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Identification of malfunctioning quantum devices
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We consider the problem of correctly identifying a malfunctioning quantum device that forms part of a network
of N such devices, which can be considered as the quantum analog of classical anomaly detection. In the case
where the devices in question are sources assumed to prepare identical quantum pure states, with the faulty source
producing a different anomalous pure state, we show that the optimal probability of successful identification
requires a global quantum measurement. We also put forth several local measurement strategies—both adaptive
and nonadaptive—that achieve the same optimal probability of success in the limit where the number of devices
to be checked is large. In the case where the faulty device performs a known unitary operation, we show that the
use of entangled probes provides an improvement that even allows perfect identification for values of the unitary
parameter that surpass a certain threshold. Finally, if the faulty device implements a known qubit channel, we find
that the optimal probability for detecting the position of rank-one and rank-two Pauli channels can be achieved
by product state inputs and separable measurements for any size of network, whereas for rank-three and general
amplitude damping channels, optimal identification requires entanglement with N qubit ancillas.
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I. INTRODUCTION

Recent advancements in quantum technologies, such as
quantum computing devices [1–6], quantum communication
[7–9], and quantum sensors [10], lend credence to the notion
that one day soon such devices will be readily available and,
hopefully, part of an interconnected quantum network [11]. In
turn, the existence of such quantum networks gives rise to new
technical challenges, such as the correct identification of pos-
sible malfunctions. In a vast network of quantum devices—be
they sources that produce quantum states, quantum channels
that transmit information, or the vast array of gates in quantum
computers—it is imperative that we are able to find efficient
ways to identify faulty components.

The identification of rare events that differ significantly
from the majority of all other observations is known as
anomaly detection and is a fundamental primitive in classical
data analysis and signal processing [12] with a wide range
of applications, from the identification of denial of service
attacks [13–15] to the identification of fraudulent financial
activity [16] (for a survey of anomaly detection, see [17]). Two
important algorithms for anomaly detection, namely, kernel
principal component analysis and support vector machines,
have been shown to be efficiently applicable in detecting
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anomalies in quantum data [18]. Here we consider a more
direct application of anomaly detection where the anomaly
is not restricted to classical data, but in the most general
quantum device. Specifically, given N identical devices that
are programmed to perform a particular task, with one of
the devices developing a known malfunction, our goal is to
optimally identify the malfunctioning device while only being
allowed to query the network once (see Fig. 1). This task that
we term error position identification (EPI) is a key ingredient
in pulse-position modulated quantum communication [19,20],
quantum illumination [21], quantum reading [22], and target
detection [23].

We note that instances of EPI have appeared elsewhere
in the literature under the name of channel position find-
ing [24–27], where the task is to identify the position of a
target bosonic channel, with a given reflectivity, among m
background bosonic channels of a different reflectivity. The
case of identifying the position of a singular unitary chan-
nel was also considered recently in [28]. Here, we provide
a more comprehensive analysis of EPI by considering more
general devices—including states, unitary gates, and quantum
channels—using a variety of different strategies employing
probes in separable, entangled, as well as ancilla-assisted
strategies. Unlike Refs. [24–27], we consider channels acting
on two-dimensional systems and consider both rank-one and
rank-two Pauli noise channels, depolarizing, and amplitude
damping channels. Moreover, our aim is to identify the po-
sition of the erroneous device by querying the network only
once, as opposed to the more general multiquerying adaptive
strategies considered in [24]. For the case of unitary channels,
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FIG. 1. Position error identification for sources and channels.
(a) N quantum sources are programmed to produce a given state
|0〉, except for a faulty device (depicted in red) which produces
a known pure state |φ〉. (b) N quantum gates are programmed to
perform a given unitary V , except for a faulty device (depicted in
red) which may perform a different unitary W or a noisy channel F .
While in (a) we only have to optimize over all possible measurement
strategies, in (b) we can also optimize over all possible input state
strategies, including those that make use of N additional ancillas.

we show that there exist instances for which the position of the
unitary channel can be identified with certainty, a result that
was missed in [28]. Note that EPI is fundamentally different
from the anomaly detection scenario considered in [18], which
focused on the classification of states using quantum machine
learning techniques.

We first address the setting when the devices are quantum
sources known to produce a specific pure state in Hd , with
the faulty source producing a different anomalous pure quan-
tum state (the multi-anomaly case has recently been studied
in [29]). We show that the maximum probability of success
is achieved by a global measurement strategy given by the
so-called square-root measurement, which yields a success
probability that converges to a nonzero constant as N in-
creases. We next show that when the devices are known to
perform a specific unitary gate, with the anomalous device
performing a different unitary, a probe state with entangle-
ment among the N input states—that can be effectively taken
to be qubits—achieves the maximal probability of success
without the need to use ancillary systems. In fact, we show
that for certain nontrivial errors, the optimal probability of
success can even reach unity. While the use of entangled probe
states does yield an improvement over strategies employing
separable probe states, this improvement diminishes with the
size of the network.

We then address the case when the devices are qubit
channels and show that for rank-one and rank-two Pauli chan-
nels, the maximal probability of success is achievable by
preparing probes and measuring their outputs in a common,
suitably chosen local basis. For rank-three Pauli channels
and amplitude damping, we show that one benefits most
from appropriately entangling the N probes with additional N
ancillas.

Finally, for the case where the quantum devices are
sources, we provide several local strategies, both adaptive and

nonadaptive, whose performance is nearly optimal, which is
of particular interest for realistic applications.

II. BACKGROUND

The task of successfully identifying the position of a faulty
device is equivalent to optimally discriminating among N
quantum states, in the case of source EPI, or N quantum chan-
nels. For the remainder of this work, we will be concerned
with devices that either prepare systems in a known pure state
(sources) or perform a known quantum operation (channels).
Without loss of generality, a faultless quantum source prepares
systems in the state |0〉, whereas the faulty source—equally
likely to be located at any of the N positions—prepares the
kth system in some state |φ〉. Similarly, a faultless quan-
tum operation performs the unitary operation V , whereas the
anomalous operation performs a completely positive, trace-
preserving (CPTP) map, F (k), on the kth quantum system
[30]. The probability of successfully identifying the position
of the faulty device is given by

PS = 1

N

N∑
k=1

q(k|k), (1)

where q(l|k) is the conditional probability given by Tr[Ml |φk〉
〈φk|] in the case of sources, and Tr[Ml E (k)[|ψ〉〈ψ |]] in the
case of channels, with {Ml � 0 | ∑l Ml = 11} := M forming
a general positive operator-valued measure (POVM). Observe
that for source EPI, the optimization over all of the measure-
ment strategies of Eq. (1) is a semidefinite program (SDP).
For channel EPI, however, Eq. (1) needs to be optimized
both over the input state as well as the measurement. Luckily
enough, the formalism of quantum testers [31] allows one to
linearize the problem and formulate it as an SDP—as long
as the optimization is carried over strategies that make use of
idler or ancillary systems, as shown in Fig. 1.

