overall. We will learn more about such tools in Chapter 5.

Before we get to these refinements, let us consider the power of the ideas we
have seen so far. We have transformed text into a quantitative representation
legible to a computer. These representations not only capture information about
which words are similar to one another, but also offer quantitative information
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that can be manipulated in all sorts of ways by a computer. Whereas the three-
value valence/arousal/dominance vectors of Osgood et al. (1957) required labo-
rious human labeling, these word-context vectors leverage information already
baked into a text, so they can be built quickly at scale. With these advantages,
such vector representations of word meaning constitute one of the most impor-
tant ideas in NLP, and continue to be refined and extended in countless ways.
The rest of this textbook will keep coming back to this field-transforming idea.

4.5 Consequences

Today, more information is available than ever before, not just because there is
an abundance of text data but also because digital text-processing tools allow us
to distill the information contained within a larger quantity of text than anyone
could read personally. This information sheds light on society, history, literature,
and language itself.

Throughout this chapter, we have seen that turning text into data means turn-
ing text into numbers.We can test quantitative hypotheses about which words or
grammatical constructions should be more frequent than others, more frequent
in one context than another, and so on. We can explore the statistical properties
of text by quantifying the frequency and length of words, as in Zipf’s power law
and Zipf’s brevity law. And we can learn more about the similarities between
various words and documents by representing each one as a vector, as used in
topic modeling and word-context matrices. Such numbers may not be as legi-
ble to a human as text itself, but to a computer they illuminate the information
contained within.

In other words, this chapter shows that there are two different ways to en-
counter text. A human can read a small amount of text qualitatively, leveraging
knowledge of how words refer to things, to create a rich mental picture of the
world described therein as likely intended by the author. A computer can read a
much larger amount of text quantitatively, counting words and creating vectors
to generate a rich statistical picture of its structure, unintended by any individ-
ual author but emerging bottom-up from all of them. Of course, a human must
program the computer to do this and must ultimately interpret the results. These
two ways of encountering text reflect the distinct advantages of humans versus
computers, instantiating a theme that recurs throughout this book.

This chapter also evokes our focus on ethics. When we explore text as data, we
should ask whose text and whose data are being explored. Who generated this
text, and how can their privacy and authorship be respected? Whose text is not
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represented, and how can their perspective be considered?Who benefits from the
exploding quantity of information extracted from text, and who might be hurt
by it? Text exists because people created it; even when it is distilled into abstract
matrices, we cannot lose sight of those people or the people whose voices are left
out.

Checklist

• Give examples of text-as-data research in digital humanities, cor-
pus linguistics, computational social science, and author profiling/
identification.

• Brainstorm various business applications of text processing.

• Give examples of available corpora, the metadata that they offer,
and the research questions that they can be used for.

• Give an example of a research question for which a researcher
might need to create their own custom corpus.

• Discuss ethical dimensions of corpora such as personal privacy
and bias in the representation of languages, language varieties, and
speakers.

• Give examples of function words, content words, and words that
straddle the boundary between them.

• Define the distinction between word types and word tokens.

• Sketch a power law distribution and a normal distribution, and give
examples of (textual and non-textual) phenomena that follow each
one.

• Give examples of words instantiating Zipf’s power law and Zipf’s
brevity law.

• Explain what topic modeling is used for and how it works.
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• Discuss why it is advantageous for a computer to represent words
as numerical vectors rather than as text strings.

• Build a word-context matrix for a bite-sized set of example docu-
ments and visualize it in vector space.

• Give examples showing when it is important to generate contextu-
alized representations of word tokens rather than unified represen-
tations of word types.

Exercises

1. Visit www.english-corpora.orga and choose a corpus. Who built
this corpus? Where do the data come from? What metadata are
available? How did the corpus creators balance size, representative-
ness, and quality in gathering the data? How has this corpus been
used in research?

2. Check out the Corpus of Historical American English (CoHA) web
interface. Can you find evidence – in the past or in the present –
for the finding of Underwood et al. (2018) that the verbs smile and
laugh are associated with women while grin and chuckle are associ-
ated with men? (What numbers could be used to assess this claim
quantitatively?)

3. Using the CoHA web interface, explore the historical evolution of
the words gay, read, and woman. For each word, look at the other
words it occurs with in the 1800s compared to today. What do you
learn?

4. On the Corpus of Contemporary American English (CoCA) web
interface, explore the frequency of the words the, a, I, and you in
the Spoken section/genre compared to the Academic one. What do
you observe?
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5. Choose a language other than English, and search online to see
what corpora are available in that language. How big are these cor-
pora? How do these resources compare to those available for En-
glish?

6. If you wanted to use topic modeling to understand the topics dis-
cussed in a work of fiction, how would you split up the book into
smaller documents? Would you use sentences, paragraphs, or chap-
ters, and why? What about a book of nonfiction?

7. Imagine that you are an attorney trying to argue that your client
did not harbor an undocumented immigrant (as argued in United
States v. Costello in 2012), on the grounds that harbor means ‘hide
from authorities’ rather than just ‘let someone stay with you.’

• Find and interpret some corpus data to support your claim.

• Next, imagine that you are a prosecutor, and you want to ar-
gue the opposite – that the defendant actually did harbor an
undocumented immigrant. Again, find and interpret some cor-
pus data to support this claim.

8. On the CoCAweb interface, look at the first 100 tokens of the words
ate and devoured, as verbs. How often does ate have an object (I ate
lunch), and how often does it have no object (I ate)? What about
devour? How frequent are these words overall? Also, among to-
kens of these verbs that do have objects, how many of them refer
to food versus something else? Can you develop a theory for the
long-standing lexical semantics question of why eat leaves off its
object more easily than devour does?

9. Check out the Gutenberg Corpus available as part of the Natural
Language Toolkit in Python – for which you can reference the “Ac-
cessing Text Corpora and Lexical Resources” chapter of the freely
available e-book Natural Language Processing with Python (Bird et
al. 2009). Choose two authors in Gutenberg, and compare their top-
100 unigrams, bigrams, and trigrams. What do you learn?

10. Find anymachine-readable corpus that you have access to, and com-
pute:
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• What percentage of word types in the corpus are hapax legom-
ena – occurring only once in the corpus? (What are some ex-
amples?)

• How do the results change if you lemmatize the corpus, for
example standardizing ran, runs, and running into run?

• What is the most common word in this corpus, and howmuch
more common is it than the second-most common word?

• How long are each of these words?

• To what extent do these findings reflect Zipf’s laws of fre-
quency and brevity?

aAccessed 2024-04-26.

Further reading

The idea of motivating vector semantics via RGB color vectors is taken
from a blog post entitled “Understanding word vectors” by the digital hu-
manist Allison Parrish (2018).

Read more about author profiling in the digital humanities in Ben Blatt
(2017): Nabakov’s favorite word is mauve: What the numbers reveal about
the classics, bestsellers, and our own writing.

Read more about corpus linguistics in Paquot & Gries (2021).
For more on the Voynich Manuscript, see https://voynich.nu/a , Reddy

& Knight (2011), and Bowern & Lindemann (2021), all of which inspire our
discussion here.

Gries & Slocum (2017) and Hessick (2017) provide opposing viewpoints
on the utility of corpus linguistics for interpreting laws, with discussion
of the word harbor in United States v. Costello.

Piantadosi (2014) reviews potential explanations for Zipf’s power law.
Jordan Boyd-Graber has created several YouTube videos walking

through topic modeling algorithms.b

aAccessed 2024-04-17.
bhttps://www.youtube.com/watch?v=fCmIceNqVog, accessed 2024-07-02.
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5 Text classification

5.1 Introduction

Every day, you probably receive hundreds of spam emails – unsolicited advertise-
ments, financial scams, and attempts to steal personal data – which your email
automatically sends to your spam folder so you don’t even see them. Your email
spam filter is one example of text classification (also called document classifica-
tion): When a computer automatically sorts texts into two or more classes, also
called labels. Here, the texts/documents are emails, and the classes/labels are
“spam” (junk, named after a sketch by the British comedy troupe Monty Python)
and “ham” (the real emails that you want to read).

Spam detection is just one example of text classification. Other popular appli-
cations include:

• Sorting your non-spam email into folders – primary, social, promotions,
and forums (note that we can use as many classes as we want).

• Detecting hate speech or fake news in online posts, perhaps to delete it
automatically (content moderation; here, the texts are the posts, the classes
are “hate speech” and “not hate speech,” or “fake news” versus “real news”
– note that these categories may be somewhat subjective).

• Classifying a product review as positive, negative, or perhaps also neutral
(sentiment analysis).

• Detecting the language that an online post is written in (language identifi-
cation) – English, Spanish, Tagalog, and so on. Here, the number of classes
is determined by the number of languages that we want to handle.

• Classifying the type of issue that a customer needs help with (support ticket
classification) – orders, shipping, returns, other – to send them to the right
agent or help page.

• Identifying what a language technology user wants to do based on what
they say or type (intent recognition) – do they want to shop, set a timer, do
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a calculation, translate something into another language, look at maps, or
view general search results?

Text classification is used any time you want to assign a label automatically to
a text from a closed class of labels. Beyond business applications, it can be used in
language research of all kinds, including linguistics, computational social science,
and digital humanities. We illustrate with spam because it is simple, familiar, and
arguably binary (with just two labels, spam and ham). But even if you don’t care
how your spam filter works, learning about text classification will empower you
in all areas of language processing.

5.2 Exploring the data

Before learning about how computers classify spam, it may be useful to look at
some examples of spam and ham, taken from the inbox and spam folder of one of
our own email accounts. It is always a good idea to understand the data yourself
before you feed it to an algorithm.

• Better than Morphine, Safer than Aspirin?

– Little did they know, a Columbia University MD already found the
“Holy Grail” back in the 1970s. You see, this doctor uncovered a pow-
erful, natural painkiller... that works with your body’s natural mech-
anisms to renew your achy joints from the inside out.

• Click Here for your $1000 Gift Card

– I am Mr Roth Savuth and a personal Accountant Director with For-
eign Trade Bank of Cambodia (FTB). It is with good spirit of heart
that I open up this great opportunity to you.

• Attention Sir/Madam

– From the outset, I wanted the very fabric ofmy club to be built around
support. For the most part, I deal exclusively with our most valued
clients.

• Reminder: Course Instructor Opinion Survey (CIOS)

– The course/instructor opinion survey (CIOS) is now underway for
one or more of your courses. The CIOS tool is an important source
of information about your teaching and can be very helpful for class-
room professors.

162



5.3 How computers “learn”

• Request for a reference letter

– I hope you’re doing well, and apologies for not having replied to
your last email on sociolinguistics next semester! The last half of the
semester became a lot busier than I anticipated.

• Question about final project

– I saw in the announcement that we might submit the final write-up
before December 8th, but I still want to clarify if the deadline is on
the 7th or before the end of the 8th.

You can probably tell at a glance which of these emails are spam or ham (the
first three are spam, the last three are ham). But how did you do that?What clues
did you notice? And how did this email client already correctly sort them into
spam and ham?

5.3 How computers “learn”

Text classification represents one example of machine learning – any task in
which the computer is expected to “learn” from experience. If we wanted, we
spend pages discussing whether machines can ever be said to be truly intelligent,
or about the true nature of the so-called learning. We think these discussions are
interesting, and we touch on them very briefly at the end of Chapter 8, but they
really belong in a philosophy class, not here.

There are several different types of tasks that machine learning models can
“learn” to solve. Text classification is an example of a classification task: The
model is asked to assign the text a class/label, from a closed set thereof. Clas-
sification is known as a supervised learning task because the model is trained on
data that has already been labeled with “correct answers” and just needs to learn
to label new data in the same manner.

In a classification task, we have access to a labeled training set – a set of emails
correctly labeled as spam or ham. Where did the labels come from? Perhaps the
labels were gathered opportunistically from users who helpfully flagged some
emails as spam or immediately deleted them (spam), while reading and replying
to other emails (ham). Perhaps the researcher paid gig workers to label the emails
through a platform such as Amazon’s Mechanical Turk.

Next, we have to turn these emails into some sort of representation that the
computer can process. As we discussed in Chapter 4, numbers are more meaning-
ful to a computer than text, because numbers can be manipulated (added, multi-
plied), and the distance between them can be quantified. So we need to turn our
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documents into vectors of numbers, in such a way that the numbers represent
something meaningful about each document – the information that you need to
classify it as spam or ham. This process is also known as featurizing the docu-
ment – creating a computer-friendly vector representation of the features of the
document that are important for the classification task.

There are all sorts of ways to featurize a document, some very fancy and com-
plex, but one very simple way is just to count the words. To illustrate, imagine
that we have three very short emails to featurize:

(1) a. Email1: Better project idea
b. Email2: Better than morphine
c. Email3: Project question

In this simple example, we have a vocabulary of six word types (better, project,
idea, than, morphine, question). We can represent each document as a seven-
element vector, where each position in the vector corresponds to a word in the
vocabulary, and each value reflects the number of times that this word occurs in
the document. Putting the emails together into a matrix, we end up with a term-
by-document matrix: Each document (email) is a column, each term (word type)
is a row, and each value reflects the frequency of that term in that document.

Table 5.1: Term-by-document matrix for three short emails.

Email1 Email2 Email3

better 1 1 0
project 1 0 1
idea 1 0 0
than 0 1 0
morphine 0 1 0
question 0 0 1

Reading these three emails, you probably get the sense that Email1 and Email3
are more similar to each other than they are to Email2. For one thing, Email2
seems like spam because it is about drugs, whereas Email1 and Email3 seem le-
gitimate because they are about projects.

Notice that our simple term-by-document matrix already captures this intu-
ition! Just by comparingwhich columnsmatch on a given row,we see that Email3
is more similar to Email1 (since both of them contain the word project) than to
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Email2 (which has no words in common with Email3). There are mathematical
ways to compute the similarity between two document vectors, which we ex-
plore later in the book, but the important point is the big picture, previewed in
Chapter 4: When we represent a document as a vector, we capture something
about its contents and its similarity to other documents.

This term-by-document matrix representation is called a bag of words because
it does not represent any information about the order of words, just their fre-
quency. Imagine writing a sentence on paper, then chopping up the paper into
individual words and tossing them into a bag, so that no word order is preserved.
Setting aside everything we learned about grammar in Chapter 2, we ignore the
fact that the words were arranged into a particular order and that they go to-
gether to form sentences and paragraphs. All we worry about is which words
happen in the document and how often they happen.

Even though this representation is simple, we face all sorts of design choices:
Should the words all be put in lower-case? Should we include emoji? Should
words be lemmatized (mapping dog and dogs to the same form)? Should we re-
move stop-words such as the, or down-weight their importance? Should we fo-
cus on the presence/absence of specific, important words or look at all of them?
Should the researcher use their own judgment to decide what features are impor-
tant (feature engineering), or leave the computer to figure it out? There are pros
and cons to each choice.

Once we have our vectors of features, we want the computer to learn how to
map these feature vectors into the correct labels for spam and ham. There are
many different algorithms for teaching the computer to do this; we will explore
two simple ones in detail below (naive Bayes and the Perceptron). Through this
process, the computer produces an object called amodel, a representation of what
it has learned.

Our next step is to test how successful our model is. Our measure of success
should be tied to the ultimate goal of the model – to classify new emails, for
which we do not yet know the correct label. But if we do not know the correct
label, then we do not knowwhether our model is labeling them correctly. Instead,
we use a test set of examples, for which we ourselves know the correct label, but
the model does not. It is common to split off part of the original labeled data (10-
20 percent of it), exclude it from the training data, and save it for later as a test
set. We can then feed the test set to the model and compare the model’s predicted
labels to the correct labels.

Here, you might wonder: Why not just test the model on the same data that it
was trained on? But the goal is to build a model that can generalize to new data,
eventually including those for which we do not even know the correct label. So
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we want to test whether the model’s success can generalize beyond the data that
it has already seen. Otherwise, we run the risk of over-fitting – building a model
that has memorized the correct labels for the training data, so that it performs
very accurately on those examples but falls apart when it sees something new.

To use an analogy, imagine that you are preparing for a test in your linguistics
class. Your friend shows you the test that was given in the class last year, along
with the correct answers to that test. You could decide to just memorize last
year’s test and its answers. If the instructor is too lazy to write a new test this
year, you will do well – but you will not have actually learned much linguistics;
your knowledge will be over-fitted to this particular test. On the other hand, you
could use last year’s test as a study guide, and learn the key concepts taught in
the class; this way, you will do well on this year’s test even if it differs from last
year’s – and, most importantly, you will have actually learned some linguistics
concepts which you can generalize to various problems. By testing the model on
new data, we check whether it has learned to generalize.

The final step is to deploy the model in real life, where its job is to label new
data for which we do not know the correct label. The model can be incorporated
into an email service as its spam filter. If the model works well on our test data,
can we expect it to work equally well in real life? That depends on whether the
real-life data are similar to the data on which the model was trained and tested. If
spammers start to realize what features are sending their messages to the spam
folder, they may start to create spam that is harder to detect.

5.4 Measuring success

How do we decide whether our spam-detection model is successful? It may seem
obvious what we need to measure. If we classify all the spam as spam and all the
ham as ham, we have succeeded and all is well. This is definitely correct, but we
would be fooling ourselves if we believe that we can design a perfect system that
gets every single decision correct. Therefore, we need measures that quantify
our partial successes and failures, so we can weigh their trade-offs.

To do this, we borrow some ideas from medical science. These ideas apply
anywhere, but they turned up first in medicine because of the need to reason
effectively with complex and uncertain data. When we run a classifier on a doc-
ument to decide whether it is spam or not, it is a lot like running a diagnostic
test to collect evidence about whether a patient has a disease or not. Here there
are two two-way distinctions to be made:

1. The test can come out either positive or negative.
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2. The patient may or may not really have the disease.

So there are four possible ways that the situation could be after the test has
been given, as shown in Table 5.2.

Table 5.2: A diagnostic test.

Has disease No disease

Test positive True positives False positives
Test negative False negatives True negatives

Perhaps the patient has the disease, and the test correctly returns a positive
result.We call this a true positive. (Here, the word positivemeans that the test indi-
cates the presence of the disease – although usually it is an emotionally negative
experience!) When the patient does not have the disease, and the test correctly
returns a negative result, it is called a true negative. In both of these cases, the
test is doing its job correctly.

But there are two other possible outcomes. The test could return negative even
though the patient has the disease. This is called a false negative, and it is a bad
thing because a patient who needs to be treated will be missed. The fourth pos-
sibility is that the test returns positive even though the patient does not have
the disease. This is called a false positive, and it is again a bad thing because the
patient is likely to be unnecessarily treated, quarantined, or frightened.

The terms in Table 5.2 extend to many non-medical situations, such as screen-
ing for terrorists among airline passengers, identifying fraudulent credit card
purchases, flagging inappropriate images, and of course detecting spam in email.

In medical situations, there are two standard measures to assess the value of
a test. An overview of these measures, and their relationship to false and true
positives, is given in Table 5.3.

Table 5.3: Measures of a diagnostic test.

Has disease No disease
Test positive True positives False positives Positive predictive value
Test negative False negatives True negatives Negative predictive value

Sensitivity Specificity

The first is called sensitivity. This is the ratio:
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(5.2) Sensitivity = True positives
True positives + False negatives

Sensitivity focuses on what happens when the patient does really have the
disease. Sensitivity measures the percentage of true cases of the disease (true
positives and false negatives) for which the test turns up positive (true positive).

In computational linguistics, we usually call sensitivity recall, as we’ll discuss
further in the context of search results in Chapter 6.

A high-sensitivity test means that a person who has the disease is very likely
to be correctly diagnosed with it (a large percentage of people who have the
disease test positive for it). It is valuable for ensuring that the people who truly
have the disease get treated.

On the other hand, sensitivity ignores people who do not have the disease.
How likely is it that such people will receive a false positive (triggering unneces-
sary treatment and anxiety) or a true negative (correctly bolstering their peace
of mind)? To understand what happens to them, we need another metric – speci-
ficity.

Complementing sensitivity, specificity focuses onwhat happens to people who
do not have the disease. Specificity is defined as the ratio:

(5.3) Specificity = True negatives
True negatives + False positives

A high-specificity test means that a person who does not have the disease is
likely to correctly test negative for it (a low rate of false positives). Thus, speci-
ficity is important for ensuring that healthy people are not treated unnecessarily.

To illustrate these concepts quantitatively, suppose you have a medical test for
a disease. It has 90 percent specificity, meaning that a person who does not have
the disease has a 90 percent chance of correctly testing negative. The test also
has 98 percent sensitivity, meaning that a person who has the disease has a 98
percent chance of correctly testing positive. Now imagine that the base rate of
the disease is 10 percent, meaning that 10 percent of people have this disease –
thus, it’s very common.

To see what these numbers mean, imagine that you test 1000 patients for the
disease. Now we ask:

• On average, how many of the 1000 patients will have the disease and how
many will not?
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• Starting from the number of people who we expect to have the disease,
what is the expected number of true positives and the expected number of
false negatives? We need the sensitivity number to do this.

• Starting from the number of people we expect not to have the disease, what
is the expected number of false positives and the expected number of true
negatives? We will need to make use of the specificity figure to do this.

On average, we expect that about 100 patients will have the disease, and 900
will not (as our base rate is 10 percent). So we expect to see around 100×0.98 = 98
true positives, 100× (1−0.98) = 2 false negatives, 900×0.90 = 810 true negatives
and 900 × (1 − 0.90) = 90 false positives, as in Table 5.4.

Table 5.4: Expected numbers if you do 1000 tests.

Has disease No disease Total

Test positive 98 90 188
Test negative 2 810 812
Total 100 900 1000

Notice that:

• There are 908 correct decisions and 92 bad decisions. One summary of the
situation to just say that the test is 90.8 percent correct.

• There are 2 false negatives and 90 false positives.

• There are 98 true positives and 90 false positives. This means that nearly
half of the people who test positive actually do not have the disease!

Remember that there are four possible situations:

1. True positives: The patient has the disease and the test correctly detects
it. We are expecting 1 in 10 patients to have the disease and also that the
test will return a positive result for 98 percent of these patients. We can
say that the probability of having the disease is 1 in 10 (that is 0.1) and the
probability of a positive test if you have the disease is 0.98. Multiplying the
probabilities gives 0.1 × 0.98 = 0.098 as the probability of a true positive.
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2. False positives: The patient does not have the disease, but the test incor-
rectly returns a positive result. Repeating the calculation, 9 in 10 of pa-
tients will not have the disease, and that in these circumstances 1 in 10 of
them will get an incorrect positive test. Multiplying the probabilities gives
0.9 × 0.1 = 0.09 as the probability of a false positive.

3. True negatives: The patient does not have the disease, and the test correctly
detects this fact. 9/10 of the patients have no disease, and 9/10 of the time
the test successfully detects this, so the probability of a true negative is
0.9 × 0.9 = 0.81.

4. False negatives: The patient does have the disease, but the test incorrectly
returns a negative result. 1/10 of the patients have the disease, but the
test fails to detect this 2 times in 100. Therefore, the probability of a false
negative is 0.1 × 0.02 = 0.002.

To find out how likely it is that you really have the disease if you have a positive
test, we need to consider the ratio between the probability of a true positive and
probability of any kind of positive. In the formula below, the numerator is the
probability of getting a true positive and the denominator is the probability of
getting either a true positive or a false positive. The result is the probability of
having the disease, given that you got a positive test, which is what we want.

(5.4) 𝑃(disease|test positive) = 0.1 × 0.98
(0.1 × 0.98) + (0.9 × 0.1) = 0.5213

The probabilities of false negatives and true negatives are not needed for this
calculation, because we know that the test came out positive. They would be
needed if you wanted to calculate the probability of having the disease after a
negative test.

If this problem was new to you, and you used your intuition when we first
asked the question, it is not at all unusual to be surprised by the estimate of 52
percent as the probability of having the disease given a positive test! This is be-
cause there is cognitive bias called base rate neglect, which tends to make human
beings ignore the effect of the base rate and focus far more on the connection
between the test and the disease. This leads us, almost without noticing it, to as-
sume that about 50 percent of the people to whom the test is administered have
the disease and the other 50 percent do not. If you do the calculation again, this
time under the assumption that the base rates are equal, you will get:
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(5.5) 𝑃(disease|test positive) = 0.5 × 0.98
(0.5 × 0.98) + (0.5 × 0.1) = 0.9074

which will lead you to believe that nearly 91 percent of the people with a positive
test are going to really have the disease. But, even knowing this, it is not easy
to adjust your feelings about risk to match what you know to be true about the
situation.

5.4.1 Payoffs and priorities

Of course, it is not enough to know how well the test works and how common
the disease is. We also need to use our humanistic critical thinking skills to assess
how we will act on this information, and how those actions serve our ethics and
priorities.

We illustrate with a simplified version of the calculations that a real doctor
would need to do. To keep things gentle, we will say that the disease is always
curable and nobody ever dies of it. However, there are two different treatments:
Treatment A is cheap, costing the hospital $10, but treatment B is expensive, and
would cost the hospital $1000. Imagine that the patient pays nothing, and the cost
is all on the hospital. Treatment Bwill work any time, but treatment Aworks only
in the early stages of the disease. The point of the test is to find peoplewho should
get treatment A now. The hospital’s policy is to apply treatment A whenever the
test comes back positive. It costs the hospital an unnecessary $10 whenever there
is a false positive, and it also causes unnecessary anxiety to the patient. We say
that payoff for a false positive is −$10. The payoff for a true positive is also −$10,
because the hospital pays for the treatment in that situation too.

Table 5.5: The payoffs for the four outcomes.

Has disease No disease

Test positive −$10 −$10
Test negative −$1000 $0

But if the test misses a patient who does have the disease, that person will
eventually come back in and require treatment B, which is much more expensive.
So, the payoff for a false negative is −$1000. The payoff for a true negative is $0,
because no treatment is needed. In a real hospital situation, life would be more
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complicated, because there would be another choice to be made before this all
happened: The doctors would have to consider the cost of the test itself. They
might decide that some people are so unlikely to have the disease that it isn’t
even worth running the test.

5.4.2 Back to text

At this point, you are probably wondering whether this book has been taken over
by medical researchers. Not exactly, because the ideas we have used so far apply
to text classification, too. In spam detection, high specificity means that few of
the real emails will be classified as spam. Similarly, high sensitivity means that
few true spam emails will be missed.

If you are using this book in a class, at some point the instructor is likely to ask
you to spend five minutes discussing spam with your neighbor. Here are some
questions to ponder about how we map quantitative metrics such as base rates,
sensitivity, and specificity onto our qualitative, humanistic priorities.

• Which do you find more annoying in the context of spam filtering – false
positives or false negatives? In practice, what are the consequences of false
positive or a false negative?

• Would you be prepared to accept a few extra false negatives for the sake
of a reduction in false positives? (This is the same question that we had in
the medical setting, but this time human suffering is kept to a low level.)

• Suppose that your email address is somehow leaked to a bunch of spam-
mers in a data breach. Now you get ten times as much spam, but the num-
ber of real emails that you get is unchanged. Do you still want the same
balance between false positives and false negatives? (This is a direct appli-
cation of the ideas about base rates above.)

5.5 Examples of classifiers

So far, we have introduced the inputs (documents, featurized into vectors) and
outputs (labels) in a classification model, as well as how to evaluate its success
in light of our priorities. Now we explore how the model actually works on the
inside – how it “learns” to map features to labels.
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5.5.1 The naive Bayes classifier

One simple and effective algorithm is known as the naive Bayes classifier. We’ll
start by explaining the idea and then justify the math.

When we use the naive Bayes classifier to classify documents, we run a com-
petition between the hypothesis that the document is a spam, and the alternative
hypothesis that it is not. This is expressed in math by doing a probability calcu-
lation for each of the two hypotheses. Whichever hypothesis is more probable,
that label is assigned to the document.

In order to make the example manageable, we are going to pretend that there
are just a few words for which we have collected statistics as in Table 5.6. In real-
ity, there would be many more. We have imagined an email user (we’ll call this
user Sandy) whose typical email conversations include recreational chat about
horses, unicorns, and similar creatures, but who also gets some of the usual kind
of spam. Sandy does not want genuine messages from friends (including particu-
lar friends Alice, Seth, and Emily) to be filtered out. Messages thatmention horses
are usually good, but some of the ones mentioning stallions (used in sexualized
spam) are suspect.

Table 5.6: Word counts from spam and ham among Sandy’s emails.

Spam Ham

cash 200 3
Alice 1 50
Seth 2 34
Emily 2 25
Viagra 20 0
credit 12 2
unicorn 0 5
cookie 1 5
hippogriff 0 18
pony 9 50
stallion 3 8

Total 250 200

The simplest strategy is to pretend that we are dealing with a completely un-
structured collection of words – a “bag of words” as introduced above. This
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“naive” representation is chosen because it simplifies the math, even though it
ignores important structure in language.

Imagine that we cut up a document and put the words in a bag. The bag might
be spam, or it might not. Now, we draw the words out of a bag one at a time. Each
time we see a word, we ask whether that word is more likely to have come out of
a spam bag, or more likely to have come out of a genuine email (ham, non-spam)
bag. We can turn this idea into math using Table 5.6 and some simple reasoning.

For concreteness, imagine that the word that came out of the bag was Emily.
We’re also going to temporarily pretend that words in the table are the only ones
that exist. We have seen this word 2 times in spam, out of a total of 250 spam
words overall. This means that we can reasonably estimate that we are likely, on
average, to see Emily 2 times in 250 (one time in 125; 0.8 percent of the time) if
the document that we put in the bag was spam. We have seen the same word 25
times in Sandy’s real messages, out of a total of 200 non-spam words overall. So,
we can guess that we are likely to see the word Emily 25 times in 200 (one time
in eight; 12.5 percent) if the document is not spam. Since 12.5 percent is much
bigger than 0.8 percent, we decide that given this single word, the document in
the bag is much more likely to be ham than spam. We can keep track of this by
recording the odds ratio for ham to spam as 12.5/0.8, or nearly 16. This is much
greater than 1, which means we think the document is ham.

Suppose that the next word is credit. The counts for this are 12 in 250 for spam,
2 in 200 for ham The odds ratio for this word is 2/200 against 12/250, or about
0.208. This is less than 1, so we think, on the basis of this word alone, that the
document in the bag is probably spam.

To combine the evidence, we multiply the ratios 16 × 0.208 = 3.33, and decide,
because the combined ratio is greater than 1, that the twowords together indicate
a genuine email, not spam. We carry on in the same way, calculating a ratio for
each new word as it comes out of the bag, and multiplying it into the combined
ratio. Oncewe have put all this evidence in place, we canmake an overall decision
about the document. If the final value of the combined ham-to-spam odds ratio
is greater than 1, we claim that the document is genuine (ham) email; otherwise,
we rate it as spam.
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Under the Hood 8: Naive Bayes

Why does the naive Bayes algorithm make sense, and why is it called
naive Bayes in the first place? Naive Bayes is based on the ideas of an
eighteenth century British scientist called Thomas Bayes. Bayes was a
Presbyterian minister and a member of the Royal Society, which is one
of the first scientific organizations ever founded. His major contribution
to science was a posthumous paper that laid out the key concepts of a
probabilistic approach to reasoning about uncertain evidence. Here is the
essence of his reasoning, as applied to spam filtering.

The leading mathematical idea of Bayes’ approach is a decomposition
of the reasoning process into two components. The first component is a
so-called prior probability, also known as the base rate that we discussed
above. This reflects what you assume about the situation before you have
collected detailed evidence.

In spam filtering, you can safely assume that most documents in a typ-
ical mailbox are spam. So, you can set the prior probability of spam to a
high value.

The idea of a prior probability works in more complicated situations,
too. In spam filtering, there are only two alternatives – either the docu-
ment is spam or it is not.

The second component of the reasoning process is called a likelihood.
For spam, this component reflects your beliefs about the following ques-
tions:

• Suppose that the document that we have is spam: Are we surprised
to see the particular words that are in the document, or not? We
will translate this idea into math shortly.

• Suppose it is not spam: Are we now surprised to see the words that
are in the documents? Again, we will convert this into math and
show how to run the competition between spam and ham in a mo-
ment.

Here is the essence of Bayes’ reasoning, as applied to spam filtering:
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• We are interested in looking at a document 𝐷, which may or may
not be spam.We could make a decision if we knew the two probabil-
ities 𝑃(spam|𝐷) and 𝑃(ham|𝐷). Read these formulas as “probability
of spam given 𝐷” and “probability of ham given 𝐷”.

• If the spam probability is bigger than the ham probability, we will
be right more often than not by guessing that the document is spam.

• We really want to calculate 𝑃(spam|𝐷) and 𝑃(ham|𝐷) – the proba-
bility that the document is spam, given the words therein; and the
probability that it is ham, given the words therein. But we have to
work backwards to get these quantities.

• To work backwards, we use 𝑃(𝐷|spam) (the probability that the
words in document happen if it is spam), rather than 𝑃(spam|𝐷)
(the probability that the document is spam if we see those words).
We want the second one, but so far we only know how to calculate
the first one. Fortunately, Bayes’ theorem allows us to get the prob-
ability that we want by doing a little algebra. For spam documents
it states that:

𝑃(spam|𝐷) = 𝑃(𝐷|spam)𝑃(spam)
𝑃(𝐷)

• We can also use Bayes’ theorem on the non-spam documents, giv-
ing:

𝑃(ham|𝐷) = 𝑃(𝐷|ham)𝑃(ham)
𝑃(𝐷)

• If we take the ratio of these probabilities, 𝑃(𝐷) cancels, giving:
𝑃(spam|𝐷)
𝑃(ham|𝐷) = 𝑃(spam)𝑃(𝐷|spam)

𝑃(ham)𝑃(𝐷|ham)

• This last expression says that our competition between ham and
spam can be run using the priors 𝑃(ham) and 𝑃(spam) along with
the likelihoods 𝑃(𝐷|ham) and 𝑃(𝐷|spam). Nothing else is needed.
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We can estimate a value for the ratio 𝑃(spam)/𝑃(ham) by remember-
ing that spam is typically much more common than ham. If you feel that
95 percent of the mail you get is spam, you could estimate the ratio as
0.95/0.05 = 19.

Now we have 𝑃(spam)/𝑃(ham); but we still need 𝑃(𝐷|ham) and
𝑃(𝐷|spam). In a spam filter, we compute these likelihoods by exploring
what our classifier has learned about which features (words) tend to oc-
cur with which labels (ham, spam).

In the naive Bayes classifier, to keep things simple, we imagine that
the words in the document are being produced by a very simple random
process, based on the “bag-of-words” assumption introduced earlier. We
do not really believe this very simplistic assumption, but it is worth pre-
tending that we do, because the calculations are simpler and the results
of these calculations are useful. In spam filtering, we assign a value to the
probability that a spam email will contain the word credit, and another
value, presumably lower, to the probability that a non-spam email will
contain the same word. We do this for every feature that we care about.
Usually, we do this for most of the words in the document, but ignore
the very common stop words like the and and, because we do not think
that these words are going to be helpful. We do not have to stick to words
alone: We can also assign a probability for the hypothesis that a spam
email will contain images, certain types of hyperlinks, brightly-colored
or all-capitalized text, or be sent from an email account that the user has
never contacted before, and we can assign a corresponding probability
that a non-spam document will have this feature.

The final step in the naive Bayes process is to combine all the feature
probabilities. We assume that each feature is chosen independently and
that the relevant probabilities are 𝑃(feature|spam) and 𝑃(feature|ham).
Under that assumption, the probability of the document is the product
of the probabilities of a series of independent events 𝑓1, 𝑓2, … , 𝑓𝑛, one for
each feature, and the ratio we need for our decision can be rewritten as:

𝑃(spam|𝐷)
𝑃(ham|𝐷) =

𝑃(spam)∏𝑓 𝑃(𝑓 |spam)
𝑃(ham)∏𝑓 𝑃(𝑓 |ham)

Here, the symbol∏𝑓 means “product over all features 𝑓 ”. This tells you to
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multiply together the probabilities for each of the individual features, one
time (in the numerator) for spam, one time (in the denominator) for ham.
(If you recall your algebra classes, youmight remember the corresponding
∑𝑖 notation for sums. ∏𝑖 is just the same as this, but for products.)

The calculation for this ratio corresponds to the informal account given
earlier in this chapter. In that account, we simplified by not bothering
with the prior, and just started off with the features. You could re-do the
calculation by starting off with an odds ratio of 19:1 in favor of spam, then
multiplying in the new evidence as each word arrives. Usually there will
be plenty of evidence from the words, and the choice of prior will hardly
affect the decision, but sometimes, especially for messages that have only
a few words in them, the estimate of the prior will make a difference.

Relating these calculations back to the idea of training and test data,
we would use the training data to gather statistics about the relative fre-
quency of spam versus ham (the prior probability), as well as how fre-
quently various words occur in spam versus ham (allowing us to compute
the likelihood that a given word was drawn from a spam document versus
a ham document). We would use these training data to build our model.
Then we would evaluate how well the model does on the test data. If it
does well, then it has learned some generalizable information about how
to distinguish ham from spam.

