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ABSTRACT
As high-performance computing (HPC) becomes a tool used in many different workflows, quality of service (QoS) becomes increas-
ingly important. In many cases, this includes the reliable execution of an HPC job and the generation of the results by a certain
deadline. The resource and job management system (RJMS) or simply RMS is responsible for receiving the job requests and exe-
cuting the jobs with a deadline-oriented policy to support the workflows. In this article, we evaluate how well static resource
management policies cope with deadline-constrained HPC jobs and explore two variations of a dynamic policy in this context. As
the Hilbert curve-based approach used by the SLURM workload manager represents the state-of-the-art in production environ-
ments, it was selected as one of the static allocation strategies. The Manhattan median approach as a second allocation strategy
was introduced as a research work that aims to minimize the communication overhead of the parallel programs by provid-
ing compact partitions more than the Hilbert curve approach. In contrast to the static partitions provided by the Hilbert curve
approach and the Manhattan median approach, the leak approach focuses on supporting dynamic runtime behavior of the jobs
and assigning nodes of the HPC system on demand at runtime. Since the contiguous leak version also relies on a compact set
of nodes, the noncontiguous leak can provide additional nodes at a greater distance from the nodes already used by the job.
Our preliminary results clearly show that a dynamic policy is needed to meet the requirements of a modern deadline-oriented
RMS scenario.

1 | Introduction

In recent years, high-performance computing (HPC) has become
a much-used tool in many application domains, such as science
and development, as well as business and industry1 [1]. Many
new applications in this broad range of fields are being devel-
oped to take advantage of the ever-increasing number of nodes
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present in the fastest HPC systems available, also known as super-
computers. This challenge of implementing new approaches to
parallel programming that make meaningful use of the enormous
computing power is accompanied by the need to embed these
applications into high-level scientific workflows (the process for
achieving a scientific goal detailing intermediate tasks and their
dependencies) [2–4].
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This use of supercomputers, as well as the integration into spe-
cific workflows, is familiar from science, where deadline-driven
workflows are common, but is also important for many other
application scenarios in development and industry. For example,
when developing a new type of airplane engine, data from cur-
rent engine versions are incorporated alongside objectives such
as reducing noise and fuel consumption [5]. Simulations imple-
mented as finite element method (FEM) therefore have to provide
the results for optimizations of the engine blades or combus-
tion chamber in time for the engineering team so that the proto-
type and subsequently the final product can be built as planned
previously.

In this context, the resource management system (RMS), which
is sometimes also referred to as resource and job management
system (RJMS), is responsible for allocating HPC resources effi-
ciently to incoming jobs to improve throughput and also has to
guarantee job deadlines in order to provide the quality of service
(QoS) requested by the users [6, 7]. Therefore, in a QoS-oriented
environment, the RMS has to decide if a job request submitted to
the HPC system can be accepted, taking into account the dead-
line of the job, when and where on the machine the job is to be
executed [8]. Only when all questions are answered positively can
QoS be guaranteed, and the job can be scheduled and afterwards
executed on the HPC system. This is the only way to ensure that
the deadline specified by the workflow in which the compute job
is embedded is met.

This is a challenging task because the final execution time of a
job depends on several factors that are hard to predict, such as
resource demand and availability throughout the execution, their
specific communication patterns, and how well these patterns
match the machine’s memory hierarchy and network topology
[9–11]. The latter is especially true for any system that imple-
ments a multilevel network topology and is even more important
in the context of the fastest supercomputers, such as the machines
in the TOP 500 list (like Fugaku and Titan, respectively numbers
4 and 73 in the current ranking) [12]. When users are asked to
give the execution times for their jobs, they generally fail to give
good estimates because they have no running history or technical
knowledge to make predictions or want to trick the system to get
ahead of other users [13].

This work is an extension of a conference paper accepted at
the High-Performance Computing Systems Symposium (for-
mer WSCAD now SSCAD) [15] that evaluates how well static
resource management policies in traditional RMS systems cope
with deadline-constrained HPC jobs and proposes two varia-
tions of a dynamic policy to meet the requirements of modern
deadline-oriented scenarios. Building on our previous work, we
have now investigated the influence of the shape of the partitions
and the various forms of communication in more detail, imple-
menting and evaluating a second approach for static allocation
strategies called the Manhattan median approach, which results
in more compact partitions than the Hilbert curve approach,
reducing the communication overhead of parallel programs. It
now focuses on the impact of compactness and the shape of the
partitions in order to support different runtime behavior types
(see Section 2). This leads to a deeper understanding of the
relationship between allocation policy and runtime behavior in
deadline-oriented scenarios.

Specifically, our contributions to these challenges in this article
are as follows:

• We present an evaluation on how a state-of-the-art RMS like
Slurm (with a static allocation strategy based on the Hilbert
curve [14]) copes with deadline-oriented scenarios.

• We implement and evaluate a second approach for static
allocation strategies, the Manhattan median approach,
which implements more compact partitions than the Hilbert
curve approach, reducing the communication overhead of
parallel programs.

• We implement a dynamic resource allocation policy to the
RMS and evaluate how a contiguous and a noncontiguous
variant compares to the static policies.

• Based on the analysis of results obtained through an exten-
sive number of simulations under different workload con-
ditions, we demonstrate the advantages of dynamic policies
over static ones in deadline-oriented scenarios.

2 | Parallel Applications and Load of HPC Jobs

Because the range of application domains that make use of HPC
is enormous, there are different approaches to creating paral-
lel applications and, consequently, different types of resource
requirements for these programs [16]. In many cases, the paral-
lel programs use message passing to distribute and collect data
to be processed by the various processes that make up the run-
ning program—the compute job. In the era of multicore node
architectures, the use of shared memory provided by these nodes
also comes into play. Since the characteristics of the different pro-
grams resulting from the different programming approaches play
an important role in providing efficient support for these parallel
applications, a closer look at the runtime behavior of the pro-
grams is needed.

