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Abstract: In this work, we propose a quantum-mechanically measurable basis for the
computation of spread complexity. Current literature focuses on computing different powers
of the Hamiltonian to construct a basis for the Krylov state space and the computation
of the spread complexity. We show, through a series of proofs, that time-evolved states
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1 Introduction

Our understanding of quantum systems primarily arises from the Schrödinger equation for pure
states and the von-Neumann equation for mixed states. The comprehension of how quantum
states evolve over time is crucial for various technologies. Therefore, recent years have seen
increased attention towards understanding the space in which quantum state evolution occurs.
In this work, we aim to define a measurable space for quantum time evolution under the
Schrödinger equation. Our research explores operator complexity, as initially introduced
in [1], and spread complexity, first explored in [2]. A unified perspective on state and operator
complexities was later presented in [3]. Research in the understanding of Krylov complexity
has been done in regards to finite and infinite dimensional quantum systems, field theories,
quantum chaos, open quantum systems, entanglement, and more (see [2, 4–35]). Spread
complexity has been analyzed concerning Nielsen complexity, describing topological phases,
chaotic dynamics, finite and infinite dimensional quantum systems, and so forth [2, 15, 36–53].

The computation of the spread complexity measures requires classical simulation of the
system, which becomes infeasible for larger systems. In this work, we introduce a space that
is equivalent to the Krylov space discussed in [2]. We further show that the basis of our
space can be computed through quantum mechanical measurements and that the dimension
is equal to the number of pairwise distinct eigenvalues of the Hamiltonian. We compute the
spread complexity for the introduced basis and compare the result to the spread complexity
which is computed using different powers of the Hamiltonian [2]. We show that the spread
complexities exhibit almost identical behavior for a simple Ising model. Another interesting
aspect of our basis is that the exact Hamiltonian does not need to be known, but just some
time-evolved states. This is especially of interest in quantum machine learning, where the
quantum systems consist of multiple applications of different Hamiltonians. Additionally,
quantum computers attain sizes beyond the computational capabilities of classical machines
limiting the usage of Krylov complexity for this field.

Quantum computation tries to make use of the exponential scaling in space dimension
for computing resources [54]. The most prominent quantum algorithm is Shor’s algorithm,
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which can perform prime factorization more efficiently than a classical computer [55]. The
simulation of quantum systems on a quantum computer, which are classically difficult to
simulate, appears increasingly plausible with the continuous growth in qubit sizes from 127
qubits in 2021 to 1121 qubits in 2023 on IBM’s superconducting devices. Another important
aspect of classical computation is machine learning, and therefore, the question arises: how
can machine learning algorithms be implemented using quantum systems?

One approach to quantum machine learning is variational quantum machine learning,
where a quantum network is trained on a quantum computer. The second scheme is quantum
reservoir computing, which tries to utilize the large Hilbert space as a computing resource
for time series forecasting. This scheme is especially challenging because of the collapse of
the state after measurement. Some solutions to this problem have been proposed in [56, 57].
Lastly, quantum extreme learning machines use quantum systems in a similar way to quantum
reservoir computing. The main difference is that the state is reset for each input in quantum
extreme learning, whereas it continuously evolves in quantum reservoir computing. Several
experiments in quantum machine learning have been conducted on quantum hardware, as
detailed in [58, 59].

The comparative analysis of machine learning networks remains an active field of research,
and the question of expressivity in quantum machine learning (QML) remains unresolved.
The central inquiry revolves around the methodology for comparing two Hamiltonians
or two quantum machine learning networks in terms of the dimension of the space that
comprehensively spans all future states. We propose the effective Krylov dimension as an
expressivity measure.

Section 2 of this work will introduce the spread complexity, which was proposed in [2].
The development of a measurable Krylov space will be discussed in section 3. We will prove our
main theorems and construct a Krylov space that is computable through quantum mechanical
measurements (theorem 2 and theorem 3). Afterwards, we will show that the dimension of
this space is equivalent to the number of pairwise distinct eigenvalues of the Hamiltonian in
theorem 4. The results will be first verified by the reconstruction capability of the defined
space through numerical analysis, see section 4. Here, we will define and discuss the effective
Krylov dimension, which is upper-bounded by the number of pairwise distinct eigenenergies
of the Hamiltonian. In section 5, we will compute the spread complexity using the classical
approach and using our introduced basis, where we observe almost identical behavior.

2 Fundamentals of spread complexity

We define the time evolution of a quantum system (definition 1) and the Krylov space
(definition 2). The observation that the time-evolution operator is a map onto a Krylov space
was discussed and theorem 1 was proven in [1, 2]. The authors further defined a complexity
measure based on this discovered property for further analysis of the time evolution in
quantum systems.