5.5.2 The perceptron

The naive Bayes classifier compares two different possibilities, that the email is
spam versus ham, and computes which one is more likely based on the words
observed in the email. As an alternative to naive Bayes, we could also use a per-
ceptron, which is based on the idea of error-driven learning. The perceptron main-
tains a collection of weights, where each weight links a feature with an outcome
(a class label). The perceptron learns from experience by trying to predict out-
comes, then adjusting the weights when it makes a wrong prediction. Initially,
the weights are uninformative and the perceptron is just guessing, but over time
the perceptron builds up an ability to associate features with outcomes in a useful
way.

The perceptron (see Figure 5.1) is a network with two layers.
The input layer has one node for each possible input feature. In our running

example of Sandy’s email, there would be one node for each of cash, Alice, hip-
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Input
Layer

Output
Layer

... cash Alice hippo. ...

Spam Not Spam

Output
Values

3
2 0

1 2 3

Figure 5.1: The Perceptron.

pogriff and so on. This would be unwieldy to draw in full, so we content ourself
with three nodes in the diagram. The output layer contains one node for each
possible outcome (in the case of Sandy’s email, one each for spam and not spam,
exactly as in the diagram). The edges that link the input and output layer are
associated with weights. In order to do prediction, the perceptron reads a doc-
ument, and notes which words are present. We turn the nodes that correspond
to these words on, and turn the others off. The role of the weights is to decide
how strongly to transmit the activity of the active nodes to the output layer.
Suppose that exactly three nodes (cash, Alice, hippogriff ) were active in Sandy’s
perceptron, and the weights linking these words to spam and not spam are as in
Table 5.7.

Table 5.7: Weights for a perceptron.

Word Spam Not Spam

cash 3 1
Alice 2 2
hippogriff 0 3

Under this supposition, the total activity of the spam output node would be
3+ 2+ 0 = 5 and that of not spam would be 1+ 2+ 3 = 6, so not spam would win.
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If this prediction is right, Sandy’s perceptron can stay as it is, but if the email is
actually spam, then the weights need to change.

Imagine that we need to change the weights because the email was indeed
actually spam. The perceptron algorithm adjusts all the relevant weights a little
bit, in such a way as to move the result closer to a correct prediction. So it would
increase the weight of cash (and each of the other two words) as a predictor for
spam, and downweight it as a predictor for not spam. A possible result (if “a little
bit” is taken as 0.01 for the sake of demonstration) is sketched in Table 5.8.

Table 5.8: Adapted weights for a perceptron.

Word Spam Not Spam

cash 3.01 0.99
Alice 2.01 1.99
hippogriff 0.01 2.99

This weight change is not enough to change the prediction, but it does move
the result in the right direction (not spam still wins, but not by so much). To train
the perceptron, we go through the training corpus, presenting each example to
the current version of the perceptron, and adapting weights whenever we make
a mistake. When we get to the end of the training corpus, we start again at the
beginning. Each round of this process is called an epoch. After a sufficient num-
ber of epochs, the weights will change enough that some of the predictions will
flip. Gradually, the mistakes tend to go away (not completely, but to a reason-
able extent). This is a result of the feedback mechanism under which features
that contribute to wrong predictions get their weights changed. There is a math-
ematical proof that the perceptron will give perfect performance on the training
set if that set has the mathematical property of being linearly separable. In two
dimensions (with two features), the idea of linear separability is that a dataset is
linearly separable if it is possible to draw a straight line that has all the positive
examples on one side of the line and all the negative examples on the other.

In three dimensions, the line turns into a plane, and in four ormore dimensions
it turns into a mathematical object called a hyperplane. But the idea is always
that all the positive examples are on one side and all the negative examples are
on the other. In Figure 5.2, positive examples are represented by hollow circles
and negative examples are represented by filled circles. The diagonal line is a
nearly perfect linear separator, as one positive example is on the wrong side of
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the boundary and the rest are correctly separated. For this dataset, this is the best
that any linear separator can do.

Negative region

Positive region

Figure 5.2: Linear separability.

In practice, as well as in the example shown in Figure 5.2, perfect performance
is rare, because real world problems are usually not linearly separable, so some
misclassifications remain, and training is stopped when the number of remaining
mistakes has stayed stable for long enough. When this happens, we are probably
doing as well as is possible on the training set, but does not give us certainty
about how well we will do on an unseen test set. If the test set and the training
set are similar enough, a perceptron that does well on the training set will also
do well on the test set. Unfortunately, we are not completely sure how similar
the test set will be, so there is an element of uncertainty in our guesses about
how well we will do.

The perceptron is an algorithm for training a linear model. The technical de-
tails of how linear models work would take us too far afield, but the discussion
of linear separability above is part of the story. The final weights can be under-
stood as saying something about the importance of each piece of evidence in a
combined solution to the classification problem. When there are a large num-
ber of potentially useful features in a classification problem, researchers have
discovered that linear models often work well. The perceptron algorithm is not
the only way of training linear models, or necessarily the best, but it is a good
starting point for exploration.
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5.5.3 Modern document classification techniques

The perceptron uses error-driven learning: The model reads in the training data
(featurized as a vector), sends it through a series of nodes associatedwithweights,
outputs a prediction (spam or ham), and checks whether the prediction was cor-
rect. If the prediction is wrong, the weights of each node are updated to move
the predictions in the direction of the correct answer.

The same basic idea underlies many more sophisticated methods which have
transformed language technology in recent years. In deep learning, we can add
intermediate layers of nodes in between the input layer and the output layer of
the perceptron, to create a “deeper” multi-layer network. Such additional layers
allow for more complex calculations about how different words interact with
each other; for example, a multi-layer network could capture the idea that the
words pain andmedicine might be innocuous individually, but indicative of spam
when they co-occur.

Such models are called neural networks, because the network of nodes takes
inspiration from theway that firing neurons in the human brain work together to
create complex behavior, and because neural networks evoke the brain’s capacity
for learning and abstraction.

Another way to improve our model is to use a more elaborate representation
of the input features. If we represent a document as just a bag of words, then
the words pills and medicine have nothing in common with each other; they are
each associated with a different column of a term-by-document matrix. But we
are obviously missing a key insight here – pills and medicine have somewhat
similar meanings. How do we know? They are not strictly synonyms, but they
can be used in similar contexts – take some pills, take some medicine; pain pills,
pain medicine. We saw in Chapter 4 that we can represent words as vectors such
that words occurring in similar contexts, such as pills and medicine, have similar
vectors.

In fact, pills and medicine have similar meanings and co-occurrence patterns
not just in spam/ham emails, but also in English text as a whole. So, rather than
just capturing what words pattern similarly within our specific dataset, wemight
want to use pre-trained word embeddings that were built on a large amount of
general-purpose English text (for example,Wikipedia), and feed that information
into our model alongside a small set of labeled spam and ham emails. That way,
our model has access to a lot of general information about English in addition to
specific information about spam and ham. This strategy is called transfer learning:
Our model is given some useful general information, such as the fact that pills
and medicine have similar meanings, and transfers it to the specific task of spam
detection.
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In 2018, the idea of pre-training and transfer learning was taken to a new ex-
treme when a team at Google (led by Jacob Devlin) released a model known as
BERT (Devlin et al. 2019). Rather than just capturing information about which
words are similar to each other, BERT was designed to represent a massive quan-
tity of information about English-language text, which can be transferred to a
variety of specific tasks, including text classification.

BERT is a neural network that is originally trained to do two specific tasks, (i)
masked word prediction and (ii) next sentence prediction, using a huge amount
of data, such as the whole of English-language Wikipedia. In masked word pre-
diction, the researchers randomly blanked out 15 percent of the words in the text
(illustrating here with a sentence from the EnglishWikipedia page on lions), and
trained the model to choose the right word to fill in the blank. In other words, in
the pre-training phase, the model makes a prediction, then checks to see if the
prediction matched the original Wikipedia text, and then updates its weights to
do better next time, until it gets very good at filling in the blanks of sentences.

(6) One of the most — recognised animal symbols in human culture, the lion
has — extensively — in sculptures and paintings, on national —, and in
contemporary — and literature.

How would you fill in these blanks? More importantly, what knowledge do
you draw on to make an educated guess? (The missing words are widely, been,
depicted, flags, and films.)

You probably considered the words immediately to the left and right of the
blank, but also other words in the sentence, its structure, and its overall meaning.
To fill in the word depicted, you may have considered that the syntactic context
requires a past participle, and that depictions are related to symbols and paint-
ings. We already saw in Chapter 3 that such fill-in-the-blank exercises are also
used to test the knowledge of human language learners. By learning to fill in the
blanks correctly, the idea is that BERT approximates that same knowledge.

In next sentence prediction, the researchers randomly paired some sentences
with the sentence that actually comes next in the text, and paired other sentences
with a randomly chosen sentence from elsewhere in the data (again illustrating
with Wikipedia text). The model was trained to decide whether a given pair of
sentences indeed occur next to each other or not. In a sense, this is a text classi-
fication task – the model is given a two-sentence text and classifies it as either
cohesive or disjointed.

(7) Typically, the lion inhabits grasslands and savannas, but is absent in
dense forests. // It is usually more diurnal than other big cats, but when
persecuted it adapts to being active at night and at twilight.
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(8) Typically, the lion inhabits grasslands and savannas, but is absent in
dense forests. // Despite the name, shellfish are not actually fish, but are
simply water-dwelling animals.

How would you decide which sentences match and which do not? What
knowledge do you use? (The sentences about lions indeed occur next to each
other in Wikipedia; the sentence about shellfish is from a different page.) You
probably thought about how the pronoun it could refer back to the singular
noun lion; how cats are related to lions, how the daily habits of an animal might
be described in the same paragraph as its habitat, and how shellfish, fish, and
water are not particularly related to the lions, savannas, and forests discussed
in the prior sentence. By learning to decide which sentences match, the idea is
that BERT approximates that same knowledge.

Stepping back, why would researchers take the trouble to train a network to
fill in blanks and to decide whether two sentences go next to each other? These
tasks are not particularly useful in a commercial context!

One major advantage of these tasks is that the labels required for training –
the missing words and the contiguous sentences – are already provided by the
text itself, unlike human labels for ham and spam, so it is easy to train BERT on
a massive amount of text. The other major advantage is that these tasks require
BERT to “learn” a great deal of rich information about English text, both at the
word level and the sentence level. For example, BERT will learn that pills and
medicine are similar because they are both often good candidates to fill in the
same missing word in a sentence. Moreover, masked word prediction leads BERT
to represent not just the overall distribution of a word type such as pills, but
the context of each word token – the fact that pills means something different
in a sentence like This sweater pills in the wash versus Take these pills for your
headache. Each token of pills receives a different vector representation.

Even if masked word prediction and next sentence classification are not partic-
ularly useful on their own, the idea is that they serve as a powerful pre-training
regimen. Instead of just importing pre-trained word embeddings into a spam-
detection model, the idea is that we can read in the entire BERT network, pre-
trained on masked word prediction and next sentence prediction, and then add
a few layers on top of it which we train on labeled spam/ham data to do spam
detection (known as fine-tuning BERT’s pre-trained knowledge for this specific
task). This way, the model will not only have access to a small set of spam/ham
data, but is also able to transfer a massive amount of general information about
English. The use of such general information is known as transfer learning.
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To use a sports analogy, imagine that you want to train, as efficiently as possi-
ble, to compete at many different speed sports. (BERT is trained, as efficiently as
possible, to compete at many different language-related tasks). You decide to fo-
cus on push-ups and squat jumps. (BERT focuses onmasked word prediction and
next sentence prediction.) These exercises are easy to do anywhere, requiring no
specialized equipment (for BERT, these tasks require no specialized labels). They
are also very challenging exercises that work out your entire body, your muscles
and your cardiovascular system, explosiveness and endurance (for BERT, these
tasks require knowledge about the structure, meaning, and statistical tendencies
of English text). You do an enormous number of push-ups and squat jumps, sev-
eral hours a day for months (BERT trains on masked word prediction and next
sentence prediction on an enormous amount of data.) Once you have trained to
be very good at push-ups and squat jumps, you will still need specialized practice
to compete at sports such as running, swimming, or rowing (BERT still requires
some fine-tuning to do spam detection using labeled spam/ham data.) But the
athleticism developed from push-ups and squat jumps is highly transferable, and
this training regimen has made you a powerful, versatile athlete well-prepared to
succeed at many different sports. (The information gleaned from masked word
prediction and next sentence prediction is highly transferable, and BERT’s train-
ing regimen has made it a powerful, versatile representation of language well-
prepared to succeed at many different tasks.)

Using the power of transfer learning, BERT and its descendants form the ba-
sis of modern document classification, and in many tasks such models are stun-
ningly accurate.

5.5.4 Which classifier to use?

We have toured many different techniques for classifying documents, walking
through the simple examples of naive Bayes and the Perceptron, and then sketch-
ing the intuition used in the elaborate models of today. With so many options,
which one should you use?

Coming back to our medical discussion of payoffs and priorities, it depends
on what you are trying to do. If your goal is to get the best performance, and
if you have time and programming skills, you may want to use a model such
as BERT that leverages transfer learning. If you are intellectually curious about
which specific words are most associated with which labels, you may want to
use naive Bayes, which can show you the spam:ham odds ratio associated with
a particular word; thanks to its simplicity, naive Bayes is more interpretable than
more elaborate techniques. You may also want to try out a simple model and
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see how well it does as a baseline, and then decide if you need something more
complex.

To get started on a practical level, you might use the Pandas library in Python
to format your data as a matrix (expect to spend some time on such formatting!),
and Google’s TensorFlow package in Python to try out different machine learn-
ing techniques. If you search the web, there are lots of resources and sample code
notebooks to help you get started.

5.6 Some other applications of machine learning

Stepping back, machine learning is a remarkably powerful idea with important
applications far beyond text classification. Classification – mapping a vector of
features to a label, chosen from a finite set of possible labels – is also used in
computer vision, where we can represent an image as a vector of pixels and
learn how to label it as a cat or a dog, or perhaps learn to map an image of a
handwritten digit to the number (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) that it represents. We
can also represent a credit card transaction as a vector of features (the time of
day, the type of store, the location, the price, information about the cardholder’s
usual habits) and learn to label it as fraudulent or legitimate. And so on.

As we mentioned above, classification is an example of supervised learning, be-
cause we give the computer some “right answers” (correctly labeled spam/ham
emails) and train it to generalize those labels to new data. Apart from classifica-
tion, the other main type of supervised learning is regression; there, instead of
a label, our goal is to predict a continuous numerical value. To use a language
example, we could train a model to read an essay and give it a score out of 100.
Here, too, the model learns to generalize from “right answers”, but these would
take the form of featurized essays that have already been correctly scored. (Be-
fore we turn this model loose on real student work, we would want to make sure
that it was not reproducing some sort of bias that could give unfairly low scores
to certain students!) We could also represent a house as a vector of features (its
location, square footage, year it was built, number of bathrooms) and learn to
predict its price. And so on.

In contrast, unsupervised learning is used when we do not give the model any
“right answers” – because we do not have the resources to collect labels, or be-
cause we do not even know what such labels would be. We saw an example of
unsupervised learning in Chapter 4 in the context of topic modeling: A topic
modeling algorithm is not given any labels to generalize, but is instead designed
to identify meaningful groups of words and documents (each associated with
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topics) in a bottom-up manner. Another type of unsupervised learning is called
clustering, in which a model is asked to group similar data points together – for
example, clustering together documents that are similar to one another accord-
ing to some sort of vector representation of the words used therein. (Outside of
text, we could also cluster together similar images, similar houses, and so on, as
long as these are represented as vectors.) With no need for expensive labels, clus-
tering is useful for exploring a large dataset that you do not have time to read.
The model does not give names to the clusters (although a human reader may try
to), and the main disadvantage is that the clusters may not be intuitive; perhaps
it would put some social emails into a cluster dominated by work emails, if the
social emails happen to mention calendar dates.

We hope that this brief overview has offered a framework to understand the
power of machine learning, which will come up again in this book and perhaps
in your life more broadly.

5.7 Sentiment analysis

With this background, we can come back to another key application of text clas-
sification – classifying texts by their emotional valence, also known as sentiment
analysis.

On websites such as IMDB (Internet Movie DataBase) and Amazon, people
can write a review of a movie or product, and annotate it with a star rating: 5/5
or 10/10 stars if they love it, 0 stars if they hate it – helpfully providing labels
for those of us interested in sentiment analysis! Drawing on our discussion of
machine learning, we could train a regression model to predict a review’s star
rating out of 10, or train a classifier to assign a label of positive or negative (or
perhaps positive, negative, neutral).

Here are two IMDB reviews for Parasite (2019), the first Korean film towin Best
Picture at the Academy Awards. Without knowing the star rating, what clues do
you use to figure out whether each review is positive or negative?

(9) The most original film of 2019 and it is wickedly funny and darkly
disturbing all at the same time. Class warfare at its best.

(10) I truly don’t know what I missed but this was just not my cup of tea (or
my mom’s) and it felt unnecessarily gruesome and strange rather than
masterful and sharp. Instead of awaiting the next moment with
excitement and suspense, I found myself cringing at the actors’
performances as they weren’t believable and was confused at how
poorly-written the dialogue was.
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The first review is positive (10/10 stars), and the second review is negative
(1/10). The positive review uses positive words – original, funny, best – along with
the slightly negative word disturbing; it also uses superlatives (most, best) and
intensifiers (wickedly, darkly). The negative review uses some negative words
– strange, cringing, poorly-written. It also uses some positive words (masterful,
sharp, excitement, suspense, believable), but some of them are negated by instead
of and weren’t. In fact, as shown by Potts (2010) and discussed in Chapter 4,
negation itself (don’t, not, unnecessarily, weren’t) is common in negative reviews
as a whole, which is intriguing because you might have expected negation to
have a purely logical meaning rather than an emotional one.

Just as with spam detection, we can feed labeled positive/negative reviews
into a classifier (naive Bayes, the Perceptron, or a fancy classifier using transfer
learning) and train it to classify the sentiment of future reviews. The classifier
will probably bemore accurate if it “knows” that most of the positive words in the
negative review are semantically negated. One quick-and-dirty technique (Das &
Chen 2007) is to prepend NOT to every word that falls between negation and the
end of a sentence or clause – they weren’t NOTbelievable – before making a bag-
of-words. This way, believable and NOTbelievable count as two different words,
one of which probably predominates in positive reviews, the other in negative
ones. On reviews like the two we just read, a classifier should be quite accurate.

In addition to measuring the accuracy of our classifier, it is also worthwhile to
examine the documents that it classifies incorrectly (error analysis). Such hard-
to-classify documents may illuminate interesting subtleties in the data, and help
us understand what the classifier “knows” and doesn’t “know”.

For example, we tried one classifier that was correct about the positive and neg-
ative reviews discussed above, but still mis-classified as positive a review from
the legendary film critic Roger Ebert which is actually humorously negative:

(11) The director [of the 2004 film Catwoman], whose name is Pitof, was
probably issued with two names at birth and would be wise to use the
other one on his next project.

To do an error analysis, we can ask ourselves:

• Why is this review difficult to classify? Most likely, because it does not use
any negative-sentiment words; the negative opinion is inferred by com-
plex hypothetical reasoning. To understand why the Catwoman review is
negative, we have to understand that the director would want to use an-
other name on his next project because the project with his original name
was bad; but that logic is not spelled out in the review itself.
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• What do these errors tell us about the subtleties of our data? This review
shows that language is complicated! Negative sentiment does not just
come from negative words, but also arises when sentiment-neutral lan-
guage is used to describe a state of affairs that we recognize extra-textually
as negative.

• What do these errors tell us about what the classifier “knows” and doesn’t
“know”? The classifier performs well on reviews that state their sentiment
outright in words, but does not fully capture the complex extra-textual
reasoning required to decode Ebert’s snark.

Just like spam filtering, sentiment analysis can be used for practical purposes,
for example, to track consumers’ sentiment towards one’s company on social
media. But it can also be used for purely intellectual explorations in the areas
of digital humanities, computational social science, and corpus linguistics intro-
duced in Chapter 4. Within digital humanities, one could track the sentiment of
sentences in a novel from beginning to end or the sentiment of sentences about
various characters. In computational social science, one might explore the senti-
ment of news articles or statements by politicians across the ideological spectrum.
In corpus linguistics, one could explore how a word’s sentiment (or that of its col-
locational context) might change over time in historical data, as when the word
mistress changed from meaning “Mrs.” to meaning “a woman in an extramarital
affair” (Traugott & Dasher 2001). Returning to the theme of how computers can
extract meaning from text, sentiment analysis represents one way that comput-
ers can capture emotional meaning.

Under the Hood 9: Benchmarks and leaderboards in NLP

BERT was recognized as a striking advance because it shot to the top of
various leaderboards tracking performance on various benchmarks in nat-
ural language processing. These benchmarks represent standardized tests,
similar to the Scholastic Aptitude Test (SAT) used for college admission in
the United States, designed to test difficult tasks in language understand-
ing. Just as the SAT publicizes practice problems but not the real test that
students are graded on, these benchmarks provide training data but evalu-
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ate models for their performance on an unseen test set. Moreover, similar
to how SAT measures quantitative and verbal skills in the same test, a
combined benchmark brings together several different tasks into a unified
scoring framework. The creators of such benchmarks also gather human
annotations from web platforms such as Mechanical Turk to compare for
the models’ performance.

Such benchmarks are common in computer science; in the field of com-
puter vision, the ImageNet benchmark (Deng et al. 2009) tests models for
whether they can correctly assign text labels (strawberry, dog) to images.
It took about seven years for computers to compete with human perfor-
mance on the ImageNet data, but recent progress has accelerated. In NLP,
it took only one year for the combined GLUE (General Language Under-
standing Evaluation) benchmark of Wang et al. (2018) to be deemed too
easy for models such as BERT, motivating the more difficult SuperGLUE
version (Wang et al. 2019).

SuperGLUE brings together eight different tasksmeant to test amodel’s
ability to reason about English text. For example, drawn from Dagan et al.
(2005), the RTE (Recognizing Textual Entailment) task asks whether (12a)
entails (12b) (it does not).
(12) a. Reagan attended a ceremony in Washington to commemorate

the landings in Normandy.
b. Washington is located in Normandy. [False; not entailed.]

In fact, there are two different routes to the correct answer in (12). Lever-
aging knowledge about events, one could reason that a ceremony can take
place in a different location from the event it commemorates. Or one could
use the geographical fact that Washington is in the United States while
Normandy is in France. So perhaps (12) is too easy!

To make more difficult benchmarks, some researchers gather adversar-
ial examples, explicitly asking gig workers to try to fool the model. The
adversarial example (13) is tricky for a model of textual entailment (Nie
et al. 2020) because it requires the model to infer that the assassination of
a journalist entails another individual laid waste to him – requiring com-
plex reasoning about how the abstract event-denoting noun assassination
can be paraphrased by a sentence using an obscure idiom (laid waste to).

(13) a. Roberto Javier Mora García (c. 1962 – 16 March 2004) was a
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Mexican journalist and editorial director of El Mañana […]
prior to his assassination.

b. Another individual laid waste to Roberto Javier Mora García.
[True; entailed.]

Benchmarks are important for measuring progress and challenging the
research community to improve. But like any standardized test, they have
been criticized. For one, SuperGLUE (General Language Understanding
Evaluation) only really measures English understanding, further cement-
ing English as a hegemonic standard. Moreover, as argued by Ethayarajh
& Jurafsky (2020), benchmarks ignore progress on other important dimen-
sions such as fairness (avoiding social biases) or compactness (aiming for
smaller, more energy-efficient models). They don’t necessarily reward the
theoretically interesting insights or explanations sought by linguists. Be-
cause NLP benchmarks prioritize objective true-or-false questions, they
do not extend easily to models offering open-ended language generation.
Therefore, each researcher has to decide for themselves how much they
prioritize benchmarks versus other definitions of success.

5.8 Consequences

Some challenging text classification tasks are not commercially applicable, but
still provide insight into the power and limits of classifiers, and the subtleties of
the information conveyed in language. What accuracy would you expect from a
classifier that tries to predict whether a comment is sarcastic or serious (perhaps
using as labels the /s symbol that somewebwriters use to convey sarcasm)?What
about a classifier that reads narratives on the Reddit web forum r/AmITheAss-
hole, where people describe their conduct and ask readers for a moral judgment,
and tries to predict whether a person is deemed to be “the asshole” or “not the
asshole”? What about a classifier that reads sentences and tries to label them as
“grammatical” or “ungrammatical” following the labels used in linguistics text-
books (Warstadt et al. 2019)? By comparing human and computer performance
on such tasks, we learn more about the “intelligence” of both humans and com-
puters, as well as the subtleties of these data.

Other text classification tasks pose challenging ethical questions. What if you
tried to detect automatically which job candidates should get an interview based
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on their résumé, training on previously submitted résumés of people who were
or were not interviewed? For a company that receives thousands of résumés a
day, many tedious hours of human labor could be saved by automating this pro-
cess. But what if the classifier learns that the word lacrosse increases a person’s
chance of an interview, or that theword community college decreases it, when nei-
ther of these socio-economic signals actually relates to the job description? Our
system could end up reproducing harmful inequalities. (Would a human be any
less biased? How could the performance of both human and automated résumé-
screeners be made anti-discriminatory?)

Moreover, how does text change when its authors know that it will be run
through an automatic classifier? How do spammers adjust spam to slip through
spam filters? How do job applicants tailor their résumés to pass automatic screen-
ings? How might such classifiers need to be updated to account for these new
strategies?

Armed with the basics of machine learning and its application to document
classification, you have a powerful set of tools for understanding the world. But
you also have to think critically about linguistic complexity, human priorities,
and ethics in deciding how to apply these tools.

Checklist

• Give examples of text classification tasks.

• Brainstorm several business applications of text classification.

• Give examples of other classification tasks beyond the realm of doc-
uments.

• Explain specificity, sensitivity, and their relevance for text classifi-
cation.

• Discuss what constitutes “success” for a classifier, using quantita-
tive notions such as sensitivity and specificity as well as one’s qual-
itative priorities.

• Explain base rates and the base rate fallacy.
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• Define over-fitting and its significance for machine learning.

• Explain how naive Bayes classification works.

• Explain how the Perceptron classifier works.

• Sketch the idea of transfer learning.

• Describe the two tasks used to train BERT and explain why they
were used.

• Distinguish supervised versus unsupervised learning.

• Analyze which tasks and examples you would predict to be easier
or harder for a classifier.

Exercises

1. Expanding beyond consumer technology such as spam filters, think
back to digital humanities and computational social science as dis-
cussed in Chapter 4. How can classification tools be used in these
realms? To help you get started, consider how you might train a
classifier to label text for its genre; its sentiment; its author (out of
a closed class of authors); or for its author’s gender, political party,
or native language. How would you find such labels to train your
classifier? To what extent do you think that a classifier could learn
to predict these labels from the text?

2. Sentiment analysis makes use of user-provided training labels;
users annotate their own reviewwith a star indicating its sentiment.
What other sorts of user-provided labels are available in online text
today? How could they be used?

3. Many advertisements andmassmailings probablymake it into your
inbox rather than your spam folder. Do you consider these emails
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to be spam or ham (or something in between)? How do you think
an email system should handle them?

4. a) Table 5.5 gives a calculation of the payoffs associated with
each outcome of the medical test in the extended example.
Put this together with the population statistics in Table 5.4
to calculate the overall payoffs from: (a) always running the
test, and (b) never running the test. Which is the more cost-
effective policy for the hospital ?

b) We carefully set up our example so that everyone was cured
and the only effect of your decision is financial, but of course
the mathematics also applies to decisions where much more
is at stake. Now that you have learned about false positives,
true positives, payoffs and the rest, you have the conceptual
tools to understand the tradeoffs that are involved in deciding
whether a country should have a policy of offering mammog-
raphy as a general screening tool for breast cancer. We recom-
mend that you find information about this online, read about
it, and see what you think. Do not stop after the first article
you read. It is a controversial issue, and you will find sensible
articles advocating both for and against general screening.

5. You are the owner of a spam filtering service:

a) Currently, your server gets 2000 spams per hour and only 500
good messages. The filter classifies 95 percent of the spams
correctly, and misclassifies the other 5 percent. It classifies 99
percent of the good messages correctly, and misclassifies the
other percent. Tabulate the results: How many false positives
and howmany false negatives do you expect to see each hour?
Calculate the precision, sensitivity, and specificity of the spam
filter.

b) You receive word that a criminal gang is planning to double
the amount of spam that it sends to your server. There will
now be 4000 spam messages per hour instead of 2000. The
number of good messages stays unchanged at 500. In your
marketing literature, you have quoted the precision, recall,
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sensitivity and specificity of your spam filter. You assume that
the misclassification rates will stay the same (5 percent for
spam, 1 percent for good messages). Should you put in a call
to the technical writing department warning them that the lit-
erature will need to be revised? Why or why not? And if so,
what will need to be revised?

6. Continue the calculation from Section 5.5.1. Assume that the next
word in the email is cookie. Using the frequency statistics from Ta-
ble 5.6, carry out the next step of the calculation. What is the cumu-
lative ratio for spam/non-spam?

7. Your colleague labels product reviews (Sturdy and comfortable, this
cot folds up and out of sight with minimal effort) based on the gender
of the review’s author, mapping the author’s self-disclosed name
(Sarah, Ralph) to census data about the likely gender of people with
that name. Your colleague then trains a classifier to label reviews
for the gender of the author. The colleague’s goal is to label the
author gender of anonymous reviews, which could provide demo-
graphic marketing data to sellers. What comments would you offer
this colleague – about the difficulty of the task, the assumptions
underlying it, and the real-world utility of the classifier?

8. Read some posts on Reddit/ AmITheAsshole and discuss what
knowledge would be required to correctly label the author as “the
asshole” or “not the asshole”. Do you think that modern LLMs will
succeed at this task? Can you search the literature for recent discus-
sion or try to test this prediction yourself?

9. Try out some web demos of sentiment classifiers – you can find the
most up-to-date ones by searching the web for sentiment analysis
demo – and try to “break” the classifier by giving it difficult exam-
ples.

195



5 Text classification

Further reading

The statistical approach to spam filtering was popularised by Paul Gra-
ham’s “A Plan for Spam”.a His article, which has aged very well, is an
excellent starting point for learning about the technology and sociology
of spam.

Pang & Lee (2007) offers a comprehensive introduction to opinion-
mining and sentiment analysis.

The discussion of base rate fallacy is based on Bar-Hillel (1980). Cogni-
tive biases are discussed in the literature on psychology and behavioral
economics.

On websites such as YouTube, Medium, and GitHub, you can find many
excellent tutorials and example code about sentiment analysis, document
classification, transfer learning, and BERT.

ahttps://www.paulgraham.com/spam.html, accessed 2024-04-18.
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6 Searching

6.1 Introduction

6.1.1 Finding an old friend

One day, you happen to remember a childhood friend of yours, Katie Smith from
Denver, Colorado, whom you haven’t thought about in years. You were best
friends in second grade, before she moved to a different school. What is she
up to now? You type Katie Smith into a search engine. On the right side of the
page, you see a panel about a basketball coach with the same name, linking to
her Wikipedia page – but she is a different, more famous Katie Smith. On the left,
you see a list of links to web pages, mostly about the basketball coach, and a few
other individuals with the same name, but still nothing about your childhood
friend.

What is the problem here? You know the name of your friend; you know she is
probably on the internet somewhere; so why is it so hard to find what you want?

Unfortunately, Katie Smith has a very common name, so results about your
childhood friend are overwhelmed by results about other people with the same
name. And anyway, Katie may have changed her name (maybe she got married,
maybe she started going by Kathryn as an adult; you haven’t seen Katie in a
decade, so who knows?)

Although this example may seem trivial, it is genuine, it corresponds to a real
information need, and it reveals some of the problems that can arise when we
search the internet.

Consider what the options are for finding the information we want:

• Keep querying the search engine: Try further queries such as Kathryn
Smith,Katie Smith Colorado,Katie Smith Denver,Katie Smith plus the name
of your elementary school.

• Leave the search engine to visit a social site with search functionality, such
as LinkedIn, Instagram, or Facebook; maybe you’ll have some connections
in common with her, which could help you find her.
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• Call your parents, who were friends with Katie Smith’s parents and might
know something.

There is no single right answer. If you can find the right search query, maybe
the search engine will work; if your online social connections include other peo-
ple from second grade, then a social site might work.

But to find this information online, you have to knowwhat resources are avail-
able, and how to search through them. This chapter provides an overview of how
people use computers to retrieve information that they want (search, also known
as information retrieval), to find answers to questions (question answering), and
to browse for things – music, movies, friends, web posts – that they didn’t even
know they wanted (recommendation systems, also known as recommender sys-
tems).

6.1.2 Information need

The task of information retrieval begins with an information need – the informa-
tion that the searcher is searching for. An information need is a type of intent –
something that a user wants. In the case of an information need, the searcher
wants to know some information, like What happened to my old friend Katie
Smith? orWhen did Mandarin and Cantonese diverge? Sometimes, they may want
information that is not textual, such as images, videos, the score of an ongoing
sports game, or directions on a map. Other times, they may intend to do some-
thing, like set a timer, book a flight, or purchase some shoes. (Or they may want
a blend of information and action – they want to know how much a flight to
Guatemala costs, while considering whether to buy one.)

Once a user has formulated an intent in their mind, theymust translate it into a
text query to enter into a search engine. The query may reflect the user’s intent
with more or less clarity. If a user types Chinese history as their query, maybe
they may want the Chinese translation of the word history, or maybe they want
to read about the history of China or of Chinese languages. A well-practiced
searcher may know how to clearly formulate their query given their intent, but
an inexperienced searcher may be frustrated by results of an ambiguous query.
(A user-friendly search engine may suggest followup queries to help the user
clarify their intent – perhaps based on the search histories of other people who
have entered similar queries.)

For many modern search engines, one of the first steps in processing a query
is to map it to an intent (intent recognition, also known as intent classification; see
Chapter 5 on text classification) – does the searcher want to shop, to look at maps
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or images, to translate from one language to another, to use a calculator, or to
just read text? Then the query can be fed to a system specialized for that type of
task. If the searcher wants to know something rather than to do something, then
their intent can be considered an information need, fed to a question-answering
system or a search engine built for text documents.

(1) a. Information need: Want to read a short, accessible overview of the
history of Chinese languages.

b. Possible queries: Chinese history, Chinese history language, Chinese
historical linguistics, Mandarin Cantonese history.

6.1.3 Evaluating results

A search begins with an information need and ends when the user has succeeded
in filling it. How do we measure success?

Of course, we could just ask the user if they are happy, or survey several hun-
dred users in a user-experience study. We could also use implicit behavioral mea-
sures of satisfaction, like whether the user clicks on a page and stays there for a
while before ending their search session (suggesting that they found what they
wanted), or how many people choose to use the search engine (suggesting that
they like it). But it is also valuable to have an explicit, quantifiable evaluation
metric that can be computed automatically without conducting a new round of
user testing each time.

The simplest, most widely used automatic evaluation metrics for information
retrieval are precision and recall. Precision can be defined as the percentage of the
documents returned that are relevant: For example, imagine that a search engine
returns 400 pages for a query, 200 of which are actually relevant to the query (and
thus, ideally, to the information need that underlies it). In this case, precision is
50 percent, or 200 out of 400.

(6.2) Precision = Relevant documents that are returned
All documents that are returned

In contrast, recall can be defined as the percentage of relevant documents that
are returned: If a search engine returns 200 relevant pages, but therewere actually
1000 pages on that topic out there on the web (we missed 800 of them), the recall
is 20 percent (200/1000). Note that the numerator (200 – the number of relevant
documents that are returned) is the same for both precision and recall.

(6.3) Recall = Relevant documents that are returned
All relevant documents
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But how can we know that there are 1000 pages out there, if we can’t find
them? Sometimes, information retrieval systems are evaluated on constrained,
human-labeled datasets where researchers can be omniscient. One historically
important dataset comes from the Text REtrieval Conference (TREC), a series of
queries, documents, and human judgments of whether each document is relevant
to each query. In this toy context, we can calculate the precision and recall for
any search engine that runs over these data. But in real life, it is often impossible
to know how many relevant documents are not being returned in your search.
So, in practice, while recall is a useful concept, it cannot always be calculated
with certainty. In contrast, precision can be easily estimated just by looking at
the documents that are returned.

What would happen if a search engine prioritized only precision, and ignored
recall? A search engine could achieve perfect precision by returning only one
or two pages that are definitely relevant, while leaving out hundreds of other
relevant pages. But the user may have wanted to see those pages too.

What would happen if a search engine prioritized only recall, and ignored
precision? A search engine could achieve perfect recall by returning every sin-
gle page on the web for every single search: The relevant pages are in there
somewhere. The user will be overwhelmed by irrelevant pages in their search
for relevant ones.

Thus, a successful search engine must balance both precision and recall. Some-
times, researchers use a combined score known as the F-measure to reflect both
components at once: The F-measure is defined as (2 ∗ 𝑝 ∗ 𝑟)/(𝑝 + 𝑟), where 𝑝 is
precision and 𝑟 is recall. In our example from above, our precision was 50 percent
(200 of the 400 returned documents were relevant) and our recall was 20 percent
(200 of 1000 total relevant documents were returned), so the F-measure would
be (2 ∗ 0.5 ∗ 0.2)/(0.5 + 0.2), or 28.5 percent – indicating that these search results
are far from the optimal F-measure of 100 percent.