Parallel programs, implemented as so-called Monte Carlo appli-
cations, consist of a fixed number of processes processing ran-
domly generated data. This is characterized in Figure 1, where
light gray circles represent start and end nodes of the pro-
gram, and light green circles represent the execution of instruc-
tions (computations) of the processes. The processes of the
job run independently and do not exchange intermediate data.
The only utilization of network resources occurs when input
data is distributed to the processes. The results are received
in order to be evaluated, and output is provided. This type of
application is used primarily when statistical evidence is needed,
such as for discrete event simulations that simulate technical
entities like HPC or Grid environments. However, this type of

FIGURE 1 | Runtime behavior of a Monte Carlo-like program.
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FIGURE 2 | Runtime behavior of a BSP-based program.

application is also used for implementing various approxima-
tion approaches and simulating physical processes. Nowadays,
HPC systems are also used to train machine learning (ML) mod-
els. These types of applications also exhibit this type of runtime
behavior.

Another type of parallel programs is also based on a fixed num-
ber of processes, but the processes do not run independently as
characterized in Figure 2. Instead, they exchange data during pro-
cessing in order to provide intermediate data or results to other
processes and obtain new input data for the next step of compu-
tation itself. One of the most commonly used models for building
such a parallel program is the Bulk-Synchronous Parallel Model
(BSP) [17].

In recent years, the introduction of multicore CPUs on the one
hand and the development of new features for the message pass-
ing interface (MPI) leading to the new standard MPI-2, as well
as the increased use of OpenMP in combination with message
passing approaches on the other hand, have led to the emergence
of new types of parallel programs with new runtime behavior
(see Figure 3). In order to utilize multiple cores of a CPU or the
processors of a node, OpenMP is used to launch additional light
processes (threads). The creation of additional processes can be
based on the design of the application, so that the number of
processes to be started is known before the job is started, or the
start of additional processes can be controlled by the program
at runtime. This creation of additional processes based on run-
time decisions, for example, about the amount of work to be
processed, has already been introduced in approaches such as
the bag-of-task or the manager-worker approach but is increas-
ingly used in applications implementing finite elements meth-
ods. Simulations of particles and molecules also benefit from this
approach, which leads to the dynamic runtime behavior of the
programs.

Figure 4 exemplifies that the creation of additional processes can
be used in an even more flexible way when using the new features
provided by the MPI-2 standard. With MPI-2, new processes can
be created on different nodes and the start of the additional pro-
cesses or threads is not limited to the local node, which is already
used by some MPI processes of the job [18, 19]. The runtime
behavior types presented here are only examples of very small
programs. In real scenarios and during evaluation, the number of
tasks reaches up to billions, especially for programs with dynamic
runtime behavior [20].

FIGURE 3 | Runtime behavior of a program using OpenMP.

FIGURE 4 | Dynamic runtime behavior of a program using MPI-2.

Nevertheless, the RMS today—in addition to providing resources
for the job—is more and more responsible for providing a certain
level of QoS. When it comes to supporting higher-level work-
flows, this level of QoS is, as mentioned earlier, related to the
reliable execution of the parallel program that is submitted to
the HPC system as a job. In this case, reliable execution is often
embedded in some form of contract—the Service Level Agree-
ment (SLA). In a SLA, the service provider—the provider of the
HPC resource—regularly guarantees the agreed QoS and would
pay some kind of fee if the level of QoS is not achieved. Therefore,
in these environments, the execution of the job must be com-
pleted before the deadline specified in the SLA. Hence, RMSs for
HPC systems have to be examined to determine whether they cur-
rently meet these QoS requirements, and if not, new approaches
need to be developed. Since there are different types of parallel
programs running on the supercomputers, the examination has
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TABLE 1 | Classification of parallel programs by runtime behavior.

Type
Creation of
processes

Interprocess
communication Example

0 Static No
communication

Monte Carlo without
communication

1 Static Regular pattern BSP programs
2 Dynamic on

local nodes
Irregular pattern FEM with mesh

refinement using
OpenMP

3 Dynamic on
local and

remote nodes

Irregular pattern FEM with mesh
refinement using

OpenMP and MPI-2

to be performed with respect to these different types of applica-
tions. A summary of the different types of parallel programs is
shown in Table 1.

3 | Static HPC Resource Management

When a parallel program such as described in Section 2 is sub-
mitted to the RMS by the user, current RMSs implement batch
job-oriented, static allocation strategy assigning a set of comput-
ing resources for the entire execution of a job at start time. The
parallel program then assigns the processes of the job to these
resources at runtime, often with assistance from middleware and
the RMS. To ensure that the job can be completed before a given
deadline, the resources that the job requires for its execution have
to be available at runtime, regardless of the resource demands
of other jobs. With batch job-oriented RMS, the check for suffi-
cient resources is performed at the time the job is selected to start.
For deadline-oriented RMSs, it has been shown that reserving the
required resources in advance is the basic method to provide the
resources in time for the execution of the job [21]. Therefore, the
check whether a sufficient number of computing resources are
available in deadline-oriented systems is performed at the time
the job request is submitted to the system. The request can then
be accepted based on a successful reservation of these resources
or has to be rejected by the RMS if there are not enough resources
available to complete the job before the deadline.

3.1 | Hilbert Curve-Based Allocation

In addition to the scheduling decision, the performance of the
local RMSs also depends on the mapping decisions. Various
approaches for optimizing the mapping decision have been pre-
sented. One of these is the mapping approach of the SLURM
workload manager [14], a queuing-based RMS widely used in the
area of HPC that implements a batch job-based static strategy for
handling job requests. In fact, it is the most popular RMS for the
HPC systems summarized in the TOP500 list. The system can also
be extended to support advance reservation [22] in order to pro-
vide a higher level of QoS needed to support deadline-oriented
resource management.

Since the shape of the partition to which the job is assigned is
important to minimize the communication overhead for many

FIGURE 5 | Example of a mapping with Hilbert curve.

parallel applications and HPC systems, especially those imple-
menting a mesh/grid or torus topology such as the previously
mentioned Titan and Fugaku, the SLURM workload manager
aims to provide compact, contiguous partitions to the jobs.
For this purpose, the SLURM uses a shaping component that
makes use of a Hilbert curve approach. Figure 5 exemplifies
how a Hilbert curve, when used as a neighborhood relation-
ship, which is the basis for creating compact partition shapes,
is transferred from two- or more-dimensional grid or torus
topology to a one-dimensional line of nodes (emphasized by
a red line).