The Schrödinger equation for the time-independent Hamiltonian H with initial condition
|Ψ(0)⟩ is given by:

∂t |Ψ(t)⟩ = − iH |Ψ(t)⟩

|Ψ(0)⟩ := |Ψ0⟩ (2.1)
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The solution to this equation is

|Ψ(t)⟩ = e−iHt |Ψ0⟩ (2.2)

and the density matrix ρ ∈ CN×N is constructed by

ρ = |Ψ⟩ ⟨Ψ| . (2.3)

A measurement in quantum mechanics is the application of a Hermitian matrix O, also
called an observable, with the eigenvalue equation O |oi⟩ = oi |oi⟩ onto the system. Only the
eigenvalues of O can be measured, and which eigenvalue is measured is given by the probability

P (m = oi) = | ⟨oi|Ψ⟩ |2. (2.4)

The expectation value of the observable O in regard to the state |Ψ⟩ is given by

⟨O⟩ = ⟨Ψ|O |Ψ⟩ = Tr(ρO). (2.5)

This work will construct a basis |w1⟩ , |w2⟩ , . . . |wm⟩ for some Hamiltonian H and starting
state |Ψ0⟩, such that

|Ψ(t)⟩ ∈ Span(|w0⟩ , |w1⟩ , . . . , |wm⟩) (2.6)

holds for all t. The established basis should also be attainable through quantum mechanical
measurements, particularly for systems where the precise Hamiltonian is unknown or when
the system’s size surpasses classical simulation capabilities. Quantum mechanics commonly
employs the representation of complex vectors within the Hilbert space, denoted as H = CN .

Definition 1 (Time Evolution). Let t ∈ R≥0, |Ψ0⟩ , |Ψ(t)⟩ ∈ CN and H ∈ CN×N be an
Hermitian matrix, meaning H = H†. The time evolution F : R × CN → CN with initial
condition |Ψ(t = 0)⟩ = |Ψ0⟩ is defined by

|Ψ(t)⟩ = F (|Ψ0⟩) = e−iHt |Ψ0⟩ . (2.7)

Definition 2 gives the general definition of a Krylov space and how to construct this space.

Definition 2 (Krylov Space). Let f : CN → CN be a linear function, i.e., for all v, w ∈ CN

and α ∈ C, the following holds:

f(v + w) = f(v) + f(w), f(αw) = αf(w) (2.8)

Let v0 ∈ CN \ {0} be a vector. Then there exists a uniquely defined smallest m ≤ N such
that the vectors

v0, f(v0), f2(v0), . . . , fm−1(v0)

are linearly independent, and the vectors

v0, f(v0), f2(v0), . . . , fm(v0) (2.9)
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are linearly dependent. The number m is called the grade of the vector v0 with respect to f .
The letter m will always be used to denote a grade. The j-th Krylov space of f with respect to
v0 is defined as

Kj(f, v0) = Span{v0, f(v0), . . . , f j−1(v0)} ⊆ CN . (2.10)

Note that KM (f, v0) = Km(f, v0) holds for all M ≥ m. If the chosen initial state v0 and
function f are clear, the corresponding Krylov space with grade m will be denoted as Km.

Theorem 1 will give the proof that the time-evolution, as defined in definition 1, maps
the initial state |Ψ0⟩ onto a Krylov space, as discussed in [1, 2].

Theorem 1. [Time Evolution as a Map onto a Krylov Space] Assume the system from
definition 1. Let t ∈ R and let |Ψ(t)⟩ = exp(−iHt) |Ψ0⟩ be the time-evolved state by t, where
|Ψ0⟩ ̸= 0. For any t ∈ R

|Ψ(t)⟩ ∈ Km(−iH, |Ψ0⟩) = Span{f0(|Ψ0⟩), . . . , fm−1(|Ψ0⟩)}

holds true, where m ∈ N is the grade of the starting state |Ψ0⟩ in regards to the linear function
f := −iH [1, 2].

Proof. We know that |Ψ(t)⟩ = exp(−iHt) |Ψ0⟩ is given. With the introduction of the linear
function f : CN → CN as f(|Ψ0⟩) := −iH |Ψ0⟩, the Taylor expansion of the time evolution
can be rewritten as

|Ψ(t)⟩ = F (|Ψ0⟩) = e−iHt |Ψ0⟩

=
∞∑

k=0
(−iH)k tk

k! |Ψ0⟩ =
∞∑

k=0
fk(|Ψ0⟩)

tk

k! . (2.11)

|Ψ(t)⟩ is a superposition of vectors fk(|Ψ0⟩) with amplitudes tk

k! , such that

|Ψ(t)⟩ ∈ Span{f0(|Ψ0⟩), f1(|Ψ0⟩)t, f2(|Ψ0⟩)
t2

2! , . . .} (2.12)

holds. In the trivial case with t = 0, |Ψ(t)⟩ = |Ψ0⟩ follows. In the case of t > 0, the values
tk

k! > 0, such that the span can be represented as

Span(f, |Ψ0⟩) = Span{f0(|Ψ0⟩), f1(|Ψ0⟩), f2(|Ψ0⟩), . . .}. (2.13)

By definition 2 and the linear property of f , there exists an m ≤ N , such that

|Ψ0⟩ , f(|Ψ0⟩), f2(|Ψ0⟩), . . . , fm−1(|Ψ0⟩) (2.14)

are linearly independent, and such that

|Ψ0⟩ , f(|Ψ0⟩), f2(|Ψ0⟩), . . . , fm(|Ψ0⟩) (2.15)
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are linearly dependent. This implies that

Span(f, |Ψ0⟩) = Span{f0(|Ψ0⟩), f1(|Ψ0⟩)t, f2(|Ψ0⟩)
t2

2! , . . .}

= Span{f0(|Ψ0⟩), f1(|Ψ0⟩), f2(|Ψ0⟩), . . .}
= Span{f0(|Ψ0⟩), f1(|Ψ0⟩), . . . , fm−1(|Ψ0⟩)}
= Km(−iH, |Ψ0⟩), (2.16)

and therefore |Ψ(t)⟩ ∈ Km(−iH, |Ψ0⟩), where m is the grade of the vector |Ψ0⟩ concerning
f := −iH.