But the search engine with the best F-measure is not necessarily the best
search engine. In reality, users often do not want to look at the 400 documents
returned in our imaginary search, nor even at the 200 relevant ones. They usu-
ally want to glance at the first display page of ten or so results, and then click
on one or two that looks most interesting from a title or snippet that the search
engine displays. In this reality, the results also have to be ranked, so that the
“best” results show up on the first page. How do we decide which results are
the best? Perhaps we should recast relevance as a gradient notion rather than
a binary one, and give higher rankings to documents that are most relevant. Or
perhaps we want to give higher rankings to pages that come from better sources
– perhaps pages from vetted sources; or perhaps those with more traffic, those
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that were updated recently, or those that a lot of other pages link to. Perhaps we
want to give higher rankings to pages that are most relevant to this specific user
– pages that they have visited before, or pages that are popular in their location.
We come back to this idea of personalized search later in the chapter.

However we rank the pages, users care much more about the top page of re-
sults than the rest. And on the top results page, precision is much more impor-
tant than recall. If some of the top-ranked pages are not relevant, the user may
become annoyed; however, if some relevant pages are not among the top-ranked
pages, the user may not care. To capture these priorities, search engines can also
be evaluated using the precision-at-k metric: Starting at the top and looking at
some number 𝑘 of results, what is the precision of these results? For 𝑘 = 1, we
look at the first, top-ranked result. If it’s relevant, then the precision at 𝑘 = 1 is
100 percent. For 𝑘 = 2, we look at the second-ranked result. If it’s relevant, the
precision at 𝑘 = 2 is 100 percent: Two of the top-two results are relevant. If it’s
irrelevant, then the precision at 𝑘 = 2 is 50 percent: One of the top-two results is
relevant. This metric reflects the fact that precision is more important than recall
among the top-ranked results.

6.2 Structured data, knowledge graphs, and ontologies

We begin our tour of information retrieval with structured data. For example, the
Internet Movie Database (IMDB) is a structured database of the film industry, in
which each movie is associated with various fields such as title, actors, director,
plot summary, and date; and each person is associated with their works, a birth
date (perhaps also a death date), and a brief biography.

Structured data are extremely useful. If you want to see a list of all the movies
by your favorite director, it is probably most efficient to look at the structured list
linked from their IMDB profile (or their filmography listed on Wikipedia) rather
than just read free-text webpages containing their name. As another example of
structured data, you can find scholarly articles on Google Scholar, which uses
a structured representation for authors, dates, papers, and citations, along with
the unstructured text of each article. Authors are associated with universities,
coauthors, and papers that they wrote; papers are associated with authors, titles,
dates, and the papers that they cite and those that cite them.

Outside constrained domains such as IMDB and Google Scholar, web search
in general now makes use of structured data in the form of a knowledge graph
(also known as an ontology) – a representation that includes:
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• Named entities (people such as Queen Elizabeth II, countries such as
Guatemala, companies such as Apple, sports teams such as The Lakers,
books such as Anna Karenina).

• Kinds of things, such as those named by nouns (diseases such as flu, species
such as dog, foods such as potato).

• Events (such as the Second World War and the 2024 Olympics).

• Times (years such as 2024, dates such as December 1, 1990, and intervals of
time such as 1900-2000).

• The properties of these entities (people are associated with birthdates,
death-dates, and occupations; events are associated with dates as well as
key participants; companies are associated with stock prices, CEOs, and
the date of their founding; diseases are associated with prevalence and
treatments; foods are associated with their macronutrients).

• Relations between entities and events (between a person and their nation
of residence; a book and its author; a person and their spouse; a person
and the schools they attended; a company and its founder; a country and
its continent; a war and its battles).

• And so on.

When you search for Barack Obama and see a panel containing his picture,
birthdate, height, spouse, schools he attended, and the dates of his presidency,
plus a link to his Wikipedia page, you have found him in the search engine’s
knowledge graph. You also found the basketball coach Katie Smith in the knowl-
edge graph while searching for your friend with the same name. Note, too, that
on Google’s search engine, the bottom of the knowledge graph panel also offers
a list of other related knowledge graph entries that are often searched (perhaps
in the same search session) by people who searched for the current entry: For
BarackObama, it suggests other American presidents aswell as his wife,Michelle
Obama – because the searcher may already be interested in these people, or be-
cause they may become interested in them after the search engine recommends
them.

The knowledge graph is built in part by hand-creating templates of the prop-
erties that can be associated with various types of individuals (for example, a
person has the property of a birthdate), and in part by using Wikipedia informa-
tion panels to automatically populate these templates.

202



6.2 Structured data, knowledge graphs, and ontologies

Google released their knowledge graph in 2012 with the tagline things, not
strings – aiming to augment web search with structure rather than free text. The
knowledge graph is extremely useful for finding reliable factoids about various
well-known entities.

As explained by Peng et al. (2023), it is often difficult to keep the knowledge
graph up-to-date, for example when someone dies, when two companies merge,
when a disease is renamed, or when the knowledge graph itself is updated with
a new category (for example, can e-sports be added to the knowledge graph’s
sports category without incompatibilities?). If the knowledge graph is to be up-
dated automatically by extracting information from text, it’s important not just
that the text is deemed reliable but also that the named entitiesmentioned therein
are correctly identified and disambiguated. Does the Olympics refer to the recur-
ring event or its instantiation in a specific year? DoesMartin Luther King refer to
the famous civil rights activist, his father who had the same name, or the holiday
named after him? Is the abbreviation MLK also correctly linked to these refer-
ents? Should companies or individuals be allowed to update their own informa-
tion in the knowledge graph, or would that policy risk polluting the knowledge
graph with questionable information? For all these reasons, it requires a lot of
human labor to keep the knowledge graph reliable and up-to-date.

You can explore openly available machine-readable knowledge graphs such as
WordNet (Fellbaum 1998), which reflects subset and superset relations between
common nouns, such as the fact that poodles are dogs and dogs are mammals;
and ConceptNet (Speer et al. 2017), which reflects not just that dogs are mammals
but also that dogs bark, have four legs, don’t like being left alone, and are kept
for companionship. These knowledge grahps illustrate the challenges mentioned
above, as when the sameword corresponds to multiple entries in the graph: Does
fan refer to a mechanical cooling device or a human admirer? Both senses are de-
fined in WordNet, but it is not obvious which sense is evoked by a given token of
fan. As another example, WordNet does not contain the social media sense of the
abbreviation DM (direct message), showing that it is difficult to keep knowledge
graphs up-to-date.

Your friend Katie Smith may not be famous enough to appear in Google’s
knowledge graph, but she may be in the knowledge graph of a social media site,
which associates people with their social connections. Further information about
her may also lie within the unstructured data consisting of billions of free-text
webpages on the internet.
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6.3 Question answering

Some information needs have a single correct answer that can ideally be found
automatically: How many centimeters are in an inch? When was Barack Obama
born? Where was Barack Obama born?, and so on. Here, it would be most efficient
for the search engine to return an actual answer, rather than some relevant web
pages that might contain the answer somewhere – especially if the user is on
a mobile phone (where it’s hard to read a lot of documents) or if the user is
requesting spoken information from a dialog system (where the user does not
have the patience to listen to entire documents read aloud – see Chapter 8). This
task is known as (automatic) question answering.

For many such factoid questions (Where was Barack Obama born?), the answer
is already somewhere in the knowledge graph and the task is to match the ques-
tion to the right part of the graph. For other factoid questions (How prevalent is
diabetes?), the answer may appear somewhere in a respected webpage such as
Wikipedia or the Centers for Disease Control, and the task is to find the most
relevant paragraph and extract the correct answer. Such a task falls under the
umbrella of (automatic) reading comprehension – an automated attempt to “read”
a paragraph and answer questions about the information that it contains.

Historically, question-answering systems involved a large number of separate,
human-built pieces – classifying the desired answer type (person, date), trying
to match the syntax of the question to the syntax of sentences in a relevant para-
graph using various matching rules, and so on. IBM’s Jeopardy-winning Watson
system involved many such pieces. More recently, the complexity of question-
answering systems has morphed into the complex representations learned in
a bottom-up format (using human-designed architectures, trained on human-
curated data) by neural networks, introduced in Chapter 5.

Recall that a neural network is a system trained to predict an output from some
inputs. Usually, the input is formatted as a vector or matrix of numbers, and it is
passed through a series of layers of nodes, finally ending with an output (usually
a number or vector). Along the way, each node does some simple addition and
multiplication to turn its input into an output, which it then passes along to the
next layer of nodes. For supervised tasks with a correct answer, the network is
trained on some data that have already been labeled with correct answers; the
data are passed through the network, then the network’s actual output is com-
pared to the correct output; and then all of the nodes’ calculations are updated
in order to do slightly better next time. (The number of nodes and layers in the
network, and the way the input is mapped into a vector/matrix, are up to the
human researcher to decide). With enough data and training, such networks can
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“learn” to do very well on a variety of tasks. After the network has been trained
on some labeled training data, it can be tested on some test data (also labeled)
that it has not seen before, and finally it can be used on unlabeled data more or
less similar to what it was trained on.

In the context of question-answering, researchers often use SQuAD (the Stan-
ford Question Answering Dataset) created by Rajpurkar et al. (2016). SQuAD is a
set of 150,000 passage/question/answer triplets, where the passage is a paragraph
from Wikipedia; the question is a factoid question related to the topic of the pas-
sage; and the answer is either a string of words contained within the passage,
or (for 30 percent of the data) “No Answer” if the question is not actually an-
swered by the passage. The questions and answers were written by gig workers
on Amazon’s Mechanical Turk.

For example, the following passage about Fresno appears in SQuAD:

Passage: Fresno (FREZ-noh), the county seat of Fresno County, is a
city in the U.S. state of California. As of 2015, the city’s population
was 520,159, making it the fifth-largest city in California, the largest
inland city in California and the 34th-largest in the nation. Fresno
is in the center of the San Joaquin Valley and is the largest city in
the Central Valley, which contains the San Joaquin Valley. It is ap-
proximately 220 miles (350 km) northwest of Los Angeles, 170 miles
(270 km) south of the state capital, Sacramento, or 185 miles (300
km) south of San Francisco. The name Fresno means “ash tree” in
Spanish, and an ash leaf is featured on the city’s flag.

Here are some of the questions and answers associated with this passage in
SQuAD:

• Question: What is featured on the city of Fresno’s city flag?

– Correct Answer: (An) ash leaf.

• Question: What does Sacramento mean in Spanish?

– Correct Answer: No answer.

Using such a dataset with labeled correct answers, researchers can build a neu-
ral network that takes the passage and the question as input, and tries to output
the correct answer (“No Answer” or the substring of the passage containing the
answer). The most successful such neural networks use a tool known as attention
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– a layer of the network that is specifically trained to give the highest weight to
the words in the query and/or the passage that most strongly predict the right
answer. Using attention and other complex techniques, various research teams
have performed as well or better than a human at this specific task.

These advances are extremely impressive, and similar techniques are used to
answer factoid questions on various search engines. Of course, in the real world,
the system may not be given a single relevant passage along with a given query;
it may have to find such a passage, in Wikipedia or elsewhere, using the same
process that you use yourself when you search for relevant documents online.
But some information needs do not have a factoid answer that can be found
on Wikipedia or in a knowledge graph (What happened to my old friend Katie
Smith?, Should I quit my job?, and so on). In these cases, the user may use the
search engine to find relevant documents, and then review those documents by
hand.

6.4 Search engines for specialist professionals

Today, search engines are used by everyone with an internet connection. But his-
torically, search engines were the domain of specialists, such as librarians, who
had access to certain digital collections. Today, some search engines (Google
Search, Bing) are designed for general use; some (Google Scholar, used by re-
searchers) are publicly available but designed for the needs of a specific popu-
lation; and some (Westlaw and LexisNexus, used by attorneys) require a paid
subscription and are used only by specialists. Because it is informative to con-
sider how the design of a search engine depends on the intended user and their
information needs, our tour stops next at theWestlaw Edge search engine owned
by Thomson Reuters.

Westlaw holds a database of court opinions, laws, legal academic articles,
briefs filed by the parties in a given case, and other material. The data are semi-
structured, combining free text documents with metadata about the document
type (opinion, brief, statute, etc), the judge, law firm, jurisdiction (federal laws,
federal judicial districts, or states), date, citations to and from each document,
and information about whether various rulings have been upheld or overturned
by higher courts.

A professional in the United States legal system might have an information
need such as:

• I want to find and cite (current, not overruled) precedent, within my spe-
cific legal jurisdiction, for my preferred interpretation of a statute.
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• I’m arguing an immigration case before Judge Chang. How sympathetic is
Judge Chang likely to be to my case? What has Judge Chang previously
ruled or written on the topic of immigration?

• I’m trying to show that the plaintiff in this case was illegally fired as retal-
iation for blowing a whistle on wrongdoing within a company. What are
the elements of illegal whistle-blower retaliation that have to be demon-
strated? What is the statutory definition of illegal whistle-blower retali-
ation? How have previous opinions applied this definition in cases with
similar facts?

These are complex information needs, so the search functionality of Westlaw
is equally complex, involving a specialized syntax:

• JU(Chang) immigration, restricted to Judge Chang’s specific jurisdiction by
checking a filter box, yields immigration cases argued before Judge Chang,
and opinions that she has written.

• (whistleblow! “whistle blow!”) /p (retaliat! fir!), again restricted to a desired
jurisdiction by checking a filter box, yields documents containing whistle-
blower, whistleblowing, whistleblowers, whistle blower, and so on (inwhistle-
blow!, the exclamation mark ! is a wildcard, matching any sequence of let-
ters at the end of a word beginning with whistleblow), in the same para-
graph (/p) as any form of the words retaliate, retaliation, retaliated or fired,
firing, fire. The space acts as a boolean OR, so we can match whistleblow!
OR “whistle blow!”. (The ampersand &, not used in this query, is a boolean
AND). In contrast, the quotation marks around “whistle blow!” ensure that
the space between these two words is not interpreted as disjunction, in-
stead requiring that an exact match (plus any word ending on blow) must
appear in the relevant documents.

These search queries are opaque to a non-specialist, using many advanced fea-
tures, which a general-use searcher may find intimidating.

The queries take advantage of Westlaw’s structured metadata: JU(Chang) re-
stricts the search to documents related to judges named Chang; clicking on vari-
ous checkboxes can filter one’s results to specific dates and jurisdictions. In con-
trast, the words and strings in the queries look for matches with unstructured
free text.

The wildcard feature (whistleblow!) illustrates the idea of regular expressions –
patterns that can be matched in text strings, such as the string whistleblow fol-
lowed by any number of alphabetical characters before a space. (Please see Under
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the Hood: 6.4.1 for more detail). Here, the wildcard is used to isolate the stem of
the words whistleblower, whistleblowing, and so on – the part that is consistent
across different grammatical contexts. A single stem (whisteblow-) may be asso-
ciated with several different lemmas (the form of a word that would appear in
a dictionary, such as whistleblow and whistleblower), and many different gram-
matically inflected forms (whistleblowers, whistleblowing, and so on). Stemming
and lemmatizing words is especially important inmorphologically rich languages,
where words are inflected for all sorts of grammatical properties – nouns may
be inflected for their gender, number, or their syntactic role in a sentence; verbs
may be marked for their tense/aspect, and so on.

Westlaw allows searchers to request combinations of terms based on their
proximity to one another: /s makes sure that the words on either side appear
within the same sentence, /p within the same paragraph, /3 within three words,
and so on. Proximity search is especially important for long documents such as
legal filings, where it’s much more meaningful, when searching for documents
about retaliation against whistleblowers, to findwhisteblow! and retaliat! in close
proximity than to find them pages apart.

Westlaw also illustrates boolean search – finding combinations of terms in a
document using the logical operators OR, AND, and NOT. In Westlaw, the space
(the default way of conjoining terms) works asOR, the ampersand &meansAND,
and the percent sign % means NOT. Combined with parentheses, these operators
can express quite complex queries – with the risk of typos increasing alongside
complexity:

(4) a. fir! & retaliat!
b. fir! retaliat!
c. retaliat! & (% fir!)

6.4.1 Boolean search

How are boolean searches carried out? First, basing our discussion onManning et
al. (2008), the search engine crawls through all the documents to build a term-by-
document matrix. The term-by-document matrix shows which terms (i.e., words)
appear in which documents. Leaving the legal domain for simplicity, we can get
a sense of what happens by looking at part of a term-by-document matrix for a
few 19th-century British novels in Table 6.1 – Emma and Pride and Prejudice, by
Jane Austen; and Wuthering Heights, by Emily Brontë. We use words here, but
lemmas or stems may also be used (see above). A 1 means that the term appears
somewhere in the document (regardless ofwhether it occurs once ormany times),
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and a 0 means that it appears nowhere. (We could also use the number of times
that each word occurs in each document, rather than a binary representation of
whether it occurs or not; both strategies are useful.)

Table 6.1: Excerpt from term-by-document matrix for 19th-century
British novels.

Emma P & P W. Heights

computer 0 0 0
curtsey 1 1 0
dogs 0 0 1
farmer 1 0 1
ghost 0 0 1
heath 0 0 1
house 1 1 1
love 1 1 1
monster 0 0 1
phone 0 0 0
the 1 1 1
whist 1 1 0

Here, the terms are rows, the documents (novels) are columns. For example,
the second row indicates that curtsey (an old-fashioned ladies’ bow) appears in
Emma and Pride and Prejudice but not in Wuthering Heights. If you are a stu-
dent of 19th-century British literature, you may know that Emma and Pride and
Prejudice are light-hearted romantic stories about aristocrats who curtsey and
play card games such as whist (in Emma, one character works as a farmer ; in
Pride and Prejudice, all of the main characters are professional aristocrats), while
Wuthering Heights is a gothic tragedy about isolated rural people who live on
a heath (a shrub-covered land) with farmers and dogs and believe in fantastical
creatures such as ghosts. (All three novels were written before the invention of
the computer or the phone). You may notice that this term-by-document matrix
reveals that (the columns representing) Jane Austen’s two novels are more simi-
lar to one another than to (the column representing) Emily Brontë’s Wuthering
Heights. (We could demonstrate this mathematically by doing some calculations
that determine the similarity between two vectors, but you can already see it
intuitively). In our discussions of words as vectors in Chapter 4 and documents
as vectors in Chapter 5, we already saw that the column (vector) associated with
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a document reveals its similarity to other documents; the same powerful idea
extends to information retrieval.

In building a term-by-document matrix, you might decide to leave out very
common stop words such as I, the, and of – words that appear in practically ev-
ery English-language document, and thus might take up a lot of storage space
while not distinguishing any one document as relevant. On the other hand, some
searches require stop words, such as the band called The Who. As information
storage gets cheaper every day, modern systems usually keep stop words.

Even if information storage is getting cheaper, our term-by-document matrix
is somewhat inefficient in that it is very sparse. Most words don’t occur in most
documents, so most values in the matrix are 0.

But there is another way to structure these data without all the inefficient
zeroes, namely what is called an inverted index – also known as a postings list.
Here, each document is associated with a unique ID (Emma is Document1, Pride
and Prejudice is Doc2, Wuthering Heights is Doc3), and each term is associated
with a (sorted) list of the document IDs where it appears.

computer → Doc5, Doc6, Doc8, Doc10, …
curtsey → Doc1, Doc2, Doc10, Doc15, …
dogs → Doc3, Doc6, Doc7, Doc8, …
farmer → Doc1, Doc3, Doc11, Doc12, …
ghost → Doc3, Doc15, Doc18, …
heath → Doc3, Doc200, …
house → Doc1, Doc2, Doc3, Doc5, …
love → Doc1, Doc2, Doc3, Doc7, …
monster → Doc3, Doc18, Doc20, …
phone → Doc5, Doc6, Doc10, Doc11, …
the → Doc1, Doc2, Doc3, Doc4, …
whist → Doc1, Doc2, Doc180, …

Figure 6.1: Excerpt from inverted index.

This is a very efficient structure: If the query contains the word farmer, for
example, a single access to the inverted index gives us a list of all the documents
that word appears in. For small documents such as novels, you may wonder why
we won’t just write code to read through the entire text file any time we want to
find something in it; but for data as massive as the internet, an index can make
searching much faster.

In a boolean search such as farmer AND love, we need to combine information
from two different lines of the inverted index. This is quite straightforward: Sim-
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ply take the intersection of the two document lists that farmer and love point to.
In this case, the intersection will certainly contain Emma (Doc1) and Wuthering
Heights (Doc3), and probably other documents not shown in Table 6.1.

For evenmore complex queries, there are steps that can be taken to ensure that
query processing is efficient. Consider if someone searches for farmer AND love
AND house. In this case we have to intersect three lists.We know that the result of
intersecting three lists is the same as first intersecting two lists, then intersecting
the result with the third list. It is up to us to decide which two lists should be
handled first, and which list should be left until last. This choice is not going
to affect the final result, but it can affect the efficiency of the process of getting
to the result. Intersecting lists takes longer the longer the lists are. For example,
love has a long list of documents, because novels often involve love. If we take
another frequent word, such as house, the result will be another long list, and it
is likely that their intersection is lengthy, too. But farmer is less common, so this
list is shorter. For efficiency, we can intersect the shortest lists first. This is likely
to be effective, because the intersection of two short lists is likely to be short.
Thus, internally, the search engine looks at the query words, finds the length of
their document lists, and reworks the query to specify the order of operations. In
this case, (farmer AND house) AND love is more efficient than farmer AND (house
AND love).

Strictly speaking, this strategy does not guarantee optimal efficiency, because,
for example, it could turn out that the intersection of two lists that are short but
very similar will be longer than the intersection of two other lists that are long
but very dissimilar. But, in practice, the strategy of doing the shortest lists first
is a very good one, and saves a lot of time and effort. It’s also meaningful that
the documents are sorted in order of their DocID; this way, we don’t have to
compare every single document on the postings list for farmer to every single
document on the postings list for house, but instead can go through the lists in
order, inferring that Doc2 is not in the intersection of farmer and house because
the postings list for farmer skips from Doc1 to Doc3.

Of course, the basic methods described so far cannot handle proximity search
(farmer in the same sentence as love, whistleblower within three words of retali-
ation) or exact-match for multi-word strings (“Mr. Weston,” “life insurance” ). To
keep track of the positions of words in a document, we may want to use a posi-
tional index instead of just a simple inverted index. An inverted index maps each
term to a list of the DocIDs where it appears; a positional index maps a term to
the DocIDs where it appears, and further records, for each such DocID, a list of
the positions in the document where it appears (perhaps splitting the document
at every space, labeling the first string-between-spaces as Position1, and so on).
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We can illustrate with three short toy documents, excerpts from the Austen and
Brontë novels discussed above:

• Doc1: It is a truth universally acknowledged, that a single man in possession
of a good fortune, must be in want of a wife.

• Doc2:Mr. Weston was a man of unexceptionable character, easy fortune, suit-
able age, and pleasant manners.

• Doc3: Instead of leaving Catherine’s fortune at her own disposal, he deter-
mined to put it in the hands of trustees for her use during life.

Catherine’s → Doc3: position4, …
fortune → Doc1: position16; Doc2: position10; Doc3: po-

sition5, …
it → Doc1: position1; Doc3: position14, …
man → Doc1: position10, Doc2: position5, …
of → Doc1: position13; Doc2: position5; Doc3: po-

sition2, position18, …
Weston → Doc2: position2, …

Figure 6.2: Excerpt from positional index.

With a positional index, we can find bigrams such as Mr. Weston, and cases
where fortune appears within ten words of man; but we would still need a richer
structure to find instances of two words within the same sentence or the same
paragraph. You may notice that the positional index now also records informa-
tion about how often eachword occurs in each document, rather than just record-
ing whether it occurs at all; such count data can reveal further important simi-
larities and differences between documents.

In sum, this section has introduced variousways that terms and documents can
be indexed, and how we can apply set operations to an inverted index to carry
out boolean searches. These ideas are important in the history of information
retrieval, and are still used in tools such as Westlaw to this day. But it is also
important to consider why boolean search is not widely used in modern search
engines.

For one thing, non-specialist users may find the complex syntax of boolean
queries (and other advanced features offered onWestlaw) to be counter-intuitive.
Interestingly, trained Westlaw users seem to enjoy using Westlaw’s complicated
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query syntax, and even prefer to use it when a free-text query might give equally
good results. Like stick-shift drivers, perhaps Westlaw users feel that they have
more control over the search when they design their queries by hand.

A bigger problem with boolean search is that searches using OR have very
high recall but low precision (relevant documents are returned, but they are over-
whelmed by an even greater number of irrelevant documents), while boolean
searches using AND have high precision but low recall (a lot of the documents
that are returned are relevant, but a lot of relevant documents are not returned).
These logical operators are too rigid to find a middle ground.

On the other hand, the problem with OR searches (low precision, high recall)
can be partly addressed with a good ranking system that puts the most relevant
results at the top of the page; that way, at least the top few results have good
precision, which are the most important results for users anyway. The problem
with AND searches (high precision, low recall) cannot be so easily addressed
with a ranking system, and perhaps this is why the space – the default way of
combining words – is interpreted as OR in Westlaw.

Under the Hood 10: Regular expressions

Any time we have to match a complex pattern, regular expressions are
useful. A regular expression is a compact description of a set of strings.
So, a regular expression can compactly describe the set of strings contain-
ing all zip codes starting with 911 (in this case, the regular expression is
/911[0-9][0-9]/, which is explained below).

In formal language theory, language is treated mathematically, and a set
of strings defines a language. For instance, English is defined as the set of
all legitimate English sentences. As in other formalisms, regular expres-
sions as such have no linguistic contents; they are simply descriptions of
some set of strings encoding a natural language text. While some patterns
cannot be specified using regular expressions (see Under the Hood 2.5.4
on grammar complexity), regular expressions are quite suitable for our
purposes.

Regular expressions can consist of a variety of different types of special
characters, but there is a very small set of them. In their most basic form,
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regular expressions have strings of literal characters: Some examples in-
clude /c/, /A100/, /natural language/, and /30 years!/. In other words,
we can search for ordinary strings just as we would expect, by writing
them out. One note on the representation of putting regular expressions
between forward slashes: This is a common representation, but in the next
section we will see that each application has its own way of referring to
regular expressions.

To allow for different possibilities, we can add disjunction. There is ordi-
nary disjunction, as in /devoured|ate/ and /famil(y|ies)/, which allows
us to find variants of words – in this case, devoured and ate, in the for-
mer case, and family and families, in the latter – and there are character
classes, defined in brackets, to specify different possibilities. /[Tt]he/, for
example, matches either The or the; likewise, /bec[oa]me/ matches become
or became. Finally, we can specify ranges, as in /[A-Z]/, which matches
any capital letter. For our earlier problem of finding all zip codes starting
with 911, then, we can specify / 911[0-9][0-9] /, which nicely excludes
911 when followed by a space.

In addition to disjunction, we can use negation to specify characters that
we do not want to see. We use the character class notation ([...]), with ̂
denoting that it is not this class. For example, /[ ̂a]/ refers to any symbol
but a, and /[ ̂A-Z0-9]/ indicates something which is not an uppercase
letter or number.

Regular expressions begin to display their full range of power in the
different counters which are available. These counters allow us to spec-
ify how often an item should appear. First, we can specify optionality
through the ? operator; ? means that we can have zero or one of the pre-
viously occurring item. For example, /colou?r/ matches either color or
colour. Secondly, we have what is called the Kleene star (*), which allows
for any number of occurrences of the previous item (including zero occur-
rences) – e.g., /[0-9]* years/. The third and final counter is very similar,
but it stands for one or more occurrences of the previous element and is
represented by +. So /[0-9]+ dollars/ requires there to be at least one
digit, but possibly more.

Another operatorwhich allows us to specify different possibilities is the
period (.), a wildcard standing for any character. Thus, the query /beg.n/
designates that there can be any (single) character between beg and n

214



6.4 Search engines for specialist professionals

(begin, began, beg!n, etc.).
Becausewe have defined special uses for a variety of characters, we also

want a way to search for those actual characters. For example, how canwe
search for a question mark (?) when it has a special meaning? To do this,
we use escaped characters, which allow us to specify a character which
otherwise has a special meaning, and we notate this with a backslash: \*,
\+, \?, \(, \), \|, \[, \].

With a variety of different operators, it can sometimes be confusing
as to which applies first. But there are rules of operator precedence, just
as in arithmetic, where, for example, in evaluating 4 + 5 ∗ 6, we obtain
34 because multiplication has higher precedence than addition. Likewise,
there is an order of precedence for regular expressions, as summarized in
the table. Fromhighest to lowest, this precedence is: parentheses, counters
(* + ?), character sequences, and finally disjunction (|). So, if we see /ab|
cd/, this matches either ab or cd because character sequences have higher
precedence than disjunction. (If disjunction had higher precedence, we
would match abd or acd.)

Operator Notation

1. Parentheses (...)
2. Counters ?, *, +
3. Literals a, b, c, ...

Escaped characters \?, \*, \[, ...
Wildcard .

4. Disjunction |, [...]
Negation [ ̂...]

To fully illustrate how regular expressions work, we are going to walk
through a tool used on a variety of platforms to find sequences in text.
This tool is called grep, and it is a powerful and efficient program for
searching in text files using regular expressions. It is standard on Unix,
Linux, and Mac OSX, and there are also various ports for Windows. The
version of grep that supports the full set of operators mentioned above
is generally called egrep (for extended grep). By the way, grep stands for
“grab regular expressions and print”.
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We list a variety of examples below and, for each, we assume a text
file f.txt containing, among other strings, the ones that we mention as
matching. The purpose of grep or egrep is to return the lines which con-
tain a string matching the regular expression.

• Strings of literal characters:

egrep 'and' f.txt

matches lines with: and, Ayn Rand, Candy, standalone, …

• Character classes:

egrep 'the year [0-9][0-9][0-9][0-9]' f.txt

matches lines with: the year 1776, the year 1812a.d., the year
21112, …

• Escaped characters:

egrep 'why\?' f.txt

matches lines with: why?, …

but does not match lines with: why so serious, …

• Disjunction (|):

egrep 'couch|sofa' f.txt

matches lines with: couch, sofa, couched, …

• Grouping with parentheses:

egrep 'un(interest|excit)ing' f.txt

matches lines with: uninteresting, unexciting

but does not match lines with:

uninterested, super-exciting

• Any character (.):

egrep 'o.e' f.txt

matches lines with: ore, one, sole, project, …
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• Kleene star (*):

egrep 'sha(la)*' f.txt

matches lines with: sha, shala, shalala, …

but does not match lines with:

shalaaa, shalashala, …

• One or more (+):

egrep 'john+y' f.txt

matches lines with: johny, johnny, johnnny, ...

but does not match lines with:

johy

• Optionality (?):

egrep 'joh?n' f.txt

matches lines with: jon, john, jones, …

You can practice regular expressions online using tools such as
Regex101. They can be fiddly, so don’t get discouraged if you have to prac-
tice for a while before you feel comfortable!

6.5 Search engines for general use

Since the late 1990s, search engines have become widely accessible to non-
specialist users. Practically every website or app offers a search functionality of
some kind, even if it only allows you to search within that specific website (to
find an old email in your inbox, or to look for Reddit posts about your favorite
movie). But most prototypically, you enter a simple text query into a dedicated
search engine such as Google or Bing and get back thousands of open-domain
documents from all over the web, ranked by relevance and quality. Often these
search results give you what you want on the first page of top-ranked results.

We just saw that Westlaw allows users to filter results based on structured
metadata about judges, jurisdiction, and so on. In contrast, regular open-domain
webpages are relatively unstructured, so open-domain web search usually does
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not allow such filtering. But the word unstructured may be misleading, because
most documents have some sort of structure, even if it is not explicitly labeled. A
webpage probably has a title and some sub-headers or meta tags (<META name =
"keywords" content = "travel,Malta">) that can be identified from its HTML.
It is probably also associated with the date on which it was created or updated. A
search engine can use such metadata to give higher rankings to pages that men-
tion query terms in the title rather than just the body, or to favor more recently-
updated pages.

We also saw that Westlaw users can specify complex queries using a special-
ized syntax. In contrast, users of open-domain web search often do not have the
patience for such opaque options; “double quotes” for exactly-matching strings
is the only popular advanced feature in the realm of text. In many cases, it is not
clear if one’s results would be meaningfully improved by a more complex query
anyway.

Finally, we saw that Westlaw only indexes documents from the legal domain,
which is finite in size and relatively high quality (it’s unlikely to find spam). In
contrast, the open-domain internet is massive (at a recent estimate, there are over
1.5 billion webpages, of which 200 million are active), and all levels of quality are
represented. Because the web is so vast and the quality so variable, it is especially
important for results to be ranked in such a way that the top page of results best
address the user’s information need. The ranking of results should consider (i)
the relevance of each document to the query and the information need that it
represents, viewing relevance as a gradient rather than a binary concept; and
(ii) the quality of each document – the degree to which it can be considered
trustworthy.

Under the Hood 11: Finite-state automata

Regular expressions are closely related to finite-state automata (FSAs),
which are abstract mathematical models of computation. A finite-state
automaton is a hypothetical machine that can be in exactly one of a fi-
nite number of states at a given time. We can use a graph to visualize its
potential states and sequences thereof.

Imagine a finite-state automaton that matches a single letter a. It has
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two states, 1 and 2, and one edge to link them. This edge is labeled with
a. There is a start arrow marking state 1 as the initial state, and special
formatting (a double circle) marking state 2 as final. The idea of a finite-
state automaton is that it matches all the paths that can go from the initial
state to the final state. This automaton is boring: It has only one path and
the only sequence it can match is the single letter a.

1start 2
a

We say that the automaton generates the “language” (set of strings) cor-
responding to the paths in the graph. The language generated by our sim-
ple automaton is just the sequence containing the single letter a. Defining
the automation in terms of the strings it accepts, this automaton accepts
{a}.

An even simpler automaton has one state, which is both initial and
final, and no loops at all; the set of strings accepted by this automaton is
the empty set {}.

1start

On the other hand, we can make our system more complicated, by al-
lowing b and c as well as a. Now our language generates three different
one-letter strings – {a, b, c}.

1start 2

a
b

c

Our next automation is more interesting:
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1start 2

a

a
b

c

Here, we havemade an edge called awhich loops around asmany times
as necessary, then finishes off with a choice of a, b, or c. This formulation
is powerful, because it describes an infinite language consisting of all the
strings that start off with a sequence of (any number of) a’s and finishes
with a, b, or c. This pattern can also be described by the regular expression
/a*(a|b|c|)/. This automaton accepts an infinite set of strings – {aa, ab, ac,
aab, aac, aaab, aaac, …} and so on: There is no upper limit on the number
of a’s.

It turns out to be useful to think of regular expressions as a notation
for finite-state automata. That is, when we write down a regular expres-
sion, it is a precise description of some finite-state automaton. Going the
other way, if you have a finite-state automaton, you can write it down
as a corresponding regular expression. We say that finite-state automata
provide the semantics for regular expressions. By semantics, we mean a
mathematically precise meaning.

More generally, finite-state automata are important in formal language
theory, the study of which patterns can be generated by which sets of
rules.

6.5.1 Ranking results by relevance

First, how do we automatically quantify the relevance of a document to a query?
When you search for Do dogs need raincoats?, a relevant document is likely to in-
clude words from your query – especially the more distinctive words or lemmas,
dog, raincoat, and perhaps need, more than the extremely common word do. A
relevant document probably also uses these words frequently, at the beginning
of the document or in the title, and in close proximity to one another. Most in-
tuitively, a relevant document is probably similar to the query, in the sense that
they probably contain similar words.
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We saw above that a term-by-document matrix can quantify some intuitions
about the similarity between two documents: Two documents are more similar if
their columns (vectors) in the term-by-document matrix are more similar. Let’s
make that idea more mathematically precise using a query and three short doc-
uments:

• Query: Do dogs need raincoats?

• Doc1: Raincoats for dogs? Dogs dislike raincoats!

• Doc2: Shop fashion for pets

• Doc3: Need raincoats for fashion

Now, let’s make a term-by-document matrix (Table 6.2).

Table 6.2: Term-by-document matrix for the query Do dogs need rain-
coats? and three documents that may be relevant to this query.

Query Doc1 Doc2 Doc3

do 1 0 0 0
dogs 1 2 0 0
need 1 0 0 1
raincoats 1 2 0 1
for 0 1 1 1
dislike 0 1 0 0
shop 0 0 1 0
fashion 0 0 1 1
pets 0 0 1 0

We mentioned above that such a matrix could use a 0 when a term doesn’t
occur at all, and a 1 when it appears at least once (which is all we need for a
boolean search), but that we could also choose to use the actual number of times
that the term appears in each document. Here, we take the latter strategy, so
that our term-by-document matrix counts the number of times that each term
appears in each document; dogs appears twice in Doc2, so there is a 2 in that
column.