Based on this Hilbert curve, the SLURM workload manager uses
a first fit approach (by following the red line) to find a parti-
tion with a sufficient number of computing resources for the
job request and still form compact partitions that should help
to reduce the communication overhead for the job. The partition
formed using the Hilbert curve is then assigned to the job and can
be used by the parallel program over the entire runtime, sched-
uled by the RMS. The SLURM workload manager uses the Hilbert
curve approach primarily to support three- or more-dimensional
grid or torus topologies. In order to investigate the approach, it
has also been implemented for two-dimensional grid topologies.

Since the RMS has to implement advance reservation to sup-
port QoS based on SLAs, the Hilbert curve-based mapping—and
therefore the SLURM manager itself—is extended to include an
initial check for free computing resources and the booking of the
number of resources assigned to a job, commonly called nodes
in a HPC cluster. Figure 6 describes the steps that are performed
when a job request is received. First, the number of free nodes
available in the interval in which the job is to run is determined
and compared with the number of nodes required by the job
(line 0). If enough free nodes are available, a partition is searched
using a first-fit strategy based on the list of nodes ordered by the
Hilbert curve (lines 5–10). Only contiguous segments are con-
sidered. If a consecutive list of nodes is found that is available
at the specified runtime of the job, these nodes are reserved for
the job so that no other job will use the nodes in this time
interval (line 11).

3.2 | Manhattan Median Approach

Another approach for mapping in HPC systems that focuses
primarily on compact partitions in order to reduce the impact
of other running programs and the communication behavior
of the program itself is the Manhattan Median algorithm [23].
The approach was developed to reduce the overall Manhattan
distance, and it has been shown to provide a 7

4
-approximation
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given is a list of nodes nodesHilbert_curve following the Hilbert curve
0 find valid time interval with enough resources with

tearliest_start_time ≤ tstart ≤ tdeadline – truntime∧
∀t ∈ [tstart, tstart + truntime] : nodessum_of_used_nodes(t) + nodesjob ≤ nodesmax

1 if valid time interval is found
2 nodestart := nodefirst_node_of_cluster
3 while tstart + truntime ≤ tdeadline
4 while nodestart =⁄ nodelast_node_of_cluster
5 select a set nodesjob of nodes nodesselected based on nodesHilbert_curve at nodestart
6 ∀n ∈ nodesselected :
7 if ∀t ∈ [tstart, tstart + truntime] : freen(t)
8 save n in nodesmap
9 else
10 nodestart := nodenext_node_of_cluster
11 if number of nodesmap = nodesjob
12 return (tstart, nodesmap)
13 get next valid time interval with tstart
14 reject request

FIGURE 6 | Overview of the Hilbert curve approach.
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FIGURE 7 | Examples of partitions with minimum overall Manhattan distance with the value of the minimum overall Manhattan distance.

of the minimum Manhattan distance-shaped partitions on
two-dimensional grid topologies. The basic algorithm can also
be adapted to multidimensional grid topologies, with reasonable
performance of the generated partition shapes.

With a large number of nodes, the shape that results in the mini-
mum overall Manhattan distance is a circle, as shown in Figure 7.
Therefore, the Manhattan Median approach focuses on gener-
ating circular partition shapes. To achieve this, the proposed
algorithm follows a greedy approach. For a given set of nodes,
all nodes that are within a certain area resembling the enlarged
circle are determined and assessed. The nodes, which increase
the overall Manhattan distance of all nodes in a minimal way, are
added to the partition.

It must be emphasized that the originally proposed algorithm
is based on the assumption that the partition is formed on
an empty cluster system. This aspect and the requirement to
support advance reservations make it essential to adapt the
algorithm [24]. Like the Hilbert curve-based approach, the Man-
hattan Median approach begins with a check to see if enough
resources are available in the interval between the earliest start
time and the scheduled end time based on the runtime prediction
before the partition is formed. If this initial check is successful, an
initial start time is set and used to check all nodes.

The shaping of the partition itself begins—as exemplified in
Figure 8—with the search for a first compute node that is avail-
able over the time interval and can thus be used for the job by
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0 find valid time interval with enough resources
1 if valid time interval is found
2 nodestart := nodefirst_node_of_cluster
3 while tstart + truntime ≤ tdeadline
4 while nodesmap = ∅
5 if ∀t ∈ [tstart, tstart + truntime] : freen(t)
6 nodesmap := nodestart
7 nodessum_map := 1
8 else
9 nodestart := nodenext_node_of_cluster
10 while nodessum_map < nodessum_req ∧ nodeschecked = ∅
11 select from the neighboring nodes of nodesmap the nodes nodesselected that increase the

overall Manhattan distance the least
12 ∀n ∈ nodesselected :
13 if ∀t ∈ [tstart, tstart + truntime] : freen(t)
14 save n in nodesmap
15 nodessum_map++
16 nodeschecked := ∅
17 else
18 save n in nodeschecked
19 if number of nodesmap = nodesjob
20 return (tstart, nodesmap)
21 else
22 nodesmap := ∅
23 get next valid time interval with tstart
24 reject request

FIGURE 8 | Overview of the Manhattan Median approach.

FIGURE 9 | Search for partition with minimum overall Manhattan distance.

checking one node after another following the specified order
within the machine (lines 4–9). Starting from this first node, all
neighboring nodes are examined to see if they are available in the
same time interval from the start time to the scheduled end time
(lines 10–18). All nodes that meet this condition are considered,
and the overall Manhattan distance is calculated for each of these
new nodes. The calculation of the overall Manhattan distance is
performed for a node with respect to all nodes that are part of the
partition—in the first step, this is only the first node. The node
that would minimally increase the overall Manhattan distance of
the partition is considered to be part of the partition. This step is
followed by the search and examination of all neighbor nodes for
all nodes of the partition (see Figure 9). This procedure is opti-
mized in the way that only the nodes at the edge of the partition
are considered as new neighbor nodes to be investigated.