In current analysis of quantum complexity the above defined spaces Km are used to
define a complexity measure [2]. First, the Lanczos algorithm is performed on this space
to construct the space Km = Span(|k0⟩ , |k2⟩ , . . . , |km−1⟩). The state representation of any
time evolved state |Ψ(t)⟩ with αn(t) = ⟨kn|Ψ(t)⟩ is given by

|Ψ(t)⟩ =
m−1∑
n=0

αn(t) |kn⟩ . (2.17)

The spread complexity CH is am measure of the spread of the state over the basis consisting
of different powers of the Hamiltonian and is defined as

CH(t) =
m−1∑
n=0

(n + 1)|αn(t)|2. (2.18)

3 Measurable Krylov spaces

In our work, we propose a different basis for the Krylov space, which we give theorem 2 and
theorem 3. We show that instead of constructing the Krylov basis as in theorem 1, the space
can be constructed from different time-evolved states of the system. Lemma 1 shows that the
constructed space is invariant under a global phase, thereby becoming quantum mechanically
measurable. With lemma 2, we discuss how different evolution times can be chosen to
construct the space discussed in theorem 2 and theorem 3. To verify the mathematical results,
we construct another basis, which implies that the number of pairwise distinct eigenvalues
should coincide with the dimension of the Krylov space (see theorem 4).

Definition 3 (Samplings of Krylov Space). Assume |Ψ0⟩ ∈ CN , |Ψ0⟩ ̸= 0, and H ∈ CN×N ,
and consider the time evolution for TG > 0 such that

|Ψ(t)⟩ = e−iHTG |Ψ0⟩ (3.1)

holds. Let Km(−iH, |Ψ0⟩) be the Krylov space of f := −iH with respect to |Ψ0⟩, where m is
the grade of |Ψ0⟩ concerning f := −iH. With discrete times 0 = t0 < t1 < . . . < tM−1 = TG,
the vectors

|gi⟩ = |Ψ(ti)⟩ = e−iHti |Ψ0⟩ , for i = 1, . . . , M, (3.2)

are introduced, addressed as the sampling vectors of the time evolution.
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Theorem 2. Let 0 = t0 < t1 < . . . < tn−1 < TP be some times, where TP is the period of the
time evolution. Next, the following vectors are introduced:

h
(n)
i (|Ψ0⟩) :=

n−1∑
j=0

f j(|Ψ0⟩)
tj
i

j! (3.3)

with f j(|Ψ0⟩) := (−iH)j |Ψ0⟩ .

The span of the vectors h
(n)
i (|Ψ0⟩) is given by

Hn
n = Span(h(n)

0 (|Ψ0⟩), h
(n)
1 (|Ψ0⟩), . . . , h

(n)
n−1(|Ψ0⟩)). (3.4)

Then for all n ∈ N, it holds thatf

Hn
n = Kn. (3.5)

Proof. Assume n ∈ N. Then the vectors h
(n)
i (|Ψ0⟩) can be represented with the vectors

f j(|Ψ0⟩) as

h
(n)
i (|Ψ0⟩) =

n−1∑
j=0

f j(|Ψ0⟩)
tj
i

j!

= (f0(|Ψ0⟩), f1(|Ψ0⟩), . . . , fn−1(|Ψ0⟩))


1

ti/1!
t2
i /2!
:

tn−1
i /(n − 1)!

 . (3.6)

Writing the vectors as column vectors in a matrix results in

(h(n)
0 (|Ψ0⟩), . . . , h

(n)
n−1(|Ψ0⟩))

= (f0(|Ψ0⟩), f1(|Ψ0⟩), . . . , fn−1(|Ψ0⟩))Θ (3.7)

with

Θ =


1 1 . . . 1

t1/1! t2/1! . . . tn−1/1!
t2
1/2! t2

2/2! . . . t2
n−1/2!

: : : :
tn−1
1 /(n − 1)! tn−1

2 /(n − 1)! . . . tn−1
n−1/(n − 1)!

 . (3.8)

For i ̸= j, ti ̸= tj is given. It follows that all column vectors of Θ, called Vandermonde
matrix, are linearly independent, and therefore Θ is invertible. The vectors of Km can then
be represented with the inverse Θ−1 as

(f0(|Ψ0⟩), . . . , fn−1(|Ψ0⟩)) = (h(n)
0 (|Ψ0⟩), . . . , h

(n)
n−1(|Ψ0⟩))Θ−1. (3.9)

As all vectors f0(|Ψ0⟩), . . . , fn−1(|Ψ0⟩) of Kn can be represented by the basis vectors
h

(n)
0 (|Ψ0⟩), . . . , h

(n)
n−1(|Ψ0⟩) of Hn

n, it follows that Hn
n = Kn holds true.
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Theorem 3 (Approximation of Krylov Space). Assume everything like in theorem 2. Then
for a large NL ∈ N

GNL
= Span(|g0⟩ , . . . , |gNL−1⟩), (3.10)

with some |gi⟩ = exp(−iHti) |Ψ0⟩, it holds that

HNL
NL

≈ GNL
NL

(3.11)

From this it follows then that GNL
≈ KNL

holds as well and finally Gm ≈ Km.

