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A B S T R A C T

The influence of electrode roughness on diffusional cyclic voltammetry (CV) is investigated from a theoretical
perspective. For this purpose, the digital-simulation–deconvolution–convolution (DSDC) algorithm, initially
developed for the simulation of CV at porous electrodes, is subjected to three substantial modifications. First,
by employing adaptive numerical resolution and sample volumina, the computational demand of the digital
simulation (DS) step is reduced significantly. Second, by modifying the Douglas–Gunn algorithm of the DS-step
to operate on an arbitrarily incremented spatial grid perpendicular to the macroscopically planar electrode
surface, the bulk of the fluid can be treated with an exponentially increasing spatial discretization which uses
computational power even more efficiently. The third modification is an optimization of the computationally
demanding deconvolution step which is used to extract the mass-transfer function from the data computed in
the DS-step. This, initially recursive procedure, is replaced by a three-step sequence consisting of (I) a numerical
Laplace transformation (NLT) on an exponentially expanding time-grid, (II) a Laplace-domain integration (LDI)
and finally (III) a numerical inversion of Laplace transformation (NILT) using the Gaver–Stehfest (GS) inversion
formula. Based on this novel strategy for CV simulation, the effects of electrode roughness are thoroughly
investigated. It is demonstrated that for an ideally reversible reaction the effects of electrode roughness
on the CV response are insignificant at common experimental timescales. In contrast, for scenarios with
electrochemically quasi-reversible (or irreversible) kinetics, the apparent rate constants are allegedly upscaled
by the area ratio 𝜓 = 𝐴rough∕𝐴planar . This manifests in a lower peak-to-peak separation without a distortion of
the shape of the voltammetric profile. This behavior is finally explained in a quantitative manner in terms of
convolution-sums and mass-transfer functions which ultimately puts the parameter electrode roughness into the
semianalytical framework of convolutive modeling.
1. Introduction

The current response of diffusional cyclic voltammetry at mesoscop-
ically rough electrode surfaces can differ significantly from the ide-
ally planar scenario. Experimentally, we encountered this phenomenon
during electroanalytical studies of the kinetics of the V2+∕V3+-redox
reaction on metallic bismuth electrodes. While bismuth received an
increasing interest in the vanadium redox-flow battery community in
recent years [1–7], most studies utilize it in the form of nanoparticles
decorated in a porous electrode. In this particular study, however, we
utilized a planar working electrode made of elemental bismuth for
benchmarking purposes. Starting with an initially rather poor electro-
chemical activity it was found that the electrode seemingly provided
an enhanced electrocatalytic performance after a few tenth of CV
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cycles. This is illustrated in Fig. 1-(A). There, it can be seen that
the voltammetric profile of the cycled bismuth electrode (red curve)
possesses a more narrow peak-to-peak separation in comparison to its
pristine analogue (black curve) which, following the theory of CV on
flat surfaces [8], would be an indicator of an improved kinetics.

While initially speculating on some kind of activation mechanism,
scanning electron microscopy revealed that the initially smooth elec-
trode underwent a significant surface restructuring leading to a meso-
scopic scale of roughness. This is illustrated in panels (B) to (E) in Fig. 1,
and was the main motivation for investigating the interplay of electrode
roughness and electrode kinetics from a purely theoretical perspective.

On a first glance, it follows quite naturally that an increase in
surface roughness will introduce a larger electrode area exposed to
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Fig. 1. (A) Cyclic voltammograms recorded for the V2+∕V3+-redox reaction at a potential sweep-rate of 20 mV/s at ambient temperature. Potentials were referred to a Ag/AgCl
reference electrode. The working electrode was a metallic bismuth disk with a diameter of 5 mm with a smooth (black curve) and rough (red curve) surface. The electrolyte was
a degassed aqueous solution containing 0.16 M of the electrochemically active species and 2 M H2SO4. Panels (B) and (D) are photographs of the electrode surfaces with (C) and
(E) being the corresponding scanning electron microscopy images. It can be seen that the voltammetric profile of the rough electrode shows a much more narrow peak-to-peak
separation usually associated with improved electrode kinetics.
the electrolyte. Therefore, when compared to the purely geometrical
(projected) surface, it holds 𝐴geo ≤ 𝐴rough. Assuming that the intrinsic
activity of the electrode material is preserved, one could speculate
that this additional surface area will allegedly upscale the kinetics by
increasing the density of active sites — or more precisely — the active
area per unit area. Under mostly semi-infinite diffusion conditions, this
should maintain the overall shape of the voltammetric curve while
reducing the peak-to-peak separation — exactly as seen in Fig. 1-(A).
However, one may also consider that in case of very rough electrodes
(e.g. containing deep scratches in the surface) there might be a gradual
transition from the planar semi-infinite diffusion mode towards a finite
diffusion domain response since the relative contribution of the reac-
tion inside of the confined space of a scratch will increase. Therefore,
a increasing depth of a rough surface profile can lead to a gradual
transition from roughness to porosity.

Since the theory of cyclic voltammetry in finite diffusion domains
[9–12] already suggests that (independent of the electrode geometry)
the shape of the current response is largely dependent on the time-
scale of the experiment, similar behavior may be expected for rough
surfaces. Consequently, it has to be expected that the alleged increase in
electrode kinetics cannot be described by a linear scaling factor derived
from the area-ratio but will follow a more complicated function instead.

For unraveling the intricate entanglement of electrode kinetics and
mass-transfer towards a rough electrode, we decided to employ the so
called master-equation approach which is well known in the context
of convolutive modeling and which was introduced in the work of
Oldham [13–15]. The initial idea was to mathematically pinpoint the
influence of electrode roughness in a semi-analytical framework. It
should be noted that this cannot be done via classical digital simulation
algorithms which are popular in the context of CV simulation, as these
provide a numerical solution for the CV curve, but no (semi)analytical
formalism.

The main challenge for convolutive modeling is, however, that it
requires for a function which achieves a time-domain parametriza-
tion of the mass-transfer at the electrode and the diffusion space
under investigation. For highly symmetrical configurations, these time-
dependent mass-transfer functions are known as analytical expressions
or in the form of approximate solutions in the literature (e.g. for
planar electrodes [9,16], cylindrical electrodes [17,18] and spherical
electrodes [12]). Moreover, algorithms for pointwise evaluation of the
mass-transfer phenomena based on numerical Laplace transformation
inversion techniques have been proposed [19–21]. These do only re-
quire Laplace-domain solutions for the mass-transfer functions, which
are generally much simpler to assess. Nevertheless, all of these ideas
require well-defined and highly symmetrical electrodes and rely on one-

dimensional diffusion models only. In case of a rough electrode surface,

2 
the diffusion is, however, inherently random and needs to be described
in three spatial dimensions.

An approach for using convolutive modeling at random electrode
structures was presented in one of our previous publications [22]. There
we proposed a strategy for simulating CV in the confined space of
a porous (carbon felt) electrode. This strategy is adopted here and
resulted in the modified digital-simulation–deconvolution–convolution
(DSDC) algorithm presented herein.

Starting from the original DSDC-algorithm, the digital simulation
step (DS) is tailored for computations on rough surfaces. This is achieved
by employing an adaptive numerical resolution and by implementing
an arbitrarily incremented spatial grid perpendicular to the macroscop-
ically planar electrode surface for using computational power more
efficiently. Additionally, the deconvolution step, required for extracting
the mass-transfer function of the rough surface under investigation,
is significantly improved. This procedure, which has been a recursive
computation in the original algorithm, is replaced by a three-step
sequence. In particular: (I) a numerical Laplace transformation of the
flux obtained from the DS-step is followed by (II) a Laplace-domain
integration before (III) the mass-transfer function of the rough electrode
structure is finally obtained by a numerical inversion of Laplace trans-
formation based on the Gaver–Stehfest [23] algorithm. Subsequently,
CV simulation is performed by means of classical convolutive modeling
to investigate the effects of electrode roughness. It is shown that
the voltammetric profile of an electrochemically reversible reaction is
independent from the electrode roughness on common experimental
timescales. However, for electrochemically quasi-reversible (or irre-
versible) reactions an alleged increase of the kinetics is obtained. At
very high potential sweep-rates, the voltammetric curve is significantly
distorted, showing features of a finite diffusion domain similar to
porous electrodes. Both of these findings are quantitatively explained
in terms of a convolutive master-equation, invoking the parameter
electrode roughness into the semianalytical framework of convolutive
modeling.

2. State of the art

Before outlining the modifications which have been introduced into
the digital-simulation–deconvolution–convolution (DSDC) algorithm in
detail, the original steps [22] of this procedure are outlined here. Ini-
tially, the DSDC-algorithm was developed for the real-space simulation
of electroanalytical experiments at macroporous electrodes (e.g. carbon

felts). It consisted of the following successive steps:



T. Tichter et al. Electrochimica Acta 508 (2024) 145175 
Digital simulation (DS)
(I) The diffusion domain of the porous structure is discretized into

a spatial grid of the same resolution in the 𝑥, 𝑦 and 𝑧 direction
inside and outside of the electrode.

(II) Cottrellian conditions (zero concentration at 𝑡 > 0) at the elec-
trode/ electrolyte boundaries and a no-flux constraint (Neumann-
boundary) at the opposite end of the diffusion domain are im-
posed.

(III) A sigmoidally incremented time-grid is introduced whose initial
step-size is chosen to be 𝛥𝑡0 = 𝜆𝛥𝑥2∕𝐷, with D being the diffusion
coefficient, 𝛥𝑥 being the spatial increment and 𝜆 = 0.1 being the
dimension-less numerical resolution ensuring convergence. 𝛥𝑡 is
allowed to increase up to a threshold 𝛥𝑡max. The rate of increase
and the threshold value have to be determined via numerical
experimentation though.

(IV) Upon definition of the space-grid and time-grid, the diffusion
problem is solved by the Douglas–Gunn modification of the
Crank–Nicolson scheme, an unconditionally stable finite differ-
ence method. This requires as many iterations until the desired
timescale of the experiment 𝑡f inal =

∑

𝛥𝑡 is reached.
(V) The flux at the electrode/electrolyte boundary is computed in

each and every time-iteration according to Fick´s first law in
three spatial dimensions.

