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Abstract
Motivation: Accurate quantitative information about protein abundance is crucial for understanding a biological system and its dynamics. 
Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry (MS) protocols. Here, proteins are digested into pep
tides before quantification via MS. However, missing peptide abundance values, which can make up more than 50% of all abundance values, 
are a common issue. They result in missing protein abundance values, which then hinder accurate and reliable downstream analyses.
Results: To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly on the peptide level 
that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid sequence information into account. We bench
mark our method against 11 common imputation methods on 6 diverse datasets, including cell lines, tissue, and plasma samples. We observe 
that PEPerMINT consistently outperforms other imputation methods. Its prediction performance remains high for varying degrees of missing
ness, different evaluation approaches, and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful 
uncertainty estimates and allows for tailoring imputation to the user’s needs based on the reliability of imputed values.
Availability and implementation: The code is available at https://github.com/DILiS-lab/pepermint.

1 Introduction
Proteins are the main acting molecules in cells. The character
ization of their quantity in different biological contexts plays 
a fundamental role in understanding cellular function 
and regulation in disease (Anderson and Anderson 1998, 
Buccitelli and Selbach 2020). Methods based on label-free 
mass spectrometry (MS) are commonly used for high- 
throughput quantification of protein abundance in biological 
samples (Rozanova et al. 2021). In MS-based bottom-up pro
teomics, proteins are enzymatically digested into peptides be
fore subjecting them to a mass spectrometer. Individual 
peptides are then commonly identified by matching their 
spectra to corresponding databases (Sinitcyn et al. 2018). 
With data-dependent acquisition (DDA), only the top most 
abundant peptides within a given analysis time window are 
individually fragmented and used for identification and 
quantification. In contrast, data-independent acquisition 
(DIA) fragments all peptides within a given time and mass 
window. The higher sensitivity of DIA has increased its use 
in recent years (Guo and Aebersold 2023). Finally, several 
aggregation methods exist to infer protein abundance by 
computationally aggregating the measured peptide 

abundance values into protein abundances (Cox et al. 2014, 
Fischer and Renard 2016) to allow downstream analysis on 
the protein level.

With label-free MS, peptide abundance measurements 
exhibit a high number of missing values (e.g. 22.1%–68.8% 
for the datasets used in this article). These might either be 
due to peptides with an abundance below the detection limit, 
often referred to as missing not at random (MNAR), or due 
to random errors and stochastic fluctuations in the measure
ment process, often referred to as missing completely at ran
dom (MCAR) (Karpievitch et al. 2012, Lazar et al. 2016, 
V€alikangas et al. 2017). While performing peptide-to-protein 
aggregation, these missing values can propagate to the pro
tein level and ultimately hamper downstream analyses (Liu 
and Dongre 2021, Kong et al. 2022). Therefore, different 
methods for imputing missing values following different 
paradigms—relying on single (e.g. minimal) values, leverag
ing local similarities or global structure—have been suggested 
and benchmarked (Lazar et al. 2016, Liu and Dongre 2021, 
Shen et al. 2022) (see overview in Table 1). Basic methods, 
such as average, k-nearest neighbors (KNNs), iterative singu
lar value decomposition (ISVD), principal component analy
sis (PCA), or random forest (RF), which are applicable 
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beyond proteomics have been especially widely adopted 
(Oba et al. 2003, Webb-Robertson et al. 2015). More com
plex extensions, mostly dedicated to protein imputation, 
based on mixture models or matrix factorization, have been 
suggested (Shen et al. 2022, Kong et al. 2023). In addition, 
adaptations of basic methods such as RF or linear regression 
models have been proposed to include additional features like 
mRNA measurements (Asensio et al. 2022).

