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Abstract
We study a singularly perturbed fast-slow system of two partial differential
equations (PDEs) of reaction-diffusion type on a bounded domain via Galerkin
discretisation. We assume that the reaction kinetics in the fast variable realise a
generic fold singularity, whereas the slow variable takes the role of a dynamic
bifurcation parameter, thus extending the classical analysis of the singularly
perturbed fold. Our approach combines a spectral Galerkin discretisation with
techniques from geometric singular perturbation theory which are applied to
the resulting high-dimensional systems of ordinary differential equations. In
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particular, we show the existence of invariant slow manifolds in the phase
space of the original system of PDEs away from the fold singularity, while the
passage past the singularity of the Galerkin manifolds obtained after discret-
isation is described by geometric desingularisation, or blow-up. Finally, we
discuss the relation between these Galerkin manifolds and the underlying slow
manifolds.

Keywords: geometric singular perturbation theory, fast-slow systems,
fold singularities, reaction-diffusion equations, Galerkin discretisation

Mathematics Subject Classification numbers: 35B25, 35K57, 34Cxx, 34D15,
34E15, 37G10

1. Introduction

Systems with multiple time scales have been established as a key mathematical tool across
a broad number of applications [11, 32, 47]. At the centre of the theory of multiple-scale
dynamics are so-called fast-slow systems, which are given in standard form by

ε
du
dτ

= u̇= f(u,v,ε) , (1a)

dv
dτ

= v̇= g(u,v,ε) , (1b)

where u= u(τ) ∈ Rm are the fast variables, v= v(τ) ∈ Rn are the slow variables, ε> 0 is a
small parameter, τ is the slow time, and f and g are sufficiently smooth functions of u, v,
and ε. A wide variety of techniques have been developed for analysing ordinary differential
equations (ODEs) of the form in (1a), such as asymptotic analysis [6, 37, 38, 43], invariant
manifold theory [17, 26, 42], nonstandard analysis [7, 8], geometric desingularisation [12, 29],
and numerical methods [10, 18]. Appealingly, several of these techniques allow for a highly
visual description of the geometry of trajectories, attractors, invariant sets, and sometimes even
the entire phase space via a decomposition of the dynamics into its fast and slow components.
This highly intuitive viewpoint is emphasised by reference to the corresponding techniques
as geometric singular perturbation theory (GSPT). Indeed, in the singular limit as ε→ 0, we
immediately identify the critical set

C0 :=
{
(u,v) ∈ Rm+n : f(u,v,0) = 0

}
, (2)

which is commonly referred to as the critical manifold for (1a). The slow (or reduced) subsys-
tem on that manifold is given by

0= f(u,v,0) , (3a)

v̇= g(u,v,0) . (3b)

The differential-algebraic equation (3a) has the geometric interpretation of a (generically)
lower-dimensional dynamical system for the slow variables v. If p= (u,v) ∈ C0 is a normally
hyperbolic point, i.e. if C0 is locally a sufficiently smooth manifold and the Jacobian matrix
Duf(p,0) at p ∈ C0 has no spectrum on the imaginary axis, then Fenichel’s Theorem [17, 25,
32] implies that the critical manifold C0 perturbs near p to a slow manifold Cε. The manifold
Cε is then O(ε)-close, in the Hausdorff distance, to C0 as ε→ 0; moreover, the dynamics on
Cε is locally topologically conjugate to that on C0. Effectively, Fenichel’s Theorem thus geo-
metrically asserts that the normally hyperbolic regime can be viewed as a regular perturbation
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of its singular limit. However, it is relatively easy to prove that (1a) also gives rise to singular
perturbations, as non-hyperbolic points generically occur for m,n⩾ 1, which can intuitively
be understood by introducing the fast time scale t := τ/ε in (1a) and by then taking again the
singular limit of ε→ 0:

du
dt

= u ′ = f(u,v,0) , (4a)

dv
dt

= v ′ = 0. (4b)

The fast subsystem, or layer problem, is a parametrised system of ODEs, and is hence not
even structurally similar to the slow subsystem, or reduced problem, equation (3a). Important
transitions between slow and fast dynamics occur at points where normal hyperbolicity is
lost, which can also be interpreted as bifurcation points of the fast subsystem, equation (4a).
The most important geometric technique for the analysis of such singularities is geometric
desingularisation via ‘blow-up’ [12, 29]; see also [23] for a recent review. A geometric blow-
up of a point—or a more general submanifold—amounts to defining a vector field on a higher-
dimensional manifold, such as a sphere, with the aim of regaining some hyperbolicity. That
approach has been highly successful across a variety of classes of low-dimensional systems
of ODEs, such as for the desingularisation of classical fold bifurcations [12, 29, 36], more
degenerate folded singularities [31, 45], Hopf bifurcations [20], and transcritical or pitchfork
bifurcations [30, 34].

However, for infinite-dimensional multiple-scale dynamical systems, there are significant
conceptual and technical challenges to the generalisation of GSPT. Naively, one might anti-
cipate that an extension of (1a) to the partial differential equation (PDE)

ut = uxx+ f(u,v,ε) , (5a)

vt = ε(vxx+ g(u,v,ε)) (5b)

with suitable boundary conditions, where u= u(t,x) ∈ Rm, v= v(t,x) ∈ Rn, and x ∈ Ω, with
Ω being a bounded interval, may yield a sufficiently basic reaction-diffusion system to
which techniques from standard GSPT can be adapted. Naturally, on unbounded domains, an
approach via spatial dynamics [27, 40] will allow one to apply finite-dimensional techniques
directly. However, no ODE-based geometric approach is available for the study of bounded
and ε-independent domains.

While some techniques from the theory of ODEs do translate well to an infinite-dimensional
setting [21, 33] on such domains, the PDE in (1a) presents challenges [44]. When there is only
a bounded perturbation in the slow variables, i.e. when the term εvxx is absent, the persistence
of invariant manifolds in the normally hyperbolic regime was resolved in [4, 5]. In that case,
the perturbation is, in essence, finite-dimensional, such that more classical invariant manifold
techniques apply [2, 19, 41]. When the slow variables involve unbounded operators, however,
the situation is farmore complicated, as the εvxx-term results in non-trivial interactions between
fast and slow modes in the limit of ε→ 0. Therefore, there is a crucial need for developing
an infinite-dimensional analogue of GSPT, which is the key motivation for this work. The
normally hyperbolic regime in (5a) was resolved only recently in [22], where an invariant
manifold theory was developed for (5a) on the basis of functional-analytic techniques.

An alternative approach via spectral Galerkin discretisation was proposed in [14], while a
comparison of the two approaches can be found in [13]. Since Galerkin discretisation yields,
upon truncation at a finite number of modes, large systems of singularly perturbed ODEs of
fast-slow type, one may hope that even a loss of normal hyperbolicity at singular points can
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be treated by geometric desingularisation, or blow-up [12, 29], which was the focus in [14].
There, the blow-up technique was applied to a Galerkin truncation resulting from a transcritical
singularity, i.e. for f(u,v,ε) = u2 − v2 +µε in (5a), with µ a real parameter. As is well-known
in the finite-dimensional context, transcritical (and pitchfork) singularities are slightly more
straightforward to desingularise than fold singularities; see the analysis in [29, 30], respect-
ively. Hence, in this work we consider a generic fold singularity in (5a) as a logical next step;
specifically, we study the system

ut = uxx− v+ u2 +Hu (u,v,ε) for x ∈ (−a,a) and t> 0, (6a)

vt = ε(vxx− 1+Hv (u,v,ε)) for x ∈ (−a,a) and t> 0, (6b)

ux (t,x) = 0= vx (t,x) for x=±a and t> 0, (6c)

u(0,x) = u0 (x) and v(0,x) = v0 (x) for x ∈ (−a,a) (6d)

on bounded domains, where the domain length a> 0 is fixed, with zero Neumann boundary
conditions. Here, Hu and Hv are higher-order terms which are specified below.

Remark 1.1. Note that locally well-defined (smooth) solutions for (6a) can be obtained from
classical theory on sectorial operators with reaction kinetics [21] and parabolic regularity [16].

This work is divided into two parts. In the first part, we apply results from [22] to obtain
slow manifolds which drive the (semi)flow of (6a) within a neighbourhood of the origin away
from the fold in an appropriately chosen phase space for suitable initial data. Using results
from [13], we then approximate these manifolds by slow manifolds in a truncated—and thus
finite-dimensional—Galerkin discretisation of (6a). To avoid confusion, we henceforth refer
to these finite-dimensional manifolds as Galerkin manifolds. For any fixed ε> 0, the result-
ing approximation can be made arbitrarily precise provided an appropriate truncation level,
denoted by k0 > 0, is chosen; furthermore, we show that solutions of the Galerkin discretisa-
tion converge to those of equation (6a) under suitable assumptions for k0 →∞, which allows
us to interpret the corresponding Galerkin manifolds as ‘approximately invariant slow mani-
folds’ for (6a). As shown in [13], to study the dynamics beyond trajectories and track families
of Galerkin slow manifolds as ε→ 0 and k0 →∞, one has to consider a coupling between the
two parameters. The resulting double singular limit [35] is not specific to PDE-type settings,
as it occurs also in the time discretisation of fast-slow ODEs [1, 15, 24]. Yet, as for the time-
discretised case, we find that there exist open parameter sets, for ε and k−1

0 close to zero, where
our results hold [13].

In the second part, which is the main result of this work, we apply the blow-up technique
to extend these Galerkin manifolds around the singularity at the origin in the truncated, 2k0-
dimensional Galerkin discretisation of (6a). Under appropriate assumptions on initial condi-
tions, e.g. by restricting to solutions of (6a) that are close to spatially homogeneous ones in an
appropriately chosen norm, we show that the dynamics of the Galerkin truncation in a neigh-
bourhood of the origin can be reduced to that of the corresponding ODE for the singularly
perturbed planar fold, a well-known prototypical fast-slow system that was studied via blow-
up in [29].

There are evident similarities between our analysis and classical GSPT, where Fenichel’s
Theorem [17] is combined with geometric desingularisation in the form of blow-up; corres-
pondingly, fast-slow systems of arbitrary dimension in both the fast and slow variables have
been studied geometrically in previous work [9, 46].

However, the high dimensionality of our Galerkin discretisation, in combination with the
inherent spatial dependence of equation (6a), poses both conceptual and technical challenges.
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Firstly, a preparatory rescaling of the domain length with (a fractional power of) ε is essential
to our approach, and is required to obtain both well-defined and non-trivial dynamics in the
singular limit after blow-up. A consequence of the rescaling is, however, that the approach in
[46] does not apply, as the assumptions therein are not satisfied. Secondly, careful consider-
ation of initial data, in tandem with precise estimates on the evolution of higher-order modes
in the Galerkin discretisation, is required to ensure that solutions do not exhibit finite-time
blowup before reaching the singularity at the origin; again, that blowup is inherently due to
the Galerkin discretisation arising from a system of PDEs.

Our approach has a number of further advantages: it achieves an effective reduction to
the singularly perturbed planar fold which can be studied via blow-up of the non-hyperbolic
origin, rather than of a submanifold of singularities; furthermore, it allows us to account for
the impact of data related to the original PDE, equation (6a), such as the domain length or the
eigenvalues of the Laplacian therein, on the flow in its passage past the origin. Correspondingly,
our approach yields explicit asymptotics, rather than merely an existence statement, and hence
seems highly suited to the study of singular perturbation problems of fast-slow type obtained
by Galerkin discretisation. Such asymptotics will also be crucial for future work on the double
singular limit as ε→ 0 and k0 →∞, which will build on [13].

Our main results can hence be summarised as follows; precise statements will be given
below.

• Equation (6a) possesses a family of slow manifolds Sε,ζ for small ε> 0, where ζ > 0 is an
additional control parameter. These can be approximated by Fenichel-type slow manifolds
Cε = Cε,k0 in the corresponding Galerkin discretisation truncated at k0 > 0, provided k0 is
sufficiently large.

• For any k0 > 0 fixed, the Galerkin manifolds Cε,k0 are extended around the fold singularity
at the origin in the Galerkin discretisation, which we show by combining the well-known
fast-slow analysis of the singularly perturbed planar fold with a priori estimates that control
higher-order modes.

In summary, our work is a stepping stone towards the development of a geometric approach
for the study of singularities in multiple-scale (systems of) PDEs. However, it still remains to
relate, rigorously and uniformly in ε and k0, the extension of the Galerkin manifolds Cε,k0 after
passage past the fold singularity to corresponding manifolds for (6a) when ε→ 0 and k0 →∞.
In the normally hyperbolic regime, we do know the scaling relation between ε and k0 in the
double singular limit [13]; however, further work is required to understand that limit near non-
normally hyperbolic singularities. Here, we contribute to this ongoing research programme by
providing detailed estimates, at the level of the Galerkin discretisation of (6a) near a generic
fold singularity, in dependence of both ε and k0.

2. Galerkin discretisation

The starting point for our analysis is the singularly perturbed system of PDEs in (6a). In ana-
logy with the canonical form for the singularly perturbed planar fold studied in [29], we refer
to u and v therein as the fast and slow variables, respectively. The functions Hu and Hv are
assumed to be smooth and of the form

Hu (u,v,ε) =O
(
ε,uv,v2,u3

)
and (7a)

Hv (u,v,ε) =O
(
v2
)
, (7b)
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respectively. In addition, we assume that the higher-order terms Hv in (6d) are orthogonal
in L2(−a,a) to the subspace of constant functions, which is not an essential restriction that
is only imposed for technical reasons, as will become apparent in estimates for solutions of
the system of ODEs resulting from a Galerkin discretisation of (6a); see lemma 5.9. In other
words, we restrict Hv so that Hv(u,v,ε) has zero mean over [−a,a] for any u,v ∈ L2(−a,a).
One specific example is given by Hv(u,v,ε) = H̃v(u,v,ε)− 1

2a

´ a
−a H̃

v(u,v,ε)dx, where H̃v :

R3 → R is smooth. Note that we do not permit linear terms in Hv, since vxx is a linear operator
in (6d); however, we could consider more general Hv, such as Hv(u,v,ε) =O(u2,uv,v2,ε),
with the caveat that we would have to impose further restrictions on the initial values for the
higher-order modes uk (k⩾ 2), in analogy to those imposed on vk for k⩾ 2.

More compactly, we can write (6a) as

wt = Aw+F(w) , with w(0) = w0,

where w= (u,v)T, w0 = (u0,v0)T, F(w) = (−v+ u2 +Hu(u,v,ε),−ε+ εHv(u,v,ε))T, and

Aw=

(
uxx 0
0 εvxx

)
, with D (A) =

{
w ∈ H2 (−a,a)2 : ux = 0= vx at x=±a

}
.

We have that F(w) is locally Lipschitz continuous on Zα =D(Aα) for 1/4< α < 1; moreover,
the operator A is sectorial and a generator of an analytic semigroup on Z= L2(−a,a)2. Thus,
for w0 ∈ Zα, there exists a unique local-in-time solution w ∈ C([0, t∗);Zα)∩C1((0, t∗);Z),
with w(t) ∈ D(A), to (6a) for some t∗ > 0; see e.g. [21]. The quadratic nonlinearity in (6a)
implies a potential finite-time blowup of solutions to (6a); see e.g. [3]. However, simple estim-
ates show that, for initial values u0 < 0 and v0 > 0, a solution of (6a) exists for t> 0 such that
u(t)⩽ 0 and v(t)⩾ 0; see appendix A for details.

Before giving a precise statement of our results, we introduce the Galerkin discretisation of
the system of PDEs in (6a) with respect to the eigenbasis {ek(x) : k= 1,2, . . .} of the Laplacian
on L2(−a,a) with Neumann boundary conditions. Specifically, the relevant orthonormal basis
and the corresponding eigenvalues are given by

ek+1 (x) =

√
1
a
cos

(
kπ (x+ a)

2a

)
and λk+1 =−k2π2

4a2
for k= 1,2, . . . , (8)

respectively, with e1(x) = 1√
2a

and λ1 = 0. Next, we define

bk :=−(k− 1)2π2, (9)

so that λk+1 =
bk+1

4a2 .
Then, solutions of (6a) can be expanded as

u(x, t) =
∞∑
k=1

ek (x)uk (t) and v(x, t) =
∞∑
k=1

ek (x)vk (t) . (10)

Substitution of (10) into (6a) results in the infinite system of ODEs

u ′
k = λkuk−〈v,ek〉+ 〈u2,ek〉+ 〈Hu,ek〉, (11a)

v ′k = ε(λkvk−〈1,ek〉+ 〈Hv,ek〉) (11b)

for k= 1,2, . . . , where

〈ϕ,ψ 〉=
ˆ a

−a
ϕ(x)ψ (x)dx for ϕ,ψ ∈ L2 (−a,a) .