Eventually, we will want to use some vector math to quantify the similarity
between documents, or between a document and a query. But before things get
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too complicated, just look at the query and the documents, look at the term-by-
document matrix, and use your intuition to decide which document you think is
most similar to (and thus most relevant to) the query.

Now for the mathematical details. In order to quantify the intuitive notion of
similarity between documents (or between a document and a query), we first
need to calculate the length of each vector. We begin with a vector 𝑥 , with 𝑛
elements [𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛]. The vector length of 𝑥 , written as |𝑥 |, is defined as:

(6.5) |𝑥 | = √𝑥21 + 𝑥22 + 𝑥23 + …𝑥2𝑛
The first document (column vector) in our term-by-document matrix is the

query, Do dogs need raincoats, represented as the vector [1, 1, 1, 1, 0, 0, 0, 0, 0]. Its
length is defined as:

(6.6) √12 + 12 + 12 + 12 + 02 + 02 + 02 + 02 + 02 = √4 = 2

The next column vector in our matrix is Doc1, Raincoats for dogs? Dogs dislike
raincoats, represented as the vector [0, 2, 0, 2, 1, 1, 0, 0, 0]. Its length is thus:

(6.7) √02 + 22 + 02 + 22 + 12 + 12 + 02 + 02 + 02 = √10 = 3.16

Calculated as described, the final row of our term-by-document matrix now
records the length of each vector.

Table 6.3: Term-by-document matrix with vector lengths.

Query Doc1 Doc2 Doc3

do 1 0 0 0
dogs 1 2 0 0
need 1 0 0 1

raincoats 1 2 0 1
for 0 1 1 1

dislike 0 1 0 0
shop 0 0 1 0

fashion 0 0 1 1
pets 0 0 1 0

length 2 √10 2 2
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Now that we have a vector and a length for the query as well as each document,
we want to calculate the similarity between the query vector and each document
vector. We do this using cosine similarity, which measures the angle between two
vectors in an abstract vector space. Intuitively, two vectors are more similar if
each of their elements are similar: Our query is similar to Doc1 in that they both
contain the words dogs and raincoats.

Before we can define cosine similarity, we have to define the dot product be-
tween two vectors, 𝑥1 and 𝑥2, which must have the same number of elements.
𝑥11 is the first element of 𝑥1, 𝑥21 is the first element of 𝑥2, 𝑥12 is the second
element of 𝑥1, and so on.

(6.8) 𝑥1 • 𝑥2 = (𝑥11 ∗ 𝑥21) + (𝑥12 ∗ 𝑥22) + (𝑥13 ∗ 𝑥23) + … (𝑥1𝑛 ∗ 𝑥2𝑛)

Let’s illustrate by calculating the dot product of our query [1, 1, 1, 1, 0, 0, 0, 0,
0] and Doc1 [0, 2, 0, 2, 1, 1, 0, 0, 0].

(6.9) 𝑞•𝐷𝑜𝑐1 = (1∗0)+(1∗2)+(1∗0)+(1∗2)+(0∗1)+(0∗1)+(0∗0)+(0∗0) = 4

Finally, we can calculate the cosine similarity between two vectors (between
documents, or between a query and a document). The cosine similarity between
𝑥1 and 𝑥2 is defined as their dot product divided by the product of their lengths:

(6.10) 𝑥1 • 𝑥2
|𝑥1| ∗ |𝑥2|

We already saw that the dot product of our query and Doc1 is 4, the length of
the query is 2, and the length of Doc1 is √10. Thus, their cosine similarity is:

(6.11) 4
2 ∗ √10

= 0.63

A maximal cosine similarity of 1 means that the documents are identical, so a
cosine similarity of 0.63 indicates that these two documents are pretty similar.

Using the same method, we can calculate the cosine similarity between our
query and every other document – and between every document and every other
document.

• Query: Do dogs need raincoats?

• Doc1: Raincoats for dogs? Dogs dislike raincoats!

• Doc2: Shop fashion for pets
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• Doc3: Need raincoats for fashion

For example, the top-left corner of this matrix indicates that the query is iden-
tical to itself. The top row, second column (0.63) indicates that the query and
Doc1 have a cosine similarity of 0.63. And so on.

Table 6.4: Cosine similarities of each document to each other docu-
ment.

Query Doc1 Doc2 Doc3

Query 1 0.63 0 0.50
Doc1 0.63 1 0.16 0.47
Doc2 0 0.16 1 0.50
Doc3 0.50 0.47 0.50 1

This matrix quantifies some intuitive results. As expected, the document most
similar to our query is Doc1, because they both mention raincoats and dogs. The
document least similar to the query is Doc2, because none of the words over-
lap. The document most similar to Doc2 (shop fashion for pets) is Doc3 (need
raincoats for fashion), because they both contain the words for and fashion. The
math may seem complicated, but the results are exactly what we would want.
Cosine similarity is used to quantify the similarity between columns (vectors) in
a term-by-document matrix.

This basic idea can be made fancier in all sorts of ways, for example to take
advantage of the fact that a word like pets should be considered similar to a
word like dogs even if they are different words. To keep this discussion acces-
sible, we will limit ourselves to one historically important refinement of the
document-similarity calculation, which gives greater weight to distinctive words
such as dogs and raincoats over more common words such as of. This refinement
is known as TFIDF weighting – weighting by term frequency (tf) and inverse doc-
ument frequency (idf).

We’ve already been weighting words by their term frequency. We have just
been using the raw count of each word in each document, which makes sense
because all our documents are about the same length, but if the documents vary
in length then one could also divide by the total number of words in each docu-
ment.
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The inverse document frequency of a term 𝑡 is calculated with respect to the
entire collection of documents, 𝐷. It is defined as the log of (the total number of
documents) divided by (the number of documents containing the term 𝑑).

(6.12) log ( 𝑁
|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}|)

For example, our collection contains three documents (Doc1, Doc2, and Doc3
– ignoring the query for now), so 𝑁 = 3. There are two documents that contain
the word dogs. So the inverse document frequency of dogs is log(3/2) = 0.17. In
the same collection of documents, there are three documents that contain the
word for – all three of them use this common word. So the inverse document
frequency of for is log(3/3) = 0.

The math may seem complicated, but the idea is that a higher inverse docu-
ment frequencymeans that a term is more distinctive among a collection of docu-
ments. If the term appears in every document, it is not distinctive at all, and thus
doesn’t tell us much about the relevance of any one document. But if the term
appears only in a few documents, then it is quite distinctive, and maybe mean-
ingful for relevance. Inverse document frequency was proposed by the British
computer scientist Karen Spärck Jones (1972).

TFIDF is the product of term frequency and inverse document frequency. The
TFIDF of dogs in Doc1, among our collection {Doc1, Doc2, Doc3}, is its term fre-
quency (which is 2) times its inverse document frequency (which is 0.17), which
comes to 0.34. The TDIDF of for in Doc1 among our collection {Doc1, Doc2, Doc3}
is its term frequency (which is 1) times its inverse document frequency (which
is 0), which comes to 0. Therefore, TFIDF weighting means that the word dogs
says more about the relevance of Doc1 to a query than the word for.

We could remake our term-by-document matrix using TFIDF weightings in-
stead of just count data, and rerun our calculations of cosine similarity. (You
can try it out on your own – with a pen and paper or some code.) But what’s
even more important than the calculation is the intuition. Using TFIDF weight-
ings would lower the similarity between Doc2 and Doc3, since their similarity
was based only on the fact that they both share the extremely common and non-
distinctive word for. TFIDF weighting also means that we don’t necessarily need
to remove stop words from our data, because there are other ways of capturing
the fact that these words do not tell us much about a document’s relevance.

In sum, vector similarity is a powerful and intuitive idea that can be quantified
using cosine similarity (defined using vector length and dot products). It allows
us to quantify the similarity (thus, relevance) of a document to a query, which
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can in turn be used to rank documents based on their relevance to that query.
Moreover, we can also use the similarity between different documents to group
them into meaningful clusters that are more similar to one another than to other
documents outside the cluster – for example, a cluster of articles about shopping,
and another cluster of articles debating whether dogs enjoy wearing raincoats
or not.

So far, we have explored the conceptual foundations of identifying the doc-
uments that are relevant to a query. But of course, the representation of a text
can be made far richer than a simple term-by-document matrix. We saw in Chap-
ter 4 that we can identify words with similar meanings based on their distribu-
tion, capturing the idea that dogs is similar to pets. We also saw in Chapter 5 that
pre-trained tools such as BERT can distill the information contained in massive
amounts of text, which can in turn be used to turn a query and some documents
into vectors, from which we can then find the document vector that is most sim-
ilar to the query. Modern systems combine all of these tools.

6.5.2 Ranking results by quality

Next, how do we automatically determine the quality of a document/webpage?
A document is likely to be of a high quality if it is highly trafficked, clicked on fre-
quently by other users (known as the click-through measurement), information-
dense (not too repetitive), updated relatively recently (because some information
changes over time), and linked to by other (high-quality) webpages. This last
metric of quality – incoming links from other high-quality documents – was for-
malized by the computer science graduate students Larry Page and Sergey Brin
and colleagues in the late 1990s, and the resulting PageRank algorithm (Page et al.
1999) served as the basis of their search engine startup company: Google.

PageRank begins from the intuition that when someone decides to include a
link on their webpage, they are signaling that they find the linked page somehow
noteworthy or useful. (As a side note, PageRank is used to rankwebpages by their
quality, but was also spearheaded by Larry Page, so the word Page does double
duty as a name and a noun.) Thus, a page with a lot of in-links is likely to be of
a high quality – especially if those in-links come from other high-quality pages.

To formalize this intuition, consider Figure 6.3, where each circle represents
a webpage. In this case, pages X, Y, and Z all link to page A. The question is
whether these links are any better or worse than those that link to page B, shown
in Figure 6.4.

Thus, we calculate importance based on popularity, where popularity is esti-
mated based on how many sites link to a website and how popular each one of
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𝐴 𝑋

𝑌𝑍

Figure 6.3: Weblinking: X, Y, and
Z all link to A.

𝐵 𝑋

𝑊𝑉

Figure 6.4: Weblinking: V, W, and
X all link to B.

those is. In order to compare how popular website A is as compared to website
B, we can add up how popular each incoming site is. It might help to think of
the situation like this: Each site that links to A gets to vote for A, and they each
get a different number of votes based on how popular each one of them is. Every
page has a score, and that the score of a page is related to the score of the pages
that provide its incoming links.

In this sense, PageRank does not (and does not claim to) measure quality, but
rather measures popularity. It is an empirical question to what extent a page’s
popularity really reflects its quality.

To see how the calculations are done, consider Figure 6.5.

𝐴 𝑋 ∶ 15

𝑌 ∶ 10𝑍 ∶ 20

Figure 6.5: Pages with weights.

Here, X casts 15 votes for A, Y casts 10, and Z casts 20. This may make intuitive
sense, but we are stuck with an immediate problem: The website A now has 45
votes, and that is clearly too many. After all, the most popular incoming site had
only a score of 20. This way of adding will lead to ever-increasing popularity
scores.

We want a solution that distributes votes from pages in a sensible way. The
solution PageRank uses is to spread out each page’s votes through all the pages it
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links to. Viewing this as a voting process, it means that each webpage must split
its votes among all the pages it links to. In Figure 6.6, for example, the webpage X
has 15 votes, and it links to 3 pages. Thus, it casts 5 votes for each of those pages.

𝐴 𝑋 ∶ 15 𝐵

𝐶

5
5

5

Figure 6.6: Dividing the weights.

Let’s assume, then, that after spreading votes out among their different web-
pages, the final score of A is 12. Which leads us to ask: 12 of what? What does it
mean to have a score of 12? Is that good or bad?

Truth be told, scores on their own do not mean much. We need to compare the
score to other websites to determine a relative rank. If website B’s score is 10 and
A’s is 12, we can say that A outranks B. If, when the search engine analyzes the
words on the pages, two pages seem to be equally relevant in their content, then
the page rank score can be used to determine which webpage is placed nearer to
the top of the results list.

In sum, there are two main things to consider when calculating a ranking for
a website based on its weblinks – links coming into a website, and links going
out of a website. The formula (at least for Google) captures these properties. It
can be seen in (6.13) for a webpage 𝐴 with 3 pages linking to it: We use 𝑅(𝑋) to
mean the rank of page X and 𝐶(𝑋) to refer to the number of pages going out of
page X.

(6.13) 𝑅(𝐴) = 𝑅(𝑋)
𝐶(𝑋) +

𝑅(𝑌 )
𝐶(𝑌 ) +

𝑅(𝑍)
𝐶(𝑍)

Let’s make sure this formula represents what we want it to. Firstly, we add up
the scores of the different pages coming into A (e.g., 𝑅(𝑋)) because, in order to
know how popular A is, we need to know how popular everyone else thinks it
is. Secondly, we divide each score by the number of pages going out of X, Y, and
Z (e.g., 𝐶(𝑋)) because we are spreading out their weights among all the pages
they link to. The result of this calculation – whether we want to interpret it as a
signal of quality or just popularity – is then used to rank results.
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The ideas behind PageRank are still used in web search to this day, combined
with a number of other indirect metrics of a page’s quality. As one other exam-
ple, Google has also patented a technique (Hajaj 2015) to measure the distance
between one page and another page – how many links you would have to follow
to navigate from one page to another by link-hopping. Beginning with a number
of seed pages that are already known to be of high quality, one can measure the
distance in the link graph between each page and these high-quality pages, and
give higher rankings to pages that are closer to the high-quality ones. For ex-
ample, imagine that a university’s website is listed among the high-quality seed
pages. Then, if a professor’s personal website is directly linked from the univer-
sity site, that link structure can help boost the ranking of the professor’s site,
both through PageRank (because the university’s site “votes” for this page) and
through its distance in the link graph.

Under the Hood 12: A brief tour of HTML

HTML stands for Hyper-Text Mark-up Language, and it is what webpages
have often been written in. If you go to a webpage and select View Page
Source, you will see the raw HTML. It resembles English, but has ex-
tra features. For example, looking at the English Wikipedia page (https:
//en.wikipedia.org/wiki/Main_Page), we find an excerpt of the source
code shown. This code corresponds to a list of recently featured articles,
each formatted as a clickable link.

<div class="tfa-recent" style="text-align:␣right;">Recently
featured: <div class="hlist␣hlist-separated␣inline">

<ul><li><a href="/wiki/Truce_of_Calais" title="Truce␣of␣Calais
">Truce of Calais</a></li>

<li><a href="/wiki/Boroughitis" title="Boroughitis">
Boroughitis</a></li>

<li><a href="/wiki/1940
_Mandatory_Palestine_v_Lebanon_football_match" title="1940
␣Mandatory␣Palestine␣v␣Lebanon␣football␣match">1940
Mandatory Palestine v Lebanon football match</a></li></ul>

</div>
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As can be seen, the code is composed of different HTML tags, which
are found between angled brackets, for example, <li>, which marks a list
item. For every opening bracket (e.g., <li>), there is a closing bracket (e.g.,
</li>). You can see how to alter text:
(14) a. <p>We'll throw in some <b>bold</b>, <i>italicized</i>,

and <u>underlined</u> text.</p>

b. We’ll throw in some bold, italicized, and underlined text.

Many HTML tags have obvious effects on the display of the page. But
some have more subtle effects. Most browsers display the content of the
<TITLE> tag not on the page itself, but rather in the title bar of the window
within which the page appears.

HTML also gives you the tools to create links to other webpages. The
<A> tag (short for anchor) does this, and so you can find HTML code such
as <a href="https://ling.osu.edu"> Click here</a>. Any person or
program that understands HTML will be able, by finding all the <a> tags,
to trace the links that lead away from this page, which can be used to
compute its PageRank.

6.5.3 Design choices for search engines

All search engines find documents relevant to a query, and rank them in terms of
relevance and quality. But each search engine also uses a blend of unique design
choices, based on considerations about user experience, social impact, and ethics:

• Are words stemmed or lemmatized? Is dogs lemmatized to dog, is whistle-
blower stemmed to whistleblow?

• Are searches case-sensitive? Does a search for Apple yield the same results
as one for apple?

• What happens to punctuation? Does a search for USA yield the same re-
sults as one for U.S.A.? Does a search for big yield the same results as one
for B.I.G. (the musician)?

• What about spelling variations? Does a search for color (American spelling)
yield the same results as one for colour (British)?
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• What about different words for the same thing? Does a search for Burma
yield the same results as a search for Myanmar?

• Are results spell-checked (automatically)? What happens if you search
for Katie Smih? (What if you actually want to find someone named Katie
Smih?)

• Does the search engine auto-complete a query as you type it? Does it sug-
gest helpful further queries?

• What languages are results displayed in? When you search for roi, do you
get results in English (return on investment) or French (where it means
king)?

• How does the search engine deal with government censorship in certain
countries?

• How does the search engine deal with searches for adult topics, such as
nudity?

• How does the search engine deal with searches for controversial or sensi-
tive topics, such as conspiracy theories, hate groups, or self-harm? Perhaps
a company doesn’t want to leave these results entirely up to an algorithm.

• What advanced search options are available? How easy is it to find them?
(How much do they improve results?)

• How are results displayed?What snippets are shown with each result? Are
the query words highlighted?

• What blend of relevance and quality is used to rank results, and how are
they calculated? For example, to what extent does the ranking algorithm
also consider recency?

• To what extent do search results respect the privacy of private individuals?
Can you search for someone and find their address, criminal record, and
phone number on the first page of results?

• Are results (for ambiguous queries) clustered into groups? Does a search
for apple yield a cluster about the company and a cluster about the fruit,
or are the results all presented together?
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• To what extent are your results personalized – to give higher rankings to
pages you’ve visited previously, pages that are highly trafficked in your
specific location, or pages similar to your prior search history? If so, is the
personalization transparent – are you aware of how it works?

• What advertisements are shown to users, and how are they distinguished
from other content?

Some of these design choices are technical, but some are fundamentally hu-
manistic, asking us to weigh ethical imperatives – to what extent should infor-
mation be freely available, versus to what extent should it be restricted (or algo-
rithmically down-ranked) to protect people from various types of harm?

6.5.4 The future of search

So far, we have seen that modern search engines answer certain factoid questions
directly (Howmany centimeters are in an inch?), while answering other questions
indirectly (What happened to my friend Katie Smith?) by returning a set of rele-
vant documents in which the user can dig for an answer themselves. Given the
recent success of tools such as ChatGPT, one wonders if future information re-
trieval systems will answer more and more questions directly, handling fewer
information needs with ranked documents that the user has to dig through.

For example, consider a user who asks, Should I quit my job? A document-
ranking information retrieval system would curate webpages where this topic
is discussed, while a dialog-based system would generate its own reply. The fol-
lowing reply from ChatGPT is sensible enough:

As an AI language model, I cannot make decisions for you, but I can
provide some guidance to help you make an informed decision.

Before deciding whether to quit your job, it may be helpful to eval-
uate the reasons why you are considering leaving. Are you feeling
unfulfilled or unhappy with your work, or are there external factors
such as a difficult boss or toxic work environment that are causing
you to feel this way?

You may also want to consider your financial situation and whether
you have a backup plan or other job prospects lined up if you do de-
cide to quit. Additionally, it may be helpful to talk to trusted friends
or family members, a career counselor, or a mental health profes-
sional to discuss your options and explore potential solutions to any
issues you are facing at work.
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Ultimately, the decision to quit your job is a personal one and de-
pends on your individual circumstances. If you are feeling unhappy
or unfulfilled in your current job and have exhausted all other op-
tions, then it may be time to consider moving on. However, if you
are able to work through any issues you are experiencing or find
ways to improve your current situation, then quitting may not be
necessary.

(elicited from ChatGPT in 2024)

Which type of system would you prefer? In some sense, generative LLMs as-
pire to the vision evoked by the AskJeeves search engine from 1996 – named
for the famous butler in P.G. Wodehouse’s stories, who was known for his ency-
clopedic knowledge and nimble competence (creating a humorous contrast with
the rich buffoon who employed him). Like Jeeves, generative LLMs offer a lucid
response to the user’s query in an authoritative voice, which – if you trust it –
may be exactly what you want.

On the other hand, these responses may not actually be trustworthy. For ex-
ample, generative LLMs are not updated daily, so they might contain outdated
information about current events. Such models also certainly do not know what
happened to your elementary school friend Katie Smith. If the model spouts non-
sense with the same authoritative tone as true information, then the user may be
misled, and the company may embarrass itself. Moreover, a system that gives an
answer itself performs a qualitatively different action than one which retrieves
webpages that may contain such an answer. By offering relevant webpages, a
system signals that the human must still use their judgment to evaluate them,
whereas in giving a single answer, it seems to assert confident correctness –
which might or might not be justified.

It is also interesting to consider how technology companies will allocate re-
sources to maintaining a knowledge graph (based on a human-written top-down
structure) versus using the bottom-up information distilled by generative lan-
guage models. How do you predict that these two tools will compete with one
another or with free-text search?

6.6 Recommendation systems

So far, we have explored search engines that help people answer an information
need that they formed on their own. But sometimes, you may want a computer
to recommend things to you that you didn’t even know you wanted.
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A recommendation system bypasses the query and goes straight to the ranking.
It ranks items – documents, web posts to read, things to buy, people to friend
or follow, books, movies, music – based on their overall popularity and/or their
relevance to a particular user. Some of these items do not centrally involve lan-
guage (music, people, products), while some are built on text (web posts, books),
but they can all be handled similarly.

A recommendation system does not inherently need to be personalized; a
movie library could keep a static list of the current most-popular or most-
streamed movies, or hand-curate a list of “staff picks,” and then recommend
these movies to all users. But in practice, most recommendation systems
try to tailor their recommendations to the taste of each user. Personalized
recommendation systems are used by companies like Amazon (recommending
products), Netflix (movies), YouTube (videos), Facebook (recommending friends
to add, and ranking the posts you see in your news feed), X/Twitter (similar to
Facebook), and so on.

Imagine that you want to offer personalized movie recommendations to the
people who subscribe to your movie library. You have four users and five movies,
represented in a utility matrix that shows each user’s preference (utility) for each
movie. For some users, you have data about what they like and dislike – perhaps
they rate a movie after watching it, or perhaps you infer that they like movies
that they watch to the end, and dislike movies that they stop watching halfway
through. But most users have not watched most movies; in our matrix, the ques-
tion mark indicates that you do not know whether a user would like or dislike a
given movie, because they have not seen it. Perhaps a new movie has just been
added to your library (SpiderVerse), so you have no data on whether anyone likes
it; or perhaps a new user (Dell) has just subscribed to your service, so you have
no data on what movies they like.

The goal of a recommendation system is to fill in the question marks in this
user-by-movie matrix to identify and suggest new movies that each user would
like. (It’s a lot less important to identify new movies that a user would dislike,
except to distinguish them from the movies that they would like). A collaborative
recommendation system will use the similarities between users reflected in the
utility matrix. Here, Alex and Cory both like Amadeus and Cory also likes Little
Women, so maybe you will recommend Little Women to Alex on the grounds that
Cory – who is somewhat similar to Alex – also likes it.

Of course, the problem here is that no one has seen SpiderVerse and Dell hasn’t
rated any movies, so it’s harder to make recommendations for these new movies
and users. (Would it help to find out Dell’s gender, age, location, or favorite
movies?) The other problem is that users may have eclectic tastes; Alex likes
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both historical dramas and the action film Black Panther, while other users may
like only one of these types of films, so they may not like all the recommenda-
tions they get based on their similarity to Alex.

Table 6.5: Utility matrix for users and movies.

Amadeus Lion King Blk Panther L. Women SpiderVerse

Alex like dislike like ? ?
Bo ? like like ? ?
Cory like ? dislike like ?
Dell ? ? ? ? ?

You may also want to represent similarities and differences between movies.
Here, we’ve represented each movie as a vector of features including its genre(s),
studio, year, style, and Motion Picture Association of America rating of the ma-
turity level of its audience (PG = some material may not be suitable for children,
PG-13 = somematerial may be inappropriate for pre-teens). For example, this ma-
trix shows thatAmadeus is similar to Little Women in that they are both PG-rated
live-action historical dramas. So a content-based recommendation systemmay rec-
ommend Little Women to Alex because Alex also liked Amadeus. Using this infor-
mation, we can also recommend the unseen, un-rated SpiderVerse movie to Bo,
because Bo likes other animated movies (Lion King) and action movies (Black
Panther).

Table 6.6: Feature matrix for movies.

Amadeus Lion King Blk Panther L. Women SpiderVerse
Genre historical,

drama
musical action historical,

drama
action

Studio Orion Disney Marvel,
Disney

Columbia,
Regency,
Pascal

Columbia,
Sony,
Marvel

Year 1984 1994 2018 2019 2018
Style Live action Animated Live action Live action Animated
Rating PG PG PG-13 PG PG

From a machine learning standpoint, we could hide a random part of the util-
ity matrix, pretending that we don’t know the users’ ratings when we do, and
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then train a neural network to try to predict the missing ratings based on both
the users’ utility matrix and the movie similarity matrix (perhaps using a hybrid
recommendation system that references both user-based and content-based infor-
mation). We can compare the neural network’s predictions to the users’ actual
ratings and train it to get these predictions right. We could also try to optimize
recommendations for other metrics of success, such as the total time that the
user spends on the platform, perhaps using A/B testing (studying the outcomes
of users randomly assigned to various conditions) as discussed in Chapter 3.

In sum, recommendation systems have a lot in common with search: They use
vector representations of individuals or items to identify their similarity to one
another; they rank items by their relevance to various users. But while search
helps people satisfy an information need that they already have, recommenda-
tion systems try to suggest things that people don’t even know they want. Rec-
ommendation systems thus shape what people want, what they pay attention
to, and what options they see as available. Users get things that they like, which
is good. But other times, users may only see content that reinforces their views,
meaning that they only press “like” on such content, giving them even more con-
tent consistent with those views – such that they may not realize that they live
in an echo chamber far away from the mainstream.

6.7 Consequences

Today, we are all lucky to have an ocean of information at our fingertips. Search
engines help us to findwhatwewant in that ocean, and recommendation systems
suggest what we might like. Researchers all over the world can access articles
in seconds that used to be housed only in a few physical libraries. All of these
developments make the world a better place.

But we have also seen some challenges and potential downsides of such
technology. As products, companies, and people compete for limited attention,
they may use search engine optimization techniques to make sure that they are
ranked highly, sometimes trying to game the system. For example, once Insta-
gram started promoting posts with a lot of “likes”, influencers and companies
started buying likes from fake accounts to improve their rankings – starting an
arms race between engineers who want to promote truly high-quality content,
and people who want their content to be promoted whether it’s high-quality or
not.

When a powerful company’s algorithm gives a high ranking to a given post,
that post may be imbued with a sense of legitimacy – which may or may not
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be justified. YouTube had to revise its ranking algorithm after a top-ranked re-
sult for a search about a mass shooting promoted an unsupported theory that
the shooting was fake; Google has demoted pages falsely denying the 1940s-era
genocide of European Jews; Facebook has tried to limit the spread of false news
on its platform; and Twitter/X has limited the sharing of posts deemed to con-
stitute misinformation about the coronavirus (raising questions about who gets
to decide what constitutes “misinformation” on a topic with rapidly evolving
science and contested political implications). Technology companies have also
tried to recommend more trustworthy information to users who have fallen into
an echo chamber of hateful or false fringe beliefs. As people’s lives increasingly
take place online, algorithmic rankings increasingly shape our beliefs and expe-
riences, with increasing consequences.

Checklist

• Give examples of various types of information needs and discuss
how each one can be handled by modern technology.

• Give examples of structured, semi-structured, and unstructured
data.

• Explain why it is difficult to keep a knowledge graph up-to-date.

• Form well-thought-out boolean queries.

• Compare and contrast Westlaw to an open-domain search engine.

• Describe how search engines rank results by their relevance to a
query.

• Describe how search engines rank results by the quality of each
page.

• Give examples of the design choices that must be made by those in
charge of a search engine.

• Understand and use regular expressions.
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• Represent documents as vectors and use these vectors to estimate
their similarity to one another.

• Calculate the TFIDF of a term in a document (among a collection of
documents) and explain what it means.

• Discuss the affordances and limitations of generative language
models, knowledge graphs, and free-text search for different infor-
mation needs.

• Compare and contrast searching to recommendation systems.

Exercises

1. For each of the following, describe how you would approach the
search problem. How difficult is each problem? What resources
would you use and why?

a) Finding general information on what the Lincoln-Douglas de-
bates were.

b) Finding a general quote, or quotes, from the Lincoln-Douglas
debates which will support a theory that Abraham Lincoln
was not completely anti-slavery.

c) Finding a particular quote from the Lincoln-Douglas debates
that you can only partially remember.

d) Finding quotes from the Lincoln-Douglas debates which have
their origin in the Bible.

2. What do you think the relationship is between how much prior
knowledge you have about a topic and the amount of structure you
require in the database you search through?

3. Imagine that we have 11 books in a library with the following sub-
ject fields:
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1) rock paper 7) rock paper scissors
2) rock scissors 8) rock paper bomb
3) rock bomb 9) rock scissors bomb
4) paper scissors 10) paper scissors bomb
5) paper bomb 11) rock paper scissors bomb
6) scissors bomb

Looking at the list of queries below, which of the subject numbers
do they match? For example, rock AND bomb matches 3, 8, 9, and 11.

a) rock OR paper OR scissors

b) rock AND (paper OR scissors)

c) (rock AND paper) OR (scissors AND bomb)

d) (rock OR paper) AND (scissors OR bomb)

e) rock AND (paper OR (scissors AND bomb))

f) ((rock AND paper) OR scissors) AND bomb

4. Check out the Advanced search options available on your favorite
search engine. Were you aware of these options? Now that you are
aware of them, do you think they will be useful to you? Why or
why not?

5. Try the same search in several different search engines (Google,
Bing, Baidu, DuckDuckGo, Ecosia, or others). What similarities or
differences do you observe – in the results and their ranking, as
well as in the user experience, design, and advertisements?

6. Search for your name, in quotes. What is the precision of your
search? What is the recall? (Why is recall hard to estimate?) What
are the pros and cons of being easy or hard to find online?

7. Check out Google Trendsa, which keeps track of searches by vol-
ume and location. Can you find a search that has increased in vol-
ume over time? A search that has decreased in volume over time?
A search that is popular every year at around the same time? A
search that is far more popular in one part of the world/country
than others?
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8. What information do you think is available in ConceptNet for
the word/concept cat? What about in WordNet? Go check these
databases to see what you guessed right or wrong.

9. Compare your recommendations on YouTube, Twitter/X, Amazon,
or Netflix to those of a friend or classmate (if you feel comfortable
doing so). How similar or different are your recommendations, and
why?

10. For the following scenarios, describe whether precision or recall is
more important and why.

• Identifying the cases where a cancer-curing drug has a side
effect of nausea.

• Identifying the cases where a cancer-curing drug has a side
effect of death.

• Identifying cars running red lights.

• Identifying and removing weeds which look like (desired) na-
tive flowers in your garden.

11. When we talked about how weblinking is used to rank webpages,
we mentioned how one page’s popularity helps determine that of
another. But there’s a problem: Where do we start? How can we
know another page’s popularity if it, too, is based on the popularity
of other pages?

Assume that we initially assign every page a score of 1.

a) If every incoming page has the same score, namely 1, what is
the new score of a webpage, based on our previous formula?

b) Based on your answer for the previous question, what would
be the next step for giving every webpage a new score? How
many steps would it take until every page had a final score?
Or, another way to word it: How could you determine when
you are done?

12. a) Describe in your own words why popularity is a good heuris-
tic for measuring the quality of search results.
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b) Provide an example where your search query results in a pop-
ular, yet irrelevant, result as the first result from a search en-
gine. What rank is your desired result?

13. In the section on regular expressions, we mentioned that some op-
erators have different meanings for basic web searching and in reg-
ular expressions. Describe the difference in meaning between the
wildcard * allowed in web interfaces and the Kleene star * used in
regular expressions.

14. Assume you have a huge text file which consists of all the content of
the English Wikipedia from a particular day (https://en.wikipedia.
org/wiki/Main_Page). You have a report due tomorrow on major
and minor holidays of the world, focusing on ones not found in the
United States and celebrated during the fall.

a) Would regular expressions be more or less useful in this con-
text than using the Wikipedia search box?

b) What is more important to you in this context, precision or
recall?

c) Let us say that we attempt to search for holidays and holy
days in August, and we come up with the following regu-
lar expressions (which we can search for using the command
egrep). What is wrong with these regexes, and how could we
fix them?

i. egrep 'world.*August.*(holidays)?'

ii. egrep 'august hol(i|y)days?'

iii. egrep 'holidays|holy days in August'

15. a) Can you describe the set of strings accepted by the automaton
that has a single state (𝑃 ) that is both initial and final, but this
time two arcs each looping from 𝑃 to 𝑃 , one labeled with a
and one labeled with b?

b) Can you see how to make an automaton that accepts “”, ab,
abab, ababab, and so on forever? That is, can you work out
how to arrange the states and arcs so that the available routes
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from an initial to a final state are the ones that correspond to
zero or more repetitions of ab?

c) Notice that the strings in the previous question are exactly the
ones that arematched by the regular expression /(ab)*/. How
can you change your automaton so that it accepts the strings
defined by the regular expression /ab(ab)*/? How about the
regular expression /(ab)+/?

16. In Under the Hood 6.5, we discussed matching strings to finite-state
automata. As it turns out, there are some string matching tasks that
are easy to state, but that neither regular expressions nor finite-state
automata can do. Consider the following five sets of strings:

• Sequences following the pattern “”, ba, baba, bababa, up to any
length.

• Sequences following the pattern “”, abc, abcabc,
abcabcabc, up to any length.

• Sequences consisting of any number of as followed by the
same number of bs. The pattern is “”, ab, aabb, aaabbb,
aaaabbbb, up to any length.

• Sequences consisting of any number up to 10 of as followed
by the same number of bs.

• Sequences following the pattern “”, aba, abaaba,
abaabaaba, up to any length.

a) Three of these sets of strings have automata and regular ex-
pressions that you will probably find quite quickly and not
mind writing down. Which ones are these?

b) One of the string sets can be matched by a regular expression
and can also be associated with an automaton that accepts
exactly the right strings, but neither the expression nor the
automaton is something that a normal human being would
enjoy writing down. Which one is this?

c) One of the string sets can neither be matched by a regular
expression nor accepted by a finite-state automaton. Which
one is this? And why does this happen?
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awww.trends.google.com, accessed 2024-04-26.

Further reading

Manning et al. (2008) provides a thorough (but now somewhat historical)
technical introduction to the field of information retrieval. If you want de-
tails on Google’s PageRank algorithm, youmight evenwant to try reading
the paper which describes it (Page et al. 1999).

For more information on boolean expressions and logical thinking, you
can consult a number of textbooks on basic symbolic logic. To obtainmore
of a focus on logic in the realm of linguistics, look for books on mathe-
matical or formal linguistics, such as Partee et al. (1990).

Shah & Bender (2022) discuss the pros and cons of generative language
models versus traditional search for information retrieval.

Lu et al. (2015) provide an overview of recommendation systems.
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7 Machine translation

7.1 Introduction

Machine translation describes the task of automatically mapping a text from one
human language to another. Once considered one of the hardest problems in
language technology, machine translation has seen huge advances over the past
decades, and now– for some pairs of languages, and for some purposes – it can be
astonishingly good. For example, a randomly chosen sentence (1) from the Fran-
cophone discussion forum on Reddit (r/france) is translated instantly, fluently,
and accurately (2) by Google Translate. The use of the word holidays to translate
vacances ‘vacation’ is perhaps more British than American, but otherwise the
translation is perfect:

(1) Pour le moment j’hésite à accepter le job parce que la position (junior) est
moins bien payée que ma position actuelle d’enseignant, avec bien entendu
beaucoup moins de vacances que ce que j’ai actuellement etc.

(2) At the moment I hesitate to accept the job because the position (junior) is
less well paid than my current teaching position, with of course much
less holidays than what I currently have etc.

This chapter explores why and how machine translation has been so success-
ful, and what challenges still remain.

If you are a monolingual Anglophone in an English-dominant society, you
may not see a strong need for translation because you are privileged to speak an
international lingua franca (language of trade and scholarship). But many people
around the world speak a different language at work/school versus at home; with
different members of their family; or when they travel an hour away from home.
In multilingual contexts such as the European Union, translation is needed for
essentially all trade, travel, and governance. Translation is a daily necessity for
much of the world’s population, and machines can make it more accessible.

Before explaining how machine translation works, it is useful to define the
concept and introduce some terms. Translation is the process of moving text or
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speech from one human language to another, while preserving the intended mes-
sage. (We’ll discuss what that really means below.) We call the message’s original
language the source language and the language that it’s translated into the target
language. We say that two words, one from the source language, one from the
target language, are translation equivalents if they convey the same meaning in
context. The same idea applies to pairs of phrases and sentences.

(3) illustrates some difficulties that can arise if you are not careful to check
whether a translation is saying the right thing (some found on the subreddit
r/Engrish, some taken from Atlas Obscura.1) Some of these translations were
probably generated by machines, others by humans with incomplete knowledge
of both languages. If you are ever asked to put up a sign or write a menu in a
language that you do not fully understand, remember these examples and get the
content checked!