Deep learning (DL) was suggested for missing value impu
tation in omics datasets. Arisdakessian et al. (2019) intro
duced a basic neural network of several fully connected 
layers and a single dropout layer for imputing single-cell 
RNA sequencing datasets. Webel et al. (2024) proposed the 
application of denoising autoencoders (DAE) and variational 
autoencoders (VAE) for the imputation of MS-based proteo
mics datasets. Barzine et al. (2020) used a neural network 
and mRNA expression values along with context information 
from GO terms and UniProt keywords to predict missing pro
tein abundance values.

While additional information, such as mRNA measure
ments, can improve imputation performance, obtaining 
mRNA data requires costly additional wet-lab experiments 
or might even be infeasible (e.g. for plasma samples). 
Furthermore, there are multiple proteomics-specific features 
beyond GO terms or UniProt keywords that can provide ad
ditional information and context to machine learning models 
for learning patterns across similar proteins or peptides that 
current imputation methods fail to exploit. In particular, sim
ilarities in physical properties of the measured molecules, 
such as peptide mass, sequence length, and charge state, are 
helpful for peptide-to-protein aggregation (Fischer and 
Renard 2016). Also, amino acid sequence information is 
available for missing proteins and peptides, and language 
models pre-trained on amino acid sequences have shown 
good performance on a variety of protein-related tasks 
(Elnaggar et al. 2021). The embeddings derived from these 
pre-trained language models encode the valuable biophysical 
properties of the underlying protein or peptide but currently 

remain unused as features for imputation. In addition, neither 
of the described DL-based imputation methods considers the 
particular relationships between proteins and peptides. 
Peptides originating from the same protein are expected to 
have strongly correlated abundances, a relationship that can 
be exploited to improve imputation performance and that 
also enables leveraging abundance information on non- 
unique peptides. Moreover, while multiple contributions 
have focused on imputing values in high missingness scenar
ios (Barzine et al. 2020, Kong et al. 2023), little attention has 
been paid to the inherent uncertainty coming with such impu
tations. So far, most imputation methods have not been 
designed with uncertainty in mind, resulting in uncertainty 
estimates for imputed values either being not available 
or obtained via multiple imputations (Li et al. 2015). 
Nevertheless, uncertainty estimates are of high value as they 
can enhance the trust in imputation results, and also help 
users filter out uncertain imputations.

We here address these gaps and propose a new DL-based 
model for imputation in proteomics datasets that exploit ad
ditional proteomics features in the form of amino acid 
sequences and peptide–protein relationships. As graph neural 
network (GNN) models have shown considerable success in 
modeling complex relationships between molecules and 
learning from biological and omics data (Ioannidis et al. 
2019, Li et al. 2021, Witzke et al. 2023), our method relies 
on a GNN architecture. What is more, while most proteomics 
imputation methods still impute the protein level, our model 
acts directly on the peptide level, a strategy shown to 
yield improved imputation results (Lazar et al. 2016). 
Furthermore, our DL architecture enables uncertainty esti
mates for imputed values at low computational overhead to 
provide the user with a valuable tool for imputation predic
tion diagnostics. We systematically benchmark our novel 
method against 11 imputation methods from different cate
gories across 6 representative datasets with different ground- 
truth mechanisms using 3 evaluation metrics (see overview in  
Fig. 1). Furthermore, we showcase its uncertainty quantifica
tion capabilities.

2 Materials and methods
We introduce PEPerMINT (PEPtide Mass spectrometry 
Imputation NeTwork), a method combining abundance val
ues and information from amino acid sequences and protein– 
peptide relations to impute missing values on the peptide 
level. For its implementation and systematic benchmarking, 
we use our novel open-source PyProteoNet framework (see 
Supplementary data).

2.1 PEPerMINT imputation
For our PEPerMINT imputation model, we propose a neural 
network architecture combining a learnable transformation 
of abundance values, a GNN operating on the peptide graph, 
as well as amino acid sequence embeddings derived from 
a transformer-based language model (see Fig. 1A for a 
visual overview).