6
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Using the formulae in (8), we can then derive the following explicit form of (11a):

Proposition 2.1. The system in (11a), truncated at k0 ∈ N, reads

u ′
1 =−v1 +

1√
2a

k0∑
j=1

u2j +Hu
1, (12a)

v ′1 =−
√
2aε, (12b)

u ′
k =

1
4
a−2bkuk− vk+

2√
2a
u1uk+

1√
a

k0∑
i,j=2

ηki,jui uj+Hu
k , (12c)

v ′k = ε
1
4
a−2bkvk+ εHv

k (12d)

for 2⩽ k⩽ k0, where 0⩽ ηki,j ⩽ 1 is non-zero if and only if i + j − 2= k− 1 or |i − j|= k− 1,
and

Hu
1 =O

(
ε,v21,v

2
j ,u1v1,ujvj,u1u

2
j ,ui ujul

)
for 2⩽ i, j, l⩽ k0, (13)

Hu
k =O

(
v1vk,vi vj,u1vk,ukv1,ui vj,u

2
1uk,u1ui uj,ui ujul

)
for 2⩽ i, j, l⩽ k0, and (14)

Hv
k =O (v1vk,vi vj) for 2⩽ i, j ⩽ k0. (15)

Remark 2.2. Our assumption that the higher-order terms Hv are orthogonal to the subspace of
constant functions ensures that Hv

1 = 0 in (12a).

Proof. Because the basis {ej}j⩾1 is orthonormal in L2(−a,a), we have 〈v,ek〉= vk for all k⩾
1. We observe that 〈1,e1〉=

√
2a and 〈1,ek〉= 0 for any k⩾ 2. Recalling that e1 is a constant

function, we find

〈e1ej,ek〉= e1〈ej,ek〉= (2a)−1/2
δj,k

for all j,k⩾ 1, where δj,k denotes the standard Kronecker delta. In addition, simple calculations
show that

〈ei ej,ek〉=: a−1/2ηki,j,

where ηki,j is independent of a and given by

ηki,j =

ˆ 1

0
cos((i + j − 2)π x)cos((k− 1)π x)dx+

ˆ 1

0
cos((i − j)π x)cos((k− 1)π x)dx.

It follows that 0⩽ ηki,j ⩽ 1 is non-zero if and only if i + j = k+ 1 or |i − j|= k− 1. In partic-
ular, 〈e2k ,ek〉= 0 for 2⩽ k⩽ k0. Equipped with the relations above, we can now calculate the
term 〈u2,ek〉 in (11a). For k= 1, we have

〈 k0∑
j=1

ujej

2

,e1

〉
=

k0∑
i,j=1

ui uj〈ejei,e1〉=
k0∑

i,j=1

ui uje1〈ej,ei 〉= (2a)−1/2
k0∑
j=1

u2j ,

7
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whereas for 2⩽ k⩽ k0, it holds that〈 k0∑
j=1

ujej

2

,ek

〉
=

k0∑
i,j=1

ui uj〈ejei,ek〉= 2u1

k0∑
j=1

uj〈eje1,ek〉+
k0∑

i,j=2

ui uj〈ejei,ek〉

= 2(2a)−1/2u1uk+
k0∑

i,j=2

ηki,jui uj,

as in the first sum only the term with j= k is non-zero.

The relation between solutions of the Galerkin discretisation in (11a) and those of
equation (6a) is discussed briefly in appendix A.

3. Slow and Galerkin manifolds

In analogy to standard procedure for fast-slow ODEs of singular perturbation type, the first
step in our geometric analysis is to determine the critical manifold for (6a). Considering the
slow formulation of (6a), obtained from the time rescaling τ = εt,

εuτ = uxx− v+ u2 +Hu (u,v,ε) for x ∈ (−a,a) and τ > 0, (16a)

vτ = vxx− 1+Hv (u,v,ε) for x ∈ (−a,a) and τ > 0, (16b)

ux (τ,x) = 0= vx (τ,x) for x=±a and τ > 0, (16c)

and setting ε= 0 therein, we find that the critical manifold is given by the set{
(u,v) : 0= uxx− v+ u2 +Hu (u,v,0) , with ux (·,±a) = 0= vx (·,±a)

}
. (17)

Restricting to spatially homogeneous solutions, we define the critical manifold S0 as the set of
functions

S0 :=
{
(u,v) ∈ R2 : 0=−v+ u2 +Hu (u,v,0)

}
, (18)

abusing notation and identifying constant functions u : [−a,a]→ R with the values they take.
Due to our assumptions on the form of Hu, near the origin (u,v) = (0,0) in (u, v)-space the set
S0 is given as a graph

S0 =
{
(u,v) ∈ R2 : v= u2 +O

(
u3
)}
. (19)

Proceeding again as in a finite-dimensional setting, the second step in our analysis concerns
the persistence of the manifold S0 for ε positive and sufficiently small. However, in an infinite-
dimensional setting, the concept of ‘fast’ and ‘slow’ variables can be delicate, as for any ε> 0,
there exists k> 0 such that ελk = O(1). One way to address that complication is to split the
slow variables v into fast and slow components, which we make precise in the following proof
of proposition 3.1. We refer to [22] for further discussion and details.

Proposition 3.1. Let (u,v) ∈ S0 with u< 0. Consider any small ζ > 0 and u⩽ ωA < 0, ωf ∈ R,
and Lf > 0 such that ωA+Lf < ωf < 0. Then, there exist spaces Yζ

S ⊕Yζ
F = L2(−a,a) and a

family of attracting slow manifolds around (u, v) that are given as graphs

Sε,ζ :=
{(

hε,ζX (v) ,hε,ζ
Yζ
F

(v) ,v
)
: v ∈ YζS

}
(20)

8
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for 0< ε < C ωf

ωA
ζ and some fixed C ∈ (0,1), where

(
hε,ζX (v),hε,ζ

Yζ
F

(v)
)
: Yζ

S → H2(−a,a)×

(Yζ
F ∩H2(−a,a)).

Proof. We show that the assumptions of [13, theorem 2.4] are satisfied, which will imply the
existence of a family of slow manifolds stated in (20). Given a point (u,v) = (c,c2 +O(c3))
on S0, with c< 0 sufficiently small, we first translate that point to the origin in (6a), which
yields

ut = uxx− v+ u2 + 2cu+ H̃u (u,v,ε) for x ∈ (−a,a) and t> 0, (21a)

vt = ε(vxx− 1+Hv (u,v,ε)) for x ∈ (−a,a) and t> 0, (21b)

ux (t,x) = 0= vx (t,x) for x=±a and t> 0. (21c)

Here, H̃u are new higher-order terms that are obtained from Hu post-translation. We choose

X= L2 (−a,a) and Y= L2 (−a,a) (22)

as the basis spaces for u and v, respectively, and consider Xα = H2α(−a,a) and Yα =
H2α(−a,a) for α ∈ [0,1). The linear operators L1 and L2 are defined as L1u= uxx+ 2cu and
L2 = vxx, respectively, with D(L1) =D(L2) = {ϕ ∈ H2(−a,a) : ϕx(−a) = 0= ϕx(a)}.

Since we are interested in a neighbourhood of the origin in (21a) and by rescaling v= κvṽ,
for any κv > 0, we consider the modified nonlinear terms

f(u,v) =−κvv+χ(u)u2 +χ(u)χ(v) Ĥu and (23a)

g(u,v) =−κ−1
v +χ(u)χ(v) Ĥv, (23b)

where χ : H2(−a,a)→ [0,1] is such that

χ (u) = 1 if ‖u‖H2 ⩽ σ2, χ (u) = 0 if ‖u‖H2 ⩾ 2σ, and ‖Dχ‖L(H2,R) ⩽ σ

for some 0< σ < 1 and Ĥu and Ĥv denote the higher-order termswith rescaled ṽ= v/κv, where
the tilde is omitted. Then, these modified nonlinearities

f : H2 (−a,a)×L2 (−a,a)→ L2 (−a,a) and

g : H2 (−a,a)×H2 (−a,a)→ H2 (−a,a) (24)

satisfy

‖Df(u,v)‖L(H2×L2,L2) ⩽ Lf1 ,

‖Df(u,v)‖L(H2×H2,H2) ⩽ Lf2 , and

‖Dg(u,v)‖L(H2×H2,H2) ⩽ Lg,

(25)

where L(V,W) is the space of linear operators from V into W. Define Lf :=min{Lf1 ,Lf2} and
note that, by choosing σ> 0 small, the constants Lf and Lg can be made appropriately small.

Note also that, for any ε> 0, there exists k> 0 such that ελk =O(1), whereλk =− k2π 2

4a2 ,k=
0,1, . . . , are the eigenvalues of the operator L2 with zero Neumann boundary conditions. Thus,
to define fast and slow variables, we need to split the basis space Y= L2(−a,a) for v into
Y= Yζ

S ⊕Yζ
F , where

9
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Yζ
S := span{ek (x) : 0⩽ k⩽ k0} and (26a)

Yζ
F := span{ek (x) : k> k0}

L2

, (26b)

with {ek(x)}k∈N being the eigenfunctions of the operator L2 corresponding to the eigenvalues
{λk}k∈N and k0 ∈ N satisfying

− (k0 + 1)2π2

4a2
< ζ−1ωA ⩽−k20π

2

4a2
, (27)

for given ζ > 0 and ωA ∈ (2c,0).
Then, for the semigroups generated by −BS and BF, which are the realisations of the oper-

ator L2 in Y
ζ
S ∩L2(−a,a) and Y

ζ
F ∩L2(−a,a), respectively, we have the following estimates:

‖e−tBSyS‖H2 ⩽ e
π2k20
4a2

t‖yS‖H2 for yS ∈ YζS , (28a)

‖etBFyF‖H2 ⩽ e−
π2(k0+1)2

4a2
t‖yF‖H2 for yF ∈ YζF ∩H

2 (−a,a) , (28b)

see e.g. [21, p 20].
Now, using (26a) and the estimates in (28a) and following the proof of [13, theorem 2.4]

and [22], we obtain the stated results.

Remark 3.2. Here, we have written YζS instead of Y
ζ
S ∩H2(−a,a), as YζS is a finite-dimensional

subspace of H2(−a,a).

Next, for given ζ > 0, we also split the space X= L2(−a,a) into X= Xζ
S ⊕Xζ

F, where X
ζ
S

and Xζ
F are defined in the same manner as Yζ

S and Yζ
F , see (26a).

Then, the truncation of the Galerkin system in (11a) at k0, which is related to ζ via (27),
gives the projection of (21a) onto

(
Xζ
S ,Y

ζ
S

)
. Thus, we obtain a family of so-called Galerkin

manifolds

Gε,ζ :=
{(

hε,ζG (v) ,v
)
: v ∈ Yζ

S

}
(29)

for a function hε,ζG : Yζ
S → Xζ

S .

Proposition 3.3. There exists a constant C̃> 0 such that, for 0< ε < C ωf

ωA
ζ, with ζ, ωA, and

ωf as in proposition 3.1 and some fixed C ∈ (0,1), the following estimate holds:∥∥∥hε,ζX (v)− hε,ζG (v)
∥∥∥
H2

+
∥∥∥hε,ζ

Yζ
F

(v)
∥∥∥
H2

⩽ C̃

(
4a2

π2 (2k0 + 1)
+ ζ

)
‖v‖H2 . (30)

In particular, using the relation between ζ and k0 in (27), we have∥∥∥hε,ζX (v)− hε,ζG (v)
∥∥∥
H2

+
∥∥∥hε,ζ

Yζ
F

(v)
∥∥∥
H2

⩽ C̃
1
k0
‖v‖H2 . (31)

Proof. The proof follows the same steps as in [13].

Remark 3.4. Note that k0 →∞ corresponds to ζ→ 0which, due to the relation 0< ε < C ωf

ωA
ζ,

see propositions 3.1 and 3.3, also implies ε→ 0when k0 →∞. Hence, the limit of the Galerkin
manifoldsGε,ζ as k0 →∞ cannot, in general, be guaranteed uniformly in ε. Thus, we perform
the following analysis for ε ∈ (0,ε0), with ε0 sufficiently small, and k0 arbitrarily large, but
fixed.

10
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4. Fast-slow analysis

Consider an arbitrary, fixed k0 ∈ N in proposition 2.1. A rescaling of the variables in (12a) via
uk 7→ a−1/2uk and vk 7→ a−1/2vk gives the fast-slow system

u ′
1 =−v1 + 2−1/2u21 + 2−1/2

k0∑
j=2

u2j +Hu
1, (32a)

v ′1 =−21/2ε, (32b)

u ′
k =

1
4
a−2bkuk− vk+ 21/2u1uk+

k0∑
i,j=2

ηki,jui uj+Hu
k , (32c)

v ′k =
1
4
a−2bkεvk+ εHv

k, (32d)

for 2⩽ k⩽ k0. The rescaled system in (32a) is equivalent to the original one in (12a), in that
orbits of the latter are mapped to those of the former. Thus, without loss of generality, in our
analysis, we will henceforth focus on (32a). In the slow time variable τ = εt, equation (32a)
becomes

εu̇1 =−v1 + 2−1/2u21 + 2−1/2
k0∑
j=2

u2j +Hu
1, (33a)

v̇1 =−21/2, (33b)

εu̇k =
1
4
a−2bkuk− vk+ 21/2u1uk+

k0∑
i,j=2

ηki,jui uj+Hu
k , (33c)

v̇k =
1
4
a−2bkvk+Hv

k, (33d)

with the overdot denoting differentiation with respect to τ .
Recalling the system of PDEs in (6a), where the singularity is located at the origin of

L2(−a,a), we will be considering initial data in a neighbourhood thereof in the L2-norm, with

∞∑
k=1

|uk (0) |2 ⩽ κ and
∞∑
k=1

|vk (0) |2 ⩽ κ, (34)

where 0< κ < 1. In addition, we impose the bounds

|uk (0) |⩽ Ck,u0 and |vk (0) |⩽ Ck,v0ε
4/3 for k= 2,3, . . . ,k0, (35)

where Ck,u0 and Ck,v0 are positive constants. The initial conditions for the first mode {u1,v1}
are taken as in the finite-dimensional (planar) case [29], and are specified in equation (42)
below.

The assumption in (35) implies that the higher-order modes uk(0) and vk(0), corresponding
to non-constant eigenfunctions, are sufficiently small. The requirement that vk(0) is of the
order O(ε4/3) is essential for ensuring that vk(t) does not exhibit finite-time blowup before
transiting through a neighbourhood of the singularity at the origin; see lemma 5.9 for details
and appendix B for an example.

11
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4.1. Critical manifold

Clearly, the system in (32a) is a fast-slow system in the standard form of GSPT, with ε the
(small) singular perturbation parameter and {uk} and {vk}, k= 1,2, . . . ,k0, the fast and slow
variables, respectively. The critical manifold C for (32a) is hence given, to leading order, as a
graph over (u1,u2, . . . ,uk0), with

v1 = f1 (u1,u2, . . . ,uk0) := 2−1/2u21 + 2−1/2
k0∑
j=2

u2j and (36a)

vk = fk (u1,u2, . . . ,uk0) :=
1
4
a−2bkuk+ 21/2u1uk+

k0∑
i,j=2

ηki,jui uj (36b)

for k= 2, . . . ,k0. Note that, in general, C is not normally hyperbolic: it contains attracting and
saddle-type regions, as well as non-hyperbolic sets separating those regions; examples can be
found in appendix B. Of particular interest is the submanifold C0 ⊂ C of the critical manifold
C which is defined as

C0 : = {(u1, . . . ,uk0 , f1(u1, . . . ,uk0), . . . , fk0(u1, . . . ,uk0) ∈ C :

u1 < 0 and uk = 0 for 2⩽ k⩽ k0} .
(37)

In other words, C0 is obtained by setting uk = 0 for k= 2, . . . ,k0 in (36a), and can hence be
written as the curve

C0 =
{
(u1, . . . ,uk0 ,v1, . . . ,vk0) ∈ R2k0 : v1 = 2−1/2u21 +O

(
u31
)
,

with u1 < 0 and uk = 0= vk for 2⩽ k⩽ k0}
(38)

that lies in the (u1,v1)-plane. The set C0 corresponds directly to the set of constant functions
S0, given by (18). We will denote the slow manifold that is obtained from C0 via GSPT by
either Cε or Cε,k0 , to emphasise the dependence thereof on k0.