By and large, analytical solutions to either state or chan-
nel discrimination problems are very difficult and known
only for two [32,33] or three [34] pure or mixed states or
between states possessing a certain symmetry [35–43] (see,
also, [44,45]). For channel discrimination, analytic results are
known for distinguishing among a finite number of unitaries
in a single or finite number of runs [46–48], or between two
arbitrary CPTP maps [49–51]. We stress that here, unlike most
channel discrimination instances to date, the identity of the
channel (unitary or otherwise) is known, and what one is
looking for is the position at which the channel is acting.

III. RESULTS

A. Source EPI

We first consider the case of successfully identifying the
location of a faulty source as in Fig. 1(a). The problem sim-
plifies to optimally discriminating among the set of N linearly
independent states,

|ψk〉 = |0〉⊗(k−1) ⊗ |φ〉 ⊗ |0〉⊗(N−k), k ∈ (1, . . . , N ). (2)

Notice that the set of states also enjoys cyclic sym-
metry, which allows one to explicitly work out the
solution [20,29,36–38].
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Let {|mj〉}N
j=1 be an orthonormal basis for the N-

dimensional space spanned by {|ψk〉}N
k=1. Then the probability

of success is given by [41]

PS = 1

N

N∑
k=1

|〈ψk|mk〉|2 =
N∑

k=1

|Bkk|2, (3)

where B is but one of an infinitude of square roots of the
Gram matrix—the matrix of overlaps Gkl = 1

N 〈ψk|ψl〉, which
contains all the relevant information to assess the discrimi-
nation properties of a set of quantum states. As G > 0, the
optimization of Eq. (3) is achieved by maximizing over all
polar decompositions of B = V S, i.e.,

PS = max
V

N∑
k=1

|(V S)kk|2, (4)

where S is the unique, self-adjoint square root of
G. The corresponding measurement is simply given by
{|mk〉 = (V S)−1√

N
|ψk〉} (see [41]).

For the set in Eq. (2), the Gram matrix can be easily shown
to be

G = 1 − b

N
1 + b|1〉〈1|, (5)

where b = 〈ψk|ψl〉 for k �= l and |1〉 = 1√
N

(1, . . . , 1)T . The

matrix G has two distinct eigenvalues, λ1 = 1+(N−1)b
N and

λ2 = 1−b
N , where the latter is (N − 1)-fold degenerate. Note

that G is circulant [52] as is any function of G, in particular
S = √

G, whose diagonal entries are all equal to

Skk = TrS

N
=

N∑
j=1

√
λ j

N
; ∀ k = 1, 2, . . . , N. (6)

The condition that Skk = Sll , ∀k �= l , is necessary and
sufficient to show that Eq. (3) is maximized by B = S [20,41],
i.e., P∗

S = NS2
kk = (TrS)2/N , which reads

P∗
S =

(√
1 + (N − 1)b + (N − 1)

√
1 − b

N

)2

. (7)

To compare with the results of the next section, it is con-
venient to write the b in terms of the angle φ defined
from the overlap between the default and mutated state as
b = |〈0|φ〉|2 = cos2 φ/2. We get

P∗
S =

(√
1 + (N − 1) cos2 φ/2 + (N − 1) sin φ/2

N

)2

. (8)

The measurement that achieves this optimal value is the
so-called square-root measurement [20,36–38]. Notice that
P∗

S = 1 if and only if b = 0, i.e., |φ〉 = |1〉. For large strings
of states, the success probability is finite and reads

P∗
S = (1 − b) + 2

√
b(1 − b)√

N
+ O

(
1

N

)

= sin2 φ/2 + sin φ√
N

+ O

(
1

N

)
. (9)

B. Unitary EPI

Let us now consider the case of successfully identifying
the location of a faulty unitary gate W , i.e., F (·) = W (·)W †

in Fig. 1(b). As both V and W are known—only the location
of the latter is unknown—we can assume without loss of
generality that the states to be discriminated have the form

|ψk〉 = (1⊗(k−1) ⊗ U ⊗ 1⊗(N−k) )p ⊗ 1a|ψ〉
:= U (k)

p ⊗ 1a|ψ〉, k ∈ (1, . . . , N ), (10)

where U = V †W , and |ψ〉 ∈ Hp ⊗ Ha is a probe state which,
in principle, can contain ancillary systems. However, we note
that the use of ancillas here is redundant since, for any probe-
plus-ancilla state, there exists an N probe state that gives the
same Gram matrix (see Appendices). Observe that if |ψ〉 =
|γ 〉⊗N with U |γ 〉 = |φ〉, we recover the source scenario dis-
cussed above with success probability given by Eq. (7). The
question is whether choosing a more suitable initial state,
perhaps involving entanglement, improves the probability of
success.

Using the symmetry of the problem, for any given input
state ρ ∈ B(H⊗N ) and optimal POVM {Mσ }, there exists a
permutationally invariant state ρ̃ ∈ B(H⊗N ) and permutation-
ally covariant POVM {M̃σ } that achieves the same probability
of success (see Appendices). On the other hand, as the proba-
bility of success is a convex function, the optimal input state
can always be chosen to be pure. A seemingly natural, though
unproven, assumption is to restrict the optimization over states
to those that are both pure and permutationally invariant. For
N > 2, this assumption amounts to searching over pure states
that belong to the totally symmetric subspace of H⊗N [see
Eq. (11)]. We have numerically verified that this is indeed the
case for small values of N .

