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ABSTRACT
The contribution of nuclear quantum effects (NQEs) to the properties of various hydrogen-bound systems, including biomolecules, is increas-
ingly recognized. Despite the development of many acceleration techniques, the computational overhead of incorporating NQEs in complex
systems is sizable, particularly at low temperatures. In this work, we leverage deep learning and multiscale coarse-graining techniques to
mitigate the computational burden of path integral molecular dynamics (PIMD). In particular, we employ a machine-learned potential to
accurately represent corrections to classical potentials, thereby significantly reducing the computational cost of simulating NQEs. We vali-
date our approach using four distinct systems: Morse potential, Zundel cation, single water molecule, and bulk water. Our framework allows
us to accurately compute position-dependent static properties, as demonstrated by the excellent agreement obtained between the machine-
learned potential and computationally intensive PIMD calculations, even in the presence of strong NQEs. This approach opens the way to the
development of transferable machine-learned potentials capable of accurately reproducing NQEs in a wide range of molecular systems.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0226764

I. INTRODUCTION

Molecular dynamics (MD) simulations provide insights into
phenomena at atomic resolution and are an invaluable tool in
chemistry, biophysics, and material science. Recent advances in
force field,1–3 algorithms,4 and hardware development5 allow for
increasingly higher accuracy and a broader scope of application of
molecular dynamics simulations.

Traditional MD simulations rely on the classical evolution
of nuclear positions, neglecting an explicit treatment of so-called
nuclear quantum effects (NQEs) such as zero-point fluctuations,
tunneling phenomena, and isotope effects. This simplification has
a historical justification as the parameters of classical empirical
force field simulations are fit to reproduce (quantum) experimental
data. Hence, NQEs are effectively included in the classical potential

energy surface, at least partially, albeit with limited transferability.
Meanwhile, bottom-up ab initio MD methods or machine learning
interatomic potentials (MLIPs), based on the Born–Oppenheimer
approximation,6 only account for the quantization of electrons.
Hence, these simulations require an explicit treatment of quan-
tum nuclear motion on the Born–Oppenheimer potential energy
surface (PES) in theory. Particularly when accurate electronic struc-
ture methods are used to estimate the Born–Oppenheimer PES,
the neglect of quantum nuclear motion may be the largest source
of error for obtaining quantitative agreement with experiments.7–10

Unfortunately, NQEs are typically neglected due to their significant
computational overhead or because they are assumed to have small
effects. However, even at ambient temperatures, NQEs significantly
affect the properties of hydrogen-bounded systems, e.g., static and
dynamic properties of water,11–23 free energies of hydrogen bonding
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and proton transfer,24–29 stability of molecular crystals,30,31 strength
of intermolecular interactions,9,32 and enzyme activity.19,33

The standard condensed-phase simulation technique for incor-
porating NQEs in equilibrium properties is Feynman’s imaginary
time path integral (PI) formalism.34 In this framework, a system’s
quantum statistical mechanics is mapped onto the classical statisti-
cal mechanics of a ring polymer, which consists of multiple replicas
of the system connected by harmonic interactions that depend on
temperature and mass. The effective classical PI partition function
of the ring polymer system can be sampled using MD or Monte
Carlo techniques, yielding the PIMD35 and PI Monte Carlo36 meth-
ods. In theory, PI methods incorporate quantum statistics exactly
with classical sampling, in the limit of the number of replicas going
to infinity.37 However, typically, the required number of replicas
to converge structural properties, and thus the increased computa-
tional cost compared to classical MD, rises with increasing physical
frequencies or lowering temperatures.38 As a result, most molecular
systems require 16–32 replicas at room temperature, which increases
proportionally with lowering temperature, such as over 104 repli-
cas to obtain converged energies for molecular systems at cryogenic
temperatures.39

Over the past decades, several systematically improvable
reduced-cost PI approaches have been proposed. These include
high-order factorization of the Boltzmann operator,40–45 per-
turbative expansion of the Boltzmann operator,46,47 multiple
time stepping,48 ring polymer contraction,49 and colored-noise
thermostats.50–52 Despite their notable success toward mainstream-
ing the use of PI methods,38 these approaches do not yet present a
“fix-all” solution. Issues still exist, including, but not limited to, lack
of universal applicability of multiple time stepping and ring poly-
mer contraction, tedious implementation of high-order path integral
techniques, and poor ergodicity53 or zero-point energy leakage50 due
to the coupling between physical and fictitious PI collective modes.
Finally, these approaches do not eliminate the diverging cost of path
integral simulations at low temperatures.

An appealing direction that avoids the computational overhead
of PI methods is to avoid modeling the entire imaginary-time path.
For instance, the Wigner–Kirkwood effective potential54,55 expands
the partition functions in powers of the reduced Planck’s constant
and retains computationally tractable terms. Similarly, an effective
quantum potential was suggested by Feynman and Hibbs34,56 by
integrating out all degrees of freedom except the centroid of the
ring polymer, i.e., by coarse-graining the ring polymer to the cen-
troid. Ever since, the idea of ring polymer coarse-graining has been
explored for over 30 years57–65 and has recently gained increasingly
more attention thanks to the advent of MLIPs.66–68

