
Vol.:(0123456789)

Clinical Pharmacokinetics (2024) 63:1609–1630 
https://doi.org/10.1007/s40262-024-01434-8

ORIGINAL RESEARCH ARTICLE

Understanding Voriconazole Metabolism: A Middle‑Out 
Physiologically‑Based Pharmacokinetic Modelling Framework 
Integrating In Vitro and Clinical Insights

Ayatallah Saleh1,2,3  · Josefine Schulz1  · Jan‑Frederik Schlender4 · Linda B. S. Aulin1  · Amrei‑Pauline Konrad1  · 
Franziska Kluwe1,2  · Gerd Mikus1,5  · Wilhelm Huisinga6  · Charlotte Kloft1  · Robin Michelet1 

Accepted: 30 September 2024 / Published online: 30 October 2024 
© The Author(s) 2024

Abstract
Background and Objective Voriconazole (VRC), a broad-spectrum antifungal drug, exhibits nonlinear pharmacokinetics (PK) 
due to saturable metabolic processes, autoinhibition and metabolite-mediated inhibition on their own formation. VRC PK 
is also characterised by high inter- and intraindividual variability, primarily associated with cytochrome P450 (CYP) 2C19 
genetic polymorphism. Additionally, recent in vitro findings indicate that VRC main metabolites, voriconazole N-oxide (NO) 
and hydroxyvoriconazole (OHVRC), inhibit CYP enzymes responsible for VRC metabolism, adding to its PK variability. 
This variability poses a significant risk of therapeutic failure or adverse events, which are major challenges in VRC therapy. 
Understanding the underlying processes and sources of these variabilities is essential for safe and effective therapy. This 
work aimed to develop a whole-body physiologically-based pharmacokinetic (PBPK) modelling framework that elucidates 
the complex metabolism of VRC and the impact of its metabolites, NO and OHVRC, on the PK of the parent, leveraging 
both in vitro and in vivo clinical data in a middle-out approach.
Methods A coupled parent-metabolite PBPK model for VRC, NO and OHVRC was developed in a stepwise manner using 
PK-Sim® and  MoBi®. Based on available in vitro data, NO formation was assumed to be mediated by CYP2C19, CYP3A4, 
and CYP2C9, while OHVRC formation was attributed solely to CYP3A4. Both metabolites were assumed to be excreted 
via renal clearance, with hepatic elimination also considered for NO. Inhibition functions were implemented to describe the 
complex interaction network of VRC autoinhibition and metabolite-mediated inhibition on each CYP enzyme.
Results Using a combined bottom-up and middle-out approach, incorporating data from multiple clinical studies and existing 
literature, the model accurately predicted plasma concentration-time profiles across various intravenous dosing regimens in 
healthy adults, of different CYP2C19 genotype-predicted phenotypes. All (100%) of the predicted area under the concentra-
tion–time curve (AUC) and 94% of maximum concentration (Cmax) values of VRC met the 1.25-fold acceptance criterion, 
with overall absolute average fold errors of 1.12 and 1.14, respectively. Furthermore, all predicted AUC and Cmax values of 
NO and OHVRC met the twofold acceptance criterion.
Conclusion This comprehensive parent-metabolite PBPK model of VRC  quantitatively elucidated the complex metabolism 
of the drug and emphasised the substantial impact of the primary metabolites on VRC PK. The comprehensive approach com-
bining bottom-up and middle-out modelling, thereby accounting for VRC autoinhibition, metabolite-mediated inhibition, 
and the impact of CYP2C19 genetic polymorphisms, enhances our understanding of VRC PK. Moreover, the model can be 
pivotal in designing further in vitro experiments, ultimately allowing for extrapolation to paediatric populations, enhance 
treatment individualisation and improve clinical outcomes.
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Key Summary Points 

Due to the narrow therapeutic range and complex 
pharmacokinetics (PK) of the antifungal voriconazole 
(VRC), therapeutic failure and adverse events that 
compromise quality of life are frequently observed 
after standard dosing. This study presents the most 
comprehensive physiologically-based pharmacokinetic 
(PBPK) model to date for VRC and its metabolites, 
voriconazole N-oxide (NO) and hydroxyvoriconazole 
(OHVRC), leveraging both in vitro and clinical data. 
The model accurately predicts the complex PK of VRC 
across a wide range of dosing regimens and CYP2C19 
genetic polymorphisms, addressing the knowledge gap in 
current understanding.

By incorporating mechanisms of autoinhibition and 
metabolite-mediated cytochrome P450 (CYP) inhibition, 
the model offers new insights into the nonlinear PK 
of VRC. It underscores the significant impact of 
metabolites on the PK of the parent, enhancing our 
understanding of the metabolism of VRC and its 
variability among individuals.

This research exemplifies the effective use of a combined 
bottom-up and middle-out strategy in PBPK modelling. 
By iteratively refining the model through a learn-predict-
refine paradigm, it showcases a robust methodology 
for understanding complex PK of VRC, and paving the 
way for optimised and personalised therapeutic dosing 
strategies.

1 Introduction

Invasive fungal infections (IFIs) are of significant clinical 
concern due to increasing incidence and high morbidity 
and mortality rates, particularly in immunocompromised 
individuals and critically ill children [1]. Early diagnosis 
and adequate antifungal therapy are crucial for successful 
treatment outcomes [2]. Voriconazole (VRC), a second-gen-
eration triazole agent with broad-spectrum antifungal activ-
ity, inhibits cytochrome P450 (CYP)-dependent 14-α-sterol 
demethylase, disrupting the fungal membrane and prevent-
ing fungal growth [3]. The antifungal is listed by the World 
Health Organization as an essential medicine for adults and 
children aged 2 years and above [4]. It is recommended for 
first-line treatment of IFIs such as aspergillosis or candidae-
mia [5] and as a primary or secondary prophylaxis in immu-
nocompromised patients [6, 7]. In adults, VRC is adminis-
tered as a body-weight-adapted intravenous infusion over 

1–2 h with an initial loading dose (LD) of 6 mg/kg twice 
daily on the first day, followed by a maintenance dose (MD) 
of 4 mg/kg twice daily. Yet, switching from intravenous to 
oral flat dosing is considered feasible due to high bioavail-
ability (96%) reported at therapeutic doses [4, 8, 9].

Although VRC has been on the market in the European 
Union since 2002 and in the United States since 2003, there 
are still knowledge gaps concerning its pharmacokinetics 
(PK). VRC is extensively metabolised, with an apparent total 
clearance (CL) of approximately 13–36 L/h and a steady-state 
volume of distribution ranging from 2 to 4.6 L/kg [10, 11]. 
Additionally, the large intra- and interindividual PK variabil-
ity observed in clinical practice, often leads to therapeutic 
failures or adverse drug events (AEs), such as hepatotoxicity 
or visual and neurological disturbances [9, 11–16].

To ensure safe and effective therapy, it is crucial to 
enhance the understanding of the underlying processes 
and sources of PK variabilities. Several factors are report-
edly associated with the large exposure variability seen 
after conventional dosing of VRC, the majority of which 
are attributed to the extensive and complex metabolism of 
VRC. Notably, 98% of the VRC dose undergoes metabolic 
transformation, primarily through the highly polymorphic 
CYP2C19, as well as CYP3A4 and CYP2C9. Only 2% of the 
drug is excreted unchanged in urine [10, 17, 18].

Voriconazole N-oxide (NO), the main circulating metabo-
lite in human plasma, is suspected to contribute to AEs linked 
to VRC treatment, despite lacking significant antifungal activ-
ity [19–21]. Other metabolites, such as hydroxyvoriconazole 
(OHVRC) and dihydroxyvoriconazole, are primarily detected 
in urine along with their conjugates [11, 14, 18]. Neverthe-
less, their formation pathway remains elusive, highlighting a 
significant knowledge gap [12, 14, 17].