As U is known, we may write any permutationally in-
variant probe state with respect to the eigenbasis of U , with
all amplitudes taken to be real and positive without loss of
generality. Furthermore, an optimal probe state only involves
those eigenstates of U whose eigenvalues have the largest dis-
tance in the complex plane [53,54] as these yield the smallest
overlap. We write these as |0〉 and |1〉, respectively. The action
of the unitary can be taken to be U |0〉 = |0〉 and U |1〉 = eiφ |1〉
without loss of generality, where |φ| is the largest phase dis-
tance among the eigenvalues of the unitary. To keep track of
the phase, we denote the unitary by U (φ).

An orthonormal basis of these permutationally symmetric
states is given by the well-known Dicke states [55],

|N, m〉 = 1√(N
m

) ∑
g∈SN

πg[|1〉⊗m|0〉⊗(N−m)], (11)

where π : SN → U (2N ) is a permutation of the N qubits, and
our input state can be taken to be

|ψ〉 =
N∑

m=0

√
cm|N, m〉, (12)
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with cm � 0,
∑

cm = 1. The overlaps between the states of
Eq. (10) are given by

Gkl (φ) = 1

N

N∑
m=0

cm bm(φ), k �= l, (13)

where

bm(φ) = 1 − 4m(N − m) sin2 φ/2

N (N − 1)
. (14)

As bm(φ) is independent of k and l , the Gram matrix is
again circulant and we can immediately write the optimal
probability of success. The latter is maximal whenever the
off-diagonal terms of the Gram matrix are minimal. Whatever
the value of φ, b� N

2 � � bm, with �x� denoting the minimum
integer not smaller than x. The latter is given by

b� N
2 �(φ) = 1 − 2

⌈
N
2

⌉
sin2 φ

2

2
⌈

N
2

⌉ − 1
. (15)

Observe that b N
2

(φ) is a positive, monotonically decreasing
function for φ ∈ [0, φmin(N )], where cos[φmin(N )] = (−1 +

1
� N

2 � ) is the value at which b� N
2 � = 0. Therefore, if φ ∈

[0, φmin(N )], the optimal strategy consists of preparing |ψ〉 =
|N, �N

2 �〉 and performing the square-root measurement, with
the corresponding probability of success being the same as in
Eq. (7) substituting b by b� N

2 �(φ) given in Eq. (15),

PU
S [0 � φ � φmin(N )] = 1

N

[√
cos2 φ/2 + ξN sin2 φ/2

+
√

(N − 1)(1 − ξN ) sin φ/2

]2

,

(16)

where ξN = 0 for N even and ξN = 1/N2 for N odd. Observe
that the differences between the even and odd expressions
are of the order of O(1/N2) and, as expected, disappear as
N grows large.

Recall that Eq. (16) assumes the use of pure fully symmet-
ric probe states. We have performed a numerical optimization
without any assumption on the probe states using SDPs with
seesaw techniques, where one first optimizes the measurement
for a fixed state and subsequently optimizes the input state
for the optimal measurement in the previous step. We attain
the same values as those given by Eq. (16) for up to N = 7
systems.

Notice that something remarkable happens for φmin(N ) <

φ � π ; for this range of values, b� N
2 �(φ) � 0 and we can

exploit superpositions between symmetric basis states in order
to identify the malfunctioning device with certainty.

Specifically, as b0(φ) = 1 is independent of φ, initializing
the N probes in the state |ψ〉 = √

c0|N, 0〉 + √
c� N

2 �|N, �N
2 �〉

with

c� N
2 � = 2

⌈
N
2

⌉ − 1

2
⌈

N
2

⌉
sin2 φ

2

(17)

and c0 = 1 − c� N
2 � guarantees that PU

S [φmin(N ) < φ � π ] =
1.

In the limit of large N , perfect discrimination is possible for
angles π − 2√

N
� φ � π . For a fixed angle φ, the probability

of success attains the same asymptotic expression as for the
source EPI, given by Eq. (9), up to subleading order (the gap
closes as at a rate equal to sin2 φ/2

N ). Thus, in the limit where
the number of devices is large, entangling the initial probes
does not enhance the probability of success. Note, however,
that for a small number of devices, this improvement can be
quite sizable.

We would like to point out that part of our results here
has been reproduced in a recent publication [28]. Notwith-
standing, this work assumes symmetric probe states of qubits
ab initio and fails to notice that this probability can be made
equal to one for nontrivial values of the angle φ.

C. Channel EPI

We now consider the successful identification of faulty
channels [Fig. 1(b)] described by CPTP maps acting on qubit
systems. Ideally, well-functioning components implement the
unitary operation V , with the faulty component implement-
ing the CPTP map F : B(H2) → B(H2) with Kraus operator
decomposition {Fi}r

i=1. As both V and F are known—only
the position of the latter is unknown—our task reduces to
discriminating among the states,

ρk = I⊗(k−1) ⊗ E ⊗ I⊗(N−k) ⊗ I⊗N (|ψ〉〈ψ |), (18)

where E : B(H2) → B(H2) is a channel with Kraus operator
decomposition given by {Ki = V † Fi}r

i=1. |ψ〉 ∈ H⊗N
2 ⊗ H⊗N

2
is the initial state of N qubits and N ancillas.

For any Kraus decomposition of E and for any input state,
the following holds:

PS (E, |ψ〉〈ψ |) �
r∑

i=1

PS (Ki, |ψ〉〈ψ |), (19)

where

PS (Ki, |ψ〉〈ψ |) = 1

N
max
M

N∑
k=1

Tr
(
MkK (k)

i |ψ〉〈ψ |K (k)†
i

)
(20)

denotes the optimal probability of successfully identifying
the position of the action of the Kraus operator Ki. Equality
holds in Eq. (19) if and only if there exists a POVM M that
simultaneously optimizes all PS (Ki, |ψ〉〈ψ |).