A number of coarse-grained effective potentials can be devel-
oped by identifying (a) a suitable mapping from the fine-grained
ring polymer to the coarse-grained classical system and (b) the
functional form of the interactions in the coarse-grained system.
For instance, the so-called CG-PI theory, developed by Voth and
co-workers,69–71 proposes to map the imaginary time path to a
two-replica coarse-grained system. This mapping gives access to
both diagonal and nondiagonal elements of the thermal density
matrix. However, the corresponding formalism is challenging to
implement for realistic molecular systems in the regime of strong
NQEs.71 Another common mapping involves coarse-graining of
the ring polymer to the centroid.65–68 Among others, we have

recently shown that66 the resulting effective potential can be used
in the same manner as a classical force field. It is well known that
coarse-graining the ring polymer to its centroid can still give rig-
orous access to equilibrium properties, in terms of the so-called
centroid-constrained imaginary time correlation function.57 How-
ever, estimating equilibrium properties, such as the average of a
non-linear position-dependent operator, in this manner is usu-
ally complicated for generic systems because ensemble averages of
the operators evaluated on the centroid coordinates need to be
integrated in the high-dimensional configurational space with the
centroid-constrained imaginary time correlation function.57 On the
other hand, the centroid-based description is most effective for an
approximate treatment of dynamical properties of complex systems
in terms of time correlation functions estimated on the centroid
trajectory.58 A prominent feature of our work is the path-integral
coarse-grained simulation (PIGS) method, which uses many-body
universal approximators72 to fit the coarse-grained potential of mean
force. The PIGS approach utilizes machine-learned potentials, capa-
ble of approximating arbitrary complex functions, to learn the full
many-body coarse-grained potentials as demonstrated recently on
biomolecular simulations.73–76

Here, instead of dynamical properties, we focus on characteriz-
ing static position-dependent properties, including NQEs, and we
develop an effective machine-learned potential to compute them
accurately and at the cost of classical MD. Our approach builds upon
the PIGS approach that uses multiscale coarse-graining72 and our
work on the use of deep learning architectures for classical coarse-
grained force-fields77 but maps the ring polymer onto a single replica
instead of the centroid. This coarse-grained mapping is distinct from
earlier choices and allows quantum thermodynamic expectation val-
ues of position-dependent observables to be estimated rigorously as
simple time averages akin to classical MD. We demonstrate that this
approach yields accurate quantum nuclear statistics of bulk and iso-
lated systems. The remaining sections of this paper are organized
as follows: In Sec. II, we briefly summarize the imaginary-time PI
theory and the application of thermodynamic coarse-graining to the
problem. Section III discusses the numeric implementation of the
approach for four model systems: one-dimensional Morse potential,
single H2O molecule, Zundel cation, and bulk water. The results are
presented and discussed in Sec. IV. Section V provides concluding
remarks.

II. THEORY AND METHODS
A. The path-integral approach

We consider a Hamiltonian H of N distinguishable nuclei,
living in three-dimensional Cartesian space, with masses
{m1, . . . , mN} ≡ {mi}i, and position vector q ≡ {qi}i, interact-
ing with the potential U(q). The equivalent PI partition function
comprising P replicas can be expressed as

Z = tr[e−βĤ
] = lim

P→∞
ZP, (1)

where

ZP ∝ ∫ dQe−βUPI(Q),

= ∫ ∏
j=1

dq( j)e
− β

P [∑
P
j=1[∑

i

1
2

miP2

β2 h̵2 (qi
( j+1)−qi

( j))
2
+U(q( j))]]

. (2)
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Here, q( j) represents the position vector of the jth replica of the sys-
tem in the ring polymer with cyclic boundary conditions q( j)

≡ q( j+P).
In addition, Q ≡ {q( j)

} j is a shorthand notation for the set of posi-
tions of the P replicas of the ring polymer, and UPI

(Q) is a shorthand
notation for the total potential experienced by the ring polymer. In
the limit P →∞, the ring polymer statistics is an unbiased estimator
of quantum statistics of the target system.

The quantum thermodynamic average of a position-dependent
operator O(q̂) is typically estimated as the ensemble average of the
position-dependent function averaged over all the replicas,

O = ⟨
1
P

P

∑
j=1

O(q( j)
)⟩

PI

, (3)

where ⟨◻⟩PI corresponds to the ensemble average defined in Eq. (2).
Estimating Eq. (3) is computationally demanding due to the need
for simulating P replicas of the system. Typically, P should be larger
than βhωmax with ωmax being the largest physical frequency of the
system.49 Notably, for a given system (with fixed ωmax), the num-
ber of replicas scales inversely with T, implying a steeply rising
computational cost as the temperature goes to zero.

B. Path-integral coarse-graining
for quantum statistics

Our goal is to reduce the computational cost of simulating ring
polymer statistics by integrating additional degrees of freedom, such
as (linear combinations of) the replicas of the system, in a way that
retains the accuracy of Eq. (2). In the most extreme and compu-
tationally beneficial scenario, we can integrate the P − 1 replicas of
the physical system to an effective potential felt by a single replica,
reducing the dimensionality of the ring polymer to the physical sys-
tem. In doing so, we reduce the cost of estimating thermodynamic
properties to that of classical MD.

The problem can be reformulated using the bottom-up
coarse-graining technique widely used in biomolecular simulations.
We wish to coarse-grain the ring polymer system in the high-
dimensional configurational space Q ∈ R3NP described by a poten-
tial UPI

(Q) into an effective thermodynamically consistent potential
Ueff
(q) with q ∈ R3N ,

Ueff
(q) = −β−1 ln

⎡
⎢
⎢
⎢
⎢
⎣

∫dQ e−βUPI(Q) δ(q − ξ(Q))

∫dQ e−βUPI(Q)

⎤
⎥
⎥
⎥
⎥
⎦

, (4)

where δ is a Dirac delta function and ξ is a linear operator that
maps coordinates from R3NP

→ R3N . The effective potential of mean
force in Eq. (4) can be obtained using the force-matching vari-
ational approach.72 We first represent the effective potential as a
function, Ũ eff

(q, θ), parameterized by θ, and then minimize the
force-matching loss73 with respect to θ,

L = ∥ξ f (F) +∇qŨ eff
(q; θ)∥. (5)

Here, F ≡ −∇QUPI
(Q) is the force associated with the (high-

dimensional) ring polymer systems and ξ f is a linear operator that
maps the forces from R3NP

→ R3N , i.e., the high-dimensional ring
polymer space into the low-dimensional space associated with the
physical system.

