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Summary 

Protein-protein interactions (PPIs) are the drivers of most biological processes. Cross-

linking mass spectrometry (XL-MS) allows the detection of PPIs from complex biological 

systems and even in vivo scenarios by combining chemical cross-linking with small 

reactive molecules, proteolytic digestion and LC-MS (liquid chromatography coupled to 

mass spectrometry) analyses.  

However, as the abundance and physicochemical properties of cross-linked peptides 

differ from those of unmodified peptides, the reliable identification and accurate 

quantification of cross-linked peptides requires tailored protocols, efficient acquisition 

strategies and dedicated data analysis pipelines. Throughout my doctoral studies, I 

focused on advancing different steps of the XL-MS pipeline, including (1) the optimization 

of acquisition parameters for the detection and quantification of isobarically labeled cross-

linked peptides, (2) the development of novel methods for the targeted detection of cross-

linked peptides over less wanted species, and (3) the introduction of a ground truth dataset 

for benchmarking existing cross-linking database search engines and the development of 

new computational tools. 

Firstly, I described a speedy MS2-based acquisition strategy with an optimized stepped 

collision energy of 42% ± 6 and a perfect balance between sensitivity and accurate 

quantification of TMT-labeled cross-linked peptides from complex samples. Previously 

described MS2-MS3-based methods were shown to have exhaustive duty cycles, 

hampering the identification of cross-linked peptides, although their quantification 

capabilities overcame MS2-based methods. 

Secondly, utilizing a real-time library search (RTLS) algorithm was shown to increase 

cross-link identifications by 45% as the instrument was able to partially distinguish cross-

links from other peptide species based on the unique relative intensity pattern of a set of 

four diagnostic peaks. This was achieved by performing a fast scan on each precursor 

and comparing it on-the-fly to a library of theoretical spectra for cross-links and other 

species. Exhaustive identification scans were only triggered when the previous survey 

scan matched to the theoretical cross-link spectrum. 

Lastly, I generated a dataset with known PPIs by mixing purified proteins according to a 

defined scheme and heat-induced interactions. The dataset was used to monitor the 

empirical false-discovery rate of various existing database search algorithms. Multiple 

features of spectral quality from this dataset have been used to develop Scout, a machine-
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learned cross-link search engine that greatly outperforms other software in  terms of 

usability, sensitivity, reliability and speed. 

Taken together, these methodological achievements display a considerable progress for 

the XL-MS community by providing versatile tools that will promote the research on PPIs 

across various biological models.  
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Zusammenfassung 

Protein-Protein Interaktionen (PPIs) bilden die Grundlage vieler biologischer Prozesse. 

Cross-Linking Massenspektrometrie (XL-MS) ermöglicht das Detektieren von PPIs aus 

komplexen biologischen Systemen und sogar in vivo Szenarios. Dies wird erreicht durch 

die Kombination der Quervernetzung von Organellen, Zellen oder Geweben mittels 

kleiner, reaktiver Moleküle mit proteolytischem Verdau und LC-MS (Flüssigchromatografie 

gekoppelt mit Massenspektrometrie) Analyse. 

Da sich jedoch ihre Abundanz und physikalisch-chemischen Eigenschaften von denen 

unmodifizierter Peptide unterscheiden, sind für ihre zuverlässige Identifikation und genaue 

Quantifizierung spezielle Protokolle, effiziente Messmethoden und 

Datenanalyseverfahren notwendig. Im Verlauf dieser Arbeit wurden mehrere Schritte des 

XL-MS Arbeitsvorgangs optimiert, darunter (1) die Optimierung der Messparameter für 

den Nachweis und die Quantifizierung isobar markierter vernetzter Peptide, (2) die 

Entwicklung neuartiger Methoden für die gezielte Identifikation vernetzter statt 

unvernetzter Peptide und (3) die Bereitstellung eines kontrollierten Datensatzes für die 

Validierung bestehender oder die Entwicklung neuer Software für die Analyse von XL-MS 

Daten. 

Zuerst habe ich eine schnelle MS2-basierte Methode mit einer optimierten gestuften 

Kollisionsenergie von 42% ± 6 für die optimale Balance zwischen Sensitivität und 

akkurater Quantifizierung TMT-markierter, vernetzter Peptide aus komplexen Proben 

konzipiert. Zuvor entwickelte MS2-MS3-basierte Methoden haben nachweislich 

ausgelastete Laufzyklen, was den Nachweis vernetzter Peptide erschwert, obwohl ihre 

Quantifizierungskapazitäten die von MS2-basierten Methoden übertreffen.  

Zweitens habe ich gezeigt, dass die Verwendung eines Echtzeit-Suchalgorithmus die 

Anzahl identifizierter vernetzter Peptide um 45% erhöht, da das Instrument mithilfe eines 

einzigartigen Musters relativer Intensitäten von vier diagnostischen Peaks vernetzte 

Peptide von unvernetzten unterscheiden konnte. Dies wurde erreicht, indem für jeden 

Precursor ein schneller Abfragescan durchgeführt wurde, der während der Messung mit 

theoretischen Spektren vernetzter und unvernetzter Peptide verglichen wurde. Ausgiebige 

Identifikations-Scans wurden nur dann ausgelöst, wenn der Abfragescan mit dem 

theoretischen Spektrum vernetzter Peptide übereinstimmte.  

Und schließlich generierte ich einen Datensatz mit kontrollierten PPIs, indem ich 

aufgereinigte Proteine nach einem bestimmten Schema zusammengab und Interaktionen 



  9 

durch Hitze induzierten. Der Datensatz wurde verwendet um die empirische 

Falscherkennungsrate verschiedener bestehender Datenbanksuchalgorithmen zu 

überprüfen. Mehrere spektrale Merkmale wurden zudem verwendet, um Scout zu 

entwickeln, eine neuartige maschinen-gelernte Suchmaschine für vernetzte Peptide, die 

andere Programme in Benutzerfreundlichkeit, Sensitivität, Zuverlässigkeit und 

Geschwindigkeit übertrifft. 

Zusammenfassend lässt sich sagen, dass diese methodischen Fortschritte einen 

bedeutenden Nutzen für die XL-MS Gemeinschaft darstellen, da sie Werkzeuge 

bereitstellen, die die Erforschung von PPIs aus verschiedenen biologischen Modellen 

erleichtern werden.
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Main scientific part 

1. Introduction 

1.1. The role of protein-protein interactions (PPIs) in health and disease 

Protein-protein interactions (PPIs) are the drivers of most biological processes, including 

transcription, translation, protein degradation, cell cycle control, cell adhesion, signaling, 

metabolism and viral infection (Kuzmanov & Emili, 2013). Proteins do not exist in isolation: 

their physical and functional interaction lead to the formation of heterogenous multi-protein 

complexes with unique functions, ultimately defining an organism’s phenotype (Gonzalez 

& Kann, 2012). The entirety of PPIs in a defined compartment is described as its 

“interactome”. The complete human interactome is thought to comprise around 650,000 

PPIs (Stumpf et al, 2008; Venkatesan et al, 2009). Perturbations of the interactome by for 

example disease mutations can have a major impact on the health of the organism 

(Gonzalez & Kann, 2012; Kuzmanov & Emili, 2013). For instance, Huntington disease is 

caused by a mutation on the genetic level. Consequently, the misfolded Huntingtin protein 

aggregates uncontrolled, intoxicating the cell and leading to neuronal degradation 

(Gonzalez & Kann, 2012). Proteome-wide techniques, such as affinity-purification (Morris 

et al, 2014), BioID (Roux et al, 2018) and yeast two-hybrid screening (Bruckner et al, 

2009), have been proven useful for monitoring and characterizing PPIs and their 

interaction interfaces on a global level with varying spatial and temporal resolution. 

Studying critical interactions helps to understand a wide range of malignant diseases, 

hinting at various treatment opportunities by inhibition or induction of certain PPIs.  

 

1.2. Cross-linking mass spectrometry as a tool for proteome-wide detection of PPIs 

Cross-linking mass spectrometry (XL-MS) holds promise to detect thousands to hundreds 

of thousands of PPIs in vivo by combining chemical cross-linking of organelles, cells or 

tissues with small reactive molecules and mass spectrometric analyses (Bartolec et al, 

2023; O'Reilly & Rappsilber, 2018; Wheat et al, 2021) (Figure 1). Routinely used cross-

linking reagents covalently link specific amino acid residues in close spatial proximity. 

