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Dynamics of K2Ni2(SO4)3 governed by
proximity to a 3D spin liquid model

Matías G. Gonzalez 1,2, Vincent Noculak1,2, Aman Sharma 3, Virgile Favre3,
Jian-Rui Soh3, Arnaud Magrez 4, Robert Bewley5, Harald O. Jeschke 6,7,
Johannes Reuther1,2,7, Henrik M. Rønnow 3, Yasir Iqbal 7 & Ivica Živković 3

Quantum spin liquids (QSLs) have become a key area of research inmagnetism
due to their remarkable properties, such as long-range entanglement, frac-
tional excitations, and topologically protected phenomena. Recently, the
search for QSLs has expanded into the three-dimensional world, despite the
suppression of quantum fluctuations due to high dimensionality. A new can-
didate material, K2Ni2(SO4)3, belongs to the langbeinite family and consists of
two interconnected trillium lattices. Althoughmagnetically ordered, it exhibits
a highly dynamical and correlated state. In this work, we combine inelastic
neutron scattering measurements with density functional theory (DFT),
pseudo-fermion functional renormalization group (PFFRG), and classical
Monte Carlo (cMC) calculations to study the magnetic properties of
K2Ni2(SO4)3, revealing a high level of agreement between experiment and
theory. We further reveal the origin of the dynamical state in K2Ni2(SO4)3 to be
centred around a magnetic network composed of tetrahedra on a trillium
lattice.

QSLs are highly-entangled states of matter, in which no long-range
magnetic order is observed, even in the absence of thermal fluctua-
tions at zero temperature. Ever since P. W. Anderson’s proposal of a
resonating valence bond phase as the ground state for the triangular
lattice Heisenberg antiferromagnet1, QSLs have captured the attention
of physicists across fields beyond quantum magnetism2. The reason
lies in the wide range of exotic properties and phenomena that these
intriguing states of matter display, ranging from fractionalization of
spin excitations observed as an extended continuum in the excitation
spectrum, to pinch-point singularities observed in the static spin-spin
correlations and associated with U(1) QSLs or fracton phases3–7.

The QSL behavior is driven by strong zero-point quantum fluc-
tuations, which are enhanced in the presence of high magnetic frus-
tration. This is realizedeither by competing isotropic interactions, as in

the Heisenberg model on the kagome lattice8–10, or by anisotropic
interactions, such as in the Kitaev model on the honeycomb lattice11–13.
On the other hand, low dimensionality also amplifies quantum fluc-
tuations, which are thus more noticeable in one- or two-dimensional
systems. However, in recent years much attention has been put into
three-dimensional (3D) models and compounds. Even though zero-
point quantum fluctuations are greatly suppressed in 3D, highly fru-
strated systems like the network of corner-sharing tetrahedra realized
by the pyrochlore lattice still provide a suitable environment for the
existence of QSLs, both theoretically and experimentally14–16. Indeed,
several compounds have been synthesized which realize pyrochlore,
hyperkagome, or hyper-hyperkagome lattices and display QSL beha-
vior in 3D15,17,18. Although often it is found that QSL candidatematerials
order at some finite-temperature TN, their dynamic response is
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strongly influenced by the proximity to a quantum critical point where
the order completely disappears. The quantum critical regime, ema-
nating from the quantum critical point, leaves its characteristic fin-
gerprint in the dynamic response even at finite temperatures, as long
as TN≪ |θCW|, where θCW is a Curie–Weiss temperature that defines the
characteristic energy scale of the system. This allows testing theore-
tical predictions for QSLs in real materials, such as the existence of
fractional excitations19–21.

Recently, it has been shown that a new 3D magnetic network
exhibits a highly dynamic ground state. K2Ni2(SO4)3, a member of the
langbeinite family, develops spin correlations below20Kbetween S = 1
moments, with a peculiar ordered state arising below ~1.1 K, freezing
only around 1% of the available magnetic entropy and showing a tri-
pling of the magnetic unit cell22,23. Furthermore, the application of
B = 4 T magnetic field leads to a fully dynamical state down to the
lowest temperatures. Another member of the langbeinite family, the
KSrFe2(PO4)3 compound with S = 5/2, was also claimed to exhibit spin-
liquid behavior24.

