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Abstract Hydration and dehydration reactions play pivotal roles in plate tectonics and the deep water cycle,
yet many facets of (de)hydration reactions remain unclear. Here, we study (de)hydration reactions where
associated solid density changes are predominantly balanced by porosity changes, with solid rock deformation
playing a minor role. We propose a hypothesis for three scenarios of (de)hydration front propagation and test it
using one‐dimensional hydro‐mechanical‐chemical models. Our models couple porous fluid flow, solid rock
volumetric deformation, and (de)hydration reactions described by equilibrium thermodynamics. We couple our
transport model with reactions through fluid pressure: the fluid pressure gradient governs porous flow and the
fluid pressure magnitude controls the reaction boundary. Our model validates the hypothesized scenarios and
shows that the change in solid density across the reaction boundary, from lower to higher pressure, dictates
whether hydration or dehydration fronts propagate: decreasing solid density causes dehydration front
propagation in the direction opposite to fluid flow while increasing solid density enables both hydration and
dehydration front propagation in the same direction as fluid flow. Our models demonstrate that reactions can
drive the propagation of (de)hydration fronts, characterized by sharp porosity fronts, into a viscous mediumwith
zero porosity and permeability; such propagation is impossible without reactions, as porosity fronts become
trapped. We apply our model to serpentinite dehydration reactions with positive and negative Clapeyron slopes
and granulite hydration (eclogitization). We use the results of systematic numerical simulations to derive a new
equation that allows estimating the transient, reaction‐induced permeability of natural (de)hydration zones.

Plain Language Summary We investigate reactions of hydration, which is the incorporation of
water into a rock, and dehydration, which is the liberation of water from a rock, with simple mathematical
models. These reactions are critical in understanding processes like plate tectonics, but many aspects of how
hydration or dehydration fronts move through a rock are unclear. Our research focuses on reactions where
changes in density are mostly balanced by changes in pore space, termed porosity, rather than the deformation of
the solid rock. We developed mathematical models that combine fluid flow, rock deformation, and hydration/
dehydration reactions. We derived simple equations that predict changes in porosity during hydration and
dehydration, even when the solid rock deforms simultaneously. We found that whether a rock hydrates or
dehydrates depends on how its solid density changes with increasing pressure during the reaction. By
systematically studying our model, we discovered that the speed of hydration and dehydration is not influenced
by the interval of fluid pressure over which the reaction occurs or the relationship between porosity and
permeability. We present an equation that can be used to estimate permeability from natural (de)hydration
zones.

1. Introduction
Hydration and dehydration reactions play a fundamental role in the evolution and dynamics of the solid Earth as
well as in the evolution of life or modern industry (e.g., Ague, 2014; Ohtani, 2021; Putnis, 2021; Vitale Brovarone
et al., 2020). Generally, hydration is a chemical reaction where a substance incorporates water and dehydration is
a chemical reaction where a substance liberates water (e.g., Philpotts & Ague, 2022). We focus here on meta-
morphic reactions and use the term (de)hydration to refer to both hydration and dehydration reactions. In solid
Earth sciences, the term water is often used as an analogy to fluid and mostly includes not only molecular H2O but
also OH groups or hydrogen, H (e.g., Kaatz et al., 2022; Vitale Brovarone et al., 2020). Furthermore, minerals can
incorporate water in various ways during hydration, such as in hydrous minerals, nominally anhydrous minerals,
or fluid inclusions (e.g., Kaatz et al., 2022; Liu et al., 2022; Putnis & John, 2010).
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(De)hydration is essential for the water and volatile cycle at subduction zones (e.g., Peacock, 1990; Plümper
et al., 2017; Scambelluri et al., 2019). Furthermore, (de)hydration plays a pivotal role in many geodynamic
processes because it changes the physical properties of rocks, for example, the density and associated buoyancy,
the porosity and associated permeability, the melting temperature, or the effective viscosity (e.g., Karato, 2008;
Ohtani, 2021; Putnis & John, 2010). Therefore, dehydration can change, for example, the stress state of rocks and
trigger earthquakes (e.g., Ferrand et al., 2017) or the migration of liberated water can change the rock melting
temperature and cause flux melting (e.g., Grove et al., 2006). Hydration also has a catalytic effect on metamorphic
reactions (e.g., Putnis, 2021) and can significantly weaken rocks, potentially causing strain localization (e.g.,
Baïsset et al., 2024; Griggs & Blacic, 1965; Stünitz et al., 2017). Hence, most of the geodynamic importance of
(de)hydration does not originate from the chemical reactions alone, but from coupling (de)hydration with porosity
and density change, fluid flow, rock deformation, and associated stress changes.