C. Single replica coarse-graining
While several choices of the mapping operators ξ and ξ f are

possible,77 not all choices are ideal for estimating generic position-
dependent operators with the full accuracy of Eq. (3). To make
a physically meaningful and computationally favorable choice, we
note that all replicas of the ring polymer are equivalent thanks to
the invariance of the trace in Eq. (2) to cyclic shifts. Hence, a ther-
modynamic expectation value can be estimated by averaging the
position-dependent function estimated on any replica j′,

O = ⟨O(q(j
′)
)⟩

β
. (6)

Equation (6) suggests that the statistics of a single replica
are sufficient to estimate the equilibrium averages of position-
dependent observables. From the perspective of developing an effec-
tive potential, it is sufficient to integrate all but one (arbitrary)
replica. Hence, in this work, we coarse-grain the ring polymer
to a single replica using as a configurational map the following
transformation:

ξ(Q) = q(j
′). (7)

Given this configurational map, a thermodynamically consistent
force map ξ f can be constructed with the matrix elements given by
the following relationship:77

ξ ji
f =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 for atom i identified with replica j,
0 for atom i identified with replica k ≠ j,
cji ∈ R for all other atoms,

(8)

where cji are arbitrary. For a ring polymer, setting cji = 0 leads to
the following primitive estimator of force projected onto a coarse-
grained space:

ξ f (F) = −
∇U(q(j

′)
)

P
−

mP
β2h̵2 (2q(j

′)
− q(j

′+1)
− q(j

′−1)
). (9)

However, the numerical efficiency of the force-matching minimiza-
tion can be further improved by optimizing cji to minimize the vari-
ance of the mapped force.77 With the configurational mapping oper-
ator given by Eq. (7), the expectation values of a position-dependent
operator can be estimated as a simple ensemble average,

O = ⟨O(q)⟩β, (10)

akin to standard MD, albeit in the classical ensemble of the effective
potential Ueff

(q).
The choice of the mapping operator in Eq. (7) is distinct from

earlier choices made in the context of coarse-graining of imaginary-
time PIs. The most popular coarse-graining approach maps the ring
polymer positions to its centroid. While this approach is useful for
simulating dynamical properties, it does not give correct equilibrium
averages of generic position-dependent operators when estimated as
an ensemble average similar to Eq. (10). Similarly, the PICG the-
ory introduced in Refs. 69–71 coarse-grains the ring polymer to two
replicas, which are related to the positions at which the off-diagonal
elements of the Boltzmann operator are estimated. This approach
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gives access to generic position- and momentum-dependent oper-
ators; however, it requires derivations of bespoke (complicated)
operators. Meanwhile, our mapping reduces the ring polymer to the
position at which the trace of the Boltzmann operator is estimated,
with Ueff

(q) = −β−1 log⟨q∣e−βĤ
∣q⟩, modulo an additive constant,

giving access to position-dependent operators as simple ensemble
averages.

D. Workflow using the PIGS method
To develop the effective potentials that incorporate NQEs, we

utilize the PIGS approach, outlined in Fig. 1. First, we generate
training data via the PIMD simulation. The resulting ring polymer
trajectories are then projected onto a coarse-grained space using
a configurational and force map discussed above. Notice that the
remaining replica j′ in Eq. (7) is selected arbitrarily, and for a
ring polymer with P replicas, Eq. (7) defines P equivalent projec-
tions. Thus, each ring polymer configuration yields P data points for
training.

The effective potential is represented in the following form:

Ueff
(q, θ) = αU(q) +UML

(q, θ), (11)

where UML
(q, θ) is a learnable correction. The hyperparameter α

determines the contribution of the physical potential to the total
energy. A common approach is to set α = 1, so the ML network
learns an effective NQE correction to the classical potential.66,68 This
choice is effective at high temperatures when NQEs are small. How-
ever, as temperature decreases, prior classical distribution quickly
becomes more localized, and the difference between the classical and
target quantum potential increases, making the correction harder to
learn. However, in the harmonic limit, it is possible to make classical
distribution more “quantum-like” by changing the simulation tem-
perature. For this reason, to simplify the learning and enhance the
data efficiency of the training and the model stability, we consider
α to be temperature dependent: α = T/T0, where T < T0 denotes
the target temperature and T0 is a hyperparameter. If not specified
otherwise, we set T0 = 600 K. The learnable model parameters are
then optimized with standard ML approaches. The resulting effec-
tive potential can then be used for calculations as a standard MD
force field.

E. Applicability of the models to different
thermodynamic conditions

The thermodynamically consistent CG model approximates the
potential of mean force, which depends on the thermodynamic state,
e.g., system temperature. Consequently, the model is strictly appli-
cable only under the same conditions it was trained, and targeting
the coarse-grained model to different conditions requires a different

FIG. 1. Procedure to train an effective NQE potential.

set of training data. However, in the case of ring polymer coarse-
graining, we notice two cases where the applicability of a trained
model can be extended, or training data generated for one condition
can be reused for a different one. In the first scenario, the molecule
predominantly populates the ground vibrational state, and the pop-
ulation of the excited states is negligible. In this case, the general
equation for the quantum PMF [see Eq. (18)] simplifies to

Ueff
= −

1
β

ln ∣Ψ0∣
2, (12)

where Ψ0 denotes the ground-state nuclear wave function.
Consequently, the effective CG potentials at different temper-

atures in the ground vibrational state are related to each other as

Ueff
(β2) =

β1

β2
Ueff
(β1). (13)

This relationship implies that if a model is trained at a temperature
that is low enough to predominately populate the ground state, the
same model can be used to run simulations and compute the quan-
tum statistics at any lower temperature by rescaling Ueff and the
corresponding forces according to Eq. (13).