In this work, we combine both experimental and numerical
methods to study the magnetic properties of K2Ni2(SO4)3 and its
proximity to a spin-liquid model on a simpler lattice. We first perform
density functional theory (DFT)-based energy mappings to obtain the
Hamiltonian of the compound, taking into account its low-
temperature structure. Using classical Monte Carlo (cMC) to study
the magnetic ordering, we obtain the same tripling of the magnetic
unit cell as observed experimentally. We then compare inelastic neu-
tron scattering (INS) measurements with pseudo-fermion functional
renormalization (PFFRG) calculations on the quantum S = 1 model,
obtaining a good agreement. We finally trace the features observed in
the spin structure factors to a nearbypoint in spacewhichcorresponds
to a trillium lattice in which each triangle is turned into a tetrahedron.
We analyze the spin-liquid properties of this tetra-trillium lattice and
its surrounding areas in parameter space.

Results
Magnetic structure and Hamiltonian
The underlying magnetic network in these compounds comprises two
interconnected trillium lattices, based on two symmetry-inequivalent
magnetic sites, shown in Fig. 1a. Each trillium lattice with four sites per
unit cell consists of a network of corner-sharing triangles where each
site participates in three triangles (see Fig. 1b). For K2Ni2(SO4)3, our
DFT-based energy mapping calculations reveal three dominant
exchange interactions: J3 and J5 constituting nearest-neighbor cou-
plings within each trillium lattice, and J4 which couples the two trillium
lattices (see the full list in Fig. 1a–c). In the limit J3, J5 → 0, the network
transforms into a bipartite lattice, supporting a semi-classical anti-
ferromagnetic state. The limit J4 → 0 describes two independent tril-
lium lattices, which have been theoretically investigated in detail25,26

and shown to lead to a variant of the 120∘ order. Therefore,
K2Ni2(SO4)3, with its magnetically highly correlated and dynamical
state, represents a surprising revelation that indicates the proximity to
an island of liquidity that has escaped the attention of the scientific
community so far.

While previous coupling values were reported for the room-
temperature structure22, here we propose a new set of parameters
calculated by DFT energymapping based on a refined crystal structure
at T = 100K (see Supplementary Notes 1 and 2). The new values of
exchange interactions (listed in Fig. 1a) are moderately renormalized
compared to the room-temperature structure values but show the
same hierarchy of interactions J4 > J5 > J3 > J1 > ∣J2∣, where J2 is the only
ferromagnetic coupling. Specifically, room-temperature couplings
relative to the dominant J4 = 5.545 K are J1 = 0.079 J4,
J2 = −0.030 J4, J3 = 0.203 J4, J5 = 0.472 J4, and for the T = 100K structure
they become J1 = 0.066 J4, J2 = −0.026 J4, J3 = 0.144 J4, J5 = 0.479 J4. The
most significant difference occurs for J3, which changes by ~30%. Even
though K2Ni2(SO4)3 orders at about 1.1 K, the state seems to remain
predominantly dynamic, with the persistence of the diffuse scattering

Fig. 1 | Crystal and magnetic structure of K2Ni2(SO4)3. a Two trillium lattices of
Ni2+ ions in K2Ni2(SO4)3 with the five nearest-neighbor couplings calculated by DFT
energymapping.b J3 and J5 form two independent trillium lattices. c J4 couples each
ion fromone trillium lattice to the nearest triangle of the second trillium lattice. For
J4 = J5,magnetic ions formanetworkof corner-shared tetrahedra basedona trillium
lattice, a tetra-trillium lattice. d Spin structure factor S(q) as a function of q = ∣q∣.
Comparison between cMC calculations at T =0 for the DFT model (bottom) and

diffraction data at 100mK taken from ref. 22 (top). A small Gaussian broadening is
used for the cMC results. e The spin structure corresponding to the tripled mag-
netic unit cell determined by cMC is shown in a cut along the (111) plane for an
L = 6 system. Black arrows represent the direction of the sum of moments within a
single unit cell. The bond color indicates the angle between the unit cell moments.
f Schematic of the proximity of the K2Ni2(SO4)3 Hamiltonian to a spin-liquid region
and its effect at finite temperatures, where g is a function of the couplings Ji.
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and absence of magnon branches22,23. This makes it impossible to
use the more standard approach for determining the exchange
interactions, which relies on comparing the magnon dispersion
with spin-wave theory (SWT). Furthermore, the magnetic unit cell
consists of 216 spins, which represents a significant challenge for
SWT. Alternatively, one could perform the comparison in the
magnetic field-polarized state, where the magnetic order is trivial
for SWT. However, the required polarizing magnetic field for
K2Ni2(SO4)3 can be estimated to reach 25–30 T, and is therefore
out of the reach of the current state-of-the-art facilities for INS
measurements.