Furthermore, VRC, as well as its metabolites, has been 
shown to be a potent CYP inhibitor of CYP2C19, CYP2C9, 
and CYP3A4 [22–25], thereby causing (auto)-inhibition of its 
metabolism and a variety of drug–drug interactions (DDIs) 
[11, 26]. To unravel these interactions, systematic and quanti-
tative in vitro investigations were performed [17, 27–29]. The 
investigations characterised the contribution of CYP2C19, 
3A4 and 2C9 to the metabolism of VRC, as well as the inhibi-
tory potential of the parent and its metabolites, including the 
underlying mechanisms of these inhibitory processes. Fur-
thermore, these in vitro analyses have shown that VRC, NO 
and OHVRC reversibly and time-independently (competitive 
and noncompetitive) inhibit all three relevant CYP enzymes 
responsible for VRC metabolism [17]. Notably, these in vitro 
analyses indicated that OHVRC has an almost equivalent 
inhibitory effect on CYP3A4 as VRC (a 1.1-fold higher  Ki 
for CYP3A4), suggesting a need for further investigation into 
its clinical relevance, especially considering its potential to 
impact local hepatic concentrations. Accordingly, the nonlin-
ear PK of VRC have been attributed to saturable metabolic 
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processes, autoinhibition and metabolite-mediated inhibition 
of CYP enzymes [17, 30, 31].

In addition, the genetic polymorphisms of CYP2C19 could 
explain a substantial part of the large interindividual variability 
observed in VRC PK [32]. The wild-type (CYP2C19*1/*1) 
is the most common genotype in the Caucasian population, 
accounting for approximately 40% [33]. Loss-of-function 
alleles, such as CYP2C19*2 and *3, result in reduced 
activity, while the presence of the gain-of-function allele 
CYP2C19*17 increases activity. As a result, based on their 
CYP2C19 genotype, individuals can be categorised into 
varying metaboliser phenotypes, from poor (PM) to ultrarapid 
metabolisers (UM), which may necessitate dose adjustments 
due to exposure differences and potential AE risks [33].

Although multiple VRC PBPK models have been pub-
lished to date [34–36], the contribution of each metabolic 
pathway to VRC CL, and the extent of metabolite-medi-
ated inhibition, remain inadequately defined. Moreover, 
the pivotal phenomenon of VRC (auto)-inhibition has not 
been comprehensively integrated into the existing models. 
Addressing these gaps, our study aims to elucidate the com-
plex PK of VRC and quantify its metabolite-mediated CYP 
inhibition through the development of a coupled parent-
metabolite PBPK model. This model, constructed using a 
middle-out approach, leverages both in vitro and in vivo 
clinical data to provide a more accurate and mechanistic 
understanding of VRC metabolism in healthy adults. The 
more granular metabolism of VRC described by the model 
will facilitate more reliable scaling to special populations, 
such as paediatrics, where research is limited [36], and aids 
in the identification of DDI mitigation strategies in clinical 
practice. This enhanced insight fosters a move towards more 
individualised treatment approaches and improved clinical 
outcomes, representing a substantial stride towards person-
alised medicine.

2  Materials and Methods

2.1  In Vitro and Clinical Data

Quantitative in vitro characterisation of the metabolism 
and inhibition properties of VRC has been previously per-
formed by Schulz et al. [17]. The Michaelis–Menten kinet-
ics of NO formation by CYP2C19, CYP2C9 and CYP3A4 
were determined in incubations of human recombinant 
CYP enzymes and in liver and intestine microsomes. In 
addition, the inhibitory potential, and the mechanism of 
inhibition of VRC, NO and OHVRC, were evaluated by 
their effects on CYP marker reactions. Overall, these quan-
titative in vitro assays provided a basis for the a priori 
PBPK modelling of VRC and its metabolites.

Individual clinical data, comprising plasma concentra-
tion-time profiles of VRC and its two metabolites (NO 
and OHVRC), were obtained from three clinical studies 
[13, 14, 30] conducted in healthy adults at the University 
Hospital Heidelberg. The studies primarily investigated 
intravenous subtherapeutic and therapeutic dosing regi-
mens, covering a broad dose range (50–400 mg) of single 
doses (SDs), and allowed stratification based on CYP2C19 
genotype. Specifically, doses of 50 mg infused over 2 h 
and 100 mg infused over 4 h were categorised as subthera-
peutic, while 400 mg infused over 2 h was defined as a 
therapeutic dose. Moreover, urine samples were collected 
over a 24-h period in two of the three studies [13, 14], 
and the concentrations of VRC and both metabolites were 
measured. These concentrations, along with the recorded 
urine volumes, were used to calculate the amount of each 
analyte excreted unchanged in urine. In addition to the 
SD studies, the model development and evaluation also 
incorporated digitised mean VRC plasma concentrations 
from two additional clinical studies [37] that investigated 
intravenous multiple dosing (MD) regimens. One study 
(study A) reported individual maximum plasma concentra-
tion (Cmax) values for VRC on days 1, 5, 8 and 12, while 
the other (study B) provided individual minimum plasma 
concentration (Cmin) from the first to the tenth day of MD, 
and these data were digitised to further refine and validate 
the model. A detailed list of all clinical studies used is 
provided in Table 1.

2.2  Physiologically‑Based Pharmacokinetic (PBPK) 
Model Development

An intravenous adult PBPK model was developed using 
in vitro data, in silico calculated and in vivo clinical data 
moving from a pure bottom-up approach to a middle-out 
approach. These approaches are discussed in the following 
paragraphs and the input parameters used are summarised 
in Tables 2 and 3. Figure 1 depicts the entire model devel-
opment workflow along with the implemented metabolic 
pathways in Fig. 2 (right panel).

2.2.1  Bottom‑Up Approach

Initially, a pure bottom-up approach was adopted to 
develop an intravenous a priori PBPK model of the par-
ent compound (VRC), based on literature-derived physico-
chemical properties and information regarding its distri-
bution, metabolism, and excretion processes (Fig. 1, first 
blue box). Partitioning into tissues was modelled by the 
Berezhkovskiy tissue distribution model as implemented 
in PK-Sim® [38]. The elimination processes involved 
hepatic metabolism and renal excretion: VRC was assumed 
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to be metabolised via CYP2C19, CYP3A4 and CYP2C9, 
with a renal CL process implemented to account for the 
minor excretion of unchanged VRC via the kidneys. Initial 
values for renal CL were based on literature data using the 
ratio of the amount excreted in urine to the area under the 
concentration–time curve (AUC) over 24 h [12, 39]. The 
relative tissue-specific expression of enzymes was taken 
from the PK-Sim® expression database based on high-
sensitive real-time reverse transcription-polymerase chain 
reaction (RT-PCR) profiles [40], together with a reference 
concentration of 0.76 μmol of CYP2C19, 4.32 μmol of 
CYP3A4 and 3.84 μmol of CYP2C9 per litre of liver tissue 
[41] that were incorporated in the model.

Subsequently, the a priori parent-model was expanded 
to include the two metabolites, NO and OHVRC, guided 
by an exhaustive literature search for their physicochemi-
cal properties and distribution, metabolism, and excretion 
processes (Fig. 1, second blue box). NO was assumed to 
be formed by the three included CYP enzymes [17], while 
OHVRC was assumed to be formed via CYP3A4 only 
[42]. Due to the lack of definitive information regarding 
the elimination processes of both metabolites, we initially 

assumed that NO was eliminated through hepatic and renal 
CL processes. The total hepatic CL of NO was described 
as a first-order process in the liver derived from plasma 
CL, back-calculated from a published nonlinear mixed-
effects (NLME) model [43], as  input value. For OHVRC, 
we assumed only renal elimination, based on findings from 
literature suggesting that hydroxy metabolites are more 
commonly excreted through the kidneys [14] (see Fig. 2, 
right panel). The renal CL processes for both metabolites 
were implemented in a similar manner to the parent, with 
initial values based on literature data, calculated as the 
amount excreted in urine divided by the corresponding 
AUC values [12].