Then, proteolytic digestion with restrictive enzymes, such as Trypsin and LysC, and LC-

MS are applied to identified the resulting cross-linked peptides. The maximum distance 
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between protein side chains in order to allow successful cross-linking is defined by the 

length of the reagent’s spacer arm that connects the reactive groups. For several 

commonly used cross-linkers, such as DSS, BS3 and DSSO, this distance is around 1 nm. 

The cross-linking reaction happens in less than 30 min, depending on the functional group, 

and occurs both within (“intra-links”) and between proteins (“inter-links”). By-products and 

less wanted species of this reaction are loop-links, which are linear peptides containing 

the two cross-linked residues within one peptide, and mono-links, which are linear 

peptides modified by a quenched or hydrolyzed cross-linker due to unavailability of 

another cross-linkable residue in close proximity. Among all different species in the 

digestion mixture, cross-linked peptides are much less abundant. Thus, their detection is 

hampered by the masking signal of unwanted species. To overcome this obstacle, in 

recent years, enrichable handles were incorporated into novel cross-linkers, enabling 

affinity enrichment of cross-linker modified peptides. XL-MS data contains versatile 

information. Inter-links shed light on the interactome, eventually revealing novel PPIs, 

binding interfaces and subcellular localizations. Intra-links reveal inter-residue distances 

within the same protein, which reflect the conformations and tertiary structures of proteins. 

This can be used either for structural modeling or for the validation of AlphaFold2-

predicted structures when a shorter, less flexible cross-linker is applied (Graziadei & 

Rappsilber, 2022). To this end, XL-MS is a structural biology technique complementary to 

cryo-electron microscopy, X-ray crystallography, and nuclear magnetic resonance 

spectroscopy.  
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Figure 1: XL-MS workflow and applications (taken from (Ruwolt et al, 2023)). 

 

1.3. Cross-linking mass spectrometry workflow 

Similar to conventional bottom-up mass spectrometry (MS), XL-MS can be applied in vitro 

(i. e., on purified proteins or protein complexes) or in vivo (i. e., on organelles, cells, 

tissues) with membrane-permeable or -impermeable cross-linkers. Afterwards, extracted 

cross-linked proteins are proteolytically broken down into peptides using proteases with 

high specificity for certain residues within the protein sequence (Figure 1). Based on their 

physicochemical properties or eventually by their enrichment handle, cross-linked 

peptides can optionally be enriched by liquid chromatography and/or affinity purification 

(Steigenberger et al, 2019). The peptide mixture is then separated using reverse-phase 

high performance liquid chromatography (HPLC) and analyzed by customized LC-MS 

methods tailored for cross-link detection. The obtained raw data are searched with 

specialized tools for the identification of cross-linked peptides. 
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Conventional peptide search engines compute theoretical in-silico spectra for all potential 

peptide candidates based on a set of provided parameters, such as protein sequences to 

be expected in the sample, mass tolerances of the MS1 precursor and MS2 fragments, 

maximum missed cleavages, protease used for cleavage, and minimum and maximum 

peptide length and mass. Each experimental spectrum is compared to all in-silico spectra 

based on the above-mentioned user-defined rules and a set of scores can be computed 

based on spectral similarity, such as Poisson distribution (Sadygov, 2018), spectral angle 

(Dai et al, 2022) or dot product (Frewen et al, 2006). The best scored candidate is reported 

as the potential peptide match of the experimental spectrum. If the in-silico spectra are 

provided with known false-positive protein sequences, a false-discovery rate (FDR) can 

be calculated by determining the score cutoff necessary to allow only a certain percentage 

of confirmed false-positive identifications among target identifications (Figure 2, 

Equation 1 (Elias & Gygi, 2010)). All remaining peptides after applying the FDR cutoff will 

then be used to make a list of proteins for the queried sample.  In linear proteomics, the 

target-decoy approach is most commonly used for FDR estimation. Accordingly, each 

target protein sequence in the database is reversed or randomized to generate an 

additional decoy sequence for each target sequence (Elias & Gygi, 2010). This decoy 

sequence is either concatenated to the target database or searched separately. As it is 

unlikely to appear in the real sample it acts as a known false sequence. 

Equation 1:  𝐹𝐷𝑅 = 
𝑇𝐷−𝐷𝐷

𝑇𝑇
 

 (TT: number of target-target matches, DD: number of decoy-decoy matches, TD: number of target-

decoy and decoy-target matches) 

 

Figure 2: Schematic representation of estimating the FDR from mass spectrometry data. 
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The identification process is yet more difficult for cross-linked peptides as their spectra 

contain two peptides. Therefore, conventionally, each experimental spectrum was 

searched with all possible combinations of two in-silico spectra, inflating the search space 

quadratically. The introduction of MS-cleavable cross-linkers and specialized search 

engines could obviate this tedious and sometimes impossible computational process. 

When MS-cleavable cross-linkers are in use, upon voltage-induced collision of the cross-

link in the gas phase (i. e., in the MS2 event), the cross-linker will dissociate at known 

positions, leaving a cross-linker specific pattern of four signature peaks. This marks the 

spectrum as a potential cross-link to reduce the number of spectra searched and but also 

gives the masses of the two cross-linked peptides, reducing the list of candidates to 

compare the experimental spectrum to and allowing individual sequencing of the two 

peptides (Figure 3 (Liu et al, 2015)). However, as cross-links have an increased chance 

for incorporating false-positives (e. g. target-target, target-decoy, decoy-target, decoy-

decoy), the calculation of the FDR in XL-MS (Equation 1 (Fischer & Rappsilber, 2017)) 

needs special attention as no standard is yet generally accepted by the scientific 

community. Many algorithms for cross-link identification have been developed, however, 

due to the difficulties of estimating empirical false-positive rates, it has been challenging 

to thoroughly and unbiasedly evaluate their performance in terms of sensitivity and 

reliability. Thus, it has become extremely important to design and generate fully controlled 

ground-truth datasets with known false-positives as a basis to evaluate the empirical false-

positive rate of already existing and new search engines (Matzinger et al, 2022). Those 

revealed that FDR estimation and empirical false-positive rate (Equation 2) greatly differ. 

Equation 2: 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑓𝑎𝑙𝑠𝑒−𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 

 (FP: number of false-positive identifications, TP: number of true positive identifications) 
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Figure 3: Gas-phase cleavage of the cross-linker induced by collision of the cross-linked peptide 

results in four cross-linker diagnostic peaks (adapted from (Liu et al., 2015)). 

 

1.4. Quantitative proteomics and interactomics 

In addition to peptide and protein identification, MS also offers high-throughput 

quantification of the proteome, enormously contributing to biological, clinical and 

pharmaceutical research (Schubert et al, 2017). Quantitative proteomics is indispensable 

when comparing multiple states of a biological model, such as health and disease, 

different stages of viral infection, nutrient supply, or treatment with varying drugs or drug 

concentrations. Traditionally, label-free quantification (LFQ (Cox et al, 2014)) and protein-

/peptide-labeling techniques have been utilized, each bearing unique advantages and 

limitations. Classic quantitative proteomics techniques include LFQ, stable isotope 

labeling with amino acids in cell culture (SILAC (Ong et al, 2002)), and tandem mass-tags 

(TMT (Thompson et al, 2003)). While being the simplest and cheapest technique to apply 

with almost unlimited sample size, LFQ suffers from high levels of missing values and 

elevated inaccuracy due to individual sample processing. SILAC, though costly, offers the 

greatest accuracy but lacks higher multiplexing. Thus, TMT presents the best compromise 

between quantitation accuracy, multiplexing and expenditure. Although quantitative XL-

MS strategies based on label-free quantification (Chen & Rappsilber, 2019), TMT labeling 

(Yu et al, 2016) and isotopic labeling (of amino acids or the cross-linker (Zhong et al, 

2017)) have been described, the identification of labeled cross-links and their robust 

quantification remains challenging. Labeling cross-linked peptides impairs the use of 

classical pipelines as the fragmentation behavior of peptides is affected by the addition of 

labels and experimental spectra become more complex due to the occurrence of 

additional peaks from the labels. In terms of quantification of the interactome, one major 
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challenge is the additional level of proteomic changes which may likewise affect 

interactomic changes to a yet unknown extent. A standard for normalizing interactomic 

changes of two proteins over their proteomic changes has not yet been developed. 

Consequently, although the usefulness of quantitative XL-MS for the structural analysis 

has been sufficiently described (Chen & Rappsilber, 2019), its application to complex 

biological scenarios remains restricted to few pioneering studies (Caudal et al, 2022; 

Wippel et al, 2022). 

