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Abstract

We analyze connections between two low rank modeling approaches from the last
decade for treating dynamical data. The first one is the coherence problem (or coher-
ent set approach), where groups of states are sought that evolve under the action of a
stochastic transition matrix in a way maximally distinguishable from other groups. The
second one is a low rank factorization approach for stochastic matrices, called direct
Bayesian model reduction (DBMR), which estimates the low rank factors directly
from observed data. We show that DBMR results in a low rank model that is a pro-
jection of the full model, and exploit this insight to infer bounds on a quantitative
measure of coherence within the reduced model. Both approaches can be formu-
lated as optimization problems, and we also prove a bound between their respective
objectives. On a broader scope, this work relates the two classical loss functions of
nonnegative matrix factorization, namely the Frobenius norm and the generalized
Kullback-Leibler divergence, and suggests new links between likelihood-based and
projection-based estimation of probabilistic models.
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1 Introduction
1.1 Motivation and Contributions

One of the fundamental concepts in statistics, data science and machine learning is that
seemingly complicated data have an underlying simpler structure, and filtering out this
structure is the crucial task of model reduction. Apart from a simpler representation of
the data that requires less storage, the main advantages include robustness when used
for predictions as well as interpretability of the low-dimensional features. Since data
are often given in the form of matrices A € R”*" (modeling, for instance, the depen-
dencies or interactions between two variables), the above task typically boils down
to matrix factorizations of the form A ~ BC, where B € R™*" and C € R"*" are
matrices of lower dimensionality, r < min{m, n}; see (Udell et al. 2016) for a compre-
hensive overview. In many applications, data are inherently nonnegative, for example,
when frequencies, temperatures or length measurements are involved. Incorporating
the nonnegativity constraint on the factors B and C can add to the interpretability of
the low rank approximation, which explains the success of nonnegative matrix fac-
torization (NMF) over the past two decades (Lee and Seung 1999; Singh and Gordon
2008; Wang and Zhang 2012; Li and Ding 2014; Gillis 2020). Stochastic matrices
are a frequent occurrence of nonnegative matrices in applications. Often they arise as
(or from) data matrices, because the entities encoded by rows and columns of these
matrices are in some probabilistic relationship.

One such application, which will be the guiding example of this paper, is determin-
ing coherent sets of a dynamical system (Froyland et al. 2010b, a), as made precise
in Sect. 3. In a nutshell, for a left stochastic! “transition” matrix P € R™>" we
seek partitions of {1, 2, ..., n} such that random transitions as described by P from
different partition elements remain “maximally distinguishable” in the sense defined
in (2). We call these partition elements “coherent sets.” The concept arose from the
desire to understand the transport properties of unsteady flows, see, e.g., (Aref 1984;
Rom-Kedar et al. 1990; Haller and Poje 1998; Froyland and Padberg 2009; Haller and
Beron-Vera 2013; Aref et al. 2017) and references in them.

Approximating the transition matrix P by a product P ~ AT of two left stochas-
tic matrices A, I' of lower dimension can be interpreted as a (soft) clustering of the
corresponding states into coherent sets, even more so if I' € {0, 1}"*" has binary
entries, which corresponds to (hard) clustering. Such a factorization is precisely what
is provided by direct Bayesian model reduction (DBMR), a specific NMF algorithm
proposed by Gerber and Horenko (2017); Gerber et al. (2018) for the identification of
reduced models directly from the data, i.e., without approximating the “full” transition
matrix P in the first place. One of the main motivations for this paper is the application
of DBMR to the coherence problem described above. In comparison with the “clas-
sical” approach popularized by Froyland and others Froyland et al. (2010b, a), which
relies on a truncated singular value decomposition (SVD) of the transition matrix P

1 Depending on the field, some use the term “column stochastic.” Both mean that all entries of the matrix
are nonnegative and every column sums to one.
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(after a suitable rescaling, cf. Algorithm 1), the DBMR approach holds the following
promises:

e As alluded to by the name, DBMR aims to directly infer A and I' from data,
without estimating the full transition matrix P in a preliminary step. The model
complexity is therefore constrained from the outset, which is expected to lead
to improved stability and generalization properties in high-dimensional settings
where only relatively few samples are available (Gerber and Horenko 2017).

e While the classical approach requires an ambiguous post-processing step to iden-
tify coherent sets, often performed by k-means clustering (Denner 2017), the
DBMR output provides the coherent sets directly through the matrix I', while
the matrix A acts as a reduced transition matrix acting on these compound states.
The left stochasticity of A ensures a form of structure preservation that the clas-
sical approach lacks. In the classical method, the “reduced transition matrix” is
typically not a stochastic matrix, as it may contain negative entries and columns
that do not sum to one.

Conceptually speaking, truncated SVD provides an optimal low rank approximation
with respect to the Frobenius norm as asserted by the Eckart—Young—Mirsky theorem
(Hsing and Eubank 2015, Theorem 4.4.7), while DBMR corresponds to a (relaxed)
maximum likelihood estimate of (A, I') and hence minimizes the Kullback-Leibler
(KL) divergence between the full and the low rank model, see Remark 6 in Sect. 4.2.
In other words, both SVD and DBMR can be viewed as providing a “low-
complexity” approximation to the transition matrix P,

A* e argmin  d(A, P), (D

A “low-complexity”

where d alludes to a “distance-like” quantity between matrices, and the notion of low-
complexity has to be made precise. (In our context, this will amount to A being low
rank.) Building on this parallel and following Lee and Seung (2000), (Gillis 2020,
Sect. 1.2), truncated SVD and DBMR can be succinctly formulated as solutions to
Problem 1 and Problem 2, respectively. From the perspective of matrix factorization,
the Frobenius norm ||A — BC||r and the (generalized) Kullback-Leibler divergence
DkL(A || BC) (essentially applied to the vector consisting of matrix entries (Lee
and Seung 2000)) are two of the most fundamental distances minimized within NMF
for the approximation A =~ BC discussed above (Wang and Zhang 2012). For this
reason, our comparison of the classical approach to the coherence problem with the
one by DBMR should be seen on a broader scale: We derive connections between the
above two central objectives of matrix factorization and make the following two main
contributions (with the terminology yet to be made precise).

(i) We prove that the DBMR output corresponds to the composition of the full model
P and an orthogonal projection IT; that is, PIT = AI" (Theorem 10). Based on this
insight we deduce that the “degree of coherence” contained in the low rank model
bounds the degree of coherence contained in the full model from (Proposition 13).

(i) Wederive aninequality involving the two measures of distance between the full and
the low rank model mentioned above—the Frobenius norm (for the SVD approach)
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on the one hand, and the Kullback-Leibler divergence (for DBMR) on the other
hand (Theorem 17). To our knowledge, this is the first quantitative relationship
between these two classical objectives of matrix factorization. To this end, we
prove and utilize a novel Pinsker-type inequality, which could be of independent
interest (Proposition 26 in Appendix C).

Next, we turn to the discussion of related work, and the remainder of the paper is
structured as follows. Sect. 2 introduces basic notation, while the problem formulation
of coherent set identification and the most common computational approach are dis-
cussed in Sect. 3. In Sect. 4, we summarize the low rank modeling approach referred
to as DBMR. The material in this first part of the paper is encapsulated in Problem 1
and Problem 2, and those serve as the starting point for the analysis in the subse-
quent second part. We emphasize that the detailed exposition of existing approaches
in Sects. 3.2 and 4 is deliberate, in order to have a self-contained manuscript allow-
ing for a direct comparison of these methods. The novel contributions are derived in
Sects. 5 and 6, and then, they are illustrated by numerical examples in Sect. 7, followed
by a conclusion in Sect. 8.

1.2 Related Work

Coherent sets and canonical variables. The term “coherent set” stems from fluid
dynamics and dynamical systems (Froyland et al. 2010b, a), and the concept has been
preceded by transport-related considerations around the term “coherent structures”
(see the references in these papers). Coherent sets as we use them here have been
applied in atmospheric (Froyland et al. 2010b) and oceanographic (Froyland et al.
2015) applications.

The abstract linear-algebraic problem, that the coherence problem boils down to in
our setting, is equivalent to canonical correlation analysis (Hotelling 1936) (see Klus
et al. 2019 for this observation), and it has also been transferred to other applications,
e.g., nonequilibrium statistical physics (Koltai et al. 2016, 20158; Wu and Noé 2020).
Orthogonal NMF and clustering. Coherent sets are a special form of clusters. Clus-
tering itself is strongly related to NMF, in particular, through a modification called
orthogonal NMF and a weighted version of k-means clustering (Pompili et al. 2014).
Centered around this observation, a body of work on clustering and community detec-
tion via NMF has developed (Ding et al. 2006; Yang and Leskovec 2013; Wu et al.
2018; Lu et al. 2020; Ortiz-Bouza and Aviyente 2024); see (Li and Ding 2014) for a
survey. From a broader perspective, the generality of the formulation in (1) has been
exploited to derive other modifications of NMF, for instance replacing the distance-
like quantity d (Févotte et al. 2009; Févotte and Idier 2011); see (Gillis 2020) for an
overview. We would also like to point the reader to Shashanka et al. (2008) which
directly links NMF and probabilistic modeling with latent variables. The orthogonal-
ity constraint implicitly appears in DBMR as well: The rows of the DBMR factor I"
turn out to be orthogonal, cf. Remark 4; hence, after rescaling of the factors A and I,
DBMR satisfies the constraints of orthogonal NMF.

Probabilistic models and estimation. With a probabilistic model in the background,
the NMF approximation problem can be phrased as an estimation problem. This con-
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nection is used in probabilistic latent semantic analysis (PLSA) (Hofmann 1999,
2001), where in the original motivation rows and columns of the data matrix cor-
respond to words and documents, respectively. It has been shown in Ding et al. (2006)
that PLSA is equivalent to NMF if the latter is formulated in terms of the (gener-
alized) Kullback-Leibler divergence. As mentioned above as well as in Remark 6,
the Kullback—Leibler divergence is associated with maximum likelihood estimation,
and hence, both PLSA and DBMR essentially compute most likely low rank models.
Indeed, Gerber and Horenko compare DBMR with PLSA in (Gerber and Horenko
2017, SI sec. 5) and demonstrate superior scaling performance of DBMR for large
problems.

Projection-based approximation. Considering our contributions ((i)) and ((ii)) men-
tioned above, we establish a new link between likelihood-based and projection-based
approximation of probabilistic models. The latter class has also been extensively stud-
ied (Deuflhard and Weber 2005; Huisinga and Schmidt 2005; de Lachapelle et al. 2008;
Schiitte and Sarich 2013) and provides bounds of the form where the eigenvalue error
between original and projected model is bounded from above by the projection error
of the associated eigenvectors. Sharper bounds hold if the model is reversible, essen-
tially meaning that the probability matrix that one seeks to approximate is self-adjoint
with respect to a suitable inner product. This applies to the classical approach to the
coherence problem as well, since the singular value decomposition of A is equivalent
to the eigenvalue decomposition of AT A, which is self-adjoint by construction.

2 Notation

Throughout this paper, we denote by R” the Euclidean space of dimension r € N,
equipped with the corresponding Euclidean norm ||-||, and inner product (-, -),. For a
vector w € Rio with positive entries and x, y € R”, let

+ denote the componentwise inverse of w;

o wl:= (w;l)jzl ,,,,,

e D, = diag(w) := (w,-(Sl-j)f’j:1 € R"™" denote the corresponding diagonal
matrix with entries w; on its diagonal and §;; being the Kronecker delta;

o (X,V)w:=x"Dyy= (Dll,/zx Dl/2 y)2 denote the w-weighted inner product and

. the associated norm. ccallx,y e w-ort ogonal 11 (x, y )y = U.
IIIl,, th iated We call R’ h Lif (x, y)y = 0

For a matrix A € R™ ", ||Allr == (XL, Z’}Zl |a,'j|2)1/2 denotes the Frobenius
norm of A and o} (A) the k-th largest singular value. We abbreviate the j-th column
of A by A.;. Throughout, a left stochastic matrix A € R™*" will be a nonnegative
matrix such that the entries in each of its columns sum to one. We will not require it
to be square, slightly abusing standard terminology.