Consider first the Pauli channels

EP[ρ] = p0ρ + p1σxρσx + p2σyρσy + p3σzρσz, (21)

where p1 � p2 � p3, (x, y, z) form an orthonormal
Cartesian frame, {σx, σy, σz} the standard Pauli matrices,
and

∑3
k=0 pk = 1. The rank of a Pauli channel is the number

of nonzero weights pi with i ∈ (1, 2, 3). For rank-one and
rank-two Pauli channels, the bound of Eq. (19) can be
saturated by a simple strategy involving just product states
and projective measurements. Indeed, for p3 = 0, the optimal
strategy corresponds to preparing each probe in the state
|0〉 and measuring in the eigenbasis of σz. Hence, for both
rank-one and rank-two Pauli channels, the optimal probability
of success reads

PS (Erank−1(2)) = 1 − p0 + p0

N
. (22)

For rank-three Pauli channels, any strategy involving
N probes prepared in a product state and projective
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measurements is suboptimal. This is because one cannot per-
fectly discriminate between the Pauli matrices using a single
qubit. Indeed, the best one can hope for using such a strategy
is (see Appendices)

Psep
S (Erank−3) = 1 − (p0 + p∗) + p0 + p∗

N
, (23)

where p∗ = min{p1, p2, p3} and corresponds to unambigu-
ously discriminating the most likely rank-two Pauli noise. One
can, however, optimally distinguish among the Pauli matrices,
and thus saturate Eq. (19), by introducing N ancilla qubits and
preparing each probe-plus-ancilla in the maximally entangled
state |
+〉 = 1√

2
(|00〉 + |11〉). As the corresponding set of

states {11 ⊗ σi|
+〉}3
i=0 is orthogonal, it can be distinguished

with certainty and one has to make a random guess only in the
case the identity acts. We then recover Eq. (22) as the optimal
probability of success. We note that this is in agreement with
the result of [24], which proved that for the optimal prob-
ability of success for telecovariant channels—of which the
depolarizing channel is a special case—the optimal strategy
for detecting the position of the channel is a nonadaptive
ancilla-assisted strategy. It remains to check whether the upper
bound to PS (Erank−3) is achievable without the use of ancillas.
For small network sizes, we can numerically determine the
optimal probability of success where we observe a clear gap.
By way of example, for N = 3 and the completely depolariz-
ing channel (p0 = p1 = p2 = p3 = 1/4), we numerically find
maxρ∈B(H⊗3

2 ) PS (Erank−3) = 0.71, which indeed is larger than
the suboptimal 2/3 value in Eq. (23), and smaller than the
ancilla-assisted value 5/6 [Eq. (22)]. Just as in the case of
unitary EPI, we find that fully symmetric probe states attain
the optimal probability of success.

We now consider an amplitude damping channel with
Kraus operators

K0 =
(

1 0
0

√
1 − γ

)
, K1 =

(
0

√
γ

0 0

)
, (24)

with 0 � γ � 1 the damping parameter. The best strategy
utilizing separable states can be obtained by noting that the ac-
tion of amplitude damping on an arbitrary Bloch vector results
in r → [rx

√
1 − γ , ry

√
1 − γ , γ + rz(1 − γ )]. It follows that

the probability of detecting the action of amplitude damping
is highest if one prepares the N product-state probes in the
direction where amplitude damping is most pronounced (here,
in the ẑ direction), and measuring each qubit along that same
direction which results in

Psep
S (EAD) = γ + 1 − γ

N
. (25)

Clearly, Eq. (25) provides a lower bound to the probability
of success for the most general, ancilla-assisted strategy. An
upper bound can be obtained from the following chain of
inequalities:

PS (EAD, ρ) � PS (K0, ρ) + PS (K1, ρ)

� PS (K0, ρ) + p(K1, ρ), (26)

where p(K1, ρ) is the probability that the K1 Kraus operator of
the amplitude damping channel has acted and is independent
of the position of the channel. Moreover, PS (K0, ρ) depends

solely on the overlap of the conditional (unnormalized) pure
states ρk = (1 ⊗ K (k)

0 )ρ(11 ⊗ K (k)†
0 ).

It is straightforward to check that the upper bound in
Eq. (26) can be attained by preparing the 2N probe-ancilla
systems in the state

|N, m〉pa ≡
(

N

m

)−1/2 ∑
g∈SN

�g|11〉⊗m
pa |00〉⊗N−m

pa , (27)

where each ancilla system acts as a flag for its respective
probe system and � : SN → H⊗N

p ⊗ H⊗N
a is a representation

of the permutation group SN acting on the total probe-plus-
ancilla space, i.e., �g = πg ⊗ πg, ∀ g ∈ SN , π : SN → Hp(a).
Observe that the total number of excitations of |N, m〉pa is
even for all m ∈ (0, . . . , N ) and that K0 preserves this number,
whereas K1 removes one excitation from the probe systems
but not the ancilla, resulting in an odd number of total excita-
tions. This implies that (i) the conditional set of states {|� (k)

1 〉},
which arises from the action of K (k)

1 on an input state

|�〉 =
N∑

m=0

√
cm|N, m〉pa, (28)

is orthogonal to the conditional states {|� (k)
0 〉} and (ii) the

conditional states {|� (k)
1 〉} form an orthonormal set of states

of odd number of excitations. Properties (i) and (ii) ensure
that the first and second inequalities in Eq. (26) are achievable
with p(K1, ρ) = 1 − p(K0, ρ) = γ

〈n̂〉
N , where n̂ is the total

excitations number operator. By computing the Gram matrix
for the branch corresponding to the action of K0, the optimal
probability of success can be explicitly determined to be

PS (EAD) � γ +
√

1 − γ (
√

1 − γ + 1)

2N
+ O(N−2), (29)

and is achievable by the ancilla-assisted state with coefficients
cN = p, cN−1 = 1 − p, where

p =
√

1 − γ (3N − 2) + 2√
1 − γ (4N − 2) + 2

. (30)

We note that upper and lower bounds for the probability of
success can be derived by suitably modifying the approach of
[24] to the single-shot scenario, but that these bounds are not
tight and are also not demonstrably known to be achievable.

Numerically, we find that for N = 3 and γ = 1/2,
the optimal success probability without ancillas is
maxρ∈B(H⊗3

2 ) PS (EAD) = 0.68—achievable by a pure
fully symmetric probe state—while the ultimate limit is
PS (EAD) = 0.69. The difference is small, but sufficient to
show that there is a gap in performance. Notice, however, that
Eq. (29) shows that the improvement over the optimal product
state strategy is subleading in N . Indeed, in the limit where
the number of devices to be checked is large, the gap between
Eqs. (25) and (29) closes, and it suffices to deploy our probes
in the optimal product state.