 

1.5. Hampered detection of cross-links 

The low efficiency of the cross-linking reaction poses great challenges for their efficient 

detection. Less than 5% of the identifications from a crude peptide mixture are cross-linked 

peptides, whereas over 95% are unwanted linear peptides, such as unmodified peptides, 

loop-links, and mono-links (Figure 4 (Steigenberger et al., 2019)). Chemical or 

chromatographical enrichment of cross-linker modified peptides nearly abolishes the 

masking effect of unmodified species by surpassing the technical penalty of dynamic 

range (Steigenberger et al., 2019). However, long linear peptides, mono-links and loop-

links still hinder the detection of cross-links and are hardly removable by chromatographic 

or chemical means, as their physicochemical properties barely differ from those of cross-

linked peptides. Yet, it is essential to remove them for large-scale interactomic studies 

because too much acquisition time is spent on the detection of mono- and loop-links and 

lesser abundant peaks (e. g., cross-links) might be completely neglected from sequencing. 
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Figure 4: The number of cross-link identifications from a low complexity sample prior to and after 

enrichment highlight the need for cross-link enrichment in order to achieve sufficient interactomic 

coverage (adapted from (Steigenberger et al., 2019)). 

 

1.6. Aim of the study 

Cross-linking mass spectrometry is a powerful tool for studying protein structures and 

PPIs. Despite being an established technological platform for many years, serious 

drawbacks still remain, including low detection sensitivity, confident and reliable 

identification, and robust quantification. The aim of this thesis includes several 

methodological advancements in the XL-MS detection and analysis pipelines. I aimed to 

(1) optimize the acquisition parameters for the detection and quantification of isobarically 

labeled cross-linked peptides, (2) develop novel mass spectrometric acquisition methods 

for the targeted detection of cross-linked peptides after their chemical enrichment over 

less-wanted species, and (3) introduce a PPI-level ground-truth dataset for the validation 
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of existing cross-linking database search engines and the development of new 

computational tools. 

 

1.7. Original publication 

Ruwolt, M.; Piazza, I.; Liu, F. The potential of cross-linking mass spectrometry in the development 

of protein-protein interaction modulators. Curr Opin Struct Biol. 2023, 82, 102648. DOI: 

10.1016/j.sbi.2023.102648 

https://doi.org/10.1016/j.sbi.2023.102648 

https://doi.org/10.1016/j.sbi.2023.102648
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2. Project 1: Optimizing acquisition parameters for TMT-based quantitative 

large-scale interactomic studies 

2.1. Project description 

Due to the complexity of quantitative interactomics data, technological advances and 

biological applications have been sparse. In this publication we set out to enable efficient 

acquisition and identification of TMT-labelled cross-linked peptides for the generation of 

large-scale quantitative interactomic datasets. We generated a controlled dataset optimal 

for method testing which allows sufficient identification of cross-links and the calculation 

of quantitation interference from co-isolated species. We could show that MS2-based 

acquisition strategies surpass MS2-MS3-based methods in terms of cross-link 

identification, yet partially lack quantification accuracy. 

Isobaric labeling is a common technique for quantitative proteomics as it offers a good 

trade-off between high multiplexing capacity and quantification accuracy, features that 

make it favorable for quantifying cross-linked peptides. Briefly, with the TMT labeling 

approach, between 2 and 18 samples can be prepared in parallel (Thompson et al., 2003). 

First, the extracted proteins are separately proteolytically hydrolyzed into peptides. 

Afterwards, all samples are being labeled with the unique TMT compounds (“channels”), 

combined into one sample and subjected to LC-MS analysis. TMT labels carry a unique 

isotopic pattern which they pass on to the labeled sample. The total mass as well as the 

physicochemical properties of the same peptide from each TMT channel are identical 

(isobaric) to ensure synchronized elution of the same peptides across different samples 

throughout the HPLC gradient. For quantification, TMT bears a mass reporter group that 

can be cleaved from the peptide upon fragmentation of the peptide in the MS. The mass 

reporter is detected and directly quantified, giving information about the abundance of the 

peptide labeled with the respective channel. The modification of peptides with TMT 

changes their fragmentation behavior, requiring higher collision energies for generating a 

fragmentation pattern of sufficient quality for peptide sequencing (Thompson et al., 2003). 

The same principle applies to cross-linked peptides, too (Ruwolt et al, 2022). 

As TMT is an MSn-based technique, it is more liable to isolation interference. This occurs 

when a target precursor from the MS1 has nearly the same mass as a contaminating 

precursor. Both precursors will be isolated by the quadrupole for MS2 fragmentation and 

therefore their TMT mass reporter will add up and falsify the quantitation of the target 
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precursor. This can be avoided if quantification is not performed in the MS2 of the 

contaminated precursor but on target-peptide specific sequence ions derived from the 

MS2 and chosen for higher MSn fragmentation. However, utilizing MSn scans leads to 

longer duty cycles and lower signal intensities, thus decreasing the number of identified 

peptides or cross-links. 

To address the above-mentioned challenges specifically for cross-linked samples, we 

generated a benchmarking dataset by culturing, cross-linking and digesting HEK293T and 

E. coli cells, obtaining a sufficient number of cross-linked peptides. All 10 channels of 

TMT10plex have been used to label cross-links derived from HEK293T cells and 4 

channels of the TMT10plex have additionally been used to label E. coli-derived cross-

links. Human cross-links were mixed in specific ratios and equal amounts of E. coli cross-

links were spiked-into the human sample. Cross-links were enriched from this sample 

using strong cation exchange (SCX) chromatography. Several fractions were pooled for 

LC-MS analysis to obtain heterogenous samples, each yielding different numbers of 

cross-links. One sample was selected for being measured with varying collision energies 

ranging from 21 – 66% in steps of 3%. We monitored multiple parameters when increasing 

collision energies: (1) the number of cross-link signature peaks, (2) the number of cross-

links identifications, (3) the average identification score, and (4) the average TMT signal 

intensity. While the number of cross-link signature peaks decreases at higher collision 

energies, the average TMT intensity increases. The number of cross-link identifications 

peaks around 42% as a result of improved fragmentation at higher energies shown by the 

steadily increased identification score and the lack of cross-link signature peaks which the 

herein used search engine XlinkX (Liu et al., 2015) depends on. Hence, an ideal method 

would combine all those energy optima in a stepped collision energy (SCE). We have 

benchmarked selected SCE combinations to determine which yields the highest number 

of cross-link identifications, average score and TMT reporter intensity and concluded 

42 ± 6% as the optimal compromise. When compared to a standard method with lower 

energies that is used for identification of non-TMT-labeled cross-links or conventional MSn 

strategies, our pipeline proved to result in the highest number of cross-link identifications 

as well as greatest reproducibility. Conventional MS2-MS3-based strategies are based on 

the concept of separating the required energies into different scans. First, a low energy in 

the MS2 would create the cross-link signature peaks following MS3 scans to sequence 

and/or quantify the cross-link signature ions. Nevertheless, the slow duty cycles lead to 
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low identification numbers of less than 50% of what can be achieved with SCE-MS2 

methods. Especially for SCX fractions containing only few cross-links but large amounts 

of unmodified peptides, exclusively MS2-based methods efficiently identify and quantify 

cross-links (> 95% quantified). However, the gained sensitivity and coverage come with 

slightly reduced quantification accuracy. Thus, only MS2-MS3-based methods were not 

affected by the E. coli spike-in and allowed precise ratios as defined by the mixing scheme. 

In conclusion, we described a versatile SCE-MS2-based method for the acquisition of 

TMT-labeled cross-links with superior sensitivity for large-scale interactomic studies. 

Albeit being moderately more accurate, MSn-based strategies will only become usable 

when novel and advanced instrumentation can counterbalance their lack in sensitivity. 

Currently, conventional MS2-MS3-based methods are limited to less complex samples 

such as purified proteins or protein complexes. Potentially, real-time library search might 

increase the number of cross-link identifications while maintaining interference-free 

quantification. Besides being the method with the fastest duty cycles for complex biological 

samples, SCE-MS2-based methods can also easily be applied on most mass 

spectrometers. 