Many studies have applied laboratory experiments with a variety of rocks to study hydration (e.g., Kuleci
et al., 2016, 2017; Malvoisin et al., 2012; Zheng et al., 2019) and dehydration reactions (e.g., Brantut et al., 2012;
Heard & Rubey, 1966; Jung et al., 2004; Leclère et al., 2018; Llana‐Fúnez et al., 2012; Marti et al., 2021; Schrank
et al., 2021). These experiments provide essential insight into the fundamental processes of (de)hydration. Many
experiments are conducted on rocks such as gypsum which aim to mimic processes relevant to conditions in the
Earth's upper crust or for deformation rates that are orders of magnitude faster than rates typical for slower, ductile
geodynamic deformation processes. In addition to conducting experiments, it is necessary to develop mathe-
matical models to understand the coupling of the physical and chemical mechanisms governing (de)hydration.
Such models should be able to reproduce and predict laboratory experiments and allow studying (de)hydration
under geodynamic conditions that are not feasible to achieve in laboratory experiments, such as slow deforma-
tion rates, say <10− 7 s− 1. The mathematical models are further well suited to determine the parameters and
conditions that control the propagation and shape of reaction fronts in rock (e.g., Ague, 2014; Baumgartner &
Ferry, 1991; Bickle & McKenzie, 1987; Fletcher & Hofmann, 1974; Koehn et al., 2021).

Rocks such as granulite and serpentinites (hydrated metaperidotites) are representative of the lower crust and
hydrated lithospheric mantle, respectively. These rocks constitute an important part of the lithosphere and can be
involved in (de)hydration processes that occur in deeper geodynamic settings below the upper crust. For example,
the hydration of granulite can produce eclogite at high‐pressure conditions (e.g., Austrheim, 1987) and the
dehydration of antigorite serpentinite can produce olivine and liberate fluids during subduction (e.g., Ulmer &
Trommsdorff, 1995). Well‐studied field examples of these two reactions are presented in Figure 1. There have
been many investigations on (de)hydration processes, either from a chemical perspective focusing on fluid and
mineral chemistry and thermodynamic phase calculations, while disregarding hydro‐mechanical flow and
deformation processes (e.g., Centrella et al., 2015; Massonne, 2009), or from a hydro‐mechanical perspective
focusing on poromechanical models, while often neglecting chemical aspects and their impact on changes in
porosity, density, and fluid pressure (e.g., Cagnioncle et al., 2007; Gerya & Meilick, 2011; Hu et al., 2022;
Quinquis & Buiter, 2014). Such focus on either chemical (C) or hydro‐mechanical (HM) processes is frequently
reasonable because the investigated processes, and associated observations and experiments, are often quite
complex. However, many aspects of (de)hydration remain unclear, such as the hydration of rock in the limit of

Figure 1. Photographs of natural rocks showing (a) hydration and (b) dehydration features. (a) Eclogite shear zone with
eclogitization associated to deformation from Holsnøy, western Norway (60°35’11’’N, 5°07’34’’E). (b) Metamorphic
olivine veins in antigorite serpentinite from the Erro Tobbio ultramafic rocks, Ligurian Alps, Italy (44°33’38.9”N, 8°
48’49.5”E).
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zero‐permeability, or zero connected porosity, the generation of transient, reaction‐induced permeability during
simultaneous (de)hydration and deformation, or the parameters and conditions controlling the propagation of
(de)hydration fronts. Important geological examples where these relationships are certainly of importance are the
hydration of high‐pressure rocks during subduction and exhumation, such as the eclogitization of lower crustal
granulites by fluid migration through shear zones (e.g., Austrheim, 1987; our Figure 1a), or the dehydration of
deforming antigorite serpentinite and the associated formation of olivine veins during subduction (e.g., Hermann
et al., 2000; our Figure 1b). Hence, an increasing number of mathematical studies apply models that consider the
hydro‐mechanical‐chemical (HMC) coupling of reactions, fluid flow, and deformation to address some of the
unclear aspects mentioned above (e.g., Bras et al., 2023; O. Evans et al., 2018, 2020; Keller & Suckale, 2019;
Malvoisin et al., 2015, 2021; Poulet et al., 2014; Schmalholz et al., 2020, 2023).