2.1.1 Input features
We assume a proteomics dataset with abundance values for n 
(potentially non-unique) peptides measured across s samples 
given as n× s matrix A where the elements of A either repre
sent logarithmized (natural logarithm) and standardized 

Table 1. Overview of imputation methods used for our benchmark.

Method Benchmarked by Supported by

Single value
MinDet [1, 2] [2, 3, 4, 5]
MinProb [1, 2, 6, 7] [2, 3, 4, 5]
Median [2, 8] [2]
Local similarity
KNN [1, 2, 6, 7, 8, 9] [2, 3, 4, 5, 10]
RF [11] [2, 7, 8] [2, 3, 4, 5]
MICE [12] [2, 8] [2, 10, 12]
Global structure
ISVD [13] [1, 2, 6, 7] [2, 15]
BPCA [14] [2, 6, 7, 8, 9] [2, 3, 4, 5, 15]
DAE [8] [8] [8]
VAE [8] [8] [8]
CF [8] [8] [8]

We capture basic methods, more complex ones, and imputation methods 
based on deep neural networks representing all three generally considered 
categories of imputation methods. Further selection criteria were their 
appearance in proteomics imputation benchmark studies and their 
availability in terms of support in open-source software packages. [1] Lazar 
et al. (2016), [2] Wang et al. (2020), [3] Feng et al. (2023), [4] Gatto and 
Lilley (2012), [5] Rainer et al. (2022), [6] Liu and Dongre (2021), [7] Jin 
et al. (2021), [8] Webel et al. (2024), [9] Webb-Robertson et al. (2015), 
[10] Pedregosa et al. (2011), [11] Stekhoven and B€uhlmann (2012), [12]
Van Buuren and Groothuis-Oudshoorn (2011), [13] Troyanskaya et al.
(2001), [14] Bishop (1998), [15] Stacklies et al. (2007).
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(zero mean, unit variance) abundance values or missing val
ues. Missing values are ignored for logarithmization and 
standardization. We address the problem of predicting abun
dance values for the missing values. PEPerMINT takes two 
inputs: the abundance matrix A and an n×1024 sequence 
embedding matrix S. S is precomputed from the peptide 
amino acid sequences using the ProtT5 language model, 
which has previously shown good performance generating 
protein embeddings from sequence strings for tasks like pre
dicting protein secondary structure (Elnaggar et al. 2021). 
This allows PEPerMINT to account for abundance values 
from non-missing samples as well as different biophysical 
peptide properties encoded in the sequence embeddings 
(Elnaggar et al. 2021).

2.1.2 Peptide–peptide graph
The digestion of proteins into peptides for MS-based quanti
fication results in the characteristic protein–peptide structure 
of MS-based datasets that can be described by a bipartite 
graph (Muth et al. 2016) where each peptide is assigned to 
one or more proteins. This structure can provide valuable in
formation for the imputation of missing values since peptides 
belonging to the same protein are expected to show similar 
abundance profiles across samples. We transform this struc
ture into a peptide-only graph G¼ ðV;EÞ whereby peptides 
are nodes 2 V that have an edge 2 E between them if they be
long to the same protein. Therefore, in G, all peptides belong
ing to the same protein are fully connected, and all peptides 
from proteins with shared peptides form a connected 
component (see Fig. 1A middle). We provide G as input 
to PEPerMINT.

2.1.3 Neural network architecture
Figure 2 shows a simplified representation of PEPerMINT’s 
architecture. PEPerMINT scales down the sequence embed
dings of each peptide by applying a learnable transformation 
fQSequence : Rn×1024 ! Rn×16. This aims to balance the size of

abundance and sequence-based information. Next, for each 
peptide, we concatenate the sequence embedding and the vec
tor containing peptide abundances across samples 
(abundance vector) and apply another learnable non-linear 
transformation to create a latent representation fQLatent :

Rn× ðsþ16Þ ! Rn×128. To account for the protein–peptide
structure of the dataset represented by the peptide–peptide 
graph G we use an attention-based GNN consisting of a sin
gle GATv2 (Brody et al. 2021) layer with 64 heads with each 
head outputting a vector of shape bs

2c. To keep the peptide- 
specific information from our latent representation, we add a 
skip connection bypassing the GNN. We add another learn
able transformation on the concatenated output of the skip 
connection and the GNN output fQFinal : Rn× ð64bs

2cþ128Þ !