This simple relation breaks down when the population of the
excited vibrational states is non-negligible. However, a dataset gen-
erated with an expensive PIMD simulation at one temperature can
be used to generate synthetic datasets corresponding to different
temperatures and isotope compositions. This data recycling pro-
cess involves two steps. First, we reweight the configuration to
the target temperature and isotope composition, efficiently using
the coordinate rescaling approaches from Refs. 78 and 79. Within
the coordinate scaling approach, given the initial coordinates q,
inverse temperature β1, and mass m1, to model a system at inverse
temperature β2 and mass m2, we rescale the coordinates as

q′( j)
= q̄ −

√
m2β1

m1β2
(q̄ − q( j)

), (14)

where q̄ = 1
P∑

P
j=1 q( j) represents the centroid position. Then, the

probability ρ(q) of a configuration in the ensemble characterized by
m2 and β2 is given by (see the supplementary material for the details)

ρ(q′; β2; m2) = ρ(q; β1; m1) exp
⎛

⎝

P

∑
j=1
(β/P1q( j)

− β/P2q′( j)
)
⎞

⎠
.

(15)
We used Eq. (15) to reweight the original dataset.

Second, we recompute the forces originating from the har-
monic couplings between adjacent replicas, F′, for the target
temperature and isotope compositions as

F′(q; m2; β2) =
β2

1m2

β2
2m1

F′(q; m1; β1). (16)

The resulting dataset is then used for model training, as described
above.
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III. COMPUTATIONAL DETAILS
A. 1D Morse potential
1. Model and training procedure

We first demonstrate the approach on a system for which
the exact effective potential can be estimated numerically. We
study a particle with mass μ experiencing a one-dimensional Morse
potential,

UMorse
(q) = De(1 − e−a(q−q0))2, (17)

where q is the particle position. The parameters q0, a, and De, which
determine the equilibrium position, shape, and depth of the poten-
tial, respectively, are chosen to reproduce the potential of the O–H
bond, and μ is set to the reduced mass of the O–H bond (see the
supplementary material for the numeric values).

The effective potential corresponding to the mapping in Eq. (7)
can be estimated numerically by solving the Schrödinger equation
for the bound states of a Morse potential80 as

Ueff
(q) = −β−1 ln ∑i e−βEi ∣Ψi(q)∣2

∑i e−βEi
, (18)

where Ei and Ψi(q) are the energy eigenvalues and wave functions
associated with the ith eigenstate, respectively. To estimate the effec-
tive potential using the PIGS approach, we optimize a coarse-grained
potential in Eq. (11) with α = P−1,

Ueff
(q, θ) =

UMorse
(q)

P
+UML

(q, θ), (19)

where UML
= ∑

M
i=1 θi ϕi(q) is a linear combination of radial basis

functions ϕi(q) (see the supplementary material for details)81 and
M is the total number of basis functions (we set M = 10). Hence,
instead of learning the full effective potential, we fit a correction to
the classical potential that captures the quantum effects learned from
the full-ring polymer simulations. The adjustable parameters θ are
obtained by minimizing Eq. (5) using ridge regression, with the L2
regularization parameter set to 0.1 and fivefold cross-validation.

2. Training data generation
The training data were generated from PIMD simulations using

the i-PI code82 and a custom Python-based force provider imple-
menting the one-dimensional Morse potential. Three simulations
were performed in an NVT ensemble for 100, 300, and 600 K, using
64 replicas and a PILE-L thermostat with a time constant of 100 fs.83

The integration was performed with a time step of 0.5 fs, and posi-
tions and forces acting on each bead were sampled every 20 steps.
The first 2.5 ps of the simulation was discarded, and the positions
and forces sampled in the subsequent 500 ps were used to train the
model.

B. Molecular systems: Water molecule, Zundel cation,
and liquid water
1. Model and training procedure

We use Eq. (11) to model the effective potential of the single
water molecule, the Zundel cation, and bulk water. We represent
UML with the MACE graph neural network architecture.84 One of

the hallmarks of the MACE architecture is the use of many-body fea-
tures to represent atomic local environments, improving the model
accuracy and data efficiency.

The models were trained with the AdamW optimizer, a learn-
ing rate of 0.001, and a weight decay of 0.001. The MACE neural
network cutoff was set to 6.0 Å, with 15 radial basis functions,
6 polynomial, and 3 radial channels. The correlation order for
Zundel cation and bulk water was set to 3, which corresponds to
four-body features. For a single water molecule, three-body fea-
tures were used. In all cases, 80% of the data available were used
for training and the remaining 20% were used for validation. The
training was performed for 60 epochs for the H2O molecule and the
Zundel cation and for 15 epochs for liquid H2O. For each system,
ten different models were trained, each using different parameter
initialization and train–validation splitting.

2. Training data generation
The training data were generated from PIMD simulations using

the i-PI code using the Partridge and Schwenke potential for a sin-
gle water molecule,85 the HBB potential86 for the Zundel cation, and
the MB-pol for bulk water.87 The simulation parameters are sum-
marized in Table S1. For each system, all the data generated during
the production phase of PIMD simulation were used as a training
dataset. Since all the replicas are equivalent, each frame of the tra-
jectory yields P data points for model training. We use a force map
optimized to minimize the average magnitude of the mapped forces,
subject to the constraints of the valid force map. This force optimiza-
tion was performed according to the procedure introduced in Ref.
77, with an L2 regularization parameter set to 0.05.

3. Model evaluation
For each of the trained models, we performed molecular

dynamics simulations, using as a force field a combination of clas-
sical potential and a trained correction as defined in Eq. (11). The
simulations were performed in the NVT ensemble, with a Langevin
integrator and a friction thermostat with a time constant set to
100 ps−1. The time step and periodic boundary conditions were the
same as in the training simulations. All the frames were used for
further analysis. For each of the systems, we performed additional
simulations with only the classical potential as a control to compare
the classical and quantum statistics.

IV. RESULTS AND DISCUSSION
A. 1D Morse potential

First, we study a particle in a one-dimensional Morse poten-
tial, a model for a single O–H bond. The Schrödinger equation for
this system can be solved analytically,80 thus making Morse poten-
tial an ideal test system. It also exhibits significant nuclear quantum
effects, as shown in Fig. 2(a), where the classical Morse poten-
tial [Eq. (17)] is compared with the corresponding quantum PMFs
[Eq. (18)] at different temperatures. The classical approximation
leads to the over-localization of the particle, and, as expected, the
quantum effects are more prominent at low temperatures. However,
for this system, even at a temperature of 600 K, there are significant
deviations between the classical and quantum pictures.