Furthermore, to capture the complex interactions, specifi-
cally the (auto)-inhibition of VRC and the inhibition mecha-
nisms of NO and OHVRC on each CYP enzyme, equations 
from multiple inhibition analyses [44] were integrated into 
the coupled a priori parent-metabolite PBPK model using 
 MoBi®. The reversible competitive inhibition of CYP2C19 
and CYP2C9 by VRC and its metabolites was modelled using 
Eqs. 1 and 2, while the reversible noncompetitive inhibition 

Table 1  Clinical studies used for model development and evaluation

bid twice daily, D day of treatment, gXM genotype-predicted phenotype, IM intermediate metaboliser, IV intravenous, N number of individuals, 
NM normal metaboliser, NO voriconazole N-oxide, OHVRC hydroxyvoriconazole, PM poor metaboliser, qd once daily, RM rapid metaboliser, 
SD single dose
Demographic aggregate values are reported as median (range) unless otherwise specified
a Arithmetic mean (range)

CYP2C19 gXM 
(genotype)

Dose Route N Male (%) Age, years Weight (kg) Metabolites Study, year

PM (*2/*2) 400 mg (SD) IV (2 h) 4 50 32 (20–37) 70 (58–79) NO, OHVRC Scholz et al. (2009) [14]
IM (*1/*2, 2/*17) 50 mg (SD) IV (2 h) 4 75 29 (24–33) 74 (56–79) NO Hohmann et al. (2016) [13]

100 mg (SD) IV (4 h) 2 50 29 (24–34) 71 (71–72) NO Hohmann et al. (2017) [30]
400 mg (SD) IV (2 h) 2 50 29 (24–34) 71 (71–72) NO Hohmann et al. (2017) [30]
400 mg (SD) IV (2 h) 4 75 29 (24–33) 74 (56–78) NO Hohmann et al. (2016 [13]
400 mg (SD) IV (2 h) 8 62.5 25 (24–32) 72 (65–103) NO, OHVRC Scholz et al. (2009) [14]

NM (*1/*1) 50 mg (SD) IV (2 h) 3 100 30 (22–38) 80 (65–86) NO Hohmann et al. (2016) [13]
100 mg (SD) IV (4 h) 5 100 31 (23–37) 89 (64–96) NO Hohmann et al. (2017) [30]
400 mg (SD) IV (2 h) 5 100 31 (23–37) 89 (64–96) NO Hohmann et al. (2017) [30]
400 mg (SD) IV (2 h) 3 100 30 (22–38) 80 (65–86) NO Hohmann et al. (2016) [13]
400 mg (SD) IV (2 h) 2 50 31 (24–38) 76 (69–83) NO, OHVRC Scholz et al. (2009) [14]

RM (*1/*17, *17/*17) 50 mg (SD) IV (2 h) 8 62.5 25 (23–52) 67 (55–96) NO Hohmann et al. (2016) [13]
100 mg (SD) IV (4 h) 5 100 30 (24–52) 82 (70–95) NO Hohmann et al. (2017) [30]
400 mg (SD) IV (2 h) 5 100 30 (24–52) 82 (70–95) NO Hohmann et al. (2017) [30]
400 mg (SD) IV (2 h) 7 71.4 26 (23–52) 68 (58–96) NO Hohmann et al. (2016) [13]
400 mg (SD) IV (2 h) 6 66.7 25 (23–28) 72 (61–93) NO, OHVRC Scholz et al. (2009) [14]

Not reported 3 mg/kg qd D1;
3 mg/kg bid D3–11

IV (1 h) 9 100 24a (20–31) 72a (60–87) – Purkins et al. (2003) [59]

6 mg/kg bid D1;
3 mg/kg bid D2–9

IV (1 h) 9 100 28a (19–41) 73a (66–80) – Purkins et al. (2003) [59]
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of CYP3A4 was modelled using Eqs. 1 and 3, based on the 
respective in vitro data [17].

In Eqs. 1–3, v is the velocity of the reaction (rate of 
metabolism via CYP enzyme), CVRC is the unbound con-
centration of substrate (VRC), Km,app is the apparent Michae-
lis–Menten constant representing half the maximum reaction 
velocity in the presence of an inhibitor, Km, is the Michae-
lis–Menten constant representing half the maximum reaction 
velocity (measured in vitro), Vmax,app is the apparent maxi-
mum reaction velocity in presence of an inhibitor, Vmax, is 

(1)v =
Vmax,app × CVRC

Km,app + CVRC

(2)Km,app = Km

(

1 +
CVRC

Ki,VRC

+
CNO

Ki,NO

+
COHVRC

Ki,OHVRC

)

(3)Vmax,app =
Vmax(

1 +
CVRC

Ki,VRC

+
CNO

Ki,NO

+
COHVRC

Ki,OHVRC

)

the maximum reaction velocity (measured in vitro), and Ki 
is the reversible inhibition constant.

Virtual individuals and populations [45] were created 
to represent each clinical study included in our model-
ling workflow based on their respective median data for 
age, weight, height, and body mass index. The relative 
expression of enzymes of interest in various organs was 
determined using the open system pharmacology (OSP) 
human gene expression database [40]. Different CYP2C19 
genotype-predicted phenotypes were incorporated into the 
model using varying CYP2C19 concentrations (Fig. 1, 
third blue box). Initially, a virtual population of 1000 
individuals was generated based on the demographic 
characteristics of the clinical studies. For characterising 
the distribution of hepatic concentrations of CYP2C19 
within the simulated population, a log-normal distribu-
tion was assumed around the reference CYP2C19 normal 
metaboliser (NM) concentration value of 0.76 µmol/L 
with a geometric standard deviation (GeoSD) of 1.79 
derived from the OSP human gene expression database 
[46]. Based on the match between the frequencies of 

Table 2  Drug-dependent parameters of the voriconazole a priori PBPK model

Berez. Berezhkovskiy calculation method, CL clearance, CYP cytochrome P450,  fu fraction of drug unbound in plasma,  Ki inhibition 
constant (inhibitor concentration causing 50% of maximum inhibition), Km Michaelis-Menten constant (substrate concentration at half-
maximal velocity), LogP partition coefficient, MW molecular weight, MW* effective molar mass (VRC contains three fluorine atoms, leading 
to a reduction of the molar mass), PBPK physiologically-based pharmacokinetic, PKa acid dissociation constant, PK-Sim PK-Sim® standard 
calculation method, Vmax maximum reaction velocity, VRC voriconazole
a Kinetic parameters used to parameterise the formation hydroxyvoriconazole (OHVRC) via recombinant CYP3A4

Parameter Description Abbreviation Unit Value Source References

Physicochemical properties Molar mass MW g/mol 349.3 Drug label [4]
Effective molar mass MW* g/mol 298.3 Calculated –
Acidic dissociation constant pKa(base) – 1.76 Drug label [4]
Fraction unbound in plasma fu % 50 Literature [60]
Lipophilicity LogP – 1.80 Drug label [4]

Distribution
Partition coefficient Organ-plasma partition coefficients – – Diverse Berez. [38]
Cellular permeabilities Permeation across cell membrane – cm/min 0.0026 PK-Sim –
Metabolising enzymes
CYP2C19 Vmax Maximum metabolic rate of CYP2C19 Vmax pmol/min/pmol 1.64 In vitro [17]
CYP2C19 Km Michaelis–Menten constant of CYP2C19 Km µmol/L 1.31 In vitro [17]
CYP2C19 Ki Competitive inhibition constant of CYP2C19 Ki µmol/L 1.90 In vitro [17]
CYP3A4 Vmax Maximum metabolic rate of CYP3A4 Vmax pmol/min/pmol 0.00893 In vitro [17]
CYP3A4 Km Michaelis–Menten constant of CYP3A4 Km µmol/L 1.20 In vitro [17]
CYP3A4 Ki Noncompetitive inhibition constant CYP3A4 Ki µmol/L 2.75 In vitro [17]
CYP3A4 Vmax

a Maximum metabolic rate of  CYP3A4a Vmax
a pmol/min/pmol 0.10 Literature [42]

CYP3A4 Km
a Michaelis–Menten constant of  CYP3A4a Km

a µmol/L 11.0 Literature [42]
CYP2C9 Vmax Maximum metabolic rate of CYP2C9 Vmax pmol/min/pmol 0.00705 In vitro [17]
CYP2C9 Km Michaelis–Menten constant of CYP2C9 Km µmol/L 4.06 In vitro [17]
CYP2C9 Ki Competitive inhibition constant of CYP2C9 Ki µmol/L 2.57 In vitro [17]
Renal clearance Plasma clearance Renal CL mL/min/kg 0.022 Literature [12, 61]
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CYP2C19 genotype-predicted phenotype (gXM) in our 
clinical database and those reported by the Clinical Phar-
macogenetics Implementation Consortium (CPIC) for 
the Caucasian population [33] (Fig. S1 in the electronic 
supplementary martial [ESM]), four distinct subpopula-
tions, each of 1000 individuals, were constructed. The 
variability in the CYP2C19 expression of these subpopu-
lations was incorporated into the model using a uniform 
distribution, constrained by minimum and maximum val-
ues determined by calculated percentiles of the reported 
frequencies of CYP2C19 gXM in the Caucasian population 
[33]. As a result, the CYP2C19 enzyme concentrations for 
PM (*2/*2, *2/*3, *3/*2), intermediate metaboliser (IM; 
*1/*2, *1/*3, *2/*17), NM (*1/*1), and rapid metaboliser 

(RM)/UM (*1/*17, *17/*17) phenotypes ranged from 
0.001 to 0.24, 0.25 to 0.55, 0.56 to 0.95, and 0.96 to 3.55 
μmol/L, respectively. Further details on the respective 
enzyme expression can be found in Table 4.