The main aim of our study is to mathematically investigate fundamental aspects of coupled HMC processes
related to (de)hydration, including the quantification of porosity change, and the parameters controlling the
propagation of (de)hydration fronts. We apply simple, but representative, models to simplify the mathematical
treatment and ensure transparency. We consider elastic or viscous volumetric deformation for the M‐models and
Darcy flow for the H‐models. For the C‐models, we concentrate on a specific group of (de)hydration reactions:
(de)hydration reactions whose density changes can be mainly balanced by porosity changes. The considered
(de)hydration generates reaction‐induced porosity and permeability. The solid volumetric deformation associated
with the considered (de)hydration plays a minor role. Furthermore, we consider only pure H2O as the free fluid
phase. The modeled system can be open or closed concerning H2O but is closed concerning the solid components
such as MgO or SiO2. We further assume that the dissolution of solid components into the fluid phase has a
negligible contribution to the overall mass balance. An example of a dehydration reaction compatible with the
features mentioned above is the dehydration of serpentinite, made of antigorite and brucite, into forsterite and
pure H2O (e.g., B. W. Evans, 2004; our Figure 1b). An example of a hydration reaction compatible with the
features mentioned above is the hydration of felsic granulite into eclogite (e.g., Bras et al., 2023; our Figure 1a).
Furthermore, estimates of porosity relevant for metamorphism in deeper rock range between 10− 3 and 10− 6 (e.g.,
Ague, 2014; Kaatz et al., 2023; Skelton, 2011) and estimates for permeability are as low as 10− 23 m2 (e.g.,
Ague, 2014; Katayama et al., 2012) or even lower when extrapolated to confining pressures >10 kbar (e.g.,
Hatakayama et al., 2017). Therefore, we consider the endmember scenario of a rock with zero porosity and zero
permeability, representing conditions for which Darcy flow is geologically irrelevant. The applied simplifications
keep our mathematical models as simple as possible but as complex as necessary to capture the essential features
of the propagation of (de)hydration fronts in rock.

For the considered conditions of (de)hydration mentioned above, we formulate a hypothesis that explains why for
some metamorphic reactions involving a free fluid phase either a hydration or dehydration front can propagate
and into which direction. In equilibrium thermodynamics and for isothermal conditions the pressure controls the
reaction boundary (Figures 2a and 2c). For (de)hydration reactions, the porosity can be generated on either the
high‐pressure or low‐pressure side of the reaction boundary. We propose that this porosity‐pressure relation
controls the type of the reaction, either hydration or dehydration, and its propagation direction. We elaborate our
hypothesis in more detail in Section 2 and we test our hypothesis with one‐dimensional (1D) mathematical HMC
models. These HMCmodels are based on the general concepts of continuum mechanics and classical irreversible
thermodynamics (e.g., Lebon et al., 2008; Malvern, 1969) which are commonly applied to quantify geodynamic
and metamorphic processes (e.g., Philpotts & Ague, 2022; Turcotte & Schubert, 2014). We aim to transparently
present the mathematical models to address a broad scientific community, ranging from petrology to geophysics.
In addition to testing our hypothesis for (de)hydration, we will (a) explain the mechanism of (de)hydration front
propagation in the limit of zero permeability, (b) present a quantification for reaction‐induced porosity generation
during (de)hydration involving volumetric rock deformation, (c) show a systematic analysis of (de)hydration
involving the quantification of the velocity of (de)hydration front propagation, (d) apply our results to esti-
mate reaction‐induced permeabilities for published case studies of (de)hydrated rock and (e) provide a 1D nu-
merical algorithm for (de)hydration front propagation into zero‐permeability rock.

2. The Hypothesis for (De)hydration Front Propagation
We investigate the following scientific question: How can a reactive (de)hydration front invade an initially zero‐
porosity, impermeable rock, and what are the governing parameters? We hypothesize that the propagation of
(de)hydration fronts into an initially zero‐porosity rock is primarily governed by the particular combination of (a)
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the fluid pressure gradient around the reaction front and (b) the change in solid density during the reaction,
inducing a porosity generation. We consider here spatial scales much larger than the individual pore size so that
we can test our hypothesis with mathematical models based on continuum‐poromechanics concepts (e.g.,
Coussy, 2004; see also Section 3.1), which necessarily implies ignoring processes acting on the pore scale and
smaller. In the subsequent paragraphs, we elaborate on our hypothesis.