These steps are repeated until the requested number of nodes has
been determined and inserted into the partition or no more free
neighboring nodes can be found. If the request cannot be satis-
fied with the available nodes by starting with the first node, the
partition is released, the next nodes are checked to see if any of
them can be used as a new first node, and the procedure is started
with this new first node of the partition.

In case no partition with a sufficient number of nodes can be
found, the start time is increased in the expectation that some of
the examined nodes will be available later. Based on this new start
time, the search for free nodes for the current request is started
again. The start time is increased in increments determined by
the change in the occupancy state of all other jobs. This is reason-
able because additional nodes become available only after other
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jobs are finished, freeing up nodes. In addition, the start time is
only increased if the time remaining until end time (deadline) is
at least as long as the requested runtime.

Static resource allocation is designed to provide appropriate
shapes of partitions at the time of submission but increases the
chance of over-provisioning for programs with dynamic runtime
behavior. This is because the approaches book the resources of
the entire time interval the job is executed, regardless of the uti-
lization of the node during the whole runtime. However, when
the job is finished, or when the specified end time of the job is
reached, the computing resources are released and marked as free
to be assigned to the next job or set of jobs.

4 | Dynamic Allocation of HPC Resources

For parallel programs implementing a more static runtime behav-
ior, such as Monte Carlo-like applications or BSP programs (types
0 and 1), the static allocation as provided by the current RMS,
like the SLURM workload manager, should be well suited to sup-
port these types of runtime behavior even in a deadline-oriented
workflow scenario. However, for the applications with dynamic
runtime behavior (types 2 and 3), it can be assumed that static
allocation strategies are not appropriate because the number of
compute resources changes during runtime [25, 26]. For parallel
programs with dynamic runtime behavior, the provision of a fixed
number of nodes could reduce the utilization of the entire HPC
system, as not all nodes are used by the program over the entire
runtime. The nodes that remain free during parts of the run-
time of the program, as only a reduced number of processes exist,
could then be made available to other jobs. The consideration of
the runtime behavior by the RMS should therefore increase the
overall utilization of the HPC system and ensure that the dead-
lines of the jobs can be met with a high probability. Therefore,
a more dynamic way of resource assignment should be benefi-
cial. This means the resources required by the running job are

assigned when the resource is needed and released immediately
after use.

4.1 | Contiguous Leak Approach

In order to implement such dynamic allocation of HPC resources
and support decentralized and distributed resource manage-
ment, the leak approach was introduced [9, 27] and examined
in detail [28]. In this work, we have adapted it to work with
deadline-oriented RMSs.

In the leak approach, the parallel program resembles a liq-
uid that is dropped into a partially occupied container (e.g.,
a parallel machine with partially allocated nodes). Due to its
properties, the job occupies a free part of the container or
displaces another job until an equilibrium is reached. Since
parallel programs—especially those with dynamic runtime
behavior—change their properties, such as the number of pro-
cesses running in parallel, the equilibrium and thus the number
of resources used by the different jobs can change over time. This
liquid-like expansion of the number of nodes used by the paral-
lel program ideally fits into a phase of reduced node utilization of
other jobs. Thus, the jobs should complement each other in terms
of resource utilization.

In contrast to the previously discussed allocation strategies, the
RMS in the leak approach accepts all job requests and handles
the resource requirements of the program at runtime. Thus, no
advance reservation is performed at the submission time. In this
way, the job is started at the earliest possible time. The algorithm
in Figure 10 exemplifies this strategy. To start the first process
of the parallel program, an empty compute node is searched for
(lines 1–5). The distribution of the different jobs over the entire
HPC system is supported by the use of different nodes from which
the search is started. If the entry node is occupied and there-
fore unable to accommodate the new process, a next node is

0 in case of advance reservation find valid time interval with enough resources
1 nodestart := nodeone_of_start_nodes_of_cluster
2 while nodestart ∧ nodestart = nodelast_next is occupied
3 nodestart := nodenext_node
4 if nodestart is free
5 save nodestart in nodesmap
6 else
7 reject request
8 select in nodesselected all neighboring nodes of nodesstart
9 while nodessum_map < nodessum_req ∧ nodesselected =

⁄

⁄ ∅
10 if ∀n ∈ nodesselected : freen
11 save n in nodesmap
12 nodessum_map++
13 select in nodesselected all unchecked neighboring nodes of nodesmap
14 if nodesselected = ∅in case of non-contiguous leak search for next free node to put into nodesselected
15 return nodesmap

FIGURE 10 | Overview of the Leak approaches.
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FIGURE 11 | Search for first nodes using the Leak approach.

examined (lines 8–12). The search for a first node for the new job
is performed sequentially for all nodes of the same row for grid
or torus topologies. Thus, the search sequence for a first node for
the starting job resembles a snake. If no node is available for the
job to be started, the job is rejected (line 7).

Figure 11 exemplifies the search for the first nodes for a new job.
As the nodes in the first row are occupied by the green and blue
jobs (see Tile 1), the search for a first free node in the second row
is continued in the opposite direction. In this row, a node is occu-
pied by the light red job, but the next node is free and marked
as the first node for the new job. As the new job requires four
nodes, further free nodes have to be found. This is done by exam-
ining the neighboring nodes, starting with the first marked node
(see Tile 2). Since all of the node’s direct neighbors except for the
node in row 3 are used by other jobs, this free node is marked
for the new job (Tile 3) and taken as the start for the next search
step (Tile 4). In this search step, two free nodes can be found and
marked (Tile 5). Finally, it is confirmed that all nodes are assigned
to the new job, as the required number of nodes has been reached
(Tile 6).

Some additional processes can be created while the parallel pro-
gram is running. In connection with the creation of an additional
process, there is a search for a node on which this process is to be
started. The search for the node is performed by the RMS, starting
from the node to which the creating process is assigned. First, all
of the neighboring nodes are checked. If no node of these adjacent
nodes are available, all other nodes used by the parallel program
are used to check the neighbors of these nodes. In this way, a
compact—dynamic—partition is created for the job. In contrast
to the static partition approaches, the leak approach introduces
requests for additional nodes—except for the first node—at run-
time and not at the start time of the job. Therefore, checking for
additional nodes cannot be used to reject a job at submit time. If
no additional node can be found near the partition with the con-
tiguous leak version, the new process is started on the node of the
creating process (parent process).