Even though the different sets of exchange parameters J1-J5
proposed for K2Ni2(SO4)3 are not very different, themagnetic order
does change depending on the choice. To evaluate this, we perform
cMC calculations on periodic systems consisting of L3 unit cells,
where L is the linear size of the system. Because this method is best
suited to detect classical magnetic orders in the absence of quan-
tum fluctuations, it allows us to validate/invalidate the different
Hamiltonians by comparing them to neutron scattering measure-
ments below the critical temperature.

All our classical calculations indicate a transition to a mag-
netically ordered phase at finite temperatures. However, the
lowest ground-state energy is only reached for L = 3n lattices (with
critical temperature TcMC

c =J4 =0:048ð2Þ), while all other sizes
(L ≠ 3n) give higher energies at T = 0, implying that the magnetic
order is frustrated by periodic boundary conditions. The mag-
netic orders obtained for L = 12, 9, 6, and 3 are all identical, indi-
cating a tripling of the magnetic unit cell and a perfect agreement
with the Bragg points observed experimentally (Fig. 1d). Inter-
estingly, if the DFT Hamiltonian corresponding to the room-
temperature structure is used22, the L = 4nmagnetic order has the
lowest energy (only 0.09% below L = 3n), indicating a very sensi-
tive landscape of complex magnetic configurations. Another
recently suggested set of values with J3 = 023 leads to a quintupling
of the magnetic unit cell, exhibiting the lowest ground-state
energies for L = 5n lattices. These calculations evidence not only
that it is not trivial to capture the experimentally observed Bragg
structure22, but also give a certain level of confidence for the set of
exchange interactions determined here based on the structure
at 100 K.

The cMC magnetic structure for L = 3n, shown in Fig. 1e,
comprises propagation vectors q1 = (1/3, 0, 0), q2 = (1/3, 1/3, 0) and
q3 = (1/3, 1/3, 1/3). The resulting pattern is devoid of any particular
spin textures like skyrmions and merons. In Fig. 1e, we show a
view along the (111) plane for a L = 6 system, where black arrows
on each node represent the direction of the net magnetic
moment within each unit cell. The angles between neighboring

cells are found to be close to 120∘. We do not expect a significant
change in the calculated structure if the exchange parameters are
slightly modified, as long as the tripling of the unit cell is
preserved.

We should point out that the agreement between cMC and the
weak magnetic Bragg scattering serves only to narrow down the
appropriate set of Js. The ordered state in K2Ni2(SO4)3 remains highly
dynamic down to the lowest temperatures22,23 and exactly how the
weak static component emerges from a highly dynamic background
remains to be investigated in future studies. A similarly strong
dynamic ground state, with faint features of spin-glass order, has
been observed in Tb2Hf2O7

27, with spin-liquid-like dynamics
observed down to the lowest temperatures. In the rest of this work,
we focus on temperatures above the ordering (T = 2 K) but sig-
nificantly below the characteristic energy of the system (θCW = -18 K).
In this case, the dynamic features above the ordering trace their
origin to a region proximate in parameter space that exhibits purely
spin-liquid characteristics and shows no magnetic order down to
T = 0, as illustrated in Fig. 1f. Although the dynamics observed below
the ordering temperature in K2Ni2(SO4)3 could potentially be also
dominated by the spin-liquid-like features, as found for Tb2Hf2O7, it
is also important to realize that entering the ordered state can sig-
nificantly redistribute the scattering spectral weight, and often
completely remove the spin-liquid features.