Remark 4.1. Note that in section 2, both Yζ
S and Xζ

S are finite-dimensional, and that Gε,ζ can
hence be viewed as the Fenichel slow manifold perturbing off the normally hyperbolic subset
C0 of the critical manifold of the fast-slow system in (32a), for k0 defined by ζ through (27).

Lemma 4.2. The subset C0 of the critical manifold C is normally hyperbolic and attracting
under the layer flow that is obtained for ε= 0 in (32a).

Proof. Linearising the fast flow of (32a) about C0, we find the Jacobian matrix

diag

{
21/2u1,2

1/2u1 +
1
4
a−2b2, . . . ,2

1/2u1 +
1
4
a−2bk0

}
, (39)

which implies that C0 is normally hyperbolic and attracting for u1 < 0 bounded away from
zero. (Recall that bk < 0 for k ∈ N and k 6= 1.)

Since the eigenvalues of a matrix depend continuously on its entries, and since the eigen-
values of the linearisation about C0 are all strictly negative, there exists a full neighbourhood
around C0 in C, with u1 < 0 bounded away from zero, which is normally hyperbolic and attract-
ing under the layer flow of (32a). The flow in that neighbourhood is directed towards the origin
where, as can be seen from the above linearisation, normal hyperbolicity is lost and which is
hence a partially degenerate steady state of (32a). The description of the dynamics near the
origin therefore requires the application of geometric desingularisation.

12
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4.2. Statement of main result

We are now ready to formulate our main result, which concerns the transition between two
appropriately defined sections∆in and∆out for the flow generated by (32a). These sections of
the phase space are defined as follows: consider the set{

(u1,v1) : u1 ∈ J and v1 = ρ2
}
⊂ Rk0 ×Rk0 (40)

for small ρ> 0 and a suitable interval J, and let∆in be a neighbourhood of that set inRk0 ×Rk0 .
Similarly, define∆out as a neighbourhood of the set

{(u1,v1) : u1 = ρ and v1 ∈ R} ⊂ Rk0 ×Rk0 (41)

that is contained in the (u1,v1)-plane. More explicitly, let

∆in =
{
(u1, . . . ,uk0 ,v1, . . . ,vk0) ∈ R2k0 : u1 ∈

(
−21/4ρ−Cin

u1 ,−21/4ρ+Cin
u1

)
,

v1 = ρ2, |uk|⩽ Cin
uk , and |vk|⩽ Cin

vk for 2⩽ k⩽ k0
}

(42)

and

∆out =
{
(u1, . . . ,uk0 ,v1, . . . ,vk0) ∈ R2k0 : u1 = ρ,

v1 ∈ R, |uk|⩽ Cout
uk , and |vk|⩽ Cout

vk for 2⩽ k⩽ k0
}
, (43)

where Cin
u1 , C

in
uk , C

in
vk , C

out
uk , and C

out
vk , for 2⩽ k⩽ k0, are appropriately chosen small constants.

Given these definitions, we have the following result on the transitionmap between the sections
∆in and∆out that is induced by the flow of (32a), illustrated in figure 1.

Theorem 4.3. Fix k0 ∈ N, and consider the subset Rin ⊂∆in defined by

Rin = Rin (ε) :=
{
(u1, . . . ,uk0 ,v1, . . . ,vk0) ∈ R2k0 : u1 ∈

(
−21/4ρ−Cin

u1 ,−21/4ρ+Cin
u1

)
,

v1 = ρ2, |uk|⩽ Cin
uk , and |vk|⩽ Cin

vkε
4/3 for 2⩽ k⩽ k0

}
. (44)

Then, there exists ε0(k0) such that for 0< ε < ε0, the system in (32a) admits a well-defined
transition map

Π : Rin →∆out.

Let (uin1 ,v
in
1 ,u

in
k ,v

in
k ) ∈ Rin and(
uout1 ,vout1 ,uoutk ,voutk

)
:= Π

(
uin1 ,v

in
1 ,u

in
k ,v

in
k

)
;

then,

|vout1 |=O
(
ε2/3

)
, uout1 = ρ,

|uoutk |⩽ C|uink |, and |voutk |⩽ C|vink |
(45)

for 2⩽ k⩽ k0 and a positive generic constant C which may differ between estimates. In par-
ticular, the slow manifolds Cε cross the section ∆out transversely. In addition, the restriction
of Π to I := {(u1,uk,v1,vk) ∈ Rin : uk,vk fixed for 2⩽ k⩽ k0} is a contraction with rate e−c/ε

for any suitable choice of {uk,vk} and some constant c> 0.

13
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Figure 1. Illustration of the main result, theorem 4.3, in its projection onto the (u1,v1)-
plane. The sections∆in and∆out are, in fact, full neighbourhoods around the shown line
intervals in u1 and v1. Given k0 ∈ N fixed, trajectories of (32a) that are initiated in ∆in

will intersect ∆out transversely for ε sufficiently small.

Remark 4.4. In (32a), the equations for (u1,v1) reduce to those for the classical singularly
perturbed planar fold [29] if we set uk = 0 for 2⩽ k⩽ k0. Here, we perform a similar ana-
lysis as in [29] while controlling the higher-order modes {uk,vk}, 2⩽ k⩽ k0. Note that we
are restricting to initial data for the system of PDEs in (6a) that are close to constant func-
tions, which translates to small initial data {uk(0),vk(0)} for the system of ODEs in (32a).
As mentioned already, the dependence on ε in the initial values for vk, 2⩽ k⩽ k0, is essential
to ensure that trajectories of the Galerkin system in (32a) do not exhibit finite-time blowup
before reaching ∆out; cf again section 5 for the corresponding estimates and appendix B for
an illustrative example.

5. Geometric desingularisation

To describe the dynamics of the system of equations in (32a) near the origin, which is a partially
degenerate steady state, we will apply the method of geometric desingularisation by consider-
ing ε as a variable in (32a), which is included in the quasi-homogeneous spherical coordinate
transformation

uk = r̄αk ūk, vk = r̄βk v̄k, and ε= r̄γ ε̄. (46)

Here, k= 1,2, . . . ,k0 and (ū1, v̄1, . . . , ūk0 , v̄k0 , ε̄) ∈ S2k0 , with S2k0 denoting the 2k0-sphere in
R2k0+1 and r̄ ∈ [0,r0], for r0 > 0 sufficiently small. The weights αk, βk, and γ in (46) will be
determined by a rescaling argument below.

In analogy to the desingularisation of the well-known planar fold via blow-up, performed
in [29], we shall introduce three coordinate chartsK1,K2, andK3, which are formally obtained
by setting v̄1 = 1, ε̄= 1, and ū1 = 1, respectively, in (46). As is convention, we will denote the
variables corresponding to uk, vk, and ε in chart Ki (i = 1,2,3) by uk,i, vk,i, and εi, respectively.

In a nutshell, our strategy will be to retrace the analysis in [29] in each of these charts;
crucially, we will need to control the higher-order modes in (32a), i.e. the variables {uk,vk}
for k= 2, . . . ,k0, in the process. To be precise, we will verify that these additional variables will

14
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either remain uniformly bounded (in ε and k) or decay in the transition through the coordinate
charts K1, K2, and K3.

A significant challenge to our proposed strategy stems from the fact that, without taking into
consideration the length of the spatial domain a, one cannot obtain non-trivial dynamics on the
so-called blow-up locus that is given by {r̄= 0}. To overcome that challenge, we could include
a as an auxiliary variable in the quasi-homogeneous blow-up transformation in (46) by writing
a= r̄ηā, which is the approach taken in [14]. That approach, however, has the disadvantage
that the resulting vector fields are not even continuous for a= 0, as the exponent η is negative.

A key novelty here, in comparison to [14], is that we adopt an alternative approach by
defining a new constant A via

a= Aεp, (47)

with p ∈ R to be determined, which allows us to obtain non-trivial dynamics for r̄= 0 without
the conceptual difficulties encountered in [14]. Regardless of the approach used, it appears that
some rescaling of the domain in (6a) is necessary to perform a successful geometric desingu-
larisation, which is an intrinsic consequence of the Galerkin system in (32a) originating from
the discretisation of a system of PDEs. Substitution of (47) into (32a) yields

u ′
1 =−v1 + 2−1/2u21 + 2−1/2

k0∑
j=2

u2j +Hu
1, (48a)

v ′1 =−21/2ε, (48b)

u ′
k =

1
4A2

bkε
−2puk− vk+ 21/2u1uk+

k0∑
i,j=2

ηki,jui uj+Hu
k , (48c)

v ′k =
1

4A2
bkε

−2p+1vk+ εHv
k, (48d)

ε ′ = 0. (48e)

Remark 5.1. The ε-dependent rescaling of the domain for (6a) through (47) changes the fast-
slow structure of the original system in (32a); in particular, the origin is now a fully degenerate
steady state of (48a). While singular objects such as steady states or manifolds for (48a) in
blow-up space no longer correspond directly to singular objects from the layer and reduced
problems for (32a), the two systems are equivalent for non-zero ε. Hence, our findings will
equally apply to (32a) in the original coordinates, i.e. after ‘blow-down’.

A rescaling argument shows that the weights in (46), as well as the power p in (47), must
satisfy the following relations:

β1 = 2α1, (49a)

αk = α1 for 2⩽ k⩽ k0, (49b)

γ−β1 = α1, (49c)

−2pγ ⩾ α1, (49d)

βj = 2α1 for 2⩽ j ⩽ k0, (49e)

γ− 2pγ ⩾ α1. (49f )
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We see from the first three equations above that the consecutive ratios αk : βk : γ must be
1 : 2 : 3, as in the finite-dimensional case, see e.g. [29]. The smallest integers and the resulting
power p that satisfy these relations are

αk = 1, βk = 2, γ = 3, and p=−1
6
. (50)

Remark 5.2. The choice p=− 1
6 is the unique one that leaves no factor of ri after desingular-

isation in the resulting equations for uk,i in chart Ki, with i = 1,2,3, where one also requires
equality in (49d), making use of the relation 3α1 = γ. Furthermore, note that the weights
in (50) are consistent with the scaling obtained from a ‘desingularisation’ of the system of
PDEs in (6a); see section 6 for details.

For future reference, we also state the changes of coordinates between charts K1, K2, and
K3, as follows.

Lemma 5.3. The change of coordinates κ12 between charts K1 and K2 is given by

κ12 : u1,2 = ε
−1/3
1 u1,1, v1,2 = ε

−2/3
1 , uk,2 = ε

−1/3
1 uk,1, vk,2 = ε

−2/3
1 vk,1, and r2 = ε

1/3
1 r1;

(51)

its inverse κ21 = κ−1
12 reads

κ21 : u1,1 = v−1/2
1,2 u1,2, r1 = v1/21,2 r2, uk,1 = v−1/2

1,2 uk,2, vk,1 = v−1
1,2vk,2, and ε1 = v−3/2

1,2 . (52)

Between charts K2 and K3, we have the following change of coordinates:

κ23 : r3 = u1,2r2, v1,3 = u−2
1,2v1,2, uk,3 = u−1

1,2uk,2, vk,3 = u−2
1,2vk,2, and ε3 = u−3

1,2 . (53)

Proof. Direct calculation.

5.1. Chart K1

The coordinate chart K1 is formally defined by v̄1 = 1. Expressed in the coordinates of that
chart, the blow-up transformation in (46) reads

u1 = r1u1,1, v1 = r21, uk = r1uk,1, vk = r21vk,1, and ε= r31ε1.

With the above transformation and after desingularisation of the resulting vector field by a
factor of r1, the system in (48a) becomes

u ′
1,1 = F1u1,1 − 1+ 2−1/2u21,1 + 2−1/2

k0∑
j=2

u2j,1 +Hu
1,1, (54a)

r ′1 =−F1r1, (54b)

u ′
k,1 = F1uk,1 +

bk
4A2

ε
1/3
1 uk,1 − vk,1 + 21/2u1,1uk,1 +

k0∑
i,j=2

ηki,jui,1uj,1 +Hu
k,1, (54c)

v ′k,1 = 2F1vk,1 +
bk
4A2

r31ε
4/3
1 vk,1 + ε1H

v
k,1, (54d)

ε ′1 = 3F1ε1, (54e)

16



Nonlinearity 37 (2024) 115017 M Engel et al

where

F1 = F1 (ε1) = 2−1/2ε1,

as well as

Hu
1,1 =O

(
r1ε1,r

2
1,r

2
1v

2
j,1,r1u1,1,r1uj,1vj,1,r1u1,1u

2
j,1,r1u1,1u

2
j,1,r1uj,1ui,1ul,1

)
,

Hu
k,1 =O

(
r21vk,1,r

2
1vi,1vj,1,r1u1,1vk,1,

r1uk,1,r1ui,1vj,1,r1u
2
1,1uk,1,r1u1,1ui,1uj,1,r1uj,1ui,1ul,1

)
, and

Hv
k,1 =O

(
r41vk,1,r

4
1vi,1vj,1

)
for 2⩽ i, j, l⩽ k0 and 2⩽ k⩽ k0. Due to the presence of fractional powers of ε1 in
equations (54c) and (54d) for uk,1 and vk,1, respectively, the corresponding flow will not even

be C1 in ε1. Hence, we rewrite (54a) in terms of ε1/31 , which gives

u ′
1,1 = F1u1,1 − 1+ 2−1/2u21,1 + 2−1/2

k0∑
j=2

u2j,1 +Hu
1,1, (55a)

r ′1 =−F1r1, (55b)

u ′
k,1 = F1uk,1 +

bk
4A2

(
ε
1/3
1

)
uk,1 − vk,1 + 2−1/2u1,1uk,1 +

k0∑
i,j=2

ηki,jui,1uj,1 +Hu
k,1, (55c)

v ′k,1 = 2F1vk,1 +
bk
4A2

r31
(
ε
1/3
1

)4
vk,1 +

(
ε
1/3
1

)3
Hv
k,1, (55d)(

ε
1/3
1

) ′
= F1

(
ε
1/3
1

)
. (55e)

Clearly, the flow of equation (55a) will be smooth with respect to ε1/31 ; in the following, we
will hence refer to (55a) when a higher degree of smoothness is required.

Equation (55a) admits the two principal steady states

pk0a :=
(
−21/4,0,0,0,0

)
and pk0r :=

(
21/4,0,0,0,0

)
, (56)

where 0 denotes the zero vector in Rk0−1.

Lemma 5.4. The point pk0a is a partially hyperbolic steady state of equation (55a), with the
following eigenvalues and eigenvectors in the corresponding linearisation:

• the simple eigenvalue −23/4 with eigenvector (1,0, . . . ,0), corresponding to u1,1;
• the eigenvalue −23/4 with multiplicity k0 − 1 and eigenvectors (0, . . . ,1, . . . ,0), where non-
zero entries appear at the (k+ 2)th position, corresponding to uk,1 (2⩽ k⩽ k0); and

• the eigenvalue 0 with multiplicity k0 + 1, corresponding to r1, vk,1 (2⩽ k⩽ k0), and ε
1/3
1 .

Proof. Direct calculation.

To describe the transition through chart K1, i.e. to approximate the corresponding transition
map, we define the following sections for the flow of (54a):

Σin
1,k0 := {(u1,1,r1,uk,1,vk,1,ε1) : r1 = ρ} and

Σout
1,k0 := {(u1,1,r1,uk,1,vk,1,ε1) : ε1 = δ} ,

(57)
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for sufficiently small δ > 0. Next, we need to determine the transition time between Σin
1,k0 and

Σout
1,k0 , which will allow us to derive estimates for the corresponding orbits as they pass through

chart K1.

Lemma 5.5. The transition time between the sections Σin
1,k0 and Σ

out
1,k0 under the flow of (54a)

is given by

T1 =

√
2
3

(
1

ε1 (0)
− 1
δ

)
. (58)

Proof. The explicit solution of equation (54e) for ε1 reads

ε1 (t) =
2ε1 (0)

2− 3
√
2ε1 (0) t

, (59)

where ε1(0) denotes an appropriately chosen initial value for ε1 in Σin
1,k0 . Solving the equation

ε1(T1) = δ for T1 results in (58), as stated. Note that the denominator in (59) remains strictly
positive for all t ∈ [0,T1].

