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We present verification protocols to gain confidence in the correct performance of a device implementing an
arbitrary quantum computation. The derivation of the protocols is based on the fact that matchgate computations,
which are classically efficiently simulable, become universal if supplemented with additional resources. We
combine tools from weak simulation, randomized compiling, and statistics to derive verification circuits that (i)
strongly resemble the original circuit and (ii) can be classically efficiently simulated not only in the ideal, i.e.,
error free scenario, but also in the realistic situation where errors are present. In fact, in one of the protocols we
apply exactly the same circuit as in the original computation, however, to a slightly modified input state.
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Introduction. With the advent of ever larger quantum pro-
cessors, the question of how to evaluate their performance
becomes increasingly relevant. A distinction is made between
pro- tocols in which the quantum device is potentially un-
trusted by the user, such as a cloud computer, from those in
which one does have direct access to the quantum processor.
In the former scenario a solution based on interactive proofs
and postquantum cryptography has been presented [1–3]. In
the latter, several protocols to gain confidence in the perfor-
mance of a quantum device have been put forward (for a
recent review, see [4]). Randomized benchmarking [5,6] and
several variants of it have been developed [7–9] where the
average performance of, e.g., Clifford gates, is quantified with
a single parameter, the average gate fidelity [10].

Also, due to their importance in fault tolerant quantum
computation, the simulability of Clifford circuits has been
utilized to study the performance of particular quantum com-
putations [11,12] and bound the total variation distance of
the erroneous to the ideal output state [12]. However, in or-
der to accomplish the challenging task of verifying universal
quantum computations and to also take into account the gates
that naturally occur in, e.g., real-time Hamiltonian evolution,
which might be difficult to benchmark with other methods
[13], different gate sets need to be considered. Moreover, the
problem of characterizing the reliability of implementing a
particular (not on average) universal computation with more
than a single error parameter is largely unexplored. It is pre-
cisely this problem that we will address in the present work:
To check not only the computation itself but to also gain
confidence in the correctness of an entire error model.
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We consider an arbitrary quantum computation and ana-
lyze how the distribution of single or multiqubit measurement
outcomes can be tested. One of the main obstacles here is, of
course, that the correct outcome is unknown, as the computa-
tion can not be performed classically efficiently1. Moreover,
as it is (in the near future) inevitable that errors will occur
during the computation, a classical simulation of the ideal
computation would only provide a limited amount of informa-
tion on the quality of the quantum device. Only the simulation
of the erroneous computation, which can be parametrized by a
set of error parameters, allows not only to establish trust in the
outcome, but also in the error model. A natural issue arising
here is that even if the computation itself were efficiently
simulable, inclusion of arbitrary—possibly coherent—errors
likely renders the simulation hard.

We will show that combining methods from weak simula-
tion of quantum computation [16] with randomized compiling
[17] and classical statistics allows one to overcome these
obstacles. For a given (universal) quantum computation we
will introduce verification protocols, which test computations
which differ only in some gates, or the input state, compared
to the original computation (see Fig. 1). We will show that
via the notion of randomized compiling, the output state
of the erroneous quantum computation can be tailored into
one which is parametrized by a few error parameters and
is, crucially, still weakly efficiently simulable. This holds
under mild conditions on the error model. The circuits we
verify must be classically efficiently simulable and therefore
must, in general, differ from the original circuit. However, we
choose our verification circuits very similar to the original
circuit. In fact, we either only add some additional gates,

1Note that there are however methods to compare the output of
two computations (quantum and/or classical), such as crossplatform
verifications [14].
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FIG. 1. Verification circuits: (a) U is mapped to its encoded version, U ′, which is acting on 2m qubits and is decomposed into n.n. MGs
and CZ gates; (b) each resourceful CZ gates can be implemented deterministically using the magic states |M〉 and adaptive measurements via
the gadget (bottom left) [15]. To verify the encoded realizations of U through efficient classical simulations, we consider verification circuits
obtained either by (c) replacing all CZ gates with fSWAP gates but leaving the structure of the circuit intact, or (d) implementing exactly the
same circuit but on a slightly modified input state.