(VI) The non-convergent region of the flux at low times 𝑡 is masked
and replaced by the values from semi-infinite diffusion. The tran-
sition region is interpolated. This defines the Cottrellian flux of
the three-dimensional (porous) electrode structure.

Deconvolution (D)
(I) Based on the Cottrellian flux of the porous electrode structure

which was computed in the DS-step, the mass transfer func-
tion 𝑀(𝑡) is extracted in a numerical deconvolution step. This
procedure is recursive and requires an exceptionally small time-
incrementation. Despite from being sufficiently accurate, this cal-
culation is, unfortunately, inefficient from a computational per-
spective.

Convolution (C)
(I) Once the mass-transfer function is obtained, classical convolutive

modeling can be employed for CV simulation, i.e. the master-
equation approach — referred to as a semi-analytical solution —
can be used.

3. Theory

Prior to adopting the DSDC-algorithm for the simulation of CV at
rough interfaces, it is worth to consider qualitative differences between
electrode roughness and electrode porosity. For a porous medium,
mass-transfer originates mainly from the electrolyte encapsulated in-
side the electrode structure. In contrast, for a rough electrode the main
mode of diffusive mass transfer is perpendicular to the macroscopi-
cally flat surface. This qualitative remark can be used to significantly
reduce the computational effort of the digital simulation step of the
DSDC-algorithm as outlined in the following.

3.1. Digital simulation

In analogy to the previous version of the DSDC-algorithm [22] the
cartesian version of the three-dimensional diffusion equation (Eq. (1))
is used as starting point.

𝜕𝑐(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑡

= 𝐷
(

𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑥2

+
𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
+
𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2

)

(1)

Defining that the rough interface is predominantly located in the 𝑥𝑦-
plane, and considering that concentration changes in the bulk of the
electrolyte are minor, Eq. (1) can be discretized with a progressively
3 
expanding incrementation along the 𝑧-direction and a homogeneous
incrementation along the 𝑥 and 𝑦 directions. A fully homogeneous
incrementation (along the 𝑥, 𝑦 and 𝑧 directions) is only required for the
part where the electrode is actually rough. For convenience, an expo-
nentially expanding discretization of the 𝑧-direction may be chosen for
the electrolyte, which is illustrated in Fig. 2. Introducing the counting
of spatial grid-points along the 𝑥, 𝑦 and 𝑧 directions with iterators 𝑖, 𝑗
and 𝑘, the step-size along the 𝑧-direction is defined by

𝛥𝑧𝑘electrolyte = 𝛥𝑧𝑘last,electrode exp
(

𝜖 (𝑘 − 𝑘last)
)

, (2)

where 𝜖 is the stretching parameter of the spatial increments along the
𝑧-direction inside of the electrolyte which needs to be determined by
numerical experimentation.

The finite difference approximation of Eq. (1) then takes the form
of
𝑐𝑖,𝑗,𝑘,𝑡+𝛥𝑡 − 𝑐𝑖,𝑗,𝑘,𝑡

𝛥𝑡
≈ 𝐷

(

𝑐𝑖+1,𝑗,𝑘,𝑡 − 2𝑐𝑖,𝑗,𝑘,𝑡 + 𝑐𝑖−1,𝑗,𝑘,𝑡
𝛥𝑥2

+
𝑐𝑖,𝑗+1,𝑘,𝑡 − 2𝑐𝑖,𝑗,𝑘,𝑡 + 𝑐𝑖,𝑗−1,𝑘,𝑡

𝛥𝑦2

+ 𝛼𝑘 𝑐𝑖,𝑗,𝑘−1,𝑡 + 𝛽𝑘 𝑐𝑖,𝑗,𝑘,𝑡 + 𝛾𝑘 𝑐𝑖,𝑗,𝑘+1,𝑡

)

,

(3)

where the variable of time 𝑡 was discretized into increments of 𝛥𝑡 and 𝑥
and 𝑦 in increments of 𝛥𝑥 and 𝛥𝑦 and the arbitrary spacing along the 𝑧-
direction was implemented in terms of finite differences by considering
position-dependent coefficients 𝛼𝑘, 𝛽𝑘 and 𝛾𝑘. The exact method for
computing these coefficients is introduced in Ref. [24] and, for the sake
of completeness, outlined in Appendix A.1 of Appendix.

In Eq. (3) it is worth to note that the left hand side (i.e. the derivative
with respect to time) has first order accuracy, whereas the spatial
derivatives on the right hand side are second order approximations.
Second order accuracy in space and time can be achieved by introduc-
ing the unconditionally stable, semi-implicit Crank–Nicolson scheme
which was pioneered in the context of electrochemistry by Heinze and
Störzbach [25,26]. This procedure averages the concentration values at
a given time-instance 𝑡 with the yet unknown concentration values at
𝑡 + 𝛥𝑡. Setting 𝜆 = 𝐷𝛥𝑡∕𝛥𝑥2, �̃�𝑘 = 𝛼𝑘𝐷𝛥𝑡, 𝛽𝑘 = 𝛽𝑘𝐷𝛥𝑡, �̃�𝑘 = 𝛾𝑘𝐷𝛥𝑡 and
taking the advantage of 𝛥𝑥 = 𝛥𝑦, the Crank–Nicolson modification of
Eq. (3) gives

𝑐𝑖,𝑗,𝑘,𝑡+𝛥𝑡 − 𝑐𝑖,𝑗,𝑘,𝑡 ≈
𝜆
2

(

𝑐𝑝𝑖+2,𝑗+1,𝑘+1,𝑡 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖,𝑗+1,𝑘+1,𝑡

+ 𝑐𝑝𝑖+1,𝑗+2,𝑘+1,𝑡 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+1,𝑗,𝑘+1,𝑡

+ 𝑐𝑝𝑖+2,𝑗+1,𝑘+1,𝑡+𝛥𝑡 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡+𝛥𝑡 + 𝑐
𝑝
𝑖,𝑗+1,𝑘+1,𝑡+𝛥𝑡

+ 𝑐𝑝𝑖+1,𝑗+2,𝑘+1,𝑡+𝛥𝑡 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡+𝛥𝑡 + 𝑐
𝑝
𝑖+1,𝑗,𝑘+1,𝑡+𝛥𝑡

)

+ 1
2

[

�̃�𝑘 𝑐
𝑝
𝑖+1,𝑗+1,𝑘,𝑡 + 𝛽𝑘 𝑐

𝑝
𝑖+1,𝑗+1,𝑘+1,𝑡 + �̃�𝑘 𝑐

𝑝
𝑖+1,𝑗+1,𝑘+2,𝑡

+ �̃�𝑘 𝑐
𝑝
𝑖+1,𝑗+1,𝑘,𝑡+𝛥𝑡 + 𝛽𝑘 𝑐

𝑝
𝑖+1,𝑗+1,𝑘+1,𝑡+𝛥𝑡

+ �̃�𝑘 𝑐
𝑝
𝑖+1,𝑗+1,𝑘+2,𝑡+𝛥𝑡

]

,

(4)

where the values of 𝑐 have been replaced by 𝑐𝑝. This modification is
required since the points at 𝑖 = −1, 𝑗 = −1, 𝑘 = −1, 𝑖 = 𝑖max + 1, 𝑗 =
𝑗max+1, and 𝑘 = 𝑘max+1 in Eq. (3) lie outside of the actual sample space.
Since these points are, however, mandatory for the computation they
can be implicitly defined by assuming a no-flux boundary. Technically,
this is done by a procedure called padding . This introduces a set of
’ghost points’ with the same concentration value as their internally
adjacent grid-points. As a consequence of padding, the counting of
spatial grid points is shifted according to 𝑐𝑝𝑖+1,𝑗+1,𝑘+1 = 𝑐𝑖,𝑗,𝑘.

As outlined in our previous publication [22], a direct solution of
Eq. (4) is impractical. This is essentially caused by the fact that it
requires the processing of large heptadiagonal matrices. A more sophis-
ticated approach is to introduce the Douglas–Gunn modification [27] of
the Crank–Nicolson scheme which is known from the context of heat-
conduction [28]. This procedure splits each time-iteration (i.e. from
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Fig. 2. Illustration of an exponentially expanding electrolyte grid (blue) on top of
a homogeneously incremented electrode grid on top of a rough electrode surface.
The roughness of the electrode is implied by one elevated voxel in the center of the
electrode.

𝑐𝑖,𝑗,𝑘,𝑡 → 𝑐𝑖,𝑗,𝑘,𝑡+𝛥𝑡) into three sub-steps which are alternatingly implicit
in the 𝑥, 𝑦 and 𝑧-directions. This allows a successive processing of
the entire dataset in the form of smaller (columnar) sub-systems while
preserving the second order accuracy of the original algorithm. These
sub-systems can be represented by tridiagonal matrix–vector multipli-
cations and solved efficiently as set of linear equations with the Thomas
algorithm [29]. Moreover, they are independent from one-another
which allows parallel processing. Since Eq. (4) is defined on an arbi-
trarily spaced grid along the 𝑧-direction, the classical Douglas–Gunn
algorithm (e.g. outlined in Ref. [28]) needs to be modified and matched
with the constraint of a zero-concentration at each electrode/electrolyte
boundary at 𝑡 > 0 (i.e. a Cottrellian potential step experiment). This
requires the inclusion of internal boundary points and adaptive grid
coefficients. For the three sub-steps of the Douglas–Gunn algorithm this
gives:

Step 1/3
The first sub-step is defined to be implicit in 𝑥 and explicit in 𝑦 and

𝑧. It requires a computation of the auxiliary concentrations according
to

𝑐∗𝑖,𝑗,𝑘,𝑡+𝛥𝑡∕3 =
[

𝜆
[

𝑐𝑝𝑖,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+2,𝑗+1,𝑘+1,𝑡 + 2

(

𝑐𝑝𝑖+1,𝑗,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+1,𝑗+2,𝑘+1,𝑡

)

− 6𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡
]