2.2.2  Middle‑Out Approach

During model development, a middle-out approach was 
employed, utilising clinical data to infer (1) model param-
eters that could not be substantiated by literature or in 
vitro analyses, as well as (2) influential parameters identi-
fied through local sensitivity analyses. Given the model’s 
complexity, a stepwise approach was adopted within a 

Table 3  Drug-dependent parameters of the metabolites (voriconazole N-oxide and hydroxyvoriconazole) a priori PBPK models

Berez. Berezhkovskiy calculation method, CL clearance, CYP cytochrome P450, fu fraction of drug unbound in plasma, Ki inhibition constant 
(inhibitor concentration cauing 50% of maximum inhibition), LogP parition coefficient, MW* effective molar mass (NO contains three fluorine 
atoms, leading to a reduction of the molar mass), NO voriconazole N-oxide, PBPK physiologically based pharmacokinetic, PKa acid dissocation 
constant, PK-Sim PK-Sim® standard calculation method, VRC voriconazole
a Assumed: Fraction unbound in plasma was assumed as the parent (VRC)
b ChemAxon: Calculated by Chemicalize (ChemAxon) [LogD at pH = 7.4]
c Total hepatic clearance is described as a first-order process in the liver, which eliminates the compound from plasma. Specific clearance is 
calculated from plasma clearance as the input value

Parameter Description Abbreviation Unit Value Source Reference Value Source Reference
Voriconazole N-oxide Hydroxyvoriconazole

Physicochemical 
properties

Molar mass MW g/mol 365.3 DrugBank [4] 365.3 DrugBank [4]

Effective molar 
mass

MW* g/mol 314.3 Calculated – 314.3 Calculated –

Acidic dissociation 
constant

pKa(base) – 2.00 DrugBank [4] 2.01 DrugBank [4]

Fraction unbound in 
plasma

fu % 50 Assumeda – 50 Assumeda –

Lipophilicity LogP – 0.51 ChemAxonb – 0.54 ChemAxonb –
Distribution
Partition coefficient Organ-plasma 

partition 
coefficients

– – Diverse Berez. [38] Diverse Berez. [38]

Cellular 
permeabilities

Permeation across 
cell membrane

– cm/min 2.99E-07 PK-Sima – 3.20E-07 PK-Sima –

Elimination
Total hepatic 

 clearance3
Plasma clearance CL L/h/kg 0.0727 Literature [43] – – –

Renal clearance Plasma clearance Renal CL mL/min/kg 0.022 Literature [12] 1.21 Literature [12]
Inhibition kinetics
CYP2C19  Ki Competitive 

inhibition constant 
CYP2C19

Ki µmol/L 58.6 In vitro [17] 11.60 In vitro [17]

CYP3A4  Ki Noncompetitive 
inhibition constant 
CYP3A4

Ki µmol/L 5.24 In vitro [17] 2.53 In vitro [17]

CYP2C9  Ki Competitive 
inhibition constant 
of CYP2C9

Ki µmol/L 5.47 In vitro [17] 2.80 In vitro [17]
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Fig. 1  Overview of the PBPK 
model development work-
flow for voriconazole and its 
metabolites, illustrating the 
input/data sources (inside boxes, 
left side) and the achieved 
steps (inside boxes, right side). 
ADME absorption, distribu-
tion, metabolism, excretion, 
CYP cytochrome P450, gXM 
genotype-predicted phenotype, 
H hypothesis, IM intermedi-
ate metaboliser, i.v. intrave-
nous, MM Michaelis–Menten, 
NM normal metaboliser, NO 
voriconazole N-oxide, OHVRC 
hydroxyvoriconazole, PBPK 
physiologically-based pharma-
cokinetic, PM poor metaboliser, 
RM rapid metaboliser, VRC 
voriconazole

Fig. 2  Whole-body intravenous physiologically-based pharmacoki-
netic model for voriconazole and its metabolites (left) and schematic 
representation of voriconazole elimination pathways (right). Vori-
conazole is metabolised by CYP2C19, CYP3A4 and CYP2C9 into 
voriconazole N-oxide, with subsequent elimination via a nonspecific 
hepatic route and excreted via renal clearance. The remainder of vori-

conazole absorbed is transformed via CYP3A4 into hydroxyvoricona-
zole, which is further metabolised and excreted via renal clearance. 
The parent compound and both metabolites concomitantly inhibit 
CYP2C19, CYP3A4 and CYP2C9. CYP cytochrome P450
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learn-confirm-predict paradigm to develop the a posteriori 
coupled parent-metabolite PBPK model.

First, CYP3A4-mediated metabolism was estimated 
based on data from CYP2C19 PM individuals, assuming 
that only CYP3A4 contributes to the formation of OHVRC 
and NO in this population (Fig. 1, first green box). Both 
the CYP2C19-mediated metabolism and renal CL processes 
were then estimated using plasma concentration-time pro-
files and the amount excreted in urine of single and multiple 
intravenous doses in CYP2C19 IM, NM and RM individuals 
(Fig. 1, second green box).

In subsequent estimation steps, it became clear that a con-
sistent misprediction of the observed NO PK profiles per-
sisted across different dosing regimens, even upon estimat-
ing influential parameters. Therefore, two hypotheses were 
generated in order to characterise the nonlinear elimination 
of NO (Fig. 1, third green box).

2.3  PBPK Model Evaluation

The parent-metabolite model was evaluated both visually and 
quantitatively. Predicted concentration-time profiles of VRC, 
NO and OHVRC were compared with observed data from the 
corresponding clinical studies. Additionally, predicted plasma 
concentration values for all studies were compared with their 
respective individual observed plasma concentrations using 
goodness-of-prediction (GOP) and goodness-of-fit (GOF) 
plots. Model performance was further assessed by compar-
ing predicted values with observed values for the AUC from 
the time of drug administration to the time of the last concen-
tration measurement (AUC last) and for Cmax. In both models, 
the predicted and observed AUC last were computed using a 
linear-up log-down trapezoidal method.

Quantitative metrics used to evaluate model performance 
included the root mean squared error (RMSE) for all pre-
dicted and observed plasma concentrations, as well as the 

average fold error (AFE) and absolute average fold error 
(AAFE) for all predicted and observed plasma concen-
trations and PK parameters. These were calculated using 
Eqs. 4–6.

In Eqs.  4–6, Observedi is the ith observed plasma 
concentration or AUC last or  Cmax, Predictedi is the 
corresponding predicted plasma concentration or AUC last 
or Cmax, and n is the number of observed values (studies for 
PK parameters).

2.4  Sensitivity Analysis

Local sensitivity analyses were conducted on both the a priori 
and a posteriori coupled parent-metabolite PBPK models to 
assess the impact of single parameter changes. These analyses 
allowed identifying which of the input parameters significantly 
influenced the model predictions of VRC, NO and OHVRC 
exposure. The parameters analysed included those derived 
from literature, associated with estimated parameters, or 
assumed to influence the predictions due to calculation meth-
ods in the model. The sensitivity of the model to an input 
parameter was quantified by the ratio of the relative change 
in the predicted PK metric (AUC last and Cmax) to the relative 
variation of the input parameter, as outlined in Eq. 7.

(4)RMSE =

√√√
√

n∑

i=1

(
Observedi − Predictedi

)2

(5)AFE = 10
x with x =

n∑

i=1

log
10

(
Predictedi

Observedi

)

(6)AAFE = 10
x with x =

n∑

i=1

log
10

|
||||

(
Predictedi

Observedi

)|
||||
.