In the bulk of this work, we consider discrete state spaces modeled by finite sets
of the form [r] := {1, ..., r}, r € N. Probability measures on [r] will be identified
with probability vectors p € RL , that is, with vectors having nonnegative entries that
sum to one. For such probability vectors u, v € RY,, we define the Kullback-Leibler
divergence between u and v by Dxr(u || v) = > /L, u; log & % if u is absolutely
continuous with respect to v (interpreted as probability measures) and Dgp (u || v)
oo otherwise. Here and in what follows, we use the conventions log 0 := —o0, 5 := 0,
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and setclog0to 0, —oo, +oo forc =0, ¢ > 0, ¢ < 0, respectively. Finally, we denote
by 1z € R” the indicator vector associated with a subset E C [r]: its i-th entry is 1
if i € E and O otherwise.

3 Coherent Sets

Following Froyland et al. (2010b), we introduce the concept of coherent sets induced
by a stochastic (or deterministic) transition. In this context, we adapt a space-discrete
setting: This can either be viewed as an approximation to a continuous-space dynam-
ics, or else as a genuinely discrete system. Historically, the former case motivated
the construction, and a straightforward connection between the space-continuous and
discrete settings is briefly summarized in Appendix A.

3.1 Problem Setup

Let (2, X, P) be a probability space and consider two random variables X : Q — [n]
and Y : Q — [m] with distributions p € RZ, and g € R, respectively, model-
ing the state of a random system at initial and final time. Here, n, m € N denote
the sizes (cardinalities) of the respective discrete state spaces. Often, X ~ p is
considered to be an input and ¥ ~ ¢ to be an outpur,’> which is why the ele-
ments of [n] and [m] will be called input and output categories/states, respectively.
We assume that X and Y are coupled through the left stochastic transition matrix
P e R™" P = P[Y =i|X =j], and, hence, follow the joint distribution
P[Y =i, X = j] = P;jp;. Using matrix notation, we write (X,Y) ~ PD, and
note the relation g = Pp.

We next recall the coherence problem for the input—output pair (X, Y). On an
intuitive level, we would like to obtain a coarse-grained understanding of the situa-
tion, for example allowing us to forecast Y given X, in a conceptually simple and
computationally tractable, yet faithful way. To this end, we seek nontrivial® partitions
& := (Ex)j_, of [n] and F := (F);_, of [m] such that X € Ej implies Y € Fy with
high probability; or, as we will say, (Ey, Fy) form a coherent pair. The number of
subsets r is fixed for now and roughly corresponds to the complexity of the reduced
model; typically we shall aim for < min(m, n). Following Froyland et al. (2010b),
we formulate the following two heuristic conditions for (Ej, Fi) to form a coherent
pair:

1. P[Y e Fyx | X € Ex] ~ 1, and
2. P[X € Ex] = P[Y € Fil.
The first condition demands that states from Ej transition predominantly to Fy. The

second condition ensures that, in addition, exclusively the states from Ej transition
to Fy, up to asmall error. Taken together, these two conditions describe the scenario that

2 The present situation is sometimes called a Bayesian relation model (Gerber and Horenko 2017). It is
a specific, “two-layer” instance of a Bayesian network or decision network, see, for instance, Heckerman
(1998).

3 We say that the partition (E k)Z: | is nontrivial if none of the sets Ey are empty.
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the pair (Ey, Fy) evolves coherently, approximately unaffected by the dynamics on the
complements [n]\ E; and [m]\ Fy. In the standard matrix notation, this means that if we
group the columns and rows of P according to the Ej and the Fy, respectively, then the
resulting matrix would have a pronounced block structure: The blocks corresponding
to Ey, Fr with the same index k dominate the associated rows and columns, see
Figures 1 and 2.

An attempt to accordingly partition the system into a fixed number » € N of coherent
pairs is to consider the maximization problem

p
max P[Y € F; | X € E¢], 2
max D PIY € Ft | ] )

P[XcE]~P[YeF;] k=1

carried out over all (nontrivial) partitions & = (Ey);_; of [n] and F = (Fp);_,
of [m] that respect the second condition from above. Here, no partition elements
are allowed to be empty sets. To make this a well-posed problem, the constraint
P[X € Ei] = P[Y € Fi] needs to be given a quantitative meaning. Note that simply
requiring equality may easily render the set of admissible solutions empty. Irrespective
of this choice, (2) tends to be a computationally hard combinatorial optimization
problem; thus, we will later discuss a numerically more approachable relaxation (see
Problem 1).

Any partition £ = (Ey, ..., E,) of [n] can be encoded by an “assignment” y :
[n] — [r] or an “affiliation matrix” I" € {0, 1}"*" via

1 ifj e Ey,

0 if j ¢ Ey. ®)

y(j) :=kwith j € E,  Tkj =68y =

The partition &€ can then be characterized by E; = y ~!({k}). To fix the terminology,
we introduce the following notions:

Definition 1 (Affiliation matrix) We call a left stochastic matrix with binary entries
I' € {0, 1Y, r, n € N, a (hard) affiliation matrix. We call the unique map y : [n] —
[r] satisfying ['yj = 6y () the assignment corresponding to I'. The image set (or
range) Rany := y([n]) will be called the set of active latent states.

As explained above, the distribution of the pair (X, Y) can be described in terms of
the initial distribution p and the transition matrix P. In practical settings, these objects
are typically approximated by their empirical (maximum likelihood) estimates based
on finitely many samples, D = (X (u), Y(u))le , S € N, where the pairs (X (1), Y (u))
are assumed to be independent and identically distributed copies of (X, Y). The data
D lead us to the count matrix N € Ni*" and the empirical frequency estimators

p €R”,and Pe RY " given by

Nij=#u | X@) = j, Yw) =i}, p 1iN 2 N
ij = #u u) =j, Y(u) =i}, Dj=—= = =
! 'S i=1 ! DY Nij

“)
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Here and in the following, we assume the row and column sums of N to be strictly
positive for each i € [m] and j € [n]; otherwise, the associated input or output
categories are removed and the sets [m] and [n] are restricted and relabeled accordingly.
Note that p and P are, in fact, maximum likelihood estimates, cf. section 4 and
equation (10) in particular. Note that the maximum likelihood estimate of ¢, ¢ :=
(=1 Nij/S)ierm) € RZ, satisfies § = P p, inheriting the above-mentioned relation
g = Pp of the exact quantities.

As the estimation problem (i.e., the comparison of P with ﬁ, p with p, and ¢
with @) is not the focus of the current work, we will not distinguish the exact
quantities from their frequency estimators from now on, i.e., we assume them
to coincide. In particular, for simplicity of notation, we will use P, p, g to
denote the empirical estimators.

In the case of DBMR, the transition matrix P is approximated by areduced (i.e., low-
rank) matrix A = A", where A € R"*" A € R™*" and I" € R"*" are left stochastic
matrices. This notation will be used consistently throughout this manuscript.

Additionally, as discussed in Sect. 3.2, it is beneficial to normalize the transition
matrices P and A with respect to the reference distributions p and ¢:

P':=D;'PD, eR"™"  P:=p;?PD,/? eR™"  K:=D;'?AD)".
5

Note that the normalized transition matrix P’ transports densities with respect to
the reference measure p at the initial time to densities with respect to the refer-
ence measure g at the final time. Given that ¢ = Pp, it follows immediately that
Py} = 1y). As we will demonstrate, using P instead of P’ converts p-orthogonality
into ¢2-orthogonality, simplifying the application of results based on singular value
decomposition and, in particular, the Courant—Fischer theorem.

In this context, we also define our main measure of coherence within the pair (P, p),
the intuition behind which will be explained in detail in Sect. 3.2.

Definition 2 (Degree of coherence) We define the degree of r-coherence C;(p, P) in
the pair (p, P) of input distribution and transition matrix as the sum ) ;_, 0; (P) of
the r leading singular values of P = Dq_l/zPDll,/2 with g = Pp.

We simply say that this is the degree of coherence in P and write C(P), if the integer
r and the reference distribution p are clear from the context.

3.2 Classical Approach to Coherent Sets

The following relaxation of the coherence problem (2) can be found in Froyland et al.
(2010b) for a two-partition, and in (Denner 2017, sec. 3.3) for an arbitrary number of
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coherent pairs. For details, the reader is referred to these works. Using (5), we obtain

Yier 2jek Pijpj _ (Lp,PDplg)y  (Lp, P'lg),

PlYe F|XeE]= = =
2 jeE Pj (Lg, Dplg)2 ILel?

Q)

Note thatif & = (Ey)},_, isapartition of [n], then 1 g, 1 g, are p-orthogonal whenever
k # 1, ie., (1g,1E), = 0. To obtain a computationally feasible relaxation of the
coherent set problem (2), we relax the condition that the vectors 1 g, should be indicator
vectors, but keep their p-orthogonality. We thus replace 1 g, by vectors ¢; € R" and
1F, by vectors f; € R™. (How these new vectors can be related back to partition
elements is explained below.) Note that although we do not require the system f to
be g-orthogonal at this stage, this property will be a consequence of our analysis (see
below). The constraint P[X € Ej] =~ P[Y € Fj]cannow be required with equality and
translates to |lex ||, = || fkll4, yielding the relaxed coherent-set maximization problem

i, Plex
max Z u’ (7)
ety — el pll fillg
fl ~~~~~ fr k=1
subject to ey, ..., e, being a p-orthogonal system in R”. Since (7) is invariant under

(positive) scaling of e; and fi, we can further restrict the optimization to unit vec-
tors. By noting that fi = P’ei/||P’ex|l4 is a maximizer of the summands for fixed
el, ..., e, this further reduces to

,
ZuPeknq — max Y P&l ®)

(e1,..., e,) p- orthonormal (e1,...,e;) orthonormal P

after observing that any p-orthonormal system (e, ..., ¢,) in R” can be written as
ex = D;lﬂék, k € [r], for some orthonormal system (ey, ..., ée,) in R” and that

| P’ elly = ||D1/2P D71/2~k||2 = ||Pek||2 By (the singular value version of) the
Courant-Fischer theorem stated in Theorem 27, the right- and left-hand side of (8)
are maximized by the r leading right singular vectors ¢; of P and by ex = D;l/ zék,
k € [r], respectively. The optimal value is equal to the sum of the leading r singular
values.

Via the Eckart—Young—Mirsky theorem (Hsing and Eubank 2015, Theorem 4.4.7),
the task (8) is equivalent to finding the best rank-r approximation to P with respect

to the Frobenius norm and also the spectral norm:

.
. 5_ B 5\ FT
arg _min [P = Pra| p = > ou(P)/i?] . 9)
PredeRINXIl k:l
rank ﬁcd=r
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In this light, the relaxed coherence problem is equivalent to a low rank approximation
problem of the weighted transition matrix P. To summarize the discussion so far, we
formulate the relaxed coherence problem as follows:

Problem 1 (Relaxed coherence) Given a count matrix N € N"*" and a
ﬁxed rank r< mm(m n), find a rank-r matrix Pred € R™*" that minimizes
H P — Py - Where P is constructed from N via (4) and (5).