IV. LOCAL MEASUREMENT STRATEGIES
FOR SOURCE EPI

In this section, we investigate four local measurement
strategies and gauge their performance in determining the
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position of a malfunctioning quantum source, i.e., detecting
faulty prepared states. For ease of exposition, we will describe
each of the local measurement strategies and state their perfor-
mance only. For a more detailed treatment of each strategy, we
direct the reader to the Appendices.

The simplest conceivable local strategy is to unambigu-
ously determine the malfunctioning source. For this, each
party measures in the {|0〉, |1〉} basis. We term such measure-
ment strategy as the basic local strategy. The probability of
obtaining outcome one is sin2 φ/2, whereas if all measurement
outcomes are zero, which occurs with probability cos2 φ/2, we
have to guess the position of the malfunctioning source at
random. Hence, the optimal probability of success using the
basic local strategy is

PBL
S (φ) = sin2

(
φ

2

)
+ cos2

(
φ

2

)
N

= 1 − (N − 1)

N
cos2

(
φ

2

)
. (31)

Notice that in the limit of N → ∞, this strategy asymptoti-
cally approaches the constant value of the optimal square-root
measurement, given by Eq. (7), but at a slower rate since the
subleading term here is ∼1/N instead of 1/

√
N of the optimal

performance.
Next, we consider the most general local strategy involving

N independent measurements. Here each party measures in a
different basis, and for each of the 2N possible measurement
outcomes, m ∈ {0, 1}N−1, our guessing rule is the maximum
likelihood, i.e., we choose the hypothesis, k ∈ (1, . . . , N ),
that maximizes the corresponding conditional probability
distribution q(m|k),

PGL
S = 1

N

2N −1∑
m=0

max
k

{q(m|k)}. (32)

The best such strategy corresponds to maximizing Eq. (32)
over the N local measurement basis.

Our third local strategy is a greedy strategy, a sequential
strategy that uses forward communication in order to opti-
mally distinguish among the most likely hypothesis at every
step. In this strategy, each party n ∈ {1, . . . , N}, starting with
n = 1, performs a measurement on the nth subsystem of
|ψk〉 ∈ H⊗N corresponding to their location and attempts to
identify the location of the error. As we show in the Appen-
dices, the optimal strategy for each party n corresponds to a
binary hypothesis testing scenario where the hypotheses are
that the error is at location n or at the most likely position
among the remaining hypotheses given the prior information
at party n’s disposal, by means of the prior distributions
p(n)(k), k ∈ (1, . . . N ). These probabilities are updated se-
quentially, using Bayes’ rule, depending on the outcomes of
all parties up to and including party n − 1. Party N then mea-
sures their subsystem using the optimal measurement derived
from the prior distribution p(N )(k). The corresponding proba-
bility of success, which depends on the measurement record
m ∈ {0, 1}N−1, is P(N )

S (m) [see Eq. (D4)] and the average
probability of success is given by

PGr
S =

∑
m

q(m) P(N )
S (m), (33)

FIG. 2. The probability of success for EPI of sources using the
square-root measurement (solid black line), the basic local strategy
(blue dashed line), the greedy strategy (green dotted line), the general
local strategy (magenta dashed line), and the last-one strategy (red
dot-dashed line). All strategies are evaluated for the case of N = 6.

where q(m) denotes the probability of obtaining the measure-
ment record m ∈ {0, 1}N−1.

Our last local measurement strategy is again a sequential
adaptive strategy where we fix our guess for the most likely
hypothesis to be the position of the last positive outcome
in any given measurement record (the last-one strategy). By
way of example, suppose that N = 3. Then, for the mea-
surement records {001, 011, 101, 111}, we hypothesize that
the error occurred at position k = 3; for the measurement
records {010, 110}, that the error occurred at k = 2; and for
{100, 000}, that the error occurred at k = 1. Notice that here
we need to optimize over 2N − 1 parameters since the optimal
measurement basis at each position n depends on all previous
k − 1 measurement outcomes. The corresponding probability
of success is given by

PL1
S = 1

N

N∑
k=1

∑
m∈Sk

q(m|k), (34)

where

q(m|k) =
N∏

i=1

|〈mi|ψk〉|2, (35)

and Sk ≡ {m|mk+1 . . . mN = 0}.
The performance of all four strategies for the case where

N = 6 is shown in Fig. 2. The worst performing strategy is
the basic local strategy, with the general local, greedy, and
last-one strategies performing much better. This is hardly
surprising since adaptive strategies utilizing information from
previous measurement outcomes are expected to perform bet-
ter. Moreover, the last-one strategy performs best as it utilizes
the entire past measurement record, contrary to the greedy
strategy which only utilizes the information from the previous
measurement. While the improvement of the last-one strategy
over the greedy one is only slight—the corresponding prob-
abilities of success differ only in the third digit—we have
checked that this improvement does persist also for moder-
ate network sizes and that there is a clear nonzero gap with
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the optimal measurement strategy employing the square-root
measurement.

Notice that to zeroth order in N , all four strategies
achieve the maximum probability of success in the large-
N limit, since limN→∞ PBL

S (φ) = limN→∞ P∗
S (φ) = sin2 φ/2

and PBL
S < PGL

S < PGr
S < PL1

S < P∗
S . The differences between

all strategies is the speed with which one approaches this
constant. As shown in Eq. (31), the basic local strategy ap-
proaches the asymptotic value from above with a scaling of
N−1, i.e., the success probability decreases at a faster rate than
the optimal strategy, which shows a N−1/2 scaling [Eq. (9)].
We can only assess the performance of the other local strate-
gies by numerical optimization, which becomes exceedingly
hard for large values of N . The most tractable case is that of
the greedy strategy for which we have computed PGr

S (N ) up to
N = 20, exhibiting a scaling that is compatible with N−2/3.

It is worth stressing that aside from being easily im-
plementable, there are other advantages that one needs to
consider when choosing among local strategies. For example,
the basic local strategy may identify the position of an error
with high confidence in an online fashion, even in settings
where the number of samples, N , is not fixed in advance. The
use of quantum sequential methodologies in settings without
a finite horizon has been recently studied in [56–59].