+2
[

�̃�𝑘𝑐
𝑝
𝑖+1,𝑗+1,𝑘,𝑡 + (1 + 𝛽𝑘)𝑐

𝑝
𝑖+1,𝑗+1,𝑘+1,𝑡

+ �̃�𝑘𝑐
𝑝
𝑖+1,𝑗+1,𝑘+2,𝑡

]

]

𝑏𝑖,𝑗,𝑘,

(5)

where 𝑏𝑖,𝑗,𝑘 = 𝑐𝑖,𝑗,𝑘,𝑡=0∕𝑐bulk. The concentrations at time-instance 𝑡+𝛥𝑡∕3
are then related to the auxiliary concentrations according to

𝑀
𝑗,𝑘,𝑡+𝛥𝑡∕3

𝑐𝑗,𝑘,𝑡+𝛥𝑡∕3 = 𝑐∗𝑗,𝑘,𝑡+𝛥𝑡∕3, (6)

where 𝑐𝑗,𝑘,𝑡+𝛥𝑡∕3 and 𝑐∗𝑗,𝑘,𝑡+𝛥𝑡∕3 are columnar vectors along the 𝑥-
direction at positions 𝑗 and 𝑘 of the 𝑦𝑧-plane. The matrix 𝑀

𝑗,𝑘,𝑡+𝛥𝑡∕3
contains all internal boundaries and is defined by

𝑀
𝑗,𝑘,𝑡+𝛥𝑡∕3

=
⎛

⎜

⎜

⎝

𝑑0,𝑗,𝑘 −𝜆 𝑏0,𝑗,𝑘
−𝜆 𝑏𝑖=𝑚,𝑗,𝑘 𝑑𝑖=𝑚,𝑗,𝑘 −𝜆 𝑏𝑖=𝑚,𝑗,𝑘

− 𝜆 𝑏𝑖max ,𝑗,𝑘 𝑑𝑖max ,𝑗,𝑘

⎞

⎟

⎟

⎠

(7)

where 𝑑0,𝑗,𝑘 = (2 + 𝜆)𝑏0,𝑗,𝑘 + 𝑏∗0,𝑗,𝑘 and 𝑑𝑖=𝑚,𝑗,𝑘 = 2(1 + 𝜆)𝑏𝑖=𝑚,𝑗,𝑘 + 𝑏∗𝑖=𝑚,𝑗,𝑘
and 𝑑𝑖max ,𝑗,𝑘 = (2 + 𝜆)𝑏𝑖max ,𝑗,𝑘 + 𝑏

∗
𝑖max ,𝑗,𝑘

and 𝑏∗𝑖,𝑗,𝑘 = (𝑏𝑖,𝑗,𝑘 − 1)2 and 𝑚 is
the line-index of matrix 𝑀 .

Step 2/3:
Subsequently to computing the values of 𝑐𝑖,𝑗,𝑘,𝑡+𝛥𝑡∕3, the second

sub-step in time is defined to be implicit in 𝑦 and explicit in 𝑥 and

𝑧. Previously computed values of 𝑐𝑖,𝑗,𝑘,𝑡+𝛥𝑡∕3 are padded and invoked
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according to

𝑐∗𝑖,𝑗,𝑘,𝑡+2𝛥𝑡∕3 =
[

𝜆
[

𝑐𝑝𝑖,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+2,𝑗+1,𝑘+1,𝑡 + 𝑐

𝑝
𝑖+1,𝑗,𝑘+1,𝑡 + 𝑐

𝑝
𝑖+1,𝑗+2,𝑘+1,𝑡

− 4𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖,𝑗+1,𝑘+1,𝑡+𝛥𝑡∕3 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡+𝛥𝑡∕3

+ 𝑐𝑝𝑖+2,𝑗+1,𝑘+1,𝑡+𝛥𝑡∕3
]

+2
[

�̃�𝑘𝑐
𝑝
𝑖+1,𝑗+1,𝑘,𝑡 + (1 + 𝛽𝑘)𝑐

𝑝
𝑖+1,𝑗+1,𝑘+1,𝑡

+ �̃�𝑘𝑐
𝑝
𝑖+1,𝑗+1,𝑘+2,𝑡

]

]

𝑏𝑖,𝑗,𝑘.

(8)

The concentrations at time-instance 𝑡 + 2𝛥𝑡∕3 are then related to the
auxiliary concentrations according to

𝑀
𝑖,𝑘,𝑡+𝛥2𝑡∕3

𝑐𝑖,𝑘,𝑡+𝛥2𝑡∕3 = 𝑐∗𝑖,𝑘,𝑡+𝛥2𝑡∕3. (9)

In analogy to the first sub-step, the concentrations 𝑐𝑖,𝑘,𝑡+2𝛥𝑡∕3 and
𝑐∗𝑖,𝑘,𝑡+2𝛥𝑡∕3 are columnar vectors along the 𝑦-direction at positions 𝑖
and 𝑘 of the 𝑥𝑧-plane. The matrix 𝑀

𝑖,𝑘,𝑡+2𝛥𝑡∕3
contains all internal

boundaries and is defined by

𝑀
𝑖,𝑘,𝑡+2𝛥𝑡∕3

=
⎛

⎜

⎜

⎝

𝑑𝑖,0,𝑘 −𝜆 𝑏𝑖,0,𝑘
−𝜆 𝑏𝑖,𝑗=𝑚,𝑘 𝑑𝑖,𝑗=𝑚,𝑘 −𝜆 𝑏𝑖,𝑗=𝑚,𝑘

− 𝜆 𝑏𝑖,𝑗max ,𝑘 𝑑𝑖,𝑗max ,𝑘

⎞

⎟

⎟

⎠

(10)

where 𝑑𝑖,0,𝑘 = (2 + 𝜆)𝑏𝑖,0,𝑘 + 𝑏∗𝑖,0,𝑘 and 𝑑𝑖,𝑗=𝑚,𝑘 = 2(1 + 𝜆)𝑏𝑖,𝑗=𝑚,𝑘 + 𝑏∗𝑖,𝑗=𝑚,𝑘
and 𝑑𝑖,𝑗max ,𝑘 = (2 + 𝜆)𝑏∗𝑖,𝑗max ,𝑘

+ 𝑏𝑖,𝑗max ,𝑘.

Step 3/3:
The third sub-step in time is defined to be implicit in 𝑧 and explicit

in 𝑥 and 𝑦. It requires the inclusion of the previously computed values
of 𝑐𝑖,𝑗,𝑘,𝑡+𝛥𝑡∕3 and 𝑐𝑖,𝑗,𝑘,𝑡+2𝛥𝑡∕3. The intermediate concentrations are then
defined by

𝑐∗𝑖,𝑗,𝑘,𝑡+𝛥𝑡 =
[

𝜆
[

𝑐𝑝𝑖,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+2,𝑗+1,𝑘+1,𝑡 + 𝑐

𝑝
𝑖+1,𝑗,𝑘+1,𝑡 + 𝑐

𝑝
𝑖+1,𝑗+2,𝑘+1,𝑡

− 4𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖,𝑗+1,𝑘+1,𝑡+𝛥𝑡∕3 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡+𝛥𝑡∕3

+ 𝑐𝑝𝑖+2,𝑗+1,𝑘+1,𝑡+𝛥𝑡∕3 + 𝑐
𝑝
𝑖+1,𝑗,𝑘+1,𝑡+2𝛥𝑡∕3 − 2𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡+2𝛥𝑡∕3

+ 𝑐𝑝𝑖+1,𝑗+2,𝑘+1,𝑡+2𝛥𝑡∕3
]

+�̃�𝑘𝑐
𝑝
𝑖+1,𝑗+1,𝑘,𝑡 + (2 + 𝛽𝑘)𝑐

𝑝
𝑖+1,𝑗+1,𝑘+1,𝑡

+ �̃�𝑘𝑐
𝑝
𝑖+1,𝑗+1,𝑘+2,𝑡

]

𝑏𝑖,𝑗,𝑘,

(11)

and related to the concentrations according to

𝑀
𝑖,𝑗,𝑡+𝛥𝑡

𝑐𝑖,𝑗,𝑡+𝛥𝑡 = 𝑐∗𝑖,𝑗,𝑡+𝛥𝑡, (12)

where 𝑐𝑖,𝑗,𝑡+𝛥𝑡 and 𝑐∗𝑖,𝑗,𝑡+𝛥𝑡 are column vectors along the 𝑧-direction
standing on the 𝑥𝑦-plane. The matrix 𝑀

𝑖,𝑗,𝑡+𝛥𝑡
requires a notation

slightly different from steps 1∕3 and 2∕3, since the 𝑧-direction contains
the expanding spatial grid. It is defined by

𝑀
𝑖,𝑗,𝑡+𝛥𝑡

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑑𝑖,𝑗,0 −�̃�0 𝑏𝑖,𝑗,0
−�̃�𝑘 𝑏𝑖,𝑗,𝑘=𝑚 𝑑𝑖,𝑗,𝑘=𝑚 −�̃�𝑘 𝑏𝑖,𝑗,𝑘=𝑚

− �̃�𝑘 𝑏𝑖,𝑗,𝑘max 𝑑𝑖,𝑗,𝑘=𝑘max
,

⎞

⎟

⎟

⎟

⎟

⎠

(13)

where the entries of the main diagonal are 𝑑𝑖,𝑗,0 = (2− �̃�0−𝛽0)𝑏𝑖,𝑗,0+𝑏∗𝑖,𝑗,0
and 𝑑𝑖,𝑗,𝑘=𝑚 = (2 − 𝛽𝑘)𝑏𝑖,𝑗,𝑘=𝑚 + 𝑏∗𝑖,𝑗,𝑘=𝑚 and 𝑑𝑖,𝑗,𝑘=𝑘max = (2 − 𝛽𝑘max −
�̃�𝑘max )𝑏𝑖,𝑗,𝑘max + 𝑏

∗
𝑖,𝑗,𝑘max

.