Proof. We consider a NL ≫ m. This leads to

Km = KNL
= HNL

NL

= Span
( NL−1∑

j=0
f j(|Ψ0⟩)

tj
0

j! , . . . ,
NL−1∑
j=0

f j(|Ψ0⟩)
tj
NL−1
j!

)
(3.12)

For any t > 0 and sufficiently large NL the series terms tNL/NL! → 0, such that the
approximation

NL−1∑
j=0

f j(|Ψ0⟩)
tj

j! ≈
∞∑

j=0
f j(|Ψ0⟩)

tj

j! (3.13)

can be used. Inserting this into eq. (3.12) results in

HNL
NL

= Span
( NL−1∑

j=0
f j(|Ψ0⟩)

tj
0

j! , . . . ,
NL−1∑
j=0

f j(|Ψ0⟩)
tj
NL−1
j!

)

≈ Span
( ∞∑

j=0
f j(|Ψ0⟩)

tj
0

j! , . . . ,
∞∑

j=0
f j(|Ψ0⟩)

tj
NL−1
j!

)
⇔ KNL

= HNL
NL

≈ GNL
. (3.14)

As KNL
is a Krylov space, there exists a grade m such that Kp>m = Km holds true. Since

there are only m linearly independent vectors in Km, it follows that HNL
NL

only has m

linearly independent vectors. For very large NL, we conclude that GNL
also has m linearly

independent vectors. The m linearly independent vectors |gi⟩ will be addressed with the
subscripts i0, i1, . . . , im−1 as |gi0⟩ , |gi1⟩ , . . . ,

∣∣gim−1

〉
∈ {|g0⟩ , |g1⟩ , |g2⟩ , . . .}. This leads to

the result

Gm = Span
(
|gi0⟩ , |gi1⟩ , . . . ,

∣∣gim−1

〉 )
≈ Km. (3.15)

The property of HNL
NL

= KNL
was shown in the prior example for any NL ∈ N. In the case

of NL = ∞ the approximation would reduce to KNL
= GNL

, which implies Gm = Km. In our
simulations we observed not only the approximation Gm ≈ Km but the equality of these two
spaces, i.e. Gm = Km. The benefit of using the vectors |gi⟩ as a basis instead of the vectors
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f i(|Ψ0⟩) is that these vectors are normalized as | |gi⟩ | = | exp(−iHti) |Ψ0⟩ | = | |Ψ0⟩ | = 1. |gi⟩
are therefor robust to numerical rounding when checking linear independence. Additionally,
with the exception of a global phase |gi⟩ → exp(iα) |gi⟩, the vectors |gi⟩ can be reconstructed
through measurements.

Later, we will perform the Gram-Schmidt algorithm on Gm to obtain the orthonormal
basis

{
|wi⟩

}
i
, such that

Gm = Span
(
|g0⟩ , . . . , |gm−1⟩

)
= Span

(
|w0⟩ , . . . , |wm−1⟩

)
(3.16)

holds. The following two lemmas will add to theorem 2 to show that the basis can be
computed through quantum mechanical measurements.

Lemma 1. The vector space Gm is invariant under a phase α ∈ R.

Proof.

eiαKm = eiαSpan(|g0⟩ , . . . , |gm−1⟩)
= Span(eiα |g0⟩ , . . . , eiα |gm−1⟩) = Km (3.17)

In the last step, we have used that z = eiα ̸= 0 is a complex number. This can be extended
to different complex phases αa.

Km = Span(eiα0 |g0⟩ , . . . , eiαm−1 |gm−1⟩) = Km (3.18)

Lemma 2. Consider a quantum system with Hamiltonian H having eigenvectors |ϕi⟩ and
corresponding eigenvalues ϵi given by

H |ϕi⟩ = ϵi |ϕi⟩ . (3.19)

Let |Ψ0⟩ be a non-trivial initial state, specifically a superposition of at least two eigenstates
|ϕn⟩ and |ϕm⟩ with distinct eigenvalues ϵn ̸= ϵm. Additionally, assume two distinct times
t1 and t2, both less than the system’s period TP . Then, it follows that the two time-evolved
states |g1⟩ = exp(−iHt1) |Ψ0⟩ and |g2⟩ = exp(−iHt2) |Ψ0⟩ are linearly independent.

Proof. The two states |g1⟩ and |g2⟩ can be represented as

|g1⟩ = e−iHt1 |Ψ0⟩ =
∑

i

e−iϵit1 |ϕi⟩ ⟨ϕi|Ψ0⟩ (3.20)

|g2⟩ = e−iHt2 |Ψ0⟩ =
∑

i

e−iϵit2 |ϕi⟩ ⟨ϕi|Ψ0⟩ . (3.21)

Substituting αi = ⟨ϕi|Ψ0⟩ leads to

|g1⟩= e−iHt1 |Ψ0⟩=
∑

i

αie
−iϵit1 |ϕi⟩= (|ϕ1⟩ , |ϕ2⟩ , . . . , |ϕN ⟩)