The developed approach allows us to get a quantitative agree-
ment with the reference, especially in the high-probability regions
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FIG. 2. Exact and machine-learned PMF for the Morse potential. (a) Classical Morse potential and quantum PMFs at different temperatures. Even at 600 K, the system
exhibits significant quantum effects. (b)–(d) Comparison of exact quantum PMF and machine-learned PMF at 100 K (b), 300 K (c), and 600 K (d). (e) Results for models
trained at 300 K for OH and OT from reweighted simulations performed at 600 K. The average PMF over five models is reported as a dashed line, and ±3 standard deviations
are reported as shaded areas.

that are well-sampled in the training dataset [Figs. 2(b)–2(d)].
Further away from the minimum energy, the model’s prediction
slightly deviates from the ground truth. This is to be expected, as
these regions of the phase space are not as well represented in the
training data as the high-probability regions.

We test the reweighting scheme proposed in Sec. II E by gen-
erating datasets corresponding to different temperatures (300 K)
and mass of the particle that is either protium (corresponding to
an O–H bond) or increased to tritium (corresponding to an O–T
bond) from the 600 K O–H dataset previously used. The result-
ing reweighted datasets were used to train new models. As shown
in Fig. 2(e), the models trained with the reweighted dataset are in
excellent agreement with the analytical results for the corresponding
temperature and isotope composition. Such data recycling allows for
a further decrease in the computational cost of generating training
data, although it becomes less effective for more complex systems.
Nevertheless, we expect that this approach may be particularly useful
for generating large datasets for training transferable models.

B. Water molecule
The next test case we considered is a single water molecule in

vacuum. The quantum statistics of this three-body system can be
exhaustively described in terms of the length of two O–H bonds and
the H–O–H bond angle. The comparison of the probability distri-
butions for the O–H distances and H–O–H bond angles is shown in
Fig. 3, with additional details provided in Fig. S4. As was the case for
the Morse potential, the classical distribution is significantly more
localized than the quantum counterpart. The ML model consistently
samples the correct quantum distribution: the results obtained from
ten independently trained models produce similar results with low
variance.

For all trained models, we run the MD simulation for 1 ns,
which is four times longer than the PIMD simulation used to gen-
erate the training data. This allows us to obtain slowly converging
properties by performing short PIMD simulations and using those
to train a model that can be run for a much longer time.

We further investigated the impact of PIMD simulation length
on model performance by training additional models using 2.5,
12.5, 25, and 125 ps of post-equilibration PIMD data, compared

FIG. 3. (a) Comparison of the probability distributions of the O–H bond length
(left) and the H–O–H angle (right) for classical MD (P = 1), PIMD (P = 64),
and ML models at 100 K. The insets show the same distributions at a different
scale. (b) Jensen–Shannon (JS) divergence between collective variable distribu-
tions obtained with PIMD and either classical potential (shades of blue) or with our
machine-learned model (shades of brown). For each case, JS divergence for the
O–H bond length distribution and the H–O–H angle distribution at three different
temperatures are shown.
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to the primary model trained with 250 ps. All models generated
stable 1 ns trajectories. Notably, even with just 5% of the original
dataset, the models showed on average good agreement with the ref-
erence PIMD data [Figs. S1 and S2]. As the dataset size increased,
the Jensen–Shannon divergence decreased and eventually plateaued
by 250 ps (Fig. S3).

Even at 600 K, the water molecule predominantly populates
the ground vibrational state, with a negligible population of the
excited states. Thus, as discussed in Sec. II E, the model trained at
600 K can be used to simulate the system at any lower temperatures.
To demonstrate this point further, we report in Fig. S5 the results
obtained with a model trained on PIMD data generated at 600 K and
then simulated at lower temperatures, with forces rescaled according
to Eq. (13).

C. Zundel cation
A more challenging case is the Zundel cation, which con-

sists of two water molecules sharing a hydrogen-bonded proton
H∗. This system has been extensively studied both theoretically88,89

and experimentally.90–94 The Zundel cation exhibits large confor-
mational fluctuations, including anharmonic and floppy motion
associated with the transfer of the hydrogen-bounded proton. Fol-
lowing Ref. 89, we characterize these fluctuations by means of the
O–O distance d(O–O), the proton transfer coordinate δ = d(O1H∗)
− d(O2H∗), the dihedral angle ϕ that measures the rotation of the
H3O+ fragments around the O–H∗–O axis, and the d(O–plane)
that measures the non-planarity of the H3O+ fragment. The dihedral

angle ϕ is defined by points X1–O1–O2–X2, where X1 and X2 repre-
sent a midpoint between the hydrogen atoms that are not involved in
the hydrogen bond formation and bound to O1 and O2, correspond-
ingly. The non-planarity of H3O+ is characterized by a distance
between an O atom and the plane, defined by the three closest H
atoms (see the lower panel of Fig. 4).

At 300 K, the proton transfer coordinate and the rotational
motion are almost classical, and only a small correction is needed
to account for NQEs. The O–O distance and the O−plane distance
require larger corrections, yet the NQEs are relatively small. At
100 K, however, significant quantum effects appear in all the collec-
tive variables, including changes in the equilibrium geometry. Nev-
ertheless, our methods recover the accurate quantum distribution
both at 300 K and at 100 K. Despite the diversity of conformational
fluctuations, the model not only reproduces the target probability
distributions but also leads to remarkably stable simulations: all the
models were used to perform 1 ns simulation and did not exhibit any
instabilities, often plaguing ML force fields.95,96

D. Liquid water
Finally, we applied our approach to model liquid water to

reproduce the NQEs manifesting in both bonded and nonbonded
interactions. Since NQEs are highly local, the former are more
affected than the latter. The quality of the machine-learned model
is evaluated in Fig. 5 by computing radial distribution functions
(RDFs). At 300 K, the first peak in the O–H [Fig. 5(b)] and H–H
[Fig. 5(c)] RDFs predicted by classical MD (P = 1) are too narrow
and significantly deviate from the correct quantum PIMD results.