We emphasize that the right-singular vectors of a rank-r matrix Preq € R™*" s0ly-
ing Problem 1, which coincide with the leading r right singular vectors of P by (9),
satisfy the (right) optimality condition in (8) Due to the left stochasticity of P, the
leading singular value of P can be shown? to be oy = 1, with corresponding right
singular vector p'/? := Pl /Pn ). The maximizers ¢; of the relaxed coher-
ence problem (8) need not be approximate indicator vectors, but for well-pronounced
coherent dynamics, their linear span (and likewise that of the f;) is going to be close
to the linear span of indicator vectors (Koltai et al. 2016), see also Deuflhard and
Weber (2005). This observation suggests, by viewing the singular vectors e as fea-
tures of the states j € [n], various approaches to extract a coherent r-partition from
the singular vectors: A number of algorithms exist, differing in how post-processing
steps are handled, and whether hard or soft clusters are sought. One can use k-means
clustering (Denner 2017; Banisch and Koltai 2017, sec. 3.3), PCCA+ (Deuflhard and
Weber 2005; Roblitz and Weber 2013), or SEBA (Froyland et al. 2019). The final-
time members of the coherent pairs are obtained in a similar manner from the vectors

fr = D;/ 2 fx, where f are the left singular vectors of P and are matched to the initial-
time members such that the objective in (2) is maximal. We summarize this classical
approach to coherent pairs, using k-means clustering in the post-processing step, in
Algorithm 1.

The relationship between (6) and (7) shows that the value of the latter is a measure
for the coherence of an r-partition which motivates our usage of this value as the
“degree of coherence” in Definition 2. Since the optimal value for (7) is the sum
> oi(P) over the r leading singular values of P, it follows that the degree of
coherence of an r-partition is bounded from above by r. In other words, tightness
of the bound }";_, 0; < r indicates coherence of the system at hand. In the case of
complete coherence (Z?: | 0i = r), the transition matrix P (and hence P as well)
has the form where there are partitions (E¢)_; of [n] and (F);_, of [m] such that
P;j > Oimpliesi € Ey and j € Fj for the same k.

The question of how to choose the number r of coherent sets can be answered by
considering the singular spectrum of P (Froyland 2013): The aim is to have the leading
r singular values close to one (and the corresponding singular vectors close to linear
combinations of indicator vectors 1 g, corresponding to some partition & = (Ex);_;),
while the remaining singular values should, ideally, be substantially smaller than 1

4 Since ql/2 = ﬁpl/z and p, g are probability vectors, ie., [plly = ligllz2 = 1, we have o7 > 1.

To show o1 < 1, note that (712 is the leading eigenvalue of P ' P and hence also of the similar
matrix D;l/zPTPDl/2 PTDq_1 P D). 1tis a straightforward calculation that IIPTDq_1 PDplloo =1,

thus 012 <1.
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Algorithm 1 Classical approach to coherent pairs.

1: INPUT: Data subs~umed into the count matrix N, number of coherent pairs » € N
2: Compute P, p, P via (4) and (5)
3: Compute SVD of P: P = ULV " with orthogonal matrices U € R”*™_ V ¢ R"*" and rectangular

matrix
_ (diag(oq,...,05) 0 mxn
Y= ( 0 o) € R

with the singular values o1 > - -+ > o5 > 0 of P onits diagonal
4: Truncate to the r leading singular values to obtain a low rank approximation Preq of P,

~ diag(oy,...,0r) 0
Pred:U< & L r)O>VT’

and transform back to obtain a low rank approximation Preq := Dq_ 12 ﬁred D[l,/ 2ot P

5: Use the first r right singular vectors ey, . . ., &, of P (the first r columns of V) as features for a k-means-
clustering of [n] into r clusters (Denner 2017, sec. 3.3), leading to the partition £ = (Ek);(=1 of [n];
and obtain similarly the partition 7 = (Fy)j,_; of [m] using the left singular vectors flooons fr of P

6: “Match” the partitions £ and F by reordering F such that the objective in (2) is maximized

7: OUTPUT: Pred, Pred, €, F

(indicating no further coherence within the system). Consequently, the choice of r
should be informed by the values and gaps in the spectrum.

Remark 3 The observation, mentioned in Sect. 1, that the algebraic form of the relaxed
coherence problem is equivalent to canonical correlation analysis (CCA), has been
made in Klus et al. (2019). CCA is commonly described as a method that finds bases
of the input and output space with maximal correlation under an assumed probabilistic
relationship.

4 Likelihood-Based Estimation from Data
4.1 Full Versus Low Rank Models

Solving the relaxed coherence problem as presented so far is a two-step procedure:
First, p and P are estimated from observational data, and second, the dominant singular
vectors are extracted from P (see Problem 1). Thus, it is natural to ask whether a low
rank approximation of P can be obtained directly, merging estimation and projection.

For this purpose, recall the empirical estimators p and P for p and P from (4). Itis
classical and straightforward to show that 7* = p, A* = P maximize the likelihood
of the data D,

m n
PID |7 Al =[][]=" a5 (10)
i=1j=1

Reiterating the discussion from Sect. 3, we overload the notation, dropping the hats
in (r*, A*) = (P, P), and hence denoting the true objects (p, P) and their empirical
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(maximum likelihood) estimators by the same symbols. Traditionally, these maximum
likelihood estimates are then used to approximate P and its r leading singular modes,
from which a coherent r-partition can be extracted in various ways, see Sect. 3.2. Note
that this approach requires the approximation of n + mn probability values for the
estimation of (p, P) in (4), some of which might be very small, hence a large number
of samples if often required.

However, if we are interested in a fixed number » < min(m, n) of singular modes,
the effective information of interest is already represented by O(r (n + m)) quantities,
and hence it might be expected that a direct approach (circumventing the estimation
of p and P) could provide accurate results based on a significantly reduced number
of samples. More specifically, we will contrast the traditional procedure with a direct
estimation of P by a low rank transition matrix A = A", where A € R and I" €
R are left stochastic matrices still fulfilling ¢ = A p, in the maximum likelihood
framework of DBMR. Indeed, DBMR requires the computation of only r(n 4 m)
matrix entries and thus its output promises to be of low variance, even in the regime
where only a few samples are available (Gerber and Horenko 2017, Theorem; in
particular Eq. 7).

In terms of interpretability, our alternative approach has another crucial advantage:
DBMR maximizes a lower bound of the log-likelihood function, the optimum A* =
A*T* of which turns out to comprise a (hard) affiliation matrix I'* in the sense of
Definition 1 (though starting with the assumption on I to be only left stochastic). As
mentioned in Sect. 3, there is a one-to-one correspondence between such affiliation
matrices and partitions of [n], providing a meaningful partition £ := (Ey);_, of [n]
without any post-processing steps, while A corresponds to a “reduced transition matrix”
on these compound states. A natural choice for the output partition F := (F);_,
of [m] is given by

Fi ={i € [m] | Aix = max Ay} (11)
k'e[r]
(with arbitrary choice of category in case of non-uniqueness of the maximizer).

4.2 Direct Bayesian Model Reduction (DBMR)

In the following, we will discuss how the low rank model A = AI' & P, where
A€ R™T and I' € R™™" are left stochastic matrices, can be estimated from the data
in a (relaxed) maximum likelihood fashion similar to the derivation of (4) from (10).
This approach, proposed by Gerber and Horenko (2017), achieves both estimation
and model reduction simultaneously, without the need to estimate the full model
P in the first place. In other words, we assume that the output depends on the input

through a latent variable Z € [r], illustrated by the graphical model X Sz 2y ,
encapsulating the conditional independence assumption Law[Y | X, Z]=Law[Y|Z]. In
this case, I' and A correspond to the transition matrices to and from the latent state,
respectively:

Iy =P[Z=k|X=j], rmx=PY=ilZ=k] (12)
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Note that we can interpret I'y; € [0, 1] as a (soft) affiliation of input category j to the
latent state k. As we will see below, the DBMR solution in fact yields binary estimates
I'xj € {0, 1}, interpreted as hard affiliations as in Definition 1.

Since (10) can be split into two optimization problems, one for 7 and one for A,
estimating the factors A and I" from the observation data D via maximum likelihood
estimation reduces to maximizing

m n

¢(h,T) :=1ogP[D | AT'] = ZZNU log(AT);;, (13)
i=1 j=1

over all pairs (A, I') of left stochastic matrices. Since the full model P = P maximizes
(10) without the low rank constraint, we obtain the natural bound £(A, I') < ¢(P, 1d,).
Since (13) might be challenging to maximize computationally, Gerber and Horenko
(2017) suggest to relax the problem and maximize a lower bound of ¢ instead,

m n r
fA,T) = Z Z Z N;ijTyjlog Ak < €1, 1), (14)

i=1 j=1k=I

where we have applied Jensen’s inequality. We note that both (13) and (14) do not
admit closed-form maximizers, but the fact that I'; and log A split multiplicatively in
(14) gives rise to an elegant two-step alternating procedure (see Gerber and Horenko
2017 and the discussion below). We summarize the relaxed coherence objective as
follows:

Problem 2 (DBMR) Given a count matrix N € N”*" and a fixed rank
r < min(nz, n), find left stochastic matrices A € R™*" and I" € R"*" that
maximize £ given by (14).

_ The DBMR algorithm 2 suggested by Gerber and Horenko (2017) maximizes
£(2, I') by an alternating optimization over A and I" with a computational cost that is
linear in m and n: Maximizing £(A, I') for fixed I" yields a unique optimum

n
> i—1 TkjNij
m n N
2 ir—1 2 =1 Tk Nivj

Ak = (15)

On the other hand, for any fixed left stochastic matrix A, maximizing 0 (A, T") with
respect to I' decouples into n separate linear programs (Gerber and Horenko 2017,
Suppl. p. 19) solved by

1, k=argmaxy Y /L, Njjlogh,,

Iy = (16)

0, else.

Possible non-uniqueness of the arg max is resolved such that there is only one nonzero
entry in every column of I".
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In particular, while I' € R"*" was only assumed to be left stochastic in Problem 2, it
is solved by an affiliation matrix I' € {0, 1}"*", describing binary (or hard) affiliations
I'xj € {0, 1} of the input states j € [n] to the latent states k € [r] as in Definition 1.
The fact that the partial updates (15) and (16) are available in closed-form motivates
the alternating procedure described in Algorithm 2, introducing the iteration counter
h.

Algorithm 2 DBMR algorithm from Gerber and Horenko (2017).

1: INPUT: Data subsumed into the count matrix N, number of latent states » € N, and maximum iteration
number Amax

2: Set random stochastic matrix T'@ e {0, 1" and h = 0
3: Set 19 by evaluating (15) for I' = I'(©)

4: while £, 7™y £ {1 =D 7=y and h < hyax do
5. Setr*+D by evaluating (16) for A = A

6:  Set A"TD by evaluating (15) for I' = F+D

7. h<h+1

8: end while

9

: OutpuT: A = A and T =™

We note that £(A, I') is concave with respect to both A and I', individually. Thus,
‘ (™, T ™)y increases in . Since there are only finitely many values that " can take,
the algorithm converges, but possibly to a maximum of ¢ that is only local (with respect
to the updates (15) and (16)). A practical alternative stopping criterion is to stop if
the relaxed likelihood ¢ shows small improvements that are below a given threshold.
Since the algorithm might only find a locally optimal solution, it is usually run several
times with independent random initializations I'(’’, and the result with the highest
relaxed likelihood value is taken.

Remark 4 Note that (16) implies that I'TT is a diagonal matrix: The rows of I
are orthogonal, but typically not orthonormal. In orthogonal NMF, as mentioned in
Sect. 1.2, the orthogonality requirement would translate to 'T'T = Idg. If T" has full
rank, this can be achieved by the replacement I' — DT, using a diagonal scaling D;
cf. (Ding et al. 2006, equation (10)). In this case, we also have A" = (AD’l)(DF),
where the factors in the parentheses fulfill the requirements of Orthogonal NMF.
DBMR hence yields a particular form of Orthogonal NMF.

DBMR as maximum likelihood estimate on a constraint set. For fixed m,n € N
and for r € N, r < min{m, n}, denote

D) = {A =Al e R™ |12 e RIS, T € {0, 1}7" both left stochastic} . (17)

The set D', comprises the set of transition matrices that we consider as low rank
approximations (more precisely, as approximations of rank at most r) to the full-rank
transition matrix P. The salient feature (in addition to the low rank constraint) is the
sparsity assumption I' € {0, 1}"*" which, by the left stochasticity of I', leads to the
interpretation of I' as a (hard) affiliation matrix, see Definition 1.
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If we restrict the maximum likelihood estimation from Sect. 4.1 to the set DZ,

* = arg max ZZN‘J log Ajj ¢ . (18)

AGDr i= 1] 1

then we obtain an alternative characterization of the DBMR problem (Problem 2):

Lemma5 The functions £ and { coincide on D', (viewed as the set of admissible
pairs (A, I') in (17)). Further, every solution of (18) is a maximizer ofé in (14).