α1eiϵ1t1

α2eiϵ2t1

:
αN eiϵN t1

 (3.22)

|g2⟩= e−iHt2 |Ψ0⟩=
∑

i

αie
−iϵit2 |ϕi⟩= (|ϕ1⟩ , |ϕ2⟩ , . . . , |ϕN ⟩)


α1eiϵ1t2

α2eiϵ2t2

:
αN eiϵN t2

 (3.23)
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The matrix representation ai of the vector |gi⟩ in regards to the eigenstates
{
|ϕi⟩

}
is given by

ai :=


α1eiϵ1ti

α2eiϵ2ti

:
αN eiϵN ti

 . (3.24)

Given the condition that there exist at least two distinct eigenvalues ϵn ̸= ϵm with non-zero
coefficients αn and αm implies that the basis representations a1 and a2 are independent. Due
to this independence and the orthonormality of the eigenstates, it follows that the states |g1⟩
and |g2⟩ are linearly independent. Since any two states |gi⟩ and |gj⟩ are linearly independent
for any distinct ti ̸= tj , and as there exist a total of m linearly independent vectors |gi⟩ (as
described in theorem 2), it follows that for any t0 < t1 < t2 < . . . < tm−1 = TG < TP , m

linearly independent vectors are obtained, represented by |gi⟩ = exp(−iHti) |Ψ0⟩. In the case
of an equidistant time axis, meaning tj = (j + 1)τ/N for some τ < TP and i < m, and with
|gj⟩ = exp(−iHtj) |Ψ0⟩, this results in

Gm = Span
(
|g0⟩ , |g1⟩ , . . . , |gm−1⟩

)
≈ Km. (3.25)

The space Gm comprises of states with the common initial state |Ψ0⟩ and varying
evolution times ti. Notably, because of the invariance under a global phase (lemma 1) Gm

can be computed through quantum measurements.
Theorem 4 will discuss the similarities between Gm and a basis representation through

the eigenstates of the system. We show that through a combination of the eigenstates of the
Hamiltonian the time-evolution can be represented through d superpositions of eigenstates
of the system, where d is the number of pairwise distinct eigenvalues. This will help us to
understand the Krylov space and its meaning. If both spaces have the minimum number of
basis states, then the dimension of these two spaces should be equivalent. This will further
be numerically verified in section 4.

Theorem 4. Consider a Hamiltonian H ∈ CN×N with H = H†, possessing d pairwise
distinct eigenvalues, and satisfying the eigenvalue equation

H |ϕj⟩ = ϵj |ϕj⟩ . (3.26)

Then, it follows that the dimension (grade) of the Krylov space Km is equivalent to the count
of pairwise distinct eigenvalues ϵj.

Proof. With αj = ⟨ϕj |Ψ0⟩, it follows:

|Ψ(t)⟩ = e−iHt |Ψ0⟩ =
∑

j

e−iϵjt |ϕj⟩ ⟨ϕj |Ψ0⟩ =
∑

j

e−iϵjtαj |ϕj⟩ (3.27)

Since H is an N × N matrix, there exist N eigenvalues, where only d are pairwise distinct.
The d pairwise distinct eigenvalues are ϵ1, . . . , ϵd. As H is Hermitian, it follows that the
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eigenstates |ϕj⟩ form an orthogonal basis of CN . Assume that there are ji eigenvectors with
the same eigenvalue ϵi. Introduce the index sets J1 = {1, . . . , j1} and Jk = {jk−1 + 1, . . . , jk}
with k ∈ {2, . . . , d}. The index sets group eigenstates |ϕi⟩, so that all eigenstates |ϕa⟩, with
a ∈ Jk, have the same corresponding eigenvalue ϵk. This can be used to rewrite the time
evolution as:

|Φ(t)⟩ =
∑

j

e−iϵjtαj |ϕj⟩ =
d∑

p=1

∑
j∈Jp

e−iϵptαj |ϕj⟩ =
d∑

p=1
e−iϵpt

∑
j∈Jp

αj |ϕj⟩ (3.28)

The summation over the index sets Jp is independent of time t and can therefore be substituted
with vectors |ξp⟩ =

∑
j∈Jp

|Φi⟩, which results in

|Φ(t)⟩ =
d∑

p=1
e−iϵpt |ξp⟩ . (3.29)

Such that for all t ∈ R the following holds:

|Φ(t)⟩ ∈ Span
(
|ξ1⟩ , |ξ2⟩ , . . . , |ξd⟩

)
:= Xd. (3.30)

The space Xd consists of a superposition of d linearly independent vectors |ξ1⟩ , . . . , |ξd⟩. For
any time any two vectors are linearly independent, which implies that Xd is yet another
minimal basis of the time evolution. Let Km be the Krylov space for H initiated with the
state |Ψ0⟩, where m denotes its grade and is therefor a minimal basis. Both spaces Xd and
Km consist of the smallest number of vectors needed to represent any time-evolved state
|Φ(t)⟩ with a initial condition |Ψ0⟩ in regards to the Hamiltonian H. Therefore, it follows
that d = m must hold true.

Up until now, we have shown in theorem 3 that time-evolved states exist, which span
the same space as Km. We further showed the phase invariance (lemma 1) and that the
dimension is equal to the number of pairwise distinct eigenvalues(theorem 4). The next
section will verify these results for simple systems.