Table 4  System-dependent 
parameters and expression of 
relevant enzymes for DME

DME distribution, metabolism and excretion, CYP cytochrome P450, GSD geometric standard deviation, 
RT-PCR reverse transcription polymerase chain reaction
a Micromole protein/L in tissue of the highest expression
b Geometric standard deviation with a coefficient of variation of 35% assumed
c PK-Sim® expression database profile
d If no information is available, the value was set to 1.00 μmol/L and  Kcat was estimated according to Meyer 
et al. [40]

Enzymes Reference concentration Half-life (h)

Mean [µmol/L]a GSD Relative expression Liver

CYP2C19 0.76 [62] 1.79 [63] RT-PCRc [64] 26 [65]
CYP2C9 3.84 [62] 2.01 [63] RT-PCRc [64] 104 [65]
CYP3A4 4.32 [62] 1.18 [63] RT-PCRc [64] 36 [65]
Dummy hepatic 

enzyme
1.00d 1.40b
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In Eq. 7, S is the sensitivity index of the PK metric to the 
evaluated model input parameter, ΔPK metric is the change of 
the predicted PK metric, PK metric is the predicted PK metric 
with original model parameter value, Δp is the change of the 
assessed model parameter value, and p is the original model 
parameter value (initial input parameter value).

2.5  Software

Development of the PBPK model, parameter estimation, 
simulations, and local sensitivity analyses were conducted 
using the open-source modelling software PK-Sim® and 
 MoBi® (Open Systems Pharmacology Suite 11.2) [47, 48]. 
The parameter estimation routine employed the Monte Carlo 
algorithm, allowing a maximum of 10,000 iterations, and 
incorporated multiple identification options with randomised 
start values to ensure the model robustness. Individual PK 
profiles and amounts excreted in urine for each analyte were 
used in estimating the input model parameters identified 
from sensitivity analyses, with the goal of minimising the 
residual sum of squares (total error) between the simulated 
and observed data. Additionally, 95% confidence intervals 
(CIs) for the parameter estimates were derived using the 
Fisher information matrix. These intervals quantified 
the uncertainty associated with each parameter estimate, 
indicating the sensitivity of the total error to changes in 
parameter values. Published clinical study data were digitised 
using WebPlotDigitizer (version 4.2 [49]), according to 
best practices [50]. Model performance metrics and post-
processing of simulations were executed in R 4.2.1 (The R 
Foundation for Statistical Computing, Vienna, Austria) with 
RStudio 2023.03.0+386 (RStudio Inc., Boston, MA, USA).

3  Results

3.1  Clinical Data

The development and evaluation of the a priori and a poste-
riori coupled parent-metabolite PBPK models incorporated 
data from 47 healthy young adults across three clinical stud-
ies who were administered intravenous SDs ranging from 
50 to 400 mg of VRC. Additionally, data from 18 healthy 
volunteers across two clinical studies involving intravenous 
MDs of VRC were considered. In the SD clinical studies, 
individual VRC and NO plasma concentration-time pro-
files were reported for all participants, with OHVRC PK 
data only available for 20 individuals. Urine data were also 
collected from 35 participants to quantify VRC and both 
metabolites for the subtherapeutic dose of 50 mg/2 h and the 

(7)S =
ΔPK metric

Δp
×

p

PK metric

therapeutic dose of 400 mg/2 h, across different CYP2C19 
genotypes, while for the MD clinical studies, mean VRC PK 
data were reported. However, one study provided individual 
Cmax of VRC from nine individuals, while another reported 
individual Cmin data from a separate group of nine partici-
pants. Notably, no metabolite data were available for the MD 
studies, with only VRC plasma concentrations  reported. 
Table 1 presents a comprehensive list of all the clinical stud-
ies referenced.

3.2  PBPK Model Development

The a priori PBPK model structure, depicted in Fig. 2 (left 
panel), represents a whole-body PBPK model for intrave-
nous administration of VRC, assuming permeation-based 
tissue distribution kinetics. The kinetic parameters charac-
terising the metabolism of VRC via CYP2C19, CYP3A4 
and CYP2C9 were informed by in vitro assays based on 
recombinant CYP enzymes [17] . VRC and both metabolites 
were assumed to be excreted through renal CL processes, 
with NO additionally presumed to be eliminated through 
total hepatic route. The physicochemical properties, distribu-
tion, and elimination processes of VRC and its metabolites, 
used for the parameterisation of the a priori model, are com-
prehensively detailed in Tables 2 and 3.

The predictive performance of the coupled parent-
metabolite PBPK model following a pure bottom-up 
approach was evaluated against clinical data from single and 
multiple intravenous dosing. The a priori model accurately 
predicted VRC exposure after the subtherapeutic SD 
 (AAFEVRC,50mg/2h = 1.45) but not after the therapeutic dosing 
regimens. Although a priori predictions closely matched the 
VRC PK profiles following therapeutic doses for CYP2C19 
PM  (AAFEVRC,PM = 1.29) and IM  (AAFEVRC,IM=1.37), 
an underprediction was evident for NM  (AAFEVRC,NM = 
1.46) and RM (AAFE VRC,RM = 1.83). The PK profiles of 
NO were underpredicted (range:  AAFENO = 3.55–1.57), 
while predictions of OHVRC PK profiles were adequate for 
CYP2C19 NM and RM (range:  AAFEOHVRC = 1.63–1.61) 
and overpredicted for PM and IM (range:  AAFEOHVRC = 
3.51–3.05). The model accurately predicted the first VRC 
Cmax of MD regimens but underpredicted PK profiles during 
maintenance dosing (range:  AAFEMD = 2.33–1.74).

Following a stepwise approach, the a posteriori model 
was refined using clinical data to improve its predictive 
performance, as illustrated in Fig. 1. Initially, based on the 
in vitro data for the formation of NO via CYP3A4 (with 
a Km value of 1.20 µM), the CYP3A4-based catalytic rate 
constant  (Kcat) was estimated to be 0.24 1/min (95% CI 
0.22–0.26 1/min), using the clinical data of intravenous 
SDs in CYP2C19 PM individuals (Fig. 1, first green box). 
Subsequently, using clinical data comprising both plasma 
and urine of intravenous SDs and MDs in CYP2C19 IM, 
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NM and RM individuals (Fig. 1, second green box), the 
Kcat of CYP2C19 was estimated to be 0.75 1/min (95% CI 
0.70–0.80 1/min) and VRC renal CL was estimated to be 
0.010 1/min (95% CI 0.009–0.011 1/min). Given the wide 
range of reported lipophilicity values for VRC (1.65–2.56) 
in the literature [34, 35, 51, 52], we estimated this param-
eter to be 2.00 (95% CI 1.99–2.01), and better matches 
the observed intravenous data. The estimated parameters 
improved the prediction of VRC PK profiles of SD (range: 
AFE = 0.87–0.87, AAFE = 1.28–1.35) and MD (range: 
AFE = 0.90–1.22, AAFE = 1.21–1.37).

During the process of refining the a posteriori model, 
consistent discrepancies in the predicted NO PK profiles 
were observed. An exploratory graphical analysis of the 
observed PK profiles of NO across various intravenous 
dosing regimens of VRC within our clinical datasets 
revealed that with increasing doses of VRC, the AUC last  
of NO increased disproportionately. This pattern indicated 
nonlinearity in the PK of NO. Based on these observa-
tions, we generated two independent hypotheses to char-
acterise the nonlinear elimination of NO (Fig. 1, third 
green box). The first hypothesis (H1) assumed that NO 
was metabolised via Michaelis–Menten kinetics, which 
was tested by implementing a dummy enzyme expressed 
only in liver, fixing its Km value to 1 µM and estimating 
its Vmax value according to Eq. 8.

The rate of NO metabolism via dummy enzyme 
in µmol/L is expressed in Eq.  8, where CNO is the 
unbound concentration of substrate (NO), K

m
 is the 

Michaelis–Menten constant representing half the 
maximum metabolic rate and Vmax is the maximum 
metabolic rate of the dummy enzyme.

The second hypothesis (H2) assumed autoinhibition 
of the CL of NO, which was tested by implementing an 
empirical saturable inhibition equation on the total hepatic 
CL driven by hepatic intracellular NO concentrations, 
according to Eq. 9.

In Eq. 9, Total hepatic CL
NO

 accounts for (auto-inhibited) 
hepatic CL of NO, Metabolic rateNO, max accounts for the 
maximum (uninhibited) rate of NO metabolism, CNO is the 
unbound hepatic concentration of NO, Imax is the maximum 
inhibition, and IC50 is the half-maximal inhibitory concen-
tration of NO.