In Figure 12, the example from Figure 11 is continued (Tile
1), and one node is released because the process of the red job
assigned to this node has been completed (see Tile 2). This node
is then used by a new job (yellow) and can no longer be used by
the red job if a new process is created (Tile 3). However, as a new
process is now created by the red job and the previously used node
is occupied, a search is performed from all nodes used by the job
(Tile 4). Two free nodes are found, and one of them is used for the
new process of the red job (Tile 5).

4.2 | Noncontiguous Leak Approach

Due to the dynamic runtime behavior of the various jobs running
on the HPC system, in some cases no free resource can be found
for a new process in the neighborhood of the partition of a job.
Starting the new process on the same node as the creating par-
ent process contradicts the intention of the runtime behavior and
thus also the intention of the programmer, since the new process
is created to use an additional compute resource. The start on
the same node and the preemption of the parent process would
in many cases slow down the execution of both of the processes
and thus reduce the probability that the job can be completed
before the deadline. It therefore makes sense to extend the search
space and also considers nodes that are not direct neighbors of
the nodes of the partition. However, this can increase the com-
munication costs.

Nevertheless, to overcome the restriction of the continuous leak
version, a noncontiguous version of the leak approach was intro-
duced. The noncontiguous version of the leak approach works in
the same way as the contiguous version: search for the start node,
search for additional nodes in the neighborhood of the node to
which the parent process is assigned, or the nodes of the partition.
Only in case no free node from the set of neighboring nodes is
available to satisfy the current request, the search for other nodes
is performed like the search for a start node as described before
(see Figure 11), resulting in several disjoint subpartitions of con-
tiguous nodes. For further processes, these additional nodes are
then treated as a node of the partition, so that all regions used by
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1 2 3

4 5

FIGURE 12 | In the Leak approaches, nodes can be released, and additional nodes can be requested at job runtime (breathing partition). The search
for additional nodes starts by examining the neighboring nodes (shaded red) of the nodes in the partition (solid red).

the job can leak in the aforementioned way. As with the contigu-
ous version, the nodes are released once the process is completed
and can then be used for other requests of the same or other jobs.

In the example shown in Figure 13, after a first partition has been
searched for and used (Tiles 1 and 2), additional processes are cre-
ated, and free nodes are searched for. Since there are no free nodes
available in the neighborhood of the used nodes, the noncontigu-
ous leak performs the snake-like search and can find a free node
in the second row (Tile 3). From this node, others in the neigh-
borhood are searched for and found (Tiles 4–6) and used by the
red job (Tile 7). During the runtime of the job, a node is released
(Tile 8) and used by another job (Tile 9). The creation of a fur-
ther process then leads to an additional search, shifting the set of
nodes further away from the original node (see Tiles 10–12).

5 | Evaluation

Based on the observations presented earlier and with respect to
the different types of parallel programs, the examples of static and
dynamic resource allocation were examined. In order to evalu-
ate the different approaches of RMSs in terms of their efficacy to
provide the required QoS (respecting jobs deadlines) and ensure
the completion of the jobs for a given workload, we used the
ApplOXSim simulation environment [24, 29] focusing on the
impact of data structures and static allocation strategies. This
simulator is capable of simulating both the RMS tasks as well as
the execution of the parallel programs. Thus, the discrete event
simulation controls the entire machine as well as the individual
computing resources and interconnection network. Events are
introduced to notify the arrival of an HPC job, such as the start
and the end of a job, and the termination of the job in case the
deadline has been reached (canceled job). In addition, events are
created and handled for each part of the parallel program that
leads to a resource utilization, such as the start of a computa-
tion (computation task) or the transmission of a message (com-
munication task) as well as the start of a new process (fork) or
the joining of some processes when the child process finishes its

work (join). Therefore, in addition to the two static allocation
strategies for resource management for HPC systems, the two
variants of the leak approach (contiguous and noncontiguous)
were implemented in this simulation environment to evaluate
their performance. For the leak approach, the search for a new
CPU core is performed when a process invokes a fork system call
and the CPU core is released when a join call is performed by
the process.

Furthermore, the simulator is able to support different configura-
tions of HPC machines. The configurations used for the evalua-
tion presented in this article are based on the performance values
of the supercomputer HLRN-II, which was in operation at the
Zuse Institute Berlin (ZIB) comprised of 128 compute nodes con-
nected by a grid topology (totalising 512 CPU cores). To provide
a realistic load for the RMS to handle, the workload generator by
Feitelson [30] was used, and the resulting traces were extended
to include the type (model) of the runtime behavior of the paral-
lel programs as well as the earliest start time and deadline for the
job. Since deadlines are defined by the users and the higher-level
workflow in which the job is embedded, it is reasonable to assume
that the deadline leaves some leeway for the management system.
This slack time is often related to the importance and the size
of the job, as the user would want to reduce the risk of cancel-
ing the job if the results are important. The workload generator
can be configured to provide different load levels in the form of
arrival rates. It is based on Feitelson’s workload generator, which
generates new traces based on an archive of real traces executed
on parallel supercomputers, clusters, and grids and using a nor-
mal distribution [30]. In addition to the recommended and com-
mon load, which is referred to as normal load and is determined
with an interarrival factor of 1500, two other load situations were
examined. The very heavy load (interarrival factor of 1) is deter-
mined by the fact that on average, a new job request is submitted
to the RMS every second. Between the normal and very heavy
load, a heavy load situation was investigated with an interar-
rival factor of 150. The traces provide 1000 job requests over a
simulation time of about 65 days for the heavy and very heavy
load configurations and about 74 days for the normal load traces.
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FIGURE 13 | Search for nodes using the noncontiguous leak approach. After the initial partition is created in the first row (red nodes), nodes are
released in the second row during execution, and new nodes are assigned when new processes are created.