Our hypothesis involves reaction‐induced porosity generation. For a closed system without fluid flow and
dissolution, the porosity generated by a reaction can be calculated with the associated molar volume change of the
total solid and fluid of the system under consideration (e.g., Putnis, 2009). For an open system with fluid flow, we
suggest that the porosity generation by reaction front propagation involving fluid flow can be explained by
coupling chemical models based on equilibrium thermodynamics (Figures 2a and 2c) with Darcy‐type hydraulic
transport models (Figures 2b and 2d). We propose coupling the two models through the fluid pressure: the fluid
pressure controls the thermodynamic pressure magnitude applied in the thermodynamic equilibrium calculations
and the fluid pressure gradient governs fluid flow (Figure 2).

We consider hydration and dehydration reactions (Figure 2). We assume isothermal conditions so that the re-
actions are controlled by pressure only. Porosity can be generated by a reaction either on the high‐ or low‐pressure
side of the reaction (Figures 2a and 2c). The magnitude of the generated porosity is governed by the change in
solid density and mass fraction of H2O structurally bound in the solid. We propose that the porosity‐pressure
relation is essential for different scenarios of porosity generation by reaction front propagation.

We consider an initial, static rock in the limit of zero porosity in which (de)hydration front propagation will
generate a transient porosity and permeability increase. For hydration reactions, the externally derived fluid must

Figure 2. Schematic diagrams showing the proposed hypothesis for hydration (panels a and b) and dehydration (c and d)
scenarios. Panels (a) and (c) show the respective scenarios in the pressure, P, versus temperature, T, diagram (like in a typical
P‐T phase diagram) and (b) and (d) in the physical space, that is pressure versus distance, X. Fluid can only flow in rock with
porosity and permeability (blue color) and this flow always occurs from high to low fluid pressure (light blue arrow). There is
no free fluid, and, hence no fluid pressure and no fluid flow in a zero‐porosity, impermeable rock (red color).
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always flow toward the initially zero‐permeability rock and the hydration front propagates in the same direction as
the fluid inflow; the scenario we term here hydration (Figures 2a and 2b). For dehydration reactions, there are two
possible scenarios: In the first scenario, the liberated fluid flows away from the dehydrating rock in the direction
opposite to the dehydration front propagation; the scenario we term here dehydration (Figures 2c and 2d). In the
second scenario, the generated porosity due to dehydration is so large that the liberated fluid cannot fill the
generated porosity, and externally derived fluid flows in the same direction as the dehydration front propagation
to fill the generated pore space; the scenario we term here dehydration‐inflow. We test the three hypothesized
scenarios with mathematical models described in the next section.

3. Mathematical Model
3.1. Overview and Structure

Before introducing the governing equations of the applied mathematical models, we provide a brief background
for the applied theoretical concepts and an overview of the applied models. We consider for the individual
mechanical (M), hydraulic (H), and chemical (C) processes simple, but representative, models: elastic or viscous
volumetric deformation for M‐models, Darcy flow for H‐models and thermodynamic equilibrium reactions for
the C‐models. To construct our coupled mathematical HMC models, we employ the theoretical concepts of
continuum mechanics (e.g., Hobbs & Ord, 2015; Malvern, 1969; Mase, 1970), poromechanics (e.g., Biot, 1941,
1962; Coussy, 2004) and classical irreversible thermodynamics (e.g., De Groot & Mazur, 1984; Kuiken, 1994;
Lebon et al., 2008; Müller, 2007). Classical irreversible thermodynamics employs the so‐called local equilibrium
hypothesis. Thereby it is assumed that equilibrium, formulated by Gibbs' specific fundamental equation, applies
locally although the overall process under investigation is dissipative, hence irreversible, due to, for example, the
occurrence of heat conduction or viscous flow (e.g., Gibbs, 1906; Kuiken, 1994; Moulas et al., 2019). There are
no differences or gradients in chemical potential for the applied local equilibrium thermodynamics. In equilibrium
thermodynamics and for a given composition and isothermal conditions considered here, metamorphic reactions
are controlled by the thermodynamic pressure. We assume that the magnitude of the thermodynamic pressure is
equal to the magnitude of the fluid pressure, an assumption that is supported by theoretical considerations (e.g.,
Dahlen, 1992; Sekerka & Cahn, 2004), laboratory dehydration experiments (Llana‐Fúnez et al., 2012) and
molecular dynamics simulations (e.g., Frolov & Mishin, 2010; Mazzucchelli et al., 2024; see also Appendix C).