or apply exactly the same computation on a slightly differ-
ent input state. Then, we will show that tests from classical
statistics allow us to estimate the error parameters of the
(slightly modified) computation (see Fig. 1). Hence, as an
output of these tests we obtain the error parameters which
completely characterize the output state of the slightly mod-
ified (randomly compiled) circuit. This can then also be
utilized to verify the error model, to detect, e.g., possible
drifts during the computation, and might also be used in error
mitigation. We illustrate the performance of the verification
protocols with some examples, where we also present some
additional tests.

Central to our approach are matchgate circuits. A match-
gate (MG) is a two-qubit gate which can be written as
G(U1,U2) = U1 ⊕ U2. Here, U1 (U2) is a unitary acting on the
even (odd) parity subspace, respectively, and their determi-
nants coincide. Matchgate circuits (MGCs) are composed out
of nearest neighbor (n.n.) MGs acting on computational basis
states and the output corresponds to the measurement of a sin-
gle (or several) qubit(s) in the computational basis. MGCs can
be simulated classically efficiently [18–20], and even com-
pressed into an exponentially smaller quantum computer [21].
Which resources can be added to MGCs such that the com-
putation remains classically efficiently simulable has been
studied in [22,23]. One distinguishes here between strong and
weak simulation. Whereas strong simulation means that for
any given output bitstring z on any subset of measured qubits,
p(z) can be determined classically efficiently, weak simulation
implies that one can classically sample form the exact output
probability distribution [16] (see also the Supplemental Mate-
rial (SM) [24]).

There are several ways to elevate the computational power
of MGC to the one of a universal quantum computer. To
review them, we consider here and throughout the paper an
arbitrary, universal circuit, U , of width m (number of qubits
it is acting on) and size poly(m). U can be decomposed into
single qubit and r = �(poly(m)) controlled two-qubit phase
gates, CZ. Slightly modifying the encoding used in [20,30]
it is easy to show that such a circuit can be encoded into
a circuit U ′ of width n = 2m, which is composed out of

poly(m) n.n. MGs and r resourceful n.n. CZ gates. This can be
easily seen using the freely swappable logical states |00〉 and
|11〉, the encoding of the single qubit gates Ai, G(A, A)2i−1,2i,
and CZ2i,2i+1 gates acting between logical states (see the
SM [24]). Here and in the following, the subscript de-
notes the qubit(s) the gate is acting on. Thus, supplementing
MGCs with n.n. CZ gates leads to universal quantum
computation.

The resourceful gate can also be deterministically imple-
mented via gate teleportation using magic states and adaptive
measurements. As shown in [15], any non-Gaussian fermionic
state is a magic state for MG computations, i.e., is resourceful.
For instance, the magic state, |M〉 = CZ2,3|�+〉1,2|�+〉3,4 can
be utilized together with adaptive measurements to implement
the CZ gate deterministically2 [15]. Crucial for our approach
will be that supplementing MGCs with any of these ingre-
dients separately, i.e., magic states with at most O(log(n))
adaptive measurements or adaptive measurements with at
most O(log(n)) magic states, remains classically efficiently
simulable [23].

Using the results summarized above we will now derive
verification circuits, for which the erroneous output can be
simulated classically efficiently3. Let us first explain two
methods to map the fixed but arbitrary encoded circuit, U ′,
to a slightly modified classically simulable circuit VU (see
Fig. 1). Starting with U ′ and replacing each of the CZ gates
by a fSWAP gate, i.e., by CZ · SWAP, leads to a classically
efficiently simulable circuit. Albeit this is a very simple map-
ping, it is clear that exchanging the CZ gates with fSWAP
gates is a drastic change in the computation. A more sophis-
ticated mapping in which the circuit is exactly the same, but

2Let us stress here that using this magic state, the CZ gate can also
be implemented on non-n.n. qubits (see the SM [24]).