The running parallel programs were derived from the different
runtime behavior models and adapted to the specifications as
given in the job description of the individual trace file. However,
the jobs are adapted to be able to run the program using a compact
partition of an empty HPC system at the given runtime, and thus,
they should be able to finish the execution before the deadline in
case no other interferences occur.

In addition to the simulation of traces with jobs following the
same runtime behavior type (models 0–3), a mixture of the types
was used according to a uniform distribution of the behavior
types (model uniform) to reproduce a more realistic scenario in a
shared production machine (with different users using different
models). For each configuration—application type, communica-
tion behavior, and load—320 different traces were generated and
used for simulation in order to obtain significant results for the
performance of the different approaches. In total, about 38,000
different simulation runs were performed to obtain the results
resented in this article [31]. Since the simulator tool developed for
this work is open source, it can from now on be used by related
work to compare their scheduling and mapping results to our
results.

5.1 | Request Acceptance

As might be expected, the approaches perform differently on the
performance metrics. First, the impact of checking the number
of resources when the jobs are submitted can be clearly seen in
the acceptance rate (see Figure 14). While the static allocation
strategies perform such a check at submit time for the total num-
ber of computing resources, with the leak approach, the check
is performed only for one node. Thus, nearly all of the jobs are
accepted by the RMS, which implements one of the versions of
the leak approach.

If only the first step of the resource allocation is considered, that
is, the number of jobs that could be accepted after checking the
number of nodes (line 0 in the static procedures), a number of
510, 400 and 260 jobs are accepted for normal, heavy, and very
heavy load. In comparison, taking the mapping into account by
using the Hilbert curve-based approach (SLURM), the average

numbers of successfully scheduled jobs are increased up to more
than 120% for the heavy load situation. This is due to the map-
ping decision since a partition has to be found for the job at
submit time. Jobs are rejected if such a partition is not available
for the time, the job is to be executed. The impact of the map-
ping decision is even more obvious with a look at the Manhattan
median approach, where the average number of accepted jobs is
slightly higher than for the Hilbert curve-based approach at nor-
mal load, about half of the average number at very heavy load.
With increased load, the chance to find a sufficient number of
free nodes reduces, and the chance to find contiguous free nodes
is even more reduced due to external fragmentation (external
fragmentation may occur after the release of previously allocated
partitions, when free resources are scattered at separate locations
in small discontinuous portions being unusable as a whole for
contiguous policies). The effect of the external fragmentation is
reduced by the Hilbert curve-based approach, which implements
a first fit search for free nodes. The special shapes of the partitions
provided by the Manhattan media approach lead to even greater
external fragmentation. However, this has no significant impact
on the leak approaches, which still accept almost all job requests
due to their dynamic allocation.

Since the partition provided by the static allocation strategy is
assigned to the job over the entire runtime and the check for free
resources is independent of the runtime behavior, no significant
difference can be seen with regard to the runtime behavior types
of the jobs (see Figure 14). Same holds true for the communica-
tion pattern used and also for the dynamic allocation strategies.
Even though the number of accepted jobs is only part of the per-
formance of the approaches, it can serve as a lower measure for
further consideration. The more important is how many jobs are
completed before the given deadline or canceled because they
cannot meet it.

5.2 | Job Canceling Rate

The comparison of the different approaches implementing static
and/or dynamic resource allocation in terms of the number of
successfully scheduled jobs at submit time suggests that not
all jobs can be completed successfully. Especially for the leak
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FIGURE 14 | The numbers of successfully scheduled jobs under normal load show the difference between static (blue and purple) and dynamic
(red and green) assignments with respect to the first checks for free nodes.
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FIGURE 15 | The canceling rate depends on the combination of load, behavior model, and approach, but in almost all configurations, the noncon-
tiguous leak approach (green) outperforms the Hilbert curve-based approach (blue) and the Manhattan median approach (purple), which performs
better than the other static allocation strategy (here for asynchronous communication).

approach, which accepts almost all jobs, it can be assumed
that the overbooking at heavy and very heavy load will lead
to a significant number of canceled jobs. The results for the
leak approach confirm this assumption for both the contigu-
ous and the noncontiguous version of the leak approach (see
Figure 15a) even under normal load. However, a significant num-
ber of canceled jobs out of the number of accepted jobs is also
observed for the Hilbert curve-based approach used by SLURM
and the Manhattan median approach. Since the static Manhat-
tan median approach and to a certain extent also the Hilbert
curve-based approach implemented by SLURM perform better
than the dynamic allocation strategies for the jobs running par-
allel programs with rather static runtime behavior type (model
0 and 1), the picture is reversed for the programs with dynamic
runtime behavior. The Manhattan median approach reduces the
communication overhead and provides compute resources of the
entire runtime, but this is not sufficient to ensure the finishing
of the job before deadline even for the jobs with static runtime
behavior. Nevertheless, the approach performs best of all of the
four approaches with respect to the jobs with a static number
of communicating processes (BSP-like jobs—runtime behavior
type 1). The dynamic resource provisioning of the leak approach
supports the dynamic runtime behavior, as it can be seen in the
results for the runtime behavior types 2 and 3. Especially with the
noncontiguous leak approach, the share of canceled jobs is much
smaller than for the static allocation strategies, and the version
performs best for the mixture of runtime behavior types (model
uniform) under normal load.

As expected, the share of canceled jobs increases with load in
the dynamic allocation strategies (see Figure 15c). This is due
to the overload situation in the network compared to the static
allocation strategies, and it becomes even worse if no free com-
puting resource is found at the time a new process is created for
the dynamic strategies. The last is even more relevant when the
number of nodes to be examined is reduced since only nodes in
the neighborhood of the existing partition are considered, as it
is with the contiguous leak approach. Nevertheless, the results
for the very heavy load show that the increased communication
overhead associated with a more scattered assignment, due to
the need to use more distant nodes in the case of noncontiguous
leak, and a higher load on the network links themselves results
in worse performance for the noncontiguous leak compared to
the contiguous leak for the job with dynamic runtime behavior.
In this load scenario, the reduction of the communication costs
that comes with the Manhattan median approach pays off, so that
this static approach performs best for almost all configurations.
Only the assignment of the Hilbert curve approach supports the
runtime behavior of jobs with a static number of noncommuni-
cating processes (Monte-Carlo-like jobs—runtime behavior type
0) better than the Manhattan median approach.