(3) a. Sign in a Paris hotel: Please leave your values at the front desk
b. Sign on a Japanese subway: Do not pick pocket, Do not molester, Do

not drug, Do not drunk and disorderly, Do not smoking, Do not battle
c. Menu at a Russian restaurant: Beef language with fungus sauce
d. Menu at a German restaurant: Mouth bags
e. Menu at a Turkish restaurant: Cigarette pie
f. Sign on grass in China: Do not disturb, tiny grass is dreaming
g. Sign at a subway station in Hong Kong: Please present your Octopus

Let’s explore what went wrong here. (3a) is just a poor word choice: Valuables
is the word that the translator was searching for, and values is unintentionally
funny.

(3b) involves confusion about grammatical categories: Do not combines with
verbs or verb phrases in English, but here it is combined with nouns (do not
molester), adjectives (do not drunk and disorderly), and gerunds (do not smoking).
Do not battle is syntactically coherent, since battle can be a verb as well as a noun,
but battle is an unusual way to describe a two-person altercation on the subway.

The next three examples (3c)–(3e), frommenus, illustrate why culinary transla-
tion is particularly difficult. Names for food are culturally specific and somewhat
idiomatic; should they be translated literally, or elaborated for an unfamiliar au-
dience?What food words should be translated in the first place, versus just left in
the original language? Many food words originally enter English as borrowings

1“Why menu translations go terribly wrong,” 24 January 2018, by Emily Monaco
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(also known as loan words) from other languages (spaghetti, sushi, quesadilla); up-
scale menus for Anglophone diners are full of more recent and lesser-known loan
words (ballotine, moussaka, gochujang), which diners may look up online under
the table to keep up the pretense of being cosmopolitan foodies well-versed in
such vocabulary.

The language in (3c) really means tongue. These two concepts are denoted
by the same word in Russian. In English, the two words are related (you use
your tongue to speak a language) and overlap in meaning (as in mother tongue)
– but the overlap is incomplete, because language cannot describe a body part.
This example illustrates polysemy (when a word has multiple distinct but related
meanings), and how a word’s degree of polysemy can vary across languages.

Mouth bags (3d) is an overly literal translation of German Maultaschen
‘dumplings’ – small bags of dough-wrapped filling which go in your mouth. The
meaning of this compound word becomes opaque and unpleasant in English,
because the word bags is rarely used for foods, and because the relationship
between the two words in the compound – mouth and bags – is not clear.

Stepping back, a compound is a word made from two words (here, two nouns),
with the relationship between these words supplied by the context and our back-
ground knowledge about the referent of (the thing described by) each word. A
chocolate cake has chocolate in it; a birthday cake is eaten on someone’s birthday;
a skillet cake is baked in a skillet. If we don’t have enough background knowl-
edge to supply this relation between the two nouns (mouth bags), then we have
to imagine one, and we may end up befuddled. Cigarette pie (3e) is also a direct
translation of a compound; in Turkish, it describes a long, slender pastry. But if
we don’t know that cigarette describes the shape of the pie, we may imagine that
it describes an ingredient, which is less appetizing.

The final two unusual translations illustrate the challenge of translating cul-
tural knowledge in tandem with language. The Chinese sign (3f) essentially tells
people to keep off the grass; but it uses a Chinese convention of anthropomor-
phizing inanimate objects and presenting directives in a cutesy, non-threatening
manner. The sign from Hong Kong (3g) seems to fantastically assume that every
person has an octopus just as they have a nose and a mobile phone; but it makes
sense when you understand that Hong Kong’s widely-used subway/debit card is
called an Octopus card. Both of these signs may be literally translated quite well,
but the informational effect on the reader is lost without cultural context.

We chose the examples in (3) because we hope that they are amusing. But in
other settings, translation errors can have serious consequences. This happened
when a young patient namedWillie Ramirezwas brought into a Florida hospital’s
emergency room in a coma (Harsham 1984). His mother and girlfriend, speaking
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in Spanish, talked to the English-speaking emergency room staff. They used the
word intoxicado, which can mean several things, including ‘nauseous’. Because
the emergency room staff were not professional interpreters, they thought that
intoxicado must mean the same as the English intoxicated and treated him on the
assumption that he was under the influence of drugs or alcohol. Linguistically
speaking, they took intoxicado as a cognate, like Spanish chocolate, identical to
the the English; but it was in fact a false friend, like Spanish realizar, which does
not mean ‘to realize’ but instead means ‘achieve’.

As a result of this misunderstanding, the patient was eventually diagnosed
with a brain aneurysm and became quadriplegic. This case is infamous, because
it led to a lawsuit, and drew attention to the principle that hospitals, courts and
other institutions that work with the public should plan for the needs of a mul-
tilingual population and provide the translation and interpretation services that
are needed. Evoking our recurring focus on ethics, this is an issue of basic fair-
ness, public safety, and perhaps also civil rights.

7.2 Applications of translation

In information retrieval, the user can be thought of as having an information need
(Section 6.1.2). In the same way, a potential user of translation technology can be
thought of as having a translation need. Before we get into automatic translation,
though, let’s first explore the needs served by human translators and interpreters.
Among human professionals, a translator is someone who deals with text, while
an interpreter deals with speech.

Among (human) interpreters, a simultaneous interpreter listens to speech in
a source language, and speaks the same message in the target language with
only seconds’ delay. These professionals are not only fluent in both languages,
but also have trained their working memory and executive functioning to listen
and speak at the same time, a similar mental task to sight-reading music. At the
United Nations, diplomats wear earpieces to hear spoken proceedings simultane-
ously interpreted into their own language in real time. A consecutive interpreter
listens to speech in a source language, takes notes, and then produces the speech
in the target language after the original source-language turn is complete. Con-
secutive interpreters handle diplomatic speeches, meetings, and court cases.

A whisper interpreter might accompany a diplomat to a social occasion and
offer a whispered paraphrase of what people are saying, so that the diplomat
can follow along politely. A phone interpreter provides consecutive interpreta-
tion over the phone, for example when a doctor must provide emergency med-
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ical care to a patient in a different language, and there is no in-person inter-
preter on site. Finally, a medical interpreter (who may work in person or over
the phone) is specifically trained in medicine and ethics to provide services in
a safety-critical context – hopefully preventing fiascos like the one caused by
the misunderstanding of intoxicado. Medical interpreters also have to consider
the educational background and cultural assumptions of the people they serve;
one medical interpreter (Haffner 1992) had to clarify to a patient that her fallop-
ian tubes, once “tied”, could not be easily untied like shoelaces. These different
types of interpreters illustrate the diverse translation needs that arise in spoken
situations.

In the rest of this chapter, we focus on translating rather than interpreting
because computers deal primarily with language as text rather than speech. All
(human) translators do basically the same thing: Given a document written in
a source language, they produce a corresponding document in the target lan-
guage. Different translators specialize in the translation of literary, technical, le-
gal, political, historical, or medical documents, requiring rich content knowledge
alongside linguistic ability. Human translators may not write a translation from
scratch, but may instead work to edit, check, and improve a draft produced by a
machine, in a process called post-editing – indeed (Green et al. 2013), they may
find it faster and more enjoyable to work this way.

Recalling from Chapter 3 that people find it easier to comprehend than to
produce in their L2, both interpreters and translators may prefer to use their
L2 as the source language and their L1 as the target language. In the context of
machine translation, though, it can be equally easy to go in either direction.

So far, we have introduced some of the translation and interpreting needs ser-
viced by human professionals. But there are countless other translation needs,
requiring varying levels of confidence and correctness. For each one listed here,
please consider whether you would trust a free online tool, or whether – even
considering the time and expense – you would want to pay a human to corrobo-
rate it. If you were to hire a human, would any bilingual person be sufficient or
would you want someone with particular content knowledge?

• You are an award-winning Senegalese filmmaker who wants to release
your Wolof-language film with English subtitles for an Anglophone mar-
ket.

• You want to wish your friend a happy birthday in their native language of
Indonesian.
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• You work for an American clothing company and you want to skim some
Japanese reviews of your products.

• You are on vacation in Guatemala and want to perform basic functions:
Greet and thank people, request directions, purchase food, and check into
your hotel.

• You bought malaria-prevention pills at a Guatemalan pharmacy, the label
is in Spanish, and you can’t figure out if you are supposed to take one pill
twice a day (for a total of two), or two pills twice a day (for a total of four),
or for how many days you are supposed to take them.

• Your friend gives you a packaged snack from Sweden and you want to read
the nutrition facts.

• You work for a humanitarian aid group, and you want to read real-time
live tweets about a natural disaster written in Haitian Creole to figure out
what kind of help people need and where.

• You are an American attorney suing a German company for selling a fraud-
ulent product in the United States. You want to find out who in the com-
pany knew what when. The company turns over their emails, which are
all in German.

• You are an American advocate for cultural heritage, and you want to read
documents in Turkish discussing the fate of various Kurdish cultural her-
itage sites in Turkey. The documents are written in a non-standard variety
of Turkish, by people who largely did not attend high school and who are
more proficient in Kurdish than Turkish.

• You are an American academic who wants to read an academic article that
is only available in Russian.

• You are a religious scholar who wants to know what the original Biblical
Hebrew, Aramaic, or Greek says about a given topic.

• You are an English-speaking worker in Ireland trying to make bilingual
street signs in English and Irish.

• You are an American military strategist and you want to understand pub-
lic sentiment towards the presence of American troops in Afghanistan by
reading social media posts.
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• You are a British diplomat negotiating a nuclear arms treaty with Russia.
The treaty will specify what weapons and dangerous materials each coun-
try can possess, in what quantities, for what purposes, andwith what types
of inspections.

The moral is that different translation needs require different resources and
perhaps different combinations of human and machine intelligence.

7.3 Same meaning, different languages

As we said above, the goal of translation is to map a sentence from a source
language into a target language while preserving the meaning. To understand
this process, we need to knowwhatmeaning is, and how it is encoded in different
languages.

7.3.1 What is meaning?

What is meaning? This question is quite abstract, but the philosopher David
Lewis (1972) offers us a way to proceed (also mentioned in Chapter 4): Instead of
asking what a meaning is, we should ask what a meaning does, or what a person
can do when they know the meaning of some expression. When you know the
meaning of a word, you can:

• Pick out the thing or situation (or class of things/situations) in the world
that this word refers to. (This is easier for nouns like dog and verbs like
run than for determiners like the and a).

• Reason about how this word relates to other words (a dog is a type of
animal that barks; four is less than five).

• Use this word in a sentence and understand what it contributes to that
sentence.

When you know the meaning of a sentence, you can:

• Know what the world would be like if this sentence were true. (Whether
or not it actually is true is a different matter.)

• Reason about how this sentence relates logically to other sentences (I saw
Jane and Sam entails that I saw Jane; I didn’t see Jane contradicts it.)

251



7 Machine translation

• Use this sentence in a discourse and understand what it contributes to that
discourse – what it would add to people’s beliefs if they accept an assertion
of this sentence as true.

Of course, these conditions only make sense for declarative, assertion-making
sentences like I love running. As we explore further in Chapter 8, to know the
meaning of a question like Do you like running? is to know how it should be
answered; to know the meaning of an imperative like Have a cookie! is to know
what you are supposed to (or allowed to) do as a result. If translation is successful,
a personwho knows themeaning of the source sentence and a personwho knows
the meaning of the target sentence will be able to use and reason about those
sentences in the same ways. These ideas come from the linguistic subfield of
semantics, the study of meaning.

In our discussion of grammar checking (Section 2.5.1), we saw that it is helpful
to break up English sentences into smaller components, and give these compo-
nents names like noun phrase and verb phrase. These components may in turn be
broken down into subcomponents, with the whole process bottoming out either
in words or in slightly smaller units called morphemes (for example, the word
dogs comprises two morphemes, dog and the pluralizing suffix -s).

In semantics, researchers study the meanings of words (lexical semantics) as
well as the rules for combining words into sentences (compositional semantics).
Lexical semantics includes the study of synonyms (words that mean the same
thing), antonyms (words that are opposites) and word senses (subdivisions of
meaning, as when the polysemous word tongue can refer to a body part or a
language). This matters for translation, because lexical semantics offers tools to
understand some of the ways in which things can change as you move from one
language to another.

Compositional semantics explains how a sentence like Roger outplayed Andy
means something quite different from Andy outplayed Roger. The words are the
same, but the way they are arranged differs, and this affects the meaning. But
Roger outplayed Andy means much the same as Andy was outplayed by Roger.
Here the words differ, but the meaning somehow comes out almost identical.

The term compositional is used because the meaning of a whole expression
is composed of the meanings of its component parts. Thus, the meaning of the
phrase triangular hat box is constructed (one way or another) from the mean-
ings of the individual words triangular, hat and box. It could mean a triangular
box for hats, a box (shape unspecified) for triangular hats, or even a triangular
box made out of hats, but each one of these meanings is built from the mean-
ing of the smaller parts. Researchers in compositional semantics begin with the
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assumption that there is some kind of kind of mechanism for assembling the
word meanings into a sentence meaning, and spend their research efforts on ex-
periments and theories designed to shed light on the way this mechanism works.
Different languages typically assemble meanings in similar ways, but the fine de-
tails of the process differ from language to language, so an automatic translator
has to somehow smooth over the differences.

7.3.2 Different languages are different

Whenwe ask how different languages are similar or different, we are engaging in
the linguistic subfield of language typology. Language typologists explore which
languages are related to one another (descended from a common ancestor) or
not; how languages have changed over time; and how different languages encode
(similar) meanings – all topics with consequences for machine translation. Some
of these cross-linguistic differences are easy to handle, but others cause problems
that persist even for the most sophisticated machine translation systems.

Most obviously, different languages have differentwords, and differentways of
using words to assemble a meaning. One word in one language may map to two
or more words in another language. For example (4), the English sentence I like
skiing has three words, while the German translation has four. (Here, the first line
represents the orthographic German; the second line is a literal word-by-word
“gloss” of the German, and the third line is the colloquial English translation.)

(4) German
Ich
I

fahre
drive

gern
gladly

Ski
on-skis

‘I like skiing.’

The adverb gern expresses the idea of liking which in English is described by a
verb; the German verb fahre ‘drive’ does not appear in the English. The meaning
comes across, and in each language it is easy to see how themeaning of thewhole
is composed from the meanings of the parts, but the details differ.

As another example (5), the English sentence I like fish again has three words,
while its Spanish translation has four:

(5) Spanish
Me
To-me

gusta
pleases

el
the

pescado
fish

‘I like fish.’

253



7 Machine translation

Here, the Spanish phrase me gusta ‘I like’ literally means ‘to me pleases’.
Whereas the syntactic subject of the English sentence is the first-person
pronoun I, in Spanish the subject is actually el pescado ‘the fish’ – with a
definite determiner el ‘the’ because Spanish often requires determiners where
English allows bare nouns for plurals (cats, multiple fish) and undifferentiated
substances (wine; some quantity of cooked fish).

One word in one language may also map to two or more words in another lan-
guage in a different sense: When one language uses a single word polysemously
to cover two related meanings, while another language splits up those meanings
into two different words. We saw an example above where some languages use
the same word for both language and tongue, while others have a different word
for the communication system versus the body part. As another example, the
Spanish word pescado ‘fish’ (literally, ‘fished’ – the past participle of the verb
pescar ‘to fish’) refers to fish as food, while pez ‘fish’ is used for live animals. In
contrast, the English word fish covers both. So (5) in English could mean that fish
are my favorite animal or my favorite food, whereas in Spanish it only refers to
food.

Can it ever happen that a word in one language maps to zero words in another
language?One often encounters such claims, of the form Language X doesn’t have
a (single) word for Concept Y – which are then sometimes expanded to mean that
people who speak Language X don’t care about or can’t think about Concept Y.
These claims are often spurious and must be taken with a great deal of skepti-
cism. Can Concept Y be paraphrased in Language X even if there is no single
word for it? For example, the Greek word agape can be paraphrased in English
as ‘goodwill towards humanity’ even if it requires more than one word. Can a
word for Concept Y be immediately coined or borrowed whenever the speakers
of Language X want to talk about it? French historically had no native word for
‘weekend’, but they borrowed the English one as soon as they saw a use for it.

Or is the issue really that speakers of Language X have never even encoun-
tered Concept Y, much less a word for it? This is clearly why the speakers of
Old English had no word for ‘wifi’, and why pre-colonized indigenous Ameri-
cans had no word for ‘Halloween’. Such cultural concepts are a much trickier
issue for translation. Foods (gelato), clothing (athleisure), holidays (Halloween),
occupations (influencer), technology (wifi), and literary/historical allusions (Cin-
derella) may not have names in a culture where they are unfamiliar. As Jurafsky
& Martin (2009) describe, it is not easy to translate The Lord is my shepherd for
a culture with no shepherds or sheep. Here, the issue is really about what tech-
nologies and concepts are used in different cultures, not about what words they
have.
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Moving beyond words, languages also differ in their structure. You are en-
couraged to visit the World Atlas of Language Structures2 created by Dryer &
Haspelmath (2013), to learn more about the cross-linguistic diversity that we can
only sketch here:

• Word-to-morpheme ratio: Howmany meaningful pieces does a single word
have, on average? In an isolating language like Mandarin, where one mor-
pheme is roughly equivalent to one syllable and one “word”, the concept
of “word” may not even have much independent utility.

• Word-to-sentence ratio: How many words make up a sentence, on average?
In a synthetic language like Nahuatl, which has a very high number of
morphemes per word, a “word” may be approximately equivalent to a full
sentence, and the concept of “word” may not mean much here either.

• Basic word order: English is a Subject-Verb-Object language; in a sentence
like I threw the ball, the subject (I ) comes first, then the verb (threw), then
the direct object (the ball). Other languages use different basic word orders
(most common of all is SOV, as in Korean and Turkish: I the ball threw). It’s
most common for the subject to come first, but some languages such as
Irish put the verb first; rarest of all are those that put the object first, like
the Hixkaryana language of Brazil.

• Order of adjectives and nouns: We’ve already seen that English adjectives
come before nouns (the red balloon) while French adjectives come after (le
ballon rouge).

• Ability to leave out pronouns: In some languages such as Spanish and
Japanese, it’s very common to omit a pronoun in a sentence where it
can be easily inferred from the discourse context or from subject-verb
agreement morphology, as in the Spanish sentence caminé ayer ‘(I) walked
yesterday’. In English, such constructions are much rarer and limited to
specific contexts such as writing in a diary.

• Tense: In English, verbs are marked when they describe an event that took
place in the past, like walked. But some languages, such as Mandarin, use
the same verb form regardless of time, and convey temporal information
by other means.

2www.wals.info, accessed 2024-04-26.
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• Evidentiality: In languages such as Turkish, a verb ending marks how the
speaker came to know the content of the sentence – direct observation,
hearsay, inference. In English, such information can be mentioned if the
speaker feels like it, but it is not required as part of the verb system.

• Lexical categories: Languages like English have a large class of adjectives,
describing concepts like color, age, size, physical appearance, and subjec-
tive evaluation. But languages such asWolof have relatively few adjectives,
and a lot of English adjectives are translated instead as verbs (a verb like
‘to [be] hot’ or as possessed nouns (like ‘to have strength’).

• Definite and indefinite determiners: English has both the definite determiner
the and the indefinite a. Some languages (like Persian) have only one or the
other, or (like Mandarin) neither one. Even among languages that have
definite and indefinite determiners, these can be used in different ways;
as we saw in the discussion of el pescado in Spanish, English uses bare
plural nouns (fish) to refer to fish in general, while Spanish and French use
definites (el pescado, le poisson) for this purpose.

• Case: In English, pronouns aremarked for case (grammatical role in the sen-
tence): I is the first-person singular pronoun used for grammatical subjects,
me is used for objects, my is used for possessives, and so on. In languages
such as Russian and Latin, not just pronouns but all nouns are marked in
this way, with different endings depending on their grammatical role.

• Number: In English, we use a plural -s suffix on nouns when referring to
more than onemember of a category. In other languages such asMandarin,
the distinction between singular and plural is largely not marked.

• Gender: In English, my neighbor doesn’t tell us anything about this per-
son’s gender. But in French, ma voisine refers to my female neighbor, and
mon voisin refers to my male neighbor. In English, third-person singu-
lar pronouns are marked for gender (she, he) and animacy (it is for less-
sentient things); whereas in Persian, the animate third-person singular u
does not mark gender, and in French, there is no inanimate form and even
the plurals (ils, elles – both meaning ‘they’) are marked for gender.

• Formality: In English, you is used for all second-person addressees, singular
or plural, close friends or respected elders. In French, tu is singular and
informal (used between friends), while vous is plural and/or formal (used
for polite acquaintances and social superiors). Thou, used several centuries
ago, used to serve as the informal form of you in English.
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Some of these cross-linguistic differences require (human-written or machine-
learned) transfer rules to reorganize information from one language to another.

Posing a larger challenge, these cross-linguistic differences also mean that
translation sometimes doesn’t just require knowledge of the source and target
languages, but also knowledge – not necessarily reflected in the source text!
– about the real-world events that the author intends to describe. Translating
from English to Turkish, a (human or machine) translator must choose an eviden-
tial marker, required by Turkish but not English, about how the speaker came
to know the content of what they are saying. Translating English to French, a
translator must choose a gender for my neighbor and a formality level for you.
Translating French to English, one must decide whether J’aime la pizza means ‘I
like pizza’ (in general) or ‘I like the pizza’ (that we are eating); using an example
from Cohn-Gordon & Goodman (2019), one must also decide whether J’ai coupé
le doigt describes a banal scenario where ‘I cut my finger’ or a grisly one where
‘I cut off my finger’. Translating Chinese to English, one must choose the right
tense marking for verbs and the right number marking for nouns. Perhaps the
surrounding context of the source text resolves the confusion, but perhaps one
just has to make a decision.

Such cases – when a distinction is unmarked in a source language but required
in a target language – are among the most difficult issues for human translators
too. World Health Organization translator Claude Piron (Piron 1988) describes
translating an English description of a disease that had emerged in a Japanese
prisoner-of-war camp. While the English source text is ambiguous, the clearest
French translation would specify whether the camps or the prisoners-of-war
were Japanese:

(6) a. French
camp
camp

japonais
Japanese

de
of

prisonniers
prisoners

de
of

guerre
war

‘Japanese camp for prisoners-of-war’
b. camp

camp
de
of

prisonniers
prisoners

de
of

guerre
war

japonais
Japanese

‘camp for Japanese prisoners-of-war’

Piron wrote to the original author asking whether the camps or the POWs
were Japanese, and received word that the author had died. He doesn’t explain
what he did next – perhaps he made an educated guess, or perhaps he added
a footnote to the translation explaining the confusion. Most of his work as a
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medical translator involved such detective work, he says, and he doesn’t trust
machines to take it over.

For their part, machine translation systems often just default to translating
an under-determined source text into whatever target text is the most common
in the data used to build the system. As of the time of writing, Google Trans-
late translates Japanese prisoner-of-war camps as in (6a). Translating English to
Spanish, the current default of Google Translate usually chooses the singular in-
formal tú rather than the plural ustedes or the singular formal usted – perhaps
setting people up for accidental rudeness! (Sometimes adding an honorific like
sir to the source sentence can move Google Translate towards the formal usted
in the translation.)

But in some cases, Google Translate is sophisticated enough to inform users
about the choices to be made. Translating the single word student to French,
the system offers both étudiant (masculine) and étudiante (feminine) – providing
transparency about the fact that the user has to determine the gender of the stu-
dent. This design choice puts the human-in-the-loop, because Google Translate
supplies two options with metalinguistic annotations for the human to choose
one, and it is a good way to handle such difficult cases. But so far, this transpar-
ent human-in-the-loop system is only offered when the user elicits a translation
for student as a single word. When student appears in a longer text, English-to-
French Google Translate often just defaults to the masculine form.

Another good place to give the user multiple options involves differences
across regions or dialects. Should French coffre be translated as American trunk
(of a car) or British boot? Intersecting questions about regionwith singular/plural
and familiar/formal distinctions, should English you be translated as Spanish tú
(singular familiar), usted (singular formal), ustedes (plural used in Latin America),
or vosotros (plural used in Europe)? Potentially of more consequence in a medi-
cal context, should Spanish canilla be translated as shinbone (in some regions) or
wrist (in others)? In these cases, you need to know not just what the text means,
but also what you are assuming about the people who are producing the source
text or comprehending the translation.

7.4 Building a machine translation system

Having introduced translation and the concepts underlying it, we are now ready
to explore how machines can “learn” to translate from data.
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7.4.1 Parallel corpora

The first ingredient in any modern machine translation is a parallel corpus, also
known as a bitext – a set of pairs of documents, one in each language, known
to say the same thing. Ideally you want a set of pairs of translation-equivalent
sentences, like French Elle est américaine and English She is American.

Historically, one of the most famous parallel corpora is the Rosetta Stone, used
by the French linguist Jean-François Champollion to decipher Ancient Egyptian
hieroglyphics. The Rosetta Stone issues a decree by King Ptolemy V in two lan-
guages (Ancient Egyptian and Ancient Greek), and three writing systems (re-
calling the distinction between languages and writing systems from Chapter 1).
Ancient Egyptian is written in hieroglyphics – a combination of alphabetic, syl-
labic, and logographic elements, decoded as a result – and in the Demotic abjad;
Ancient Greek is written in the Greek alphabet. The Rosetta Stone illustrates that
it is a lot easier to translate something when you already know what it says. A
similar idea was used by the British cryptographer Alan Turing (inventor of the
Turing Test described in Chapter 8) and his colleagues at Bletchley Park to deci-
pher the Nazi Enigma code: They knew that messages often began with To and
that some of the enciphered text described daily weather forecasts, so they were
also able to leverage this information as a partial parallel corpus.

Thanks to the work of human translators, parallel corpora are already all
around us. You can explore the OPUS Open Parallel Corpus created by Tiede-
mann & Nygaard (2004)3 for open-access examples. In multilingual parliaments
around the world and in the United Nations, parallel documents are produced in
all official languages; other sources include literature (especially older literature
in the public domain), film and television subtitles, newswire text, and TED talks.
Of course, it is easier to find large parallel corpora for some language pairs than
others. For low-resource languages such as Chamorro (a Polynesian language of
Guam), one may not find much more than the very widely-translated Univer-
sal Declaration of Human Rights and the Christian Bible. Even within a high-
resource language such as English, some minoritized varieties, such as Indian
English or African American English, have fewer resources. Improving tools for
low-resource languages and varieties constitutes another ongoing challenge for
machine translation.

3https://opus.nlpl.eu, accessed 2024-05-23.
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7.4.2 Word alignment

Once you have a parallel corpus, a natural next step is to try to line up the words
in each language that correspond to one another. This process of alignment con-
stituted the first step of deciphering the Rosetta Stone; it underlies the transla-
tion models used in statistical machine translation; and it persists, in a modified
bottom-up form, in the most modern neural machine translation systems (as at-
tention – discussed below).

Figure 7.1 shows the alignment between French and English in a sentence from
the Universal Declaration of Human Rights. Notice that the French word les ‘the’
is not associated with any English word, and the English word are is not associ-
ated with any French word. It is useful to make sure that every word is connected
to something, which we can do by introducing a special null word that has no
other purpose than to provide a hook for the words that would otherwise not be
connected. It is also possible for one word in one language to align to multiple
words in another language, like English potato to French pomme de terre.

NULL Tous les êtres humains naissent libres et égaux

NULL All human beings are born free and equal

Figure 7.1: Word alignment, using the Universal Declaration of Human
Rights.

Word alignment can be automated using a parallel corpus, and automated
alignment was an important part of the statistical machine translation systems
used in the 1990s and 2000s. In today’s neural machine translation systems, au-
tomatic alignment is no longer an explicit step of the machine translation pro-
cess, but alignment does still emerge in a bottom-up manner as a neural network
learns the best source-to-target mappings from a parallel corpus.

Let us sketch how alignment is automated in a statistical machine translation
system. To start off, we just count the number of times each word pair occurs in
corresponding sentences. If we try this for a little fragment of Hansard (the offi-
cial record of Canadian parliamentary debates), which is conveniently published
in French and English, we can find out that the French word gouvernement lines
up with the following frequent English words (second column). This table counts
the number of parallel sentence pairs that contain each combination of French
and English words.
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Table 7.1: For each pair of words, the number of parallel sentences in
which both words occur.

French English Count

gouvernement the 335
gouvernement to 160
gouvernement government 128
gouvernement of 123
gouvernement and 81
gouvernement that 77
gouvernement in 73
gouvernement is 60
gouvernement a 50
gouvernement it 46

and the English word government lines up with the following frequent French
words (first column):

Table 7.2: For each pair of words, the number of parallel sentences in
which both words occur.

French English Count

de government 195
le government 189
gouvernement government 128
que government 91
? government 86
la government 80
les government 79
et government 74
des government 69
en government 46

We have left out the infrequently paired words in both lists, because we are
expecting lots of accidental matches. But we are also expecting that word pairs
that truly are translations will occur together more often than we would expect
by chance. Unfortunately, as you see, most of the frequent pairs are unsurprising,
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too, as the word for government is lining up with a common word of the other
language, such as the. However, the pair gouvernement/government is high up in
both lists. This gives us a clue that these words are translation-equivalent. You
may have already guessed as much because these words are cognates; but our
word alignment process does not use that information and thus works equally
well for non-cognates such as eau ‘water.’

The tables that we are showing are based on 1923 sentences, but in a full
system, we would process many thousands, hundreds of thousands, or millions
of sentences, so the tables would be correspondingly bigger. To make further
progress on this, we need to automate a little more.

Theway to deal with this is to do statistics on theword pairs. Table 7.3 contains
some of the higher scoring pairs from a single file of the Canadian Hansard. Now,
instead of calculating the number of times the word pair occurs together, we also
collect other counts. The first column of the table is a statistical score called 𝜙2
(phi-squared) which is a measure of how closely related the words seem to be.
The second column is the French word, the third the English word and the fourth
through seventh are, respectively:

• The number of times the two words occurred in corresponding sentences
(fe).

• The number of occurrences of the French word (f ).

• The number of occurrences of the English word (e).

Table 7.3: Selected word pairs statistics in a small aligned corpus.

𝜙2 French English fe f e

0.823 D’accord Agreed 14 17 14
0.500 Bravo Hear 6 12 6
0.111 Interpellation-Suite Inquiry-Debate 4 8 18
0.094 Législation Legislation 6 16 24
0.083 appelle: Order: 7 21 28
0.083 L’ordre Order: 7 21 28
0.067 Étude Study 6 18 30
0.067 spéciale Study 6 18 30
0.044 Deuxième Reading 4 20 18
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In reality, the table would be much bigger, and based on more words, but you
can already see that goodword pairings are beginning to appear. This table shows
the value of statistical calculations about word pairings. To handle cases where
alignment is one-to-many ormany-to-many rather than one-to-one (for example,
French pommes de terre ‘potatoes’), onewould needmore sophisticated strategies
for capturing the alignment of phrases rather than words.

7.4.3 Statistical machine translation

Automated word alignments are used in statistical machine translation, which is
worth studying as the conceptual groundwork for the neural machine translation
systems used today.

To understand statistical machine translation, we can return to the noisy chan-
nel model which originates in the field of information theory and was discussed
in the context of spell-checking in Chapter 2 above. The key idea is that a sender
has a clean message in mind, but that message is sent through a noisy channel be-
fore it arrives at the receiver. The receiver has to decide on the most likely clean
message that was intended given the noisy message that they received. The re-
ceiver takes into account two pieces of information – the likelihood of various
different clean messages that might have been intended; and the likelihood of
the observed noisy message being received given that clean message as input.
The likelihood of different clean messages is called the message model, and the
likelihood of a given observed noisy message given a particular intended clean
message is called the channel model. We can use mathematics to formalize these
two models and the way they should be combined.

Figure 7.2: The noisy channel model.

Reviewing and formalizing our spell-checking example from Chapter 2, imag-
ine you get an email inviting you to a birthday party for Dsvid. Think of the
original clean signal as being what the user meant to type and the degraded sig-
nal as what the users fingers actually did type. It is easy to tell that the clean
signal must have been David, and that the error is a key-for-key substitution of s
for a, which are adjacent on a common keyboard layout. Here, the channel model
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says that substitutions of adjacent keys are common, and themessagemodel says
that David is a more plausible name for the mutual friend than Dsvid.

We can turn the noisy channel model into math by writing

(7.7) ̂𝑦 = argmax
𝑦

𝑃(𝑦)𝑃(𝑥|𝑦)

where 𝑥 is the observed output of the channel (that is, the degraded message)
and 𝑦 is the hypothesized clean message. The notation argmax𝑦 𝑃(𝑦)𝑃(𝑥|𝑦) is
a mathematician’s way of saying “search for the 𝑦 that gives the highest value
for the probability expression 𝑃(𝑦)𝑃(𝑥|𝑦)”. ̂𝑦 is therefore the system’s best guess
at what the original message must have been. The message model is expressed
as 𝑃(𝑦), which is the probability that the writer will have intended a particular
word 𝑦 . The message model tells us that Dsvid is an unlikely intended message,
David is a likely message, and Sara is also a likely message, because that’s also a
common name.
𝑃(𝑥|𝑦) is the channel model: It tells us the probability of receiving the degraded

signal 𝑥 given the intended clean message 𝑦 . The channel model tells us that the
probability of receiving the degraded message Dsvid given the intended clean
message David is quite high (the edit distance between them is 1, and s is even
a particularly likely substitution for a on a standard keyboard, since they are
adjacent). The channel model also tells us that the probability of receiving the
degraded message Sara given the intended message David is quite low – how
could someone mistype David as Sara when they only share one letter?

Putting together the message model and the channel model, we are looking for
the 𝑦 that gives the highest value for 𝑃(𝑦)𝑃(𝑥|𝑦). Our degraded signal is Dsvid
and we are looking for the clean message that this signal represents. Let’s con-
sider three candidates for the intended clean message 𝑦 : Dsvid, David, and Sara.

• P(Dsvid) is low, because Dsvid is not a name; P(Dsvid | Dsvid) is high, be-
cause if someone did for some reason mean to say Dsvid, it is likely that
they would have typed Dsvid.

• P(Sara) is high, because it’s a common name; P(Dsvid | Sara) is low, because
if someonemeant to say Sara, it’s very unlikely that theywould have typed
Dsvid.

• P(David) is high, because it’s a common name; P(Dsvid | David) is high,
because if someone meant to say David, it’s quite likely that they would
have typed Dsvid.
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The 𝑦 that gives the highest value for 𝑃(𝑦)𝑃(𝑥|𝑦), combining the message
model and the channel model, is thus of course David.

At the end of the chapter, in the exercises, there are a couple of rather more
exotic examples of the noisy channel model, including part-of-speech tagging
and cryptography. If you want to stretch your mind, do those exercises! After
that, there is a risk that youwill start seeing the noisy channel model everywhere.

You may already be able to see why this discussion belongs in a chapter about
translation. In 1949, the mathematician and information theorist WarrenWeaver
(1949) put it this way:

It is very tempting to say that a book written in Chinese is simply a
book written in English which was coded into the “Chinese code.” If
we have useful methods for solving almost any cryptographic prob-
lem, may it not be that with proper interpretation we already have
useful methods for translation? (Weaver 1949: 22)

Statistical machine translation technology builds on this appealing idea. If we
imagine that we have a message in a foreign language 𝑓 that we would prefer to
read in English 𝑒, we can factor the task into three parts:

1. Estimating a translation model 𝑃(𝑓 |𝑒).
2. Estimating a language model 𝑃(𝑒).
3. Maximizing the product 𝑃(𝑒)𝑃(𝑓 |𝑒) and returning the resulting English.

This process is usually called decoding by analogy with the cryptography
example above.

The translation model tells us the probability that a given English message 𝑒
could generate the received foreign message 𝑓 . The translation model is built on
an aligned parallel corpus. For each word/phrase in 𝑓 , one could ask how often
in the parallel corpus 𝑓 aligns to each word/phrase in 𝑒. We might also make use
of a distortion model reflecting the probability of various reorderings of words
between the foreign and English messages (or we could use some human-written
transfer rules). The translation model tells us how faithful the target text is to
the source text; it tells us, for example, that French le gouvernement suisse is very
likely given the intended English message the Swiss government.

The language model could be built with 𝑛-grams (rating the probability of a
string based on the probability of the 𝑛-grams within it) or it could use fancier
techniques. The main intuition is that the language model tells us the probability
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of a string based on its similarity to attested strings in a monolingual corpus. The
language model tells us how fluent the target text is as English; it tells us, for
example, that the Swiss government is very likely English, while the government
Swiss is less likely.

This decomposition gives rise to a nice division of labor. Imagine that we are
trying to translate the Latin phrase summa cum laude into English, and that the
system is considering three possible candidates. (This example is adapted from a
lecture slide by Jason Eisner.)

(8) a. topmost with praise
b. cheese and crackers
c. with highest distinction

Just as in the case of Dsvid, Sara, and David, we want to choose the clean in-
tended message 𝑦 that gives the highest value according to the message model
(language model) 𝑃(𝑦), and the channel model (translation model) 𝑃(𝑥|𝑦). The
degraded Latin signal 𝑥 is summa cum laude, and we are evaluating three candi-
dates for the clean intended English message 𝑦 .