3.1.1. Computing the cumulated flux-response
The flux at each point of the three-dimensional sample space can be

computed at time 𝑡 from Fick’s first law as

𝐽 (𝑥, 𝑦, 𝑧, 𝑡) = −𝐷∇𝑐(𝑥, 𝑦, 𝑧, 𝑡). (14)

For electrochemical applications, however, only the cumulated flux at
the electrode/electrolyte interface is important, as this quantity is di-
rectly proportional to the Faradaic current. Since the spatial resolution
inside of the rough part of the electrode is set to be equal along the
𝑥, 𝑦 and 𝑧-directions with increment 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = ℎ, Eq. (14)
can be numerically approximated by using the padded versions of the
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concentrations at the respective time. The cumulated flux at a given
time instance is then obtained as

𝐽 (𝑡) ≈ − 𝐷
ℎ

∑

𝑖,𝑗,𝑘

[

𝑐𝑝𝑖,𝑗+1,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+2,𝑗+1,𝑘+1,𝑡 + 𝑐

𝑝
𝑖+1,𝑗,𝑘+1,𝑡

+ 𝑐𝑝𝑖+1,𝑗+2,𝑘+1,𝑡 + 𝑐
𝑝
𝑖+1,𝑗+1,𝑘,𝑡 + 𝑐

𝑝
𝑖+1,𝑗+1,𝑘+2,𝑡

− 6𝑐𝑝𝑖+1,𝑗+1,𝑘+1,𝑡
]

𝑏∗𝑖,𝑗,𝑘,𝑡.

(15)

q. (15) is finally used in each and every time before the sequence of
qs. (5)–(13) is started. In this manner, the cumulated flux is obtained
s a set of discrete points in time. Values at any other desired point in
ime need to be approximated — e.g.via spline interpolation.

.2. Deconvolution and extraction of the mass-transfer function

For most electroanalytical experiments, the flux computed by
q. (15) is not sufficient. This is essentially caused by the fact that it was
enerated by assuming a Cottrellian potential step experiment, where
he concentration at each electrode/electrolyte interface is forced to be
ero at 𝑡 > 0. For this reason, it excludes all effects from electrode
inetics by definition. Simultaneously it does, however, contain the
ntire information of the diffusive mass transfer of the electrode under
nvestigation. In our previous work [18], we derived the general
onnection between the mass-transfer function and the normalized flux
f a Cottrellian potential step experiment by means of Laplace trans-
ormation techniques. From this work it follows that the normalized
umulated flux can be expressed as

(𝑡) =
𝐽 (𝑡)

𝑐bulk𝐴rough
√

𝐷
. (16)

he normalized flux and the mass-transfer-function 𝑚(𝑡) are connected
y Laplace transformation and its inversion. Firstly,

(𝑡) = −1
{

1
𝑠𝑚(𝑠)

}

(𝑡), (17)

where 𝑚(𝑠) is the Laplace transformation of 𝑚(𝑡) with 𝑠 being the trans-
formed variable related to the time 𝑡. Application of a Laplace transfor-
mation on both sides of Eq. (17) leads, after slight rearrangement, to

1
𝑠
= 𝑓 (𝑠)𝑚(𝑠). (18)

aking the inverse Laplace transformations of both sides of Eq. (18),
e arrive at

= ∫

𝑡

0
𝑓 (𝜏)𝑚(𝑡 − 𝜏)d𝜏, (19)

here the convolution theorem was used on the right hand side. Since
(0) → ∞ [18], the integrand of Eq. (19) contains weak singularity
t the upper integration limit. This singularity can be removed by an
ntegration by parts, which gives

= −𝑀(𝑡 − 𝜏)𝑓 (𝜏)||
|

𝜏=𝑡

𝜏=0
+ ∫

𝑓 (𝑡)

𝑓 (0)
𝑀(𝑡 − 𝜏)d𝑓 (𝜏), (20)

here 𝑀(𝑡) is the antiderivative of 𝑚(𝑡). In previous works [22] we used
discretized version of Eq. (20) in a recursive algorithm to calculate

he values of 𝑀(𝑡). Consideration of the boundary value 𝑀(0) = 0
nd discretization of both, 𝑡 and 𝜏 with identical increments (𝑡 = 𝑢𝛥𝑡,
= 𝑣𝛥𝑡, 𝑣 ≤ 𝑢) gives

≈𝑀(𝑢𝛥)𝑓 (0) +
𝑢−1
∑

𝑣=0
𝑀((𝑢 − 𝑣)𝛥𝑡)

[

𝑓 ((𝑣 + 1)𝛥𝑡) − 𝑓 (𝑣𝛥𝑡)
]

. (21)

A recursion relation for 𝑀(𝑢𝛥𝑡) is obtained upon rearrangement

𝑀(𝑢𝛥𝑡) ≈ 1
𝑓 (𝛥𝑡)

[

1 −
𝑢−1
∑

𝑣=1
𝑀((𝑢 − 𝑣)𝛥𝑡)

[

𝑓 ((𝑣 + 1)𝛥𝑡) − 𝑓 (𝑣𝛥𝑡)
]

]

. (22)

Despite the fact that Eq. (22) can be used to calculate 𝑀(𝑡) with

reasonable accuracy by choosing 𝛥𝑡 sufficiently small, this approach is
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not too practical. This is essentially caused by the fact that the recursive
sum includes an excessive amount of terms if 𝛥𝑡 decreases. In fact, this
was the motivation for the approach presented in the following.

Alternatively to applying inverse Laplace transformation on Eq. (18)
by the convolution theorem, one may convert it first into an equation
for 𝑀(𝑠) — the Laplace transformed antiderivative 𝑀(𝑡) of the mass-
ransfer function 𝑚(𝑡). An integration in the time domain corresponds to
division by the transformed variable (here 𝑠) in the Laplace-domain.
herefore, we obtain

𝑀(𝑠) = 1
𝑠2𝑓 (𝑠)

. (23)

he path to 𝑀(𝑡) is now reduced to (I) finding the Laplace transform
𝑓 (𝑠) and (II) the subsequent inverse Laplace transformation of the right
hand side of Eq. (23). Generally, the Laplace transformation of any 𝑓 (𝑡)
is defined as

𝑓 (𝑠) = ∫

∞

0
𝑓 (𝑡)e−𝑠𝑡d𝑡. (24)

owever, since the function 𝑓 is, in our case, only available as a set of
unction values at 𝑁 +1 equidistant, discrete points in time its Laplace
ransformation needs to be approximated. This is done by taking

𝑓 (𝑠) ≈ 1
2

[

𝑓 (𝑡0)e−𝑠𝑡0 (𝑡1 − 𝑡0) + 𝑓 (𝑡𝑁 )e−𝑠𝑡𝑁 (𝑡𝑁 − 𝑡𝑁−1)

+
𝑁−1
∑

𝑤=1
𝑓 (𝑡𝑤)e−𝑠𝑡𝑤 (𝑡𝑤+1 − 𝑡𝑤−1)

] (25)

t is, however, important to underline that a true Laplace transform of
he function 𝑓 (𝑡) requires an integration over the entire 𝑡-axis. Hence,
n Eq. (25) 𝑡0 has to be chosen sufficiently small and 𝑡𝑁 sufficiently
arge to minimize truncation errors. Practically, this is problematic,
ince an exceptionally high resolution of the time-grid and a very large
aximum-time would be required. Intuitively, this translates to an

xcessive amount of time-steps in the preceding digital simulation part
f the algorithm. A practical workaround for this is given in Section 3.4.

.2.1. Laplace-domain processing and Gaver–Stehfest inversion
With a table of values for 𝑓 (𝑠) at hand, the corresponding values of

𝑀(𝑠) are readily obtained from Eq. (23). The most crucial step is then
he inverse Laplace transformation of 𝑀(𝑠) in order to get 𝑀(𝑡).

Since 𝑀(𝑠) is obtained as a set of discrete points along the real-
xis in 𝑠-space only, neither the complex inversion formula, nor its
omplex approximations (i.e. the Talbot-method [30] and its more
ecent relatives [31,32] we have used in previous works [21]) can be
mployed. Fortunately, however, there is a real-value-only approxima-
ion of the complex inversion formula — the so called Gaver–Stehfest
nversion [23]. This formula has been introduced in the context of
lectrochemistry by Montella [19,20,33]. Generally, the Gaver–Stehfest
nversion is restricted to functions which do not possess oscillatory
ehavior in the time domain. Fortunately, the diffusion process of a
ottrellian potential step can be expected to have exactly this behavior
s the current decays smoothly. Using the Gaver–Stehfest inversion
ormula explicitly on Eq. (23) gives

(𝑡) ≈
ln(2)
𝑡

2𝑁
∑

𝑘=1
𝑎𝑘(𝑁)

[

𝑘2 ln(2)2

𝑡2
⋅ 𝑓

(

𝑘 ln(2)
𝑡

)]−1

, (26)

where the coefficients 𝑎𝑘(𝑁) are defined in terms of binominal coeffi-
cients as

𝑎𝑘(𝑁) =
(−1)𝑁+𝑘

𝑁!

min(𝑘,𝑁)
∑

𝑗=⌊(𝑘+1)∕2⌋
𝑗𝑁+1

(

𝑁
𝑗

)(

2𝑗
𝑗

)(

𝑗
𝑘 − 𝑗

)

. (27)

ince Eq. (26) requires the values of 𝑓 (𝑠) to be defined at points 𝑠𝑘 =
𝑘 ln(2)∕𝑡 (𝑘 = 1,… , 2𝑁), interpolation between values at the previously
defined set of 𝑠-values is usually required prior to numerical inversion.
Finally, Eq. (26) can be used to evaluate 𝑀(𝑡) at the desired time
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instances required for simulating the actual electroanalytical experi-
ments. This is, however, not too practical either. A faster solution is
to evaluate 𝑀(𝑡) on a set of logarithmically spaced points in time and
to interpolate to the actually required time instances.