Dynamic and static spin structure factors
To characterize the dynamical features in K2Ni2(SO4)3, we have
conducted INS experiments in three different directions within the
(HLL) scattering plane. In Fig. 2, we present experimental results for
the dynamical structure factor Sexpðq, ωÞ with the incident energy
Ei = 2.8meV obtained at 2 K, significantly above the appearance of
order to avoid possible quasi-elastic scattering but well within the
dynamical state. Energy-momentum plots along three principal
directions show vertical streaks of intensity, four in each panel,
indicating a non-dispersive type of excitations. The streaks are
centered ~0.75 and 1.8 inverse units, and are very broad, excluding
the possibility of a quasi-elastic scattering from ordering that would
appear in a much denser grid at multiples of 1/3 of the unit cell22,23.
The streaks are present both below and above the ordering, and
their intensity fades very slowly towards high temperatures23. The
upper energy bound of excitations is found to be ~2meV, in
agreement with the onset of correlations in specific heat below
20 K22. The energy dependence of the intensity of the scattering
signal for various q-points found in the middle of broad peaks is
featureless, with an approximately linear decreasing dependency
on the energy (see Fig. 2d). Such q- and ω-dependence of the scat-
tering intensity S(q, ω) allows us to estimate the equal-time

Fig. 2 | Time-of-flight neutron scattering on single crystals of K2Ni2(SO4)3.
Energy ω versus wave vector q for a q = (100), b q = (110) and c q = (111) directions.
d Energy dependence of the dynamical structure factor Sexpðq,ωÞ obtained at sev-
eral q-points (for which streaks of intensity are observed), revealing a monotonous

decrease of intensity towards the high-energy background. q-points are:
q1 = (0.50, 0.50, 0.00), q2 = (0.00, 1.70, 0.00), q3 = (0.65, 0.00, 0.00),
q4=(1.20,1.35,0.00),q5=(0.50,0.50,0.50),q6=(1.70,0.00,0.00),q7=(0.00,1.65,1.65),-
q8 = (1.05, 1.40, 1.40).
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magnetic structure factor

SexpðqÞ∼
Z ω2

ω1

Sexpðq,ωÞdω ð1Þ

which can then be directly compared with theoretical predictions
based on a given spin Hamiltonian. We note that a comparison on the
level of S(q, ω) would be far from trivial, even within the ordered state
due to multiple ordering vectors and 216 spins per magnetic unit cell.
Additionally, SWT is by construction applicable for small deviations
from a classical order; and in the case of K2Ni2(SO4)3, the deviations
from the classical order cannot be taken as small perturbations, ren-
dering it practically outside of the scope of a reliable application of a
SWT. Finally, the ordered state of K2Ni2(SO4)3 proves to be rather
peculiar, marked by only 1% of entropy release and weak magnetic
Bragg scattering22. Other characteristic features of classical order, like
oscillations in μSR andmagnon dispersions, are completely absent22,23.

In Fig. 3a–c, we show the spin structure factor SexpðqÞ along three
different planes in reciprocal space, obtained by integrating the
intensity in the energy range from ω1 ∼ Emin =0:5 meV to ω2 ∼ Emax = 1
meV. The extent of the incoherent scattering gives the lower limit,
while the upper limit is found as an optimal value to maximize the
signal-to-noise ratio. The patterns depicted carry fingerprints from the
underlying magnetic lattice composed of two interconnected trillium
lattices, with a hexagonal galaxy-like motif reflecting the chirality of
the crystal structure (see Fig. 3c), arising from the non-
centrosymmetric space group.

To reproduce these experimental patterns, we performed calcu-
lations using both quantum and classical approaches. In the quantum
limit, weuse PFFRG,which has been shown to produce accurate results

in highly frustrated systems28–32. Within PFFRG, the renormalization-
group flow is controlled by the cutoff frequency Λ, which is lowered
from the interactions-free limit Λ =∞ where the solution is known (see
Supplementary Note 4). In this case, the flow breaks at Λ =0.582 J4,
indicating the presence of a magnetically ordered ground state. As is
standard for the PFFRG calculations, the static spin correlations are
measured slightly above the flow breakdown and, even though calcu-
lations are carried out at T =0, the finite value of the renormalization-
group parameter Λ produces an effect similar to finite temperature33.
In an attempt to also simulate the experimental data using cMC, we
perform calculations above the finite-temperature phase transition.
We find an excellent agreement with the PFFRG calculations for a large
range of temperatures and, particularly for T = 0.35 J4, we find the best
quantitative agreement (see Fig. 3d–f). This quantum-to-classical cor-
respondence at the level of static correlators has been previously
reported in several frustrated 2D and 3Dspin-1/2Heisenbergmodels at
finite temperatures34–36, some of which host a QSL ground state.
However, it is important to note that this correspondence does not
hold for the full dynamical spectrumof themodels, which aredifferent
in quantum and classical systems. Very recently, it has been shown
through perturbation theory that the quantum-to-classical corre-
spondence breaks at fourth order in J/T, even though partial dia-
grammatic cancellations lead to good accuracy even at low
temperatures37.