 

2.2. Original publication 

Ruwolt, M.; Schnirch, L.; Borges Lima, D.; Nadler-Holly, M.; Viner, R.; Liu, F. Optimized TMT-Based 

Quantitative Cross-Linking Mass Spectrometry Strategy for Large-Scale Interactomic Studies. Anal 

Chem 2022, 94 (13), 5265-5272. DOI: 10.1021/acs.analchem.1c04812 

https://doi.org/10.1021/acs.analchem.1c04812  

 

Personal contribution 

In order to test different quantitative XL-MS acquisition strategies, I prepared a two-

interactome benchmarking dataset consisting of DSSO cross-linked E. coli cells spiked-

into cross-linked HEK293T cells. Both species were mixed in known amounts to represent 

a mixing scheme with artificially induced contaminants (E. coli). This mixing scheme allows 

the estimation of quantification interference from contaminating species. I performed the 

experiment which is composed of the following steps: (1) I cultured and separately cross-

https://doi.org/10.1021/acs.analchem.1c04812
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linked HEK293T and E. coli cells. (2) I lysed the cells and digested the cross-linked 

proteins. (3) I isobarically labeled the peptides with TMT10plex and mixed them according 

to a mixing scheme I designed. (4) I enriched cross-links using SCX chromatography. 

Within this publication, I observed that MS2-based acquisition strategies outperform MS2-

MS3-based strategies because of their faster duty cycles. The same concept was also 

suggested by previous studies for unlabeled cross-links (Stieger et al, 2019). Considering 

the preference of many laboratories to use MS2-based methods for quantitative 

proteomics over MS2-MS3 to improve sensitivity, I set out my experimental layout to 

optimize an MS2-based quantitative approach for cross-linked samples. To this end, I 

acquired selected fractions of the SCX with varying collision energies in the MS2 and 

measured the effect of the normalized collision energy (NCE) on (1) signature ion 

formation, (2) cross-link identification and (3) TMT signal intensity. I have performed the 

database search with the XlinkX search engine implemented in ProteomeDiscoverer. I 

could observe that all three factors required different energy optima. Therefore, I decided 

to test different energy combinations using a stepped collision energy (SCE) approach. 

As expected, the SCE commonly used for unlabeled cross-linked peptides resulted in 

much lower identification numbers, identification score and TMT signal. Increasing all 

energies by 15% resulted in satisfactory sensitivity and TMT signal.  When comparing my 

optimized MS2-based method to previously published and from classical quantitative 

proteomics derived MS2-MS3-based methods, expectedly, I observed the MS2-based 

methods outperformed the sensitivity of the slower MS2-MS3-based methods. After 

collecting cross-link identification numbers, I investigated the quantification accuracy. I set 

up a TMT-quantification pipeline in ProteomeDiscoverer’s XlinkX and examined whether 

the TMT abundance of cross-links was in line with the previously defined mixing scheme. 

In summary, I have designed the experiments based on previous work from my 

colleagues, performed sample preparation and LC-MS measurements. I carried out the 

data analysis, co-wrote the manuscript and produced the figures. 
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3. Project 2: Developing targeted acquisition strategies for cross-linked 

peptides using real-time library search 

3.1. Project description 

The liability of LC-MS techniques to the dynamic range of the proteome complicates the 

detection of low abundant peptide species (Zubarev, 2013). In proteomics, this often 

requires the enrichment of certain low abundant peptide species to obtain a satisfactory 

coverage (e. g., enrichment of phosphopeptides using immobilized-metal affinity 

chromatography in phosphoproteomic studies (Olsen et al, 2006)). As the abundance of 

cross-linked peptides is equally scant, unmodified or modified linear peptides need to be 

removed to enhance the acquisition of informative species. Traditionally, in XL-MS, this is 

achieved using chromatography-based approaches, either separating peptides by size or 

by charge. Nevertheless, these features are not distinct enough to clearly separate cross-

links from their unmodified counterparts. Novel cross-linkers are equipped with enrichable 

moieties (Jiang et al, 2022; Kao et al, 2011; Steigenberger et al., 2019). Cross-link 

enrichment has a more prominent benefit in complex samples, allowing the identification 

of over 3000 cross-links from a single measurement (Jiang et al., 2022). To further 

increase identifications, unwanted species such as mono-links or loop-links need to be 

removed as they will also be enriched in most cases. Despite containing structural 

information on solvent accessible domains, mono-links and loop-links do not provide 

insights into PPIs and can therefore be removed for interactomics studies. 

As currently their removal cannot be achieved by chemical strategies, we set out to focus 

the MS acquisition on species of interest by applying novel real-time library search 

(RTLS)-based workflows and settings. RTLS is performed on-the-fly during the MS 

acquisition. Briefly, when an MSn scan is recorded, the spectrum is subjected to an ultra-

fast search with a library or database provided within the instrument method. Based on 

the outcome of the matching step, a decision on how to proceed with the just-queried 

precursor can be made. A successful match will allow this precursor to undergo a thorough 

MSn scan with different parameters to obtain a higher quality spectrum for sequencing. 

Subjecting only selected but not all precursors to exhaustive MSn scan offers a significant 

gain in time and consequently also sensitivity because more precursors can be queried. 

The real-time database search pipeline proved useful for the acquisition of TMT-labeled 

peptides with an MS2-MS3 strategy (McGann et al, 2023; Schweppe et al, 2020). Here, 
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long duty cycles are being kept at a minimum because exhaustive MS3 scans are only 

triggered if a spectrum was matched to a peptide. This prevents that too much time is 

spent on the acquisition of unidentifiable species, focusing only on meaningful ions. 

Currently, on-the-fly cross-linking database search poses a challenge as it is too slow and 

unreliable. Thus, we utilized RTLS and provided a library with spectral features that are 

unique for cross-links. To this end, we selected diagnostic peaks that showed higher 

abundance and a unique intensity ratio pattern in cross-links compared to mono-links. 

During acquisition, each precursor is subjected to a fast, low resolution “survey” MS2 scan 

focused on only recording the diagnostic peaks. The survey scan is matched to the cross-

link or mono-link patterns in the library and a cross-link match triggers an exhaustive high-

resolution MS2 acquisition of the same precursor. A mono-link match skips the exhaustive 

MS2 acquisition and trigger the survey scan of the next precursor. After optimizing the 

parameters of the survey scan towards optimal speed and precision, the RTLS approach 

resulted in increased sensitivity and reliability (more spectrum matches per cross-link). As 

the effect was more prominent for shorter HPLC gradients, we believe that this method 

can improve the throughput of XL-MS studies as the current need for 180 min acquisition 

per sample to achieve adequate coverage may be obviated. Interestingly, a few cross-

links in the oligomerization interface of the used model protein yeast alcohol 

dehydrogenase (ADH) were solely detected with the RTLS approach as their abundance 

is lower than intra-protein links within the monomers. Hence, the RTLS approach holds 

particular appeal for the investigation of the spatial organization of larger protein 

assemblies. Alternatively, if the focus lies on acquiring mono-links rather than cross-links, 

this can also be seamlessly integrated into the RTLS approach. 

 

3.2. Original publication 

Ruwolt, M.; He, Y.; Borges Lima, D.; Barshop, W.; Broichhagen, J.; Huguet, R.; Viner, R.; Liu, F. 

Real-Time Library Search Increases Cross-Link Identification Depth across All Levels of Sample 

Complexity. Anal Chem 2023, 95 (12), 5248-5255. DOI: 10.1021/acs.analchem.2c05141 

https://doi.org/10.1021/acs.analchem.2c05141 

 

https://doi.org/10.1021/acs.analchem.2c05141
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Personal contribution 

To find a unique pattern of cross-links that can be used for on-the-fly distinction from other 

species, I first generated two cross-linked samples of varying complexity, namely E. coli 

cells and simple protein mixtures (BSA, cytochrome C, ovotransferrin or yeast ADH). I 

cross-linked the samples with PhoX or tert-butyl-PhoX (tbPhoX), proteolytically digested 

them and enriched the cross-linker modified peptides from a subset of the samples. I 

chose PhoX in this study because the phosphonate-group mediated enrichment offers the 

highest efficiency compared to other enrichable cross-linkers such as Azide-A-DSBSO, 

reducing the signals from unmodified peptides to < 2% (Jiang et al., 2022; Wheat et al., 

2021). After using a standard cross-link acquisition strategy, as well as a cross-link 

database search using pLink2 (Chen et al, 2019), I counted the frequency with which 

certain peaks occur in cross-linked, mono-linked and unmodified peptide spectra. I 

generated the relative intensity ratios of the four most frequently occurring peaks and 

proposed their origin. Detecting this pattern required a fast and efficient survey scan 

before the exhaustive identification scan. To fine-tune the optimal parameters for 

distinction of cross-links from other species, the benchmarking samples were measured 

with one machine parameter adjusted while keeping all other parameters constant. For 

this, I developed a special acquisition strategy. I collected the parameters that showed the 

highest difference in intensity ratios for cross-links and mono-links and used them for 

designing an RTLS-based method. I measured the samples with the RTLS method and 

optimized the matching confidence (cosine score) threshold, the collision energy and the 

decision logic of the algorithm for obtaining the highest number of cross-linked 

identification scans while depleting mono-link scans. I used the newly gained cross-links 

from yeast ADH and mapped them on the respective X-ray crystal structure to show that 

the newly identified cross-links were partially to be found in the interaction interface. In 

addition, I co-wrote the manuscript and produced the figures. 