Remark 5.6. We refer to the time variable by t throughout for simplicity of notation, even
though we consider different systems in the three coordinate charts Kj, with j = 1,2,3, as well
as multiple parametrisations of the same system in some cases.

To give a more complete description of the geometry and, in particular, of the steady state
structure, we proceed as follows. Setting r1 = 0= ε1 in (54a), we find the singular system

u ′
1,1 =−1+ 2−1/2u21,1 + 2−1/2

k0∑
j=2

u2j,1, (60a)

r ′1 = 0, (60b)

u ′
k,1 =−vk,1 + 21/2u1,1uk,1 +

k0∑
i,j=2

ui,1uj,1, (60c)

v ′k,1 = 0, (60d)

ε ′1 = 0, (60e)

fromwhichwe see that the hyperplanes {r1 = 0} and {ε1 = 0} are invariant, as is their intersec-
tion. An application of the implicit function theorem shows that lines of steady states emanate
from pk0a and pk0r , respectively, for u1,1 close to ∓21/4 and uk,1 and vk,1 small, with 2⩽ k⩽ k0.
Locally, around pk0a , these steady states will inherit the stability of pk0a , which we will make
use of in the estimates in the following subsection. For k0 = 2, the geometry is exemplified in
figures 2(a) and (b), in which case p2a and p

2
r are connected by curves of steady states which

can be calculated explicitly from (60a); see figure 2(a). The linearisation around those states
has one zero eigenvalue and two non-trivial eigenvalues ℓ1 and ℓ2 which depend on the u1,1-
coordinate only; these eigenvalues are plotted in figure 2(b).

The geometry for general k0 will be similar, in that pk0a and pk0r will not be isolated, with
steady states lying in the plane {r1 = 0= ε1} that are neutral in the vk,1-directions and of
varying stability in u1,1 and uk,1, for 2⩽ k⩽ k0. States that are close to the point pk0a will be
stable in the latter directions, while those close to pk0r will be unstable in the same directions; in
between, there will be steady states of saddle type. These statements are a direct consequence
of the implicit function theorem, applied to the vector field in (60a). It is unclear whether a
curve of steady states that connects pk0a and pk0r will exist for general k0, as is the case for k0 = 2.
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Figure 2. Steady state structure of (60a) for k0 = 2. (a) The principal steady states p2a and
p2r are connected by a pair of symmetric curves of steady states that are parametrised by
u1,1. (b) The two non-trivial eigenvalues ℓ1 and ℓ2 of the linearisation about these steady
states are plotted against u1,1.

Furthermore, lines of equilibria are found emanating from each steady state in {r1 = 0=
ε1}, as can again be seen from the implicit function theorem. These lines locally inherit the
stability of the corresponding steady states they are based on.

Remark 5.7. Typically, steady states in the subspace that is equivalent to {r1 = 0= ε1} after
blow-up can be viewed as intersections of critical manifolds with the blow-up locus {r̄=
0} [29]. However, that is not the case here, as the rescaling of the spatial domain by ε in (47)
alters the fast-slow structure of the original equation (32a). If the parameter a is blown up as
in [14] instead, the correspondence with the flow pre-blow-up would be retained; however, the
resulting dynamic boundary value problem poses different technical challenges, as detailed
there.

The existence of non-hyperbolic steady states near pk0a that are attracting in the directions
of u1,1 and uk,1 for k= 2, . . . ,k0 implies the following result.

Lemma 5.8. For sufficiently small ρ, δ, Cin
u1,1 , C

in
uk,1 , and C

in
vk,1 , there exists an attracting, (k0 +

2)-dimensional centre manifold Mk0,1 at p
k0
a in (55a). The manifold Mk0,1 is given as a graph

over
(
u1,1,r1,vk,1,ε

1/3
1

)
, where 2⩽ k⩽ k0. In particular, for initial conditions close to pk0a ,

solutions of (55a) satisfy u1,1(t)< 0 for t ∈ [0,T1].

Proof. The statements follow from centre manifold theory and lemma 5.4.

The centre manifold argument in lemma 5.8 implies that if u1,1 is close to −21/4 initially,
then it will remain close throughout the transition through chart K1; in particular, u1,1 will
remain negative. To obtain corresponding estimates for the remaining variables uk,1 and vk,1,
with k= 2, . . . ,k0, we combine the classical variation of constants formula with a fixed point
argument.

Lemma 5.9. For 2⩽ k⩽ k0 and uk(0) and vk(0) satisfying (35), solutions of equation (54a)
satisfy the estimates

|uk,1 (t)|⩽
1
ρ
|uk (0) |+

8a2ρ
|bk|

[
σu+σvε1 (0)

2/3
ρ2δ2/3

(
1+

8a2

|bk|

)]
(61)
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and

|vk,1 (t)|⩽
δ2/3

ε1 (0)
2/3
ρ2

∣∣vk (0) ∣∣+ ε1 (0)
2/3
δ2/3

8a2ρ2

|bk|
σv

⩽ ε1 (0)
2/3
ρ2δ2/3

(
Ck,v0 +

8a2

|bk|
σv

)
(62)

for all t ∈ [0,T1] and some κ⩽ σu,σv < 1, where T1 is the transition time determined in (58)
and κ> 0 is as in (34).

Proof. We first derive the estimates for vk,1. Application of the variation of constants formula
to (54d) yields

vk,1 (t) = exp

(ˆ t

0
Vk,1 (s) ds

)
vk,1 (0)+

ˆ t

0
exp

(ˆ t

s
Vk,1 (τ)dτ

)
ε1 (s)H

v
k,1ds, (63)

where Vk,1(s) = 21/2ε1(s)+
bk
4A2 r31(s)ε

4/3
1 (s). Equation (54b) can be solved explicitly for r1 to

give

r1 (t) = 2−1/3ρ
(
2− 3

√
2ε1 (0) t

)1/3
, (64)

where ε1(0) denotes the initial value for ε1 and r1(0) = ρ. Note that, due to bk < 0, the second
term in Vk,1(s) is negative for all s ∈ [0,T1]. Combination of the above expression with the
explicit solutions for ε1(t) and r1(t) in (59) and (64), respectively, then implies

|vk,1 (t) |⩽
2
3
exp

(ˆ t

0

ε1 (0)
ϕ1 (s)

ds

)
|vk,1 (0) |

+

(√
2
3

) 1
3

ρ2
e−αϕ1(t)

2/3

ϕ1 (t)
2/3

ˆ t

0
ε1 (0)ϕ1 (s)

1/3 eαϕ1(s)
2/3

|H̃v
k,1 (s) |ds, (65)

where ϕ1(s) =
√
2/3− ε1(0)s, α= (3/

√
2)2/3bkρ2/(4a2

√
2), and Hv

k,1(t) = r1(t)2H̃v
k,1(t).

Evaluating the integrals in (65), we obtain

|vk,1 (t)|⩽
δ2/3

ε1 (0)
2/3

(
|vk,1 (0) |+

8a2

|bk|
sup
[0,T1]

|H̃v
k,1 (t) |

)
for all t ∈ [0,T1] . (66)

Recall that the term H̃v
k,1 is at least quadratic in vk,1, with k= 2, . . . ,k0. To estimate uk,1, we

first rewrite (54c) in the form

u ′
k,1 =

(
F1 +

bk
4A2

ε
1/3
1 + 21/2u1,1

)
uk,1 − vk,1 +Mk (u2,1, . . . ,uk0,1)+Hu

k,1

for 2⩽ k⩽ k0, where

Mk (u2,1, . . . ,uk0,1) :=
k0∑

i,j=2

ηki,jui,1uj,1.
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Application of the variation of constants formula yields

uk,1 (t) = exp

(ˆ t

0
Uk,1 (s)ds

)
uk,1 (0)−

ˆ t

0
exp

(ˆ t

s
Uk,1 (τ)dτ

)
vk,1 (s)ds

+

ˆ t

0
exp

(ˆ t

s
Uk,1 (τ)dτ

)(
M(u2,1 (s) , . . . ,uk0,1 (s))+Hu

k,1

)
ds, (67)

where Uk,1(s) := 2−1/2ε1(s)+
bk
4A2 ε

1/3
1 (s)+ 21/2u1,1(s).

Due to lemma 5.8, we have u1,1(s)< 0 for s ∈ [0,T1]; hence, in the following estim-

ates, we replace Uk,1(s) with Ũk,1(s) := 2−1/2ε1(s)+
bk
4A2 ε

1/3
1 (s), as exp(

´ t
s Uk,1(τ)dτ)⩽

exp(
´ t
s Ũk,1(τ)dτ) for all 0⩽ s< t⩽ T1. Direct integration gives

0⩽ I1 (t) = exp

(ˆ t

0
Ũk,1 (s)ds

)
=

1[
1−

(
3/
√
2
)
ε1 (0) t

]1/3
× exp

(
bk

4A2
√
2

[(
1

ε1 (0)

) 2
3

−
(

1
ε1 (0)

− 3√
2
t

) 2
3

])
⩽ 1,

(68)

since I1(t) is a non-increasing function for δ ⩽ π32−5/4/(ρ3/2ε1(0)1/2) = π32−5/4/ε1/2, and

I1 (T1) =
δ1/3

ε1 (0)
1/3

exp

(
bk

4A2
√
2

[(
1

ε1 (0)

) 2
3

−
(
1
δ

) 2
3

])

⩽ exp

(
bk

8A2
√
2

(
1− 1

α

)(
1

ε1 (0)

) 2
3

)

for δ ⩾ αε1(0)> 0 with α⩾ 1. Next, we have that

0⩽ I2 (t) =
ˆ t

0
exp

(ˆ t

s
Ũk,1 (τ)dτ

)
ds= ε1 (t)

1
3
4A2

|bk|

[(
1

ε1 (0)
− 3√

2
t

)2/3

−
(

1
ε1 (0)

) 2
3

exp

(
1√
2

bk
4A2

[(
1

ε1 (0)

) 2
3

−
(

1
ε1 (0)

− 3√
2
t

) 2
3

])]

+ ε1 (t)
1
3
16A4

√
2

|bk|2

[
1− exp

(
1√
2

bk
4A2

[(
1

ε1 (0)

) 2
3

−
(

1
ε1 (0)

− 3√
2
t

) 2
3

])]

⩽ 8ρa2

|bk|
,
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where we have used A2 = ε1/3a2 = ρε1(0)1/3a2 and

I2 (T1) = δ−1/3 4A
2

|bk|

[
1−

(
δ

ε1 (0)

)2/3

exp

(
1√
2

bk
4A2

[(
1

ε1 (0)

)2/3

− 1
δ2/3

])]

+ δ1/3
16A4

√
2

|bk|2

[
1− exp

(
1√
2

bk
4A2

[(
1

ε1 (0)

) 2
3

− 1
δ2/3

])]

⩽ 1
δ1/3

4A2

|bk|

[
1+

4A2
√
2

|bk|

]
.

Here, we again have 0< αε1(0)⩽ δ < 1, with α⩾ 1.
To complete the proof, we shall use a fixed point argument and define the set

B1 =

{
(ũ2,1, . . . , ũk0,1, ṽ2,1, . . . , ṽk0,1) : ũk,1, ṽk,1 ∈ C [0,T] ,2⩽ k⩽ k0,

with sup
[0,T1]

|ũk,1 (t) |⩽ Ck,u, sup
[0,T1]

|ṽk,1 (t) |⩽ Ck,v,

k0∑
k=2

C2
k,u ⩽ σ̃u, and

k0∑
k=2

C2
k,v ⩽ σ̃vε1 (0)

4/3

}
,

where σ̃u, σ̃v ⩽ 1.
Considering Mk(ũ2,1, . . . , ũk0,1) and

Hl
k,1 = Hl

k,1 (ũ2,1, . . . , ũk0,1, ṽ2,1, . . . , ṽk0,1) ,

with l= u,v, in (63) and (67) for (ũ2,1, . . . , ũk0,1, ṽk,1, . . . , ṽk0,1) ∈ B1, we obtain a mapN1 given
byN1(ũ2,1, . . . , ũk0,1, ṽ2,1, . . . , ṽk0,1) = (u2,1, . . . ,uk0,1,v2,1, . . . ,vk0,1). Solutions of (63) and (67)
correspond to the fixed points of N1.

We shall show that N1 : B1 →B1. Our assumptions on the initial conditions, together
with (66), yield

|vk,1 (t)|⩽ δ2/3ε1 (0)
2/3
(
ρ2Ck,v0 +

8a2ρ2

|bk|
σv

)
for all t ∈ [0,T1] , (69)

where we have used |H̃v
k,1(t)|⩽ C1ρ

2∑k0
k=2 |ṽk,1|2 ⩽ ρ2C2ε1(0)4/3σ̃v ⩽ ρ2ε1(0)4/3σv. Then,

|uk,1 (t) |⩽ |uk,1 (0) |+
8a2ρ
|bk|

(
C3ε1 (0)

2/3
+σu

)
for all t ∈ [0,T1] ,

where |Mk+Hu
k,1|⩽ C4

∑k0
k=2 |ũk|2 ⩽ C5σ̃u = σu.

Thus, for 0< ρ < 1 and 0< σu,σv < 1, we obtain that N1 : B1 →B1, which implies the
estimates in (61) and (62).

Remark 5.10. Note that if Hv = 0, then it is sufficient to consider |vk(0)|⩽ Ck,v0ε
1/2 and

|uk(0)|⩽ Ck,u0 . For more general higher-order terms of the form

Hv
k =O (ui uj,vi vj,v1vk,vi vj) ,
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Figure 3. The dynamics in K1 is organised around the attracting centre manifoldMk0,1,
which is anchored in a curve of steady states in the subspace {r1 = 0= ε1}, one of which
is pk0a . The transition mapΠ1 is defined on the subset R1 ⊂ Σin

1,k0 around the intersection
Σin

1,k0 ∩Mk0,1; slices of R1 with ε1 constant, denoted by I(ε1), will be mapped to slices

with ε3 constant in chart K3. SinceMk0,1 is a graph over
(
u1,1,r1,vk,1,ε

1/3
1

)
, see lemma

5.8, it is illustrated as having ‘thickness’.

with i, j = 2, . . . ,k0, we would have to assume that |uk(0)|⩽ Ck,u0ε
2/3. Then, in the definition

of B1, we would consider
∑k0

k=2C
2
k,u ⩽ σ̃uε

4/3, which would imply

|uk,1 (t) |⩽ ε1 (0)
2/3
ρ2Ck,u0 + ε1 (0)

2/3 8a2ρ
|bk|

(σu+σv) .

Given the above estimates, the transition map Π1 in chart K1 will be defined on the set
R1 ⊂ Σin

1,k0 , which is given by

R1 :=
{
(u1,1,r1,uk,1,vk,1,ε1) : |u1,1 + 21/4|⩽ Cin

u1,1 ,r1 = ρ,

|uk,1|⩽ Cin
uk,1 , |vk,1|⩽ Cin

vk,1ε
4/3
1 for k= 2, . . . ,k0, and ε1 ∈ [0, δ]

}
; (70)

see figure 3. The set R1 is precisely the set Rin ⊂∆in, transformed into the coordinates of chart
K1. For ε1 ∈ [0, δ] fixed, we also define the slices I(ε1)⊂ R1 as

I(ε1) := {(u1,1,r1,uk,1,vk,1,ε1) ∈ R1 : ε1 ∈ [0, δ] fixed} . (71)

These slices will be useful when combining the transition through chart K1 with those through
charts K2 and K3, as I(ε1) will be mapped to sets with ε3 constant in an appropriately defined
section Σout

3,k0 .
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We summarise our findings on the transition through chart K1, and on the corresponding
map Π1.

Proposition 5.11. The transition map Π1 : R1 → Σout
1,k0 is well-defined. For

(u1,1,ρ,uk,1,vk,1,ε1) ∈ R1, with k= 2, . . . ,k0,

denote

Π1 (u1,1,ρ,uk,1,vk,1,ε1) =
(
uout1,1,r

out
1 ,uoutk,1,v

out
k,1, δ

)
. (72)

Then, the following estimates hold:

|uout1,1 + 21/4|⩽ Cout
u1,1 , (73a)

rout1 ∈ [0,ρ] , (73b)

|uoutk,1|⩽ Cout
uk,1 , and (73c)

|voutk,1|⩽ Cout
vk,1δ

2/3, (73d)

where Cout
uk,1 , C

out
uk,1 , and C

out
vk,1 are appropriately chosen constants. Furthermore, the restriction

Π1|I(ε1) is a contraction, with rate bounded by Cexp(cT1), where C> 0 and −23/4 < c< 0.