4 Numerical verification and effective dimension

To check whether Gm fully captures the evolution of a state under the Schrödinger equation,
we will check if any time-evolved state can be reconstructed by the basis of Gm without
error. Furthermore, we want to make sure that the dimension of Gm is equal to the number
of pairwise distinct eigenvalues d.

First, consider a Hamiltonian H ∈ CN×N along with NS randomly chosen initial states
|Ψ1⟩ , |Ψ2⟩ , . . . , |ΨNS

⟩. Select a timescale TG < TP for the construction of the space G, where
TP represents the period of the time-evolution operator, i.e., exp(−iH(TP + t)) = exp(−iHt)
holds. Proceed with a discretization 0 = t0 < t1 < t2 < . . . < tN−1 = TG < TP and compute
the vectors |gi⟩ = exp(−iHti) |Ψx⟩ for a given starting state |Ψx⟩, where x = 1, . . . , NS .
The matrix Am = (|g0⟩ , |g1⟩ , . . . , |gm−1⟩) is constructed iteratively, incrementing k until
rank(Am−1) = rank(Am) is reached for some k = m. Here, m denotes the dimension of
the vector space Km and, by approximation, the dimension of Km(−iH, |Ψx⟩) or the grade
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of |Ψx⟩ in regards to f := −iH. After forming Gm = Span
(
|g0⟩ , |g1⟩ , . . . , |gm−1⟩

)
, the

Gram-Schmidt algorithm is applied to obtain orthonormalized vectors |w0⟩ , |w1⟩ , . . . , |wm−1⟩,
which results in

Gm = Span
(
|g0⟩ , . . . , |gm−1⟩

)
= Span

(
|w0⟩ , . . . , |wm−1⟩

)
. (4.1)

Once the vectors |wi⟩ are computed, NT random times τ1, τ2, . . . , τNT
are chosen, and

states evolved by the times |Ψ(τk)⟩ = exp(−iHτk) |Ψx⟩ are calculated. As per theorem 1
|Ψ(τ)⟩ ∈ Km is true for all τ ∈ R. Furthermore, theorem 2 implies that Gm ≈ Km is a valid
approximation, which will be verified by demonstrating that for any time τk, |Ψ(τk)⟩ ∈ Gm

holds true. The l-th approximation |ul(τk)⟩ of |Ψ(τk)⟩ concerning the starting state |Ψx⟩
is given by

|ul(τk)⟩ =
l−1∑
j=0

⟨wj |Ψ(τk)⟩ |wj⟩ . (4.2)

The error in the l-th approximation of a time-evolved state |Ψ(τk)⟩ with the initial vector
|Ψx⟩ is quantified by

r(τk, l, |Ψx⟩) =
∣∣∣ |ul(τk)⟩ − |Ψ(τk)⟩

∣∣∣. (4.3)

If Gm = Km holds true, then r(τk, m, |Ψx⟩) = 0 is expected. For a statistical analysis, multiple
times τk are considered, and the average over these times is calculated as r(l, |Ψx⟩).

r(l, |Ψx⟩) = 1
NT

NT∑
k=1

r(τk, l, |Ψx⟩). (4.4)

Moreover, NS initial conditions |Ψx⟩, where x = 1, . . . , NS , are provided. After averaging
over all possible initial conditions, the error of the l-th approximation is expressed as

r(l) =
NS∑
x=1

r(l, |Ψx⟩). (4.5)

If Gm = Km is confirmed, where m is chosen such that r(m) = 0 for all |Ψx⟩ and all τk,
then the approximation is deemed valid. The number of distinct eigenvalues d is expected
to be equal to m, i.e., m = d, for all Hamiltonians. In an NQ-qubit system, the NQ-qubit
Pauli matrices Pi ∈ {Xi, Yi, Zi} are constructed as

Pi =
i−1⊗
j=1

I2 ⊗ σp ⊗
NQ⊗

j=i+1
I2, (4.6)

where p ∈ {σx, σy, σz}, and I2 represents the Pauli matrices and the 2-dimensional identity.
In this study, we conduct an analysis of various four-qubit Hamiltonians. Initially,

attention is given to simple Hamiltonians denoted as H1, H2, H3, and H4, which consist of
rotation in the x-direction of the first, first two, first three, and all four qubits respectively.

Hk =
k∑

i=1
0.5Xk (4.7)
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H1 H2 H3 H4 HI1 HI2 HI3
Grade of Gm, m 2 3 4 5 9 16 15
#eigenvalues, d 2 3 4 5 9 16 15

Table 1. The grades m of the different quantum systems and the number of pairwise distinct
eigenvalues d. For each system equality is observed.

Subsequently, the analysis expands to include Ising Hamiltonian HI1, HI2 and HI3 with
different inter-spin couplings Jij .