While for the dynamic assignment approaches, the share of can-
celed jobs increases with the load and, for the static Manhattan
median strategy, the share of canceled jobs changes only slightly
with the load. This is different from the Hilbert curve-based
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FIGURE 16 | The canceling rate for jobs implementing synchronous communication pattern is similar, but here the compact shape of the partitions
is more conducive to the Manhattan median approach, especially for runtime behavior types 1 and 3.
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FIGURE 17 | Due to the high acceptance rate and the canceling rate, the leak approaches (red and green) perform better than the Hilbert curve-based
approach (blue) and the Manhattan median approach (purple) in terms of successfully executed jobs, especially for the jobs with dynamic runtime
behavior (here for asynchronous communication).

approach with respect to jobs with a static number of noncom-
municating processes (Monte-Carlo-like jobs—runtime behav-
ior type 0). Since communication is concentrated at the start and
end of the runtime with this runtime behavior type, communica-
tion overhead is not as important to the runtime as it is for other
types of runtime behavior. Moreover, the higher load—which
comes with a reduction in interarrival time—in case of static
assignments reduces the advantage of smaller jobs. If all job
requests arrive at the same time and the decision to schedule
some of the jobs is based on the number of available computing
resources, all jobs have an equal chance of being selected, and the
preference for smaller jobs that fit into some holes in an already
existing schedule is negligible. Since the larger jobs are associ-
ated with higher slack time, these jobs have a higher probabil-
ity to get finished before the specified deadline. However, due to
the better support of the runtime behavior of the jobs, especially
those with dynamic runtime behavior, the dynamic allocation in
most scenarios performs better than the static allocation strate-
gies based on the Hilbert curve or Manhattan median approach
when it comes to the share of canceled jobs.

This also holds for other communication patterns than the widely
used asynchronous send in combination with a synchronous
receive operation. The results for jobs performing synchronous
send operations only are depicted in Figure 16. The difference
in communication patterns is visible, especially with the jobs
with a static number of communicating processes (BSP-like
jobs—runtime behavior type 1). Because of the exchange of inter-
mediate results between all of the processes, the allocation of a

compact partition has a great influence on the number of can-
celed jobs.

5.3 | Overall Performance

The unexpected high number of canceled jobs in combination
with the rejection of jobs due to the allocation of static partitions
provided by the Hilbert curve-based SLURM approach as well as
the Manhattan median approach leads to reduced performance in
terms of the number of successfully executed jobs. This holds true
for the jobs with dynamic runtime behavior, where only half the
number of jobs can be completed before the deadline compared
to the leak approaches under normal load (see Figure 17a). The
results are even more evident for the other load situations (see
Figure 17b,c). However, also for the jobs, implementing a static
runtime behavior using the static partition strategy is beneficial
only for Monte Carlo-like applications at very heavy load com-
pared to the contiguous leak approach, while the noncontiguous
leak performs better even for this type of applications. Thus, the
characteristics of the static partition strategies, which come with
a guarantee to the job that there will always be enough comput-
ing resources available to start the processes, and the shape that
reduces communication overhead do not compensate for the spe-
cific requirements associated with more sophisticated new pro-
gramming approaches implementing a dynamic runtime behav-
ior.

The fundamental results observed for the programs with asyn-
chronous communication generally hold for the jobs with
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FIGURE 18 | The comparison between the strategies for synchronous communication is similar to that for asynchronous communication, and the
noncontiguous approach in particular delivers better performance in almost all configurations than the Hilbert curve-based and the Manhattan median
strategy.

synchronous communication patterns, although there are some
increases for certain configurations. For the SLURM RMS and
the contiguous leak approach, the synchronization of the pro-
cesses through synchronous communication leads to a decrease
in the number of canceled jobs and thus to an increase in the
number of successfully executed programs compared to the job
with asynchronous communication (see Figure 18). This can be
seen particularly well when looking at the results for the jobs
implementing a BSP-like runtime behavior (model 1) in combi-
nation with the contiguous leak approach. In this case, the occa-
sional mapping of the child process to the node of the parent
process, since no free node is available in the neighborhood of
the partition, reduces the communication overhead and can at
least partially compensate for the overload situation on the
respective node.

6 | Related Work

In recent years, there are several contributions to the field of
HPC management [1, 15, 32, 33]. First, there is great interest in
the research and development of novel applications implement-
ing dynamics in different ways, such as load balancing in parti-
cle simulations [34] or dynamic runtime behavior based on dif-
ferent computational phases of the parallel program [35], mesh
refinements [20, 36–38], and frameworks to support program-
ming such applications with dynamic runtime behavior to over-
come the limitations of static applications, such as the need for
internal load balancing and running multiple versions to deal
with different data sets [19].

Secondly, the need to support an increasing variety of applica-
tions also leads to the development of new features for the RMS.
Therefore, research in the field of RMS is also driven by the
emergence of complex parallel applications with dynamic run-
time behavior. An example of this is the extension of the SLURM
workload manager [14] to support dynamic runtime behavior by
providing malleable job allocation [39]. This also includes current
work to support dynamic resource management, for example,
by implementing the PMIx standard for the SLURM workload
manager [40].

Furthermore, the use of ML techniques to improve the
reliability of runtime predictions required to optimize the

schedule [41, 42] is a promising approach that could also be con-
sidered in combination to dynamic allocation strategies. Other
approaches focus on evaluations of runtime behavior at runtime
[43] to optimize the schedule. While this classification can sup-
port the resource allocation, as our results with the different types
of runtime behavior clearly show, additional online scheduling
techniques, as introduced with the leak approach, are needed to
meet the requirements of individual jobs. The utilization of the
HPC system can further be increased by introducing coallocation
[16]. Our investigations of the leak approach support this finding
and additionally provide a mapping approach that supports jobs
with dynamic runtime behavior. Almost all of these approaches
and research activities focus on optimizing the utilization of
HPC systems in combination with increasing the reliability of
job execution.