Estimation of the maximum velocity rate of the dummy 
enzyme (Vmax = 0.25 µM/min) for H1, and the half-maximal 

(8)Metabolic rateNO =
Vmax × CNO

Km + CNO

.

(9)

Total hepatic CLNO =

Metabolic rateNO, max ×

(
1 −

Imax×CNO

IC50+CNO

)

CNO

.

inhibitory concentration  (IC50 = 1.84 µM) along with the 
total hepatic CL of NO for H2, independently, provided 
accurate predictions for plasma NO. Additionally, the NO 
renal CL pathway was refined for both hypotheses based 
on the amount of NO excreted in urine and estimated as 
0.135 mL/min/kg (95% CI 0.131–0.139 mL/min/kg). The 
estimated parameters resulted in an overall good prediction 
of VRC, NO and OHVRC across all dose levels for all 
CYP2C19 gXM. All parameters were precisely estimated 
for both a posterior models (Fig. 1, third green box) and are 
presented in Table 5.

3.3  PBPK Model Evaluation

Figures 3, 4, 5, 6 and 7 (and ESM Figs. S2–S4), present 
simulations of VRC administration for both intravenous 
SD and MD overlaid with the observed data. The initial a 
priori PBPK model (Fig. 1, third blue box; Figs. 3, 4, 5, 
6 and 7, left), which relied solely on in vitro data, dem-
onstrated moderate accuracy in predicting the SDs. How-
ever, it significantly underpredicted the MD, particularly 
during the terminal phase. After estimating selected model 
parameters using the middle-out framework, both a poste-
riori PBPK models (Fig. 1, last two green boxes; Figs. 3, 
4, 5, 6 and 7, middle and right) accurately described and 
predicted plasma concentration-time profiles of VRC and 
its metabolites after SD and MD across different CYP2C19 
gXM. While the predicted NO PK profile for PM showed 
some discrepancies, the a posteriori model of H1 revealed 
notable improvements in the predictions for this metabo-
lite, increasing the percentage of predicted plasma concen-
trations within a twofold deviation from observed values 
to 58%, a significant enhancement from the initial 14%. 

Table 5  Estimated parameters of the a posteriori PBPK models

CI confidence interval, CL clearance, CYP450 cytochrome P450, 
CYP3A4 Kcat,NO catalytic rate constant of CYP3A4 forming NO, 
CYP2C19 Kcat,NO catalytic rate constant of CYP2C19 forming 
NO, Dummy Vmax maximum metabolic rate of assumed dummy 
enzyme metabolising NO, H1 hypothesis 1, H2 hypothesis 2, NO 
IC50 voriconazole N-oxide half-maximal inhibitory concentration 
in autoinhibition of NO clearance, NO voriconazole N-oxide, VRC 
voriconazole

Parameter Unit Initial value Estimates (95% CI)

CYP3A4 Kcat,NO 1/min 0.00893 0.24 (0.22–0.26)
VRC lipophilicity – 1.80 2.00 (1.99–2.01)
CYP2C19 Kcat,NO 1/min 1.64 0.75 (0.70–0.80)
VRC renal CL mL/min/kg 0.022 0.03 (0.029–0.031)
NO renal CL mL/min/kg 0.022 0.135 (0.131–0.139)
H1: Dummy Vmax µM/min 1 0.25 (0.24–0.26)
H2: NO  IC50 µM 1 1.84 (0.73–2.95)
H2: NO hepatic CL L/h/kg 0.0727 0.12 (0.05–0.19)
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Incorporating urine data showed that the amount of VRC 
excreted in urine was predicted within an acceptable range 
for the subtherapeutic (50 mg/2 h) SD by both the a priori 
and a posteriori models, with better performance of the a 
posteriori models at the therapeutic (400 mg/2 h) SD (ESM 

Fig. S2). The a posteriori models also more accurately pre-
dicted NO excretion for both subtherapeutic and therapeu-
tic SD (ESM Fig. S4), while the excretion of OHVRC was 
equally well predicted by both the a priori and a posteriori 
models for all doses (ESM Fig. S7). Moreover, for the MD 

Fig. 3  Predicted total plasma concentration-time profiles of VRC 
(orange) and NO (blue) comparing a priori (left) versus a posteriori 
models of hypothesis 1 (middle) and hypothesis 2 (right) following 
administration of a single intravenous dose of 50 mg infused over 2 h. 
Geometric means of the observed data are shown as dots, with error 
bars indicating geometric standard deviation for CYP2C19 IM (top), 
CYP2C19 NM (middle), and CYP2C19 RM (bottom) individuals in 

the study by Hohmann et al. (N = 15) [13]. Solid lines represent the 
geometric mean of the respective population predictions (N = 1000) 
and the shaded area represents the 90% population prediction inter-
vals. CYP cytochrome P450, gXM genotype-predicted phenotype, H 
hypothesis, IM intermediate metaboliser, N number of individuals, 
NM normal metaboliser, NO voriconazole N-oxide, RM rapid metabo-
liser, VRC voriconazole
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studies, both a posteriori models captured individual vari-
ability well, especially for individual Cmax values reported 
by Study A (Fig. 6b) [37]. Both  a posteriori models also 
better predicted individual Cmin values, particularly during 

the later phases of the MD regimen (Fig. 7), outperforming 
the a priori model.

Model performance is demonstrated in Fig. 8 (plasma 
GOF) as comparisons of the individual observed to predicted 
plasma concentrations. Both a posteriori models performed 

Fig. 4  Predicted total plasma concentration-time profiles of VRC 
(orange) and NO (blue) comparing a priori (left) versus a posteriori 
models of hypothesis 1 (middle) and hypothesis 2 (right) following 
administration of a single intravenous dose of 100 mg infused over 
4 h. Geometric means of the observed data are shown as dots, with 
error bars indicating geometric standard deviation for CYP2C19 IM 
(top), CYP2C19 NM (middle), and CYP2C19 RM (bottom) individu-

als in the study by Hohmann et  al. (N  =  12) [30]. Solid lines rep-
resent the geometric mean of the respective population predictions 
(N = 1000) and the shaded area represents the 90% population pre-
diction intervals. CYP cytochrome P450, gXM genotype-predicted 
phenotype, H hypothesis, IM intermediate metaboliser, N number of 
individuals, NM normal metaboliser, NO voriconazole N-oxide, RM 
rapid metaboliser, VRC voriconazole
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equally well and improved the a priori model predictions, 
with 94%, 84% and 76% of predicted plasma concentrations 
for VRC, NO, and OHVRC, respectively, falling within a 
twofold deviation from the observed data. The GOF plots for 
NO in the H1 and H2 models (Fig. 8b) demonstrate a slightly 
flatter trend compared with the line of identity, indicating a 
slight underprediction at higher concentrations. Initially, the 
a priori model showed, overall, a flatter distribution of data 
points across the concentration range. However, it signifi-
cantly underpredicted NO concentrations in the CYP2C19 
PM group, especially at therapeutic doses, with only 14% 
of the predicted data falling within the twofold range of the 
observed values. In contrast, the a posteriori models (H1 
and H2) showed substantial improvements, increasing the 
accuracy to 58% within the twofold range for the PM group. 
Despite this improvement, the models still exhibited slight 
underprediction, suggesting further refinement is needed. 

The GOF plots for AUC last and Cmax of the parent and its 
metabolites (Fig. 9) demonstrated satisfactory model perfor-
mance. All predicted AUC last values, and 94% of predicted 
Cmax values, for the parent were within a stricter criterion 
of a 1.25-fold deviation range, while all predicted AUC last 
and Cmax values for both metabolites were within a twofold 
deviation from their respective observed values. Moreover, 
the AAFE of 1.12 for predicted AUC last values and 1.14 for 
predicted Cmax values from a posteriori predictions of H1 
and H2, respectively, for  VRC, further confirmed an ade-
quate model performance. The AAFE of AUC last and Cmax 
for the parent compound and metabolites predicted from H1 
and H2 are detailed in ESM Tables  S1 and S2, respectively. 
Additionally, the AFE, AAFE and RMSE for individual 
plasma concentrations are provided in ESM Tables S3.