Proof. The estimates in (73c) and (73d) follow directly from the definition of R1 in (70)
and lemma 5.9, while (73b) is immediate from the observation that r1(t) is decreasing, by (55b).
Finally, (73a) and the stated contraction property are due to lemma 5.8 and the existence of
the attracting centre manifold Mk0,1.

5.2. Chart K2

As will become apparent, the dynamics of (48a) in chart K2 can be seen as a regular per-
turbation of the planar subsystem for the first two modes {u1,v1}, after transformation to K2.
In particular, for r2 = 0, that subsystem reduces to the well-studied Riccati equation [37]. As
the requisite analysis is similar to that in the corresponding rescaling chart for the singularly
perturbed planar fold [29], we merely outline it here.

In chart K2, the blow-up transformation in (46) reads

u1 = r2u1,2, v1 = r22v1,2, uk = r2uk,2, vk = r22vk,2, and ε= r32;

in particular, the variables uk and vk (1⩽ k⩽ k0) are rescaled with powers of r2 = ε1/3, which
justifies the terminology.

Substitution of the above transformation into (48a) and desingularisation with a factor of
r2 gives

u ′
1,2 =−v1,2 + 2−1/2u21,2 + 2−1/2

k0∑
j=2

u2j,2 +Hu
1,2, (74a)

v ′1,2 =−21/2, (74b)

u ′
k,2 =

bk
4A2

uk,2 − vk,2 + 21/2u1,2uk,2 +
k0∑

i,j=2

ηki,juj,2ui,2 +Hu
k,2, (74c)
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v ′k,2 =
bk
4A2

r32vk,2 +Hv
k,2, (74d)

r ′2 = 0 (74e)

for 2⩽ k⩽ k0, where

Hu
1,2 =O (r2) ,

Hu
k,2 =O

(
r2u1,2vk,2,r2uk,2v1,2,r2ui,2uj,2,r2u

2
1,2uk,1,r2u1,2ui,2uj,2,r2ui,2uj,2ul,2

)
, and

Hv
k,2 =O

(
r42v1,2vk,2,r

4
2vi,2vj,2

)
,

with 2⩽ i, j, l⩽ k0.
The plane {uk,2 = 0= vk,2 : 2⩽ k⩽ k0}∩ {r2 = 0} is invariant under the flow of

equation (74a); on that plane, (74a) reduces to

u ′
1,2 =−v1,2 + 2−1/2u21,2, (75a)

v ′1,2 =−21/2, (75b)

with u1,2,v1,2 ∈ R, which is a Riccati equation that corresponds to the one found in [29, pro-
position 2.3], up to a rescaling. Correspondingly, we have the following result.

Proposition 5.12. The Riccati equation in (75a) has the following properties:

(i) Every orbit has a horizontal asymptote v1,2 = v∞1,2, where v
∞
1,2 depends on the orbit, such

that u1,2 →∞ as v1,2 approaches v∞1,2 from above.
(ii) There exists a unique orbit γ2 which can be parametrised as (u1,2,s(u1,2)), with u1,2 ∈ R,

which is asymptotic to the left branch of the parabola {−v1,2 + 2−1/2u21,2 = 0} for u1,2 →
−∞. The orbit γ2 has a horizontal asymptote v1,2 =−Ω0 < 0 such that u1,2 →∞ as v1,2
approaches −Ω0 from above, where Ω0 is a positive constant that is defined as in [29].

(iii) The function s(u1,2) has the asymptotic expansions

s(u1,2) = 2−1/2u21,2 +
2−1/2

u1,2
+O

(
1
u41,2

)
as u1,2 →−∞ (76)

and

s(u1,2) =−Ω0 +
21/2

u1,2
+O

(
1

u31,2

)
as u1,2 →∞. (77)

(iv) All orbits to the right of γ2 are backward asymptotic to the right branch of the parabola
{−v1,2 + 2−1/2u21,2 = 0}.

(v) All orbits to the left of γ2 have a horizontal asymptote v1,2 = v−∞
1,2 > v∞1,2, where v

−∞
1,2

depends on the orbit, such that u1,2 →−∞ as v1,2 approaches v
−∞
1,2 from above.

If we transform the orbit γ2 to chart K1, we find that

γ1 := κ−1
12 (γ2) =

{(
u1,2s(u1,2)

−1/2
,0,0,0,s(u1,2)

−3/2
)}

, (78)

where 0 again denotes the zero vector in Rk0−1.
In fact, expanding (78) in a power series as u1,2 →−∞, we obtain

γ1 =

{(
−21/4 +

2−3/4

u31,2
+O

(
1

u61,2

)
,0,0,0,−2−3/4

u31,2
+O

(
1

u61,2

))}
, (79)
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which implies that γ1 approaches the steady state pk0a in chart K1, tangent to the vector
(−1,0,0,0,1).

Similarly, for u1,2 > 0, we can transform γ2 to the coordinates in chart K3 via

γ3 := κ23 (γ2) =
{(

0,u−2
1,2s(u1,2) ,0,0,u

−3
1,2

)}
=

{(
0,− Ω0

u21,2
+

21/2

u31,2
+O

(
1

u51,2

)
,0,0,

1

u31,2

)}
=
{(

0,−Ω0ε
2/3
3 + 21/2ε3 +O

(
ε
5/3
3

))
,0,0,ε3

}
,

(80)

which shows that, as u1,2 →∞ or, equivalently, as ε3 → 0, γ3 approaches the origin in chart
K3 tangent to the vector (0,1,0,0,0).

To determine the transition map for chart K2, we first transform the exit section Σout
1,k0 from

chart K1 to the coordinates of K2, applying the change of coordinates κ12 in (51), which will
yield an entry section Σin

2,k0 for the flow in K2:

Σin
2,k0 :=

{
(u1,2,v1,2,uk,2,vk,2,r2) : v1,2 = δ−2/3

}
.

In addition, the orbit γ2 intersects that section in a single point q0, so that

γ2 ∩Σin
2,k0 = {q0} . (81)

The coordinates of q0 satisfy uk,2 = 0= vk,2 and r2 = 0. We also define the exit section

Σout
2,k0 :=

{
(u1,2,v1,2,uk,2,vk,2,r2) : u1,2 = δ−1/3

}
. (82)

The resulting geometry is illustrated in figure 4. To define the transition map Π2 in K2, we
consider initial conditions in a small neighbourhood R2 around the point q0.

Lemma 5.13. The invariant set {uk,2 = 0= vk,2 : 2⩽ k⩽ k0} is linearly stable under the flow
of (74a) if

83a6

π6
ε0 < δ <

ε0
ρ3
. (83)

Proof. Differentiation of (74c) with respect to uk,2 shows that for linear stability, we require

bk
4A2

+ 21/2u1,2 (t)< 0 or, more strongly, u1,2 (t)<
π2

8A2
(84)

for 2⩽ k⩽ k0, as bk is negative and decreasing with k; recall (9). Given that u1,2(T2) = δ−1/3

in Σout
2,k0 , where T2 denotes the (finite) transition time of the orbit γ2 between Σin

2,k0 and Σout
2,k0 ,

it is sufficient to have

δ−1/3 <
π2

8a2ε1/3
, (85)

where we have made use of A= aε1/6. We can simplify the last inequality to

δ >
83a6

π6
ε; (86)

moreover, since ε ∈ [0,ε0), it is sufficient to assume

δ >
83a6

π6
ε0, (87)

26



Nonlinearity 37 (2024) 115017 M Engel et al

Figure 4. The dynamics in chart K2 on the invariant plane {uk,2 = 0= vk,2}∩ {r2 =
0}. For suitably chosen initial conditions and sufficiently small r2 = ε1/3, the general
dynamics of (74a) is a regular perturbation of the dynamics on that plane.

which places a lower bound on δ. Finally, the upper bound in the statement of the lemma
follows from the definition of δ in chart K1.

Remark 5.14. The linear stability condition in (83) can be satisfied by restricting ε0 on the
left-hand side of the condition so that δ can be chosen sufficiently small for the analysis in
charts K1 and K3 to hold, and by then choosing ρ small enough for the upper bound on the
right-hand side to be satisfied.

Proposition 5.15. The transition map Π2 : Σ
in
2,k0 → Σout

2,k0 is well-defined in a neighbourhood
of the point q0, see figure 4, which maps diffeomorphically to a neighbourhood of Π2(q0),
where

Π2 (q0) =
(
δ−1/3,−Ω0 + 21/2δ1/3 +O (δ) ,0,0,0

)
.

Moreover, |uk,2| and |vk,2| are non-increasing under Π2.

Proof. Given lemma 5.13, the system in (74a) can be considered as a regular perturbation of
the Riccati equation (75a) in a sufficiently small neighbourhood of q0. Then, the assertions of
the proposition follow from lemma 5.12 and regular perturbation theory [37, 43].

We can also derive estimates on the higher-order modes {uk,2,vk,2} during the transition
from Σin

2,k0 to Σout
2,k0 . Consider a point
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q1 =
(
u1,2 (0) , δ

−2/3,uk,2 (0) ,vk,2 (0) ,r2 (0)
)
,

with 2⩽ k⩽ k0, close to q0. Since orbits of the full system, equation (74a), are regular per-
turbations of the orbit γ2, the transition time T2(q1) for the orbit initiated in q1 will be equal,
to leading order, to T2, the transition time for γ2,

T2 (q1) = T2 +O (uk,2 (0) ,vk,2 (0) ,r2 (0)) . (88)

The lower bound on δ in (83) then yields the following estimates on uk,2 and vk,2.

Lemma 5.16. For any t ∈ [0,T2(q1)], the following estimates hold:

|uk,2 (t) |⩽ exp

(
bk

16a2r2 (0)
t

)
|uk,2 (0) |

+
16a2r2 (0)

|bk|

[
|vk,2 (0) |+

(
1+

4a2r2 (0)
2

|bk|

)
σ

]
and (89)

|vk,2 (t) |⩽ exp

(
bk
4a2

r22 (0) t

)
|vk,2 (0) |+

4a2r2 (0)
2
σ

|bk|
, (90)

for some constant C> 0 and 0< κ⩽ σ < 1, where κ is as in (34).

Proof. For (ũ1,2, . . . , ũk0,2, ṽ1,2, . . . ṽk0,2) in

B2 =

{
(ũ1,2, . . . , ũk0,2, ṽ1,2, . . . , ṽk0,2) : ũk,2, ṽk,2 ∈ C [0,T2 (q1)] , with

sup
[0,T2(q1)]

|ũk,2 (t) |⩽ Ck, sup
[0,T2(q1)]

|ṽk,2 (t) |⩽ Ck for 1⩽ k⩽ k0, and
k0∑
k=1

C2
k ⩽ σ̃

}
,

consider Mk(ũ2,2, . . . , ũk0,2) =
∑k0

i,j=2 η
k
i,jũj,2ũ1,2 and the higher-order terms Hu

k,2 =
Hu
k,2(ũ1,2, . . . , ũk0,2, ṽ1,2, . . . ṽk0,2) and Hv

k,2 = Hv
k,2(ũ1,2, . . . , ũk0,2, ṽ1,2, . . . ṽk0,2). Thus, we

define a map N2 via (ũ1,2, . . . , ũk0,2, ṽ1,2, . . . ṽk0,2) 7→ (u1,2, . . . ,uk0,2,v1,2, . . .vk0,2), where
(u1,2, . . . ,uk0,2,v1,2, . . .vk0,2) are solutions of (74a). To obtain the estimates stated in the lemma,
we shall show that N2 : B2 →B2. As r2(t) is constant in chart K2, from (74d) we conclude

|vk,2 (t) |⩽ exp

(
bk
4A2

r32 (0) t

)
|vk,2 (0) |+ exp

(
bk
4A2

r32 (0) t

)ˆ t

0
exp

(
− bk
4A2

r32 (0)s

)
|Hv

k,2|ds

⩽ exp

(
bk
4A2

r32 (0) t

)
|vk,2 (0) |+

4A2r2 (0)
|bk|

σ

for all t ∈ [0,T2(q1)], where |Hv
k,2|⩽ Cr2(0)4σ̃ ⩽ r2(0)4σ. Applying the variation of constants

formula to (74c), we find

|uk,2 (t) |⩽ exp


(
2−

√
2
)
bk

8A2
t

 |uk,2 (0) |+
8A2(

2−
√
2
)
|bk|

(
sup

t∈[0,T2(q1)]
|vk,2 (t) |+Cσ̃

)

⩽ exp

(
bk

16A2
t

)
|uk,2 (0) | +

16A2

|bk|

[
|vk,2 (0) |+

(
1+

4a2r2 (0)
2

|bk|

)
σ

]
for all t ∈ [0,T2(q1)]. Thus, for appropriately chosen 0< r2(0)< 1 and 0< σ < 1, we obtain
that N2 : B2 →B2, as claimed, which implies (89) and (90).

28



Nonlinearity 37 (2024) 115017 M Engel et al

Remark 5.17. Since A= aε1/6 = a(r2(0))
1/2, the first term in (89) is equal to exp

(
−

c
r2(0)

)
|uk,2| at t= T2(q1), with c> 0 a constant, while the second term has the form of an

O (r2(0))-correction.
The estimate for vk,2(t) in (90) implies the bound exp

(
−cr22(0)

)
|vk,2(0)| ≈ |vk,2(0)| at t=

T2(q1) for small r2(0), as considered here.
Taking more general higher-order terms of the form Hv = Hv(u2,uv,v2) in (6a), we would

find Hv
k,2 to be of the order O(r2(0)2); then, the second term in (90) would read 4a2σ/|bk|,

which is uniformly bounded in r2(0) and k.

5.3. Chart K3

In chart K3, the blow-up transformation in (46) reads

u1 = r3, v1 = r23v1,3, uk = r3uk,3, vk = r23vk,3, and ε= r33ε3.

After desingularising by dividing out a factor of r3 from the resulting vector field, we obtain

r ′3 = F3r3, (91a)

v ′1,3 =−2F3v1,3 − 21/2ε3, (91b)

u ′
k,3 =

(
−F3 +

bk
4A2

ε
1/3
3 + 21/2

)
uk,3 − vk,3 +

k0∑
i,j=2

ηki,jui,3uj,3 +Hu
k,3, (91c)

v ′k,3 =

(
−2F3 +

bk
4A2

r33ε
4/3
3

)
vk,3 + ε3H

v
k,3, (91d)

ε ′3 =−3F3ε3, (91e)

where

F3 = F3 (r3,v1,3,uk,3,vk,3,ε3) =−v1,3 + 2−1/2 + 2−1/2
k0∑
j=2

u2j,3 +Hu
1,3,

with

Hu
1,3 =O

(
r3ε3,r

2
3v

2
1,3,r

2
3v

2
j,3,r3v1,3,r3uj,3vj,3,r3u

2
j,3,r3ui,3uj,3ul,3

)
,

Hu
k,3 =O

(
r23v1,3vk,3,r

2
3vi,3vj,3,r3vk,3,

r3uk,3v1,3,r3ui,3vj,3,r3uk,3,r3ui,3uj,3,r3ui,3uj,3ul,3) , and

Hv
k,3 =O

(
r43v1,3vk,3,r

4
3vi,3vj,3

)
for 2⩽ i, j, l⩽ k0.

As in K1, we can rewrite (91a) in the form

r ′3 = F3r3, (92a)

v ′1,3 =−2F3v1,3 − 21/2ε3, (92b)

u ′
k,3 =

(
−F3 +

bk
4A2

ε
1/3
3 + 21/2

)
uk,3 − vk,3 +

k0∑
i,j=2

ηki,jui,3uj,3 +Hu
k,3, (92c)
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v ′k,3 =

(
−2F3 +

bk
4A2

r33
(
ε
1/3
3

)4)
vk,3 + ε3H

v
k,3, (92d)(

ε
1/3
3

) ′
=−F3ε

1/3
3 (92e)

for 2⩽ k⩽ k0.
As mentioned already, the portion γ3 := κ23(γ2) of the orbit γ2 from chartK2 with u1,2 > 0,

transformed to K3, has the expansion

γ3 =
(
0,−Ω0ε

2/3
3 + 21/2ε3 +O

(
ε
5/3
3

)
,0,0,ε3

)
as ε3 → 0. Thus, we see that γ3 approaches the origin in chart K3. Hence, it follows that the
centre manifoldMk0,1 from chart K1 passes through a neighbourhood of the origin, which is a
hyperbolic steady state for (92a).