Rn×128.

2.1.4 Uncertainty prediction of imputed values
To allow the estimation of uncertainty for imputed values, 
abundance values are predicted in a Bayesian setting. At the 
same time, this allows our model to better adapt to differing 
amounts of measurement noise for individual peptides (heter
oscedastic noise) (Anderle et al. 2004, Bakalarski et al. 
2008). Therefore, instead of single abundance values, mean 
and variance values of Gaussian abundance distributions are 
predicted (Bishop 1994) by two separate output heads (Stirn 
et al. 2023) (fQμ : Rn×128 ! Rn× s and fQσ2 : Rn×128 ! Rn× s).

2.1.5 Training scheme and self-supervised learning
We create a test set for each dataset by masking 10% of its 
abundance values uniformly at random (setting them to miss
ing). However, for DDA/DIA datasets, the test set is given by 
all missing DDA abundance values that have a corresponding 
non-missing DIA value. From the remainder of the peptides 
(after picking the test set), we pick 10% of non-missing val
ues uniformly at random as the validation set and mask 
them. On the resulting dataset, training is performed in a self- 
supervised manner. Similar to the training of denoising AE 
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Figure 1. Overview of our PEPerMINT imputation method and our benchmarking framework. (A) Our PEPerMINT imputation model combines both 
peptide sequence information and abundance values across samples into a latent representation. Structural information is included via a peptide–peptide 
graph using a graph attention layer. (B) PEPerMINT is compared to 11 published imputation methods from 3 different categories. (C and D) We perform a 
systematic evaluation on six diverse datasets with ground truth derived from three different mechanisms with respect to three different evaluation 
metrics (see Materials and methods for details).

concat concat
random
masking

Figure 2. Simplified representation of the architecture of PEPerMINT with input feature representations (gray) and learnable (multilayer) transformations 
(blue). See Supplementary Fig. S1 for a detailed visualization.
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as, e.g. done by Webel et al. (2024), for each training step, we 
mask a fraction γ of non-missing values and compute the loss 
over them. The fraction γ is sampled randomly with samples 
uniformly distributed over the ½5%;15%Þ interval to improve 
model generalization.

To improve the training performance in the Bayesian set
ting, the model is trained in two rounds. First, we only train 
the fQμ head (see Fig. 2) with mean squared error (MSE) loss 
before tuning the mean μ and variance σ2 together within a 
second training run using both output heads (fQμ ; fQσ2 ) and
Gaussian negative log-likelihood loss (Sluijterman et al. 
2023). For both training rounds, we employ early stopping 
with respect to the MSE computed on the holdout validation 
set after each epoch. We define one epoch as consisting of 
500 randomly masked datasets.

2.2 Imputation methods used for comparison
To evaluate PEPerMINT, we compare it against a broad, rep
resentative selection of 11 methods from the literature that 
are commonly used for imputation and have appeared fre
quently in other proteomics benchmarks (see Table 1 and 
Supplementary data for details).

i) Single-value methods: These methods either impute miss
ing abundance values with the same single value or, for
each missing value, randomly draw a value from a prede
termined distribution. We evaluated MinDet (using the
0.01 quantile of non-missing values within each sample),
MinProb (drawing from a normal distribution around
the 0.01 quantile within each sample), and Median (pep
tide-wise across samples) as commonly used methods of
this class.