Amore detailed comparison is obtained along the line cuts shown
in Fig. 3g–i. As is evident from all three plots, there is very little dif-
ference between cMC and PFFRG results, upholding the quantum-to-
classical correspondence. On the other hand, the agreement with the
experiments is excellent in terms of the determination of peaks in the
spin structure factor, which gives rise to patternmatching in the color

Fig. 3 | Comparisonof experimental and theoretical spin structure factors.Spin
structure factor S(q) along different planes in reciprocal space (normalized by its
maximum value within the plane, unless specified otherwise). a–c experimental
data obtained by INS with the incident energy Ei = 5.0meV, integrated in the range

from0.5meV to 1.0meV. In this case, the data is normalizedby an arbitrary value of
11. d–f cMC calculations at T =0.35 J4 (left half) and PFFRG calculations for
Λ =0.58 J4 (right half), using the form factor of Ni2+ ions. g–i line cuts along three
principal directions indicated by white dashed lines in b.
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plots. Deviations can be seen in terms of the predicted ratio of inten-
sities of twoprincipal peaks along [100] and [111], thewidthof peaks, as
well as a qualitative difference at large q along [110]. At least partially,
these deviations could be explained by the limitations of the finite
energy range integration used in Eq. (1). A more thorough comparison
would require a full theoretical description of S(q, ω). However, given
the highly frustrated 3D network, the large unit cell, and the spin value
S = 1, these calculations are beyond the reach of current theoretical
methods. Despite this, we have shown that our theoretical description
of K2Ni2(SO4)3 captures all themain aspects of itsmagnetism, covering
both static and dynamic elements. That is to say, the DFT Hamiltonian
we derived solely from the atomic positions enables us to reproduce
the experimental Bragg structure and themagnetic unit cell below the
phase transition (Fig. 1d) as well as the spin structure factor obtained
by INS measurements above the ordering (Fig. 3a–c).

Proximity to a spin liquid
Due to the complexity of the underlying 3D magnetic network, with
the classical limits for J3, J5→ 0 and J4→ 0, it is far from evident why it is
so geometrically frustrated in the case of K2Ni2(SO4)3. Simpler net-
works with similar classically ordered ground states, like the square or
triangular lattices, are very susceptible to the introduction of addi-
tional frustrating couplings which eventually drive them to spin-liquid
states (J2/J1 ~ 0.5 and J2/J1 ~ 0.06 for the square38–43 and triangular
lattice44–49, respectively, even though other non-magnetic states have
been proposed for the square case50). In the context of a large variety
of different compounds with the same structure, belonging to the
langbeinite family, it represents an important task to pinpoint the
source of the observed frustration. To this end, we have studied a
wider range of the J3-J4-J5 parameter phase space with both PFFRG and
cMC calculations. It turns out that the set of exchange parameters
characterizing K2Ni2(SO4)3 lies very close to a so-far unexplored region
where long-range magnetic order appears to be completely absent,
centered around a particular point defined by J3 = 0, J4 = J5. In this limit,
the lattice is composed of corner-sharing tetrahedra with every ion

from one trillium lattice connected to the sites of the nearest equi-
lateral triangle from the second trillium lattice (Fig. 1b), and therefore
we call it a tetra-trillium lattice. In this lattice, half of all spins (i.e., those
from one trillium lattice) are shared by three tetrahedra, while the
remaining half (from the other trillium lattice) belongs to only one
tetrahedron. Calculations performed in this limit do not show any
signs ofmagnetic ordering in both classicalS→∞ (down toT = 0.001 J4)
and extreme quantum S = 1/2, 1 limits (down to Λ = 0.01 J4) (see Sup-
plementary Note 4), providing indications of spin-liquid behavior in
both the classical and quantum limits.