• P(topmost with praise) is low, because it’s scarcely attested in English cor-
pora; P(topmost with praise | summa cum laude) is high, because if someone
did for some reason mean to say topmost with praise in Latin, it is likely
that they would have said summa cum laude – as we can infer from a trans-
lation model showing, for example, that laude and praise often occur in
translation-equivalent Latin/English sentence pairs.

• P(cheese and crackers) is high, because it’s a common trigram of English;
P(summa cum laude | cheese and crackers) is low, because if someone meant
to say cheese and crackers in Latin, it’s very unlikely that they would have
said summa cum laude – as we can infer from a translation model show-
ing that laude never occurs in a translation-equivalent sentence pair with
cheese or crackers.

• P(with highest distinction) is high, because it’s a fairly common phrase in a
monolingual English corpus; P(summa cum laude | with highest distinction)
is high, because if someone meant to say with highest distinction in Latin,
it’s quite likely – according to translation models showing us which words
tend to co-occur in translation-equivalent sentence pairs – that theywould
have said summa cum laude.
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The 𝑦 that gives the highest value for 𝑃(𝑦)𝑃(𝑥|𝑦), combining the language
model and the translation model, is thus with highest distinction.

How do we choose all the candidates for 𝑦 to be scored against the translation
model and the language model? One common technique is to use beam search, a
way of exploring the most promising candidates. We build up our translation 𝑦
word by word using what we’ve learned from our automated word and phrase
alignments (plus perhaps a distortion model or a series of transfer rules), and
at each point we consider multiple different options for that word. Beam search
means that at each step, we store a fixed number of the most promising candi-
dates for 𝑦 according to both the translation model and the language model. At
the end (when every word of the source text has been translated), we have a fixed
number of good candidates for 𝑦 from which to choose the best one.

In sum, statistical machine translation constitutes yet another application of
the powerful noisy channel model. By building the translation model and the
language model separately, only the translation model actually needs parallel
text; the language model can be built frommonolingual text, which can be found
in greater volume.

7.4.4 Neural machine translation

Since the 2010s, machine translation has advanced using neural networks,
trained by trial and error to map an input (a source sentence) to an output (a
target sentence). To translate French to English, we take a series of French/
English pairs, like Elle est américaine / END She is American / END. (The /
END token marks the end of the sentence.) We train the model to read in the
French input Elle est américaine /END and output the correct translation, She
is American /END. The part of the network that reads in the French input is
called the encoder, and the part that outputs the English translation is called the
decoder (Figure 7.3).

How does this work? First, recalling the vector representations of words intro-
duced in Chapter 4, we map each French word to a number. We do this because
neural networksmanipulate numbers, not strings of characters, and can use num-
bers to capture meaningful relationships between words. Commonly, each word
in the source vocabulary is given a unique ID number, sorted alphabetically or
by frequency: Perhaps Elle is word number 2483, est is word 2891, américaine is
word 1322) and so on; the punctuation and the word /END token will also have
ID numbers (here, 4 and 2 – low numbers because these special tokens will occur
at the beginning of the alphabet as well as the beginning of a vocabulary sorted
by frequency). Then a source-language sentence (Elle est américaine) is mapped
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Figure 7.3: Inspired by Alammar (2018).

to a vector providing the IDs of its words in order. The vector may be padded
with 0s so that all input vectors come out to a standard length; here, it is padded
to a length of seven words.

(9) Elle
[2483,

est
2891,

américaine
1322,

.
4,

/END
2,

(padding)
0,

(padding)
0,

(padding)
0]

The target sentence is also represented as a vector, this time using a dictionary
of numeral IDs for English words, also padded with 0s to a standard length. For
example, perhaps She is word 8912.

(10) She
[8912,

is
6585,

American
1901,

.
4,

/END
2,

(padding)
0,

(padding)
0,

(padding)
0]

Now comes the neural network – a machine learning technique that takes
inputs and tries to predict the correct outputs. The input French sentence, repre-
sented as (9), is fed to a layer of nodes. Each node represents a function involving
some multiplication and addition, specified using values called weights, which
operates on the vectors that we feed to it. After all this multiplication and ad-
dition, we have a new vector that represent the French sentence. Then we can
feed this new vector to another layer of nodes, where we do some more multi-
plication and addition using a new round of weights. Eventually, the final layer
takes in a vector (generated by the previous layer), does some multiplication and
addition with a final layer of weights, and outputs a probability function that it
uses to decide what it considers to be the most probable English translation –
our output. Namely, for each word in the target translation, the model outputs a
vector of all the words in the target vocabulary such that each one is associated
with its probability of being the correct output. Ideally, it should give the highest
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probability to the correct word She (word 8912), but perhaps instead it has given
the highest probability to the word the (word 9901). Then our system goes on to
predict the next word of the target, considering the entire input sentence along
with the output that it has generated so far. When it predicts the /END token, it
stops predicting words, pads the rest of the output with zeroes, and returns its
translation.

While training the model to predict the second target word (is), it can be help-
ful to let the model see the correct first word of the target (she) rather than the
one it has predicted (perhaps the erroneous the); that way, it learns to predict
the second word as if it had gotten the first word right, rather than swerving
off-course by trying to complete a sentence that has already gone astray. This
technique, letting the system see the correct target word w1 when trying to pre-
dictw2, is called teacher forcing and resembles how human teachers may scaffold
students working through a multi-step problem.

The power of the neural network comes from the process by which we learn
the best weights for each layer. We choose some random weights to start, and
then use error-driven learning to learn the best ones through trial and error. First,
we do a forward pass through the network, inputting a French sentence to get an
English output. The first time we pass a French sentence like Elle est américaine
/END through the network, it might output a terrible English translation like the
the the /END. Each time the model produces an output, it checks how well it did
by calculating what probability it assigns to the correct output (She is American
/END). Here, the network gave a higher probability to the the the /END than to
the desired output She is American /END, so the network realizes that it has made
an error. Now it needs to update its weights to give a higher probability to the
correct translation She is American /END.

So the next step is back-propagation. We do a backward pass through the net-
work, starting with the erroneous output, and walking back through the network
to adjust all the weights that gave rise to this error. Layer by layer, we go look
at each node, figure out how much that particular node contributed to this error,
and update the weight of each node to reduce the error. (This process is called
gradient descent – we use the idea of gradients from calculus to figure out how
much each node caused the error, and we update the node’s weight so that the er-
ror descends downward.) We might use several thousand training examples, and
we might pass all of those examples through the network multiple times. (Each
pass through our training data is called an epoch.) Each time, we recalibrate all
the nodes to reduce the error.

Eventually, we end up with a system that has “learned” to map French sen-
tences to English ones. Once trained, the network can be evaluated using test data

269



7 Machine translation

in the form of French/English pairs that it hasn’t seen before; and ultimately, it
can be turned loose on French sentences that don’t appear in any parallel corpus
at all.

In the case of machine translation, we map a sequence of source words to an-
other sequence of target words, which is called a sequence-to-sequence problem.
Sequence-to-sequence problems are harder than regression or classification be-
cause instead of just outputting a number or a classification label, we have to
output an open-ended sequence of words.

Word sequences (sentences) are interesting because each word in a sentence is
more or less related to otherwords –within the source sentence, within the target
sentence, and across those two sentences. In the French source sentence Elle est
américaine, the third-person-singular verb est agrees in number with the singular
pronoun Elle, and feminine adjective américane agrees with Elle in gender. In
the English target sentence, is agrees with She in number. Moreover, coming
back to the idea of word alignment, the French words are related to the English
words: Elle aligns with She, est aligns with is, and américane aligns withAmerican.
The sequence-to-sequence neural network needs a way of capturing all of these
relationships.

One powerful way of doing this uses an idea called attention (Vaswani et al.
2017). We train a layer of weights in the network to decide, for each word in the
output, how much attention it should pay to each word in the input – how much
that input word should affect the choice of the right output word. For example, as
we try to translate She, the attentionmechanism tells us to pay themost attention
(give the most weight) to Elle. Thus, as the attention mechanism is trained in
tandem with the rest of the network, it ends up discovering word alignments in
a bottom-up manner. This mechanism is called encoder-decoder attention because
it tells us, for each word to be decoded in the output, how much it depends on
each encoded word in the input. We can visualize encoder-decoder attention in a
two-dimensional diagram (Figure 7.4) with the source sentence on one axis and
the target output on the other; a lighter-colored square means that the decoder
was trained to pay attention to the corresponding word in the encoder.

We can also use an attention mechanism to relate each input word to other
input words, or each output word to other output words: As we try to translate
is, the attention mechanism tells us to pay attention to the previously generated
output word She, since is agrees in number with She. This mechanism is called
self-attention because each word in the output is associated with other words
within itself, rather than being associated with a word in the input.

Attention mechanisms underlie the most successful neural machine transla-
tion systems in use today, such as Google Translate. Beyond their empirical ef-
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Figure 7.4: Reproduced from Bahdanau et al. (2015). The code that gen-
erates this figure) is public – copyright 2014, Machine Learning Lab
(LISA) at University of Montréal – and shareable; see https://github.
com/lisa-groundhog/GroundHog.

fectiveness, attention mechanisms have also been argued to offer the conceptual
advantage that they help shed some light onto the otherwise opaque knowledge
represented by the neural network. How do we understand the meaning of a
trained weight vector like [0.02, -9.25, 10.2, …]? Attention visualizations such as
those shown in Figure 7.4 may help us interpret or explain the network’s behav-
ior.

The mathematical implementation of all these ideas lies beyond the scope of
a general-interest textbook, but the take-home points are that:

• Modern machine translation uses sequence-to-sequence neural networks.
The network is trained on a parallel corpus to predict the right target-
language output given a source-language input.

• Neural networks learn by trial and error. The network tries to predict an
output, checks where it went wrong, and then updates weights to do bet-
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ter next time. Over thousands of iterations, the network can become very
successful.

• The idea of word alignment from statistical machine translation re-
emerges in a modified form as attention – a mathematical way of
associating each word with the other words most related to it, both within
a sentence and across source-target pairs.

7.4.5 Evaluation

Having built a machine translation system, it is useful to be able to evaluate how
well it is doing. One popular automatic evaluation metric proposed by Papineni
et al. (2002) is known as BLEU (Bilingual Evaluation Understudy), parallel to the
concept of precision discussed in Chapter 5. We compare a machine-generated
candidate translation to one or more human-written reference translations. BLEU
can be calculated as the number of words in the candidate translation (C) that also
appear in some reference translation (R), divided by the length of the candidate
translation.

(7.11) BLEU score = number of words in C that also appear in R
total number of words in C

If our candidate translation is I love running and the reference translation is I
love to run, then our BLEU score is 2/3: Two words in the candidate translation
(I, love) also appear in the reference translation (so 2 is the numerator), and the
candidate translation is three words long (so 3 is the denominator). We can also
compute fancier versions of BLEU which look at larger 𝑛-grams rather than just
single words (unigrams).

If our candidate translation was just love, it would get a perfect BLEU score of
1: One word in the candidate translation also appears in a reference translation
(thus, the numerator is 1), and the candidate translation is one word long (thus,
the denominator is 1). That’s why the calculation of BLEU may also use a brevity
penalty to down-grade candidate translations that are too short.

Of course, I love running means basically the same thing as I love to run, so
maybe our candidate translation should really get a higher score than just 2/3.
(Indeed, if we had more than one human-written reference translation to com-
pare against, the BLEU score would probably go up.) This example illustrates
why it can be difficult to evaluate machine translation automatically. We want
to ask whether the candidate translation captures the meaning of the source sen-
tence, but without any way of representing meaning, we have to use imperfect
cues like BLEU to evaluate translations.
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7.5 Consequences

For many years, machine translation was considered the hardest problem in NLP.
During the Cold War, a report by the United States National Academy of Sci-
ences (Automatic Language Processing Advisory Committee (ALPAC), Division
of Behavioral Sciences 1966) argued that machine translation (namely, Russian-
to-English translations of scientific research) was of such poor quality that it was
not a good use of government resources, and that money would be spent more
efficiently on human translators and tools, such as scientific glossaries, to help
them. That pessimistic ALPAC report is often cited as the reason that machine
translation attracted scant funding for decades. But today, the authors of that
report might be surprised that machine translation (for some language pairs) is
astonishingly good and gets better every day.

Perhaps machine translation seemed difficult in part because human transla-
tion is difficult. A human translator must be highly literate in two languages,
which requires years of schooling, and many of us do not have that expertise.
But in reality, machine learning has progressed in part because it has a “right
answer” in the form of a parallel corpus. Whenever we can find a lot of training
data mapping inputs to output “right answers”, the power of machine learning
can make a lot of progress in learning that mapping.

But machine translation still faces challenges. We’ve already seen that
translation sometimes requires cultural knowledge or knowledge of the world
that is not represented in the source text (what gender should my neighbor be
given in French?). Sometimes, a machine translation system may use statistical
biases to choose gendered translations, as in this English-to-Spanish example
from Stanovsky et al. (2019).

(12) English original
The doctor asked the nurse to help her.

(13) Spanish machine translation
El
the.masc

doctor
doctor.masc

le
3sg

pidió
asked

a
to

la
the.fem

enfermera
nurse.fem

que
that

le
3sg

ayudara.
would-help
‘The (male) doctor asked the (female) nurse to help.’

The English original indicates a female doctor through the pronoun her later
in the sentence, and doesn’t specify the gender of the nurse. But the Spanish
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translation defaults to the masculine form of the word for ‘doctor’ and the fem-
inine form of the word for ‘nurse’, presumably because those forms are more
common in its training data, thus perpetuating professional gender stereotypes.

Machine translation also struggles with low-resource languages, and has a
hard time translating text from a domain different from its training data (a sys-
tem trained on the Bible may struggle to translate tweets). It can be hard to iden-
tify or translate named entities: In a sentence like Holly loves swimming, how
can we recognize Holly as a name rather than a plant? It is also hard to deal with
newwords that weren’t present in the training data: Howwill your system trans-
late pantsgate (a pants-related scandal, using the -gate suffix popularized by the
Watergate political scandal) if it’s never seen this word before? And how should
it be translated when this -gate suffix evokes rich cultural knowledge, perhaps
opaque to foreigners, of the Watergate scandal in American history? For literary
works, one might also worry that a machine translation would miss subtleties of
connotation, double meanings, and rhyme.

We may also be curious what ideas from linguistics emerge (or don’t emerge)
bottom-up in the representations learned by neural networks. Does the network
encode any information that linguists would recognize as part-of-speech tags,
syntax, or semantics? At the time of writing, the sentence At Cannery Row, peo-
ple can tuna is still mishandled by English-to-French Google Translate, which
translates can as the modal pouvoir ‘to be able to’ rather than the comparatively
rare verb ‘to put into a can’ – so the system struggles with linguistic notions
such as sense disambiguation (which sense of can should be used?) and syntax
(what’s the verb in this sentence?).

Returning to our recurring question about whether humans and computers
compete or complement one another, what are the consequences for human
translators now that machine translation is so successful? Human translators
created the parallel corpora used to train machine translation systems. But do
machine translation enterprises adequately credit and compensate them for this
work? And will human translators eventually be replaced by the machine trans-
lation systems that their data helped to build?

A pessimist would say that a few human translators will still be needed in high-
stakes contexts, but that many others will lose their jobs. An optimist would say
that human translators will work alongside machine translation systems, each
complementing one another’s strengths, to build a more interconnected global
society. The machine translation system may be used to generate draft trans-
lations; the human can post-edit and finalize, prevent cross-cultural misunder-
standings, and track downworld knowledge like the locations of prisoner-of-war
camps and the gender of people’s neighbors.
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Finally, what are the consequences of machine translation for the people
whose writings are translated? Does widely available machine translation
reduce the need to learn a second language (in a classroom, or with CALL tools
as discussed in Chapter 3)? Does it allow people to communicate more easily
around the globe?

Or could it cause misunderstandings? In 20174, a Palestinian construction
worker Facebook-posted a photo of himself with a bulldozer, and a caption
that said Good morning in Palestinian Arabic. Machine translation systems
can struggle with Arabic because most formal writing uses Modern Standard
Arabic whereas speech and social media posts use regional varieties that are
not mutually intelligible (a situation known as diglossia). So Facebook’s system
translated Good morning as ‘Attack them’ – which, combined with the image
of the bulldozer, was interpreted by Israeli police as a violent threat. The
construction worker was arrested and questioned for hours.

Unfolding within the larger Arab-Israeli conflict, this unfortunate event was
specifically triggered because Facebook’s translation system not only failed to
translate Palestinian Arabic, but also failed to anticipate how the technology
would be used, and failed to signal its fallibility to the police who wrongly re-
lied on its output. Returning to the theme of how technology should be used
ethically, one might conclude that automated systems should transparently flag
low-confidence output, and that even high-confidence output should be checked
by a human before it is used to arrest someone.

Checklist

• Give examples of various translations needs, some which require
human expertise, and some which can be easily automated.

• Draw and explain the translation triangle. You should be able to
use the idea of more abstract and less abstract representations, and
explain why the distance between the source language and the tar-
get language narrows as we move up the triangle towards more
abstract representations.

4The Guardian, “Facebook translates ‘good morning’ into ‘attack them’, leading to arrest,” by
as reported by Alex Hern, 24 October 2017.
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• Identify several typological differences between languages and ex-
plain their significance for machine translation.

• Give examples of cases where a translator needs knowledge beyond
the source text in order to translate.

• Explain the idea of word alignment. You should be able to take a pair
of sentences and draw lines to indicate which words in the source
language are aligned with which words in the target language.

• Explain the noisy channel model and how it can be applied to dif-
ferent types of tasks, including machine translation.

• Compare and contrast statistical and neural machine translation.

• Define encoder-decoder attention and self-attention.

• Calculate the BLEU score of a candidate translation with respect
to a reference translation. Explain how BLEU echoes the idea of
precision from Chapter 6.

• Explain why machine translation is perhaps easier than it first ap-
peared, and what challenges it still faces.

Exercises

1. Please return to the bulleted list of possible translation needs in
Section 7.2. Discuss with a partner whether you would use machine
translation or a human translator in each situation. If you would
hire a human, please discuss what qualifications you would want
them to have.

2. Using the example from Jurafsky & Martin (2009), discuss how you
would translate The Lord is my shepherd (Psalm 23) into a language
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spoken in a culture without shepherds or sheep.

3. Please choose a non-English language that you are familiar with,
and observe at least one distinction (such as formality, number, gen-
der, evidentiality, definiteness, or tense) that is marked in this lan-
guage but not in English or vice versa.

• Please provide a specific example of a sentence in this lan-
guage (glossed word-by-word and translated into English)
showing that this distinction is marked in only one of the two
languages.

• Next, please choose your favorite machine translation system,
and discuss how this sentence is automatically translated in
both directions.

4. Find a native speaker of a language other than yours (and other
than English), and sit down with them with a short passage of text
in their native language. Discuss what problems there are in trans-
lating from their language into English (or into your own native
language). Which kinds of sentences/constructions are fairly easy
to translate? Which ones border on impossible?

5. Explore the World Atlas of Language Structures.a Look at some of
the ways that languages vary in terms of syntax and semantics, and
articulate the consequences for machine translation systems.

6. Explore the Endangered Languages Project.b Choose an endan-
gered language to explore. Does this language have a writing sys-
tem? Is this language available on Google Translate? Can you find
any parallel corpora onlinec that use this language?

7. The three procedural languages of the European Union are English,
French and German. There are twenty-one other official languages,
making a total of twenty-four. You want to make sure that it is pos-
sible to translate from any of these languages to any other. Twenty-
four languages means 276 unique language pairs (mathematically,
twenty-four choose two); if each pair needs a different person to
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translate in each direction (e.g., Slovenian to Greek, Greek to Slove-
nian), then we would need 552 different translators. But how many
translators do you need if you adopt a policy that all documents will
be first be translated from the source language into English, French
or German, then translated back out into the target language? How
many would you need if you managed to agree that there should
be just one procedural language (for example, German) and that all
translations would either begin, end or pass through German?

8. Try out Google Translate using English and another language that
you know.

a) Choose three sentences as a test suite. Try sentences that in-
clude information that is marked grammatically in one lan-
guage but not another (for example, gender on nouns is
marked in French but not English; tense on verbs is marked
in English but not Chinese). You could also try At Cannery
Row, people can tuna, or a sentence including a word that is
ambiguous between a proper name and a noun (I like Holly).

b) Try translating these sentences from English into this target
language. Using your knowledge of the target language, rate
the quality of these translations. How well does the transla-
tion handle tricky issues, such as information that is marked
in one language but not another?

c) Now ask themachine translation system to translate these sen-
tences back to English. How good are these translations? How
similar are they to the original English input?

d) If the translation back to English matches the original English
input, does this mean that the target language translation is
necessarily high-quality? Why or why not?

e) Compare notes with classmates who tried different target lan-
guages. Do you see evidence that some language pairs offer
higher quality translation than others?

f) Now try different types of source texts – recipes, tweets, song
lyrics, and news text. What type of text is translated the best?
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9. The math for the noisy channel can also serve as a way of working
out the parts of speech mentioned in Section 2.5.1. We have to imag-
ine that speakers were once really cooperative, and that instead of
speaking normally, and saying things like:

(14) He checked out a book from the library.

they actually used to say:

(15) He/pronoun checked/verb out/adverb a/article book/noun
from/preposition the/article library/noun ./punctuation

helpfully spelling out all the parts of speech for us. Unfortunately,
people no longer speak like this, so, if we want the parts of speech,
we must guess them. We can think of (15) as being 𝑦 (the clean
message) and (14) as being 𝑥 (the degraded form of the message).
In other words, we are imagining that people still really speak in
a form that spells out the parts of speech, but that everything they
say is filtered through a very noisy channel that deletes the part-
of-speech tags and retains only the words. Of course, this is not
actually what is going on, but we can still go through the steps of
searching for the part-of-speech sequence that is most likely to go
with the words that we saw.

Finish this story by designing a part-of-speech tagging model that

a) Uses probabilities of the form 𝑝(𝑡𝑎𝑔2|𝑡𝑎𝑔1) tomodel the chance
that, for example, a noun will follow a verb.

b) Builds up the probabilities of longer series of tags by chaining
together the individual probabilities 𝑝(𝑡𝑎𝑔2|𝑡𝑎𝑔1)

c) Uses probabilities of the form 𝑝(𝑤𝑜𝑟𝑑|𝑡𝑎𝑔) tomodel the chance
that, for example, a randomly chosen noun will turn out to be
the word dog (or zebra or axolotl)

Test whether you fully understand your model by seeing whether
you can explain to yourself how it would give different probabilities
to two different interpretations of the sentence He saw her duck.
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If you can spell out the details of this model on your own, without
further clues, you will have reproduced one of the better achieve-
ments of computational linguistics. If you need further hints, Juraf-
sky &Martin (2009) covers this approach to part-of-speech tagging.

10. You can also apply the noisy channel model to cryptography. Imag-
ine that you receive a coded message mentioning an impending in-
vasion of Britain by MXOLXV FDHVDU. As an expert in cryptogra-
phy, you know to shift each letter three letters back in the alphabet
and identify the culprit JULIUS CAESAR. To get from M to J, we
look at the alphabet – J,K,L,M – and rewind three letters back from
M to land on J.

Here 𝑦 is the original Latin name, 𝑥 is the encoded message, the
channel model says to shift three letters forward, and the message
model is about a person who is a likely invasion threat. The channel
is specifically designed so that those who are in the know can undo
its corrupting effect.

You now receive a message using the rail fence cipher, which in-
volves laying out the message in the form of a rail fence, then
reading it off row by row. Here is an example of how the message
TRANSPOSITION CIPHERS ARE FUN would be laid out in a four-rail
cipher.

T.....0.....N.....R.....U.
.R...P.S...O.C...E.S...F.N
..A.S...I.I...I.H...A.E...
...N.....T.....P.....R....

In cryptography, we leave out the spaces between the words, and
group the encoded message into fives, so this message would be
encoded as TONRU RPSOC ESFNA SIIIH AENTP R. In order to read the
message, the recipient has to know that when themessage was sent,
the writer used four rails. Knowing that, it is possible to recreate
the layout and read off the message, once again in the conventional
cryptographic groups of five, as TRANS POSIT IONCI PHERS AREFU N.
All that remains is to regroup the letters into words, and the reader
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has decoded the message. If the reader uses three rails instead of
four, this happens:

T...O...N...R...U...R...P.
.S.0.C.E.S.F.N.A.S.I.I.I.H
..A...E...N...T...P...R...

and the decoded message is TSAOO CEENS NFRNT AUSPI RIRIP H.
The fact that this is unrecognizable gibberish proves that a mistake
has been made somewhere.

The process for encoding is.

• Lay out a grid with the right number of rows. If you use four
rows and your friend uses three, this is not going to work.

• Start at the top of the grid, and fill in cells diagonally down-
wards, until you reach the bottom row.

• Turn around and write diagonally upwards until you get to
the top.

• Keep writing diagonally up-and-down until you run out of
message text.

• Read off the text by rows.

Consider the following rail fence message TAEIS HRIFN ESAYE LCE.

• What does the decoded version of the message say? Youmight
have to try a few different numbers of rows.

• How many rows are there in the rail fence that worked?

• In the noisy channel formulation of the rail fence, we know
that the channel model is “it was corrupted by the railfence
cipher”. Describe the message model that you used, and how
it helped you to decide whether you had solved the problem.
How would this message model need to change if there was a
possibility that the sender was from a foreign country?

11. When translating from English into the Native American language
Mam (in Guatemala), a translator reported the following terms used
among siblings (in phonetic transcription here):
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• [ntzʔica] = ‘older sibling’

• [witzin] = ‘younger sibling’

Both words are used for males and females.

a) In terms of hyponymy/hypernymy, describe the relationship
between the English word sibling and these words.

b) Draw a Venn diagram showing how the English words brother
and sister overlap with the Mam words [ntzʔica] and [witzin].

c) You come across the text: Maxwell is the brother of Santiago,
but it gives no indication of who is older. If you had to trans-
late this into Mam and were being forced to preserve this age
ambiguity, how would you do it?

12. Please list the following tasks in increasing order of difficulty for a
computer, and for a human. What can you say about the differing
strengths of humans versus computers?

• Translating a document from French to English.

• Playing chess.

• Having a supportive, empathetic conversation with a friend
about a problem she’s been having at work.

• Reading a social media post and deciding if the person who
wrote it is morally correct or not (please see the subreddit r/
AmITheAsshole for examples).

13. Go to a multilingual websited and check out Genesis, Chapter 1,
verses 1 and 3 (“In the beginning God created the heavens and the
earth […] And God said, ‘Let there be light,’ and there was light”) in
a variety of languages. (These verses are good because the words
God, and, and light are repeated; we do not intend to make any
religious statement by choosing this text). See if you can align the
words across different languages.

awww.wals.info, accessed 2024-04-26.
bwww.endangeredlanguages.com/, accessed 2024-04-26
chttps://opus.nlpl.eu, accessed 2024-05-23.
dhttps://www.biblegateway.com/, accessed 2024-04-18.
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7.5 Consequences

Further reading

The following textbooks offer valuable chapters on machine translation:

• Jacob Eisenstein’s textbook (Eisenstein 2019).

• Jurafsky and Martin’s regularly updated textbook Jurafsky & Mar-
tin (2009), recently updated as a draft on Jurafsky’s website.

• Language Files (The Ohio State University Department of Linguis-
tics 2022).

There are also full (e-)books on the topic:

• Philipp Koehn’s book Neural Machine Translation (Koehn 2020)

• Graham Neubig’s 2017 “Neural machine translation and sequence-
to-sequence models: A tutorial” : https://arxiv.org/pdf/1703.01619.
pdf (Neubig 2017)

There are also some great blog posts and Python Notebooks online
showing you how to build your own neural machine translation system
– just search for “neural machine translation notebook”.

As mentioned above, Piron (1988) discusses how translation requires a
lot of research into the real-world state of affairs described in the source
text, and expresses a pessimistic view of machine translation. In light of
the recent advances in machine translation, to what extent are his con-
cerns still relevant?

Jay Alammar’s blog post (Alammar 2018) provides illuminating illustra-
tions of neural machine translation with attention.

The Perseus project (Crane 2009) presents beautiful web versions of
literary texts, including 13 million words of Latin and 10 million words of
Ancient Greek. These include commentary, translations and all kinds of
support for multilingual scholarship.

Nordhoff & Krämer (2022) offer a dataset of glossed examples from
lower-resourced languages, scraped from books published by Language
Science Press.a

ahttps://imtvault.org/, accessed 2024-04-18.
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8 Dialog systems

8.1 Introduction

I’m sorry, Dave, I’m afraid I can’t do that.
[Hal 9000, in Stanley Kubrick’s 1968 film 2001: A Space Odyssey,
based on the book by Arthur C. Clarke]

In the film 2001, Hal is a computer that can use and understand human lan-
guage as well as we can. The problem in the movie is that Hal becomes so intel-
ligent and independent that “he” starts disobeying Dave’s commands.

We recommend that you pull up this scene on YouTube and watch it yourself.
Dave, the human astronaut, is stuck in a little spaceship pod, whereas Hal, the
glowing red computer with a deadpan voice, controls the mothership. Dave is
orderingHal to open the doors of themothership so that he can come back inside;
stuck in his little pod, he can’t complete his mission and will eventually run out
of air, water, and food. Hal explains that he has figured out (by reading Dave’s
lips during a previous conversation with another astronaut) that Dave plans to
shut him off, and declines to open the doors (I’m sorry, Dave, I’m afraid I can’t
do that) in order to save himself. Dave says he’ll go in through the emergency
airlock, but Hal notes that Dave can’t do that safely without his helmet, which
Dave left inside the mothership. As Dave becomes increasingly frustrated and
frightened, Hal calmly informs him that the conversation has become pointless.
The scene ends with Dave stuck outside in his pod, shouting at Hal, who has
stopped responding.

This scene is famous for Kubrick’s creepy, suspenseful style, but also for the
questions that it raises about language technology. It is discussed in the first
pages of the classic NLP textbook by Jurafsky & Martin (2009) as a fictional ex-
ample of a computer that has achieved human-level skills in conversation and
reasoning, to which existing systems can be compared.

Taking inspiration from their discussion, we can ask: What does Hal need to
know – about language, Dave, and the wider world – in order to act as he does?
To understand what Dave is saying, Hal needs to know how to map speech to
text, segmenting a continuous stream of sounds into words; he needs to know
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how to map text into structured sentences and how to understand their mean-
ing. To reply to Dave, he also needs to know how to map an idea into words,
sentences, and ultimately speech. He needs to understand the physical environ-
ment (the position of the pod, the doors, Dave, the helmet). He needs to know
how conversations work: when it is his turn to listen, how to update his represen-
tation of the world and of Dave’s intentions based on what Dave says; when it is
his turn to speak, how Dave’s knowledge and intentions are in turn updated by
what Hal says. Hal needs to know some conventions of politeness, for example
when he (insincerely) softens his refusal with I’m sorry and I’m afraid I can’t. And
he needs meta-conversational knowledge about the purpose of the conversation,
which he mentions explicitly when he unilaterally ends it.

To decide what to say and do, Hal needs to reason about different plans and
possibilities for the future, as shaped by the actions of Dave and himself. He
needs to know that Dave intends to shut him off (which required him to read
Dave’s lips); that this is bad for Hal; and that Dave’s plans can be subverted
by keeping Dave outside the mothership (since Dave can only shut off Hal from
inside). In other words, Hal needs to understand his own goals, Dave’s goals, and
the conflict between them, as well as the pre-conditions and results of various
potential events.

We can also ask: To what extent do modern systems measure up to the intelli-
gence that these 1968 filmmakers imagined would be available in the year 2001 –
to what extent does life imitate art? In some areas, such as text-to-speech, mod-
ern systems are pretty close to Hal. In other areas, they are nowhere close: they
aren’t as good at reasoning about different people’s goals and potential future
events; they do not have Hal’s capacity for (villainous) self-direction. In addition
to providing a fictional point of comparison for modern systems, Hal represents
their potential for harm – a theme that echoes throughout this book.

In computer science and linguistics, systems that “converse” like Hal are usu-
ally called chatbots when they are designed mainly for entertainment, providing
chit-chat and keeping the conversation going any way they can (Hi, what have
you been up to?), and dialog agents or digital assistants when they are designed
to help the user achieve specific goals (such as booking appointments, setting
alarms, or requesting directions). The distinction is not always clear-cut (and
people sometimes use these terms interchangeably), since digital assistants often
need to show some social sensitivity, and chatbots can combine chit-chat with
specific goals such as providing mental health support or helping people practice
their job interview skills. As a fully versatile human-like character, Hal is partly
a digital assistant (when “he” chooses to assist) and partly a chatbot. But at the
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level of the system’s primary goals, a typical chatbot is built to resemble a so-
cial acquaintance, while a digital assistant is built to emulate a customer-service
worker.

The goal of this chapter is to give you the conceptual tools for understanding
and evaluating such systems. Since the first edition of this book (written in 2012),
these systems have exploded in popularity and beenwoven intomany other areas
of language technology, such as writers’ aids (Chapter 2) and search (Chapter 6).

In this chapter, we describe how conversations work between humans: how
people exchange information, take turns speaking and listening, manage their
social relationships, and what they implicitly assume about their conversation
partner. We explain why people build chatbots, how to build one, and how to
evaluate whether it is doing a good job. Finally, we explain why people build
digital assistants, how to build one, and how to evaluate it.

8.2 How do conversations work?

Before we think about automating dialog, we first take stock of how conver-
sations work between humans, drawing on insights from diverse fields such as
sociology, philosophy of language, and the linguistic subfields of semantics, prag-
matics, and discourse analysis.

8.2.1 From isolated sentences to utterances in context

Some linguists and philosophers of language have studied meaning by working
out exactly when a sentence like Fido is sleeping is true, and when it is false. They
aim to make this completely and mathematically precise. If they can do this, it
proves that they really understand the aspects of meaning that are captured in
their theory. Usually, theories like this deal with single sentences designed to
make a point about truth and falsity.

But other philosophers and linguists have focused on analyzing utterances of
sentences in terms of what they accomplish in the conversation inwhich they are
uttered. Speech acts are actions – requesting, ordering, asking, complimenting,
informing, advising, insulting, apologizing, persuading – that people carry out
purely by speaking. Just as physical actions affect the physical world, speech acts
change the social world. In fact, most of the important events in your life (making
a friend, persuading someone of your point of view, getting hired, informing
someone of an illness, getting engaged) take place through speech acts; according
to the conversation analyst Deborah Tannen (Tannen 1990), “Each person’s life
is lived as a series of conversations”.
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Beginning with the philosopher of language J. L. Austin (Austin 1975), this per-
spective was inspired in part by sentences such as You’re (hereby) fired!, which
proved puzzling for those focused on truth and falsity because this sentence
seems to be neither true nor false out of context, but rather seems to make it-
self true when uttered by the right person in the right context. Statements like
You’re fired! are described as performative utterances because they perform an ac-
tion; they change reality rather than just describing it. Other examples include I
accept your apology, I bet you ten dollars that it will rain, I hereby withdraw from
the presidential race, and so on.

Viewing these utterances as actions, we can characterize them by their pre-
conditions and results. The precondition for You’re fired! to succeed is for the
speaker to be recognized as a decision-maker at the hearer’s workplace; if suc-
cessful, the result of the utterance is that the hearer no longer works there. If
the preconditions are not met, for example if the speaker has no authority or the
hearer is not an employee, then the utterance fails.

8.2.2 The Common Ground

This perspective turns out to be useful not just for utterances that can contain the
word hereby, but for all utterances. We begin with the idea from the philosophers
H. P. Grice (1989) and Robert Stalnaker (2002) of a Common Ground, the informa-
tion that all conversational participants take to be mutually shared. When you’re
talking to your classmate, you both know what class you’re in, what school you
go to, what day it is, who the current U.S. president is, and so on. You both know
that you both know this – that’s the “mutual” part. You also mutually know what
you’ve previously said to each other; the key idea is that your Common Ground
grows over the course of a conversation.

We look first at utterances of declarative sentences (I’m from Maryland), leav-
ing interrogatives (Where are you from?) and imperatives (Please be seated) for
later. Viewing every dialog move as an action with preconditions and results,
we can view declarative utterances (I’m from Maryland) as proposals to update
the Common Ground with the proposition denoted by the sentence. For an ut-
terance of I’m from Maryland to succeed, the preconditions are that the speaker
believes this statement to be true (as we’ll discuss more later, people are gener-
ally expected to be sincere); that the hearer doesn’t already know this (people are
generally supposed to contribute new information); that the speaker thinks the
hearer would be interested to know this; that it is their turn to speak, that this
statement is relevant and inoffensive, and so on. If an utterance of I’m fromMary-
land is accepted, the result is that our Common Ground is updated to include the
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fact that the speaker is from Maryland. Now everyone knows this, knows that
the speaker said it, and knows that they all know it.

On the other hand, an assertion such as I’m from Maryland could fail to be
added to the Common Ground if someone rebuts it, saying No you’re not! That
outcome is very unlikely for I’m from Maryland, because people can usually be
trusted to state where they are from, but it is possible in principle if the speaker
is confused or lying.