V. CONCLUSIONS

We have addressed how to optimally identify the posi-
tion of a malfunctioning quantum device that forms part of
an interconnected quantum network in the simplified case
where the latter consists of N identical devices that can be
addressed in a parallel fashion. For unitary EPI, we discover
that entanglement enhances the probability of correct identifi-
cation, and even allows for perfect identification of the device
if the unitary rotation angle is greater than some threshold.
For rank-one and rank-two Pauli channels the optimal strat-
egy involves separable states and measurements, whereas for
rank-three and amplitude damping channels, we find that the
optimal identification strategy requires entanglement with N
additional ancillas. However, the use of entanglement among
the input probes only pays dividends if the number of devices
needed to be checked is small; as the network size grows large,
strategies employing separable states do just as well.

We have numerically verified that for unitary EPI, ancilla-
free totally symmetric pure states attain the optimal perfor-
mance. While we have given a formal proof that ancillas
are not necessary to achieve optimality, the sufficiency of
pure permutationally symmetric states remains unproven.
In channel identification using probes without ancillas, we
find again that symmetric pure states stand as the optimal
choice. Although the numerical evidence in both cases is very
compelling, an analytical proof presents an intriguing open
challenge of theoretical interest.

There are several interesting extensions of the current work
that are of both theoretical and practical significance. For in-
stance, in this work, we have assumed throughout that devices
act on separate systems. In a quantum computer or a general
quantum network, the same quantum system may be subject to
a sequence of quantum operations. It is natural then to ask how
to optimally identify malfunctioning devices that act in se-

quence on the same quantum system. Furthermore, it is inter-
esting to know what the optimal performance is in cases where
both the position and the identity of the anomaly are required.
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APPENDIX A: OPTIMAL STATES FOR UNITARY
EPI REQUIRE NO ANCILLAS

In this Appendix, we provide the proof that for the case
of unitary EPI, the optimal probability of success can be
achieved without ancillas. To that end, let us write the mal-
functioning unitary of dimension d as

U =
d−1∑
a=0

eiφa |a〉〈a|, (A1)

where {|a〉}d−1
a=0 are the d eigenvectors of the unitary U . Using

the same orthonormal basis, we may write any probe-plus-
ancilla state as

|ψ〉 =
dN −1∑

m,n=0

cnm|n〉 ⊗ |m〉, (A2)

where n, m denote N d-nary strings. The elements of the
Gram matrix are then given by

Gkl =
dN −1∑

n,n′,m=0

c∗
nmcn′m〈n|U †

k Ul |n′〉

=
dN −1∑

n,m=0

|cnm|2e−i(φnk −φnl )

=
dN −1∑
n=0

|ψn|2e−i(φnk −φnl ), (A3)

where |ψn|2 = ∑dN −1
m=0 |cnm|2. But this is precisely the same

Gram matrix element one would obtain using the no-ancilla
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state,

|ψ〉 =
dN −1∑
n=0

ψn|n〉, (A4)

proving the claim.

APPENDIX B: OPTIMALITY OF PERMUTATIONAL
INVARIANT STATES AND COVARIANT MEASUREMENTS

In this Appendix, we prove that given any state ρ = |ψ〉〈ψ |
and POVM {Mk}, there exists a permutationally invariant state
τ and covariant POVM that achieves the same probability of
success.

Recall that the probability of successfully identifying the
position of a malfunctioning device is given by

PS (E, |ψ〉〈ψ |) = max
{Ek�0}

1

N

N∑
k=1

Tr[Ek (|ψ〉〈ψ |)Ek], (B1)

where |ψ〉 ∈ H⊗N
2 and Ek : B(H(k)

2 ) → B(H(k)
2 ). Alterna-

tively, we may think of the position of the channel as fixed,
acting only on the last qubit, with a pre- and postprocess-
ing of the input and output states by the shift superoperator
T N−k (·) = T N−k (·) T −(N−k), where T : ZN → U (2N ), T N =
11 is a unitary representation of ZN , i.e,

Ek = T −(N−k) ◦ EN ◦ T N−k, (B2)

with T ◦ E (A) = T [E (A)]. Moreover, as we are promised
that only a single error occurs, we can extend the translation
symmetry of the channel to the full permutation group SN by
noting that

T N−k (·) = 1

N!

∑
σ∈SN |N σ→k

πσ (·)π†
σ , (B3)

where π : SN → U (2N ) is a unitary representation of SN .
Equation (B3) simply states that the translation of the

channel from position N to k is equivalent to the (N − 1)!
permutations that map position N to k. We can also modify our
search over the optimal POVM accordingly by associating all
(N − 1)! measurement outcomes Eσ that map N to k so that
Eq. (B1) reads

PS (E, |ψ〉〈ψ |) = max
{Eσ�0}

1

N

∑
σ∈SN

Tr[V†
σ ◦ EN ◦ Vσ (|ψ〉〈ψ |) Eσ ],

(B4)

where Vσ (·) = πσ (·)π†
σ and V†

σ = V−1
σ = Vσ−1 .

For a fixed, equiprobable set of quantum states {ρk}N
k=1,

the optimal probability of successful discrimination can be
written as the following semidefinite program (SDP) in dual
form [32,33,35,60]:

min
��0

Tr �subject to � � 1

N
ρk ∀ k ∈ (1, . . . , N ). (B5)

Using Eq. (B5) and the properties of the trace, we have

Tr � = Tr(πσ � π†
σ ) ∀ σ ∈ SN

= 1

N!
Tr

( ∑
σ∈SN

πσ� π†
σ

)

≡ Tr �̃, (B6)

where �̃ is a permutationally invariant operator. Furthermore,
the optimality conditions of Eq. (B5) imply

� � 1

N!
π†

σ EN (πσ |ψ〉〈ψ |π†
σ )πσ , ∀ σ ∈ SN ,

πσ � π†
σ � 1

N!
EN (πσ |ψ〉〈ψ |π†

σ ), ∀ σ ∈ SN ,

�̃ � 1

N!
EN (G[|ψ〉〈ψ |]), (B7)

where G[|ψ〉〈ψ |] = 1
N!

∑
σ∈SN

πσ |ψ〉〈ψ | π†
σ , and has the

property of symmetrizing |ψ〉〈ψ |.
As it is sufficient to restrict to permutationally invariant

states, Eq. (B4) reduces to

PS (E, τ ) = max
{Eσ�0}

max
{τ }

1

N

∑
σ∈SN

Tr[EN (τ )V†
σ (Eσ )]

= (N − 1)! max
{E�0}

max
{τ }

Tr[EN (τ )E ], (B8)

where the second maximization is over all τ that sat-
isfy [πσ , τ ] = 0,∀ σ ∈ SN , and we have made use of the
fact that {Eσ = πσ Eπ†

σ } constitutes a covariant measure-
ment whose fiducial element is E , and used the identity
G[E ] = 1

N!