The extent of the island of liquidity around the tetra-trillium lat-
tice (indicated by the orange star in Fig. 4a), however, depends
strongly on the spin value considered. For S = 1, PFFRG indicates a very
narrow range around J3 = 0, with an extended set of values along the J5/
J4 axis exhibiting a dynamical ground state, ranging from ~0.8 up to
~3.5. On the other hand, the S = 1/2 case exhibits the absence of mag-
netic order for J3 ≠0 for certain values of J5/J4 and extends up to larger
J5/J4 below the pure trillium lattice limit J3 = J4 = 0. The wider area
indicated by the line pattern in Fig. 4a indicates a region where it is
numerically hard to determine the existence of a breakdown in the Λ-
flow for the S = 1/2 case. Even beyond this region, the flow breakdowns
are quite subtle, indicating weakly ordered phases. The set of para-
meters calculated with DFT for K2Ni2(SO4)3, indicated by a green circle
in Fig. 4a, lies close to these putative spin-liquid regions. This becomes
evident when the PFFRG spin structure factors from Fig. 3 are com-
pared to the results obtained in the tetra-trillium lattice limit (at
Λ = 0.01 J4) shown in Fig. 4c–e, as many of the features can be put in
correspondence. Generally, the peaks become more smeared in the
tetra-trillium limit, but there is no indication of a strong difference
between the two phases. This provides evidence that the properties of
K2Ni2(SO4)3 aregovernedby its proximity to theQSLphase in the tetra-
trillium lattice19,20.

In analogy to quantum spin ice, where a QSL arises out of a clas-
sical spin liquid (CSL) when adding quantum fluctuations, we address
here the question of whether the classical tetra-trillium lattice also

Fig. 4 | The island of liquidity around the tetra-trillium lattice. a PFFRG corre-
lated paramagnetic region, indicating no long-range order at T =0, for S = 1/2 (red
+blue) and S = 1 (red). The dashed part indicates the regionwhere the existence of a
flow breakdown is hard to determine for the S = 1/2 model. The green circle and
orange star indicate the DFT model for K2Ni2(SO4)3 and the tetra-trillium lattice

limit, respectively. b cMC calculations for the tetra-trillium lattice limit show no
finite-size effects in the specific heat. Data for a single tetrahedron is also shown in a
light-blue line. c–e Spin structure factor S(q) using cMC and PFFRG calculations for
the tetra-trillium lattice on different planes at T =0.001 J4 and Λ =0.01 J4,
respectively.
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hosts a CSL which can potentially turn into a QSL when adding quan-
tum fluctuations. The first indication is that cMC calculations show no
ordering tendencies down to the lowest temperatures. However, a
more conclusive proof of the CSL ground state in the classical limit can
be constructed as follows. First, the Hamiltonian can be written as a
disjoint sum of squared total spin in each tetrahedron (just as for the
pyrochlore lattice). With this re-writing, the classical ground-state
energy can be found exactly, given that a solution with zero net
magnetic moment in each tetrahedron exists. This solution cannot
exist for J5/J4 < 1/3, providing a theoretical limit (which we confirmed
with cMC calculations). Second, for the tetra-trillium lattice, we con-
firmed that a collinear solution exists (which is also a solution of the
Ising model) and clusters of 18 spins can be systematically found and
flipped while conserving the property of vanishing total spin in each
tetrahedron (see Supplementary Note 6). This allows the system to
move through an extensive ground-state manifold and confirms the
liquidity of this phase. Compared to the pyrochlore lattice, more spins
are needed to construct a minimal flippable cluster because of the
ramifications that occur at sites shared by three tetrahedra in the tetra-
trillium lattice.When adding other couplings such as J1, J2, or J3, perfect
squares cannot be completed anymore, and therefore the freedom to
fluctuate is restricted. The cMC calculations show that even the
smallest non-zero value of J3 results in a finite critical temperature
(however small). On the other hand, for J5 > J4, no ordering is observed
at least up to J5/J4 = 3.5. The spin structure factors corresponding to the
CSL in the tetra-trillium lattice are shown in the left parts of Fig. 4c–e
for T = 0.001 J4 in cMC.

The analogy between the tetra-trillium and the pyrochlore lattices
can be advanced even further. As demonstrated in Fig. 4b, the specific
heat per site reaches the value cv(T → 0) = 0.75 (without any phase
transition) as in the CSL on the pyrochlore lattice, which indicates the
absence of quartic modes associated with magnetic order51. Further-
more, the specific heat agrees quite well with that of a single tetra-
hedron, with small deviations occurring at intermediate temperatures
0.1 < T/J4 < 1.0, implying that the tetra-trillium lattice does not behave
simply as a set of decoupled tetrahedra. In the case of the pyrochlore
lattice, a U(1) (or Coulomb) CSL is realized, characterized by algeb-
raically decaying correlations and an emergent gauge field that leads
to pinch-point singularities in the spin structure factor3,52. As shown in
Fig. 4, the spin structure factor of the tetra-trillium lattice does not
present pinch-point singularities. This absence can be related to the
non-bipartite character of the tetra-trillium lattice in terms of tetra-
hedra. In two dimensions it has been shown that this can lead to a so-
called Z2 CSL, characterized by exponentially decaying correlations
down to T = 0 and fractionalized magnetic moments53 (the properties
derive actually from the eigenvalues of the adjacencymatrix, which are
gapped). Exponentially decaying correlations would also explain the
negligible finite-size effects in Fig. 4b.