3.3. Convoluting electrode kinetics with the mass-transfer function

Once the function 𝑀(𝑡) has been determined, the well-known master
quation approach of convolutive modeling can be used to compute
he voltammetric current-response of any electrode at any degree of
eversibility. In the course of this paper, the general solution for a
ingle-step electron transfer is used for the sake of simplicity, i.e. the

current can be computed exploiting the following approximation

𝐼(𝑚𝛥𝑡) ≈
𝑛𝐹𝐴rough𝑐red,bulk

√

𝐷 −
[

1 + e−𝜉(𝑚𝛥𝑡)
]

⋅ 𝐼,𝑀
√

𝐷 e−𝛼𝜉(𝑚𝛥𝑡)

𝑘0
+𝑀(𝛥𝑡)

[

1 + e−𝜉(𝑚𝛥𝑡)
]

. (28)

In Eq. (28),  is defined by

𝐼,𝑀 =
𝑚−1
∑

𝑗=1
𝐼(𝑗𝛥𝑡)

[

𝑀((𝑚 − 𝑗 + 1)𝛥𝑡) −𝑀((𝑚 − 𝑗)𝛥𝑡)
]

. (29)

and 𝜉(𝑡) by

𝜉(𝑡) = 𝑛𝐹
𝑅𝑇

[

𝐸(𝑡) − 𝐸0] . (30)

The parameters 𝛼 and 𝑘0 are the electron transfer coefficient and
the heterogeneous rate constant of the electrochemical reaction, re-
spectively. It should be underlined that Eq. (28) excludes optional
first-order chemical reactions, Ohmic and capacitive distortion, and
finite kinetics by definition. These could be, however, included in a
straightforward manner by consulting the respective Refs. [21,22,34,
35].

3.4. Adaptive resolution for the digital simulation step

Introducing an adaptive numerical resolution — not to be confused
with the expanding 𝑧-grid introduced earlier — into the digital simula-
tion step is practically motivated by four particular considerations.

(I) From our previous publication it is known that in the limit of 𝑡→
0, any diffusion towards an arbitrarily shaped surface will behave
in a planar semi-infinite fashion. Consequently, the normalized
flux is obtained from the Cottrell-equation as

𝑓 (𝑡) =
𝐼Cott(𝑡)

𝑛𝐹𝐴𝑐bluk
√

𝐷
= 1

√

𝜋𝑡
. (31)

This implies the existence of a low-time threshold below which
the simulations may be stopped and normalized flux extrapolated
by Eq. (31). Finding the particular low-time cutoff is, however,
challenging for the following reasons. Since the computations
of the DS-step are performed on a spatially discretized diffusion
domain, any electrolyte-point adjacent to more than one reactive
site (i.e. any concave edge or corner) will introduce a remainder
where diffusion cannot be described as semi-infinite (cf. Fig. 3).
Though the relative contribution of this remainder can be reduced
by increasing the spatial resolution during the simulations (cf.
in Fig. 3 (A)-(C)), it cannot be avoided completely. Simultane-
ously, a higher spatial resolution will tremendously increase the
number of spatial grid-points and thus the computational demand
required for the simulations. The workaround used in this paper is
to increase the spatial resolution, until the numerically computed
flux reaches a defined similarity to the analytical solution of the
planar semi-infinite case and to interpolate a certain time-frame

between analytical solution and the numerically computed result.
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(II) Considering that a planar electrode is exposed to an electrolyte
medium one has to pose the question at which timescale the dif-
fusion zone will reach the opposite border of the electrochemical
cell. At this point in time, mass-transfer cannot be expected to be
semi-infinite anymore and externally-finite diffusion domain ef-
fects will progressively dominate. For an ideally planar electrode
the time dependent concentration profile is given in terms of the
following analytical expression [36]

𝑐(𝑧, 𝑡)
𝑐bulk

= erf
(

𝑧

2
√

𝐷𝑡

)

, (32)

where erf is the error function and 𝑧 the direction perpendicular
to the electrode surface. This expression can be rearranged to
find the point in space at which the concentration ratio 𝜙(𝑧, 𝑡) =
𝑐(𝑧, 𝑡)∕𝑐bulk will take on a certain value at a given time. Defining
𝑡max to be the maximum time of the experiment to be computed,
one can find

𝑧max = 2
√

𝐷𝑡max erfinv
(

𝜙(𝑧max, 𝑡max)
)

. (33)

This is of particular relevance for the computations, as it suggests
the existence of a minimum sample volume required for ensuring
semi-infinite diffusion conditions. While smaller volumina will
result in boundary-errors, larger volumina are computationally
wasteful.

(III) The dimension-less parameter 𝜆 = 𝐷𝛥𝑡∕𝛥𝑥2, controlling the nu-
merical accuracy of the DS-step would be significantly affected,
if the spatial resolution of the electrode grid is increased as
suggested in point (I). Since this is not desired, the 𝜆-values may
be preserved by refining the time-grid by factor 𝑁2 when the
spatial coordinates are refined by factor 𝑁 . Despite the fact that
this excessive refinement of the time-grid will perfectly match
the requirements1 of Eq. (25), it is not too practical as an ex-
cessive amount of computation steps would be needed until ex-
perimentally relevant time-scales are reached. For this reason,
the parameter 𝜆 may be allowed to expand in a well defined
manner as a function of time, i.e. 𝜆 → 𝜆(𝑡), ensuring convergence
of the simulations. In this work, the respective 𝜆(𝑡)-function is
parametrized to meet the following requirements:

𝜆(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜆min 𝑡 = 𝑡min

0.5 𝑡 = 𝑡crit

𝜆max 𝑡 → ∞
(34)

which can be achieved by setting

𝜆(𝑡) = 𝜆min +

[

𝜆max − 𝜆min
]

𝑔(𝑡, 𝜎)
[

𝜆max − 𝜆min
]

+ 𝑔(𝑡, 𝜎)
. (35)

where

𝑔(𝑡, 𝜎) = −𝜆min
[

1 − exp
(

𝜎(𝑡 − 𝑡min)
)]

. (36)

From Eqs. (35) and (36) it directly follows that Eq. (34) is fulfilled
for 𝑡 = 𝑡min and 𝑡 → ∞, leaving the point where 𝜆 = 0.5 to be
defined. Imposing the constraint of 𝜆 = 0.5 on Eqs. (35) and (36),
one can find

𝜎 = 1
𝑡crit − 𝑡min

ln
(

𝜆min
(

1 − 𝜆min
)

− 0.5 𝜆max

𝜆min
(

0.5 − 𝜆max
)

)

, (37)

where the only missing parameter is now 𝑡crit. This particu-
lar point in time may be defined from a rearranged version of
Eq. (33), such that

𝑡crit =
1
4𝐷

[

𝑧crit

erfinv
(

𝜙(𝑧crit, 𝑡crit)
)

]

, (38)

1 An exceptionally narrow time-incrementation is required for rendering
he first time-instance 𝑡0 small enough for ensuring sufficient accuracy of the

numerical Laplace transformation.
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Fig. 3. Illustration of the non-semi-infinite part of the diffusion domain (highlighted in red). The relative contribution of this diffusive part is reduced by increasing the spatial
refinement of the simulation as gradually shown from panel (A) to (C).
Fig. 4. Illustration of the process-flow of the digital simulation step, containing an initialization, a main-loop and a refinement step. Upon initialization of the electrode structure,
the expanding electrolyte-grid, the 𝜆-grid, and the 𝛥𝑡-grid, the main-loop (containing the Douglas–Gunn-algorithm and computation of the three-dimensional flux) is started. Every
1000 iterations, it is checked whether the simulations have converged to either the slope criterion (zeroth refinement step) or the similarity criterion (higher refinements). Once
convergence is achieved, the spatial grid is refined by factor two, i.e. all spatial increments are subdivided into two segments. Based on this new space-grid, a refined time-grid is
initialized before the next main-loop (with higher resolution) is started.
which shifts the problem from the variable of time to the variable
of space. In this manner, 𝑡crit can be defined by a particular
distance from the electrode and the critical concentration ratio
at this point. Providing an experimentally relevant measure one
may choose this particular distance equivalent to the height of
𝑑𝑒𝑒𝑝𝑒𝑠𝑡𝑠𝑐𝑟𝑎𝑡𝑐ℎ in the rough electrode.

(IV) Taking into account that diffusion has the inherent property of
blurring, one may consider that, at a certain point in 𝑧-space and
time, the influence of the surface-roughness can be neglected and
mass-transfer will be dominated by the planar semi-infinite diffu-
sion mode. Since the normalized flux will be, however, referred to
the area 𝐴rough one would have a dysbalance of normalized flux
on a planar electrode and on a rough surface according to

𝐼Cott(𝑡)

𝑛𝐹𝐴rough𝑐bluk
√

𝐷
= 𝑓rough(𝑡) ≤ 𝑓 (𝑡) =

𝐼Cott(𝑡)

𝑛𝐹𝐴geo𝑐bluk
√

𝐷
. (39)

Therefore, an extrapolation similar to the low-time scenario is not
possible. By taking the double-logarithmic derivative of Eq. (39),
however, one may find the following important expression.

d log10 (𝑓 (𝑡))
d log10 (𝑡)

|

|

|

|

|𝑡≥𝑡th

=
d log10

(

𝑓rough(𝑡)
)

d log10 (𝑡)

|

|

|

|

|𝑡≥𝑡𝑡ℎ

= −0.5 (40)

Using Eq. (40) one can define a threshold value where the double-
logarithmic derivative of the normalized flux computed in the
DS-step is equal to −0.5. Subsequently, one can linearly extrapo-
late the normalized flux at a slope of −0.5 on a double-logarithmic
grid and therefore stop the actual computations.

These four important considerations have been used to derive the
following process-flow for the DS-step, which is depicted in Fig. 4.
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4. Results and discussion

Herein, we will make a conscious effort to bring our findings on
the intricate interplay of electrode roughness, electrode kinetics and
mass-transfer to the experimentalists community. Additionally, we will
demonstrate how electrode roughness can be included into the context
of convolutive modeling. However, before discussing the effects of
electrode roughness in any depth, the modified DSDC-algorithm will be
validated. All simulations in this paragraph have been performed with a
diffusion coefficient of 𝐷 = 10−6 cm2/s, an initial resolution of a 100 nm
voxel size and similarity-thresholds of 99.99%. For different input
parameters, the reader is referred to the supplementary material of this
paper. There, we included scripts (written in Python 3 programming
language) for performing simulations in analogy to this paper and a
short hands-on guide to utilize them.