HI =
4∑

i=1,j>i

JijXiXj + 0.5
4∑

i=0
Zi (4.8)

Further information on the couplings Jij is listed in appendix A. Our objective is to assess
whether the error r(m) = 0 and if m = d holds. Table 1 shows the calculated grade m of the
Krylov space and the number of pairwise distinct eigenvalues for all Hamiltonian. We observe
in each case the equivalence between the two values, which gives numerical verification of
theorem 4. Figure 1.a) illustrates the averaged error of the reconstruction error r(l) of the
simple Hamiltonians Hi. In each scenario, reconstruction is evident when l = m, as indicated
by r(m) = 0 for each Hamiltonian. By increasing the complexity of the Hamiltonian from H1
to H2 and others, we increase the number of pairwise distinct eigenvalues and the dimension
of the Krylov space, as shown in table 1. Next, we compute the Krylov spaces and calculate
the errors for some realizations of the Ising Hamiltonian, denoted as HI1, HI2, and HI3
and show the reconstruction error r(l) in figure 1.c). Even though the Hamiltonian HI3
seems more complex compared to HI2, the Krylov dimension and the number of pairwise
distinct eigenvalues are smaller. Here as well, the correct reconstruction of all states by
the calculated spaces Gm can be observed.

These numerical results emphasize that the defined space Gm forms a robust basis resilient
to numerical errors, a quality that can be further verified through quantum-mechanical
measurements.

Next, an effective space dimension will be constructed to describe the space Gm. For
the effective dimension, we will look at states after they are evolved by a time TG < TP . We
compute states |gi⟩ = e−iHθi |Ψ0⟩ with evolution times θi = (i + 1)TG/m where i = 1, . . . , m,
and m is the Krylov space dimension of the corresponding system. By lemma 2, we know
that all |gi⟩ are linearly independent in the mathematical sense. If two vectors are very close
to each other, i.e., |gi⟩ ≈ |gi+1⟩, we require an effective dimension to consider the second
vector. To obtain an effective dimension, we calculate the square of the fidelity F

λi = F
(
|gi⟩ ⟨gi| , |gi+1⟩ ⟨gi+1|

)2
= |⟨gi|gi+1⟩|2. (4.9)

The effective dimension meff for λ = 1/
√

2 is given by

meffi =

1 if λi < λ

1 − 1
1−λ · (λi − λ) if λi ≥ λ

meff = 1 +
m−1∑
i=1

meffi (4.10)
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Figure 1. The lth averaged reconstruction error in a) and c) for the simple Hamiltonians H1 to
H4 and Ising Hamiltonians HI1 to HI3 and the effective Krylov dimension in b) and d) for the same
Hamiltonians.

The first vector increases the dimension by 1. Afterwards we perform the interpolation
between two states |gi⟩. λi = 1 implies that the two vectors are linearly dependent and
therefore numerically dependent, resulting in meffi = 0. λi < λ implies that the two vectors
are different enough to consider full numerical independence, and the effective dimension is
then increased by meffi = 1. For λ < λi ≤ 1 the effective dimension is interpolated. The
measure meffi is upper-bounded by the Krylov space dimension meffi ≤ m and is shown for
different systems in figure 1.b) and figure 1.d). In the first row, we see the effective dimension
for the four Hamiltonians H1, H2, H3, and H4. The effective dimension of H1 (orange line)
starts at one and then increases to the number of pairwise distinct eigenvalues, indicated
by an orange horizontal line. Interestingly, we observe a decrease in effective dimension for
T = 4π. This can be explained by the 2π periodicity of the time evolution under H1 as
exp(−i2πX1/2) = exp(−iX1/2) = − exp(−i4πX1/2). However, because the dimension of the
Krylov space is m = 2, we sample two time-evolved states at time θ1 = TG/2 and θ2 = TG.
For θ = 4π, both are multiples of 2π, which leads to the two vectors being |g1⟩ = − |g2⟩. |g2⟩
being a scalar multiple of |g1⟩ implies linear dependence, which in turn reduces the effective
dimension meff. H2 shows a small effective dimension for small times and increases for larger
TG. The vectors of Gm are sampled at times θ1 = TG/3, θ2 = 2TG/3, and θ3 = TG. The
evolved states are linearly dependent for TG = 3 · 2π, as can be seen by the reduced effective
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dimension of the red curve for TG = 3 · 2π. The effective dimension of H3 and H4 follows
the same trend, where it starts at one and then increases towards the number of pairwise
distinct eigenvalues, where it saturates. In the second row, the effective dimension of the
Ising Hamiltonians can be seen. An increase for larger times and then a saturation towards
the number of pairwise distinct eigenvalues can be observed.

5 Measurable spread complexity

To better understand the utility of the constructed space G and its basis |wi⟩, we want
to compare the spread of these two different spaces K and G to each other. Assume a
time-evolved state |Ψ(t)⟩, represented in the Krylov basis |ki⟩ used in the usual computation
for spread complexity and in the representation of our developed basis |wi⟩:

|Ψ(t)⟩ =
m−1∑
n=0

αn(t) |kn⟩

=
m−1∑
n=0

βn(t) |wn⟩ (5.1)

We define the two complexities CH and Ce as:

CH(t) =
m−1∑
n=0

(n + 1)|αn(t)|2 (5.2)

Ce(t) =
m−1∑
n=0

(n + 1)|βn(t)|2. (5.3)

Note that the spread Ce is computed through a quantum-mechanically measurable basis.
Figure 2.a) shows the result for the measurable spread complexity Ce, where a time

TG = 5 was used to construct G and its basis |wi⟩. Ce seems to consist of a term, which is
similar to CH and a noisy oscillation. We have shown this result for one initial condition, but
this is observable for any initial condition with TG = 5. We can make use of the effective
dimension at TG = 5 in figure 1.c) for HI3 to better understand this behavior. At T = 5, it
can be seen that the maximum of the effective dimension is not yet reached for λ = 0.707,
which indicates that the space G has not fully captured the system dynamics. Figure 2.c)
shows the same initial condition with TG = 30 for the construction of G. Here, the behavior
between CH and Ce is almost identical, where the classical spread CH seems to be slightly
lower than Ce. Averaging both spreads over one hundred initial conditions leads to the plot
in figure 2.b), which results in almost identical spread, thus enabling the computation of
spread complexity through measurements.