With these arguments, we have established that the classical
version of the tetra-trillium model exhibits an extensive ground-state
degeneracy and, hence, realizes a CSL. As in models on the pyrochlore
lattice, these systems are particularly promising for realizing QSLs
when adding quantum fluctuation. This is because quantum effects
induce tunneling between the degenerate classical ground states (in
our case via the aforementioned 18 spin-flip processes), which may
lead to a liquid-like quantum superposition of extensively many clas-
sical states. This effect of quantum fluctuations is considerably dif-
ferent from the action of quantum fluctuations on top of a
magnetically ordered state, where they merely induce a reduction of
the ordered moment. Changing back the classical spins of the tetra-
trillium model to S = 1 spins (as realized in K2Ni2(SO4)3) is expected to
introduce substantial quantum fluctuations, particularly in the present
case of isotropic Heisenberg interactions,which are devoidof any easy
axis that can facilitate static spins. This fact, together with the obser-
vation that the PFFRG spin structure factors for the quantum S = 1 case

at Λ = 0.01 J4 and the cMC results are considerably different (see
Fig. 4c–e), evidences that the S = 1 tetra-trillium model is no longer a
CSL. Nonetheless, quantum fluctuations are unable to select a unique
magnetic ground-state out of the degenerate ground-statemanifold of
the CSL. Hence, the S = 1 tetra-trillium model remains magnetically
disordered, as indicated by our PFFRG calculations. Taken together,
these two observations make a QSL scenario for the S = 1 tetra-trillium
model plausible. Changing the model parameters of the ideal tetra-
trillium system back to the ones realized in K2Ni2(SO4)3 induces weak
magnetic order, as seen in experiments and PFFRG. Nevertheless, key
features of the spin structure factor of the ideal tetra-trillium system
are still seen when simulating the system with the actual material
parameters above the ordering transition, as is evident from a com-
parison between the PFFRG results in Figs. 3 and 4. Therefore, we
conclude that the dynamics of K2Ni2(SO4)3 are still substantially gov-
erned by the quantum liquidity of the nearby ideal tetra-trillium point.

The evidence of strong dynamics seen in K2Ni2(SO4)3 opens a
window of possibilities in search of exotic quantum phases born out of
complex 3D lattice geometries beyond the iconic pyrochlore and
hyperkagome lattices. Viewing the geometry as a tessellation of tetra-
hedra on a trillium lattice, we have unveiled a so-far unexplored frus-
tration mechanism at play in the langbeinite family. The excellent
agreement between experiment and theory demonstrated for
K2Ni2(SO4)3 offers an opportunity to further test the applicability of
theoretical concepts to awider variety of compounds that belong to the
langbeinite family. Our theoretical phase diagram identifying an island
of liquidity centered around a highly frustrated tetra-trillium lattice
provides a valuable guide in search of further promising QSL candidate
materials. It is worth mentioning that despite the appearance of mag-
netic order outside of the identified regime, the ground states remain
highly dynamic, thereby allowing for a wide temperature range where
emergent phenomena arising out of an interplay between thermal and
quantum fluctuations could be explored. An exciting task for future
theoretical studies will be to identify possible structures of emergent
gauge theories on the tetra-trillium lattice that could underlie the
potential QSL behavior. Of particular interest in this context will be how
the non-centrosymmetric character of the P213 (#198) crystallographic
space group of K2Ni2(SO4)3 could give rise to a chiral QSL.