Project 3  67 

4. Project 3: Development of a proteome-scale ground-truth dataset for the 

assessment of the empirical false -positive rate in cross-linking database 

search 

4.1. Project description 

As spectral matching in MS data analysis is an automated high-throughput approach using 

manually parameterized database search engines, the level of error needs to be precisely 

regulated. The prevailing method of choice for calculation of the FDR in proteomics is the 

target-decoy approach. Decoy sequences do not appear in the sample, as they are 

inverted or randomized target sequences. Therefore, if a spectrum matches a decoy 

peptide it is considered a random matched false-positive. Random matches can equally 

occur between decoy and target sequences. The score of decoy matches reveals a 

distribution similar to random target matches. Thus, determining a score cutoff which 

allows a known percentage of decoy matches hints at the percentage of random target 

matches. In XL-MS data analysis, this approach needs to be adjusted to the existence of 

two potentially falsely matched peptides in each spectrum. 

The hypothesis whether the target-decoy FDR cutoff reflects the real population of false 

positive target matches in a biological sample can be investigated by two methods: 

Namely entrapment searches and controlled ground-truth benchmarking datasets. 

Entrapment searches allow assessment by adding a third false-positive level to the 

database e. g. by adding sequences from a species that shares no homology with the 

species used to prepare the queried sample. Thus, a false positive match is reflected by 

target-matches between the two species. Ground-truth datasets allow control from the 

level of sample preparation. Previous studies described cross-link-level based ground 

truth datasets by mixing synthesized peptides following a designed mixing scheme 

(Beveridge et al, 2020; Matzinger et al., 2022). If interactions between peptides from 

different mixing groups were identified, they were considered false-positive. This dataset 

is suitable for evaluating mismatches on cross-link level but does not allow conclusion on 

the reliability of PPI identifications. Alternatively, a semi-ground-truth dataset has been 

proposed: cross-linked E. coli lysate was fractionated by size-exclusion and resulting 

fractions were cross-linked individually (Lenz et al, 2021). Consequently, cross-links 

between proteins found in different fractions were physically impeded. All those efforts 
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revealed remarkable differences between search engines in separating false-positive from 

true-positive identifications. 

With the aim of overcoming the shortcomings of the previous datasets and conventional 

search engines, we set out to generate a fully controlled PPI-level benchmarking dataset 

to evaluate different software. Furthermore, we also used it to develop a novel software 

that robustly reports reliable identifications. To generate the dataset, 256 ectopically 

expressed and purified human proteins were mixed in pairs following a defined scheme 

and cross-linked after artificial interactions have been induced by heat treatment. Then, 

the sample was combined and measured on the mass spectrometer. Several widely used 

database search engines have been used to analyze the sample and their real false-

positive rate at a fixed target-decoy FDR threshold was monitored. The results were 

dissatisfactory as no software was able to control the empirical false-positive rate to the 

same level as the indicated target-decoy FDR. This motivated us to develop an algorithm 

that would properly control the empirical false-positive rate based on our ground-truth 

dataset while maintaining a high true-positive identification rate. Using this dataset, we set 

out to develop a machine-learning based software called “Scout”. A subset of the dataset 

has been used to choose and optimize a suitable neural network model and its parameters 

for Scout. The model is then trained by the input data to compute a classification score 

which considers a combination of features including spectral quality scores, mass error 

differences between alpha- and beta-peptide and others. As a result, Scout achieves 

outstanding performance on our own but also other published ground-truth datasets, 

overcoming all compared search engines in terms of reliability and sensitivity. 

Furthermore, Scout is the fastest search engine, allowing not only to parallelize data 

analysis and data acquisition but also multiple analyses of the same large-scale datasets 

with varying search parameters. This approach enables on one hand the discovery of 

optimal parameters for maximizing sensitivity and on the other more detailed FDR 

assessments. 

 

4.2. Original publication 

Clasen, M. A.†; Ruwolt, M.†; Kurt, L. U.; Gozzo, F. C.; Wang, S.; Chen, T.; Carvalho, P. C.; Borges 

Lima, D.; Liu, F. Proteome-Scale Recombinant Standards and a Robust High-Speed Search 



Project 3  69 

Engine to Advance Cross-Linking MS-based Interactomics. bioRxiv 2023, DOI: 

10.1101/2023.11.30.569448 

† These authors contributed equally. 

https://doi.org/10.1101/2023.11.30.569448 

 

Personal contribution 

For the generation of a protein-level ground-truth dataset for cleavable cross-linkers, I first 

performed preliminary experiments using a selected set of ectopically expressed protein(-

fragment)s. I set up a protocol that allowed the induction of artificial PPIs of pre-mixed 

proteins incubated at an increased temperature of 50 °C for 20 min. Afterwards, I designed 

a mixing scheme of four datasets with each comprising eight groups of eight proteins, 

allowing the determination of false-positive identifications between cross-linked groups. I 

performed the mixing steps as well as the PPI induction, cross-linking and digestion 

procedures. I reduced the complexity of the mixture by using SCX. The dataset has been 

acquired with over three weeks of measurement time. Using the dataset, I performed the 

evaluation of several database search engines, including XlinkX, MeroX, MS Annika, 

xiSearch, MaxLynx (Iacobucci et al, 2018; Liu et al., 2015; Mendes et al, 2019; Pirklbauer 

et al, 2021; Yilmaz et al, 2022). Scout, nevertheless, was developed by co-workers with a 

bioinformatic and machine-learning background. I benchmarked Scout against other 

search engines, performed the data analysis and assisted in improving the software. For 

the manuscript, I made the figures and contributed to writing the text. 

https://doi.org/10.1101/2023.11.30.569448
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5. Discussion 

5.1. Optimizing quantitative interactomics using cross-linking MS 

5.1.1 Future developments and limitations in TMT-based cross-link quantification 

Throughout my studies I developed a workflow that optimized acquisition parameters for 

the efficient identification and quantification of TMT10plex-labeled cross-links. I found 

MS2-based strategies greatly beneficial over MS2-MS3-based strategies because of their 

shorter duty cycles and more complete quantification. Although TMT10plex offers a 

multiplexing of up to ten samples, this allows to screen maximum five conditions 

considering the need for biological replicates. The more recently published TMTpro (Li et 

al, 2021) reagent allows multiplexing of up to 18 samples and supposedly improves 

quantification accuracy. However, TMTpro is not only costlier but also has a modified 

chemical structure, suggesting a distinct fragmentation behavior in the MS which requires 

a new custom-tailored energy combination for the SCE-MS2 method. Moreover, I only 

used the non-enrichable cross-linker DSSO in this study. While enrichable cross-linkers 

become more and more popular in recent years, I envision they will be used more often in 

future XL-MS studies. On one hand, there are MS-cleavable cross-linkers such as Azide-

A-DSBSO which have a different frailty of the MS-cleavage sites due to their altered 

chemical structure (Jiao et al, 2024; Wheat et al., 2021). If much lower energies are 

needed for the generation of cross-link signature peaks, the use of higher energies for 

detecting the TMT reporter signal might lead to the loss of the cross-link signatures. On 

the other hand, non-cleavable cross-linkers, such as PhoX, are not dependent on the 

formation of signature peaks. Here, the optimal energy combination only needs to 

generate sufficient sequence and TMT reporter ion signal. Consequently, MS parameters 

need to be specifically optimized for other cross-linkers and other labeling reagents. 

Enrichable cross-linkers confer a notable advantage, irrespective of their contribution to 

cross-link identification: By augmenting the precursor intensity of cross-links, the signal of 

the TMT reporter is fortified, thus enhancing quantification robustness. 