In continuum mechanics, the fundamental equations are typically partial differential equations (PDEs) which
describe the conservation of certain quantities, such as mass. Constitutive equations describe the deformation
behavior of the considered medium, such as viscous flow. In typical continuum mechanics applications, usually
one phase only is considered, for example, the deformation of a solid or the flow of a fluid. In poromechanics, a
porous solid phase is typically considered together with a fluid phase. Thereby, the solid and fluid phases are not
spatially separated, instead, the differential equations describing solid and fluid motion are spatially super-
imposed. Hence, there is a solid and a fluid velocity at the same location in the mathematical model for a porous
rock. We apply such two‐phase model consisting of a solid phase with associated solid velocity and a fluid phase
with a fluid velocity. We describe porous fluid flow by the well‐established Darcy's law which was first derived
empirically based on experiments (Darcy, 1856) and was later derived theoretically with averaging procedures
applied to the continuum mechanics equations (e.g., Gray & O’Neill, 1976; Pride & Berryman, 1998; Whi-
taker, 1969, 1986; Yarushina & Podladchikov, 2015).

For simplicity and transparency, we focus here on 1D models only. We first present 1D HM models without
(de)hydration reaction and restrict the volumetric deformation to poroelasticity. We consider linear and nonlinear
porosity‐permeability relations for which the permeability depends on some power of the porosity. We perform
these 1D HMmodels to investigate porous flow in the zero‐permeability limit. Such a zero‐permeability limit can
be envisaged for example, as dense crystalline rocks at high pressure and temperature conditions where porosities
can be as low as 10− 4, and in some cases maybe even lower, so that the pores are not well connected and the
permeability is essentially zero (e.g., Kaatz et al., 2022; Katayama et al., 2012; Taetz et al., 2018). Next, we
present 1D HCmodels with (de)hydration but without solid deformation. Then, we present 1D HMCmodels with
(de)hydration and viscous volumetric deformation of the solid. We apply these HC and HMCmodels to study the
fundamental aspects of the coupling between (de)hydration, fluid flow, and porosity generation, particularly the
propagation of (de)hydration fronts. Finally, we describe the applied thermodynamic calculations and the
considered reactions. The H(M)C models with (de)hydration are derived with a mass‐based formulation and
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involve mass fractions and densities. A main result of these models is the derivation of analytical formulas that
quantify porosity change during (de)hydration. To show the consistency of our results, we also derive these
formulas for porosity change with a molar‐based approach (Appendix B). Finally, we describe the applied nu-
merical method to solve the presented H(M)C models.

3.2. Hydro‐Mechanical Model I: Linear Diffusion Equation for Fluid Pressure and Porosity

We consider a 1D porous medium representing a solid‐fluid mixture. We first ignore reactions. We start with the
equation for the conservation of fluid mass per unit volume which is in the absence of reactions and chemical‐
diffusive fluxes given by

∂
∂t
(ϕρ f ) = −

∂
∂x
(v f ϕρ f ), (1)

with t being the time, ϕ the porosity, ρf the fluid density, vf the fluid velocity and x the spatial coordinate
(Figure 3). Symbols used in the text are explained in Table 1. Equation 1 represents one equation for three un-
knowns, namely, ϕ, ρf, and vf. To transform Equation 1 into a linear diffusion equation for the fluid pressure, Pf,
we assume that ρf is constant, apply Darcy's law and the equation of state for elastic pore compressibility. Darcy's
law for a constant permeability, k, and in the absence of gravity is

ϕvf = −
k
η f

∂Pf
dx
, (2)

with ηf being the fluid viscosity. We ignore gravity for simplicity, but the absence of gravity could be interpreted
as considering only fluid pressure gradients orthogonal to the direction of gravity. The effects of pore
compressibility in classical poroelasticity (e.g., Biot & Willis, 1957; Kümpel, 1991) can be expressed by the
equation (Yarushina & Podladchikov, 2015, their Equation 22)