∑
σ∈SN

Vσ (E ) = 1
N! 11.

Equation (B8) tells us that for any given input state
|ψ〉 and optimal POVM {Mk}, there exists a permutation-
ally symmetric state τ and permutationally covariant POVM
{Eσ = πσ Eπ†

σ } that achieves the same probability of success.
Moreover, the optimization over the covariant measurement
requires us to optimize over a single fiducial POVM element
E such that

N!G(E ) = 1. (B9)

APPENDIX C: OPTIMAL PRODUCT STATE STRATEGY
FOR RANK-THREE PAULI CHANNELS

In this Appendix, we show that the optimal, ancilla-free,
product state strategy for detecting rank-three Pauli noise
using projective measurements has a probability of success
given by Eq. (23). To do so, we will first show that the optimal
probability of success can be achieved by unambiguously de-
termining the position of the error channel and then show that
the optimal unambiguous strategy is indeed given by Eq. (23).

Consider then the case where each party measures its
corresponding system locally using a fixed, nonadaptive, but
otherwise completely arbitrary measurement. Without loss of
generality, let use denote the measurement outcomes of each
party’s measurement by 0 and 1. In a completely arbitrary
fashion, let us also make the assignment that outcome zero
means that the channel did not act, whereas outcome one
means the channel has acted. After all parties have performed
their measurement, we will obtain one of the 2N possible
measurement outcomes {m ≡ m1 . . . , mN | mi ∈ (0, 1), ∀ i ∈
(1, . . . , N )}.

For the outcome 0, we simply guess at random the position
of the channel, whereas for the N measurement outcomes
with Hamming weight one, our guess for the position of the
channel is that it acted at the position for which the measure-
ment outcome mi = 1. For example, if m1 = 1, mi = 0, ∀ i ∈
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(2, . . . , N ), we guess that the channel acted on the first qubit.
Our probability of success is then given by

PS = p(g = 1|k = 1)p(k = 1)�N
i=2q(i = 0|i = 0)

≡ 1

N
p(g = 1|k = 1)qN−1.

(C1)

Here, p(g = i|k = i) = Tr[|1〉i〈1|E (|ψ〉i〈ψ |)] denotes the
probability that mi = 1 given that the channel E acted at
position i (i.e., correctly identifying the channel); 1 − p(g =
i|k = i) is the conditional probability that mi = 0 given the
channel acted at position i; and q(i = 0|i = 0) is the con-
ditional probability that mi = 0 given the state at position
i is |ψ〉 (i.e., correctly identifying that the channel did not
happen at position i), with 1 − q(i = 0|i = 0) denoting the
conditional probability that mi = 1 given the state at position
i is |ψ〉. As all the latter probabilities are the same, we simply
drop the label i in what follows and write q for simplicity.
It follows that if the measurement record contains a single
element different from zero at position i, the probability of
successfully identifying the channel is given by

PS = 1

N
p(g = i|k = i)qN−1. (C2)

Now consider a measurement record with Hamming
weight 1 � r � N and suppose that for such measurement
outcome, we randomly choose one of the r positions {i ∈
(1, . . . , r) |mi = 1} as our guess. The probability of success
now reads

PS = 1

N

N∑
i=1

p(g = 1|k = 1)
N∑

r=1

(
N − 1

r − 1

)
qN−r (1 − q)r−1

r

= p(g = 1|k = 1)
N∑

r=1

(
N − 1

r − 1

)
qN−r (1 − q)r−1

r

= p(g = 1|k = 1)

N

N∑
r=1

(
N

r

)
qN−r (1 − q)r−1

= p(g = 1|k = 1)

N

1

1 − q

N∑
r=1

(
N

r

)
qN−r (1 − q)r

= p(g = 1|k = 1)

N

1

1 − q

[
N∑

r=0

(
N

r

)
qN−r (1 − q)r − qN

]

= p(g = 1|k = 1)

N

1 − qN

1 − q
, (C3)

where we have used the fact that p(g = i|k = i) is the same
for all i ∈ (1, . . . , N ) in going from the first to the second
line in Eq. (C3). For q < 1, the success probability scales as
1
N , whereas for q = 1, i.e., for unambiguously discriminating
when the channel acted, the success probability is given by

PS = p(g = 1|k = 1). (C4)

It follows that the optimal minimum error strategy for product
states with projective measurements is the one that unambigu-
ously detects the action of the channel.

All that is left now is for us to determine the initial state |ψ〉
and corresponding unambiguous measurement strategy that

maximizes p(g = 1|k = 1). Looking at the definition of rank-
three Pauli channels [Eq. (21)], it follows that the maximum
of p(g = 1|k = 1) occurs by tailoring the initial state |ψ〉 such
that we can distinguish with certainty the action of two out
of the three Pauli operators with the largest probability of
occurrence, and randomly guessing the position of the channel
for the remaining Pauli operator and the identity. Denoting by
p∗ = min{p1, p2, p3}, it follows that

PS = 1 − (p0 + p∗) + p0 + p∗

N
. (C5)

Interestingly enough, one may arrive at the conclusion that
the optimal probability of success is achievable by unambigu-
ous discrimination by employing the following strategy. For
any measurement record other than 0—for which we simply
guess at random—we nominate as our guess for the position
of the channel to be that corresponding to the last one in the
measurement record. For example, for N = 3, we nominate
the position of the channel to be k = 2 for both measurement
records 010 and 110. The probability that we successfully
identify the position of the channel is given by

PS = p(g = 2|k = 2)q2 + p(g = 2|k = 2)q(1 − q)

= p(g = 2|k = 2)q,
(C6)

which is clearly maximal if q = 1. More generally, this strat-
egy yields, for the optimal probability of success,

PS = 1

N

N∑
i=1

p(g = i|k = i)qN−i, (C7)

which is clearly optimized by an unambiguous strategy,
namely, q = 1. Notice the remarkable simplicity of the ar-
gument by cleverly choosing our guessing strategy for each
measurement record.