3Note that, in [11] a similar approach has been presented for Clif-
ford gates and the measurement of a single qubit. However, there,
the single qubit reduced states are completely mixed (or factorize).
The here proposed method might, however, be applicable to Clifford
circuits.
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the gates are applied to a slightly different input state is the
following. As explained above, U ′ can be realized via an adap-
tive circuit composed out of MGs applied to the input state
|0〉⊗n|M〉⊗r . Considering exactly the same circuit, including
adaptive measurements (using exactly the same correction
operators, or modified ones to implement, e.g., determinis-
tically the fSWAP gate, see the SM [24]), but applied to
|�in〉 = |0〉⊗n|M ′〉⊗r with |M ′〉 = CZ2,3|�+〉1,3|�+〉2,4 leads
to a circuit which is classically efficiently simulable. The
reason for that is that the state |M ′〉 can be generated with
MGs (in contrast to the state |M〉) and that adaptive measure-
ments on those states remain classically efficiently simulable
[19,23].

We show next how the circuit can be transformed into
one which allows for the efficient simulation of the erro-
neous realization of VU . To this end, we employ the notion
of randomized compiling (RC) [17]. RC does not only lead
to a more robust implementation of the circuit, but, as we
will show, allows us to tailor the output of the quantum
computation to a state whose output probability distribution
can be sampled from classically efficient. That is, we show
now that we can weakly simulate the output of the randomly
compiled, erroneous realization of VU . Using statistical tests,
such as the Kolmogorov-Smirnov (KS) [31] or the Epps-
Singleton (ES) [32] test (see below), enables us to compare
the samples and to gain confidence that they stem from the
same probability distribution. Altogether, this allows us to
estimate the error parameter(s) of the randomly compiled
computation.

We will make the following assumptions on the error
model: (i) Instead of a MG, M, the map �M is implemented,
where �M (ρ) = EM (MρM†) and the error EM can depend on
M, but is assumed to be Markovian; (ii) Pauli operators can
be implemented with negligible error; (iii) a measurement
with projectors �t , t ∈ {0, 1} is modeled by �tE (·)�t ; (iv)
for any MG, M and any k-fold Pauli operator P, it holds
that �M(P) = EM (M(P) · M(P)†), where M(P) = PMP. Here,
EM depends on M, but is independent of P. Additionally, we
assume that any error channel acts on at most O(log(n)) qubits
and that the initial state |0n〉 can be prepared perfectly. The
first three assumptions are not very stringent and are com-
monly used [17,33]. To see that assumption (iv) is justified,
note that any MG is up to local phase gates (eiαiZ ) of the
form eiβXX+iγYY [34]. Thus, for any Pauli operator P, act-
ing on arbitrary many qubits, we have PM(P)P = M, where
the local and nonlocal parts of M and M(P) coincide up to
changing the signs of the phases (αi, β, and γ ) randomly,
which justifies assumption (iv). It follows that error models
EM depending on the absolute value of the mentioned angles
do satisfy assumption (iv). This encompasses coherent errors
represented by over-rotations in the form of e±i|αi|εZ , e±i|β|εXX ,
or e±i|γ |εYY . Additionally, it includes stochastic errors where
each over-rotation occurs with a certain probability. Let us
conclude this discussion on the error model by noting that
our assumptions can be relaxed, such that the noisy state
remains simulable. This can be achieved in two ways: First,
after randomized compilation, any Pauli channel would be
admissible, provided the total number of parameters is at most
poly(n) (including some errors that are correlated in time).
Second, one can allow for errors that are convex combinations

of MGs, e.g., certain over-rotation errors, as this remains
simulable.