4.1. Validation of the algorithm with the ideally planar example

Validation of the modified DSDC-algorithm was done by performing
the simulations for an ideally planar electrode in a three-dimensional
diffusion space and comparing them against the normalized Cottrellian
flux. Respective results are illustrated in Fig. 5. In Fig. 5 (A) and (B),
the parametrization of the 𝜆-grid and the normalized flux are depicted
in double-logarithmic representations, respectively. Both sub-plots need
to be read in parallel for illustrating the algorithm. Firstly, the 𝜆-grid
was initialized (Fig. 5-(A), black curve). The dashed horizontal lines
in black illustrate the minimum 𝜆min = 0.1, the maximum 𝜆max =
10 and the point where 𝜆 = 0.5. The dashed vertical line in black
represents the critical time 𝑡crit defined in Eq. (34). The curves (a)–
(f), depicted in gray, are the individual 𝛥𝑡-values computed from 𝜆(𝑡),
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Fig. 5. Illustration of the DS-step for a planar electrode in a semi-infinite diffusion space. Panel (A) depicts the parametrized 𝜆-grid and the individual 𝛥𝑡-grids and panel (B)
the normalized flux-responses on a double logarithmic representation. Dashed lines mark 𝜆min = 0.1, 𝜆max = 10 as well as 𝑡crit, where 𝜆 = 0.5. The dash-dotted vertical line (I) is
the time at which the first simulation was stopped by the slope-criterion of 99.99% and the dotted vertices (II)–(VI) are the cutoff-times estimated by the similarity criterion of
99.99%. In panel (B), the curves (a) to (f) illustrate the normalized flux (dashed lines) or the double-logarithmic derivative of the normalized flux (gray curves). The line in pink
is the analytical solution for the normalized flux in a double-logarithmic representation.
𝐷 and 𝛥𝑥2 which have been used for the simulation. Computations at
a certain resolution have been stopped for individual 𝛥𝑡-curves at the
time-instances highlighted by (I) the dash-dotted vertical line (slope cri-
terion) and (II)–(VI) the dotted vertical lines (similarity criterion). The
same cutoff-times are depicted in Fig. 5-(B). This particular panel also
shows the normalized flux (dotted curves (a)–(f) in black), its double-
logarithmic derivative according to Eq. (40) (gray curves), and the
analytical solution of the normalized flux towards a planar electrode
(pink curve) as reference. The actual computation started with the 𝛥𝑡-
grid (a) of Fig. 5 (A) and resulted in the corresponding flux depicted
by curve (a) in Fig. 5-(B). The simulation was terminated at time-
instance (I) once the double-logarithmic derivative reached 99.99% of
the slope of the semi-infinite diffusion (about 10−1.5 s). Larger times
have been extrapolated linearly (dotted black curve superimposing the
pink curve). After this, a refinement of the space-grid by factor two was
performed. The maximum time of the next simulation was bounded
to time (I). Using the initial 𝜆-grid, the 𝛥𝑡-grid was refined to (b), as
depicted in Fig. 5-(A).

Simulation (b) was explicitly performed until time-instance (II),
where the flux achieved 99.99% of the previous computation. This
procedure was repeated until iteration (f) with stopping-time (VI),
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at a 25 = 32-fold resolution of the initial stack-size. It can be seen
that the normalized flux contains a non-convergent feature at low
time-instances for all simulations which does, however, gradually shift
towards lower time-scales, once the resolution increases. Additionally,
it can be seen that all double-logarithmic derivatives converge to a
value of −0.5 - as expected from Eq. (40). The last time before low-
time interpolation was chosen to be 10−6 s. Values left to this time are
generated by skipping one decade of time-incrementation before the
current is set to be coincident with the planar semi-infinite solution.
The remaining gap is closed by a cubic spline interpolation on the
double-logarithmic grid. The normalized flux at time-scales larger than
10−6 s is extracted by using the results from the regions between points
(V) to (I). Practically, this means using the flux-values of (f) between
10−6 s and point (VI), the flux values of (e) between points (VI) and (V),
the flux values from (d) between points (V) and (IV) and so on. With
this procedure, the normalized flux was finally obtained on a time-scale
spanning from 10−20 s to 1020 s. This excessively lare time-window is
required for investigating the convergence of the Laplace-domain pro-
cessing and the modified deconvolution. In this context, the full-scale
interpolation of the normalized flux was used on Eq. (25). Introducing
a logarithmically spaced time-grid consisting of 160000 nodes (4000
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Fig. 6. Illustration of the deconvolution step for obtaining the mass-transfer function. Black dotted curves are the numerical result, curves in red the analytical solution and the
gray traces are the relative deviation of analytical and numerical result. Panel (A) shows the numerical Laplace transformation of the normalized flux based on Eq. (25). Panel (B)
depicts the Mass transfer function obtained from Laplace domain processing according to Eq. (23) and a subsequent numerical inverse Laplacetransformation based on Eq. (26).
It can be seen that relative errors are less than 0.1%.
nodes per time-decade), a numerical evaluation of Eq. (25) at 80000
logarithmically spaced values of 𝑠 ranging from 𝑠min = 10−10 s−1 to
𝑠max = 1010 s−1 gives the results depicted in Fig. 6 (A). It can be seen
that the deviation between the analytical solution for the Laplace trans-
formed version of the normalized flux and its numerically constructed
analogue is less than 0.1% at each and every instance of 𝑠. Using the
numerically computed result of 𝑓 (𝑠), performing the Laplace-domain
processing on the base of Eq. (23) and a numerical inverse Laplace
transformation based on Eqs. (26) and (27) gives an approximation of
the desired function 𝑀(𝑡) at previously defined instances of the time 𝑡.
For the result in Fig. 6 (B), 48000 time-instances, evenly distributed on
a logarithmic grid from 𝑡min = 10−6 s to 𝑡max = 106 s, have been chosen.
For an ideally planar electrode, we achieved a deviation of less than
0.1% between the numerically reconstructed and the analytical version
of the function 𝑀(𝑡) which corroborates the computational procedure.

4.2. DSDC-algorithm for different surface profiles

Subsequently to the validation of the DSDC-algorithm on a planar
electrode, different artifacts of electrode roughness have been intro-
duced into the simulations. These include pyramidal elevations of
different height and two hole-structures of different depth and width.
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Results for the normalized flux of the pyramidal artifacts are de-
picted in Fig. 7. It can be seen that a gradually increasing height (and
slope) of the pyramidal surface-artifacts, depicted in panels (A) to (C) of
Fig. 7, introduces stronger changes in the flux-profile. Moreover, it can
be seen that the low-time limit of the normalized flux coincides with the
result for planar semi-infinite diffusion in any scenario. This is expected
in the context of Eq. (31). However, in contrast to that stands the
high-time cutoff (dash-dotted line(s) in Fig. 7). This quantity is shifted
towards larger times if the height of the pyramidal surface structures
(and thus the degree of roughness) increases. We explain this behavior
by the increase in time which is required until the expanding diffusion-
zone has compensated the surface profile and mass-transfer can be
described as planar semi-infinite. Regarding the double-logarithmic
derivatives (gray curves in Fig. 7), one can identify two peaks. One
peak, P1, around 10−5 s and another peak, P2, around 10−3 s. We
associate P1 with the diffusive compensation of the individual stairs
of the pyramidal profile and P2 with the diffusive compensation of
the entire pyramidal elevation. This assignment is supported by the
fact that P2 is least pronounced in scenario (A), where the pyramidal
elevation has the lowest magnitude of all three cases.

Additionally to pyramidal surface structures, two types of hole-
structures with different width (200 nm and 400 nm) and depth
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Fig. 7. Illustration of the DS-step for three different pyramidal surface features with different height of (A) 200 nm, (B) 300 nm, and (C) 700 nm. Vertical lines illustrate the
cutoff-times which are defined in analogy to Fig. 5. It can be seen that the double-logarithmic derivative of the flux contains two peaks. These are introduced by two different
modi of diffusion: (I) diffusion towards the individual edges of the steps of the pyramids and (II) diffusion towards the pyramidal structure before convergence to the planar
semi-infinite limit.
(100 nm, 300 nm, 500 nm, 700 nm) have been investigated. These are
depicted in Figs. 8 (for width 200 nm) and 9 (for width 400 nm).

It can be seen that the double-logarithmic derivatives of the nor-
malized flux profiles of all recessed hole structures exhibit only one
peak (instead of two for the pyramids). Moreover, a comparison of
Figs. 8 and 9 reveals that this signal gets shifted towards larger times,
if the width of the hole structure increases. Finally, when comparing
the hole structures with the pyramidal structures, it can be seen that
the simulations converge to the planar semi-infinite limit much earlier
(cf. dash-dotted vertices). These three findings can be explained as
follows:

The hole structures contain only one type of step site (at the
bottom) and, unlike the pyramids, no elevation. Consequently, only one
transition in the diffusion profile is expected, which is associated with
an emptying of the recessed artifacts and which will lead to only one
peak in the double-logarithmic derivative of the normalized flux. Since
a recessed surface structure with a larger width will contain more active
species and can contribute to diffusive mass transfer for longer times,
the point in time at which the normalized flux depletes most strongly
(i.e. the maximum in the derivative) gets shifted to larger time-scales.
Finally, once the hole structures are essentially empty, mass transfer
will be dominated by planar semi-infinite diffusion. This transition from
rough-to-planar is, however, inherently different from the scenario of
pyramidal structures. There, the diffusion-zone has to expand further
into the electrolyte for compensating the elevated artifacts of electrode
roughness. This eventually takes more time.
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4.3. Reconstructing the mass-transfer functions

Subsequently to the DS-step, the mass-transfer-functions have been
reconstructed. This procedure was performed analogue to the planar
semi-infinite case outlined in Section 4.1. Firstly, the normalized fluxes
have been defined on a logarithmic time-grid spanning from 10−20 s to
1020 s. The transition regions (between 10−7 s to 101 s) for the individual
surface profiles (holes and pyramids) are depicted in panels (A), (C) and
(E) of Fig. 10. The corresponding mass-transfer functions are depicted
in panels (B), (D), and (F) of Fig. 10.