Despite its higher sensitivity, MS2-based quantification lacks the accuracy of MS2-MS3-

based methods due to the co-isolation of contaminating peptide species from the MS1 to 

the MS2. Multiple strategies other than higher MSn isolation and fragmentation have been 

described to circumvent the ratio distortion by co-isolation. One method is the use of 

narrower isolation windows when isolating precursors for the MS2. For instance, an 
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isolation window of 0.7 m/z has been suggested instead of 1.2 m/z for linear peptides (Tsai 

et al, 2023) as described in ThermoFisher Application Note 649. However, due to the 

relatively low abundance and the resulting low signal-to-noise ratio of cross-linked 

precursors an isolation window of 1.6 m/z is used to isolate and capture as many ions of 

a species as possible. Sufficient sequence coverage can only be achieved if enough 

peaks above a certain signal-to-noise ratio are being detected. In our preliminary tests, 

narrowing the isolation windows and forcing the scan range to start from 110 m/z to detect 

TMT reporter signals had a strong negative impact on cross-link identification. Therefore, 

it seems to us that narrowing down the isolation window may not be a good choice for 

cross-link quantification. Another way to enhance accuracy of TMT-based quantification 

is the use of complementary ions (Johnson et al, 2021) which are preferentially generated 

from TMTpro labeled peptides. TMT complementary ions are peptide fragments after 

cleavage of the TMT mass reporter, while still carrying the remainder of the isotopically 

labeled reagent conjugated to N-terminus or lysine residues of the peptide. As the isotopic 

pattern of the complementary ions are not as unique as the mass reporter, not all 18 

channels of the TMTpro can be used for complementary ion-based quantification. 

Moreover, the utilization of those ions also poses additional challenges on cross-links, as 

there is currently no software available for conducting quantification using complementary 

ions derived from cross-links. Nevertheless, from manual investigation of selected cross-

linked spectra complementary ions could easily be observed because cross-links naturally 

carry more TMT modifications than linear peptides. Thus, I envision this can be a feature 

to be implemented in future studies. 

Nonetheless, MS3-based strategies also have great potential as the quantification 

accuracy is superior to MS2-based strategies. Recent publications have also shown that 

their spectral qualities are also beneficial for identification of cross-links because of the 

improved backbone fragmentation of cleavable cross-linkers (Kolbowski et al, 2022). 

Efforts towards improving the decision making process that leads to triggering MS3 scans 

for cross-links could overcome the obstacle of incomplete triggering of the individual 

peptides (Kolbowski et al, 2023). The second obstacle is the time used for MS3 scans on 

the wrong species. If instruments can improve MSn parallelization, signal-to-noise and 

overall detection speed, MS2-MS3-based methods could outperform MS2-based 

strategies in both identification and quantification of cross-links. Alternatively, the use of 

advanced RTLS-based methods could improve the triggering of MS3 scans and save time 
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if quantifying MS3 scans are only triggered when a precursor is successfully identified as 

a cross-link. This method already proved to be successful for linear peptides (McGann et 

al., 2023). Therefore, I envision that further developments of speed and reliability of RTLS 

would lead to its application in XL-MS. 

 

5.1.2 Alternative quantification strategies 

Isobaric labeling is not the only quantitative proteomic approach that can be applied to 

cross-linked peptides. First studies of quantitative XL-MS have been carried out using LFQ 

through extracted ion chromatograms (Cox et al., 2014; Muller et al, 2018). Those studies 

proved to have a reproducibility similar to the one of linear shotgun proteomics, but 

suffered from > 40% missing values. Moreover, the application of LFQ to large-scale 

interactomic studies has not yet been shown as the fraction of missing values is likely to 

further increase in such a setup. The use of off-line chromatographic fractionation of the 

cross-linked sample into multiple fractions for increasing cross-link identifications poses 

major obstacles for the LFQ approach. On one hand, matching low abundant features 

across multiple fractions using match between runs is challenging (Cox et al., 2014). On 

the other hand, the absence of multiplexing necessitates separate measurements of all 

samples. The LFQ approach also requires numerous biological replicates for each sample 

to ensure reproducibility and mitigate the risk of fully unquantified identifications. This 

circumstance negatively impacts acquisition time. Therefore, multiplexing is highly 

favorable.  

Another alternative to isobaric labeling is metabolic labeling. By stable isotopic labeling of 

amino acids in cell culture (SILAC (Ong et al., 2002)), heavy isotopes can be integrated 

into all proteins of a sample grown in SILAC-media. Subsequently, the light and the heavy 

samples can be merged and analyzed by LC-MS. SILAC labeling results in a defined mass 

shift of the precursor in the MS1, enabling direct and accurate quantification of the light 

and heavy precursors. However, the multiplexing of SILAC is limited to three samples, the 

media is costly and the biological settings are restricted to cell culture or animals for which 

SILAC food is available. Another problem is the increased possibility of incomplete 

labeling of cross-linked peptides, leading to inaccurate quantification. For linear 

proteomics, a label-swap approach has been shown to resolve problems originating from 
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incomplete labeling (Park et al, 2012) but its application to cross-linking MS may drastically 

increase acquisition time.  

Ultimately, the use of isotopically labeled cross-linkers is a quantification strategy unique 

to XL-MS (Chavez et al, 2016; Chen et al, 2016). In addition to their limited commercial 

availability, there is minimal software support and a lack of comprehensive standardized 

workflows for their identification and quantification. Nevertheless, this approach is 

technically feasible and, in its robustness, comparable to TMT-based quantification 

(Fischer et al, 2013; Walzthoeni et al, 2015; Zhong et al., 2017). 

 

5.1.3 Biological interpretation of quantitative cross-linking data 

Quantified cross-links from a large scale interactomic study can be investigated in many 

ways. For example: (1) Global functional and connectivity changes can be visualized by 

the fold-change of all cross-links and PPIs which can be linked to their molecular functions 

and involved pathways. (2) Connectivity changes in selected protein complexes give 

insights into complex assembly, disassembly or remodeling. While reformation can easily 

be monitored by having two very different stimuli affecting the biological model, assembly 

and disassembly need a higher resolution by either applying a concentration gradient or 

time-course to the sample. Both (1) and (2) can make use of both intra- and inter-links. (3) 

Global assessment of conformational changes of individual proteins/complexes. 

Abundance changes of intra-links (and mono-links) can be used to generate models of 

conformational change of single proteins. For instance, proteins that undergo large 

domain level opening and closing as two distinct states for their biological function may be 

captured by changes of intra-protein links between two moving domains. Cross-links 

spanning the domains will be either formed or disappear and thus exhibit a change in 

abundance from one condition to the other. Thus, the most promising targets are proteins 

that show the highest spread in intra-link fold-changes. 

In contrast to the quantification of proteins where the changes in abundances can be 

directly translated from higher expression of the respective gene locus due to an external 

or internal stimulus, the interpretation of cross-link quantification is more complex. This is 

because cross-link fold-changes may be contributed by several different factors, such as 
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protein abundance changes, protein conformation changes and protein interaction 

changes. Dissecting the level of contribution from each of the three factors is one of the 

most challenging tasks in quantitative XL-MS.  It has been reported that protein 

abundance changes are often the major player in cross-link changes (Wippel et al., 2022), 

however, it is arguably more important to find the cross-link changes contributed by the 

other two factors. Thus, I propose three different measures for PPI quantification: (1) 

number of cross-links, (2) spread in quantification of all cross-links of a PPI and (3) fold-

change of the two proteins involved in the PPI. These three different measures together 

provide the level of contributions of the three aforementioned factors. To give a few 

examples: If a PPI is reported from the detection of several cross-links all of which show 

high fold-change, this PPI is likely newly formed and poses an interesting target for further 

investigation. This is aggravated if the proteins involved in the PPI show no abundance 

changes. If the proteins involved in the cross-link have significant changes in their 

abundances, it is difficult to distinguish if the PPI abundance change is due to protein 

abundance change or interaction change. In another example, if a PPI is reported by > 10 

cross-links with widely spread fold-changes, it is likely that there are some conformational 

changes of the interaction interface of the PPI involved. In all cases, further experimental 

validation is needed to confirm the hypothesis from quantitative interactomic studies.  

Most of the previous quantitative cross-linking studies have focused on single proteins or 

protein complexes, mainly describing conformational changes and complex assembly 

(Chen & Rappsilber, 2019). Only few biologically relevant large-scale quantitative 

interactomic studies exist (Bakhtina et al, 2023; Jiao et al., 2024; Wippel et al., 2022). 