ii) Local similarity methods: These methods assume that
missing values of a peptide can be predicted from the
abundance values of similar peptides. We selected KNN
imputation as it is simple and widely used (Webb-
Robertson et al. 2015, Lazar et al. 2016, Wang et al.
2020). We also included imputation based on a Bayesian
ridge regression model as suggested by the MICE (Van
Buuren and Groothuis-Oudshoorn 2011) imputation
framework and an RF-based imputation (Stekhoven and
B€uhlmann 2012) as a commonly used method with good
performance reported previously (Jin et al. 2021).

iii) Global structure methods: These methods assume that
proteomics datasets contain redundant information and
can, thus, be well described by a low-dimensional repre
sentation, which is leveraged for inferring missing values.
We use Bayesian principal component analysis (BPCA)
(Oba et al. 2003) and ISVD (Troyanskaya et al. 2001) as
the most frequently used representatives. To include DL
methods, two AE-based methods (variational AE and

denoising AE) and a method based on collaborative fil
tering (CF), all recently proposed in (Webel et al. 2024), 
were considered. 

2.3 Datasets
We use six benchmark datasets with the goal of spanning a 
variety of biological backgrounds, varying degrees of com
plexity (blood plasma, cell lines, tumor tissue) with diverse 
dataset sizes (between <500 to >13 000 proteins and <2 600 
to >100 000 peptides), and differing percentages of missing
ness on the peptide level (22.8%–68.1%) for evaluation with 
respect to three different types of ground truth (see overview 
in Table 2, and further details in the Supplementary data).

The first three benchmark datasets (A1–A3) do not contain 
explicit ground-truth values. Therefore, we mask abundan
ces, as commonly done in the literature (Lazar et al. 2016, Jin 
et al. 2021), using the measured abundance of masked values 
as ground truth.

In addition, we use two datasets (B1–B2) acquired in DDA 
mode with orthogonal ground truth acquired in DIA mode. 
The more accurate DIA measurements contain fewer missing 
values, which allows the evaluation of imputation methods 
on genuinely missing values in the DDA data. To make the 
DIA and DDA data comparable, all DIA abundance values 
are scaled to have the same mean as the corresponding DDA 
abundance values.

For the evaluation of differential expression (DE), we use 
a dataset (labeled C) of protein mixtures with known 
(spiked-in) ratios from different organisms serving as ground 
truth. Similar datasets have been used in the literature to eval
uate methods for peptide-to-protein aggregation (Cox et al. 
2014) and imputation (Webb-Robertson et al. 2015, Jin 
et al. 2021).

2.4 Evaluation metrics
For abundance-based evaluation, we use the root mean 
squared error (RMSE) on all missing values that have non- 
missing ground-truth values (masked values or values with 
orthogonal DIA measurements) similar to earlier evaluations 
of imputation methods (Webb-Robertson et al. 2015, Barzine 
et al. 2020, Jin et al. 2021). To allow variance estimation, we 
compute the RMSE sample-wise. As an additional 
abundance-based evaluation, we compare imputation meth
ods with pairwise significance tests using a Bonferroni- 
corrected one-sided (paired) Wilcoxon signed-rank test. For 
every pair of imputation methods, the test compares the two 
absolute errors of imputed values for each peptide and data
set sample.

In addition, we evaluate imputation methods for the cor
rect identification of differentially expressed peptides. For 
each peptide, the corresponding sample abundance values 

Table 2. Overview of benchmark datasets and their characteristics including availability via ProteomeXchange, dataset ground-truth category (masked: 
removed abundance values, DDA/DIA, mixture: mixture of known ratios), number of samples (S), number of biological samples (BS), technical replicates 
per biological sample (TR/BS), number of proteins and peptides, percentage of peptide-level missing values.