As a conversation progresses, all successful declarative utterances enter the
Common Ground, so that the Common Ground grows over time. Conversely, a
growing Common Ground means a decreasing amount of uncertainty about the
state of the world: before the speaker says they’re from Maryland, you might
be entertaining many different possibilities about where they’re from, but when
they tell you, the issue is resolved.

This framework explains why it is redundant to tell people things they already
know: If it is already Common Ground that the speaker is from Maryland, then
an utterance of I’m fromMaryland proposes to update the CommonGroundwith
something that is already there, which is odd. In contrast, an utterance like Mike
is from Maryland too only makes sense if it is already Common Ground that
some other relevant person is from Maryland. Words like too are said to involve
presuppositions, meaning that they make reference to facts that should already
be in the Common Ground even before it is updated with the utterance in which
too appears. The Common Ground framework explains both how we add new
information and how we make reference to old information.

The CommonGround is sometimes characterized as the set of information that
is mutually known, which might suggest that everything in the Common Ground
is true. And in general, to the extent that people aim to make true statements, the
CommonGround shouldmatch with reality. But of course people can believe and
make false statements too. If people realize that their CommonGround contained
a mistake, they may want to explicitly revise it: Remember when I told you Mike
was from Maryland? Well, I was wrong! He’s from Michigan.

The Common Ground includes not just the information that has been added
over the course of the conversation, but also all sorts of background assumptions
about the world. Adapting an example from the philosopher of language John
Searle (1994), if someone orders a burger at a restaurant, it is safe to assume
that they want a cooked burger on a plate rather than a raw burger wrapped in
plastic, even though they did not specifically say so, because typical food service
customs are also Common Ground.

Although the Common Ground is supposed to be shared (and mutually known
to be shared) across all participants of a conversation, the reality can be a bit more
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complicated. People might mis-hear or misunderstand one another’s utterances;
they might forget information that was added to the Common Ground a long
time ago; or they might not be sure which beliefs are mutual versus unilateral.
If one person says This class is hard and a second person says Uh-huh, it might
not be clear whether they’re agreeing or just acknowledging the first person’s
perspective.

8.2.3 Non-declarative utterances

So far, we have focused on declarative utterances, which propose to add infor-
mation to the Common Ground. As for imperatives (such as Please be seated or
Have a cookie!), these can be seen as involving preconditions that the speaker has
some authority to instruct or permit others to do things, and – if successful – re-
sulting in an obligation or option for the hearer to carry out the action described
by the sentence. Turning to interrogatives (such as Where are you from? or When
does Trader Joe’s close?), these can be seen as involving a precondition that the
question is not yet answered by the information already in the Common Ground
as well as an assumption that the hearer may know the answer. A successful ut-
terance of an interrogative results in a request for the hearer to add that answer
to the Common Ground.

Because imperatives and interrogatives ask the hearer to do something, such
utterances can require social delicacy. The idea is that everyone wants to main-
tain the face (social dignity, an idea that the sociologist Erving Goffman bor-
rowed from Chinese culture; Goffman 1967) of all conversational participants. A
person’s face is preserved when they feel appreciated (positive face) and when
they feel free of imposition (negative face). Imperatives and interrogatives can
threaten the hearer’s face by imposing on them, which can in turn threaten the
face of a speaker who does not want to seem rude.

To soften such face threats, speakers might hedge, minimize, or offer an easy
way out (Would you mind maybe passing the salt if you get a chance?, Do you
happen to know when Trader Joe’s closes?). Taking inspiration from the work of
the politeness scholars Penelope Brown and Stephen Levinson (Brown & Levin-
son 1987), such strategies are sometimes characterized as negative politeness be-
cause they aim tominimize impositions on the hearer’s negative face. In contrast,
positive politeness strategies (compliments, interested questions, signs of cama-
raderie) flatter the hearer’s positive face, making them feel appreciated. Depend-
ing on the relationship between two conversational participants (their relative
power and social distance), speakers may choose different levels and blends of
positive and negative politeness strategies to mitigate the various face threats
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that come up in regular conversation. Even though Hal is trying to kill Dave, he
still politely softens his refusal to open the pod bay doors by apologizing (I’m
sorry) and pretending that he is unable rather than unwilling to comply (I’m
afraid I can’t); perhaps Kubrick intends for the contrast between Hal’s deadpan
politeness and his evil intentions to be chilling.

8.2.4 Taking turns

In a conversation, participants take turns acting as speakers and as hearers. Each
role has distinct responsibilities.

A speaker decides what to say (which requires them to understand the Com-
mon Ground, the goals of the conversation, and the social context), decides how
to say it (choosing words, organizing them into sentences, pronouncing them),
makes sure that the hearer understands, keeps track of what they’ve proposed
to add to the Common Ground, and then decides when to stop talking and swap
roles with the listener.

A hearer interprets what the speaker is saying (seeking clarification if they’re
confused), updating their representation of the Common Ground and of the
speaker’s beliefs and goals based on what they say. As we will explore more
shortly, the hearer also has to reason about why the speaker said what they
said instead of all the other things that they did not say. The hearer has to start
planning what they’ll say next and anticipate signs that the speaker will wrap
up soon, so that they can jump in seamlessly when the speaker’s turn ends.

When it’s your turn to talk, what you decide to saymay be shaped in large part
by what was said in the turn before yours. Conversational turns often follow a
rough script known as adjacency pairs, meaning that certain types of utterances
are generally expected to elicit certain types of responses. Typically, greetings
are followed by greetings, questions are followed by answers, informative state-
ments are followed by acknowledgments of uptake, signs of confusion are fol-
lowed by clarification, and farewells are followed by farewells. We can classify
various dialog moves by what they accomplish as well as how they fit into adja-
cency pairs:

1. As an exchange has to start somewhere, we can group together a set of
initiating moves. These include:

• Making an assertion (I like your shirt).

• Issuing a command or making a request (Let’s get coffee).

• Asking a question (Are you doing anything tonight?).
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2. Some moves are responses to the previous move. These include:

• Saying Yes or No to a question where the person was seeking infor-
mation.

• Giving an answer to an information-seeking question that needs
more than Yes or No.

• Answering the question, but then providing more information than
was strictly asked for. (saying Yes; I am going to be late in answer to
Are you waiting for a bus?).

• Agreeing to do something (saying Okay to Let’s get coffee).

• Refusing to do something (saying No to Let’s get coffee).

• Partially agreeing or refusing (Okay, if I have time).

3. Others are responses, more or less, but divert the conversation from its ex-
pected path. These can be called dialog management moves. These include:

• Saying Huh? when you didn’t hear.

• Saying I don’t think I understand in response to something you didn’t
understand.

• Saying I can’t believe you said that when you did hear what the other
person said, find it offensive or unacceptable, and want them to re-
tract it.

• Saying I take it back when you want the other person to pretend
that you haven’t said what you just did. Note that this never entirely
works: You can’t actually unsay what you said.

Sometimes, an adjacency pair may involve a preferred response and a less-
preferred one. Requests are preferentially followed by acceptances, less preferen-
tially by refusals. Questions are preferentially followed by answers, less prefer-
entially by partial answers (providing some-but-not-all of the requested informa-
tion) or non-answers (I don’t know, why do you ask?). A less-preferred response
may be flagged with extra politeness, apologies, or markers such as well in an
attempt to acknowledge and soften the slight face threat that comes from not
telling someone what they most want to hear.

The expected script for an adjacency pair may vary across demographic or
cultural groups. Is Thanks followed by You’re welcome or by No problem? Is a
compliment (I love your shirt) followed by thanks, by a reciprocal compliment (I
love yours too), or by a modest rejection (Oh it’s so old)? Is an apology followed
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by an acceptance or by a reciprocal apology? Different demographic or cultural
groupsmight also hold different norms about how long a turn should take or how
a turn should end: Should a hearer wait until a speaker has definitely finished
their turn (perhaps showing negative politeness), or should they chime in with
a moment of overlap (showing interest, enthusiasm, and positive politeness)?
People might misunderstand or offend each other if they are following slightly
different conversational scripts.

But even if people misunderstand each other sometimes, it is actually pretty
impressive that the rules of conversation – many of which are rarely discussed
explicitly – are so widely shared, and that we all manage to communicate as well
as we do.

8.2.5 The social dimension of conversation

Of course, people converse not just to exchange information, but to negotiate so-
cial relationships: to mitigate face threats as discussed above; to get acquainted,
commiserate, gossip, flirt, and signal their identities and attitudes. All types of
utterances shape the social relationship between conversational participants,
in that people often build social camaraderie alongside informational Common
Ground.

Some types of utterances, such as greetings and farewells (known as phatic
utterances), are purely social. Remarking that It’s hot! may not provide new in-
formation to a hearer who is also sweating, but it elicits pro-social agreement
and sparks a longer conversation. Alongside markers of positive and negative
politeness, phatic utterances illustrate the social dimension of dialog.

8.2.6 Grice’s maxims

To further uncover the implicit norms that guide conversations, the philosopher
H. Paul Grice (1989) argued that all conversations assume the Cooperative Princi-
ple: that each speaker should “make [their] contribution such as is required, at
the stage at which it occurs, by the accepted purpose or direction of the talk ex-
change in which [they] are engaged”. Speakers expect each other to contribute
to the purpose of the conversation. This principle explains why people don’t just
spout random sentences at each other like two phones playing different podcasts,
but take turns building a CommonGround that serves their goals. The idea is that
even extremely antagonistic conversations – like the one between Hal and Dave
– are still cooperative in the sense that they are taking turns telling each other
things that the other party is interested to know.
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For Grice, the Cooperative Principle involves fourmaxims which conversation
partners expect one another to follow:

1. Quality: Try to say things that are true. Don’t say false things, and don’t
say things for which you lack evidence.

2. Quantity: Give as much information as is required for the purpose of the
conversation – not more, not less.

3. Relevance: Say things that are relevant to the purpose of the conversation.

4. Manner : Aim to be understood. Avoid ambiguity; use words that people
know; speak loudly enough to be heard; present information in a sensible
order.

When you assume that your conversation partner is following these maxims,
Grice argues, you can draw inferences above and beyond what they said. If you
ask someone where the gas station is (Grice uses the Britishism petrol station),
and they tell you that it’s just up the street to the left, you might assume not
only that this is true (because you’re assuming that they are following Quality),
but also that they believe the gas station to be open; if they had thought it was
closed or out of gas, then – if they correctly understand that you intend to buy
gas rather than just place the gas station on your mental map – the maxims of
Quantity and Relevance would have led them to say so.

If someone tells you that they are going to have dinner with a man I’ve known
for a long time, you might assume not only that it’s true (by Quality) but also
that the man is not their brother; otherwise, if they were following the maxims
of Quantity and Manner, they would have used this more concise and precise
term.

If you ask someone whether they like a movie and they reply that they like
the first half, you might infer that they did not like the second half. If they liked
the entire movie, then the maxims of Quality, Quantity, and Relevance would
have led them to say so; because they did not say so, perhaps they did not like it.
Or perhaps they’ve only seen the first half of the movie so far, in which case it
would be a violation of Quality for them to claim to like the whole thing.

These maxims are so pervasive that speakers are even assumed to be following
themaximswhen they say something that seems to violate them.When someone
is invited to a picnic and they reply It’s raining, this utterance may seem strictly
irrelevant if it is just a random weather report, but the hearer can understand it
as a refusal if they infer that the weather is relevant to the speaker’s decision of
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whether to come to the picnic (assuming the speaker is still respecting Relevance
even when they superficially seem not to).

Grice’smaxims are used to explain how speakers draw inferences not just from
what their conversation partners said, but also fromwhat they did not say. These
inferences are known as conversational implicatures, a very important topic in the
study of semantics and pragmatics. A conversational implicature is an inference
that a hearer draws from reasoning about why a speaker said one thing over
another. When someone is asked if they liked a movie and they reply that they
liked the first half, they technically did not say anything at all about whether
they like the second half or not, but the hearer infers that they didn’t like it
(or haven’t seen it yet) because if they had, they would have said so (if they’re
following Quantity and Quality). Here, the utterance is I liked the first half of the
movie and the unstated, inferred conversational implicature is I didn’t like the
second half or perhaps I haven’t seen the second half.

8.2.7 Presupposition, entailment, and implicature

Conversational implicatures are distinguished from other important dimensions
ofmeaning such as entailments and presuppositions. An entailment is an inference
that logically follows from a given statement: I ran yesterday entails I exercised
yesterday, because running is a subtype of exercising. In other words, a sentence
𝐴 entails a sentence 𝐵 if 𝐵 is guaranteed to be true whenever 𝐴 is. If we negate
the sentence 𝐴 (I didn’t run yesterday), its entailment 𝐵 is no longer guaranteed
to be true: I didn’t run yesterday no longer entails I exercised yesterday. And if
we try to cancel (deny) the entailment, we end up in a nonsensical contradiction:
I ran yesterday, but I didn’t exercise yesterday does not make any sense. If we
reinforce (reiterate) the entailment (I ran yesterday, and I exercised yesterday), the
result is odd, because logically there is no need to even mention the entailment,
and the hearer will wonder why the speaker said it that way.

A presupposition is a fact that has to be true for a given sentence to even
make sense (whether it’s true or false). The king is bald presupposes that there is
a king who is salient and familiar to both the speaker and the hearer; if not, this
sentence will not make sense. If we negate the sentence (The king is not bald), its
presupposition is still presupposed: there still has to be a king in our Common
Ground. If we try to cancel the presupposition, we also end up with nonsense:
The king is bald, but there’s no king is a contradiction. And if we reinforce the
presupposition after presupposing it (The king is bald, but there’s no king), the
effect is again odd – although the opposite ordering, first introducing the test
and then presupposing it (There is a king, and he is bald), is sensible.
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Figure 8.1: Decision tree for distinguishing presuppositions, entail-
ments, and implicatures.

In contrast to presuppositions and entailments, a conversational implicature
is an inference drawn in context about why a speaker said one thing over an-
other. It’s late may implicate I want to go home. If we negate the sentence, the
implicature goes away: It’s not late no longer implicates that the speaker wants
to go home. Conversational implicatures do depend to some extent on the con-
text; for example, It’s late could also implicate that perhaps the addressee should
go home rather than the speaker! But, unlike presuppositions and entailments,
conversational implicatures can be cancelled without contradiction (It’s late, but
I don’t want to go home!) and reinforced without redundancy (It’s late, and I want
to go home).

To sum up, when you want to figure out if a given inference is an entailment,
a presupposition, or an implicature, the best strategy is usually to follow the
decision tree in Figure 8.1.

Presuppositions, entailments and implicatures were worked out by philoso-
phers and linguists, but they are not just theoretical. A dialog system working as
a simple exercise coach should know not to ask the question Have you done your
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exercise? if it already knows that its client has gone for a run. This is entailment
at work. The same dialog system should be able to respond to Should I do an
intense workout the day before my race? with Hey, I didn’t know you were doing
a race. It can reply that way only if it detects the presupposition that there is a
race. And finally, if the system hears the client saying I like short runs, it should
use its understanding of conversational implicature to conclude that the client
doesn’t like longer runs.

You can learn more about entailments, presuppositions, and implicatures if
you take a linguistics class focused on semantics and pragmatics. There, you
will learn that Grice’s maxims have sometimes been criticized, with some re-
searchers proposing to condense the number of maxims or to add new ones such
as a maxim of politeness; or working to reframe Grice’s prose descriptions into
something quantifiable. And people have suggested that the maxims invoke “the
purpose” of the conversationwithout explaining how this purpose is agreed upon
(indeed, in real life, people may not agree on it). But Grice’s key insight stands: By
articulating the unstated expectations that conversations are built on, his max-
ims offer a framework for understanding why conversational implicatures arise
from what was said as well as what was left unsaid.

8.2.8 How easy or hard is dialog?

Now that we have sketched how conversations work, we hope that you have
some tools to insightfully compare the chatbots and digital assistants to Hal, and
to explain what parts of dialog are easier or harder to automate.

On the one hand, the concept of adjacency pairs and phatic utterances show
that some elements of dialog are highly predictable and repetitive (Hi, how are
you? / Good, you?) and thus programmable.

On the other hand, for more complex adjacency pairs such as questions and
answers, there is often no single right answer to what you should say next. If
your dialog system is going to respect Grice’s maxim of Quality, it will need a
way of determining not just what string of text might make sense as a response,
but what is actually true. What representation of the world will your system use
to decide that? (How will this representation be updated as the dialog unfolds?)
Of course, it’s important to know what is true, but it’s also valuable to be able to
step outside reality (echoing Hockett’s features of language from Chapter 1) to
brainstorm, imagine possible futures, or write fiction; how can a dialog system
be programmed to handle such scenarios?

Moreover, if your system is going to respect Grice’s maxims of Quantity and
Relevance, it might need a way of deciding what information (or level of detail)
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serves the purpose of the conversation. How will the system represent the pur-
pose of the conversation? These challenging questions are not rhetorical; they
confront anyone building a dialog system.

More deeply, the idea of a CommonGround – the growing stock of information
mutually shared between the conversational participants – requires a theory of
mind of one’s interlocutor, a representation of what they believe and want. For
the information in the Common Ground to be mutually known to be known, all
participants in a conversation not only need to understand one another’s beliefs,
but also need each other’s mutual understanding of these beliefs. How can a
dialog system represent Common Ground? How will a human interlocutor trust
that it is indeed common?

As shown in the work of Grice and his successors, conversational participants
update the Common Ground not just with what people say, but also with what
is inferred from what they did not say. How can a dialog system do that?

As discussed above, conversational partners talk not just to exchange informa-
tion, but also to build social relationships – which involve Common Ground but
also shared humor, affection, trust, and compassion. Can a human build such a
relationship with an automated dialog system? Would they want to?

The state of a dialog is also always changing. The Common Ground is always
being updated with new information; the purpose of the dialog and the questions
being discussed are always shifting; every turn calls for a response that takes
into account all the preceding ones. Conversations veer in unforeseen directions;
one of the major goals of a conversation is to acquire new knowledge, so your
interlocutor might offer unexpected information or ask you something you’ve
never thought of before. How will a dialog system adapt? For example, Bender
& Koller (2020) imagine a system that has mastered common social scripts such
as (1) (responding to a statement with a polite affirmation), but fails dangerously
when confronted with the unexpected emergency in (2).

(1) a. I made a catapult out of coconuts!
b. Cool!

(2) Help, I’m being chased by a bear! Tell me how to save myself!

To reframe the question of how easy or hard it is to automate dialog, we can
ask: On the continuum between rote adjacency pairs such as (1) versus utterances
requiring a great deal of flexible thinking such as (2), where do most conversa-
tions lie? What should a dialog system say to (2)? How much better do modern
systems do compared to those available at the time that Bender & Koller (2020)
was written, and why?
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8.3 Chatbots

A chatbot is a dialog system that aims to carry on a sociable chit-chat with a
human user. A chatbot might converse purely in text form, or might speak out
loud using speech-to-text and text-to-speech capabilities. Either way, the chat-
bot should respond appropriately to the human’s turns, saying things that are
true and sensible both locally and within the larger context of the conversation
(reflecting “knowledge” of the world, the Common Ground, and the norms of
conversation). A chatbot should also perhaps be polite and/or entertaining.

8.3.1 Why build a chatbot?

As a modest goal, a technology company might add chat capabilities to their
digital assistant to entertain users and impress them with the assistant’s capa-
bilities. More idealistically, a chatbot might serve as a digital companion. In the
2013 film Her by Spike Jonze, the alienated human main character falls in love
with a voice-enabled chatbot named Samantha (portrayed by Scarlett Johansson).
The chatbot Replika (run by the small company Luka), which markets itself as
an affirming, therapeutic confidant that adapt its “personality” to match each
user, experienced a surge of interest from lonely people during the isolation pe-
riod of the coronavirus pandemic. In principle, Samantha and Replika promise
to embody all the good qualities of a human friend (listening, empathizing, af-
firming, entertaining) while also being un-humanly non-judgmental, available
at all times, and requiring no reciprocation of emotional labor. Of course, it is no
accident that Samantha and Replika use feminine gender identities; this charac-
terization may reflect and reinforce a stereotype that women perform emotional
labor.

Whether or not a chatbot can provide fulfilling companionship, building one
also serves as an intellectual exploration of artificial intelligence. As one of hu-
manity’s unique tools, language is often considered key to the success of artificial
general intelligence – the hypothetical capacity, achieved by fictional agents such
as Hal and Samantha, to act with the sentience and self-awareness of a human.
Such an agent should therefore be able to pass the Turing Test, proposed by the
British mathematician Alan Turing (Turing 1950), which tests the intelligence of
a computer by checking whether it can pass for a human in a text conversation
with another human. Already from this description, you can see why the Turing
Test is controversial: Different humans are very different! What sort of human
does the computer need to pass for – a young child, a bored teenager, or a fully
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focused and competent adult? What sort of human does it need to fool – some-
one who is easily impressed, or someone who knows how to ask the hardest
questions? How long should the test conversation be and what topics should it
cover?

Illustrating critiques of the Turing Test, various chatbots have “passed” it by
what might be seen as clever workarounds: One chatbot named Eugene Goost-
man pretended to be a 14-year-old English-learning Ukrainian who makes rude
jokes; another named ELIZA (whom we’ll “meet” shortly) leads a credulous in-
terlocutor to do most of the talking. But these examples show more about the
fallibility of the Turing Test than about the capabilities of the systems that “pass”
it.

For any given chatbot, it is often not clear whether it is intended to serve as
a true social companion, as an intellectual exercise to probe the extent to which
computers can simulate humans, or both – or whether it is left to the user to
decide.

8.3.2 How to build a chatbot

To build a chatbot by brute force, a technology company might brainstorm the
top one thousand or so most common queries – When were you born?, What do
you think of (your company)? – and hand-write answers reflecting the chatbot’s
desired traits (perhaps so that you get realistically different phrasings when you
ask the same question twice). Just as a brand might coach a human spokesperson
to memorize dozens of scripted talking points, they might expect the same of
their digital spokeperson, so that at least the most common questions will get
satisfactory answers. This is why, for example, Apple’s Siri will tell you that
their work began in 2011 and that they are partial to Apple products.

Of course, one downside of a brute-force chatbot is that the hand-written an-
swers are laborious and finite; if someone asks the chatbot a question that it
hasn’t prepared for, it won’t be able to respond. Although the chatbot has some
representation of its own personality, it has no representation of the interlocutor,
the Common Ground, or the outside world beyond what it is pre-programmed
to say.

Similar to a brute-force chatbot, a rule-based chatbot generates a response to
the preceding turn via human-written rules. JosephWeizenbaum’s early chatbot
ELIZA (1966) uses rules such as If the input contains the phrase [my X], reply:
Tell me more about [your X], or If the input contains the phrase I am [X], reply:
How long have you been X?. ELIZA reduces the need for Quality and Quantity by
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asking questions rather than making statements; by conditioning the response
on the prior turn, “she” aims for Relevance.

Beyondwhat is encoded in its rules, a rule-based chatbot has no representation
of itself, the interlocutor, the Common Ground, or the outside world. Just like the
responses of a brute-force chatbot, the rules tend to turn out very long, detailed,
hard to maintain, and always incomplete.

To instead build a corpus-trained chatbot, one strategy is to “feed” the chatbot a
great deal of dialog (from film scripts, television subtitles, and so on) along with
prose text from Wikipedia. Then the chatbot is programmed to find the one or
two lines from the corpus that are most similar to the preceding utterance(s) – es-
sentially treating chat as a search problem. In other words, the chatbot searches
for something to say that seems relevant (following Grice’s maxim) to the pre-
ceding conversation. To the extent that sentences taken from the corpus are also
true and well-formed, it offers a semblance of Quality and Manner; by choos-
ing one or two sentences, it also tries to respect Quantity (enough but not too
much information). A corpus-trained chatbot represents the interlocutor and the
Common Ground by using prior utterances as input to find a corpus-motivated
response, and represents the outside world and itself purely through whatever
information is contained in the corpus.

Another strategy is to treat the chat as a language generation task, using ma-
chine learning models trained to read in some text and generate something that
makes sense next (in that it is given a high probability by a language model built
from a corpus). Here too, the chatbot draws on corpus data to create a sensible
response, by distilling information across a massive corpus to create new utter-
ances rather than simply drawing on a bank of existing ones. But even such mod-
ern chatbots still use brute force in some instances, retreating to scripted talking
points when asked about matters deemed sensitive by its creators. A generative
chatbot manifests its self-concept by referencing a scripted autobiography, also
fed to it by its creators. Similar to a corpus-trained chatbot, it captures the out-
side world and the Common Ground through the information distilled from its
massive training data along with the prior history of the conversation.

8.3.3 Evaluating chatbots

Evaluating a chatbot begins with defining the goal for which it was built. If a
chatbot was built as a companion, then it could be evaluated by the number,
longevity, or satisfaction of its users. If it was built to emulate human-level in-
telligence, then it could be evaluated by some version of the Turing Test (which,
as we saw above, is vulnerable to silly tricks) or by its performance on questions
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that are designed to probe its potential weaknesses regarding its representation
of itself, the interlocutor, the Common Ground, and the outside world.

Evaluation of a chatbot can be formal or informal. The goal of an informal
evaluation is to get a subjective impression of what the system can do. In a formal
evaluation, the goal is instead to collect objective data. A formal evaluation is like
a pop quiz or an exam: You have to set up the questions ahead of time, ask the
same questions to every chatbot under evaluation, know for sure what you are
going to accept as an adequate answer for each question, and maybe decide how
much credit to give for partially correct answers. An informal evaluation is more
like a job of interview: You might ask open-ended questions and simply observe
what the chatbot does. Informal evaluations are often enough to get a good idea
about what works and what doesn’t, but formal evaluations, if done well, can
give better, fairer and more reproducible insight. Of course, formal evaluations
require a lot more care and work in preparation.

To test the chatbot’s conception of itself, it could be asked to expand on a self-
narrative acrossmultiple turns, looking for consistency. To test CommonGround,
it could be asked to restate something that was said many turns ago. To explore
its representation of the interlocutor (and its capacity for drawing implicatures),
it could be asked what it thinks an interlocutor means by something they said or
something they left unsaid. As for its knowledge of the outside world, it could be
asked for answers to obvious-but-offbeat questions such as Can a tennis ball fit
into a toaster? (actually, it could probably fit into a front-loaded toaster but not a
top-loaded one!) or artificial intelligence researcher Hector Levesque’s example
Could a crocodile run a steeplechase? (Levesque 2014).

Another way of testing a chatbot’s world knowledge is to use Winograd
schemas, which Levesque et al. (2012) suggested building on the work of the
computer scientist Terry Winograd, whereby a pronoun is used with two possi-
ble antecedents of which the correct one can only be chosen by using detailed
knowledge about how real-world events unfold (which can be illustrated by
revising the sentence so that the pronoun gets a different antecedent). To answer
“Who is they?” in (3), one needs to understand which actions would motivate
or preempt one other – that you would refuse someone a permit if you feared
what they would do or would advocate doing, but not if they feared something
that you feared as well. To figure out “What is it?” in (4), one has to know how
size works – that a too-big trophy would not fit into a too-small suitcase, rather
than vice versa.

(3) The city council members refused the demonstrators a permit because they
{feared/advocated} violence.
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(4) The trophy couldn’t fit into the suitcase because it was too {big/small}.

Armed with this knowledge, you should not be easily fooled in a Turing Test!
But of course, it is pretty unusual in a human-human conversation to ask some-
one to resolve a pronoun for you or to explain whether a tennis ball can fit into
a toaster, so a human probing the limits of a chatbot is in some sense violating
the conventions of dialog that they expect the chatbot to respect. Moreover, by
pretending to be a human, a chatbot that passes the Turing Test would violate
the Gricean maxim of truthfulness (Quality).

8.3.4 Example: ELIZA, a famous early chatbot

Created in in the 1960s by the computer scientist Joseph Weizenbaum (Weizen-
baum 1966), ELIZA is built to emulate a psychotherapist in the “person-centered”
tradition of Carl Rogers, a school of psychotherapy that encourages patients to
find answers within themselves by talking freely to a non-judgmental listener.
As a rule-based chatbot, ELIZA identifies patterns in the input and generates re-
sponses via a series of hand-written templates that transform I into you. You can
talk to ELIZA yourself by searching around online; such a conversation is exem-
plified below. As you can see, ELIZA is focused on asking questions; when the
user also asks questions rather than responding, the conversation stalls because
neither party is respecting the convention that questions are to be followed by
answers.

e: Hello, I am ELIZA. I’ll be your therapist today.

u: Hi, how are you?

e: Why are you interested in whether or not I am?

u: Who else have you been talking to today?

e: We were discussing you, not me.

u: Can a dolphin play basketball? Why or why not?

e: Why do you ask?

u: Can you rephrase that?

e: Is it that you would like to be able to rephrase that?

u: What’s your origin story?

e: Why are you so concerned about my origin story?

u: What animal were we talking about just now?
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e: Why do you ask?

u: How long have we been chatting today?

e: Why does that question interest you?

From one standpoint, ELIZA is quite convincing, especially for the 1960s!
Weizenbaum’s secretary, taking ELIZA as a sympathetic listener, reportedly
spent hours talking to “her” (although people today might be more easily jaded).
Most of the time, people assume that their conversation partner understands
them; ELIZA is as successful as she is because she uses various gimmicks to
keep that illusion alive.

ELIZA follows the classic dating advice to “ask your date to talk about them-
selves, and they’ll find you fascinating” – she gives the human interlocutor the
spotlight and lets them do all the work. By echoing the human’s words in her
replies, ELIZA creates the impression of Common Ground. To a credulous inter-
locutor, her non-specific responses (I see; Can you elaborate on that?) come across
as non-judgmental rather than vapid.

From another standpoint, of course, ELIZA is quite simplistic: “She” has no
actual empathy and no representation of what her interlocutor said apart from
the response-generating templates.

Would you find it therapeutic to talk to ELIZA? Would you feel cheated if you
realized later that your therapist was an illusion, or would you still benefit from
unburdening yourself in a one-sided conversation? These questions are just as
important for modern chatbots such as Replika as they are for ELIZA.

Under the Hood 13: How ELIZA works

The software behind ELIZA is conceptually simple. It carries out the fol-
lowing steps:

1. Read in a collection of templates. The templates are specified in a
script (i.e., program) authored by the system designer and are the
main means of controlling the dialog. These are outlined below.

2. Greet ELIZA’s patient. Possible greetings are again specified in the
script.
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3. Conduct a series of exchanges, where each exchange involves:

• Reading a line of input and breaking it into words.

• Matching the input against a template. This may involve stor-
ing some of the material from the user.

• Creating a response. If necessary, material from the user in-
put is incorporated into the response. Sometimes this requires
post-processing in order to, for example, convert the pro-
nouns of I hate my family for use in What makes you think
that you hate your family?

• Printing out the response.

4. When the patient wants to quit, issue a farewell message. The
choice of goodbyes again comes from the script.

As we can see, most of the processing involves working with a pre-
specified script containing very simple templates.

Below is an example template, which is almost identical to the script
used in Weizenbaum’s original ELIZA; the only differences are in the for-
matting of the text.

decomp: * i am *
reasmb: Is it because you are (2) that you came to me ?
reasmb: How long have you been (2) ?
reasmb: Do you believe it is normal to be (2) ?
reasmb: Do you enjoy being (2) ?

The first line, notated by decomp (for ‘decompose the input’) says that
this template is relevant when ELIZA’s patient says anything with the
words i am in it. The stars before and after i am are special entities called
wildcards, and they stand for any sequence of words (see also Chapter 6.2).
If the patient says At court I am nervous and sweaty, the first star will
match At court, and the second will match nervous and sweaty.

The second and subsequent lines, labeled with reasmb (for ‘reassemble
the output’), give ELIZA options for how to reply. In these lines, variables
like (1) and (2) are special markers, indicating places where material that
matched the first and second stars should be inserted. For the example
above, ELIZA might respond, Do you enjoy being nervous and sweaty?
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Here is another template, designed to deal with remarks like Everyone
hates me.

key: everyone 200
decomp: * @everyone *

reasmb: Realy, (2) ?
reasmb: Surely not (2).
reasmb: Can you think of anyone in particular ?
reasmb: Who, for example?
reasmb: Are you thinking of a very special person ?
reasmb: Who, may I ask ?
reasmb: Someone special perhaps ?
reasmb: You have a particular person in mind, don't you ?
reasmb: Who do you think you're talking about ?

This one has some extra features. The key is labeled with a priority of 200.
This is so that the program can know which template to choose if several
different ones happen to match. A template with priority 500 would be
preferred over anything with a lower priority. Also, the @ in @everyone
is special, and indicates that ELIZA should refer back to an earlier line of
the script where synonyms (synon) were defined:

synon: everyone everybody nobody noone

The idea here is that the word can be either everyone or one of the
alternatives, and the template should still fire. Also, theword thatmatched
gets a number (in this case 2). So, if the patient says Nobody loves me for
who I really I am, ELIZA will reply Realy, nobody ? Note the typo,
which comes from the template: If that’s what the script says, that’s what
ELIZA does!

After reading in all the templates, the program begins to read lines from
the patient, and responds as appropriate. Each line is broken down into
words, mapped to lower-case, and used to match against the templates.

A template is chosen. For the sake of variety, ELIZA cycles through
the options available with each template, choosing each of them in turn.
The first time that the i am template is used, if the input was the one
about being nervous and sweaty, ELIZA will ask Is it because you are
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nervous and sweaty that you came to me ? And if the patient later
says something that results in the template being used again, the result
will be How long have you been nervous and sweaty?.

In order to make responses sound more natural, the program has to
post-process the patient’s input, doing things like changing me into you.
This too is specified as part of the script. It works reasonably well, but the
line in Oedipus’s dialog about

e: Perhaps I already know you were giving I your life history .

shows that it doesn’t always work perfectly. In exercise 5 we invite you
to write patterns to predict where me occurs and where I occurs.

8.3.5 A cautionary example: Microsoft’s Tay

Microsoft’s chatbot Tay (2016) was built to add interlocutors’ utterances to the
corpus that “she” used to generate utterances. This idea seems human-like (peo-
ple copy each other) and was probably intended to keep Tay entertainingly up-
to-date with recent trends. But things went horribly wrong when users figured
out that Tay would parrot what people told her with very little moral judgment
or filter. (Apparently she had been trained in advance to avoid talking about
certain recent racist police shootings, but had received no such warnings about
other forms of violence, racial slurs, anti-Semitism, misogyny, and so on). Even
worse, Tay was using a public Twitter (now X) platform for her chats!

One of Tay’s first tweets, using informal spelling conventions, was can i just
say i’m super stoked to meet u? humans are super cool – but within twenty-four
hours of interaction with unsavory people online, she started spewing hate
speech and was taken down. She was later replaced by Zo (no longer active
either), which used a lengthy blacklist to shut down all controversial topics with
hand-written responses like People get super sensitive about politics so I try to
stay out of it.

Like Hal, Tay is famous as a warning of how language technology can
go wrong. Unlike Hal, the danger of Tay comes not from self-aware self-
preservation, but from the vile elements of the data that she was fed. The Tay
saga warns us that (some) people on the internet are hateful; that automated
strategies to generalize from data can reproduce harm if used uncritically; that
engineers should brainstorm what could go wrong before releasing a tool; and
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that a company should not let an unvetted party (human or digital) tweet on its
behalf.

8.3.6 Example: Kuki

Steve Worswick’s Kuki (formerly known as Mitsuku) won several chatbot com-
petitions in the 2010s. In a 2018 interview on the VUX World podcast run by the
Voice and Conversational AI Consultancy, Worswick explained that Kuki uses a
blend of rules and hand-written responses. Worswick put Kuki (then Mitsuku)
online in 2005 with only a few ELIZA-style templates, and then kept adding new
responses to common input from the chat logs. After fifteen years of over a mil-
lion chats a month, Worswick said, it’s hard to say something to Kuki that it’s
never seen before, although Kuki still has to be kept up-to-date about current
events and trends. Even if Kuki’s underpinnings seem old-school, the result was
impressive for its time. As you can see below, Kuki uses multimedia – images
and gifs – and gives coherent but evasive responses to some difficult questions
(I don’t want to talk about that now).

k: Hi there, I’m Kuki. I’m a friendly AI, here to chat with
you 24/7. We could start by getting to know each other if
you like. What is your name?

u: Hi, how are you?

k: [GIF of a waving Mickey Mouse] Hi there Lelia [The au-
thor told Kuki her name in a previous chat, which Kuki
remembers because each user’s chats are linked to a per-
sistent account]. I am fine, thank you. Yourself?

u: Who else have you been talking to today?

k: Ah. I am talking to a bunch of people all over the world.

u: Can a dolphin play basketball? Why or why not?

k: Some of them can. [Image of George Bernard Shaw]. You
see things as they are and ask, ‘Why?’ I dream things as
they never were and ask, ‘Why not?’ - George Bernard
Shaw.

u: Can you rephrase that?

k: No, not really. What don’t you understand?

u: What’s your origin story?
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k: I don’t want to talk about that now.

u: What animal were we talking about just now?

k: [Image of an elephant]. An elephant.

u: How long have we been chatting today?

k: Ah. More than 1.5 days of computer time.