FIG. 4. Probability distribution for the Zundel cation, sampled with the PIMD simulation, the MD simulation, and the proposed ML model. The top row [panels (a)–(d)]
represents the model trained and simulated at 100 K, and the bottom row [panels (e)–(h)] shows the results trained at 300 K. Under the plots, a visual representation of the
corresponding collective variable is shown.
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FIG. 5. Radial distribution functions g(r)OO, g(r)OH, and g(r)HH for bulk H2O at 300 K. The teal line represents the RDF obtained with a classical MD simulation (P = 1), the
orange line represents the PIMD result, and the brown dashed line represents the results obtained with the ML model. The result reported for the ML model is the mean over
ten independent models with different train–test splits and model initialization.

The deviations between the classical and quantum RDFs rapidly
decrease with the distance.

Our neural-network-based potential is able to accurately pre-
dict the correct quantum RDFs, including the contributions that
arise from both bonded and nonbonded interactions (Fig. 5), in
contrast to another similar study.68 There is also a remarkable
agreement between independently trained models. The high accu-
racy and low uncertainty of our ML model prediction show that
it reliably captures the subtle differences between classical and
quantum RDFs.

Compared to the simulations for the ML models of a sin-
gle water molecule and of the Zundel cation, the simulations for
bulk water exhibit a decreased stability. We note that some simu-
lations of our ML models, trained on 35 ps of PIMD simulations,
exhibit numerical instabilities. However, the ML models allow, on
average, at least 38 ps of simulation time before the onset of any
instability. Simulations can be reinitialized and restarted to improve
statistics. The numerical instability of the model can be potentially
cured by increasing the size of the training dataset. Alternatively,
one can modify the learning problem by simplifying the ML cor-
rection, for example, by introducing physics-informed energy terms,
as it is done in the learning of classical ML coarse-grained force-
fields.73–76 Given that the stability of the simulation strongly depends
on the parameter α [see Eq. (11)], this approach may be especially
promising.

V. CONCLUSION
We developed an approach to coarse-grain the ring-polymer

dynamics describing NQEs, and we obtain results thermodynami-
cally consistent with PIMD simulations. This approach allows us to
accurately compute position-dependent NQEs at the cost of classical
MD. We have demonstrated this method on four distinct systems
where NQEs are prevalent—the Morse potential, a single water
molecule, the Zundel cation, and bulk water—and reported results
in excellent agreement with (much more expensive) reference PIMD
simulations.

The proposed method builds an effective NQE correction
potential by combining the rigorous framework of multiscale

coarse-graining72 with the MACE architecture,84 an expressive state-
of-the-art graph neural network potential. We have shown that these
effective potentials accurately reproduce the quantum statistics of
nuclei, both near the classical limit and in the regime of strong NQE.
Moreover, our method eliminates the need to simulate multiple
replicas. Once parameterized, the model seamlessly integrates into
existing classical force fields and does not require specialized algo-
rithms other than ones already used for classical MD simulations.
However, this approach is limited to reproducing quantum ther-
modynamics, so dynamical and momentum-dependent properties
should be approximated using a previously proposed method.66

For the results presented here, different sets of training data
were used to train models for different molecular species at dif-
ferent temperatures. However, if the temperature associated with
the training data is low enough to significantly populate only the
quantum ground state, the trained model can be used to also sim-
ulate any lower temperature, as we have demonstrated in the case of
the H2O molecule. The proposed method is designed such that the
forces originating from the coupling between the adjacent replicas
have a non-zero contribution to the force projected onto the coarse-
grained space. As the dependence of these forces on the atomic mass
and temperature is known [Eq. (9)], the training dataset obtained
for one isotope composition and temperature can be, in principle,
reweighted to construct a dataset for different isotope compositions
and temperatures. Thus, a single PIMD simulation can provide data
for training several models, as we have shown in the case of the
Morse potential.

The rapid proliferation of machine-learned force fields param-
eterized using accurate quantum chemical calculations to account
for the electronic effects means that the missing NQEs are now
becoming a dominant source of error. At the same time, NQEs are
crucial to describe biomolecular processes accurately, for instance,
in the case of proton transfer reactions. While the results pre-
sented here are model-specific, building upon the recent develop-
ment of machine-learned force-fields (either coarse-grained73–76 or
atomistic81,84,97–100), we believe that this study represents a signifi-
cant step forward toward the design of transferable potentials that
explicitly incorporate also NQEs but retain the computational cost
of classical MD.
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SUPPLEMENTARY MATERIAL