Name, Reference Identifier Category #S #BS #TR/BS #Peptides #Proteins Missingness (%)

A1: prostate cancer (Chianese et al. 2022) PXD029525 Masked 18 6 3 57 770 6292 54.0
A2: Crohn’s fibrosis (Vieujean et al. 2021) PXD022214 Masked 13 13 1 37 158 4481 33.7
A3: breast cancer (Petrosyan et al. 2022) PXD035857 Masked 15 15 1 103 608 13 627 68.8
B1: HEK293-E.coli (Dowell et al. 2021) PXD018408 DDA/DIA 16 2 8 16 400 3045 25.2
B2: HIV blood (Ahmed et al. 2022) PXD047528 DDA/DIA 15 15 1 2535 435 41.8
C: HeLa-E.coli (Cox et al. 2014) PXD000279 Masked 

þmixture
6 2 3 50 260 6683 22.1
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between groups of replicates of biological samples with dif
ferent spike-in ratios are compared using a Benjamini– 
Hochberg corrected Welch’s t-test. Depending on the 
significance threshold, different peptides are detected as dif
ferentially expressed. Those are compared to a known 
ground truth of differentially expressed peptides (all spiked- 
in peptides in our mixture dataset C) to compute true posi
tives and false positives. We assess the performance over 
varying significance thresholds via a receiver operating char
acteristics (ROC) curve (see more details in Supplementary 
data, Section D).

3 Results
We evaluated the performance of our PEPerMINT peptide 
imputation methods on six proteomics datasets with various 
biological backgrounds and missingness characteristics. 
Then, we also compared it against a broad, representative se
lection of 11 widely used imputation methods. A comparison 
of the runtime of all presented imputation methods can be 
found in Supplementary Fig. S8.

3.1 Abundance-based evaluation
We first performed an abundance-based evaluation via the 
sample-wise RMSE for four datasets with artificially intro
duced missing values and two DDA/DIA datasets with 
ground-truth values acquired using the DIA (Fig. 3A). 
Particularly, we find that our PEPerMINT imputation 
method gives the best performance across all evaluated data
sets, outperforming the second best-performing method 
(BPCA) by up to 20% on the breast cancer dataset. Out of 
the other evaluated methods, RF, BPCA, MICE, and CF also 
show good results. Interestingly, imputing missing values 
with the peptide-wise median gives better results than the 
more complex KNN imputation and methods based on 
autoencoders (DAE, VAE). ISVD, MinDET, and MinProb 
imputation were found to be generally worse, except for the 
good performance of MinDet and MinProb on the HIV 

blood dataset. We obtain similar results for dataset-wise 
mean absolute error as an alternative metric (see 
Supplementary data).

Further, as predicting the missing abundance of a peptide 
could be hampered if measured only in a few samples, we in
vestigated whether imputation performance depends on the 
degree of missingness per peptide. Therefore, we stratified the 
evaluated peptides by their fraction of missing values across 
samples (Fig. 3B for the prostate cancer dataset; similar 
results for other datasets, see Supplementary data). Again, 
PEPerMINT outperforms other imputation methods for any 
fraction of missing values. The biggest advantage over com
petitor methods is observed on peptides with high fractions 
of missing values. It can also be noted that PEPerMINT, RF, 
BPCA, CF, DAE, and especially ISVD imputation show im
proved performance when the fraction of missing values 
decreases. In contrast, MinProb and MinDet perform better 
with high fractions of missing values.

Figure 4 shows the results for statistically comparing impu
tation methods using a Wilcoxon signed-rank test (see 
Materials and methods). Our PEPerMINT method performs 
significantly better than all other evaluated methods on the 
majority of benchmark datasets. It should be noted that in 
contrast to the sample-wise RMSE results shown in Fig. 3, 
the Wilcoxon test compares individual imputed values with
out averaging the error per dataset sample. The good perfor
mance of PEPerMINT also holds when stratifying peptides 
for missingness across samples (see Supplementary Fig. S4).