Methods
DFT-based energy mapping
We determine the Heisenberg Hamiltonian parameters for the
T = 100K structure of K2Ni2(SO4)3 by performing DFT-based energy
mapping54,55 in the same way as was done for the room-temperature
structure22. We use all electron DFT calculations with the full potential
local orbital basis56 and a generalized gradient approximation (GGA)
exchange-correlation functional57. We correct for strong electronic
correlations on the Ni2+ 3d orbitals using a GGA+U functional58. We
determine the parameters of the Heisenberg Hamiltonian written in
the form

H =
X
i<j

JijSi � Sj , ð2Þ

where Si and Sj are spin operators and every bond is counted once. We
create a

ffiffiffi
2

p
×

ffiffiffi
2

p
× 1 supercell withP21 space group that allows for eight

symmetry-inequivalent spins. This provides 38 distinct energies of
different spin configurations and allows us to resolve the eight nearest-
neighbor exchange interactions, which we name J1 to J8.We choose the
relevant value of the interaction U by demanding that the set of
interactions match the experimental Curie-Weiss temperature.

Inelastic neutron scattering
Single crystal inelastic neutron scattering data was obtained on the
time-of-flight (TOF) instrument LET59, ISIS (Didcot, UK) using four
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different crystals grown from the melt22. The crystals, amounting to
a total mass of 0.45g, were co-aligned on aluminum posts, to access
the (HHL) scattering plane. Cadmium shielding was used to reduce
the background signal arising from brass and aluminum. The INS
measurements were performed at T = 2 K, with three different inci-
dent energies of Ei = 2.8, 5, and 11.7meV. The (HHL) reciprocal space
maps were obtained by scanning over an angular range of 140° in 1°
steps for 18 h, spending 7.5 min/° for a total of 140 runs. The Horace
software was used for visualizing and analyzing the four-
dimensional S(q, ω) data from the TOF experiment60. The single
crystal TOF data was symmetrized with respect to symmetry
operations in the P213 space group of K2Ni2(SO4)3

61,62. In our ana-
lysis, we normalized and added together data from different
equivalent planes based on the space group symmetries. For
the (100) and (110) families of planes we applied
8 symmetry operations to include reflection and inversion sym-
metries along the two perpendicular axes and about the origin
respectively: (x, y, z), (−x, y, z), (x, −y, z), (x, y, −z), (−x, −y, z), (x, −y,
−z), (−x, y, -z), (−x, −y, −z). For the (111) family of planes, we applied a
6-fold rotational symmetry.

Classical Monte Carlo
The cMC calculations were carried out using a logarithmic cooling
protocol from T = 2 J4 down to T = 0.001 J4 with 150 temperature
steps. Systems of up to 8 × 123 = 13824 unitary spins are considered.
At each temperature, 105 cMC steps were performed. Each cMC
step consists of N Metropolis trials and N overrelaxation steps
intercalated, where N is the number of spins. The acceptance rate
of the Metropolis trials is kept at 50% using the adapted Gaussian
step63. Correlations are calculated over already thermalized states
at selected temperatures by doing 4 × 105 cMC steps while mea-
suring correlations once every 100 steps. All results are then
averaged over 5 independent runs. The spin structure factors are
calculated taking into account the positions of the Ni atoms cor-
responding to eachmodel, as well as the form factor corresponding
to Ni atoms.

Pseudo-fermion functional renormalization group
All results for S = 1/2 and S = 1 quantum spin models in this paper are
obtained by standard PFFRG32 with the following specifications (gen-
eral information on themethod is provided in Supplementary Note 4).
Vertex frequency dependencies are approximated by finite grids with
exponentially distributed frequencies. The self-energy is evaluated for
1000 positive frequency arguments. Frequency grids for the two-
particle vertex contain 32 positive values for each of the three transfer
frequencies. Spin-correlations spanning over distances larger than
three lattice constants of the underlying cubic lattice are neglected.
After consideration of lattice translation symmetries, this implies the
computation of spin-correlations along 1842 lattice vectors, or 622
vectors unrelated by lattice symmetries. For the computation of the
phase diagram Fig. 4a, the maximum included correlation vector dis-
tance is reduced to two lattice constants, implying 186 vectors unre-
lated by symmetry. Flow equations are solved by the application of an
explicit embedded Runge-Kutta (2, 3) method with adaptive step
size64.

Data availability
Rawdata from the neutron scattering experimentwas generated at the
ISIS, UK, large-scale facility. All the data that support the findings of
this study are available in the Zenodo repository (https://doi.org/10.
5281/zenodo.12780091).

Code availability
The code for DFT, cMC, and PFFRG calculations of this study is avail-
able from the corresponding author upon request.
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