Proof Note that the inequality in (14) follows from Jensen’s inequality,
22:1 Igjloghix < log 22:1 AikTkj, and is, in fact, an equality whenever I" is a
binary left stochastic matrix. Hence, ¢ and { coincide on Dﬁ\. Further, there exists a
maximizer A* = A*T'* of ¢ that lies in D', (Gerber and Horenko 2017, Theorem).

Since ¢ and ¢ coincide on D', , this proves the second claim. O

It is well known that maximum likelihood estimation is inherently related to
Kullback-Leibler minimization (Wasserman 2004, Sect. 9.5). The following remark
establishes this connection in the specific context of DBMR:

Remark 6 (Connection to Kullback—Leibler divergences) As mentioned in Sect. 3,
the joint distribution of the data (X, Y) is described by the probability values P;;p; =
P[Y =i, X = j] (which are proportional to N;;). We can likewise describe the joint
distribution of the DBMR output by A;;p;, where A € D’,. The DBMR objective
(18) can be rewritten in the form

A* _argmlnDKL({ ,]p]} I {Aijpj}), (19)
AeD)

where, with slight abuse of notation, we naturally extend the definition of Dky, from
Sect. 2 to matrices associated with joint distributions. In other words, DBMR attempts
to match the true joint distribution in the Kullback—Leibler sense, while obeying the
rank and sparsity constraints imposed by D', . Indeed,

ijPj

DKL({Pz]P]} ” Ajjpj )—210g< ) ijPj X ZNZJ logPl] IOgAij)'
ij
(20)

Clearly, minimizing (20) is equivalent to maximizing (18), since i.j Nij log P;; does
not depend on A.

Remark 7 In the case when the count matrix N is of low effective dimensionality, that
is, when rank N =7 < r, a natural question is whether the DBMR output A* € D',
lies in the smaller set DZ, i.e., whether DBMR automatically identifies the low rank
structure of N. In general, this is not the case: Consider two linearly independent
vectors a,b € R™, m > 3, and P = |[a, % + %’, b] € R™*3 (recall that N is simply
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a scaled version of P, implying here that rank N = rank P = ¥ = 2). For r = 3, the
best approximation of P within D', is clearly P itself, by choosing A* = P and
' = 1d3. This solution is unique up to permutations of the columns of A* and rows
of I'*, respectively, since, for any affiliation matrix I' € R3*3 with rank I' < 3 and
any A € R”*3, the product AT has at least two identical columns and cannot coincide
with P. Clearly, the above solution A* = A*I'* maximizes the likelihood in (13)
and coincides with the DMBR output, at least for appropriate initializations (e.g.,
r® =1ds).

5 Relations Between the Full and the Reduced Model
5.1 DBMR as a Projection

In order to analyze the approximation properties of the reduced model A = AT
provided by DBMR, we will consider the (hard) affiliation matrix I" fixed throughout
this section (assume, e.g., that it has already been computed). Then, in view of (15),
DBMR constructs the low rank approximation A of P as follows: For each k =
1,...,r,

e compute the column A, as the weighted average of the columns of P associated
with k: Aep X Z?=1 TkjpjPej,

o replace the columns of P associated with k by this average: Aqj = Aex if I'y; = 1.

The crucial observation in this section is that this process can be rewritten as a com-
position of P with a projection IT,

A=Al = PII, @21)

as illustrated by the following example:

Example8 Letn = 5 and r = 2 and assume that we have already computed
11000
F= (o 011 1) '

Then, the observation described above concerning the A-update-step (15) within
DBMR can be illustrated as follows:

group columns of P
%

P

3 (P01P02P03P04P05)
according to "
average

s A= (I = P1Pe14+p2 Poy hes = P3Pe3+paPeatps Pes
columns P1+p2 p3+pa+ps

augment

A =2T = (Aot ket ko2 he2 Aa2).
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Clearly, this procedure of obtaining A = AI' can be written as a matrix product
A = PII for

P1 p1
pi1+p2 pi+p2 0 0 0
P2 P2
pi1t+p2 pi+p2 0 0 0
0= 0 0 P3 P3 P3

p3+pat+ps p3tpatps p3tpatps

0 0 P4 P4 P4
p3tpat+ps p3tpatps p3tpatps

0 0 J2A] ps pPs
p3+patps p3+patps p3+patps

This motivates the definition of IT in (22).

Remark 9 The procedure and example above explain why DBMR provides “good”
low rank approximations A of P and why it identifies coherent pairs: P is a maximum
likelihood estimate, and A maximizes the same likelihood, but within the set D, of low
rank matrices, cf. (18). Hence, indirectly, A results to be as “close” to P as possible.
In view of the discussion above, the best way to be “close” to P is to group its columns
by similarity (and this clustering then defines I"). This way, each column in P does not
differ too much from the corresponding average column in A. As a consequence, in
terms of coherence, the states within each group (i.e., partition element) evolve with
similar probability vectors, hence “coherently.”

After establishing equation (21) in Theorem 17, together with several properties of
I1, we leverage this result to draw conclusions about the relationship between the full
model P and the low rank model A = AT, in particular, in the context of coherence.
More precisely, we show that the degree of coherence (measured by the sum of leading
singular values of the corresponding matrix as in Sect. 3.2) associated with the DBMR
approximation is bounded from above by the one of the full model (cf. Proposition 13),
C(A) <C(P).

In what follows, we work with the full and low rank transition matrices P and A as
well as with their rescaled versions P = D,]_I/ZPD‘,I,/2 e R™ A = D,]_I/ZAD[I,/Z,
see (5) and Sect. 3.2. To identify the projection IT in (21), recall the assignment
y : [n] — [r] associated with a fixed (hard) affiliation matrix I' € R"*" from
Definition 1. Motivated by Example 8, we define IT € RZ{" and = D;l/ 2I"ID},/ 2

by

H.._M ﬁ_—\’plpjay(')y(’) (22)
ij = > ij — >
21 P8y 21 PiSywy i)

noting that here and in subsequent sections, I serves as an auxiliary object that facil-
itates computations. Indeed, it is straightforward to verify that I is an orthogonal
projection (cf. Lemma 24 in Appendix B). Consequently, IT is a p~!-orthogonal pro-
jection, meaning that I1> = IT and that IT is p~!-symmetric:

(Tx, y) -1 = (x, My) 1,  forall x,yeR" (23)
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The following result confirms the relation (21) and clarifies the structure of IT in terms
of its eigenvector decomposition. An important role is played by the set

Rany := y([n]) C [r], (24)

which we refer to as the set of active latent states (recall Definition 1). In (24), the
notation y ([n]) refers to the image set (or range) of y, that is, k € y([n]) if and only
if there exists i € [n] such that y (i) = k.

Theorem 10 (DBMR as a projection) Let T € {0, 1}*" be a hard affiliation matrix
(according to Definition 1) and ) be given by (15). Then, Il as defined in (22) is a
left stochastic and p~'-orthogonal projection which satisfies \I' = PI1. Moreover,
IT has the following properties:

(a) The rank of T1 coincides with the number of active latent states, rank I1 = #Rany.
In particular, rank IT < r.

(b) The vectors a® ¢ R", associated with active latent states k € Rany C [r] and
defined by

k .
a® = pis,ap,  i=1,...,n, (25)

are eigenvectors of T1 with eigenvalue 1, i.e., [la® = a'®. They span the image
space of 1, that is,

Span{ak : ke Rany} =RanTl. (26)

The supports of the vectors a® are disjoint, that is, al.(k)ai(l) =0, forall i and all
k # 1. In particular, these vectors are orthogonal as well as p-orthogonal. Hence,
the vector p = ZkeRany a® is also an eigenvector of T1 with eigenvalue 1.

(¢c) The DBMR output A = AT respects the final distribution in the sense that Ap = q.
Proof The proof is given in Appendix B. O

Remark 11 Let us comment on the previous result.

(a) Note thatthe assumptions in Theorem 10 on I" and A are satisfied at any (completed)
iteration of the DBMR algorithm; convergence is not required.

(b) For a fixed (active) latent state k € [r], it is natural to consider the corresponding
set y ~1 ({k}) comprised of the states in [#] that are mapped to k. The disjoint union
Uk y‘l ({k}) = [n] can then be viewed as a coarse-graining of the input set [n]
induced by the assignment y. Theorem 10 shows that this interpretation persists
at the level of the projection I, and that its range encodes the same information.
Indeed, the eigenvectors in (25) can be obtained as the restriction of p to y ~' ({k}),

w _ Jpi i€ y (kD).

1

= . 27
0 otherwise.
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Corollary 12 Let ' € {0, 1}"*" be a hard affiliation matrix (according to Definition
1), & be given by (15) and A = AT. Further, let P and A be given by (5) and I by
(22). Then, P — A is orthogonal to any matrix of the form AT, A € R™ " with respect
to the Frobenius norm. In particular, since A= Igﬁ,

IP — A% = 1P1% — 1A% (28)

Further, for a fixed (hard) affiliation matrix T' € {0, 1}"*" of rank r, the choice of A
in (15) results in a matrix A that is the best approximation of P in Frobenius norm:

A= D, 172 )LFDI/2 € i{g@ﬁ)} HP D, 2y FD1/2H (29)

Proof Note that for real matrices A and B of the same dimension, the Frobenius norm
is induced by the inner product (A, B)f := = tr(A" B), where tr(-) denotes the trace.
By (5) and (22), the 1dent1ty A PI1 from Theorem 10 implies A = PII. Therefore,

using the properties M7 = I and T2 = 11 from Lemma 24 as well as invariance of
the trace under cyclic permutation of factors, we obtain, for each A € R"*”

~ ~

(P — K, ATl =1tr ((P _ K)Mﬁ) =t (ﬁ(Id _ ﬁ)ﬁTA) =0.  (30)

This readily implies (28).

For the last statement, let us define the diagonal matrices Dy = diag(]lTN )_1,
D = diag(]lTNF)_l, and D, = diag(]lTNFTF)_l. It is a straightforward calcula-
tion to see that P = NDy, DiI' =I'D;,and I1 = DK,IFTFDz. Since I" is assumed
to have rank r, I'T' T is invertible, yielding that for an arbitrary A’ € R”*" we have

AT =2D'DiT =’ D;'TDy, =4’ Dy ) ~'IT T D,y
=Dy (rrH)™'TDy D'T'TD, = A'TT

This means that A'T" is of the form ATl for a suitable A’ € R™*", and (29) follows
from (30). O

Hence, (15) is optimal in the sense of (29) in addition to being optimal in terms of the
(relaxed) maximum likelihood from Sect. 4.2.

Corollary 12 will be used in Corollary 19 to relate the objectives degree of coherence
C, and relaxed likelihood l.

5.2 Pointwise Singular Value Bounds

Recall that o; (M), i > 1, denotes the i-th singular value of a matrix M, in descgnding
order. By Theorem 10(b), IIp = p and hence p'/? is a right eigenvector of I with
eigenvalue 1:

127 1/2 -1/2 ~1/2
le/zsz / l'IDp/ pl/zsz / Mp=D, / p=p2

@ Springer



2 Page20o0f44 Journal of Nonlinear Science (2025) 35:2

As discussed in Sect. 3.2, we have that o (ﬁ) = 1 with corresponding right singular
vector p!'/2. Thus, ‘we also have that o (P ) = 1 with corresponding right singular
vector p!/2, since I is an orthogonal projection and hence PTI cannot have singular
values larger than 1. Thus, P and PTI share the same leading singular value with the
same left and right singular vector pair. As for the comparison of the other singular
values, the following holds true.