In panels (A), (C), and (E) of Fig. 10, it can be seen that an increas-
ing degree surface roughness, i.e. a higher elevation of the pyramids
or an increasing depth of the hole structures, will lead to a more
pronounced deviation of the normalized flux from the planar semi-
infinite case (red curve as reference). Additionally, a later transition
to the planar semi-infinite limit is found if the electrode is rougher.
Inspecting the mass-transfer functions — particularly for the surfaces
containing recessed hole-structures — one can already see that there is
a strong correlation between the depth of the surface profile and the
values of 𝑀(𝑡). More precisely, one may surmise that this particular
relation is predominantly linear. For the pyramidal surface structures,
no such correlation is found on a first glance.

4.4. Convolutive modeling of CV and quantification of surface roughness

The mass-transfer functions of the individual surface profiles, de-
picted in Fig. 10, are finally used for the simulation of cyclic voltam-
metry according to Eq. (28). For reasons of comparability all of the
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Fig. 8. Illustration of the DS-step for a surface containing hole-structures of a width of 200 nm and depth of (A) 100 nm, (B) 300 nm, and (C) 500 nm, and (D) 700 nm. Vertical
lines illustrate the cutoff-times which are defined in analogy to Fig. 5.
following voltammograms will display the dimension-less potentiody-
namic flux instead of the current. This quantity was introduced by
Matsuda and Ayabe [16] and is given by

𝜒(𝑡) =
𝐼(𝑡)

√

𝑅𝑇

𝑛𝐹𝐴geo𝑐red,bulk
√

𝐷𝑛𝐹𝜈
. (41)

It is beneficial to be used here as it normalizes the current to the
dynamics of the experiment which are introduced by the potential
sweep rate 𝜈.

Generally, it is well known that the dynamics of a voltammetric
experiment have a strong influence on the electrochemical reversibility
of a reaction [8,16]. To overcome the intricate entanglement of elec-
trode kinetics and potentiodynamics, Matsuda and Ayabe [16] have
introduced the dimensionless reversibility parameter 𝛬. Assuming2 that

2 Otherwise, the original expression for 𝛬 needs to be used which is slightly
more complex.
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oxidized and reduced species have the same diffusion coefficient and
unit activity, a simplified version of this quantity is given by

𝛬 = 𝑘0
√

𝑅𝑇
𝐷𝑛𝐹𝜈

, (42)

where 𝑘0 is the standard heterogeneous rate constant of the electro-
chemical reaction under investigation.

For the following simulations, we employed two fixed values of the
dimensionless reversibility parameter, namely 𝛬 = 15 for a strictly
reversible reaction and 𝛬 = 0.01 for a quasi-reversible reaction.3
Eq. (42) was then used for estimating 𝑘0 at a given potential sweep-rate
which allows to investigate voltammetric profiles at different timescales
without changing the degree of reversibility. The electron transfer
coefficient, required for the simulation of CV-curves with Eq. (28),
was fixed to 𝛼 = 0.5. Two significantly different potential sweep-rates
have been employed, 𝜈 = 10 mV/s and 𝜈 = 100 V/s. Despite the

3 Criteria for reversibility in terms of 𝛬 are outlined in Ref. [16].
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Fig. 9. Illustration of the DS-step for a surface containing hole-structures of a width of 400 nm and depth of (A) 100 nm, (B) 300 nm, and (C) 500 nm, and (D) 700 nm. Vertical
lines illustrate the cutoff-times which are defined in analogy to Fig. 5.
fact that sweep-rates as high as 𝜈 = 100 V/s are not practical for
most voltammetric experiments,4 they are required here to illustrate the
effects of electrode roughness at different timescales as we will show
later. Voltammetric responses are depicted in Figs. 11 (𝜈 = 10 mV/s).

Voltammograms depicted in Fig. 11, correspond to the previously
introduced pyramidal elevations of different height in panels (A)+(D),
recessed hole structures of 200 nm width and different depth in panels
(B)+(E) and recessed hole structures of 400 nm width and different
depth in panels (C)+(F). Electrochemically quasi-reversible conditions,
i.e. 𝛬 = 0.01 was used for the simulations behind panels (A), (B),
(C) whereas reversible conditions (𝛬 = 15) have been used in the
simulations for panels (D), (E), (F). It can be seen that the voltammetric
response of an electrochemically reversible reaction is independent of
the electrode roughness and all voltammograms coincide. However, for

4 Potential sweep-rates of several volts per second will typically result in a
strong capacitive contribution which is convoluted with the Faradaic current,
distorts the voltammetric profile, and renders a proper analysis very difficult.
12 
quasi-reversible reactions, it can be seen that an increasing degree of
roughness will lead to a more narrow peak-to-peak separation, usually
associated with an increase in the electrode kinetics. This appears
intuitive from the perspective that a rough interface will provide more
active area for driving the reaction and is in agreement with Ref. [37]
where CVs of rough electrodes were computed via digital simulati-
on.

Consequently, one will obtain a putative increase in the heteroge-
neous rate (constants) which is not seen for a reversible reaction as
there is already no kinetic limitation by definition. To confirm this
hypothesis, we performed the same simulations as in Fig. 11 (A), (B),
(C) with 𝛬∕𝜓 = 0.01 instead of 𝛬 = 0.01, where 𝜓 = 𝐴rough∕𝐴geo.
Respective results are depicted in Fig. 12. It can be seen that all voltam-
mograms coincide. This leads us to the conclusion that a normalization
of 𝛬 by the area-ratio compensates the effect of additional surface area
and that electrode roughness — at least in this particular example —
scales linearly with the kinetics.

To obtain a quantitative explanation for this behavior in terms
of convolutive modeling, Eq. (28) needs to be modified. First, one
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Fig. 10. (A), (C), (E) normalized flux responses and (B), (D), (F) corresponding mass-transfer functions for pyramidal elevations and hole-structures with a width of 200 nm and
400 nm, respectively. It can be seen that for the normalized flux a higher elevation of the pyramids or an increasing depth of the hole structures leads to a more pronounced
deviation from and a later transition to the planar semi-infinite limit.

Fig. 11. Voltammograms simulated at a potential sweep-rate of 𝜈 = 10mV/s for rough electrodes. Roughness is characterized by (A)+(D) pyramidal elevations of different height,
recessed hole structures of 200 nm width and different depth, (B)+(E) recessed hole structures of 400 nm width and different depth, and (C)+(F) (cf. Figs. 7–9). Electrochemically
quasi-reversible conditions were imposed by setting 𝛬 = 0.01 and 𝛼 = 0.5 in the simulations via Eq. (28) behind panels (A), (B), (C). In contrast, reversible conditions with 𝛬 = 15
and independent of 𝛼 have been used in the simulations for panels (D), (E), (F).
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Fig. 12. Voltammograms simulated at a potential sweep-rate of 𝜈 = 10mV/s for the same structures as in Fig. 11. Electrochemically quasi-reversible conditions which have been
imposed by setting 𝛬 = 0.01 in Fig. 11 have been modified to 𝛬∕𝜓 = 0.01, where 𝜓 = 𝐴rough∕𝐴geo, the area ratio.
Fig. 13. Relative deviation of the normalized mass-transfer functions 𝑀(𝑡)∕𝜓 for (A) pyramidal surface structure, (B) hole structures of 200 nm width and (C) hole structures of
400 nm width at different height and depth.
may substitute the current by the dimension-less potentiodynamic flux
which was defined in Eq. (41). This gives

𝜒(𝑚𝛥𝑡) ≈
𝜓 −

√

𝑛𝐹𝜈
𝑅𝑇

[

1 + e−𝜉(𝑚𝛥𝑡)
]

⋅ 𝜒,𝑀

e−𝛼𝜉(𝑚𝛥𝑡)
𝛬

+
√

𝑛𝐹𝜈
𝑅𝑇

𝑀(𝛥𝑡)
[

1 + e−𝜉(𝑚𝛥𝑡)
]

, (43)

leaving the area ratio 𝜓 = 𝐴rough∕𝐴geo in the numerator and introduc-
ing 𝛬 into the denominator and using the following recursion sum in
terms of 𝜒

𝜒,𝑀 =
𝑚−1
∑

𝑗=1
𝜒(𝑗𝛥𝑡)

[

𝑀((𝑚 − 𝑗 + 1)𝛥𝑡) −𝑀((𝑚 − 𝑗)𝛥𝑡)
]

. (44)

Multiplying numerator and denominator of Eq. (43) by 1∕𝜓 will give

𝜒(𝑚𝛥𝑡) ≈
1 −

√

𝑛𝐹𝜈
𝑅𝑇

[

1 + e−𝜉(𝑚𝛥𝑡)
]

⋅
𝜒,𝑀
𝜓

e−𝛼𝜉(𝑚𝛥𝑡)
𝛬𝜓

+
√

𝑛𝐹𝜈
𝑅𝑇

𝑀(𝛥𝑡)
𝜓

[

1 + e−𝜉(𝑚𝛥𝑡)
]

, (45)

where the term highlighted in red is the sought after scaling rela-
tion between electrode kinetics (invoked into 𝛬) and electrode rough-
ness (characterized by 𝜓). The terms highlighted in blue are essen-
tially a normalization of the mass-transfer functions by 𝜓 which was
investigated further in the context of Fig. 13.

Imposing this particular normalization to the mass-transfer func-
tions and depicting them similar to Fig. 10 will visually lead to a
superposition. An alternative — yet more sophisticated representation
— is to choose a logarithmic abscissa for the time and to plot the
relative deviation of the normalized mass-transfer functions with re-
spect to the analytical solution of the mass-transfer function for planar
semi-infinite diffusion. This is displayed in Fig. 13. It can be seen that
the relative deviation will almost vanish in all three examples (not to
be generalized here) at times greater than 10 s. Considering that all
voltammograms in context of Fig. 11 have been computed for a sweep
rate of 𝜈 = 10mV/s on a full potential range of 1.6 V, the time-scale
of the experiment reaches at least 160 s. Therefore, all normalized
mass-transfer functions have converged to the planar semi-infinite limit
(cf. Fig. 13) by that time. This is identified to be the reason why all
14 
reversible CV traces in Fig. 11 and all kinetically corrected CV traces in
Fig. 12 merge with the planar semi-infinite reference and no additional
artifacts of electrode roughness (e.g. distortions of the CV-curves similar
to porosity-effects) are seen. It is expected that distorting-effects can
be observed only if the transition region of the mass-transfer functions
coincides with the time-scale of the experiment.