Next, we show that under these assumptions on the
error model, one can depolarize the error of any MGC
to a Pauli channel. For each MG, Mi we choose a ran-
dom Pauli operator, Pi ∈ Pn, and apply the gate sequence
PiMi(Pi )Pi. In the error-free case we obtain the final pure
state

∏s
i=1 PiMi(Pi )Pi|0 · · · 0〉 which coincides with the ideal

state
∏s

i=1 Mi|0 · · · 0〉 as PiMi(Pi )Pi = Mi for each i. To ana-
lyze the erroneous case we consider first a single gate: Mi with
corresponding error channel Ei. As shown in the SM [24], Ei(·)
is transformed to a Pauli channel Si, i.e., |Pn|−1 ∑

Pi
PiEM (Pi ·

Pi )Pi = Si(·). Concatenating the channels for the whole circuit
leads to the output state

ρexp =
∑

{Pi}
c1(P1) · · · cs(Ps)W (P1, . . . , Ps), (1)

where W (P1, . . . , Ps) denotes the projector onto the state

|ψ (P1, . . . , Ps)〉 = PsMs · · · P2M2P1M1|0n〉
= P′

sMs(P
′
s−1) · · · M2(P′

1)M1|0n〉 (2)

with P′
k = PkPk−1 · · · P2P1 for k = 1, 2, . . . , s. Note that

the output probability distribution of each pure state
W (P1, . . . , Ps) can be weakly simulated and the coefficients
ci(P) can be measured experimentally via gate tomogra-
phy (for single MGs). Moreover, errors which occur during
intermediate measurements can be similarly taken into ac-
count by using the fact that during the computation the
qubits are only measured in the computation basis. Hence,
only bit-flip errors, which can be applied to the classi-
cal output, have to be taken into account (phase-flip errors
commute with the measurement). Taking also the measure-
ment errors into account (see the SM [24]), the output state
has a similar form as ρexp and can therefore be weakly
simulated.

Running the verification circuits on the quantum computers
gives us a sample {y1, . . . yk} that we want to compare with
the output {z1, . . . zl} of the weak simulation, where k, l ∈
poly(n). Then, using the KS [31] or ES [32] test (see the
SM [24]) allows one to gain confidence that the two samples
stem from the same (unknown) distribution by computing a
distance between their empirical distribution functions. Up to
our knowledge, these tests are among the most widely used
tests for the two-sample problem.

The protocols. Our protocols aim to verify a realization U ′
of an arbitrary universal quantum computation U . To obtain
U ′, one decomposes U into single qubit and CZ gates and
maps those to n.n. MGs and CZ gates in U ′. Furthermore,
one could implement each CZ gate in U ′ by consuming one
copy of the magic state |M〉 and adaptive measurements. Our
protocols can then be summarized as follows: 1. Use one
of the options to construct a classically efficiently simula-
ble verification circuit: 1a. Replace each gate CZ by CZ ·
SWAP = fSWAP (or any other MG) to obtain a MG circuit.
1b. Consider the realization of the CZ gates via the magic
state |M〉 and adaptive measurements. Apply the exact same
computation to the input state where each magic state |M〉
is replaced by the state |M ′〉 = fSWAP2,3|�+〉1,2|�+〉3,4 =
CZ2,3|�+〉1,3|�+〉2,4 (or any other resourceless state). Note
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FIG. 2. (a) The MG circuit (n = 12 qubits, depth L = 11) we use to illustrate our method. To each gate exp(iβH ), we associate (i) a
coherent overrotation O corresponding to exp(iγ |β|H ) and (ii) a stochastic crosstalk channel C, which is constructed by concatenating in total
four channels C̃(ρ ) = (1 − pc )ρ + pc/4

∑
P∈X PρP, for each pair of targeted qubit and its neighbors, where X = {XX, XY,Y X,YY } [35]