APPENDIX D: LOCAL MEASUREMENT STRATEGIES

In this Appendix, we provide the details for all local strate-
gies described in Sec. IV.

1. General (fixed) local strategy

We begin with the most general strategy involving N inde-
pendent fixed measurements. Here, qubit i is measured in the
basis

|mi〉 = cos

(
θi + miπ

2

)
|0〉 + sin

(
θi + miπ

2

)
|1〉, (D1)

where mi ∈ (0, 1). The conditional probability of obtaining
any of the 2N measurement records {m}, given the state is
|ψk〉 = |0〉⊗k−1 ⊗ |φ〉 ⊗ |0〉⊗N−k , is

q(m|k) =
k−1∏
i=1

cos2

(
θi + miπ

2

)
cos2

(
θk − φ + mkπ

2

)

×
N∏

i=k+1

cos2

(
θi + miπ

2

)
. (D2)

Upon obtaining a given measurement record, we need to
assign a guess as to which one of the N hypotheses k ∈
(1, . . . , N ) is the most likely one. This is achieved by choosing
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the hypothesis that maximizes the corresponding posterior
probability distribution, {p(k)q(m|k)}N

k=1. Hence, the result-
ing probability of success is given by

PGL
S =

2N −1∑
m=0

max
k

{p(k)q(m|k)}. (D3)

The maximum probability of success under the general local
strategy corresponds to optimizing over the N independent
measurement angles {θi}, which can be done efficiently using
numerical techniques.

2. Greedy strategy

Next we consider a greedy local strategy that uses forward
communication from each measurement to the next. Specifi-
cally, we imagine a total of N parties, each of which has access
to a corresponding subsystem of the state |ψk〉 ∈ H⊗N , k ∈
{1, . . . , N}. The strategy proceeds sequentially, with the first
party performing a measurement on their part of the state |ψk〉
communicating the outcome to the second party, and so on.
Each party aims to maximize the probability of successfully
identifying the position of the error based on the information
received from the previous party and the information obtained
from their measurement. The prior information available to
party n is encapsulated in the prior probabilities for each
hypothesis {p(n)(k|m)}N

k=1, where, to ease the notation, m
is understood to run over the first n − 1 outcomes, i.e., the
measurement record {m1, . . . , mn−1}.

Party n now attempts to locate the position of the error by
assigning a POVM element Em to each of the m = 1, . . . , N
possible hypotheses. The corresponding probability of suc-
cess is given by

P(n)
S (m) = Tr[Enρφ]p(n)(n|m) +

∑
k �=n

Tr[Ekρ0]p(n)(k|m)

� Tr[Enρφ]p(n)(n|m) + p(n)(k∗|m)
∑
k �=n

Tr[Ekρ0]

= Tr[Enρφ]p(n)(n|m) + p(n)(k∗|m)Tr[(1 − En)ρ0]

= p(n)(k∗|m) + Tr{En[p(n)(n|m)ρφ − p(n)(k∗|m)ρ0]}

� p(n)(n|m) + p(n)(k∗|m)

2

+ 1

2
‖p(n)(n|m)ρφ − p(n)(k∗|m)ρ0‖1, (D4)

where k∗ = argmaxk{p(n)(k|m)}k �=n, with the first inequal-
ity attained by picking Em = 0 for m �= {n, k∗}, and Ek∗ =
11 − En := E0, and the second inequality attained by choos-
ing En to be the projection onto the positive eigenspace
of p(n)(n|m)ρφ − p(n)(k∗|m)ρ0, where ρ0 = |0〉〈0| and ρφ =
|φ〉〈φ|, respectively.

That is, party n will always guess in favor of either the
error being at location n (corresponding to the measurement
outcome that we henceforth label by mn = 1) or at the most
likely alternative location k∗ (corresponding to the measure-
ment now labeled mn = 0). As this is true for all parties
n ∈ {1, . . . , N}, the corresponding measurement record after

party n measures is one out of 2n possible binary strings, i.e.,
m ∈ {0, 1}n.

The probability that party n obtains the measurement out-
come m ∈ {0, 1} is given by

q(mn) = Tr(Emn{p(n)(k|m)ρφ + [1 − p(n)(k|m)]ρ0}). (D5)

Upon obtaining outcome mn, we use Bayes’ rule to update the
priors to

p(n+1)(k|m) =
⎧⎨
⎩

Tr(Emn ρφ )p(n) (k|m)
q(mn ) for k = n

Tr(Emn ρ0 )p(n) (k|m)
q(mn ) otherwise,

(D6)

which are then used by party n + 1 to pick the optimal mea-
surement accordingly. This process is iterated until the last
party N is reached. The success probability after all N samples
have been measured is given by P(N )

S (m). Hence, the average
probability of success is

PGr
S =

2N−1−1∑
m=0

q(m)P(N )
S (m), (D7)

where

q(m) =
N−1∏
n=1

q(mn). (D8)

It is important to note that the greedy strategy described above
is capable of providing a guess as to the location of the error
even if, for some reason, only the first n < N parties are able
to perform measurements.

3. Last-one strategy

Finally, let us analyze a local measurement strategy that
uses a guessing rule other than maximum likelihood. Specif-
ically, we choose as our guess the hypothesis corresponding
to the last one in the measurement record, and optimize over
the measurement angles for each of the N measurements. For
m = 0, we nominate the first hypothesis as our guess.

The first von Neumann measurement is parametrized by a
single angle θ1(0) such that

|m1 = a〉 = cos

(
θ1(a)

2

)
|0〉 + sin

(
θ1(a)

2

)
|1〉, (D9)

where θ1(1) = θ1(0) + π are the corresponding projection
operators. Depending on the measurement outcome m1,
the second measurement is parametrized by two angles
θ2(0|m1), m1 ∈ (0, 1); θ2(1|m1) = θ2(0|m1) + π , the third by
four angles, and so on. For the N hypothesis, the total number
of measurement angles that we need to optimize is 2N − 1,
and the corresponding probability of success is given by

PL1
S =

N∑
n=1

p(n)
∑
m∈Sn

q(m|n), (D10)

where

q(m|n) =
N∏

i=1

|〈mi|ψn〉|2, (D11)

and Sn ≡ {m|mn+1 . . . mN = 0}.
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