Proposition 13 With P defined in (5) and m defined in (22), we have that
0;(PI) < 0;(P), i <min{m,n}. (31)

Proof The claim follows from (Gohberg and Krein 1978, (2.3) on pp. 27) by noting that
I I |l = 1.For the readers’ convenience, we give a proof based on the Courant—Fischer
theorem: Let us fix i < min{m, n} such that ai(F ﬁ) > 0 (otherwise, inequality (31)
holds trivially), in particular, i < rank (T1). Let F; denote the subspace spanned by
the first i right singular vectors of PTI. Since the associated singular values are all
nonzero, ker I1 N F; = {0} and thereby

dim F; = dim{I1f | f € F;} =: dim [1F;. (32)

Since IT is an orthogonal projection, || ﬁh||2 < ||h]2 for each h € R", and Theorem
27 (Courant—Fischer) implies

0;(PTI) = min ||PTikll, < min |Phl, < max min ||Ph|, = 0i(P),
heF; hellF; Wel: hew

I1All2=1 1fll2=1 llAll=1

where 20; denotes the set of i-dimensional subspaces of R”. This proves the claim.
O

6 Relations Between the Frobenius Norm and the Relaxed Likelihood
Objectives

Recall that the degree of coherence C, of the full matrix P and the reduced matrix A
is defined via the singular values of the scaled transition matrices P = D, ~2p }U/ 2

and A = D_I/ZADII/ , respectively, and that o; (A) < o; (P) for each i < min{m, n}
by Proposition 13.

Noting that the squared Frobenius norm || - ||% of a matrix equals the sum of its
squared singular values, it is therefore natural to measure the discrepancy between full
and reduced models by the corresponding difference in Frobenius norm. Theorem 17
relates || P—A ||%7 to the relaxed likelihood ¢ from (14) that is maximized by DBMR,
indicating that DBMR provides a quasi-optimal solution of the (relaxed) coherence
problem (7).

Remark 14 In the context of nonlinear matrix factorization, (Ding et al. 2006, Equa-
tions (8)—(10)) show that, assuming small errors and linearizing the objective around
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the optimum, a maximum likelihood estimation of nonnegative factor matrices can be
connected to x 2 statistics. This leads them to the minimization of the Frobenius norm
difference of an empirical frequency matrix and its factorized approximation as well
as to a connection to the maximum likelihood setting. They do not elaborate this any
further, eventually.

More generally, Theorem 17 establishes an a posteriori bound between the two
main NMF objectives discussed in Sect. 1, namely the Frobenius norm ||A — BC||F
and the (generalizeds) Kullback-Leibler divergence Dky (A || BC). For this purpose,
we require Pinsker-like inequalities for the weighted ¢2 norm in Appendix C. These
are based on the concept of balancedness of a vector x € R that we introduce in the
following. Roughly speaking, we call a vector x € R balanced if ||x| /[ x|l; < 1.
Note that the inequality || x||o, < [|x]||; holds true in general and equality only holds for
(multiples of) standard unit vectors. On the other hand, the above ratio is minimal if all
entries of x have the same modulus, i.e., x; = &£||x||,, foreachi =1, ..., m. In other
words, for x to be balanced, the “mass” of the vector (measured by ||x||;) should not
be attributed to one or just a few entries, with the others being zero or close to zero, but
should be distributed rather evenly among the entries. More generally, g-balancedness
of x indicates that the ratio |x;|/g; is close to constant in i, with ¢ € R”, being a
strictly positive probability vector:

Definition 15 Form € N and a strictly positive probability vector g € R, we define
the balancedness and the g-balancedness of a vector x € R™ by

llx1ly
Logi

211y
m x|l

B(x) = el 1], Byx):= € [ming;, 1], ifx #0,
1

and by B(0) := B,(0) := 1.

Remark 16 Note that B(x) = B, (x) for the vector g = (1/m, ..., 1/m).

Theorem 17 Let A € R’"Xf, A GNR’"” and T € {0, 1}7*" be left stochastic matrices
such that A = AT" and let P and A be given by (5). Further, letoj := o (Pyj, Aej) 1=

Pi—A;; .
%maxi% €[0,0], j=1,...,n
1 ._ 1 :
k) =5 min B,(Pei — Aei),
q 2, q(Psj J)
/céz) = %j_nllin n%q(P.j)(l —aj),
kP' := min; ¢; /2 and kPt = max(lcél),/céz)). Then, kP% > kP' and, for k €

{Kpr’ Kpost},

n
~ o~ 1 /4 A
T2 -1 ) ) N o— _
1P —RAlF < « ;ijKL(P., I8 = — (P14 = 0. D). (33)

5 The Kullback-Leibler divergence Dk, (A || BC) is generalized in the sense that A as well as BC represent
unnormalized probability distributions.
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where € is the DBMR objective given by (14).

Proof Note that kPt > «P' by the definition of K;l) and B4, so it suffices to prove (33)
for k = kP, Observe that Pijpj = Njj/Sforanyi =1,...,mand j =1,...,n,
and that £(A, ") = é(k, I'), since I' is an affiliation matrix, cf. (13)—(14). Hence,
Proposition 26 in Appendix C implies (note that we do not need to verify the condition

aj < 1foreach j =1,...,n,since, in this case, K; ) < Oand k = qu))

1P — Al = ZZ —(P,, — Aip)’p;

i=1j= 1
Aij)2 1 n 5
, - E . P.. _ A .
min; g; = p,ll / .]”2

Smin(zpji (Pij —

J=1 =1 qi

n
<k piDKL(Paj || Asj)
j=1

. n m Pl]
=K ijZP[jIOgA—
j=1 =1 !
n m
= xS)™! ZZN"/ log P;j — ZZN’J logZAlka,

j=li=1 i=1 j=1

:(KS)_ ZZNI/Zékllogplk_ZZNI/ZFk/IOg)\'lk

j=li=1 i=1 j=1

= kS)"! (E(P, Id,) — 0(x, F)).

For the interpretation of this result, a few remarks are in order.

Remark 18 (a) Note that (33) provides a (weaker) a priori bound for x = «P' and a
(sharper) a posteriori estimate for k = P due to its dependence on the solution
A of the DBMR problem.

(b) In the proof of Theorem 17, we used only two of the four inequalities established
in Proposition 26 in Appendix C. Using all four inequalities, and defining x :=
max(/c(l), Kq(l), @, /céz)) with

= % min ¢; min %(P.j Aej),

i=1,...m j=1,...
‘=% min i Irlnn B(Pej)(1 —aj),

i=l,..m  j=1,.,

@
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(©)

(d)

(e)

®

one would obtain a seemingly sharper bound in (33). However,

. | Pei — Aaill min; ¢; . |[Pej — Aejll
I((;l) :% _min o |P_.[J\|] > iqi min . ojll1 =K(]),
j=ten max; Pl 2 7 IPej = Aejlloo
.l —aj min;g; . l—o;
Kf) _ %mm—;, > i qi i J _ K(Z),
J max; % 2 J ”Poj”oo
1

so this would not lead to an improvement over Theorem 17.

Clearly, the higher the g-balancedness B, (P, ;) of P,; in the formula of K;Z) is
for each j = 1, ..., n, the sharper the inequality (33) becomes. Note that this
balancedness is large (for fixed j) if P,; ~ g. The dynamic interpretation of
P,; ~ q is that the state j is mapped to a distribution that is close to the final
distribution ¢. If that is true for every j, then there is little coherence in the system,
as P ~ q]lE;], with singular values oy = 1 and 0, = 0, n > 2. In contrast, K;I)
is large if the g-balancedness of the difference, B,(P.j — A4 ), is large for each
j =1,...,n.Onthe one hand, this seems to be a less restrictive requirement than
the previous one. On the other hand, it is harder to characterize a priori, as all we
know about the columns of P and A is that they are probability vectors, hence
their difference has zero mean.

DBMR maximizes €(}, I') over all pairs of stochastic matrices of given fixed
dimensions, cf. Problem 2. Thus, within the bound given in Theorem 17, DBMR
minimizes the Frobenius norm of the difference between the full model and the
low rank model. By the Eckart—Young—Mirsky theorem (Hsing and Eubank 2015,
Theorem 4.4.7), the best rank-r approximation of a matrix with respect to the
Frobenius norm is given by the composition of the leading r singular modes of
the matrix, cf. (9). Theorem 17 thus states that the optimal DBMR solution is a
quasi-optimal approximation of the leading r singular modes of P, and hence to
the coherence problem, as discussed in Sect. 3.2. In particular, the bound in (33)
is zero if P = A, as any reasonably tight bound of || P—A || # should be.

The seeming dependence of (33) on S is deceptive, since ¢ itself scales “linearly”
with S. More precisely, the right-hand side of the bound converges almost surely as
S — o0, if the data acquisition procedure is such that %N converges almost surely
for § — oo. This is obvious from (14). The i.i.d. sampling procedure assumed in
Sect. 3 satisfies this condition by the law of large numbers.

We note that a related “balancedness” concept plays a role in a different a
posteriori refinement of Pinsker’s inequality (Ordentlich and Weinberger 2005,
Theorem 2.1), relating the total variation distance and the Kullback—Leibler diver-
gence.

An alternative interpretation to Theorem 17 arises by invoking Corollary 12.

Corollary 19 Under the assumptions of Theorem 17,

1. ) N
Co(A) > E(m, r)— (P, Id,,)) +| P> (34)
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Proof Using Corollary 12 and noting that all singular values of A satisfy oi(A) €
[0, 1], we obtain

G =Y @) =Y o2& = |K[; = 1213 - 1P - K|1%.

i=1 i=1
The claim follows directly from Theorem 17. O

Therefore, relying on the a priori error bound in (33) with k = «P", an increase in the
DBMR objective (1, I') results in a sharper lower bound on the degree of coherence
in A=Al

7 Numerical Examples

We will consider three examples and compare the performance of Algorithm 2 imple-
menting DBMR (Gerber and Horenko 2017) which is available as open access, see
Sect. 8, with Algorithm 1 implementing the classical approach to coherence. In the
first example, we model a transition matrix with two perfectly coherent partition ele-
ments where one of these elements can again be subdivided into two strongly, but not
perfectly coherent sets. The second example is a discrete version of a map with three
large (and several small) coherent sets; see (Froyland et al. 2010a, Example 1). The
third one, a benchmark fluid-dynamical system, will be elaborated in Example 23, and
the subsequent discussion here only refers to the first two examples.

In each example, we consider three different perturbations of the transition matrix:
unperturbed (¢ = 0), slightly perturbed (¢ = 2 or 1) and strongly perturbed (¢ = 10
or 4) in the following sense: Each data point (x, y) € D is replaced by a uniform
random point from the set

((x +{—¢,...,¢}) modn) X ((y +{—&,...,€}) modn). (35)

Note that we assume the states to be ordered periodically, i.e., states 1 and n are
adjacent. For DBMR, we perform 100 independent runs with randomly generated
initial affiliation matrices '@ (i.e., the columns of this matrix are independent uniform
random samples of the r canonical unit vectors) and the best result in terms of the
DBMR objective (14) is taken. The following criteria for coherence are considered for
the comparison between DBMR and the classical approach with » = 3 latent states:

(a) The second and third singular values o7, o3 (note that o1 = 1 by construction) of
the low rank projected (and reweighted) transition matrices A (of DBMR) and of
Is;ed of the classical approach (note that, by construction, the latter coincide with
the ones of the full-rank transition matrix F) are presented in Tables 1 and 2.

(b) The DBMR objective (14) is evaluated for the resulting affiliation matrices
“DBMR-I"” and “SVD-I"” (which naturally correspond to partitions by (3)) of
Algorithms 1 and 2, and compared to the “default” affiliation matrix “default-I"”
given by our construction of the example (see the descriptions below). For this
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purpose, the corresponding matrix A is chosen to maximize £(-,T) in (14) and,
hence, is given by (15). In addition, we compare these values to the “reference
value” £(P, 1d,) of the unreduced model. The corresponding values are presented
in Tables 1 and 2.