In addition, the requirements that the job must be completed
before a certain deadline have also been taken into account
in recent years. This can be seen as a further increase in reli-
able job execution or a higher level of service quality. However,
meeting deadlines for jobs is a challenging task, especially for
batch job-based scheduling. Nevertheless, different approaches
are presented for these systems. One approach [8] aims to opti-
mize the schedule considering the deadlines for the jobs given
by the users, while another approach [6] additionally considers
further challenges such as heterogeneous systems and different
resource requirements or constrains. Since this article focuses on
the scheduling part of the allocation problem, there are other
approaches [44] that deal with the mapping of the individual pro-
cesses or tasks. Therefore, a more sophisticated model, a directed
acyclic graph (DAG), is used to describe the runtime behavior of
the parallel program running as a job.

The combination of all these research works and our results
clearly shows that all of these aspects and requirements have
to be considered in order to develop a reliable solution for
the next generation of HPC RMSs. However, current research
efforts, as described here, have not yet considered all aspects
necessary for ensuring deadlines in the field of HPC, although
we have listed the most similar ones here. Nevertheless, to
the best of our knowledge, there is no other work that has
explored and analyzed the impact of a dynamic RMS strategy
in the context of deadline-oriented execution scenarios—and
its impact on scheduling, mapping, application performance,
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and throughput—with respect to the different types of runtime
behavior.

7 | Conclusion and Outlook

In this article, we evaluate how well static resource management
policies cope with deadline-constrained HPC jobs and explore
two variations of a dynamic policy in such scenarios. Deadline
enforcement is crucial in environments where a higher level of
QoS is implemented through the use of SLAs in order to support
advanced workflows.

The Hilbert curve-based approach used by the SLURM workload
manager, the widely used RMS, and the more research-based
Manhattan median approach are prominent examples for static
allocation strategies for HPC systems that focus on compact par-
titions. Since the compactness of partitions is considered the
basis for reducing the runtime of a parallel application, these
approaches were used as a reference for evaluating the leak
approach, which implements dynamic resource management.
Therefore, the static allocation strategy should provide sufficient
computing resources for the running job and reduce the commu-
nication overhead by providing compact partitions. This should
at least correspond to the static runtime behavior of the parallel
program types according to models 0 and 1.

However, our results clearly show the impact of the runtime
behavior of the parallel applications running on these HPC
systems on the results, as previously indicated [6]. The static
policies are not able to meet the requirements of a modern
deadline-oriented RMS scenario, especially in terms of resource
utilization and the number of jobs that are successfully exe-
cuted as agreed in the SLA. It is important to emphasize that
the optimization of the partitions performed with the Manhat-
tan median approach reduces the number of canceled jobs only
at the cost of rejecting a large part of the job requests, and
the Hilbert curve-based approach performs best in terms of the
share of canceled jobs only for the Monte Carlo-like jobs at
overload situation. Rather, the results for the dynamic assign-
ment approaches—the contiguous approach and even more so
the noncontiguous leak approach—show the need to support
dynamic runtime behavior of the jobs in the form of providing
additional computing resources at the time a new process is cre-
ated. The neighborhood relationship between the nodes of the
partition is important in reducing the communication overhead
associated with the message passing of the parallel applications
but has less impact than the timely provisioning of additional
compute power. Since this effect may be of minor importance
in queueing-based RMSs where the runtime of the job can be
extended without major impact (except for optimizations imple-
menting backfilling [45]) and the reduction in utilization associ-
ated with static partitions can be accepted, any aspect that threat-
ens the deadline has to be omitted in the area of SLA-based
RMS.

However, the results for the dynamic allocation—the leak
approaches—also show that the resource requirements of paral-
lel programs with the same runtime behavior type can match in
such a way that one program can use the currently freed resources
that were previously used by another program. This effect can

greatly increase the number of jobs executed on the HPC system.
However, the mixture of parallel applications with different run-
time behavior types can reduce this effect.

Since the results presented in this article were obtained through
an extensive number of simulations, some aspects of real-world
systems are not considered or can only be examined in produc-
tive systems, such as estimations of runtime by the users and
specified deadlines. Nevertheless, a rough estimate of the techni-
cal transfer and its effects can be given. It would be reasonable
to assume that the effort required for dynamic resource man-
agement is higher than for the static allocation strategies, espe-
cially for jobs with dynamic runtime behavior. The impact of
the resource management activities, such as searching for addi-
tional nodes, maintaining the current state of resource allocation
and monitoring the overall resource utilization, can initially be
reduced due to the decentralized nature of the leak approach.
This also promotes the parallelization of the tasks, as the requests
are sent to more than one node. Thus, the decentralized dynamic
approach should be able to scale much better than centralized,
static allocation strategies. Especially with respect to the partial
shift of the resource allocation overhead from the start time to
the runtime of the job. In addition, the caching of the states
of resource allocation of neighboring nodes can also be used
to reduce the resource management overhead associated with
dynamic policies. Since the spawning and initialization of new
processes in MPI environments come with a certain amount
of overhead regardless of the resource management approach,
resource management can easily be integrated into this part [40].
However, the dynamic strategy shows its strengths when using
dynamic applications. For parallel programs with static runtime
behavior, resource management at the start of the job is similar to
the resource allocation of the static allocation strategies. For the
programs with dynamic runtime behavior, the dynamic resource
allocation significantly increases the utilization of the system,
as the transition is made from internal fragmentation to exter-
nally available resources, which only count as external fragmen-
tation if no further jobs are accepted or other jobs do not require
resources.

Overall, our preliminary results clearly show that RMS should
adopt dynamic policies, but more detailed information about
the—future—runtime behavior of the parallel program should
be incorporated in the scheduling and mapping decisions per-
formed by the RMS. This holds for the information about cre-
ating and joining processes as well as for the communication
patterns used by the parallel program. Future work will address
this feature and pursue a resource management approach that is
capable of providing a reliable service for the execution of paral-
lel programs with deadlines by taking into account the runtime
behavior and resource requirements of the HPC jobs in order to
support SLAs.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Endnotes
1 https://www.nhr-verein.de/research.
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