3.2 Evaluation of DE prediction
DE analysis is a common downstream analysis task per
formed on MS-based proteomics datasets. Therefore, we 
compared our proposed method with the other imputation 
methods with respect to the performance of DE analysis on 
the imputed dataset. For evaluation, we used the ground- 
truth protein ratios that can be inferred from the species- 
specific mixture rates. We restricted the evaluation to 
peptides that can uniquely be assigned to one species. The 

A

B

Figure 3. (A) Sample-wise RMSE of all evaluated imputation methods on all six benchmark datasets with 95% confidence interval error bars 
(bootstrapped). (B) Results for the prostate cancer (A1) dataset stratified by their fraction of missing values over the samples (see Supplementary for 
stratified results of other datasets). Our newly proposed PEPerMINT imputation outperforms other methods on all datasets, irrespective of the 
missingness fraction.
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ROC curve in Fig. 5 shows that our method is performing 
better than the other methods, with the highest area under 
the ROC curve (AUC). The precision–recall curve 
(Supplementary Fig. S5) supports this result.

3.3 Predicted uncertainty of imputed values
Our PEPerMINT approach allows the out-of-the-box predic
tion of uncertainty for imputed values, helping users obtain a 
quantitative estimate of their trustworthiness. To evaluate 
the usefulness of this computed uncertainty, we compared the 
imputed values against their ground truth colored by their 
predicted uncertainty (Fig. 6A). The imputed values with the 
lowest uncertainty (dark blue) tend to show better predic
tions (low error) and high abundances. The latter fits with 
the characteristics of data acquired via MS because high 
abundance values commonly are proportionally less influ
enced by measurement noise and are, therefore, assumed to 

be more reliable (Renard et al. 2012). In addition, we find 
that removing imputed values with high predicted uncer
tainty from the evaluation generally improves imputation 
quality (Fig. 6B). Furthermore, we observe that filtering out 
imputations with substantial uncertainty but keeping those 
with low uncertainty, can again massively increase the accu
racy of downstream analysis. Re-using the experimental 
setup of the DE analysis in Fig. 5, we find that by filtering at 
a predicted uncertainty threshold of 0.2 in Fig. 6C, we can 
obtain an AUC of 0.84, compared to an AUC of 0.78 for the 
PEPerMINT imputation alone (versus 0.68 without imputa
tion, see Supplementary data). This further validates the qual
ity and benefit of the uncertainty predictions given by 
our method.

4 Discussion and conclusion
Overall, PEPerMINT results in superior performance com
pared to other benchmarked methods across datasets, miss
ingness levels of the peptides, and evaluation metrics. In 
addition, PEPerMINT provides a handle to the problem of 
imputation quality by predicting uncertainties for imputed 
values, with evident improvement potential for downstream 
analyses. This also distinguishes PEPerMINT from most 
other imputation methods, which commonly cannot result in 
confidence statements. We showed that PEPerMINT’s uncer
tainty estimates are highly correlated with imputation error, 
thereby aptly guiding users on when to rely on or filter out 
the imputed values. Further, filtering out imputed peptide 
abundance values with high predicted uncertainty eventually 
decisively improved the performance of the DE predic
tion task.

From the diverse characteristics of our benchmark data
sets, it can be derived that PEPerMINT’s high performance is 
not limited to a specific dataset size or fraction of missing val
ues. Furthermore, our benchmark comprises datasets with 
and without technical replicates, i.e. samples with very high 
similarity. Thus, imputation could be considered easier when 
relying on technical replicates. However, PEPerMINT’s per
formance seems unaffected by this factor and even outper
forms other methods by the largest margin on the breast 

Figure 4. Pairwise comparison of different imputation methods by 
statistical significance test results (see Materials and methods). Colors 
encode on how many of the six evaluated datasets the imputation 
method given in the row performs significantly better (5% significance 
level) than the imputation method given in the column (insignificant test 
results increase the count by 0.5). Blue cells indicate the method given in 
the row outperforms the imputation method given by the column in the 
majority of cases.

Figure 5. ROC curve for the performance of DE analysis of peptides on the HeLa-E.coli dataset imputed with different imputation methods with 5% FDR 
thresholds marked (dots). Our PEPerMINT imputation method (yellow) outperforms other methods, having the largest area under the curve (AUC).
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cancer dataset, which is devoid of technical replicates. This 
further hints at PEPerMINT actually learning biologically rel
evant patterns instead of merely averaging across techni
cal replicates.