Fig. 5  Predicted total plasma concentration-time profiles following 
a single intravenous dose of 400 mg voriconazole infused over 2 h. 
a Concentration-time profiles for VRC (orange) comparing a priori 
versus a posteriori models of hypothesis 1 and hypothesis 2. b Con-
centration-time profiles for NO (blue) and OHVRC (red) comparing 
a priori versus a posteriori models of hypothesis 1 and hypothesis 2. 
Geometric means of the observed data are shown as dots, with error 
bars indicating the geometric standard deviation for CYP2C19 PM 
(first row), CYP2C19 IM (second row), CYP2C19 NM (third row), 
and CYP2C19 RM (bottom row) individuals in the studies by Scholz 

et  al. [14], Hohmann et  al. [13] and Hohmann et  al. [30] (N = 47). 
Solid lines represent the geometric mean of the respective popula-
tion predictions (N = 1000) and the shaded area represents the 90% 
population prediction intervals. CYP cytochrome P450, gXM geno-
type-predicted phenotype, H hypothesis, IM intermediate metaboliser, 
N number of individuals, NM normal metaboliser, NO voriconazole 
N-oxide, OHVRC hydroxyvoriconazole, PM poor metaboliser, RM 
rapid metaboliser, VRC voriconazole
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3.4  Sensitivity Analysis

Sensitivity analyses were then performed based on the 
simulation of the therapeutic intravenous SD regimen 
(400 mg/2 h), to assess the impact of the parameters on the 
a priori and a posteriori coupled parent-metabolite models. 
The VRC model was most sensitive to lipophilicity of VRC, 
fraction unbound in plasma of VRC, and CYP3A4 and 
CYP2C19 catalytic rate constant, with sensitivity values 
ranging from 2.191 to 0.011 (ESM Fig. S5). The NO model 
was most sensitive to Imax (H2), fraction unbound in plasma 
of NO, total hepatic CL of NO and lipophilicity of VRC, with 
sensitivity values ranging from 2.72 to 0.106 (ESM Fig. S6). 
Lastly, the OHVRC model was most sensitive to lipophilicity 
of VRC, CYP3A4 catalytic rate constant, fraction unbound in 
plasma of OHVRC, and renal CL of OHVRC, with sensitivity 
values ranging from 1.282 to 0.065 (ESM Fig. S7).

4  Discussion

In the presented work, a whole-body PBPK model of VRC 
and its metabolites, NO and OHVRC, was successfully 
developed. The model accurately predicts plasma and 
urine concentrations across a wide range (50–400  mg) 
of intravenous SD and MD regimens for healthy adult 
volunteers, with a focus on the variability introduced by 
different CYP2C19 genotype-predicted phenotypes, which 
significantly influence VRC metabolism.

Given the complex nature of the PK of VRC, an iterative 
workflow was adopted, initiated by a comprehensive 
collection of in vitro metabolic and clinical data. The first 
step enabled the precise characterisation of the metabolic 
and inhibitory properties of VRC and its metabolites, as 
well as their renal elimination. Leveraging these insights, 
a bottom-up approach was employed to construct the 

Fig. 6  Predicted total plasma concentration-time profiles of VRC 
(orange) comparing a priori (left) versus a posteriori models of 
hypothesis 1 (middle) and hypothesis 2 (right) after multiple intrave-
nous administrations of 3 mg/kg qd on the first day, then a MD of 3 
mg/kg bid starting day 3 until day 11 of Study A by Purkins et  al. 
[37]. a Arithmetic mean (N = 9) of the observed concentration-time 
profiles for days 1, 5, 8 and 12. b Individual observed plasma  Cmax 
values for VRC on days 1, 5, 8 and 12. Solid orange lines represent 
the geometric mean of population predictions (N = 1000); dots rep-

resent the observed data for arithmetic means in panel (a) and indi-
vidual Cmax values in panel (b); shaded area represents the 90% 
population prediction intervals; solid blue and red lines represent 
the geometric mean of population predictions (N  =  1000) for NO 
and OHVRC, respectively; and the dashed black line represents the 
lower limit of quantification for VRC. bid twice daily, Cmax maximum 
plasma concentration, IV intravenous, MD maintenance dose, N num-
ber of individuals, NO voriconazole N-oxide, OHVRC hydroxyvori-
conazole, qd once daily, VRC voriconazole
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initial a priori PBPK model. However, the a priori PBPK 
model encountered limitations in accurately predicting 
the clinical PK of VRC at therapeutic doses, primarily 
due to overprediction of CYP2C19-mediated CL. While 
the model accurately predicted VRC PK in CYP2C19 
gPM individuals, it underpredicted VRC PK in gNM, 
gIM and gRM individuals. Additionally, the initial model 
performance was suboptimal in predicting the renal CL 
of VRC and NO. To address these discrepancies and 
enhance the predictive performance of the model, iterative 
refinements were performed, particularly focusing on the 
metabolic pathways mediated by CYP3A4 and CYP2C19, 
and renal CL. The inclusion of data from multiple clinical 
studies, featuring a range of SD and MD dosing regimens 
and intensive sampling of PK data from healthy volunteers, 
facilitated the development of a robust model, mitigating 

the uncertainties associated with using data derived from 
existing literature. Taking into account the urine data,  
the model was able to capture the amount of parent and 
metabolites being renally excreted. Furthermore, MD is 
indicative of drug accumulation within the body; thus, 
accurately predicting it is paramount, as it implies a 
comprehensive understanding of complex processes that 
become evident during MD administration. These processes 
often pose challenges in clinical settings when striving to 
determine safe and effective dosing regimens. The resulting 
coupled parent-metabolite PBPK model showed adequate 
predictive performance for both intravenous SD and MD 
across all CYP2C19 genetic variants.

(Auto)-inhibition is a major mechanism for VRC nonlin-
ear PK [53], since VRC is both a substrate and inhibitor of 
CYP2C19, CYP3A4 and CYP2C9. Based on our previous 

Fig. 7  Predicted total plasma concentration-time profiles of VRC 
(orange) comparing a priori (left) versus a posteriori models of 
hypothesis 1 (middle) and hypothesis 2 (right), after multiple IV 
administration of an LD of 6 mg/kg bid on the first day, then an MD 
of 3 mg/kg bid starting on day 2 until day 9 of the Study B by Pur-
kins et al. [37]. a Arithmetic mean (N = 9) of the observed concen-
tration-time profiles for days 1, 3, 6 and 10. b Individual observed 
plasma Cmin values for VRC for the 1st to 10th days of the MD. Solid 
orange lines represent the geometric mean of population predic-
tions (N = 1000); the dots represent the observed data for arithmetic 

means in panel (a) and individual Cmin values in panel (b); shaded 
area represents the 90% population prediction intervals; solid blue 
and red lines represent the geometric mean of the population predic-
tions (N = 1000) for NO and OHVRC, respectively; and the dashed 
black line represents the lower limit of quantification for VRC. bid 
twice daily, Cmin minimum plasma concentration, H hypothesis, IV 
intravenous, LD loading dose, MD maintenance dose, N number of 
individuals, NO voriconazole N-oxide, OHVRC hydroxyvoriconazole, 
VRC voriconazole
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in vitro analyses [17], time-independent (reversible) inhibi-
tion by VRC, NO and OHVRC was observed for CYP2C19, 
CYP3A4 and CYP2C9, which was also supported by pre-
vious investigations [23, 36]. In contrast to published 

models [36], which faced challenges in directly implement-
ing reversible autoinhibition, it was implemented in a mech-
anistic way in the current model. Unlike prior studies [34, 
35, 54] that opted to simplify their models by excluding the 

Fig. 8  Goodness-of-fit plots for plasma concentration predictions. 
A comparison of a priori (left) versus final a posteriori prediction 
for hypothesis 1 (middle) and hypothesis 2 (right) across CYP2C19 
gXM. (a) Individual observed versus predicted VRC total plasma 
concentrations from all studies (IVSD and IVMD, n  =  1765). (b) 
Individual observed versus predicted NO total plasma concentrations 
from all IVSD studies (n  =  1591). (c) Individual observed versus 
predicted OHVRC total plasma concentrations from all IVSD stud-

ies (n = 372). The solid line represents the identity line, with dotted 
and dashed lines indicating 1.25-fold and 2-fold deviations, respec-
tively. CYP cytochrome P450, gXM genotype-predicted phenotype, 
H hypothesis, IM intermediate metaboliser, IVSD intravenous single 
dose, IVMD intravenous maintenance dose, n number of samples, NO 
voriconazole N-oxide, NM normal metaboliser, OHVRC hydroxyvori-
conazole, PM poor metaboliser, RM rapid metaboliser, VRC voricon-
azole
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inhibitory effects of VRC metabolites, our model incorpo-
rated both metabolites-mediated CYP inhibition, supporting 
the hypothesis that the primary metabolites of VRC play a 
crucial role in the overall inhibitory effect of VRC on its 
own metabolism. This is the first time these mechanisms 
are implemented in a joint parent-metabolites PBPK model 
of VRC, expanding on previously developed PBPK models 
[34–36, 54]. Additionally, our model is the first to incor-
porate urinary excretion data for VRC and its metabolites, 
providing a more accurate representation of the renal CL 
process. Although renal excretion accounts for < 2% of 
VRC total elimination, incorporating urine data allowed for 
a more comprehensive validation of the model’s assump-
tions. Previous models did not include such data, which may 
leave some uncertainty regarding the accuracy of their renal 
CL processes.