(for details and additional examples, see the Supplemental Material [24]). In (b), we compare a reference erroneous output state ρ ≡ σ (γ =
0.05, pc = 0.005) (marked by the crosses) with various states σ (γ , pc ). We find that the relation between the probability of passing the tests,
p(KS = 1) and p(ES = 1), and ‖ diag(ρ − σ )‖2 behaves similarly across various examples.

that if there were no errors, both circuits can be simulated
classically efficiently and can be directly compared to the
output of the quantum computation. 2. Estimate the error
parameters ci(·) in Eq. (1) for each gate and measurement
through process tomography. 3. Run the randomly compiled
version of the verification circuits. Due to RC, the output state
is given by Eq. (1). Confidence on the output and error of the
whole circuit is gained by comparing the samples obtained
from the quantum computer with those obtained via weak
classical simulation thereof using, e.g., the KS or the ES test.

Before illustrating the performance of these verification
protocols, the following comments are in order. First, we
assess here the performance of a specific realization U ′ of
the computation U (see Fig. 1). Hence, this provides a lower
bound on the quality of the quantum device in realizing this
particular computation. Second, one could use other gate
replacements to make a circuit (including RC) classically
efficiently simulable. For example, one could decompose a
circuit into MGs and Hadamard gates, H [30], and replace the
latter with, e.g., the MGs G(H, H ). Third, to improve the tests
and to make the verification circuits even more similar to the
original circuit, one can, e.g., use that O(log(n)) magic states
can still be classically efficiently simulated [23]. Moreover,
the probability with which the final state is in the even parity
subspace gives additional information on the error. Fourth, the
KS test can be applied to various mappings of the sampled
bitstrings to numbers. Finally, using the obtained samples,
various additional tests can be performed. To check whether
our protocols could distinguish two error models at all, one
can compare the outputs of two entirely classical simulations.
This may also be used to determine the necessary sample
sizes.

Illustration of the method. To illustrate the capability of
our method to distinguish errors, we compare samples drawn
from two classical simulations, one of which takes the place
of the quantum computation. We specify the error of the
latter and determine how much another set of errors must
differ to be distinguished successfully. We consider the MG
circuit depicted in Fig. 2(a), which includes physically rele-
vant crosstalk and overrotation errors. Aiming to analyze the
quality of the protocol proposed here, we compute the full
density matrices of the output states ρ and σ , and calculate
a distance between their probability distributions diag(ρ) and

diag(σ ). With KS (ρ, σ, M, α), we denote the random variable
taking the value 0 if the KS test rejects the null hypothesis
diag(ρ) ≈ diag(σ ) using M measurement shots with signif-
icance level α4, and 1 otherwise. Likewise, we define ES
for the ES test. To estimate p(KS = 1), we repeatedly (here,
1000 times, using M = 400 and α = 0.05) apply the test
to newly sampled data and estimate the expectation value
E(KS = 1). In our examples (see Fig. 2(b) and the SM [24],
where we demonstrate, e.g., detection of error drift), the states
ρ and σ can be distinguished by the statistical tests with
high probability as soon as ‖ diag(ρ − σ )‖2 � dcrit ≈ 0.1. In
such cases, the error model is rejected. Note that dcrit can be
improved by, e.g., increasing M or applying the circuit twice.
To demonstrate the applicability of our methods, we include in
[24] numerical results for different types of circuits (brickwall
layout) acting on up to 40 qubits. We also sometimes find that
postprocessing the samples increases the power of the tests
(see the SM [24]).

In the future, it would be intriguing to see how our proto-
cols can be combined with existing verification approaches,
also in the context of fermionic quantum computation [36]
and quantum simulation. Furthermore, it would be inter-
esting to analyze whether our methods could be useful in
the case of multiqubit measurements in Clifford circuits
(see [11]), where the output can be weakly simulated [37].
However, symmetries of stabilizer states potentially hiding
errors and possibly uniformly random measurement out-
comes in the error-free case are obstacles one needs to
overcome here.

Simulation codes and input parameters are available on
Zenodo [38].
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