Most studies have been avoiding PPI quantification from their assessments due to the 

aforementioned challenges and focused solely on conformational changes of proteins and 

protein complexes with no changes in protein abundance. This excludes a significant 

amount of data and interesting targets where changes in protein abundance, conformation 

and interactions co-exist. Such an approach prevents explorative investigation of a novel 

biological setting for identifying interesting targets. 
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5.1.4 Software solutions and requirements for cross-link quantitation 

To date, software solutions for cross-link quantification are sparse, poorly maintained or 

incomplete. Most available software focuses on cross-link identification and only few offer 

quantification strategies inspired by established pipelines from shotgun proteomics. XlinkX 

(Liu et al., 2015) and MS Annika (Pirklbauer et al., 2021) can be combined with TMT 

quantification algorithms and extracted ion chromatograms for LFQ within the 

ProteomeDiscoverer software suite, however, only to the levels of cross-link spectrum 

matches and cross-links. MSStudio’s Crimp2.0 (Crowder et al, 2023) and MaxLynx 

(Yilmaz et al., 2022) also offer LFQ, while MeroX (Iacobucci et al., 2018) and xiSearch 

(Mendes et al., 2019) have no implemented quantification approach and rely on the use 

of external quantitative proteomic software such as MaxQuant and Skyline(MacLean et al, 

2010) to perform the quantification of previously identified features. Very few specialized 

tools allow the identification and quantification of isobarically labeled cross-linker modified 

peptides and no software implemented a mode for the identification of SILAC labeled 

cross-links. Moreover, there is currently no software that provides visualization of 

quantitative cross-linking data. As such, there is an urgent need for a community standard 

for computing cross-link quantification, experimental validation of differences between 

cross-link and linear peptide quantification and the visualization and interpretation of PPI 

quantification. Therefore, we plan to include and implement all major strategies for cross-

link quantification, namely TMT, SILAC (identification and quantification) and LFQ analysis 

in future versions of Scout. 

 

5.2. Improving sensitivity of mass spectrometers for cross-link detection 

Utilizing RTLS enabled us to increase the number of identified cross-links by avoiding the 

acquisition of mono-links. This strategy was performed on-the-fly during the acquisition 

using a unique intensity ratio pattern of diagnostic peaks from cross-linked peptides. 

However, the effect was more prominent on single proteins using short gradients and 

suffered from the heterogeneity of the complex E. coli peptide mixture. Thus, more distinct 

features are needed for more reliable decision making by the RTLS. In this study, we have 

used enriched and non-enriched PhoX cross-links. Interestingly, especially without cross-

link enrichment, the RTLS approach yielded significantly higher cross-link identifications 
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by sorting out mono-links and unmodified peptides. Cross-link enrichment requires high 

amounts of input material which is not always available for all biological samples, in 

particular in the cases of patient tissue, primary neuron culture or special organelle 

preparations. Consequently, better sample preparation and cross-link enrichment 

workflows are in high demand as well. As PhoX has a very short spacer arm length, it is 

not suitable for studies focused on PPIs, where longer distance spanning cross-linkers 

might prove more efficient (Bartolec et al., 2023). In this case, the RTLS would need to be 

newly optimized for the diagnostic peaks of the respective cross-linker. 

Specialized groups might be able to develop faster and more reliable real-time database 

search algorithms, allowing not only the comparison to a pre-set library but performing a 

cross-link database search on-the-fly. This necessitates reducing the computational 

burden on the database search. Another possible approach, more targeted for low 

complexity samples, would be the prediction of all cross-linked spectra (ideally with 

individual peak intensity prediction) that could potentially occur in a sample and using this 

as an input for the library. This would increase the reliability of the decision making as it is 

not anymore based on only four peaks. 

More generally applicable would be the exclusion of mono-links and unmodified peptides 

by size as they are presumably smaller than cross-linked peptides. However, preliminary 

experiments showed that the overlap in size of mono-links and cross-links is too large to 

be distinguished on-the-fly. Most commonly applied is a charge filter, triggering MS2 scans 

only if a precursor with a charge > 3 was detected, which efficiently excludes a large 

fraction of linear peptides (Jiang et al., 2022).  

The advancements of mass spectrometers definitely contribute to higher sensitivity in 

detection of cross-links. In 2023, Thermo Fisher Scientific launched a new detector, 

namely Astral analyzer, which is best known for its scanning speed. Different to the 

Orbitrap analyzer, which achieves different resolutions by trapping ions in an electrostatic 

field and measuring their oscillation frequency to determine their m/z ratio, the Astral 

analyzer utilizes electromagnetic “mirrors” and measures the time-of-flight ions need to 

travel between the mirrors. Thus, the Astral analyzer is more similar to conventional time-

of-flight analyzers like Bruker’s timsTOF, which are faster compared to Orbitrap analyzers 

(Guzman et al, 2024). The integration of Astral analyzers could enhance the RTLS 

approach by accelerating both survey and identification scans, or alternatively, render the 
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need for RTLS obsolete if the acquisition of mono-links imposes no time penalty on cross-

link acquisition. I conducted preliminary experiments on the Orbitrap Astral instrument and 

observed an increase in cross-link identification by 2-fold compared to the Orbitrap 

analyzer when short gradients of 30 or 60 min were used. 

The speed of the Astral analyzer has demonstrated significant advantages for data-

independent acquisition (DIA) (Guzman et al., 2024; Heil et al, 2023). Different from data-

dependent acquisition (DDA), where single precursors from an MS1 are being isolated by 

the quadrupole and subjected to fragmentation and detection in the MS2, in DIA, all ions 

within a predefined m/z window are subjected to MS2. This approach enables h igh-

throughput and unbiased analysis of complex samples, yielding near -complete and 

reproducible quantification without missing values as most of the MS1 features can be 

sequenced. However, the analysis of chimeric MS2 spectra originating from co-

fragmenting peptides can be challenging and thus require specialized software for peptide 

identification (Demichev et al, 2020; Yu et al, 2023). DIA is thus made more efficient when 

narrow isolation windows are employed, which hugely affects duty cycle time.  If MS2 

scans can be performed faster, the isolation windows can be narrower. Implementing DIA 

for cross-linking MS has been tried for single protein samples(Muller et al, 2019). Although 

the quantification is superior to DDA, the limited software support and disputable FDR 

estimation lead to suppressed sensitivity of the DIA approach. If both limitations can be 

overcome, DIA poses a promising strategy for acquiring all species in a sample 

irrespective of the abundance of unwanted species. 

Alternatively, the acquisition of peptides specifically cross-linked by a cleavable cross-

linker could benefit from the use of in-source decay (ISD) at the MS1 stage. With ISD, 

mostly caused by high voltage, precursors partially break apart before entering the mass 

analyzer, thus generating fragment ions along with intact precursor ions. If a low ISD 

energy is used, the cross-linker could be cleaved and generate cross-link signature ions 

in the MS1 with a defined mass difference which are then triggered and identified in the 

MS2. Thus, only cross-links will be triggered for MS2. Though theoretically possible, the 

already complex MS1 spectra become more crowded with additional peaks from the ISD 

and the correct triggering of cross-link signatures is hampered.  
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5.3. Robust false discovery rate estimation in cross-linking MS data analysis 

5.3.1 PPI-level benchmarking datasets 

We generated a protein-level controlled benchmarking dataset to validate the 

performance of several state-of-the-art cross-link database search engines and 

highlighted acute limitations: (1) Many algorithms lack FDR control on PPI level. (2) Some 

software already fails to control the FDR from the CSM level. (3) Search engine output 

often requires manual post-processing by the user. (4) The time required for proteome-

wide cross-link database search ranges between hours and weeks which barely allows a 

re-analysis of existing datasets with different parameters. To tackle these limitations, we 

developed Scout, a machine-learning-based cross-link database search engine. Scout 

performs superior in runtime, sensitivity and confidence. Furthermore, it is most reliable 

considering the empirical false-positive rate based on our mixing scheme. 