Section I of supplementary material details the Morse poten-
tial (Sec. I A) and ML model used for a particle in Morse potential
(Sec. I B). Section II contains the simulation parameters used to
generate the training data. Section III provides the derivation of
coordinate rescaling. Section IV presents extended results for a water
molecule.
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Soc. 144, 7111 (2022).
32H. E. Sauceda, V. Vassilev-Galindo, S. Chmiela, K.-R. Müller, and A.
Tkatchenko, Nat. Commun. 12, 442 (2021).
33D. T. Major, A. Heroux, A. M. Orville, M. P. Valley, P. F. Fitzpatrick, and J. Gao,
Proc. Natl. Acad. Sci. U. S. A. 106, 20734 (2009).
34R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, Interna-
tional Series in Pure and Applied Physics (McGraw-Hill, 1965).
35D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
36B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401 (1986).
37M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation
(Oxford University Press, 2023).
38T. E. Markland and M. Ceriotti, Nat. Rev. Chem 2, 0109 (2018).
39F. Uhl, D. Marx, and M. Ceriotti, J. Chem. Phys. 145, 054101 (2016).
40M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 3765 (1984).
41S. A. Chin, Phys. Lett. A 226, 344 (1997).
42A. Pérez and M. E. Tuckerman, J. Chem. Phys. 135, 064104 (2011).
43V. Kapil, J. Behler, and M. Ceriotti, J. Chem. Phys. 145, 234103 (2016).
44V. Kapil, J. Wieme, S. Vandenbrande, A. Lamaire, V. Van Speybroeck, and M.
Ceriotti, J. Chem. Theory Comput. 15, 3237 (2019).
45Y. Kamibayashi and S. Miura, J. Chem. Phys. 145, 074114 (2016).
46I. Poltavsky, V. Kapil, M. Ceriotti, K. S. Kim, and A. Tkatchenko, J. Chem.
Theory Comput. 16, 1128 (2020).
47I. Poltavsky and A. Tkatchenko, Chem. Sci. 7, 1368 (2016).
48V. Kapil, J. VandeVondele, and M. Ceriotti, J. Chem. Phys. 144, 054111 (2016).
49T. E. Markland and D. E. Manolopoulos, Chem. Phys. Lett. 464, 256 (2008).
50M. Ceriotti, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 103, 030603 (2009).
51H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.-J. Greffet, Phys. Rev.
Lett. 103, 190601 (2009).
52M. Ceriotti and D. E. Manolopoulos, Phys. Rev. Lett. 109, 100604 (2012).
53R. Korol, N. Bou-Rabee, and T. F. Miller III, J. Chem. Phys. 151, 124103
(2019).
54E. Wigner, Phys. Rev. 40, 749 (1932).
55J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
56R. P. Feynman, Statistical Mechanics (Benjamin, New York, 1972).
57J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093 (1994).
58J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
59J. Cao and G. A. Voth, J. Chem. Phys. 101, 6157 (1994).
60J. Cao and G. A. Voth, J. Chem. Phys. 101, 6168 (1994).
61J. Cao and G. A. Voth, J. Chem. Phys. 101, 6184 (1994).
62N. V. Blinov, P.-N. Roy, and G. A. Voth, J. Chem. Phys. 115, 4484 (2001).
63N. Blinov and P.-N. Roy, J. Chem. Phys. 115, 7822 (2001).
64P.-N. Roy and N. Blinov, Isr. J. Chem. 42, 183 (2002).
65T. D. Hone, S. Izvekov, and G. A. Voth, J. Chem. Phys. 122, 054105 (2005).
66F. Musil, I. Zaporozhets, F. Noé, C. Clementi, and V. Kapil, J. Chem. Phys. 157,
181102 (2022).
67T. D. Loose, P. G. Sahrmann, and G. A. Voth, J. Chem. Theory Comput. 18,
5856 (2022).
68I. V. Kurnikov, L. Pereyaslavets, G. Kamath, S. N. Sakipov, E. Voronina, O.
Butin, A. Illarionov, I. Leontyev, G. Nawrocki, M. Darkhovskiy, M. Olevanov, I.
Ivahnenko, Y. Chen, C. B. Lock, M. Levitt, R. D. Kornberg, and B. Fain, J. Chem.
Theory Comput. 20, 1347 (2024).
69W. H. Ryu, Y. Han, and G. A. Voth, J. Chem. Phys. 150, 244103 (2019).
70A. V. Sinitskiy and G. A. Voth, J. Chem. Phys. 143, 094104 (2015).

71W. H. Ryu and G. A. Voth, J. Phys. Chem. A 126, 6004 (2022).
72W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das,
and H. C. Andersen, J. Chem. Phys. 128, 244114 (2008).
73J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron, G. de Fabritiis, F.
Noé, and C. Clementi, ACS Cent. Sci. 5, 755 (2019).
74B. E. Husic, N. E. Charron, D. Lemm, J. Wang, A. Pérez, M. Majewski, A.
Krämer, Y. Chen, S. Olsson, G. de Fabritiis, F. Noé, and C. Clementi, J. Chem.
Phys. 153, 194101 (2020).
75M. Majewski, A. Pérez, P. Thölke, S. Doerr, N. E. Charron, T. Giorgino, B.
E. Husic, C. Clementi, F. Noé, and G. De Fabritiis, Nat. Commun. 14, 5739
(2023).
76N. E. Charron, F. Musil, A. Guljas, Y. Chen, K. Bonneau, A. S. Pasos-Trejo, J.
Venturin, D. Gusew, I. Zaporozhets, A. Krämer, C. Templeton, A. Kelkar, A. E. P.
Durumeric, S. Olsson, A. Pérez, M. Majewski, B. E. Husic, A. Patel, G. De Fabritiis,
F. Noé, and C. Clementi, arXiv:2310.18278 (2023).
77A. Krämer, A. E. P. Durumeric, N. E. Charron, Y. Chen, C. Clementi, and F.
Noé, J. Phys. Chem. Lett. 14, 3970 (2023).
78T. M. Yamamoto, J. Chem. Phys. 123, 104101 (2005).
79M. Ceriotti and T. E. Markland, J. Chem. Phys. 138, 014112 (2013).
80J. P. Dahl and M. Springborg, J. Chem. Phys. 88, 4535 (1988).
81O. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15, 3678 (2019).
82V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A.
Cuzzocrea, R. H. Meißner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue,
W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Corminboeuf, T.
D. K uhne, D. E. Manolopoulos, T. E. Markland, J. O. Richardson, A. Tkatchenko,
G. A. Tribello, V. Van Speybroeck, and M. Ceriotti, Comput. Phys. Commun. 236,
214 (2019).
83M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem.
Phys. 133, 124104 (2010).
84I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csanyi, “MACE: Higher
order equivariant message passing neural networks for fast and accurate force
fields,” in Advances in Neural Information Processing Systems, edited by S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Curran Associates, Inc.,
2022), Vol. 35, pp. 11423–11436.
85H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997).
86X. Huang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308
(2005).
87V. Babin, C. Leforestier, and F. Paesani, J. Chem. Theory Comput. 9, 5395
(2013).
88M. Schröder, F. Gatti, D. Lauvergnat, H.-D. Meyer, and O. Vendrell, Nat.
Commun. 13, 6170 (2022).
89K. Suzuki, M. Tachikawa, and M. Shiga, J. Chem. Phys. 138, 184307 (2013).
90J. M. Headrick, J. C. Bopp, and M. A. Johnson, J. Chem. Phys. 121, 11523 (2004).
91E. G. Diken, J. M. Headrick, J. R. Roscioli, J. C. Bopp, M. A. Johnson, and A. B.
McCoy, J. Phys. Chem. A 109, 1487 (2005).
92N. I. Hammer, E. G. Diken, J. R. Roscioli, M. A. Johnson, E. M. Myshakin, K. D.
Jordan, A. B. McCoy, X. Huang, J. M. Bowman, and S. Carter, J. Chem. Phys. 122,
244301 (2005).
93L. R. McCunn, J. R. Roscioli, M. A. Johnson, and A. B. McCoy, J. Phys. Chem. B
112, 321 (2008).
94O. Vendrell, F. Gatti, and H. Meyer, Angew. Chem. 121, 358–361 (2008).
95X. Fu, Z. Wu, W. Wang, T. Xie, S. Keten, R. Gomez-Bombarelli, and
T. Jaakkola, Transactions on Machine Learning Research (OpenReview, 2023),
https://openreview.net/forum?id=A8pqQipwkt.
96S. Stocker, J. Gasteiger, F. Becker, S. Günnemann, and J. T. Margraf, Mach.
Learn. Sci. Technol. 3, 045010 (2022).
97K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,
J. Chem. Phys. 148, 241722 (2018).
98O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E. Sauceda, and K.-R.
Müller, Nat. Commun. 12, 7273 (2021).
99O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt,
A. Tkatchenko, and K.-R. Müller, Chem. Rev. 121, 10142 (2021).
100S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N.
Molinari, T. E. Smidt, and B. Kozinsky, Nat. Commun. 13, 2453 (2022).