Reducing the time of the (virtual) experiment was essentially
achieved by setting the potential sweep-rate to the exceedingly high,
and experimentally rather irrelevant, value of 100 V/s in the simu-
lations. Again considering 1.6 V on full scale, this will correspond
to a maximum time of 0.016 s — where the transition of the mass-
transfer functions to the planar semi-infinite limit is not complete (cf.
Fig. 13). Results of the simulations are depicted in terms of dimension-
less potentiodynamic flux in Fig. 14. In analogy to Fig. 11 it can be
seen that an increasing degree of roughness (i.e. deeper holes or higher
elevated pyramids) leads to a more narrow peak-to-peak separation
for the quasi-reversible scenario of 𝛬 = 0.01 of panels (A), (B), and
(C) in Fig. 14. Additionally, an increase in the peak maximum and a
steeper decaying diffusion tail are observed in the CVs. In contrast to
Fig. 11, these features are also present for the reversible CVs at 𝛬 = 15
in panels (D), (E), and (F) of Fig. 14. Additionally, the peak-to-peak
separation for the reversible CVs becomes less than the thermodynamic
limit of 58 mV for semi-infinite diffusion, which appears somewhat
odd on a first glance. However, this feature can be explained by
considering a finite diffusion domain effect which will act as follows.
At very low time-scales of the simulation, the relief of the surface
profiles is filled with electrolyte. This additional amount of active
species is then progressively consumed which gives some extra current
being added to the planar semi-infinite response. Naturally, this leads
to a larger peak magnitude in the CVs. Depending on the electrolyte
volume encapsulated in or contributed by the surface roughness, the
contribution of this extra current vanishes at a certain point in time.
This causes the voltammetric redox-peaks in the CV to deplete faster
and is in perfect agreement with the results obtained for a finite
diffusion space [9,10,21]. For this reason, it can be concluded that there
will be a gradual transition from electrode roughness towards electrode
porosity. Since this transition will, however, depend on a multitude of
parameters such as the rough surface profile, the diffusion coefficients
and the time-scale of the potentiodynamic experiment, an in-depth
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Fig. 14. Voltammograms simulated at a potential sweep-rate of 𝜈 = 100V/s for rough electrodes. Roughness is characterized by (A)+(D) pyramidal elevations of different height,
(B)+(E) recessed hole structures of 200 nm width and different depth, and (C)+(F) recessed hole structures of 400 nm width and different depth (cf. Figs. 7–9). Electrochemically
quasi-reversible conditions were imposed by setting 𝛬 = 0.01 and 𝛼 = 0.5 in the simulations via Eq. (28) behind panels (A), (B), (C). In contrast, reversible conditions with 𝛬 = 15
and independent of 𝛼 have been used in the simulations for panels (D), (E), (F).
analysis of this multiparameter-function was not performed yet. How-
ever, studying the transition from roughness to porosity will need more
careful investigations in future work which can be performed readily
with the herein presented DSDC-algorithm.

5. Summary and conclusions

In this paper we have introduced a modified version of the digital-
simulation–deconvolution–convolution (DSDC) algorithm to simulate
cyclic voltammetry at rough electrode surfaces. The most significant
changes to the previous DSDC-algorithm are (I) an adaptive numerical
resolution for reducing the computational demand (II) the inclusion of
an arbitrarily incremented spatial grid perpendicular to the electrode
surface and (III) an optimization of the computationally demanding
deconvolution step involving a numerical inverse Laplace transforma-
tion based on the Gaver–Stehfest inversion formula. It is demonstrated
that the relative deviation between the numerically reconstructed mass-
transfer function of a perfectly planar electrode surface and its analyt-
ical solution can be kept at less than 0.1% which essentially validated
the numerical procedure.

Based on the modified DSDC-algorithm, the effects of electrode
roughness have been thoroughly investigated. For this purpose, three
different types of surface roughness were considered, namely pyramidal
elevations with different height as well as two hole structures with
different depth and width.

For common experimental timescales in the range of a few 100 s
it is found that for an ideally reversible reaction the effects of elec-
trode roughness on the CV response are insignificant. However, in
case of a quasi-reversible (or irreversible) electrochemical reaction,
the apparent rate constants are allegedly upscaled by the area ratio
𝜓 = 𝐴rough∕𝐴planar. This translates into a lower peak-to-peak separation
without a distortion of the voltammetric curves and has a significant
consequence for the interpretation of experimental CV data. Since most
reactions are not purely reversible, but rather quasi-reversible or even
irreversible at the timescale of the experiments, it has to be expected
that electrode roughness has a significant impact on the experimental
result of voltammetric analyses. Therefore, the experimentalist has
to ensure that either (I) the electrode surface under investigation is
perfectly planar or (II) the roughness of the electrode is known and
kept constant.
15 
For short experimental timescales it is found that the effects of elec-
trode roughness will become similar to effects known from electrode
porosity — i.e. a significant distortion of the voltammetric profile will
occur. This is associated with an emptying of the pore space of the
rough surface and becomes gradually insignificant as the experiment
progresses.

Both of these two key-findings have been finally explained in terms
of convolution sums and mass-transfer functions and were implemented
into the semianalytical framework of convolutive modeling. In future
work, an in-depth investigation of the gradual transition from electrode
roughness to electrode porosity needs to be performed. For this purpose
we provide the scripts behind the simulations of this paper as supple-
mentary data as they can be readily used as starting point for such kind
of simulations.
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Appendix A

A.1. Introducing an arbitrarily expanding space-grid

Defining 𝛥𝑧𝑘 = 𝑧𝑘+1 − 𝑧𝑘 on an arbitrarily spaced 𝑧-grid, a Taylor
series expansion of the spatially dependent concentration profile at a
spatial node on position 𝑖, 𝑗, 𝑘 along the 𝑧-direction gives

𝑐𝑖,𝑗,𝑘+1,𝑡 = 𝑐𝑖,𝑗,𝑘,𝑡 +
𝜕𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

|

|

|

|

|𝑧=𝑧𝑘

𝛥𝑧𝑘 +
1
2!
𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕 𝑧2
|

|

|

|

|𝑧=𝑧𝑘

𝛥𝑧2𝑘 + 3 (46)

𝑐𝑖,𝑗,𝑘−1,𝑡 = 𝑐𝑖,𝑗,𝑘,𝑡 −
𝜕𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

|

|

|

|

|𝑧=𝑧𝑘

𝛥𝑧𝑘−1 +
1
2!
𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕 𝑧2
|

|

|

|

|𝑧=𝑧𝑘

𝛥𝑧2𝑘−1 −3. (47)

he alternating sign in Eq. (47) results from the definition of 𝛥𝑧𝑘−1
s positive quantity and the reverse-stepping in space. This results in
positive sign for all even terms. Particularly note that 𝛥𝑧𝑘−1 is not

ecessarily equal to 𝛥𝑧𝑘 since the grid is arbitrarily spaced. Omitting
ubic (and higher order) terms, Eqs. (46) and (47) can be rearranged
nd into a 2 × 2 matrix–vector product according to

𝛿 = 𝛥, (48)

where

𝑍 =
(

−𝛥𝑧𝑘−1 0.5𝛥𝑧2𝑘−1
𝛥𝑧𝑘 0.5𝛥𝑧2𝑘

)

(49)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑐(𝑥, 𝑦, 𝑧, 𝑡)
𝜕𝑧

|

|

|

|

|𝑧=𝑧𝑘
𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)

𝜕 𝑧2
|

|

|

|

|𝑧=𝑧𝑘
.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(50)

𝛥 =
(

𝑐𝑖,𝑗,𝑘−1,𝑡 − 𝑐𝑖,𝑗,𝑘,𝑡
𝑐𝑖,𝑗,𝑘+1,𝑡 − 𝑐𝑖,𝑗,𝑘,𝑡

)

(51)

Finding the approximation of the spatial derivatives along the 𝑧-
direction at the nodes 𝑧𝑘 is then performed by computing the inverse
of the matrix 𝑍.

Subsequently, the individual coefficients for a first or second deriva-
ive can be obtained by performing the following dot product

= 𝑍−1 𝛥. (52)

Since the right hand side of Eq. (1) requires approximations for second
spatial derivatives, only the second line of the matrix 𝑍−1 is required
nd referred to as 𝑍−1[1, ∶ ∶ ].5 This gives

𝜕2𝑐(𝑥, 𝑦, 𝑧, 𝑡)
𝜕 𝑧2

|

|

|

|

|𝑧=𝑧𝑘

≈ 𝑍−1[1, 0](𝑐𝑖,𝑗,𝑘−1,𝑡 − 𝑐𝑖,𝑗,𝑘,𝑡) +𝑍−1[1, 1](𝑐𝑖,𝑗,𝑘+1,𝑡 − 𝑐𝑖,𝑗,𝑘,𝑡)

= 𝛼𝑘𝑐𝑖,𝑗,𝑘−1,𝑡 + 𝛽𝑘 𝑐𝑖,𝑗,𝑘,𝑡 + 𝛾𝑘 𝑐𝑖,𝑗,𝑘+1,𝑡,

(53)

where the coefficients in Eq. (53) are defined by 𝛼𝑘 = 𝑍−1[1, 0] and
𝛽𝑘 = −(𝑍−1[1, 0] + 𝑍−1[1, 1]) and 𝛾𝑘 = 𝑍[1, 1]. It has to be underlined
hat these coefficients are computed on the points adjacent to 𝑧𝑘. For
n arbitrarily spaced grid, however, these values need to be explicitly
omputed for each and every node — i.e. also for the points centered
t 𝑘 − 1, 𝑘 + 1 and so on.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.electacta.2024.145175.

5 This notation is used to preserve nomenclature of the Python program-
ing language which is used for the simulations. The first entry in the square

rackets refers to lines, the second to columns, such that, e.g. 𝑍−1[0, 1] means
the zeroth line and the first column.
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