Comparing our different categories of datasets, 
PEPerMINT performs best on our masked benchmark data
sets that, by design, only exhibit MCAR missing values. This 
can be explained by our self-supervised training scheme, 
which also masks uniformly at random and aligns well with 
MCAR missing values. Nevertheless, PEPerMINT still shows 
very good results on DDA benchmark datasets with DIA 
ground-truth values that can be assumed to contain both 
MCAR and MNAR missing values. Further, PEPerMINT 
also performs well on the HIV blood dataset, in which a high 
fraction of missing values is due to lowly abundant peptides 
(MNAR) as the blood plasma proteome is well studied with 
missing values rarely occurring. Its increased percentage of 
MNAR compared to the other datasets could be the cause for 
the different ranking of imputation method performances on 
this dataset, e.g. very good performance of MinDet and 
MinProb imputation that replace missing values with low 
abundance values.

For peptides with a high percentage of missing values, 
PEPerMINT compares especially well against other well- 
performing methods such as BPCA or RF imputation. This 
can be explained by PEPerMINT’s ability to exploit 
additional information (amino acid sequence, abundance of 
peptides belonging to the same protein) to obtain context about 
a peptide’s properties, even if little abundance information is 
available for the peptide itself. Indeed, using ablation studies, 

we find both additional information layers to provide at least 
some performance benefit to PEPerMINT (see Supplementary 
Fig. S9). As our method also allows the flexible integration of 
other information layers both in tabular and graph form, it 
could be readily extended to improve proteomics imputation 
even further. Depending on the analysis goal, sample size, miss
ingness as well as desirable and achievable confidence levels of 
imputations, it has to be decided on a case-by-case basis 
whether imputation is appropriate for a specific dataset. For ex
plorative studies of small sample sizes with high confidence 
imputations, it may be advisable to even impute in cases of high 
missingness (>50%), while this may neither be necessary nor 
desirable in confirmatory studies with large sample sizes.

A limitation of our method when compared with other im
putation methods is its higher runtime (see Supplementary 
Fig. S8). However, the fastest-running methods like Median 
or MinProb also perform worse than more complex methods 
with longer runtimes like BPCA or RF. When executed on a 
GPU, PEPerMINT shows a runtime similar to or faster than 
that of BPCA imputation. Of note, all considered imputation 
methods finish within minutes, which is well acceptable for 
MS-based proteomics analysis workflows.

Further benchmarking criteria (Harris et al. 2023) and 
methods for proteomic imputation relying on DL and ensem
bling (Weiping et al. 2021) or statistical models that take the 
protein–peptide structure into account (Etourneau et al. 
2023) are emerging. They can be used for future 
exploration and for potential extensions of PEPerMINT, our 
GNN-based method working directly on the peptide level 
that flexibly takes both peptide-to-protein relationships and 

A C

B

Figure 6. PEPerMINT’s predicted uncertainty for the imputed values for the HeLa-E.coli dataset (see Supplementary for other datasets). (A) Imputed 
abundance values versus ground truth colored by predicted uncertainty (low: dark blue, high: yellow). (B) Imputed values ordered by their predicted 
uncertainty with RMSE computed over different uncertainty quantiles (Iversen et al. 2023). (C) ROC curve zoomed in at low FDR values for the 
performance of DE analysis for imputing values only up to a predicted uncertainty threshold (see Supplementary data for details). The yellow ROC curve 
(≤1:0 uncertainty) is identical to the yellow PEPerMINT ROC curve from Fig. 5. Filtering out imputed values with high predicted uncertainties decisively 
improves DE analysis performance after imputation.
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amino acid sequence information into account to improve the 
prediction of missing abundance values.

Supplementary data
Supplementary data are available at Bioinformatics online.
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