The incorporation of NO and OHVRC, as well as their inhi-
bition impact, into the PBPK model was crucial in describing 
the nonlinear PK of VRC. Murayama et al. [42] proposed that 
OHVRC formation via CYP3A4 might be an imperative meta-
bolic pathway for VRC in individuals with poor CYP2C19 cat-
alytic function. This perspective was further supported by Geist 
et al. [12]. While OHVRC has not been previously investigated, 
the in vitro analyses revealed that it has a greater inhibitory 
effect on CYP3A4 than NO (Ki,OHVRC = 2.53 µM compared 
with Ki,NO = 5.24 µM) [17]. When we incorporated these data 
into our PBPK model, we found that the a priori predictions for 
VRC in the CYP2C19 PM individuals were satisfactory (AFE 
= 1.21, AAFE = 1.29), with 95% of predicted plasma concen-
trations falling within a twofold deviation from the observed 
plasma concentrations, even prior to further model refinements 
to better characterise the metabolites (OHVRC and NO).

Fig. 9  Pharmacokinetic parameter goodness-of-fit plots comparing a 
priori (left) versus a posteriori of hypothesis 1 (middle) and hypothe-
sis 2 (right) models. a Predicted AUC last and b Cmax of VRC, NO and 
OHVRC compared with observed values for all single IV dose stud-
ies. The solid line represents the line of identity; dotted lines indicate 
1.25-fold, and dashed lines indicate 2-fold deviation. AUC last area 

under the concentration-time curve from the time of administration to 
the last measurable concentration, Cmax maximum plasma concentra-
tion, IM intermediate metaboliser, IV intravenous, NO voriconazole 
N-oxide, NM normal metaboliser, OHVRC hydroxyvoriconazole, PM 
poor metaboliser, RM rapid metaboliser, VRC voriconazole
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The main enzyme involved in the metabolism of VRC 
is CYP2C19, particularly in the formation of its primary 
circulating metabolite, NO [11]. As a highly polymorphic 
enzyme, CYP2C19 exhibits significant variability in activity 
depending on genetic variants, which are known to substan-
tially impact VRC metabolism and exposure. In the initial a 
priori PBPK model, the Kcat value for CYP2C19-mediated 
NO formation was set at 1.64 1/min, based on our previ-
ous in vitro assays using recombinant CYP enzymes [17], 
which largely represent the wild-type activity of CYP2C19. 
However, when refining the model using clinical data from 
individuals across different CYP2C19 genotypes, the esti-
mated Kcat value was reduced by approximately 50%, in line 
with observed genotype-dependent variability in clinical 
settings. As initial simulations (a priori predictions) based 
on the in vitro Kcat value underestimated the accumulation 
effect observed in study A (one of the MD studies) [37], 
estimating that parameter based on clinical data enabled the 
model to accurately predict both Cmax and Cmin during MD 
regimens. Although genotype information was not reported 
in these studies, the assumption of only the CYP2C19 NM 
population captured the observed mean PK profiles. Further 
exploration of a full CYP2C19 genotype-predicted pheno-
type distribution in the virtual population allowed for an 
even better prediction of the variability and accumulation 
effects observed in study A, particularly for the reported 
individual Cmax values. This underscores the value of inte-
grating clinical data with in vitro findings, as it improves the 
predictive performance of the PBPK model to account for 
population variabilities.

Although the formation of NO has been extensively 
investigated in various enzymatic systems, including 
human liver microsomes (HLMs), human intestine micro-
somes (HIMs) and recombinant human CYP enzymes 
(rhCYP), its elimination pathway remained elusive in these 
in vitro analyses [16]. Therefore, a joint NLME model to 
characterise the PK of VRC and NO, as reported by Li 
et al. [43], was used to infer the elimination process of NO 
in our PBPK model. Notably, clinical observations revealed 
a dose-dependent nonlinearity in NO elimination, challeng-
ing our initial model assumptions and leading to the gener-
ation of two hypotheses. The first hypothesis assumed that 
NO undergoes metabolism via Michaelis–Menten kinetics 
by an unspecified liver enzyme, while the second hypoth-
esis suggested an autoinhibition mechanism for NO, similar 
to that observed with VRC. These hypotheses aimed to 
align the observed clinical data with the known metabolic 
pathways, underscoring the complexity of predicting the 
NO PK profile.

Upon evaluating the a posteriori predictions, it was 
observed that both hypotheses successfully captured the NO 
PK profiles across various dosing regimens, despite their 
differing mechanistic underpinning. As the first hypothesis 

offered a simplified semi-mechanistic explanation, the sec-
ond hypothesis assuming autoinhibition by NO provided a 
more mechanistic description of the observed dose-depend-
ent nonlinearity of NO elimination. However, a prominent 
challenge arose in characterising the PK of NO for individu-
als of CYP2C19 gPM. The difficulty can be attributed to the 
scarcity of available clinical data for this phenotype, with 
one study including data from only four such individuals 
[14]. While the two models presented performed equally and 
well in characterising single and multiple doses across dif-
ferent CYP2C19 genotype-predicted phenotype groups, such 
as gRMs, gNMs, and gIMs, they consistently underpredicted 
NO levels in the CYP2C19 gPM subpopulation, underlining 
the necessity for more comprehensive data on this particular 
subpopulation.

The underlying mechanism of the concentration-
dependent NO elimination can be further clarified by 
conducting in vitro analyses, based on the two generated 
hypotheses. For testing the first hypothesis, model-informed 
Michaelis–Menten assays using in vitro liver systems, such 
as primary human hepatocytes, HLMs or rhCYP, can be 
performed. To investigate the second hypothesis of NO 
autoinhibition, inhibition assays with respective marker 
reactions using before-mentioned in vitro liver systems 
could be conducted [55].

Although the presented PBPK model successfully 
described the complex metabolism of VRC, we suggest to 
further expand the model by using the above-mentioned 
in vitro investigations to elucidate the exact elimination 
pathway of NO. Conducting further clinical studies in 
CYP2C19 gPMs with low intravenous SD and MD, including 
quantification of VRC metabolites [56], would be useful to 
further improve the model. Key areas for furthur expansion 
include integrating oral administration data to account 
for bioavailability and extrahepatic metabolism, and 
extending the applicability of the developed model to 
paediatric populations through ontogeny and maturation 
data. Ultimately, adult and paediatric simulations based on 
the developed PBPK model can be performed and used to 
recommend optimal dosing regimens for patients with IFIs 
or for prophylaxis. This could translate the amalgamated 
in vitro and clinical research results back into clinics, 
supporting future therapeutic decisions.

5  Conclusion

Until now, this is the most comprehensive parent-metabolite 
PBPK model of VRC, including whole-body PBPK models 
of VRC, NO and OHVRC, that has been successfully 
developed. The reversible autoinhibition of VRC and the 
incorporation of metabolite-mediated CYP inhibition 
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successfully described the clinical data, supporting the 
hypothesis that primary VRC metabolites play a crucial 
role in the overall inhibitory effect of VRC on its own 
metabolism. Furthermore, the ability of the model to 
generate and refine hypotheses iteratively positions it 
as a valuable tool for future research, paving the way for 
more targeted investigations into the PK of VRC and its 
interaction with other drugs. This model can be used to 
design experiments to test these hypotheses, allowing further 
model qualification and ultimately model-based treatment 
individualisation to reduce therapeutic failure and AEs [57, 
58].
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