(c) Finally, we compare the objectives of the different model reduction tools by con-
sidering the tightness of the bound in Theorem 17. Recall from Corollary 19 that
the quantity || P—A ||% is approximately monotonic in the degree of coherence C
introduced in Definition 2. More precisely, the larger C(A), the smaller || P — A ||%.
Tables 1 and 2 show both sides of the inequality (33) for A obtained in the best
DBMR run. In addition, Fig. 7 in Appendix E illustrates in how far the two objec-
tives | P — A ||%F and £ are in line by comparing their values for a large number of
corresponding pairs (A, I').

(d) A visual comparison is performed in Figs. 1 and 2 by plotting the transition matrix
P and its reduced versions Prq (SVD)® and A = AI" (DBMR), where larger tran-
sition probabilities correspond to darker shades of gray. In addition, the partitions
of the input states corresponding to the respective affiliation matrices (default-T",
SVD-TI" and DBMR-T") are color-coded in yellow, green and red on the bottom
line of the matrix images.

Example 20 (three coherent sets) Our first example is an idealized dynamics having
two perfectly coherent sets, one of which can further be subdivided into two less
coherent sets. We take n = m = 100 input and output states and define the coherent
sets E1 = {1,...,25}, E; = {26,...,50}, and E3 = {51, ..., 100} which partition
both [n] and [m]. The data set D consists of § = 25000 pairs (X, ¥,),u =1,..., S,
and is constructed such that

8,i,je Eyjori, je€ E,
N — 2,ieE|,jeEyorieEy, jeE,
Y7)5,i0,j € E3,

0, otherwise.

Hence, there are Z;"zl N;;j = 250 transitions out of every state. As discussed above,
we also consider two perturbed version of the above data given by (35) for ¢ = 2, 10.

The resulting coherence criteria (a), (b), (c) and (d) described above are summarized
in Table 1 and visualized in Fig. 1. Note that the rank of the unperturbed transition
matrix P is r = 3, allowing the truncated SVD to match the exact transition matrix.
Also, since P has only three different columns, the DBMR result with » = 3 latent
states coincides with P (cf. Example 8). As expected, in both the full and the reduced
models, coherence (measured by the singular values) as well as the values of ¢, are
decreasing with increasing perturbation strength. We observe that, for unperturbed
and slightly perturbed data, the reduced models as well as the partitions visualized in
Fig. 1 are rather similar, as are the singular values o2, 03 and the values of {in Table 1.
On the other hand, for strong perturbations (¢ = 10), we report larger differences in
all of the above criteria, suggesting that the two objectives C3 and ¢ are not entirely

6 Note that Preq can have negative entries, so it need not be a transition matrix.
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Fig.1 Coherent set identification for Example 20 with » = 3 clusters and 3 different levels of perturbation:
Top: Full transition matrix P. Middle: Reduced transition matrix Preq obtained within the classical Algo-
rithm 1. Bottom: Reduced transition matrix A = AI" of the DBMR Algorithm 2. The coloring at the bottom
line of each plot corresponds to the clustering given by the associated affiliation matrix I' (or partition &):
default-I" (top), SVD-I" (middle), and DBMR-T" (bottom). The coloring on the left margin of the plots
represents the corresponding partitions F. For the middle row, F is obtained by clustering and matching
(lines 56 of Algorithm 1), and for the bottom row by (11).

aligned. In particular, the DBMR objective prefers merging the two small coherent sets
into one and assigning a “mixing zone” on the interface between the two halves of the
state space as a third cluster. Finally, we consider the tightness of the inequality (33)
in Table 1 (c). Since the transition matrix P in the unperturbed case has rank three,
DBMR is exact and both values are below machine precision. We observe for the
perturbed cases that there is a factor of 10 between the left-hand side and right-hand
side of the inequality, which could be indicative of the different nature of the objectives
that are optimized in Problem 1 and Problem 2.

Example 21 (piecewise expanding interval map) In our second example, the number
of input and output states equals n = m = 90 with 90 transitions out of every state,
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Table1 Coherence criteria ((a)), ((b)) and ((c)) discussed above for the comparison of the classical approach
to coherence (Algorithm 1) and DBMR (Algorithm 2) for Example 20. In the last row, the superscript 1 or

2 indicates whether k = K;l) or Kk = Kéz)
Perturbation e=0 e=2 e=10
) oa(P) o3(P) 1.000  0.600 0.939 0.545 0.725 0.362
3’ ~ ~
aa(A) a3(A) 1.000 0.600 0.918 0.528 0.702 0.071
£(\,T) for default- —0.954-10°  —0.997-10°  —1.077-10°
(b) {(\,T) for SVD-T —0.954-10°  —0.997-10°  —1.076- 105
{(\,T) for DBMR-T —0.954-10°  —0.997-10°  —1.072-10%
reference value ¢(P, Id,,) —0.954-10°  —0.951-10°  —1.012-10°
1P - AJ% 5.2083 - 10731 0.4123 0.5443
(© w10 pjDkL(Pe | Aej) 8299110717 4.3351 3.9866
K 0.1562 0.0424M 0.0621"

totaling S = 8100 data points. Each input state j is paired, with equal frequencies, with
three output states i such that N;; = 30 for the corresponding pairs. We do not explicitly
write down how these three output states are chosen, but instead refer the reader to
Fig. 2 (top left) as well as to (Froyland et al. 2010a, Example 1), which this example was
inspired by. The sets E1 = {1, ...,30}, E» = {31,...,60}, and E3 = {61, ...,90}
are perfectly coherent (their output “partners” being E3, E3, and E1, respectively).
There are also smaller perfectly coherent sets, for instance {61, 80, 81}, of which the
output “partner” is {1, 2, 3}. There are, in fact, 30 such 3-element coherent sets, and
arbitrary unions of them are also perfectly coherent. Note that the smaller a coherent set,
the more its coherence will be affected by the perturbations. For the small perturbation,
we use ¢ = 1, and for the large one, we use ¢ = 4, cf. Fig. 2 (top middle and right).

The coherence criteria (a), (b), (c) and (d) described above are reported in Table 2
and visualized in Fig.2. In the unperturbed case, Algorithms 1 and 2 both identified
perfectly coherent sets that we comment on in Remark 22. In the slightly perturbed
case, the £-value of DBMR-T" was worse than the ones of default-T" and SVD-T'. This
shows that, even with a large number of 100 independent runs, DBMR was incapable
of identifying the global optimum of ¢, which we attribute to the large number of
small coherent sets (in the unperturbed case), presumably resulting in a large number
of local optima. We did not observe this issue in the strongly perturbed case, where both
Algorithms 1 and 2 identified the default partition. This suggests that the perturbation
of ¢ = 4 was sufficient to “smoothen out” many of the local optima. We also point out
that, compared to Example 20, the inequality (33) is sharper — the deviating factor is
between 2 and 8 rather than 10.
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Fig.2 Coherent set identification for Example 21 with » = 3 clusters and 3 different levels of perturbation:
Top: Full transition matrix P. Middle: Reduced transition matrix Preq obtained within the classical Algo-
rithm 1. Bottom: Reduced transition matrix A = AI" of the DBMR Algorithm 2. The coloring at the bottom
line of each plot corresponds to the clustering given by the associated affiliation matrix I" (or partition
£): default-T" (top), SVD-T" (middle) and DBMR-T" (bottom). The coloring on the left margin of the plots
represents the corresponding partitions . For the middle row, F is obtained by clustering and matching
(lines 56 of Algorithm 1), and for the bottom row by (11).

Remark 22 In Example 21 with no perturbation, visualized in Fig.2 (left), there is a
large number of small perfectly coherent sets. Hence, each partitioning of these sets
into three groups will again produce perfectly coherent sets. In that sense, both the
classical Algorithm 1 and the DBMR Algorithm 2 identify perfectly coherent sets
(we verified that the sum of the leading three singular values of A= D, 1/ ZAFD;,/ 2,
i.e., the degree of coherence C3(p, AI'), has the maximal possible value of r = 3,
(&, T') being the DBMR output), showing that this DBMR result is not inferior to the
classical one with respect to our measure of coherence. Furthermore, DBMR performs
a partitioning into groups of equal size (30 states each), cf. Fig.2 (bottom left), while
the group sizes resulting from the classical approach (namely 84/3/3) strongly differ,
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Table2 Coherence criteria (a), (b) and (c) discussed above for the comparison of the classical approach to
coherence (Algorithm 1) and DBMR (Algorithm 2) for Example 21. In the last row, the superscript 1 or 2

indicates whether x = K;l) or Kk = K;Z)
Perturbation e=0 e=1 e=4
) oa(P) o3(P) 1.0000 1.0000 0.9849 0.9846 0.8961 0.8948
3’ ~ ~
oa(A) o3(A) 1.0000 1.0000 0.9548 0.9234 0.8518 0.8400
£(\,T) for default-I —0.2755-10°  —0.2828-10°  —0.3002 - 10°
) {(\,T) for SVD-T —~0.3212-10°  —0.2828-10°  —0.3002 - 10°
{(\,T) for DBMR-T —0.2755-10°  —0.2861-10° —0.3002 - 10°
reference value £(P,Id,) ~ —0.0890-10° —0.1817-10° —0.2531-10°
1P - AJ% 27.000 7.5525 2.0543
(© w130 pDrL(Pe | Asy) 69.0776 40.3973 15.6709
K 0.0333(M 0.0319(M 0.0370(M

cf. Fig. 2 (middle left). As argued by Froyland et al. (2010b) in the context of r = 2
coherent sets, equal group size is a preferable property in terms of coherence. In fact, (
Froyland et al. 2010b, Sect. III.A) imposes the two coherent sets to have approximately
the same mass. In that sense, the DBMR result is preferable to the one of the classical
approach. Note that this preferable property of coherent sets having large size is not
reflected by our measures of coherence, namely the objective in (2) and the degree of
coherence in Definition 2.

Example 23 (Periodically perturbed double gyre)

As the concept of coherent sets arose from fluid-dynamical problems, we briefly
consider a benchmark example from this field. More precisely, we consider a two-
dimensional phenomenological model from (Shadden et al. 2005, sec. 6) which
contains two counter-rotating gyres next to one another, with a vertical separatrix
between them undergoing a periodic oscillation in the horizontal direction. This “dou-
ble gyre” flow is governed by the stream function

Y(x,y,t):= Asin(x f(x, 1)) sin(wy), (36)

where the function f(x,t) is given by f(x,?) = § sin(wt)x2 4+ (1 — 28 sin(wt))x
for (x, y) in the domain Q2 = [0, 2] x [0, 1] € R2. The flow itself is the solution of
the ordinary differential equation (x, y) = (—dy/dy, 9y /dx). We set the parameter
values to A = 0.25, § = 0.25 and w = 2m, as in Froyland and Padberg (2009),
implying a flow map with period %’ = 1. Contour plots of the stream function half a
period apart (at maximal displacements during the separatrix’ oscillation) are shown
in Fig. 3.
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Fig.3 Contour plots of the stream function ¥ from (36) at time t = 1/4 (left) and time r = 3/4 (right). At
any time, the velocity field is tangential to level sets of the stream function

We define categories by discretizing the domain 2 uniformly into 64 x 32 = 2048
square boxes of edge length 3% For the input X (initial time), we populate each box
with 100 random points, which yields a sample size of S = 204 800. For the output
Y (final time), we consider the time-40-flow map of the double gyre system from
initial time #9 = O to final time #; = 40 (implemented by a fourth-order Runge—Kutta
scheme with constant stepsize 2 = 0.01). As in the previous examples, and similarly to
Froyland and Padberg-Gehle (2014), we apply an additive i.i.d. uniform perturbation
to every input and output point coordinate-wise from [—p, p], reflecting back any
point that has been propelled out of 2 by this perturbation. We choose p = %2 The
input and output categories are then determined by assigning the (perturbed) points to
the boxes they lie in.