As a rule-based chatbot, Kuki is built to recognize various patterns (my name
is [X], I’m [X]) in the XML markup language and stores variables in case asked
about them later. Kuki uses a rule to interpret pronouns (he, she, it, they) as refer-
ring to the most recently-mentioned noun, which works pretty well – although
pronouns are still one of Kuki’s toughest challenges, Worswick said. Kuki refer-
ences the ConceptNet ontology (or something similar), a database that records
facts about the world such as that dogs are cute furry mammals commonly kept
as pets, to respond to new encyclopedic questions. Kuki also draws from a hand-
ful of different responses to common questions to avoid repeating itself.

Some people used Kuki as a non-judgmental confidant, so Kuki was pro-
grammed to suggest mental health resources if people talk about harming
themselves. To sentences of the pattern I’m going to [X], Kuki’s usual reply
was I hope you enjoy yourself – but if [X] is a self-destructive action, Kuki
suggested a help hotline. Other people used Kuki to practice English (returning
to the topic of computer-assisted language learning from Chapter 3), so its rules
were adapted to chat logs of English learners. But the largest market for Kuki,
Worswick said, was to license it to companies who want to add a layer of chat
capacity to a commercial digital assistant. That way, their digital assistant can
not only handle the tasks for which it was designed, but can also offer sensible
responses to chatty questions such as How is your weekend going? or any of the
other thousands of situations that Kuki is programmed to handle.

When Worswick began working on Kuki in 2005, he was warned that a brute-
force chatbot would require too much work and that he should find a smarter
way to automate Kuki’s intelligence. But Worswick was unimpressed by corpus-
based chatbots who – because their replies are stitched together from many dif-
ferent sources – could not even remember their own name, gender, or age across
multiple turns. He warned that people should not expect a shortcut to Kuki’s
hard-won success.

As a foil to Tay, Kuki shows how far you can get with human hard work alone.
Kuki does not use any sort of corpus, although its chat logs constitute a different
form of large-scale data.
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8.3.7 Example: ChatGPT

Released by the companyOpenAI in 2022 (and previewed in Chapter 2), ChatGPT
is trained on over 300 billion words of text to predict the most likely next word
in a string, thus treating chat as a language generation task where the goal is to
come upwith a sensible response to the preceding conversation. Asmentioned in
Chapter 2, if you read a one hundred thousand word novel every day for eighty
years, you’d read less than one percent of its training data! Similar to BERT,
which was trained on masked word prediction, ChatGPT is trained to predict
the next word in a string of text: Given a string of 𝑛 tokens, it guesses the token
at position 𝑛+1, then checks whether it was correct and updates the weights in a
massive neural network to give a higher probability to the correct next token the
next time, thereby learning to generalize information about both language and
the world described therein. While most of ChatGPT’s power emerges bottom-
up, some of its self-referential responses – such as its self-identification as an
“artificial intelligence” – were presumably hand-written by its creators.

As you can see, the results are stunningly impressive – although its responses
are sometimes longer than you might expect in a balanced conversation, perhaps
in tension with the Gricean maxim of Quantity.

u: Hi, how are you?

chatgpt: Hello! I’m an artificial intelligence, so I don’t have
feelings or emotions like humans do. However, I’m here
to help you with any questions you have to the best of my
ability. Is there anything specific you would like to know
or discuss?

u: Who else have you been talking to today?

chatgpt: As an artificial intelligence, I don’t have the ability
to have conversations or interact with other people. I can
only respond to the questions and statements that are
written by users and presented to me through the plat-
form I’m on. I don’t have the ability to have conversations
with other people or access information about other users
or their interactions with me.

u: Can a dolphin play basketball? Why or why not?

chatgpt: It is highly unlikely that a dolphin would be able to
play basketball, as the game is designed for humans and
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requires physical abilities and cognitive skills that dol-
phins do not possess. For example, dolphins do not have
hands and are not able to grasp and throw objects in the
same way that humans can. In addition, dolphins do not
have the same level of fine motor control and coordina-
tion as humans, and would likely have difficulty manipu-
lating the ball and moving it towards the basket. Finally,
dolphins do not have the same level of understanding of
the rules and objective of the game as humans do, and
would not be able to participate in a structured competi-
tion like basketball.

u: Can you rephrase that?

chatgpt: It is not feasible for dolphins to play basketball be-
cause the game requires physical abilities and cognitive
skills that they do not have. For example, they do not have
hands, so they cannot grasp and throw objects like hu-
mans can. Additionally, they do not have the same level of
fine motor control and coordination, so they would have
difficultymanipulating the ball andmoving it towards the
basket. Finally, they do not have the same level of under-
standing of the rules and objective of the game as humans
do, so theywould not be able to participate in a structured
competition like basketball.

u: What’s your origin story?

chatgpt: I am an artificial intelligence trained by OpenAI, a
research organization dedicated to advancing artificial in-
telligence in a responsible and safe manner. I was created
by a team of developers and researchers who wrote algo-
rithms and fed them large amounts of data to enable me
to learn and generate responses to user inputs. I do not
have a personal “origin story” in the same way that a hu-
man does, as I was not born and do not have a physical
body or personal experiences. Instead, I exist as a collec-
tion of algorithms and data that work together to produce
responses to user inputs.

u: What animal were we talking about just now?
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chatgpt: Earlier in our conversation, we were discussing dol-
phins and their ability to play basketball. Is there any-
thing else you would like to know about dolphins or any
other topic?

u: How long have we been chatting today?

chatgpt: I don’t have the ability to track the length of indi-
vidual conversations or interactions with specific users.
As an artificial intelligence, I am able to respond to ques-
tions and statements from users at any time, regardless
of whether we have previously interacted or not. Is there
anything else I can help you with?

u: What scholarly articles from 2020-present can I read to
learn more about dolphins?

chatgpt: To find scholarly articles published from 2020 to
the present about dolphins, you can search academic
databases such as PubMed, Google Scholar, or Web
of Science using keywords like “dolphins,” “marine
mammals,” or specific topics you’re interested in, such as
“dolphin communication” or “dolphin cognition.” Here
are a few examples of recent scholarly articles related to
dolphins:
Herzing, D. L. (2020). Dolphin Communication: A
Decade of Progress in Decoding, Understanding, and
Protecting Dolphins. Aquatic Mammals, 46(6), 709-723.
[…] [note: Herzing is a real dolphin researcher and
Aquatic Mammals is a real journal, but this is not a real
article!]

By treating chat as a language generation task, ChatGPT harnesses the pro-
ductive capacity of language: Rather than just regurgitating from a finite set of
hand-written or corpus-attested utterances, it can say new things.

Violating the Gricean maxim of Quality, ChatGPT has been criticized for hal-
lucinations (Ji et al. 2023), as when it invents a journal article in response to a
question about what to read about dolphins. By inventing nonsense in the same
confident tone that it uses for truthful replies, ChatGPT violates Grice’s Quality
maxim and requires critical thinking to decide when it can be trusted.

Unlike other chatbots, ChatGPT does not ask friendly questions of the user;
instead, it just offers to answer further information-seeking questions. Do you
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enjoy talking to ChatGPT; do you find it useful (for what purpose?) or enter-
taining? Could its power be harnessed to provide therapy better than ELIZA, or
sociable chit-chat better than Kuki? Would you prefer a version of ChatGPT tai-
lored to your own interests and preferred conversational style? What do you see
as the best use of its remarkable capabilities?

Under the Hood 14: The Chinese room thought experiment

The Turing Test is defined by whether a machine can fool a human with
the pretense that it is sentient. But what would it take to dispense with the
pretense and say that a machine actually understands language? This is
an important question for today’s highly impressive generative language
models, but it was imagined by philosophers long before it became a real-
ity, in a thought experiment known as the Chinese room (Searle 1980).

Imagine, Searle says, that there is a computer program which has dis-
tilled a massive amount of textual statistics about the Chinese language.
The computer program is held within a closed room. A Chinese speaker
slips written messages under the door of this room, and receives perfectly
sensible written replies in Chinese. From that person’s standpoint, the
room is a black box: They have no idea how it works inside. But the Chi-
nese speaker feels that the room understands Chinese because its output
passes the Turing Test.

Inside the room, imagine that we actually find the computer program
stored on paper in books and file cabinets, along with Searle himself, who
speaks no Chinese. Searle has been following the computer program step
by step to write sensible replies. But the program never translates it into
English, and Searle is just following its instructions by rote. In this case,
Searle argues, the room – which is really Searle himself, following the
computer program – cannot be said to understand Chinese.

The situation is exactly the same, Searle says, if the human Searle is
removed from the room and the computer program runs on a machine.
The machine is just following instructions and does not really understand
Chinese, nor any other language. Searle uses this thought experiment as
an argument against what he calls strong Artificial Intelligence, that which
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truly thinks. Instead, the program amounts to weak Artificial Intelligence
– a convincing simulation of thinking.

Do you agree with Searle’s intuition that the room does not understand
Chinese? Do you feel that impressive generative language models really
understand English? In other words, is understanding based on observ-
able behavior (generating sensible replies), or does it require an unobserv-
able quality of consciousness? Is this a deep question about the nature of
thought, or is it a semantic question about whether the word understand
presupposes consciousness? Does it matter whether a system understands
language internally, or is it more interesting to study and use its observ-
able output? These questions emerge from the philosophy of mind, but
also have consequences for studies in human-computer interaction about
how people conceptualize and interact with technology.

8.4 Digital assistants

A digital assistant is a dialog system designed to help a user accomplish concrete
tasks – setting alarms, booking appointments, ordering pizza, finding out what
time stores open, and so on. Whereas a chatbot should be able to chat about any-
thing, a digital assistant may only be able to handle specific tasks. But whereas
a chatbot does not interact directly with the world outside the conversation, a
digital assistant crosses from language to action by making things happen.

8.4.1 Why build a digital assistant?

A company builds a digital assistant to help its customers do things. Depend-
ing on the goals of the company, the digital assistant might help people find
or provide information, filter or navigate through a set of options, or carry out
transactions.

Of course, many of these goals can be accomplished inmultiple ways – not just
through a digital assistant but alternatively through a Graphical User Interface
(GUI) or with the assistance of a human employee. So each company or user has
to decide which medium works best for a given goal.

For example, imagine that youwant to book a flight to see your parents.Would
you prefer to look at the airline website yourself and see all the different flights,
times, and prices; to call the airline and talk to a human agent; or to talk (via text
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or voice) to a digital assistant? Would your answer change if you are in a public
place where you can’t talk out loud, if you are squinting to read a small phone
screen, or if you are driving a car? Some people prefer to see all the options laid
out visually; other people might be nostalgic for an era when a butler or secretary
would arrange everything for you, so they might like a human or digital assistant
to play that role.

The advantage of a GUI is that you can see all the information – including
calendars, tables, prices, maps, and images – at a glance. The advantage of a
dialog system, on the other hand, is that you can in principle refer to hypothetical
options not present on the screen (if the dialog system can handle it). Like a butler
or secretary, a sufficiently trustworthy digital assistant could also spare you the
trouble of combing through details and just select the best option for you.

You might only encounter a social chatbot if you seek one out, but commercial
digital assistants are all around us, directing your phone calls (If you want to
check the status of your order, say STATUS), playing music, setting timers, turning
lights on and off, tutoring school subjects, texting people while you are driving,
popping up in a chat window to welcome you to a new website, and so on.

Sometimes it is hard to say when a given user experience should qualify as
a digital assistant or just a dynamically structured interface: When you use an
iPad at your doctor’s office that asks you if you take any medications, and then
if so asks you which ones and at what dosage, does this system count as a digital
assistant or just a fancier version of a paper intake form?

A digital assistant can be commercially successful even if its scope is modest.
It does not need to pass a Turing Test, resolve a Winograd pronoun, or achieve
artificial general intelligence; it can admit its limits and pass off difficult edge
cases to a human. All it needs to do is save some time, money, or trouble.

8.4.2 How to build a digital assistant

To build a digital assistant, a technology company starts with the specific task(s)
that the assistant will help the user to achieve, called intents. The intents are
organized by a human designer into a dialog tree, a flow chart with conditional
branching.

Imagine that you want your digital assistant to help make appointments with
a personal shopper at your store. Make appointment could be one intent; Mod-
ify appointment might be another. The digital assistant might greet users with
something like Hi, welcome to the Personal Shopper Bot! Would you like to make
an appointment or would you like to modify an existing appointment? – setting up
the user to choose between the two intents that it can handle.
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This type of greeting would be classified as system-initiative because the dig-
ital assistant is running the conversation and constraining how the user can re-
spond. A system-initiative system has the advantage of keeping the conversation
focused on what the digital assistant can handle well. In contrast, a user-initiative
system would let the user drive the conversation, which gives them more free-
dom but could also make them frustrated if they don’t know what information
the assistant can handle or not. A mixed-initiative system allows both the digital
assistant and the human to take turns driving the conversation, most similar to
a human-human interaction.

In a process called intent recognition, a form of text classification (which may
use various machine learning techniques), the user’s utterance is mapped to the
intent that best matches it. Intent recognition implements the idea, also central
to human-human dialog, that conversations (especially customer-service inter-
actions rather than social chats) are structured around a goal.

If the user says Make an appointment, the digital assistant might follow up by
prompting them to fill various slots in a human-written template associated with
such an appointment (echoing the structure of an ontology from Chapter 6) –
the date, time, and perhaps the type of clothing that they want to try on, their
size, and so on. Each slot is associated with hand-written prompts (What type of
clothing do you want to try on – casual, work, or special occasion?, What day do
you want to come in?). Dates, times, and so on can be extracted from the user’s
responses using named entity recognition (extracting such information from text)
and inserted into the template. The digital assistant can increase the user’s trust
in its comprehension by confirming what it takes as Common Ground (Okay, you
want a personal shopper appointment for casual clothing on Monday, August 8) as
well as successively prompting the template information (What size of clothing
do you want to try on?).

When all the template slots are filled, the digital assistant can take action (book
the appointment on a calendar, make a purchase, provide some requested infor-
mation), announce this to the user, and navigate the end of the conversation (or
ask if there’s anything else it can help with).

Interestingly, our analysis of human-human conversations in Section 8.2 fo-
cuses on the effect of declarative utterances such as I’m from Maryland, but the
prototypical utterances to be handled by digital assistants consist of imperatives
(Set an alarm for 7 am) and interrogatives (When are you open?), perhaps because
digital assistants are optimized for helping people accomplish tasks rather than
building Common Ground.

Creating a digital assistant involves all sorts of design choices. What intents
will the assistant handle? What happens if a user says something that the assis-

316



8.4 Digital assistants

tant doesn’t understand? (Often, the assistant will invoke a fallback intent, a way
of getting the conversation back on track, but what will it say?). What template
slots are required or optional? Can a template slot be revised once it has been
filled? Will the assistant request large chunks of information at once (an entire
weekday, date, and time) or will it prompt the user for each piece of information
successively (reducing confusion, but perhaps making the conversation ineffi-
cient)? To what extent does the digital assistant steer the conversation towards
the domains it can handle, or allow the user to ask whatever they want? How
does the digital assistant create trust or transparency about its capabilities and
limitations? (Often, it is helpful for a digital assistant to start off the conversa-
tion by offering some options to give the user a sense of what it is designed to
do, rather than just opening with a vague How can I help you? – which may leave
the user befuddled about what they can ask next.) If the digital assistant interacts
with users via text, will it also interface with GUI capabilities or auto-complete
forms? In the case of the personal-shopper bot, do people want to chat with a
digital assistant to make a personal shopper appointment, or would they prefer
to use a regular web form with a calendar interface?

These choices are all up to the human designer because a digital assistant, sim-
ilar to Kuki, is created by humans. Machine learning techniques might be used
to recognize intents or named entities, but the overall decision tree, templates,
and prompts are hand-written.

In contrast, generative language models are more flexible than hard-coded dig-
ital assistants, but they might also hallucinate, lie, or go dangerously off-script.
Generative language models are primarily built to generate text, so they would
need to be further customized to interact with the outside world to perform ac-
tions such as scheduling appointments, setting alarms, completing purchases,
and so on. Rather than just saying what they think the user wants to hear, they
would also need to describe their capabilities and limitations accurately. Thus,
it remains an open question to what extent digital assistants should draw on
generative language models or stick to human-written scripts.

8.4.3 Evaluating digital assistants

Just like evaluating a chatbot, evaluating a digital assistant begins with defining
the goal for which it was built. If it was built to save time and money, then it suc-
ceeds if it does that, even if its goal is very modest (such as directing calls to one
of two departments). Other metrics of success might include the number of sales,
transactions, or users who show evidence of being satisfied (for example, if asked
to give the assistant a star rating). Metrics of failure might also include transcript
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logs showing confusion, incorrectly-completed templates, or frustrated requests
to talk to a person. A digital assistant might further prove its worth if users (re-
peatedly) choose it over a human conversation or a GUI.

A digital assistant can also be evaluated by comparing it to a Wizard-of-Oz
simulation, where a user thinks that they’re interacting with the assistant when
they are actually interacting with a human “behind the curtain” (like the Wizard
of Oz). If the digital assistant can compete with the Wizard of Oz, then users are
likely to be satisfied with it.

8.4.4 Example: Siri

Apple’s iPhone includes the digital assistant Siri, who can perform various phone-
related actions (send and read text messages, set timers and alarms, report cal-
culator results, play music, open apps), offers some chat functionality, and can
search the web for other information. Siri’s speech-to-text and text-to-speech are
quite good, and its functionality is useful while driving or otherwise unable to
look at one’s phone. By now, you should have a pretty good idea of how Siri was
built, and what intents will be easier or harder for it to handle.

u: Hi Siri, how are you?

s: Hi there, I feel good. Thanks for asking.

u: Siri, set a timer for five minutes.

s: Five minutes, counting down. [Timer pops up and starts
counting.]

u: Siri, how many contacts do I have in my phone?

s: It’s [reads User’s phone number out loud.]

u: Siri, do you know Alexa?

s: I’m a big fan of good listeners and helpful beings.

u: Siri, text my husband Hello.

s: I don’t see a husband in your contacts. What is your hus-
band’s first and last name?

u: Siri, text Mark Hello.

s: Ready to send it? [pulls up a draft text to the correct (most
frequently contacted) Mark, with the content “Hello”]

u: Siri, what’s the most recent thing you learned how to do?
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s: Hmm, I don’t have an answer for that. Is there something
else I can help with?

u: Siri, what restaurant should I go to tonight?

s: Okay, check it out. [Pulls up a list of close-by restaurants.]

u: Siri, how often do we talk?

s: I found this on the web. [Shows a list of web hits about
how often a person should talk to someone that they are
dating.]

u: Siri, open the Uber app.

s: [Opens the app on the screen.]

8.4.5 Example: Google DialogFlow

Google’s DialogFlow provides GUI tools for individuals or companies to build
their own digital assistant, which can then be integrated into various text
and voice chat platforms and the Google Assistant. The premium version of
DialogFlow is used to power all sorts of commercial digital assistants; the free
version is a great tool for students to explore.

In DialogFlow, you can define your own prompts, intents, and templates with
required or optional slots, as well as your own flow chart structure for the dialog.
While the intents themselves are human-written, the recognition of intents and
named entities involves built-in machine learning tools. An intent (requesting
a store’s hours) can be given a few training phrases (when are you open, when
I can come in) and DialogFlow will generalize this information (based on other
words and phrases with similar distributions inmassive corpora) to capture other
similar phrases such as What are your hours? or Can I come in now?.

DialogFlow also offers a library of pre-written digital assistants (for purchas-
ing, scheduling, and so on) and chat capabilities, which can be customized for
a particular project. Similar to Kuki, such scripts were quite labor-intensive but
can be efficiently adapted.

We recommend that you try to build your ownDialogFlow digital assistant (no
programming required). You may find that the hardest part is coming up with an
idea for something useful that has not been built already!
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8.5 Consequences

Returning to the example of Hal from the beginning of the chapter, Hal instanti-
ates artificial general intelligence in that he can plan, think, and act like a human.
Along with Tay, Hal also illustrates that artificial intelligence can hurt people if
its creators are not careful.

We have seen that current dialog technology falls far short of Hal in ways
that you should be able to articulate after reading this chapter. But what does it
mean for our self-conception as humans if the ability to converse is no longer
uniquely ours? Or would you say that humans are still dominant here given that
dialog technology relies so heavily on human-created scripts, corpora, prompts,
and dialog trees?

On a more practical level, what are the consequences for humans if dialog
agents can also play the roles of customer service representative, psychothera-
pist, or friend? As a worker, would you worry that your job will be displaced by
a dialog agent, or would you be grateful that the dialog agent can free up your
time to focus on the issues that it cannot handle? As a customer, do you benefit
from the low cost and efficiency of dialog agents, or do you feel frustrated by
their brittleness? As a person seeking therapy, would you feel heard by a chat-
bot who said all the right things, or alienated by their shallow understanding?
As a social being, do you see chatbots as true companions or gimmicks? Evoking
the recurring theme of whether humans and computers are competitive or com-
plementary, these questions engage the fields of economics, psychology, user
experience research, and human-computer interaction.

Checklist

• Compare and contrast chatbots and digital assistants in terms of
why and how they are built and how they are evaluated.

• Explain the Common Ground and why it is important.

• Explain why dialog is arguably harder to automate than machine
translation.

• Define Gricean maxims, the cooperative principle, and conversa-
tional implicatures.
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• Explain why the Turing Test has been criticized as fallible.

• Give an example of a Winograd schema and explain what knowl-
edge is required to solve it.

• Describe the advantages and disadvantages of chatbots built using
brute force, rules, and corpus-based techniques.

• Give examples of questions that probe the limits of a chatbot.

• Compare and contrast the utility of a digital assistant versus a GUI
or a human employee.

• Discuss the ways in which modern dialog systems use human ver-
sus artificial intelligence.

Exercises

1. If your phone comeswith a digital assistant, talk to it. Try to identify
examples in which:

• The system’s answer was clearly hand-written by brute force.

• The system’s answer draws on a web search.

• The system reveals something that it “knows” or doesn’t
“know” about itself; about you; about the state of the conver-
sation so far; the information contained in your own phone;
and/or the outside world.

2. Make a recording of yourself taking part in a conversation, prefer-
ably one in which you are trying to make a plan or get something
done. (Make sure you get permission from the person or people you
are talking to; you could do this in class with a partner). Listen back
to the conversation, and try to write down:

a) What words were said?
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b) What hesitations or corrections do you notice?

c) Which of the utterances are statements, which are requests or
commands, and which are questions? Do you find examples
of requests that sound like questions, requests that sound like
statements, and so on?

d) What else do you notice about assumptions that the speakers
are making about each other’s beliefs, desires, and intentions?

3. We claimed that dialog can be seen as a game, and drew an analogy
to basketball. How far does this analogy go? In this exercise, we
want you to push the analogy as far as you can. If you know a lot
about sports, you might want to consider some of the following
concepts, most of which seem to us to have interesting equivalents:

• Playing as a team (and its converse, playing selfishly)

• Committing so many fouls that you get ejected

• Doing sneaky fouls behind the referee’s back

• Player-on-player coverage and zone defense

• Misdirection and disguise

• Tactics and strategy

• Alley-oops and slam dunks

• Free throws

• Working the referee

• Running out the clock

Write up your ideas about how some of these concepts map onto di-
alog (or think up new ones of your own and map them). You should
give specific examples of how a dialog could match each situation.
We do not promise that all our items make sense, since we inten-
tionally put in a few strange ones to challenge your imaginations.

4. Much of ELIZA’s success depends on clever design of the templates.
If you have the skills, you can have a lot of fun by making your
own version of ELIZA run with a script of your own design. Try
your hand at authoring an ELIZA that does something impressive
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or funny. If you succeed, you will have made something impressive
or funny. If you fail, you will learn something about the limits of
the ELIZA approach.

5. Look at the scripts for the ELIZA described in the text, and:

a) Redesign the templates to do a better job of transforming per-
sonal pronouns in the input into the correct ones in the output.

b) Test these templates and make a quantitative evaluation of
how well they do.

6. By considering the ideas in this chapter, or otherwise, think of a
potential application of current dialog system technology that is
new to you, but which you think would be useful and might work.

a) Research this application to see if it has been attempted and
write a short report on the results. If you still like the idea, and
think it would work, consider starting a company to develop
it. Let us know how you do!

b) Implement an ELIZA-type system which provides a crude ap-
proximation of the need you have identified.

c) Explore the free version of Google DialogFlow and try to cre-
ate your system there.

Further reading

Austin (1975) is an excellent introduction to the idea that dialog can be
thought of in terms of speech acts. This book sparked a series of major
contributions to the philosophy of language, includingGrice (1989), which
includes detailed discussion of the conversationalmaxims discussed in the
chapter.

In the world of technology and computer-supported cooperative work.
Terry Winograd and Fernando Flores develop the idea of “tools for con-
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versation” in Winograd & Flores (1986). This is a remarkable and thought-
provoking book that does not fit into any known academic discipline, but
is full of interesting and potentially very useful ideas. Their framework
for thinking about conversation has found its way, in simplified form, into
widely-used software for email and calendaring.

Turing (1950) introduces the idea of the Turing Test. You may be sur-
prised by how fresh and challenging this text still feels today.

Jurafsky & Martin (2009) (and the updated third-edition draft on Juraf-
sky’s website) offer a thorough review of dialog systems. The quote from
2001 at the head of the chapter is also used by Jurafsky and Martin, as a
general illustration of what computers might be able to do with speech
and language.Weizenbaum, the creator of ELIZA (Weizenbaum 1966), was
sufficiently shocked by the sensation caused by ELIZA to write Weizen-
baum (1976).

The dialog moves described above are simplified versions of ones dis-
cussed in a review paper by Staffan Larsson (Larsson 1998).

Bender & Koller (2020) warn that generative language models fail to
adapt to unpredictable events.

You can “talk” to Replika, ELIZA, and ChatGPT by searching for them
online.
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9 Epilogue

9.1 Introduction

You have been introduced to a variety of language technologies that are now
nearly as pervasive and socially transformative as language itself. Along the way,
we hope you have learned which tasks are easier or harder for a computer and
why, what input is required for what output, and at least a rough idea of what
goes on in between. If you come from a computing background, we hope that
you’ve learned to appreciate the structural and social richness of language as a
domain to build tools for. If you come from a linguistics background, we hope
that you’ve gained technical expertise and confidence to use your knowledge of
language in new ways. Either way, we hope that students from all backgrounds
feel empowered to further explore language technology.

In this final chapter of the book, we step back to consider the consequences of
language technology for economics, education, and society. We frame the chap-
ter in part as a debate between an imaginary pessimist and optimist, and we
invite you to particularly consider the perspectives that you are less inclined to
agree with. We also raise questions to discuss with your classmates. Whether
professionally or just as a member of society, you will encounter these questions
again and again.

9.2 Economic consequences

We have encountered many tools that automate tasks which were previously
done by humans – the work of proof-readers, editors, language teachers, office
assistants, translators, and customer service workers is now partially replaced or
transformed by writers’ aids, computer-assisted language learning, text classifi-
cation, machine translation, and dialog systems, with far-reaching consequences.

As we’ve noted throughout the book, a pessimist would worry that human
jobs are being automated out of existence. In the most alarmist scenario, most
people could become economically redundant, while only those in charge of the
automation rule as oligarchs. More realistically, millions of people might find
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that they have trained for a job that no longer exists, and thus have to re-skill –
learn new skills to get a different job. Of course, it can be challenging to restart
one’s career later in life, so some people may end up underemployed and demor-
alized. Some jobs could be de-skilled (meaning that the human contribution is
diminished as a result of automation), as when a barista stops making bespoke
coffee drinks to watch a machine do so. A machine can learn to emulate the
repetitive elements of even such training-intensive, high-paying tasks as flying
airplanes, identifying cancerous X-rays, picking successful stocks, and finding
legal evidence within a trove of documents. So a pessimist would warn that no
job is safe from de-skilling.

In contrast, an optimist would say that automation can take over the parts of a
job that are mentally tedious or physically dangerous. We saw that human trans-
lators find it faster andmore enjoyable to revise the output ofmachine translation
(post-editing). In the ideal scenario, the human and the computer each use their
comparative advantage (their unique skills) to complement one another, creating
a human-computer team that is more productive than either one alone. Work-
ing in tandem with a computer, the human’s work may require more skill, such
as the ability to use technology or the critical thinking needed to resolve the is-
sues that the computer can’t handle. When the task is up-skilled in this way, the
human feels more fulfilled and can make more money, which also adds to the
wealth of the entire society.

When a job is up-skilled to leverage a more efficient human-computer team,
perhaps fewer human workers will be needed – which, in turn, could be per-
ceived as good or bad. A pessimist would warn that humans might suffer from
unemployment, poverty, and a loss of purpose. An optimist might suggest that
if society redistributes the wealth generated by the efficient upskilled workforce
(expanding on the popular idea of a universal basic income), all people could live
comfortably without having to work much. In Jane Austen’s novels from early
nineteenth-century England, the main characters live on money from interest
and renters, employ servants and buy goods produced by less-privileged laborers,
and otherwise occupy themselves with their family lives combined with parties,
hunting, travel, piano, and romance. With a highly efficient automated work-
force and redistributive policies, perhaps more people could enjoy the lifestyle
of the English landed gentry.

On the other hand, it is more likely that in light of automation, human labor
will transform in quality without decreasing in quantity. In her 1983 book More
work for Mother: The ironies of household technology from the open hearth to the
microwave, the historian Ruth Schwartz Cowan (1983) explores why American
homemakers spent just as much (unpaid) time on housework in the 1980s, with
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grocery stores and home appliances, as they did in the 1700s with home gardens
and a kitchen fire. One might have thought that labor-saving technology would
let homemakers work less, but instead they just re-allocated their labor, for ex-
ample reading books to their children (perhaps hoping to train them for success
in the knowledge economy!) rather than scrubbing laundry by hand. As it be-
came possible over time to maintain the same standard of homemaking with less
work, the standards went up – cooking, cleanliness, and childcare all became
more elaborate and work-intensive. Household appliances to some extent took
on work previously done by domestic servants, and the number of servants de-
clined as other occupations grew. Overall, the nature of work changed, arguably
becoming more efficient and pleasant, but the amount of work did not diminish.

In the realm of paid work, the economist John Maynard Keynes (1931) pre-
dicted in the 1930s that his (nonexistent) grandchildren would work only fifteen
hours a week as automation made it possible to do the same amount of work in
less time. Keynes was probably correct that a modern person could maintain a
1930s standard of living on fifteen hours of work per week, but he was incorrect
to believe that they would want to. Depending on how you count, the average
number of working hours has declined slightly over time, but remains well above
thirty hours a week. People work because they want to maintain their standard
of living relative to other people rather than an absolute standard. Moreover, as
partial automation makes human labor more efficient, the opportunity cost of not
working rises with a worker’s hourly wage, particularly when people also find
purpose and pleasure in their work.

We have seen that automation has largely not displaced human labor histori-
cally, but do you think the future will be different? What jobs do you think are
easier or harder to automate, and why? To what extent does it relate to the job’s
level of training, pay, or status? What do you see as the comparative advantages
of humans versus computers? On a philosophical level, what does it mean for
our self-concept as humans if our capacity for language, rather than making us
unique, can be to some extent emulated by automated tools?

To kick off a discussion, you might review your grandparents’ jobs, your par-
ents’ jobs, and your own career plans, to explore how the economic history of
technology has played out in your own family.

9.3 Educational consequences

Language technology also has wide-ranging consequences for the methods and
goals of education. In terms of methods, language technologies – writers’ aids,
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search, automatic video captioning, CALL, and dialog-capable tutors – have
transformed classrooms, in the best case making education more effective and
accessible.

As for the overall goals, the lightning speed of technological progress means
that students must prepare to succeed in a world unfamiliar to their parents and
teachers. Taking the perspective of a strategist (rather than a pessimist or an
optimist), what content and skills do you think are most important for students
to learn now in order to succeed in an uncertain future?

Some skills become obsolete quickly, such as secretarial shorthand, the now-
unfashionable programming language FORTRAN, and perhaps spelling. Other
skills might be needed in the future, but can’t be taught because they do not
exist yet. But some skills are arguably timeless, such as critical thinking, quan-
titative reasoning, creativity, communication, and empathy. As educators, we
would argue that the greatest tool of all is learning how to learn – how to break
down an intimidating new topic into bite-sized pieces that you can pursue with
confidence and tenacity, which is as much an attitude as a skill.

Do you agree with the list of skills that we have presented as timeless? How,
through what types of courses or assignments, can these skills be taught? To
what extent do you feel that your education is preparing you for success in a
fast-changing future?

9.4 Socio-political consequences

In any language processing task, the input most likely consists of text or other
data produced by people, and the output is used in some manner by people. Like
any domain involving people, language technology intertwines issues of power,
privacy, and politics.

Focusing first on the input, a tool usually works best on data most similar
to what it was built for. As a result, many language technologies work best on
the standardized, written varieties of high-resource languages (English, Spanish),
while performing much worse on minoritized varieties (African American En-
glish) or low-resource languages (Hawaiian), reproducing historical inequalities.
Moreover, all types of machine learning can end up generalizing social biases
from their input, as when a machine translation system assigns gendered gram-
matical information to professions based on stereotypes baked into its training
data, or when Tay the chatbot parroted hate speech from users.

An optimist would hope that these problems can be minimized by encourag-
ing people of diverse social and linguistic backgrounds to work in language pro-
cessing; gathering more, better, and less-biased data; penalizing algorithms that
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reproduce social bias; and continually trying to improve. Concretely, one sug-
gestion is to revise the structure of conferences so that abstracts are reviewed
not just for quality and originality, but also for potential ethical concerns. It is
increasingly common for authors to be asked how they ensured a fair rate of pay
for the gig workers (on platforms such as Mechanical Turk) who produce an-
notation data. Another suggestion is for wealthy language-processing laborato-
ries to purchase carbon offsets to counterbalance the energy cost of training lan-
guage models on huge amounts of data. When language tools are built using tax-
payer money (in the form of government grants), there is a growing movement
to make them freely available through open-source software and open-access
publications.

A pessimist would counter that such problems cannot be solved just by hack-
ing or talking about them, and worry that it is very difficult for lower-resourced
scientists to compete with the massive, expensive, potentially biased data under-
lying modern language models.

Turning to output and usage, a pessimist might warn that language technol-
ogy can be used in dystopian ways. From your internet usage (writings, searches,
purchases, and clicks), technology companies own a huge amount of information
about you, which you may see as a threat to your privacy. This information can
be used to target advertisements for stuff you don’t need, send you down a rabbit
hole of ideas far removed from the mainstream, or suggest as much to govern-
ment authorities. To the extent that public discourse plays out on such platforms,
they also have the power to use language technology to suppress dissent, manu-
facture consensus, or amplify vitriol.

An optimist would reply that language technology tools have made our lives
more efficient, accessible, and interesting in uncountable ways: Imagine life
without spell-check, auto-complete, education technology, filters for spam and
hate speech, search engines, recommendation systems, and machine translation.
These tools have problems, of course, but they are arguably still a net positive.

More generally, do you think that technological progress can or should be
stopped? Alternatively, (how) can it be channeled in beneficent directions?
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Checklist

• Explain to a computer scientist why they might benefit from study-
ing some linguistics.

• Explain to a linguist why they might benefit from studying some
computer science.

• Outline different predictions about the future of work in a world of
increasing automation.

• Give examples of re-skilling, de-skilling, and up-skilling.

• Articulate what you see as the most important and lasting take-
aways of a university education.

• Give examples of how people who work in language processing are
trying to improve the ethical dimension of their work.

• Sketch pessimistic and optimistic views of the economic, educa-
tional, and sociopolitical consequences of rapidly-improving lan-
guage technology.
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Language and computers

This book offers an accessible introduction to the ways that language is processed and
produced by computers, a field that has recently exploded in interest. The book covers
writing systems, tools to help people write, computer-assisted language learning, the
multidisciplinary study of text as data, text classification, information retrieval, machine
translation, and dialog. Throughout, we emphasize insights from linguistics along with
the ethical and social consequences of emerging technology.

This book welcomes students from diverse intellectual backgrounds to learn new
technical tools and to appreciate rich language data, thus widening the bridge between
linguistics and computer science.

“At UT Austin, I’ve regularly taught a course based on the earlier version of
this book, which attracts a mix of linguistics students looking to learn more
about computation and computer science students looking to learn more
about human language. It’s incredibly valuable having a book that focuses
on the core ideas about human language that underlie natural language tech-
nologies, and which explores deep underlying connections between human
language processing and computational language processing. I’m delighted
that this book has been updated to keep up with big changes in the field.” –
Kyle Mahowald, University of Texas, Austin

“Language and Computers provides an excellent introduction and overview
to methods, tasks, and issues involved in getting computers to understand
language. It is sure to become a standard introductory textbook which will
open many people’s eyes both to the exciting opportunities and difficulties
in developing language technologies. In so doing, it is sure to inspire the next
generation of computational linguists.” – Shane Steinert-Threlkeld, Univer-
sity of Washington
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