To exclude the possibility that the design of our mixing scheme (according to which each 

protein has exactly 7 possible interactors with a maximum of 256 cross-linked proteins) 

introduces bias, we also compared Scout’s performance against other search engines on 

other benchmarking datasets (Beveridge et al., 2020; Lenz et al., 2021; Matzinger et al., 

2022). Once again, Scout outperformed other software even at high levels of entrapment 

in the database used for the search. Nevertheless, a larger PPI-level benchmarking 

dataset is required to fully understand the reliability of search engines on real biological 

samples (i. e., complex mixtures comprised of > 10,000 different proteins). This could be 

achieved if a network derived from a biological sample, such as cross-linked mitochondria 

(Liu et al, 2018), would be used to generate the mixing scheme by replacing the proteins 

involved in detected PPIs by available ectopically expressed proteins. Although the 

complexity of a real sample would be represented by such a dataset, the distribution of 

intra-links and inter-links would most likely be distorted due to the method we use for 

inducing interactions. In our data we observed that inter-links make up between 1 – 20% 

of all identifications. The more proteins used for a benchmarking dataset, the more 

pronounced will be the masking effect of intra-links from lysine-rich proteins. This 

hypothesis is supported by the heterogeneity we experienced from the four sub-datasets 

that make up the full benchmarking dataset. Depending on the types and amounts of 

proteins used for each sub-dataset, the ratio of inter- and intra-links and the number of 

identified cross-links were different. Moreover, in our dataset, most PPIs are explained by 

more than one inter-link because the interactions were heat induced and proteins 
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aggregated artificially. In complex biological samples, most PPIs are explained by one 

spectrum match of one cross-link due to the dynamic range and the low abundance of 

many PPIs. This heterogeneity could also be partially simulated if varying amounts of 

proteins are pipetted. However, the difference in abundance of proteins in the human 

proteome is thought to reach 7 orders of magnitude (Zubarev, 2013), a range that cannot 

yet be covered by any available benchmarking dataset. 

So far, our benchmarking dataset has been recorded using only MS2-based acquisition 

strategies, which restricts our comparison to one acquisition strategy only although MS3 

spectra are richer in sequence information, improving the scoring and eventually the 

empirical false-positive rate as shown in previous studies (Matzinger et al., 2022). The full 

dataset has been recorded on an Orbitrap Fusion Lumos equipped with a high field 

asymmetric waveform ion mobility spectrometry (FAIMS) device. The application of 

FAIMS (Pfammatter et al, 2018), which separates ions based on their mobility in strong 

and weak electric fields, primarily influenced by size and charge, introduces an additional 

layer of on-line separation. This reduces the complexity of MS1 spectra, particularly in 

favor of detecting low-abundance species. Which effect FAIMS has on the empirical false-

positive rate, alongside with the contribution of other mass detectors or instruments cannot 

be monitored with our dataset. Therefore, in the future, it will be beneficial to acquire our 

PPI dataset with different acquisition conditions. 

Lastly, the vast number of spectrum matches in the benchmarking dataset could 

potentially allow training of a deep neural network that includes the prediction of peak 

intensities from peptide sequences to assist cross-link identification. In linear shotgun 

proteomics, this approach has improved peptide identification by either providing predicted 

DIA libraries or rescoring DDA data with predicted spectra (Gessulat et al, 2019; Zolg et 

al, 2021). A similar strategy could be employed for cross-link identification, however, it is 

possible that the applied cross-linker will affect the fragmentation behavior of peptides and 

the neural network might require training for each cross-linker. 

 



Discussion  110 

5.3.2 Refining FDR estimation using benchmarking datasets 

The application of machine-learning to FDR estimation has been shown for linear shotgun 

proteomics (Kall et al, 2007). Here, we implemented a machine-learning model in Scout 

for FDR estimation also for cross-links. We optimized the machine-learning model and 

hyperparameters using our benchmarking dataset. Briefly, Scout is trained on each 

dataset that is to be searched. Similar to Percolator (Kall et al., 2007), Scout uses a semi-

supervised learning and extracts a portion of the data to be trained on discriminative 

features for targets and decoys. Spectral quality measures are included in the computation 

of the classification score of cross-link spectrum matches (CSMs). For calculation of the 

PPI score, the classification score of CSMs is aggregated but also modified according to 

other (modifiable) features such as a minimum number of links per proteins. We and other 

groups have subsequently investigated the effect of context-sensitive FDR filtering on 

detection sensitivity and specificity (Bogdanow et al, 2023; Fischer & Rappsilber, 2023). 

Both studies suggested the implementation of a fused target-decoy strategy in contrast to 

the conventional concatenated target-decoy approach. Instead of searching target and 

decoy sequences separately, the decoy sequences are fused to the target sequences. 

Thus, decoys, still being marked as such, belong to the same protein as targets, just that 

a random match occurred in the reversed region of the same protein. This enables the 

use of context-sensitive subgrouping, which can increase the inter-link coverage of a 

dataset by up to 75% while maintaining low error and structural accuracy. In context-

sensitive subgrouping, identifications are favored when they fall into pre-defined intra- or 

inter-link or intra-and-inter-link focused context-rich subgroups. For instance, it could be 

required from inter-linked proteins to be supported either by self-links or by inter-links to 

other proteins. In concatenated searches, when applying a context sensitive filter, decoy 

matches are lost as they do not show a context-adhering behavior. Thus, in fused search, 

decoys will pass the filter along with their target counterparts and the relationship between 

targets and decoys remains balanced. Context-sensitive filtering and fused target-decoy 

search have been implemented in Scout and further increase the reliability and sensitivity 

of Scout on a subset of our benchmarking dataset. 
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5.4. Conclusion and outlook 

Cross-linking MS has emerged as a powerful tool for probing PPIs and protein structures 

both in vitro and in vivo. Over recent years, advancements in mass spectrometry 

instrumentation, cross-linker design and analysis pipelines have enabled the mapping of 

protein interaction networks with unprecedented detail. The addition of quantitation to XL-

MS has significantly advanced our understanding of biological systems by capturing 

dynamics in protein interactions and structure. For instance, XL-MS could accelerate drug 

discovery and development processes by uncovering drug induced conformational 

changes or altered PPI interfaces. This, in turn, can accelerate drug characterization. 

Despite the numerous advantages, XL-MS still faces several limitations, restricting its use 

to specialized laboratories and small to medium sized biological samples. Here, I present 

methodologically advances in multiple steps of the cross-linking MS workflow. My efforts 

included (1) developing a standard quantification pipeline using isobaric labeling, which 

offers high sensitivity, throughput, robustness and completeness, (2) increasing cross-link 

identification sensitivity by implementing on-the-fly decision-making, (3) preparation of a 

fully controlled PPI benchmarking dataset for the systematic validation of empirical false-

positive rates on PPI-level and (4) providing a software tool for the fast and reliable 

identification of cross-links and PPIs from complex biological samples. 

The research conducted in this thesis moved XL-MS forward in many directions, from 

cross-link identification, to quantification and quality control, building a foundational 

framework for the exploration and investigation of structural interactomes of complex 

biological systems. Additionally, some ideas for future researchers to explore have been 

proposed. 

Although we have applied newest state-of-the-art tools and instruments, multiple 

obstacles remain and further instrumental and software developments are necessary to 

make XL-MS more widely applicable for non-specialized laboratories and clinical 

research. Pushing the boundaries of method development will be critical for realizing its 

full potential in biological and pharmacological research. Continued interdisciplinary efforts 

involving mass spectrometrists, bioinformaticians and biologists will further advance the 

XL-MS method, and unlock new insights into the organization, interaction and function of 

proteomes from various biomolecular systems.
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Appendix 

Abbreviations 

ADH   alcohol dehydrogenase 

Azide-A-DSBSO azide-tagged-acid-cleavable disuccinimidyl bissulfoxide 

BS3   bissulfosuccinimidyl suberate 

BSA   bovine serum albumin 

CSM   cross-link spectrum match 

DDA   data-dependent acquisition 

DIA   data-independent acquisition 

DSS   disuccinimidyl suberate 

DSSO   disuccinimidyl sulfoxide 

E. coli   Escherichia coli 

FDR   false discovery rate 

HEK   human embryonic kidney 

HPLC   high-performance liquid chromatography 

ISD   in-source decay 

LC-MS   liquid chromatography coupled to mass spectrometry 

LFQ   label-free quantification 

MS   mass spectrometry 

NCE   normalized collision energy 

NHS   N-hydroxysuccinimide (ester) 

PDB   protein data bank 

 (tb)PhoX   (tert-butyl) disuccinimidyl phenyl phosphonic acid 

PPI   protein-protein interaction 

RTLS   real-time library search 

SCE   stepped collision energy 

SCX   strong cation exchange  

SILAC   stable isotope labeling of amino acids in cell culture 

TMT   tandem mass tags 

XL-MS   cross-linking mass spectrometry 
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