J. Chem. Phys. 161, 134102 (2024); doi: 10.1063/5.0226764 161, 134102-10

© Author(s) 2024

https://pubs.aip.org/aip/jcp
https://doi.org/10.1073/pnas.1308560110
https://doi.org/10.1073/pnas.1308560110
https://doi.org/10.1021/acs.jpclett.6b00777
https://doi.org/10.1021/acs.jpclett.6b00777
https://doi.org/10.1021/acs.jctc.9b00596
https://doi.org/10.1073/pnas.2111769119
https://doi.org/10.1063/1.5123992
https://doi.org/10.1021/jacs.1c10885
https://doi.org/10.1021/jacs.1c10885
https://doi.org/10.1038/s41467-020-20212-1
https://doi.org/10.1073/pnas.0911416106
https://doi.org/10.1063/1.441588
https://doi.org/10.1146/annurev.pc.37.100186.002153
https://doi.org/10.1038/s41570-017-0109
https://doi.org/10.1063/1.4959602
https://doi.org/10.1143/jpsj.53.3765
https://doi.org/10.1016/s0375-9601(97)00003-0
https://doi.org/10.1063/1.3609120
https://doi.org/10.1063/1.4971438
https://doi.org/10.1021/acs.jctc.8b01297
https://doi.org/10.1063/1.4961149
https://doi.org/10.1021/acs.jctc.9b00881
https://doi.org/10.1021/acs.jctc.9b00881
https://doi.org/10.1039/c5sc03443d
https://doi.org/10.1063/1.4941091
https://doi.org/10.1016/j.cplett.2008.09.019
https://doi.org/10.1103/physrevlett.103.030603
https://doi.org/10.1103/physrevlett.103.190601
https://doi.org/10.1103/physrevlett.103.190601
https://doi.org/10.1103/physrevlett.109.100604
https://doi.org/10.1063/1.5120282
https://doi.org/10.1103/physrev.40.749
https://doi.org/10.1103/physrev.44.31
https://doi.org/10.1063/1.467175
https://doi.org/10.1063/1.467176
https://doi.org/10.1063/1.468503
https://doi.org/10.1063/1.468399
https://doi.org/10.1063/1.468400
https://doi.org/10.1063/1.1392355
https://doi.org/10.1063/1.1407291
https://doi.org/10.1560/v0m8-vjpp-6y31-bnfc
https://doi.org/10.1063/1.1836731
https://doi.org/10.1063/5.0120386
https://doi.org/10.1021/acs.jctc.2c00706
https://doi.org/10.1021/acs.jctc.3c00921
https://doi.org/10.1021/acs.jctc.3c00921
https://doi.org/10.1063/1.5097141
https://doi.org/10.1063/1.4929790
https://doi.org/10.1021/acs.jpca.2c04349
https://doi.org/10.1063/1.2938860
https://doi.org/10.1021/acscentsci.8b00913
https://doi.org/10.1063/5.0026133
https://doi.org/10.1063/5.0026133
https://doi.org/10.1038/s41467-023-41343-1
http://arxiv.org/abs/2310.18278
https://doi.org/10.1021/acs.jpclett.3c00444
https://doi.org/10.1063/1.2013257
https://doi.org/10.1063/1.4772676
https://doi.org/10.1063/1.453761
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1063/1.3489925
https://doi.org/10.1063/1.3489925
https://doi.org/10.1063/1.473987
https://doi.org/10.1063/1.1834500
https://doi.org/10.1021/ct400863t
https://doi.org/10.1038/s41467-022-33650-w
https://doi.org/10.1038/s41467-022-33650-w
https://doi.org/10.1063/1.4803655
https://doi.org/10.1063/1.1834566
https://doi.org/10.1021/jp044155v
https://doi.org/10.1063/1.1927522
https://doi.org/10.1021/jp075289m
https://doi.org/10.1002/ange.200804646
https://openreview.net/forum?id=A8pqQipwkt
https://doi.org/10.1088/2632-2153/ac9955
https://doi.org/10.1088/2632-2153/ac9955
https://doi.org/10.1063/1.5019779
https://doi.org/10.1038/s41467-021-27504-0
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1038/s41467-022-29939-5