∂ϕ
∂t
= − βϕ

∂Pf
∂t
, (3)

with βϕ being the constant elastic pore compressibility. Equation 3 can be integrated in time to yield

ϕ = ϕ0 + βϕ (Pf − Pf0), (4)

with ϕ0 and Pf0 being the initial porosity and fluid pressure, respectively. Substituting Equations 2 and 4 into
Equation 1 and assuming that ρf is a constant yields

∂Pf
∂t

=
∂
∂x
(
k

βϕη f

∂Pf
dx

). (5)

Figure 3. Simplified representation of a porous rock with an explanation of the partial densities applied in the mathematical
models. Red areas represent the solid, light blue areas the pore fluid, and dark blue circles the structurally bound water in the
solid. All symbols are explained in Table 1.
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Equation 5 represents a linear diffusion equation for Pf. The parameter k/
(βϕηf) has units of m

2/s and plays the role of an effective diffusion coefficient,
often termed hydraulic diffusivity. Substituting Equation 4 into Equation 5
and, for simplicity setting ϕ0 = 0 and Pf0 = 0, results in a linear diffusion
equation for ϕ:

∂ϕ
∂t
=
∂
∂x
(
k

βϕη f
∂ϕ
dx

). (6)

In the derivation above, the consideration of poroelasticity, here expressed by
Equations 3 and 4, is essential to derive a diffusion‐type equation for ϕ. The
final equations for ϕ and Pf are diffusion‐type equations, but have been
derived from a mass balance equation including an advective flux of fluid
mass, vfϕρf, in Equation 1. The main characteristics of the model are sum-
marized in Table 2.

3.3. Hydro‐Mechanical Model II: Nonlinear Diffusion Equation for
Fluid Pressure and Porosity

We consider now that the permeability is a function of the porosity by
applying a nonlinear permeability‐porosity relationship, similar to a Kozeny‐
Carman formulation (e.g., Carman, 1937; Coussy, 2004; Kozeny, 1927), of
the form

k = kref(
ϕ
ϕref

)

n

, (7)

with kref being a reference permeability, ϕref being a reference porosity and n
being a power‐law exponent controlling the nonlinearity between k and ϕ.
The permeability of highly nonlinear or fractured rocks can be reproduced
using a large power‐law exponent and, in this case, this relation can be
interpreted as a linear approximation of the experimentally measured
dependence of permeability on porosity in logarithmic coordinates (e.g.,
Yarushina et al., 2021). For simplicity, we set again ϕ0 = 0 and Pf0 = 0 in the
poroelastic Equation 4 so that substituting Equations 4 and 7 into Equation 5
yields

∂Pf
∂t

=
1
βϕ
∂
∂x
(
kref
η f

(
βϕPf
ϕref

)

n∂Pf
dx

), (8)

which represents a nonlinear diffusion equation for the fluid pressure.
Alternatively, Equation 8 can be reformulated as a nonlinear diffusion
equation for ϕ. Substituting Pf = ϕ/βϕ from Equation 4 into Equation 8 yields

∂ϕ
∂t
=
∂
∂x
(
kref
βϕη f

(
ϕ
ϕref

)

n∂ϕ
dx

). (9)

We perform representative numerical solutions of the above‐described linear, Equation 6, and nonlinear,
Equation 9, diffusion equations in the Results Section 4. Equation 9 is mathematically equivalent to thin‐film
equations resulting from lubrication theory and the equation for the shallow ice approximation used for glacier
flow modeling (e.g., Huppert, 1982; Hutter, 2017; Mahaffy, 1976).

In the HMmodels I and II above, we consider only the elastic behavior of the porous matrix. We do not consider a
viscous matrix behavior because it is well‐established that in a poroviscous matrix, the propagation velocity of

Table 1
Symbols Used in the Text

Symbol Name/definition Units

x Spatial coordinates (m)

Lc Characteristic length (m)

k, k0 Permeability, initial permeability (m2)

kref Reference permeability, constant (m2)

kc Characteristic hydraulic parameter (m2 Pa− 1 s− 1)

V, V0 Volume, initial volume (m3)

t Time (s)

tc Characteristic time (s)

vs Solid velocity (m s− 1)

vf Fluid velocity (m s− 1)

vc Characteristic velocity (m s− 1)

vF Velocity of (de)hydration front (m s− 1)

Pf Fluid pressure (Pa)

P Total pressure (Pa)

PR Reaction pressure (Pa)