Another interesting aspect of the results is the decrease for times that are multiples of
t ≈ 80 for CH and Ce. Typically, spread complexity starts at one and then increases as the
state evolves through the system dynamics. To further understand this, we compute the
fidelity Fd between the initial state |Ψ(0)⟩ and the state evolved by the time t:

Fd = |⟨Ψ(0)|Ψ(t)⟩| (5.4)
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Figure 2. The spread complexities CH and Ce for HI3 for different times in construction of the basis
|gi⟩ in a) for T = 5 and in c) for T = 30 with one initial condition. The averaged spread complexity
CH and Ce over one hundred initial conditions in b) and the fidelity averaged over one hundred initial
conditions in d).

We observe that as the fidelity increases, the spread complexity decreases, and when the fidelity
is maximal, the spread is minimal. This can be observed in this very simple system due to its
small number of eigenvalues, which lead to semi-periodic behavior for small evolution times.

6 Discussion and conclusion

In this work, we discuss Krylov spaces for pure states, building upon prior research on operator
and state complexity as explored in [1–3]. The basis vectors of the already researched
vector space K require a large number of matrix multiplications to compute the powers
H i. Furthermore, knowledge about the Hamiltonian is necessary. Since H is a Hermitian
matrix, the experimental computation of H i is currently unfeasible, requiring classical
machine computation. While manageable for small systems, this becomes challenging for
large quantum systems.

These challenges find resolution with the introduction of the space G, where each basis
vector consists of a state evolved over time under the corresponding Hamiltonian, ensuring
normalization. We first show the equivalence between the Krylov space K and the state space
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G (see theorem 2). Theorem 4 shows that the dimensions of K and G should be d, where d

represents the number of pairwise distinct eigenvalues of the Hamiltonian H.
Finally, we demonstrate the invariance of the vector space G under a global phase, which

facilitates the computation of basis vectors |gj⟩ through quantum mechanical measurements.
This property allows for the utilization of this expressivity measure in large quantum mechan-
ical systems and aids in determining the number of pairwise distinct eigenvalues in a quantum
mechanical experiment, as illustrated in lemma 1. To assess the representation accuracy of G,
we simulate various Hamiltonians and compute the dimension m of G along with the number
of pairwise distinct eigenvalues d of the Hamiltonian in section 4. For all simulated systems,
we observe state representation at m = d, as indicated by a vanishing reconstruction error
r(m = d) = 0. This demonstrates that the defined space G is the smallest basis capable of
representing any time-evolved state. We further expand on the description of G to define an
effective dimension that characterizes the expressivity of the system, which can be of interest
in understanding different quantum systems and quantum machine learning protocols.

Lastly, we computed the spread complexity for our introduced basis and the basis
constructed using the Lanczos algorithm and compared the results in section 5. We can
see that the spread complexities exhibit the same behavior if the evolution time is chosen
sufficiently large, i.e., where the effective dimension or the spread complexity already reaches
a maximum. If this is not given, a noisy oscillation on Ce is observed. These results show
that the basis does not necessarily need to consist of different powers of the Hamiltonian
to compute spread complexity and define an effective dimension.

It would be interesting to analyze the influence of different bases on spread complexity.
Here, we restricted ourselves to finding a measurable basis showing the equivalence to the
basis constructed through different powers. The benefit of the classical approach to the
computation of spread complexity is that it is faster to simulate on a classical system. However,
this approach requires knowledge of a Hamiltonian and classical computation. For quantum
systems where only time-evolved states are known, our approach can be used to construct
a space G in which all time-evolved states are included.

The space G enables the computation of the spread complexity Ce and the effective
dimension meff , which can be used to understand the evolution of quantum systems where
knowledge of the Hamiltonian is missing. This is especially important in quantum reservoir
computing and quantum machine learning, where expressivity measures hold significant
importance. In quantum reservoir computing, our preliminary research has shown that the
effective Krylov dimension follows a similar trend to the information processing capacity for
larger evolution times [60, 61]. Using the effective Krylov dimension in quantum machine
learning training would also be of great interest for variational quantum circuits [62–65].
Another research interest is to discuss measurable operator spaces and the influence of
Krylov complexity [1].

A Hamiltonians

H1 = 0.5X1

H2 = 0.5(X1 + X2)

H3 = 0.5(X1 + X2 + X3)
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H4 = 0.5(X1 + X2 + X3 + X4)

HI1 = 0.5
3∑

i=1,j>i

XiXj + 0.5
3∑

i=0
Zi

HI2 = 0.4X1X2 + 0.5

 4∑
j=3

X1Xj +
4∑

i=2,j>i

XiXj +
4∑

i=1
Zi


HI3 = 0.35X1X2 + 0.4X1X3 + 0.45X1X4 + 0.6X2X3

+ 0.55X2X4 + 0.5X3X4 + 0.5
4∑

i=1
Zi
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