Let wk := (0,0, . . . ,1, . . . ,0), with 2⩽ k⩽ k0, denote the vector with k0 − 1 entries which
are all equal to 0 except for the (k− 1)th entry, which equals 1. With that notation, a direct
calculation shows the following result.

Lemma 5.18. The origin is a hyperbolic steady state of equation (92a), with the following
eigenvalues and eigenvectors in the corresponding linearisation:

• the simple eigenvalue
√
2
2 with eigenvector (1,0,0,0,0), corresponding to r3;

• the simple eigenvalue −
√
2 with eigenvector (0,1,0,0,0), corresponding to v1,3;

• the eigenvalue
√
2
2 with multiplicity k0 − 1 and eigenvectors (0,0,wk,0,0), corresponding to

uk,3 (2⩽ k⩽ k0);

• the eigenvalue −
√
2 with multiplicity k0 − 1 and eigenvectors

(
0,0,

√
2
3 wk,wk,0

)
, corres-

ponding to vk,3 (2⩽ k⩽ k0); and

• the simple eigenvalue −
√
2
2 with eigenvector (0,0,0,0,1), corresponding to ε1/33 .

Remark 5.19. Since

−
√
2
2

=−
√
2+

√
2
2
,

the eigenvalues of (92a) are in resonance. Potential second-order resonant terms are r3v1,3,
r3vk,3, and ui,3vj,3. While resonances are also observed in the singularly perturbed planar
fold [29], the resonant terms differ, which is due to the formulation of the governing equations
in chartK3 in terms of ε1/33 . Furthermore, the higher dimensionality of (92a) allows for a richer
resonance structure which may be explored in future work.

The entry section Σin
3,k0 in chart K3, which is obtained by transformation of the exit section

Σout
2,k0 from K2, is given by

Σin
3,k0 = {(r3,v1,3,uk,3,vk,3,µ3) : ε3 = δ} , (93)

where we consider the set of initial conditions

R3 = {(r3,v1,3,uk,3,vk,3,ε3) | r3 ∈ [0,ρ] ,v1,3 ∈ [−β,β] ,
|uk,3|⩽ Cuk,3 , |vk,3|⩽ Cvk,3 for 2⩽ k⩽ k0, and ε3 = δ

}
⊂ Σin

3,k0 . (94)
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Here, β,Cin
uk,3 , and C

in
vk,3 , for 2⩽ k⩽ k0, are appropriately defined small constants. We also

introduce the exit chart

Σout
3,k0 := {(r3,v1,3,uk,3,vk,3,ε3) : r3 = ρ} . (95)

Our aim is to describe the transition mapΠ3 : R3 → Σout
3,k0 . Therefore, since F3 is bounded away

from zero near the origin, we can divide the vector field in (92a) by F3, which results in

r ′3 = r3, (96a)

v ′1 =−2v1 − 21/2

(
ε
1/3
3

)3
F3

, (96b)

u ′
k =

(
−1+

bk
4A2

ε
1/3
3

F3
+

21/2

F3

)
uk−

1
F3
vk+

1
F3

k0∑
i,j=2

ηki,jui uj+
1
F3
Hu
k , (96c)

v ′k =

−2+
bk
4A2

r33

(
ε
1/3
3

)4
F3

vk+

(
ε
1/3
3

)3
F3

Hv
k, (96d)

(
ε
1/3
3

) ′
=−ε1/33 , (96e)

where the prime denotes differentiation with respect to the new, rescaled, time variable. Here,
we have suppressed the subscript 3 in (96a) for convenience of notation, and will do so for the
remainder of the section.

The above rescaling of time by F3 results in the eigenvalues of the linearisation about the
origin being rescaled by a factor of 2−1/2. Lemma 5.18 hence now implies the following:

Lemma 5.20. The origin is a hyperbolic steady state of equation (96a), with the following
eigenvalues in the corresponding linearisation:

• the simple eigenvalue 1, corresponding to r3;
• the simple eigenvalue −2, corresponding to v1;
• the eigenvalue 1 with multiplicity k0 − 1, corresponding to uk (2⩽ k⩽ k0);
• the eigenvalue −2 with multiplicity k0 − 1, corresponding to vk (2⩽ k⩽ k0); and
• the simple eigenvalue −1, corresponding to ε1/33 .

The associated eigenvectors are as given in lemma 5.18.

To obtain estimates for the transition map Π3, we follow a procedure that is analogous to
that in [29] for chart K3. We begin by separating out terms containing r3 in (96a). To that end,
we expand

1
F3 (v1,uk,r3)

= G3 (v1,uk)+ r3J(v1,uk,r3) , (97)

in a neighbourhood of the steady state at the origin, where

G3 (v1,uk) =
1

2−1/2 − v1 + 2−1/2
∑k0

j=2 u
2
j

(98)

and J is a smooth function of v1,uk,r3 in the same neighborhood. With the above notation, we
can rewrite equation (96a) as stated below.

31



Nonlinearity 37 (2024) 115017 M Engel et al

Figure 5. Dynamics in chart K3. As the orbit γ2 from chart K2, after transformation to
K2 via γ3 := κ23(γ2) (in red), passes through the origin q, the invariant manifold Mk0,3
contains q. The transition map Π3 is defined in a neighbourhood of the intersection
Mk0,3 ∩Σin

3,k0 .

Lemma 5.21. For r3 ⩾ 0 sufficiently small, (96a) can be written as

r ′3 = r3, (99a)

v ′1 =−2v1 − 21/2ε3G3 + ε3r3Jv1 , (99b)

u ′
k =

(
−1+

bk
4A2

ε
1/3
3 G3 + 21/2G3

)
uk−G3vk+G3

k0∑
i,j=2

ηki,jui uj+ r3Juk , (99c)

v ′k =

(
−2+

bk
4A2

(
ε
1/3
3

)4
r33G3

)
vk+ ε3r3Jvk , (99d)(

ε
1/3
3

) ′
=−ε1/33 , (99e)

where Jv1(r3,v1,uk,vk,ε
1/3
3 ), Juk(r3,v1,uk,vk,ε

1/3
3 ), and Jvk(r3,v1,uk,vk,ε

1/3
3 ) are smooth

functions.

Proof. Using (97) in (96a) and collecting r3-dependent terms, we obtain (99a). The functions
Jv1 , Juk , and Jvk are defined by summation and multiplication between the variables in chart K3

and the functionsHu
k ,H

v
k, and J, and are hence smooth in their arguments in the neighbourhood

of the origin we are considering.

We now have the following result for the transition map Π3, illustrated in figure 5.
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Proposition 5.22. The transitionmapΠ3 : R3 → Σout
3,k0 is well-defined. Let (r

in
3 ,v

in
1 ,u

in
k ,v

in
k , δ) ∈

R3, as defined in (94), where k= 2, . . . ,k0, and let T3 be the corresponding transition time
between Σin

3,k0 and Σ
out
3,k0 under the flow of (99a). Then, the map Π3 is given by

Π3
(
rin3 ,v

in
1 ,u

in
k ,v

in
k , δ
)
=

(
ρ,Πk0

3,v1 ,Π
k0
3,uk
,Πk0

3,vk
, δ1/3

rin3
ρ

)
,

where

∣∣Π3,v1

(
rin3 ,v

in
1 ,u

in
k ,v

in
k , δ
)∣∣⩽ ( rin3

ρ

)2 [
|vin1 |+Cout

v1,3

(
1+ rin3 logr

in
3

)]
, (100)∣∣Π3,uk

(
rin3 ,v

in
1 ,u

in
k ,v

in
k , δ
)∣∣⩽ Cout

uk,3 , and (101)∣∣Π3,vk

(
rin3 ,v

in
1 ,u

in
k ,v

in
k , δ
)∣∣⩽ Cout

vk,3 , (102)

for positive constants Cout
v1,3 , C

out
uk,3 , and C

out
vk,3 .

Proof. From (99a), we have that

r3 (t) = rin3 e
t and ε3 (t) = δe−3t, (103)

which gives the transition time

T3 = log
ρ

rin3
(104)

between Σin
3,k0 and Σout

3,k0 .

For
∑k0

k=2 |ũk(t)|2 ⩽ σ and
∑k0

k=2 |ṽk(t)|2 ⩽ σ, with 0< σ ⩽ 1, and |v1(t)|⩽ 1/(2
√
2) for

t ∈ [0,T3], consider Jv1 = Jv1(ṽ1, ũk, ṽk) and Jlk = Jlk(v1, ũk, ṽk), with l= u,v and k= 2, . . . ,k0,
as well as G3 = G3(v1, ũk). We observe that

G3 (v1 (t) , ũk (t))⩽
1

2−1/2 − |v1 (t) |
= 21/2 + 21/2

∞∑
n=1

2
n
2 |v1 (t) |n

⩽ 21/2
(
1+ 21/2

|v1 (t) |
1−

√
2|v1 (t) |

)
⩽ 21/2

(
1+ 23/2|v1 (t) |

) (105)

for |v1(t)|⩽ 1/(2
√
2), and

G3 (v1 (t) , ũk (t))⩾
1

2−1/2 + |v1 (t) |+ 2−1/2σ
=: C1 ⩾ 1. (106)

Then, using the boundedness of G3 and Jvk , from equation (99d) for vk we obtain directly

|vk (t) |⩽ e−2t+B3(t)|vk (0) |+C
ˆ t

0
e−2(t−s)+B3(t)−B3(s)ε3 (s)r3 (s)ds⩽ e−2t|vk (0) |+

Cρa2σ
|bk|

,

where B3(t) = rin3 δ
4/3bk(1− e−3t)/(12A2). To determine the asymptotic behaviour of v1, we

define a new variable z by

v1 = e−2t
(
vin1 + z

)
, (107)
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where for t= 0 it follows that z(0) = 0. A direct calculation yields

v ′1 = e−2tz ′ − 2e−2t
(
vin1 + z

)
,

−2v1 − δe−3tG3 + rin3 δe
−2tJv1 = e−2tz ′ − 2e−2t

(
vin1 + z

)
, and

−2e−2t
(
vin1 + z

)
+ δe−3tG3 + rin3 δe

−2tJv1 = e−2tz ′ − 2e−2t
(
vin1 + z

)
or, equivalently,

z ′ =−21/2e−tδG3 + rin3 δJv1 . (108)

Then, the boundedness of G3 and Jv1 implies

|z(t) |⩽ Cδ
(
1− e−t+ rin3 t

)
.

Reverting to the original variable v1 via (107), we find

|v1 (t) |⩽ e−2t
[
|vin1 |+Cδ

(
1− e−t+ rin3 t

)]
⩽ |vin1 |+ 2δC2 ⩽ 1/

(
2
√
2
)

for all t ∈ [0,T3]

with sufficiently small |vin1 |, and

|v1 (T3) |⩽
(
rin3
ρ

)2 [
|vin1 |+Cδ

(
1+ rin3 log

ρ

rin3

)]
, (109)

which proves the first estimate stated in the theorem.
Next, we show that uk remains bounded throughout the transition through chart K3. Once

again, we perform an estimate using the variation of constants formula

uk (t) = exp

(ˆ t

0
Uk (τ)dτ

)
uink

+

ˆ t

0
exp

(ˆ t

s
Uk (τ)dτ

)−G3 (v1, ũk)vk+G3 (v1, ũk)
k0∑

i,j=2

ηki,jũi ũj+ r3Juk

ds,

where

Uk (τ) =−1+
bk
4A2

δ1/3e−τG3 (v1 (τ) , ũk (τ))+ 21/2G3 (v1 (τ) , ũk (τ)) .

Using our assumptions on ũk and ṽk, the estimate for G3(v1, ũk) in (105), and the fact that
bk < 0, we find

I1 (s) :=
ˆ t

s
Uk (τ)dτ

= s− t+
bk
4A2

δ1/3
ˆ t

s
e−τG3 (v1 (τ) , ũk (τ))dτ + 21/2

ˆ t

s
G3 (v1 (τ) , ũk (τ))dτ

⩽ t− s+
bk
4A2

δ1/3C1
(
e−s− e−t

)
+ 4
ˆ t

s
|v1 (τ) |dτ

(110)

for 0⩽ s⩽ t⩽ T3. To estimate the integral in the last inequality, we observe that

|v1 (τ)|⩽ e−2τ
[
|vin1 |+C2δ (1+ τ)

]
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and write
ˆ t

s
|v1 (τ) |dτ ⩽

1
4

(
2|vin1 |+ 3C2δ

)(
e−2s− e−2t

)
+C2

δ

2

(
e−2ss− e−2tt

)
.

The inequality in (110) then becomes

I1 (s)⩽ t− s+
bk
4A2

δ1/3C1
(
e−s− e−t

)
+
(
2|vin1 |+ 3C2δ

)(
e−2s− e−2t

)
+ 2C2δ

(
e−2ss− e−2tt

)
;

thus,

exp(I1 (0))⩽ Cexp

(
t+

bk
4A2

δ1/3C1
(
1− e−t

))
,

where C= exp(2|vin1 |+ 5C2δ). For the second term in uk(t), using that t⩽ et and 1⩽ et for
t⩾ 0, we have

ˆ t

0
exp(I1 (s))ds⩽ I2 (t)

ˆ t

0
exp

(
−s+ bk

4A2
δ1/3C1e

−s+C3e
−2s+ 2C2δe

−2ss

)
ds

⩽ I2 (t)
ˆ t

0
e−s exp

((
bk
4A2

δ1/3C1 +C4δ

)
e−s

)
ds

= I2 (t)
4A2

C1|bk|δ1/3 − 4A2C4

[
exp

((
bkδ1/3

4A2
C1 +C4δ

)
e−t

)
− exp

(
bkδ1/3

4A2
C1 +C4

)]
⩽ C5

4A2

C1|bk|δ1/3 − 4A2C4
et ⩽ C6

a2

|bk|
ε1/3

ρ

rin3
⩽ C7ρa2

|bk|
,

where C3 = 2|vin1 |+ 3C2δ and

I2 (t) = exp

(
t− bk

4A2
δ1/3C1e

−t−C3e
−2t− 2C2δe

−2tt

)
.

The estimates for v1 and vk then yield

|uk (t) |⩽ C1|uk (0) |+
C2ρa2

|bk|

[
|vk (0) |+

Cρa2σ
|bk|

+σ (1+ ρ)

]
.

Hence, for sufficiently small |uk(0)|, |vk(0)|, and ρ, we find

k0∑
k=2

|uk (t) |2 ⩽ σ and
k0∑
k=2

|vk (t) |2 ⩽ σ for all t ∈ [0,T3] .

Then, application of a fixed point argument as in chart K1 yields the estimates stated in the
theorem.
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5.4. Proof of main result

Let us now combine the analysis in the three chartsK1,K2, andK3 to give the proof of theorem
4.3. For 2⩽ k⩽ k0, the initial conditions (uin1,1,r

in
1 ,u

in
k,1,v

in
k,1,ε

in
1 ) in K1 are assumed to lie in

R1 ⊂ Σin
1,k0 , where R1 is defined in (70). Applying the transition map Π1, see proposition 5.11,

we obtain

Π1 (R1) =
{
|uout1,1 + 21/4|⩽ Cout

u1,1 , r
out
1 ∈ [0,ρ] , εout1 = δ,

|uoutk,1|⩽ Cout
k,1, and |voutk,1|⩽ Cout

vk,1δ
2/3
}
.