We compare the performance of DBMR (Algorithm 2) with the classical approach
(Algorithm 1) when identifying r = 3 and r = 5 coherent sets. We recall that the
flow is 1-periodic and we chose 40 iterates of the time-1-flow map to generate our
input—output pairs. Thus, any invariant sets of the time-1-flow map that are reasonably
large compared with the perturbation size p are expected to be found coherent. The
structure of these invariant sets if fairly intricate, as can be seen, e.g., in (Banisch et al.
(2019), Fig. 12). We expect to observe two coherent gyre-like structures centered
approximately around the points (0.5, 0.5) and (1.5, 0.5), respectively. These two
gyres can be “stratified” further into ring-like coherent sets. The two coherent gyres
and some smaller, “satellite” invariant sets around them are surrounded and separated
by a third large coherent set that is internally mixing and which hence cannot be
separated any further into reasonably coherent subsets. In Fig. 4 (top two rows), we
show the results of the classical approach for » = 3 and r = 5 coherent pairs from
Algorithm 1, respectively. In comparison with that, the DBMR result of Algorithm 2
(best of 100 runs) is shown in Fig. 4 (bottom two rows), for r = 3 and r = 5,
respectively. We observe that DBMR tends to identify a larger collection of the above-
mentioned invariant sets as coherent, while the classical approach focuses on the gyre
cores and their stratification.

Classical approach versus DBMR for coherent set identification.

In this manuscript, we have compared analytically as well as empirically the per-
formance of two approaches to identify coherent sets of dynamical systems—the
classical approach (Algorithm 1) and DBMR (Algorithm 2). Let us briefly summarize
the advantages and disadvantages of using DBMR for this task:
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Fig. 4 Coherent sets for the double gyre flow from Example 23. Top two rows: The classical approach to
coherence, clustering of singular vectors into r = 3 (first row) and r = 5 (second row) clusters to yield
coherent sets at initial time (left) and at final time (right). Bottom two rows: DBMR with r = 3 (third row)
and r = 5 (fourth row), coloring by the latent states from I' (left) and the sets Fy given by (11) (right)
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On the one hand, DBMR performs worse in terms of coherence given our measure
of coherence (see Definition 2). This is almost a tautology since the classical approach
by construction maximizes the degree of coherence C,, while DBMR optimizes a
different objective. Furthermore, DBMR comes with the risk of running into local
maxima of £, cf. Example 21 with slight perturbation.

On the other hand, DBMR seems to promote large coherent sets (an attractive
property in many settings of applied interest), while the classical approach might
identify coherent sets that are very small, cf. Remark 22 and Example 21 with no
perturbation. In this light, the DBMR objective might be preferred, but future work
developing a systematic comparison between optimization objectives for coherent sets
is needed. In this direction, we conjecture that the entropic characterization of DBMR

@ Springer



2 Page32of44 Journal of Nonlinear Science (2025) 35:2

(see Remark 6) can be shown to provide a theoretical foundation for the observed
size-sensitive properties of DBMR.

The “reduced transition matrix” A (operating on the compound input states grouped
by I') of DBMR is a left stochastic matrix. Therefore, DBMR is structure preserving
in this sense, while the “reduced transition matrix” Fred of the classical approach can
have negative entries and the entries in each of its columns typically do not sum to one.
A further advantage of DBMR might be that it does not require the approximation
of the entire mn entries of the “full” transition matrix P; instead, it estimates the
r(n 4+ m) entries (essentially, even only rm + n entries, since I" has only one nonzero
entry per column) of the factors A and I" directly from the data. Gerber and Horenko
(2017) argue that the (comparatively few) matrix entries of the low rank approximation
require far less data. However, our experiments have neither verified nor refuted this
Intuition.

8 Conclusion and Outlook

In this paper, we have suggested and analyzed the application of direct Bayesian model
reduction (DBMR; Algorithm 2, Gerber and Horenko (2017)) for the identification of
coherent sets and compared it with the classical approach based on truncated singular
value decomposition (Algorithm 1). Both approaches perform a certain factorization of
amatrix A & BC into low rank matrices B, C, but maximize two different objectives,
namely the “degree of coherence” as the sum of the leading singular values, corre-
sponding to the minimization of the Frobenius norm ||A — BC||r, and the relaxed
likelihood ¢ from (14), connected to maximum likelihood estimation and minimiza-
tion of the (generalized) Kullback-Leibler divergence Dy (A || BC). Therefore, on a
broader scale, our contributions also establish connections between these two central
minimization problems for matrix factorization.

The above-mentioned comparison is based on two central results, Theorems 10
and 17. The first shows that the DBMR output A = AI" can be written as a composition
of the full model P with an orthogonal projection I, A = PII. While this is insightful
in its own right, it also gives us the necessary tools to derive bounds on the degree of
coherence of the reduced model A in Proposition 13. The second theorem establishes a
connection between the Frobenius norm distance and the Kullback-Leibler divergence
mentioned above, which, to the best of our knowledge, is the first relationship of
this kind. For this purpose, we have derived certain Pinsker-type inequalities for the
(weighted) £2 norm in Appendix C, which might be of independent interest.

In our numerical experiments, DBMR was able to identify meaningful coherent
sets. It is well known that DBMR can get stuck in local maxima of its objective
function, which we also observed (Example 21 with slight perturbation ¢ = 1) even
though we used a large number 100 of independent runs of DBMR. The singular
values and thereby the degree of coherence of the corresponding reduced models were
slightly inferior to the classical approach, which is hardly surprising since the classical
approach optimizes precisely this objective. However, the additional computations in
Appendix E, and in particular Fig.7, show that the two objectives are mostly aligned,
backing up our theoretical findings from Theorem 17.
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An important advantage of DBMR over the classical approach is that its low rank
model A = AT is a product of a left stochastic matrix A and an affiliation matrix
I', which has a clear probabilistic interpretation of a reduced transition matrix A that
operates on compound states clustered by I'. This structure preservation is missed by
the classical approach, where the “reduced transition matrix” Pred can have negative
entries and the entries in each of its columns typically do not sum to one.

The connection between coherence—understood widely as subgroups of states sub-
ject to similar evolution—and matrix factorization remains an active field of research
and various future directions are imaginable. It is arguable whether the sum of the
leading singular values of Pisa good measure for the “degree of coherence,” see the
discussion toward the end of section 7. Establishing and optimizing other objectives,
such as the DBMR objective ¢ from (14), and analyzing connections between these
objectives would deepen our theoretical understanding of both matrix factorization and
the study of coherent structures. The coherence problem (2) has a symmetry in the
sense that matching partitions of both input and output space are sought. In contrast,
DBMR in its current form gives merely partitions of the input space. Future research
could hence address the development of efficient “symmetrized” versions of DBMR.

Code Availability

MATLAB code for the Bayesian-Model-Reduction-Toolkit Gerber and Horenko
(2017) is available at https://github.com/SusanneGerber/Bayesian-Model-Reduction-
Toolkit, and the adaptation for this paper is available at https://github.com/Robert
MaltePolzin/DBMR\_Coherence.

A The Coherence Problem: From Continuous to Discrete Space

The coherence problem that we consider here has one of its roots in fluid dynamics.
There, the (Lagrangian) evolution of passive tracers advected by the flow field is
described by a flow ¢"7 : Q — Q on some (mostly two or three-dimensional) spatial
domain €. The flow is nonautonomous, and ¢’ denotes the dynamical evolution
from time ¢ to ¢ + 7. Of particular interest are nontrivial subsets A C 2 that “evolve
coherently” under the flow on some time interval [¢, ¢ + 7], meaning that sets ¢'*5 (A),
0 < s < 7, only experience minimal filamentation. In other words, the flow does not
“disperse” the set A.

The setting can be simplified by considering the flow at only discrete time instances.
For our purposes, only two time instances are enough, say ¢ and ¢ + t. The mapping
T := ¢"" does not need to leave any set in some state space invariant, and hence,
the states at initial and final time can belong to different sets. Formally, the dynamics
thus boils down to a mapping 7 : 21 — 7. We assume that 21, 2, are measurable
spaces, and T is a measurable map, and suppress the underlying sigma algebras.

The coherence problem for the map 7' can now be vaguely stated as the task to
find nontrivial subsets E C Q1 and FF C 2 such that T(E) ~ F and E, F are
relatively “simple” in terms of their geometry and balancedness. The latter can be
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made precise by requiring that the relation T (E) ~ F persists under slight (ran-
dom) perturbations. We refer to Froyland et al. (2010b) for further details. The sets
E, F are then called a finite time coherent pair. There are precise functional-analytic
formulations of this problem available in Froyland (2013, 2015). Instead of taking
this route, we can discretize the dynamics first and state the coherence problem in
the discrete setting directly. This was done in Froyland et al. (2010b) to arrive at a
problem that is numerically accessible via matrix analysis. The same setting arises in
situations where a precise observation of the state of the system is not possible and
only quantized (discrete) observations are performed.

To get to the discrete setting, we subdivide the subsets €21 and €2, into collections
of mutually disjoint partition elements {Bj, ..., B,} and {C1, ..., C;,}, respectively. We
assume that the initial state X is an £2;-valued random variable with law p; thus, w is
a probability measure supported on €2;. Let v denote the pushforward of u by T, i.e.,
the law of Y := T (X). We then define the transition matrix P € R™*" by

_wBNTHG)) , _
P = B =P[Y eCi | X €Bj]. (37)

Note that P is left stochastic, i.e., P;; > 0 for all i, j, and Z;-":l P;j =1 for all j.
We further define the discrete distributions at initial and final times by p € R” and
q € R™, respectively, with

pj=wu(Bj), j=1,...,n, qgi=v(Cp), i=1,...,m.

It follows that the discrete initial distribution is mapped to the discrete final one by the
transition matrix,

q = Pp. (38)

We also assume that p > 0 and ¢ > 0, componentwise. If not, the associated partition
elements are removed from the sets B; and C;, respectively. (And the sets €21 and €2;
are restricted accordingly.)

The transition matrix P together with the (initial) distribution p characterizes a
one-step random transition that jumps from some element B; of the initial partition
to some element C; of the final partition. This way, if one were to consider a sequence
of partitions with diameter converging to zero, the associated sequence of transition
matrices P would constitute a small random perturbation Kifer (1986) of T, see
(Froyland 1998). Thus, formulating the coherence problem for this discrete dynamics
(see main text) will automatically deliver coherent sets that are robust with respect to
small random perturbations of 7.

Finally, we note that approximating dynamical properties of 7' through the dis-
cretization (37) is attributed to Ulam Ulam (1960).
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B Proof of Theorem 10

In this section, we present the proof of Theorem 10. Here, y : [n] — [r] denotes the
assignment corresponding to I" (cf. Definition 1).

Lemma24 The matrix T1 € R™<" given by (22) is symmetric, N7 = 1, and a

projection, n? = 1. Consequently, T1 is a p~'-orthogonal projection (for p~'-
symmetry, see (23)).

Q’oof Symmetry of I follows directly from its definition in (22) and the fact that
IT;; # 0if and only if ¥ (i) = y(j). In order to show that IT is a projection, we
compute

([ =Y V/PiPk 8y i)y k) /PkPj Sykyy (j)
ij =
— 2Py 2r Proyany(
PP Sy iy () Prydovi) .
- - 13
2 Py ) T 2 Prdyany ()

Jo

where we use the fact that nonzero terms in the first sum require y (i) = y (j) = y (k).
It follows that IT is a p~!-orthogonal projection:

2 _ pl2agp=1/22 _ pli2m2py—1/2 _
n? = (py/*fip,"*? = py*fi*p, "> = m,
—1/2~ ,—1/2 /2= ~—1/2 —
w, ) 1 = (u, D, 21D, o)y = (D) 11D, 2w, Dy vy = (M, ) 1,

u,velR".

m}

Proof of Theorem 10 T1 is left stochastic by definition and a p~!-orthogonal projection

by Lemma 24. Since N;; = SP;;jp; and Zf"zl Nij = Spj by (4) as well as I'y; =
Sky (j) by Definition 1, equation (15) implies

Yo TNy Yo Sy Pijpj

Aik = = .
L Yo TNy Y Sk Py

Hence,

S S P n s
=1 %y (N LijPj Z pjo 1
()\'F)ll — Z < J 8]()/([)) — Pi J vy D) — (Pl_[)[ly

j
S\ Xi=8wa)py o Xy Sawa
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proving AI' = PTII. The eigenvector properties in (b) follow from

Pidy Gy (j) Sy iy (j) (k)
Ha(k)) Djdy )k = Pibyirk =L — g,
( Z « 21 P18y (yy (i) o s Z Zz pidyayi

Pidy i)y () )
(Mp); = Z % Oyy pj= Z Z pV(l v()  _ _—
!