Transformation of the above set to chart K2 yields

κ12 ◦Π1 (R1) =
{
uin1,2 = δ−1/3uout1,1,v

in
1,2 = δ−2/3, |uink,2|⩽ δ−1/3|uoutk,1|,

|vink,2|⩽ δ−2/3|voutk,1|, and rin2 ∈
[
0, δ1/3ρ

]}
,

with uk,1 and vk,1 as above. Since the higher-order modes {uk,2,vk,2} do not grow in K2, we
have

Π2 ◦κ12 ◦Π1 (R1) =
{
uout1,2 = δ−1/3, |vout1,2 + c1|⩽ Cout

v1,2 ,

|uoutk,2|⩽ |uink,2|, |voutk,2|⩽ |vink,2|, and rout2 ∈
[
0, δ1/3ρ

]}
. (111)

Application of the change of coordinates κ23 yields

κ23 ◦Π2 ◦κ12 ◦Π1 (R) =
{
rin3 ∈ [0,ε] , vin1,3 ∈ [−β,β] , εin3 = δ, |uink,3|= δ1/3,

|uoutk,2|⩽ Cin
uk,3 , |v

in
k,3|= δ2/3, and |voutk,2|⩽ Cin

vk,1

}
,

where β > 0 is a small constant. Finally, we apply the map Π3, see proposition 5.22, to obtain

Π3 ◦κ23 ◦Π2 ◦κ12 ◦Π1 (R1)

=
{
rout3 = ρ, vout1,3, ε

out
3 ∈ [0, δ] , |uoutk,3|⩽ Cout

uk,3 , and |voutk,3|⩽ Cout
vk,3

}
,

where vout1,3 is as in proposition 5.22. The result then follows, since the sections Σ
in
1,k0 and Σ

out
3,k0

are equivalent to∆in and∆out, respectively, transformed into the coordinates of charts K1 and
K3, respectively, and since the systems in (32a) and (48a) are equivalent for ε> 0 sufficiently
small.

6. Conclusions and outlook

In this work, we have studied, via discretisation, a fast-slow system of partial differential
equations (PDEs) of reaction-diffusion type, equation (6a), under the assumption that a fold
singularity is present at the origin in the fast kinetics. We have approximated a family Sε,ζ of
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slow manifolds by their corresponding Galerkin manifolds Cε,k0 , which we have then extended
past the singularity by applying the desingularisation technique known as blow-up [12]. Here,
it is worth emphasising that the family Sε,ζ is defined via a subsplitting ansatz for the slow
variables; hence, it is not simply a ‘generic’ perturbation of a classical critical manifold which
is obtained in a finite-dimensional setting by a ‘quasi-steady state approximation’.

As we have seen, our main result, theorem 4.3, is analogous to what one would expect in
the planar (finite-dimensional) setting [29]. While we have shown that the resulting Galerkin
manifolds Cε,k0 approximate the family Sε,ζ away from the fold singularity, a natural next
question concerns the passage to the limit as k0 →∞ near the fold. In the normally hyperbolic
regime, we know that the limit of k0 →∞ implies a double limit, with ε→ 0, as well as a
specific scaling law [13]. While it remains open whether that double singular limit is well-
defined near non-normally hyperbolic singularities, our results do lay relevant groundwork.
Two conjectures seem plausible here: (i) an alternative approach may allow one to prove that,
potentially under slightly stronger assumptions, a limiting invariant slow manifold exists uni-
formly in ε ∈ (0,ε0), with ε0 > 0 small, as k0 →∞; or (ii) the limiting object must diverge for
fixed positive ε as k0 →∞ due to the coupling between infinitely many higher-order modes in
the Galerkin discretisation. Unfortunately, standard techniques [28, 39] for proving the non-
existence of invariant manifolds do not seem to allow us to verify (ii). However, on the basis
of previous work in the normally hyperbolic regime and the detailed estimates presented here,
we can conjecture that a well-defined double limit of ε→ 0 and k0 →∞ will exist even near
fold singularities.

We further emphasise that the presence of an additional 2k0 − 2 equations after discretisa-
tion, with k0 arbitrarily large, causes several challenges. Thus, a preparatory rescaling of the
domain length is introduced to allow for the application of the blow-up technique; an altern-
ative approach in previous work on the transcritical and pitchfork singularities [14] results in
a dynamic boundary value problem. Our rescaling appears natural, since it can be recovered
directly from the original system of PDEs in (6a). Specifically, taking u= ε1/3U, v= ε2/3V,
t= ε−1/3τ , and x= ε−1/6X, which is consistent with our scaling in (50), we obtain

∂τU= ∂2XU−V+U2 + εpHu (U,V) ,

∂τV= ε∂2XV− 1+ εqHv (U,V)
(112)

on
(
−aε1/6,aε1/6

)
for some p,q> 0. Equation (112) defines a system of PDEs on a domain

shrinking to the origin as ε→ 0, as is to be expected due to the singular nature of (6a). Denoting
by (Uε,Vε) solutions of (112), and using the boundedness of higher-order terms and the non-
positivity of Uε or the boundedness of U2

ε, which can be achieved by considering a cut-off
function, we obtain the following estimates:

‖Vε‖2L∞(0,T;L2(Ωε))
+ ε‖∂xVε‖2L2(0,T;L2(Ωε))

⩽ C
(
‖Vε (0)‖2L2(Ωε)

+ ε1/6
)

and

‖Uε‖2L∞(0,T;L2(Ωε))
+ ‖∂xUε‖2L2(0,T;L2(Ωε))

⩽ C
(
‖Uε (0)‖2L2(Ωε)

+ ‖Vε (0)‖2L2(Ωε)
+ ε1/6

)
,

where Ωε = (−aε1/6,aε1/6) and C is some positive constant independent of ε. These estim-
ates imply that Uε(·,ε1/6·)⇀ U0 in L2(0,T;H1(−a,a)), which is independent of X, and
Vε(·,ε1/6·)⇀ V0, ε1/2∂XVε(·,ε1/6·)⇀W in L2((0,T)× (−a,a)) as ε→ 0, for some W ∈
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L2((0,T)× (−a,a)). Thus, in the limit as ε→ 0, we see that (U0,V0) satisfies the system of
ODEs

dU
dτ

=−V+U2,

dV
dτ

=−1.
(113)

Equation (113) is precisely the Riccati equation which lies at the heart of the dynamics in our
rescaling chart K2.

A consequence of our rescaling of the domain length is, however, that the original fast-
slow structure which is present in the discretised system, equation (32a), does not translate to
the blow-up analysis in the three coordinate charts. In particular, there is no longer a direct
correspondence between singular objects in those charts and the layer and reduced problems
pre-blow-up. Since the corresponding flows in the two scalings are equivalent after ‘blow-
down’, the loss of correspondence is merely of technical relevance: while it does entail that
the approach in [46] does not apply to (48a), we do not consider canard dynamics here, as is
done there.

As elaborated in appendix B, an additional challenge arises due to the finite-time blowup
which can occur in (32a) and which is due to the presence of additional slow variables vk,
2⩽ k⩽ k0, after Galerkin discretisation. To avoid solutions blowing up before they enter a
neighbourhood of the singularity at the origin, we defined an ε-dependent set of initial values
Rin(ε)⊂∆in, which we combined with careful estimates for the higher-order modes {uk,vk}
resulting from the discretisation. We conjecture that this blowup is, in essence, caused by addi-
tional fold singularities that can be reached before the principal singularity at the origin which
has been our focus here. In particular, a future research direction would be the desingularisa-
tion of larger submanifolds where normal hyperbolicity is lost in the Galerkin discretisation;
for example, one could blow up the blue curve in figure B1 or the surface in figure B2 in the
cases where k0 = 2 or k0 = 3, respectively.

Finally, we briefly place our work into the broader context of singular perturbation prob-
lems arising in an infinite-dimensional context. Firstly, for fast-slow reaction-diffusion systems
of the form in (5a), we have recently gained a better understanding of transcritical points and
generic fold points, including the results presented in this work. In finite dimensions, such non-
hyperbolic points are known to generate only a dichotomy of either fast jumps of trajectories
or an exchange of stability between slow manifolds. Yet, more degenerate fold points, such
as folded nodes or folded saddle-nodes, may generate extremely complicated local dynam-
ics, including oscillatory patterns, even in fast-slow systems of ODEs. That classification is
likely to become even more complex in the infinite-dimensional setting of (systems of) PDEs.
Secondly, systems of the form in (5a) represent one class of interesting PDEs, where small
perturbation parameters and singular limits occur. Other classes involve fast reaction terms,
small diffusion problems, or heterogeneous media with highly oscillatory coefficients, which
all commonly appear in the context of reaction-diffusion systems. Once one goes beyond
reaction-diffusion systems, there are vast classes of PDE-type singular perturbation problems
arising across the sciences. From a mathematical viewpoint, it is immediately clear that, in
any parametrised PDE model, one anticipates possible distinctions between normally hyper-
bolic dynamics, where locally a good approximation is achieved by linearisation, and a loss
of normal hyperbolicity along submanifolds in parameter space. Therefore, there is a need for
developing techniques to tackle a loss of normal hyperbolicity in (systems of) PDEs. Our work
is but one building block towards that general effort. Last, but not least, we have not yet related
our theoretical approach via Galerkin discretisation with the performance of various numerical
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methods for PDEs. We conjecture that there is a link between (a loss of) performance and the
presence of singularities, or non-hyperbolic points, in systems of nonlinear PDEs.
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Appendix A. Uniform boundedness and convergence

Under appropriate assumptions on initial data, it is possible to show the uniform boundedness
of solutions to equation (6a) for sufficiently large times before those solutions reach the singu-
larity at the origin. Uniform boundedness will then imply convergence of the Galerkin discret-
isation, as shown below. Hence, our finite-dimensional Galerkin manifolds can be interpreted
as ‘approximately invariant slow manifolds’; the accuracy of the resulting approximation will
improve with increasing k0.

A.1. Uniform boundedness of solutions

For simplicity, we first consider the equations in (6a) without higher-order terms Hu and
Hv. The parabolic comparison principle for v̂0 ⩾ v(0,x)⩾ ṽ0 > 0, with x ∈ (−a,a), yields
v̂⩾ v(t,x)⩾ ṽ(t), where ṽ and v̂ satisfy

dṽ
dt

=−ε, with ṽ(0) = ṽ0,

dv̂
dt

=−ε, with v̂(0) = v̂0

and, hence,

ṽ(t) = ṽ0 − εt and v̂(t) = v̂0 − εt, with ṽ(t)⩾ 0 for t⩽ ṽ0
ε
.
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Then, for ũ0 ⩽ u(0,x)⩽ û0 < 0, with x ∈ (−a,a), we again apply the parabolic comparison
principle to obtain that ũ(t)⩽ u(t,x)⩽ û(t), where

dû
dt

=−ṽ+ û2, with û(0) = û0,

dũ
dt

=−v̂+ ũ2, with ũ(0) = ũ0.

For t⩽ ṽ0/(2ε), we have ṽ⩾ ṽ0/2 and can hence estimate û(t)⩽ ū(t), where

dū
dt

=− ṽ0
2
+ ū2, with ū(0) = û0,

and

ū(t) =

√
ṽ0
2

û0
(
1+ e

√
2ṽ0t
)
−
√
ṽ0/2

(
e
√
2ṽ0t− 1

)
−û0

(
e
√
2ṽ0t− 1

)
+
√
ṽ0/2

(
1+ e

√
2ṽ0t
) ,

which is bounded for all ṽ0 > 0 and t⩽ ṽ0/(2ε). Similarly, we obtain that ũ is also uniformly
bounded for ṽ0 > 0 and t⩽ ṽ0/(2ε). In sum, we hence have

min
{
ũ0,−

√
v̂0
}
⩽ u(t,x)⩽ max

t∈[0,̃v0/(2ε)]
ū(t) for 0⩽ t⩽ ṽ0

2ε
and x ∈ (−a,a) .

Thus, for all v(0,x)⩾ ṽ0 > 0 and u(0,x)⩽ û0 < 0, we obtain that solutions of (6a), without
higher-order terms Hu and Hv, are uniformly bounded for 0⩽ t⩽ ṽ0/(2ε).

When considering higher-order terms of the form Hu(u,v,ε) =O(ε,uv,v2,u3) and
Hv(u,v,ε) =O(v2) in (6a), for |u|, |v|⩽ 1, we can assume

|Hu (u,v,ε) |⩽ κu
(
ε+ |uv|+ |v|2 + |u|3

)
and |Hv (u,v,ε) |⩽ κv|v|2

for some positive constants κu and κv. To derive estimates for the solutions of (6a), we apply
a fixed point argument: for given (u∗,v∗) with

|u∗|⩽min

{
1
4κu

,1

}
and 0< v∗ ⩽min

{
1

2
√
κv
,
1
4κu

,
1

32κ2u
,1

}
,

we consider Hv(u∗,v∗,ε) and H̃u(u∗,u,v,ε), which is obtained from Hu(u,v,ε) by replacing
the terms of order uv and u3 by u∗v and u∗u2, respectively. The above assumptions on u∗ and
v∗ yield

|H̃u (u∗,u,v,ε) |⩽ κu
(
ε+ |u∗v|+ v2 + |u∗|u2

)
⩽ κuε+

|v|
2

+
u2

4
and

|Hv (u∗,v∗,ε) |⩽ κv|v∗|2 ⩽
1
4
,

which ensures

dṽ
dt

= ε(−1+Hv (u∗,v∗,ε))⩾−5
4
ε and

dv̂
dt

= ε(−1+Hv (u∗,v∗,ε))⩽−3ε
4
.
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Then, for initial conditions satisfying

−min

{
1
4κu

,1

}
⩽ ũ0 < 0 and

4
5
v̂0 ⩽ ṽ0 ⩽ v̂0 ⩽min

{
1

2
√
κv
,
1
4κu

,
1

32κ2u
,1

}
(A.1)

and for 0⩽ t⩽ 4ṽ0/(5ε), we have

0⩽ ṽ0 −
5ε
4
t⩽ ṽ(t)⩽ v(t,x)⩽ v̂(t)⩽ v̂0 −

3ε
4
t⩽min

{
1

2
√
κv
,
1
4κu

,
1

32κ2u
,1

}
.

For û, we obtain

dû
dt

=−ṽ+ û2 + |H̃u (u∗, û, v̂,ε) |⩽−ṽ0 +
5ε
4
t+

v̂0
2
− 3ε

8
t+κuε+

3
4
û2,

which, for ε⩽ ṽ0/(16κu) and t⩽ 2ṽ0/(7ε), implies

dû
dt

⩽− ṽ0
16

+
5
4
û2.

In combination with the previous estimates, the fixed point argument yields uniform bounded-
ness of solutions to (6a) for t⩽ 2ṽ0/(7ε) and initial conditions satisfying (A.1).

A.2. Convergence of Galerkin discretisation

The Galerkin approximation (un,vn) for solutions to (6a), with un(t,x) =
∑n

k=1 uk(t)ek(x) and
vn(t,x) =

∑n
k=1 vk(t)ek(x), satisfies

∂tun = ∂2xun− vn+ u2n+Hu (un,vn,ε) for x ∈ (−a,a) and t> 0,

∂tvn = ε
(
∂2x vn− 1+Hv (un,vn,ε)

)
for x ∈ (−a,a) and t> 0,

∂xun (t,x) = 0= ∂xvn (t,x) for x=±a and t> 0,

un (0,x) = un,0 (x) and vn (0,x) = vn,0 (x) for x ∈ (−a,a) ,

(A.2)

where un,0 and vn,0 are projections of u0 and v0, respectively, onto the space V=
span{e1(x), . . . ,en(x)}. Using similar estimates as above and imposing the assumptions on
initial conditions in (A.1), we obtain that un(t,x) and vn(t,x) are uniformly bounded in
[0,T]× [−a,a] for ũ0 ⩽ un,0(x)⩽ û0 < 0, v̂0 ⩾ vn,0(x)⩾ ṽ0 > 0, and T⩽ 2ṽ0/(7ε). It follows
that we have the a priori estimates

‖un‖2L∞((0,T)×(−a,a)) + ‖un‖2L2(0,T;H1(−a,a)) + ‖∂tun‖2L2(0,T;H1(−a,a) ′) ⩽ C and

‖vn‖2L∞((0,T)×(−a,a)) + ε‖vn‖2L2(0,T;H1(−a,a)) + ‖∂tvn‖2L2(0,T;H1(−a,a) ′) ⩽ C,

with a constant C> 0 that is independent of n, which ensures convergence of un → u weakly
in L2(0,T;H1(−a,a)) and strongly in L2((0,T)× (−a,a)), as well as of vn → v weakly-∗
in L∞(0,T;L2(−a,a)) and of

√
εvn →

√
εv weakly in L2(0,T;H1(−a,a)) and strongly in

L2((0,T)× (−a,a)); see e.g. [16]. Thus, we can pass to the limit as n→∞ in (A.2) to conclude
that u and v are solutions to the original system in (6a).
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Next, considering equations for the differences un− u and vn− v and taking un− u and
vn− v as test functions, respectively, we obtain

1
2
∂t‖un− u‖2L2(−a,a) + ‖∂x (un− u)‖2L2(−a,a) ⩽

1
2
‖vn− v‖2L2(−a,a) +

1
2
‖un− u‖2L2(−a,a)

+ ‖un+ u‖L∞‖un− u‖2L2(−a,a) + hu (‖un‖L∞ ,‖u‖L∞) |un− u‖2L2(−a,a) and

1
2
∂t‖vn− v‖2L2(−a,a) + ε‖∂x (vn− v)‖2L2(−a,a) ⩽ εhv (‖un‖L∞ ,‖u‖L∞) |vn− v‖2L2(−a,a),

with some smooth functions hu and hv representing contributions from the higher-order terms
Hu and Hv. Adding both inequalities, using the uniform boundedness of un, u, vn, and v, and
applying the Grønwall inequality, we obtain

sup
(0,T)

‖un− u‖2L2(−a,a) + ‖∂x (un− u)‖2L2((0,T)×(−a,a))

+ sup
(0,T)

‖vn− v‖2L2(−a,a) + ε‖∂x (vn− v)‖2L2((0,T)×(−a,a))

⩽ C(T)
[
‖un (0)− u(0)‖2L2(−a,a) + ‖vn (0)− v(0)‖2L2(−a,a)

]
,

which ensures the convergence of the Galerkin truncation to the solution of the original prob-
lem, equation (6a), as the approximation of the initial data converges strongly in L2(−a,a).