21 P18y iy (i) 18y Dy (i)

where we use the fact that nonzero terms in the first sums require y (i) = y (j). Since
IT is a projection, any of its eigenvalues can either be 0 or 1. For (26), it is hence
sufficient to show that if (b, a®) p1=0 for all k € Ran y, then necessarily [1b = 0.
This follows by noting that

(b,a®) 1 = Zb 8y i)k (39)

so that

n

Pi >z Sy ()Hbj
§ Mijbj = -0
2= P8y yy )

if (39) is satisfied for all k € Ran y.

The disjointness of the supports of the vectors a®) follows from their definition
(and T" being a hard affiliation matrix). Item is now a direct consequence of (b). Item
(c) follows directly from (b) and A = PII, Ap = PIlp = Pp =gq. O

C Pinsker’s Inequalities

The classical formulation of Pinsker’s inequality (Tsybakov 2004, Lemma 2.5) bounds
the squared £' norm (or, equivalently, the squared total variation norm) of the difference
of two probability vectors u, v € R™ by the Kullback—Leibler divergence,

llu —v||? < 2Dkp(u || v). (40)

In this section, we derive a similar result for the (possibly weighted) £2 norm in place of
the ¢! norm. While this can easily be achieved by applying the inequality ||x [, < x|/,
x € R™, our aim is to obtain bounds that are as sharp as possible. For this purpose,
we use the concepts of balancedness and g-weighted balancedness from Definition 15
and state four versions of Pinsker’s inequality in Proposition 26 which are particularly
sharp in cases where either

(a) the difference u — v has high balancedness, or
(b) we require a bound of the g-weighted ¢> norm and u — v has high g-balancedness,
or
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(c) the vector u has high balancedness and the difference # — v is small, or
(d) we require a bound of the g-weighted £2 norm, u has high g-balancedness and the
difference u — v is small,

respectively.
Lemma 25 Forany x € Rwithx > —1,

2 X3

X
1 l < JEE— —
og(l+x) <x 7 + 3

Proof The function f(x) = x — x2/2 + x3/3 — log(1 + x) satisfies f(0) = 0, and
since (1 4 x) f/(x) = x>,

, >0 ifx >0,
X
RS <0 if —1<x<0,
proving the claim by the fundamental theorem of calculus. O
The following result is utilized in Theorem 17.

Proposition26 Let u,v,q € R™, m € N, be probability vectors such that ¢ > 0
(componentwise) and o (u, v) := %maxi ‘”’u—_l”" € [0, 00].” Then,

mwm%%%%,
mo 2
(b) ; |uj qiv,l - ng(Lu(Li||U;))’
(ww—mgsm;;%flavw Fat,v) < L
(d)g |t ;vi|2 < %q?ul;ZL(_uoll(:? — oo < 1

Proof Letn := v—u.If n = 0, there is nothing to show. Otherwise, Holder’s inequality
and Pinsker’s inequality (40) yield

Inll 2Dk (u || v)
113 < Inllsolnlly ﬂﬁw% TP
1 —
m 2 o il
[7; [7i] max; . 2Dkr(u || v)
Do o smac Sl =l s e
~ g i g Il @ —v)

proving (a) and (b). In order to show (c) and (d), first note that if v; = O and u; # 0
for some i, then Dgp. (u || v) = oo and there is also nothing to show. On the other
hand, if u; = 0 and v; # O for some i, then the condition «(u, v) < 1 is violated.

7 Recall the convention % =0.
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Finally, if u; = 0 and v; = O for some i, then we can reduce the dimension m by one
and work with [m] \ {i} without changing any of the quantities involved. Hence, we
can assume u; # 0 # v; for each i € [m]. Now, since ) ; n; = 0 and assuming that
a(u, v) < 1, Lemma 25 implies

m u; +n
Dic (u || v) = = ) u;log <u—>
]

1 —a(u,v)

2
> llu —vll3
2|ull o ’

proving (c). The proof of (d) goes similarly with a slight modification of the last step:

m

2 m 2
T q; 2n; 1-— , P — V;
Dir(u || v) 2} :77_1 qi <1 _ 771) > a(u v) Z [u; — vl .

= 4 2u; 3u; 2 max; . = qi

D Courant-Fischer Theorem for Singular Values

The common formulation of the Courant—Fischer (or min-max) theorem is stated for
the eigenvalues of quadratic matrices. However, in Sect. 3.2 we require a version for
singular values of an arbitrary matrix, which is a well-known consequence. Let us
state and prove the precise version that we are going to use:

Theorem 27 Letni,ny € Nand M € R™*"™ be an arbitrary matrix withrank (M) :
s < min(ny, ny) and ordered positive singular values oy > o9 > --- > 05 >
0. Further, let M = UXV" be a singular value decomposition of M with ¥ =
diag(oy, ...,o05) and with U € R™>*5, V. e R"™*S having orthonormal columns.
Then, denoting by 20y, the set of k-dimensional subspaces of R"2,

max min  ||Mx|, = oy, k € [s], 41
We20, xeW, ||x|,=1
r r
max Me = ok, r €[s], 42
(e1,...,er) orthonormalZ” k”2 Z k [ ] ( )
k=1 k=1
where (41) is maximized by W = span(V,1, ..., Ver). (with the inner minimization

problem solved by x = Vg ), while (42) is maximized by the right singular vectors
el = Vei,...,er = Vor.
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Proof First note that, for each k € [s], ox = «/Ak, Wwhere Ay > --- > A; > 0O are the
positive eigenvalues of M " M and that

IMx|3 = (Mx, Mx)y = (x, M Mx)3 < |Ix|l,|M " Mx]|,,

with equality if and only if x and M " M x are collinear, i.e., whenever x is an eigen-
vector of M T M. Hence, the inequality “<” in (41) follows directly from the classical
Courant-Fischer theorem (Horn and Johnson 2013, Theorem 4.2.6). To see the equal-
ity for W = W}, consider any x = Zl;zl ajVej e Wiae R¥, and observe that

k k
2 2 2 2 2 2 2
IMx|5 =1 ajojUsjls =Y (ajoj)* = of > aF = of|lx|3,
j=1 j=1 j=1

with equality for x = V.
To see (42), note that a recursive application of (41) implies the inequality “<” in
(42), while the choice e; = V, satisfies equality:

r r r
D IMVeklly =) llowUaklly = Y ok
k=1 k=1 k=1

E Collective Analysis of DBMR Runs

To support the investigations in Sect. 7, here we provide a brief analysis involving
multiple DBMR runs. Due to the non-concavity of the objective ¢, DBMR can settle
in different local maxima of ¢, depending on the initialization I'?.

Results of 100 runs of DBMR are presented in Figs. 5 (Example 20) and 6 (Exam-
ple 21). The top row of images compare the first 5 singular values of A for every
converged pair (A, I') (blue crosses) with the singular values of the full model P (red
dots). Since rank A = 3, we do not show its 4th and 5th singular values, which are
always zero. The bottom row of images present, for every converged pair (A, I'), the
DBMR objective Z(A, ') versus the degree of coherence C3(A). In the bottom pan-
els, a colorbar indicates the number of solutions in the histogram bins. In each of the
bottom rows, one panel shows the results as a scatter plot instead of a histogram, for
better visual experience.

We observe that in the unperturbed case DBMR recovers o = 1 perfectly for all
runs, but o3 = 0.6 is recovered only in 60% of the runs, and in the remaining runs it
converges to a (degenerate) model with effectively » = 2 latent states; i.e., 03 (K) =0.
The bottom left panel of Fig.5 shows that the degenerate results are suboptimal, in
the sense that the corresponding iterations get stuck in a suboptimal local maximum.
As the perturbation in the data is increased, o5 is close to optimal and we start to get
results between the previous two extreme cases of 03 (1~\), and the associated degrees
of coherence (,’3(7\) spread out from the previous two values somewhat. For large
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Fig. 5 Top: First 5 singular values of Pand A = PTI for the transition matrix of Example 20. Bottom:
Likelihood bound £(%, I') in dependence of the degree of coherence C3(A). Results are shown for 100 runs
of DBMR with r = 3 latent states. Left: unperturbed; center: slightly perturbed right: strongly perturbed
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Fig. 6 Top: First 5 singular values of Pand A = PTI for the transition matrix of Example 21. Bottom:
Likelihood bound £(X, I') in dependence of the degree of coherence C3(A). Results are shown for 100 runs
of DBMR with = 3 latent states. Left: unperturbed; center: slightly perturbed right: strongly perturbed

perturbation, this process continues, and we see clustering of the objectives (C, 0)
around (1.75, —1.072-10°) and (2, —1.076- 10°). That is, the objectives work against
one another. We thus note that while increasing the perturbation improved the success
rate of the DBMR runs finding a global maximum, it also turned the harmonious
objectives into mildly conflicting ones.

Figure 6 (Example 21) shows that for the unperturbed case all DBMR runs converge
to coherence-optimal partitions. However, for the perturbed cases, many local optima
trap the runs. As discussed in Example 21, we attribute these local minima to the many
coherent sets of different sizes present in this system. In this example, we observe no
conflict between the optimization criteria C and ‘.
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Fig. 7 The two objectives f(k, I') and H/N\H%,- for all iterates of 1000 randomly initialized DBMR runs in
the strongly perturbed case of Example 20. Gray lines connect data points for successive DBMR iterates,
and red dots indicate the endpoints of the 1000 runs (local optima of the DBMR objective (14)). The right
panel is a close-up of the region with the highest values of both objectives, corresponding to the top right
corner of the left panel

To get a more comprehensive picture for Example 20 with large perturbation, where
the conflict between the optimization criteria arises, we consider 1000 new DBMR
runs. Every run is initialized, as before, with an affiliation matrix 'O of which every
column is a uniform i.i.d. sample of one of the three standard unit vectors. This time,
instead of considering only the converged DBMR solutions, we keep all iterates of
every run, that is, whole “DBMR trajectories™ 6674 pairs of (2, I') in total. For all
these, we depict Z(A I') and Zl_l zr,(A)2 ||1~\||2 , where the latter equality is due
torank(A) < r = 3.ByCorollary 19, this is an equivalent objective to ||P A||2 ,since
P ||% depends only on the data and not on DBMR iterates. The results are shown in the
left-hand panel of Fig. 7, with a close-up on the region with the conflicting optima on
the right. In the left-hand panel all initial points of DBMR runs satisfy IA ||%, < 1.1.
We observe that, although there is some “spread” during the DBMR iterations and
in particular in the local DBMR optima, the correlation between the objectives is
quite high for this set of matrices. We also observe a third cluster of local optima
around £(1,T) ~ —1.084 - 10° which was not found by the previous 100 runs,
cf. Fig.5 (bottom right panel). It seems to correspond to degenerate local minima
essentially belonging to a coherent 2-partition, as can be seen by the corresponding
DBMR transition matrix A, depicted in Fig.8 (right). This figure illustrates three
DBMR transition matrices A, each corresponding to one DBMR optimum from the
three red clusters in Fig. 7. Its left panel is identical to the bottom right panel Fig. 1
with the highest DBMR objective value, while the center panel with objective value
around —1.076- 103 corresponds to a clustering that is closer to the coherence-optimal
partition (Fig. 1 middle right).
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