Appendix B. Illustrative example: k0 =2

In order to develop intuition for the singular geometry and resulting dynamics of (32a), it is
instructive to examine the simple case where k0 = 2. For simplicity, let a= 1

2 , and assume that
the higher-order terms Hu

i and Hv
i for i = 1,2 are identically zero. In that case, the system

in (32a) reads

u ′
1 =−v1 + 2−1/2u21 + 2−1/2u22, (B.1a)

v ′1 =−2−1/2ε, (B.1b)

u ′
2 =−π2u2 − v2 + 21/2u1u2, (B.1c)

v ′2 =−π2εv2, (B.1d)

where the critical manifold C is given by the graph

v1 = f1 (u1,u2) := 2−1/2u21 + 2−1/2u22 and (B.2a)

v2 = f2 (u1,u2) :=−π2u2 + 21/2u1u2. (B.2b)

Linearisation of the layer problem induced by (B.2a) for ε= 0 about C reveals that one
eigenvalue is always negative for any choice of (u1,u2), whereas the sign of the other eigen-
value depends on (u1,u2), as shown in figure B1. The set C0, as defined in (37), is denoted
in red there. To the left of the curve u1 = g(u2) := 1

2

(
π2 −

√
π2 + 4u22

)
(illustrated in blue),

the second eigenvalue is negative, whereas it is positive to the right of that curve. Normal
hyperbolicity is lost on the curve itself.
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Figure B1. Stability properties of the critical manifold C which, for k0 = 2, can be writ-
ten as a graph over (u1,u2). A loss of normal hyperbolicity occurs along the curve
u1 = g(u2) (in blue) where one of the two eigenvalues of the linearisation about C
changes sign. The manifold C0 is shown in red.

Remark B.1. Similarly, one can visualise the stability properties of the critical manifold C
in the case where k0 = 3, which will be given as a graph over (u1,u2,u3); see figure B2.
Specifically, the manifold C is then attracting inside the funnel-like region of (u1,u2,u3)-space
shown in the figure and of saddle type outside that region. In analogy to the case of k0 = 2,
normal hyperbolicity is lost on the surface separating those two regions which is now given by
an implicit polynomial expression that can be obtained by application of the Routh-Hurwitz
stability criterion. The set C0 is again drawn in red.

For the particular case when k0 = 2, it is possible to find explicit formulae for the initial con-
ditions which will allow us to reach the section ∆in under the flow of (B.1a). Firstly, (u1,u2)
must be in the region of the (u1,u2)-plane that corresponds to the normally hyperbolic attract-
ing portion of the critical manifold C, see figure B1. Secondly, by GSPT, we have to be suffi-
ciently close to the corresponding slow manifold Cε for ε sufficiently small, which amounts to
a condition of the form

max{|v1 − f1 (u1,u2) |, |v2 − f2 (u1,u2) |}< C, (B.3)

where C> 0 is some suitably chosen constant. Thirdly, we also need to impose correspond-
ing restrictions on (v1,v2) to ensure that we will not reach an unstable portion of the critical
manifold C under the slow flow induced by (B.1a). To that end, we first need to invert the line
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Figure B2. The fold surface for k0 = 3. The critical manifold C can be written as a graph
over (u1,u2,u3) and is stable inside the funnel-like region, the boundary of which is a
surface that is implicitly defined by a polynomial equation in u1, u2, and u3. One of the
three eigenvalues of the linearisation about C changes sign across the surface.

Figure B3. The reduced flow of (B.1a). The region inside the curve h(v2) (in blue) cor-
responds to the stable portion of the critical manifold C; across that curve, one of the
eigenvalues of the linearisation about C changes sign. Also illustrated are∆in (in black)
and±ξ(v1) (in purple); recall (B.4). The set of initial conditions in the (v1,v2)-plane that
reach ∆in is found in the intersection of the regions to the right of h(v2) and ±ξ(v1).

u1 = g(u2), which separates the attracting and saddle-like portions of C in the (u1,u2)-plane,
by substituting into (B.2a) and solving for v1 and v2. The result is now a curve in the (v1,v2)-
plane of the form v1 = h(v2), where the function h is a quadratic polynomial in v2, as shown
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in blue in figure B3. A further, fourth, restriction is given by solving explicitly the (v1,v2)-
subsystem in (B.1a), rewritten in terms of the slow time, and by then determining a relation
between v1 and v2 so that the flow reaches the section ∆in:

|v2|⩽ ξ (v1) := Cin
v2e

π2
√

2 (v1−ρ2); (B.4)

see figure B3, in purple, for an illustration. Initial values for (B.1a) satisfying these four con-
ditions will flow into the section∆in.

However, as the flow of (B.1a) approaches the singularity at the origin, for some initial
conditions u2 may blow up before v1 becomes negative. The flow will hence have reached an
unstable portion of the critical manifold C. In the next section, we provide an explicit explan-
ation for this blowup in finite time.

Appendix C. Finite-time blowup of solutions

To motivate the importance of restrictions on the initial data for the Galerkin truncation
in (12a), we prove that for some choices of initial conditions, a blowup in u1 can occur before
v1 becomes negative already for k0 = 2. Setting a= 1

2 and rescaling u1 and u2 by a factor of
2−1/2, we obtain the two-dimensional system

u ′
1 =−v1 + u21 + u22, with u1 (0) = u01,

v ′1 =−ε, with v1 (0) = v01,

u ′
2 =−v2 + u2

(
2u1 −π2

)
, with u2 (0) = u02,

v ′2 =−επ2v2, with v2 (0) = v02.

(C.1)

It is assumed that v01 > 0. We will show that, for v02 6= 0 and ε> 0 sufficiently small, a finite-
time blowup will occur in (C.1) before v1 changes sign. For the sake of simplicity and without
loss of generality, we may assume that u02 < 0 and v02 > 0; see also remark C.6.

C.1. Main observation

Firstly, we establish our main observation on finite-time blowup for solutions of (C.1) when
k0 = 2. Various auxiliary results which are used in the proof are collated in C.2.

Proposition C.1. Let u01 ∈ R, u02 < 0, and v01,v
0
2 > 0. Then, there exists ε> 0 such that the

solution of (C.1) blows up before t0 =
v01
ε , i.e. before v1 changes sign.

Proof. As observed in proposition C.3 and remark C.6 below, without loss of generality, we
may assume that

−π/2< u01 ⩽ π/4 and v01 <min

{
π2

16 ,

[
e−π4/32v02
2(π+π2)

]2}
.

By propositions C.4 and C.5, it follows that −π/2< u1(t)⩽ π/4 for all t⩾ 0 unless there is

blowup in finite time independent of ε> 0. We consider the time interval [0, v
0
1

2ε ] in which v1

remains positive. Moreover, we have v2(t) ∈
[
exp
(
− π2v01

2

)
v02,v

0
2

]
for all [0, v

0
1

2ε ]. Since u2(t)⩽
0, by remark C.6, and since −π/2< u1(t)⩽ π/4 for all t⩾ 0, we find

−2v02 −
(
π2 − π

2

)
u2 <−v2 + u2

(
2u1 −π2

)
= ∂tu2 <−exp

(
−π

2v01
2

)
v02 −

(
π+π2

)
u2
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in [0, v
0
1

2ε ]. Let now wu and wo be the solutions of

w ′
u =−2v02 −

(
π2 − π

2

)
wu,

w ′
o =−exp

(
−π

2v01
2

)
v02 −

(
π+π2

)
wo

in [0, v
0
1

2ε ], with wu(0) = u02 = wo(0). Lemma C.2 ensures wu ⩽ u2 ⩽ wo. Thus, in [
v01
4ε ,

v01
2ε ], we

have

u2 (t)⩽ wo (t) = exp
(
−
(
π+π2

)
t
)[
u02 +

1
(π+π2)

exp

(
−π

2v01
2

)
v02

]
− 1

(π+π2)
exp

(
−π

2v01
2

)
v02

⩽− 1
2(π+π2)

exp

(
−π

2v01
2

)
v02,

provided ε> 0 is sufficiently small. Correspondingly, in
[
v01
4ε ,

v01
2ε

]
we obtain

u ′
1 =−v1 + u21 + u22 ⩾−v01 +

e−π2v01

4(π+π2)
2

(
v02
)2

+ u21

⩾−v01 +
e−π4/16

4(π+π2)
2

(
v02
)2

+ u21 > c+ u21

(C.2)

for some c> 0 due to v01 <min

{
π2

16 ,

[
e−π4/32v02
2(π+π2)

]2}
. The equation

w ′ = µ+w2,

with µ> 0 constant, experiences blowup for any initial condition at a time t0 that depends
on the initial condition and on µ, but that is independent of ε. If ε> 0 is small enough, then

the blowup occurs in
[
0, v

0
1

4ε

]
. Thus, lemma C.2 implies that u1 blows up before time v01

2ε ; in

particular, it blows up before v1 changes sign.

C.2. Proof of proposition C.1

The following comparison principle is standard; however, we include it for completeness.

Lemma C.2. Let f,g : [0,∞)×R→ R be such that f(t,x)> g(t,x) for all (t,x) ∈ [0,∞)×R,
and suppose that f and g are locally Lipschitz continuous. Furthermore, let x0 ∈ R, and let yf
and yg be the solutions of

y ′f (t) = f(t,yf (t)) and y ′g (t) = g(t,yg (t)) , with yf (0) = yg (0) .

Then, yf(t)⩾ yg(t) for all t in the intersection of the maximal existence intervals of yf and yg.
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Proposition C.3. If the solution of (C.1) exists for a sufficiently long time, then there exists
η > 0, independent of ε, but dependent on v01 and v

0
2, such that

0< v1
(
v01−η
ε

)
<min

{
π2

16 ,
e−π4/16

4(π+π2)2

[
v2
(
v01−η
ε

)]2}
.

Proof. Solving explicitly, we can write v1(t) = v01 − εt and v2(t) = exp(−επ2t)v02. Hence,

v1
(
v01−η
ε

)
= η > 0.

On the other hand, for η > 0 sufficiently small, we have

v1
(
v01−η
ε

)
= η < e−π4/16

4(π+π2)2
exp
[
−2π2

(
v01 − η

)](
v02
)2

= e−π4/16

4(π+π2)2

[
v2
(
v01−η
ε

)]2
.

Obviously, if η > 0 is small enough, it also holds that

v1
(
v01−η
ε

)
= η < π2

16 ,

which shows the assertion.

Given proposition C.3, blowup in (C.1) can still occur in a time interval of length η/ε. Since
η can be chosen independent of ε, that interval can be made arbitrarily large for ε sufficiently
small. In particular, if we can now show that solutions of (C.1) blow up after a time which is
independent of ε, then blowup will occur before v1 changes sign if ε> 0 is small enough. By

proposition C.3, we may assume that v01 <min
{

π2

16 ,
[
e−π4/32v02
2(π+π2)

]2}
.

Proposition C.4. If the solution of (C.1) exists for a sufficiently long time, then there exists a
time t0 ⩾ 0, independent of ε, such that u1(t0)>−π/2.

Proof. Since we can assume v01 <
π2

16 , it holds that

u ′
1 =−v1 + u21 + u22 >−π2

16 + u21.

As long as u21 ⩽−π/2, we also have −π2

16 + u21 >
3π2

16 and, hence, u ′
1 >

3π2

16 , which proves the
assertion.

Proposition C.5. If u01 > π/4, then solutions of (C.1) blow up after a finite time which is
independent of ε.

Proof. Since we may assume v01 <
π2

16 , it holds that

u ′
1 =−v1 + u21 + u22 >−π2

16 + u21.

If u01 > π/4, then the right-hand side in the above expression is positive. It follows from lemma
C.2 that blowup occurs after a finite time which is independent of ε, as that is the case for the
solution of

w ′ =−π2

16 +w2, with w(0) = u01 >
π

4
.
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Remark C.6. (i) Propositions C.4 and C.5 imply that we may assume −π/2< u01 ⩽ π/4.
(ii) One can also show the following: if solutions to (C.1) exist for a long enough time and if

ε> 0 is sufficiently small, then there exists t0 ⩾ 0, independent of ε, such that u2(t)⩽ 0
for all t⩾ t0. We simply take u02 < 0 and observe that, hence, u2(t)⩽ 0 for all t⩾ 0. Note,
however, that one has to exchange signs here if v02 < 0.

We now derive an estimate for how small ε has to be such that we observe blowup before
v1 changes sign. In a first step, we give an explicit expression for η—dependent on v01 and v

0
2,

but independent of ε—that satisfies the estimate in proposition C.3. For the sake of simplicity,
we will assume that v01 ∈ (0,π2/16).

Lemma C.7. If η is chosen as

η =

(
v02
)2

4(π+π2)
2 exp

(
−π

4

16
− 2π2v01

)
,

then the estimate in proposition C.3 is satisfied.

Proof. The estimate in proposition C.3 holds true if and only if

η = v01 − ε
v01 − η

ε
= v1

(
v01 − η

ε

)
< e−π4/16

4(π+π2)2

[
v2
(
v01−η
ε

)]2
= e−π4/16

4(π+π2)2

(
v02
)2
exp

(
−2επ2 v

0
1 − η

ε

)
= e−π4/16

4(π+π2)2

(
v02
)2
exp
(
−2π2

(
v01 − η

))
.

Multiplication by e−2π2η yields

η exp
(
−2π2η

)
< e−π4/16

4(π+π2)2

(
v02
)2
exp
(
−2π2v01

)
,

which is satisfied if

η =

(
v02
)2

4(π+π2)
2 exp

(
−π4

16 − 2π2v01
)
,

as stated in the assertion.

Remark C.8. The main argument in the proof of proposition C.1 was that solutions of w ′ =
µ+w2 blow up in finite time if µ> 0. The explicit solution is given by

w(t) =
√
µ tan

(
arctan

(
w(0)√

µ

)
+
√
µt
)
,

and hence exists until time

t=
π/2− arctan

(
w(0)√

µ

)
√
µ

.

In particular, blowup occurs before time t= π/
√
µ. To determine how to choose µ in propos-

ition C.1, we recall equation (C.2), which allows for

µ=−v01 +
e−π4/16

4(π+π2)
2

(
v02
)2

=
(
e2π

2η − 1
)
η;

here, we have used lemma C.7.
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Proposition C.9. If ε < η2

2
√
2
, then the solution of (C.1) blows up before v1 changes sign.

Proof. In the proof of proposition C.1, blowup is generated in the time interval [0, v
0
1

4ε ] = [0, η
4ε ].

In combination with remark C.8, it follows that it suffices to take ε small enough such that
ε <

η
√
µ

4π . To prove the assertion, we rewrite the right-hand side of that inequality as

η
√
µ

4π
=
η
√
η
(
e2π2η − 1

)
4π

,

which is, in fact, sharper than the right-hand side in the assertion; for conciseness, we observe
that e2π

2η − 1> 2π2η and, hence, that

η
√
µ

4π
>

η2

2
√
2
,

whence the assertion follows.
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