Pc Characteristic pressure (Pa)

ΔPf Fluid pressure interval (Pa)

βϕ Pore compressibility (Pa− 1)

βs Solid compressibility (Pa− 1)

βf Fluid compressibility (Pa− 1)

ηf Fluid viscosity (Pa s)

ηϕ Compaction viscosity (Pa s)

ρs, ρs0 Solid density, initial solid density (kg m− 3)

ρf, ρf0 Fluid density, initial fluid density (kg m− 3)

ρT Total density (kg m− 3)

ρim Density of immobile
solid; ρs (1 − CH2Os )

(kg m− 3)

ΔρRs Solid density change across reaction (kg m− 3)

Mmol⋯ Molar mass of component (g mol− 1)

P̃ f Dimensionless fluid pressure ()

ṽ f Dimensionless fluid velocity ()

ϕ, ϕ0, ϕref Porosity, initial and reference porosity ()

ΔϕR Porosity change across reaction ()

n Exponent in the ϕ versus k relation ()

CH2Os Mass fraction of H2O in solid ()
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pore fluid fronts vanishes with vanishing porosity, which means that in the most extreme case, pore fluids get
trapped by a viscous matrix with zero porosity (e.g., Barcilon & Richter, 1986; Connolly & Podladchikov, 2015).
For completeness, we provide the expression for the pore fluid propagation velocity, vfϕ, in a poroviscous matrix
with constant compaction viscosity:

v fϕ = (ρs − ρ f ) g
k0
η f
ϕn− 20 (2ϕmax + ϕ0), (10)

where k0 is the permeability coefficient for the poroviscous matrix, ϕ0 is the porosity of the poroviscous matrix
and ϕmax is the porosity of the pore fluid front that propagates through the poroviscous matrix. A pore fluid front
can only be developed and propagate for n > 2 (e.g., Barcilon & Richter, 1986; Connolly & Podladchikov, 2015).
Therefore, if ϕ0 = 0, then vfϕ = 0 and the pore fluid front is trapped by a poroviscous matrix in the limit of zero
porosity. We will show further below that pore fluid fronts can propagate into a poroviscous matrix with zero
porosity and permeability if (de)hydration reactions are considered.

3.4. Hydro‐Chemical Model III Involving (De)hydration Reactions

The (de)hydration significantly changes the solid density, ρs, and we, hence, consider now changes in ρs
(Figure 3). Therefore, we employ the equation for the conservation of total mass per unit volume which for the
absence of solid deformation (i.e., solid velocities are zero) and chemical‐diffusive fluxes is

∂ρT
∂t

= −
∂
∂x
(v f ϕρ f ), (11)

where the total rock density ρT = ρs(1 − ϕ) + ρfϕ (Figure 3). For HC models with (de)hydration, we also need to
consider that the amount of H2O, which is structurally bound to the solid, changes during (de)hydration. Hence,
we employ an additional equation for the conservation of the total mass of the solid without the mass of struc-
turally bound H2O in the solid:

∂
∂t
(ρs(1 − ϕ) (1 − CH2Os )) = 0, (12)

where CH2Os is the mass fraction of H2O structurally bound in the solid (Figure 3). To illustrate the parameter
CH2Os , we consider brucite, that is Mg(OH)2. Brucite has a molar mass,MmolBru , of 58.32 g/mol and water has a molar
mass, MmolH2O, of 18.02 g/mol. The mass fraction of structurally bound water in brucite is
CH2Os = MmolH2O/M

mol
Bru = 18.02/58.32 ≈ 0.31. Because there is no solid deformation and we assume no chemical

diffusion between solid and fluid, there are no mass fluxes and the total mass of solid without structurally bound
H2O is constant. Therefore, Equation 12 can be integrated in time to yield

ρs(1 − ϕ) (1 − CH2Os ) = ρs0 (1 − ϕ0) (1 − C
H2O
s0 ), (13)

Table 2
Overview of Models and Some of Their Characteristics

Model Type Dynamic permeability Trapped at zero porosity limit Sharp front Efficient mass transport Channel forming ability Volumetric deformation

I HM No Yes No No No Elastic

II HM Yes No Yes No No Elastic

III HC Yes No Yes Yes No None

IV HMC Yes No Yes Yes Yes Viscous

Note. Under category “Type,” H means that porous flow is considered, M that solid volumetric deformation is considered, and C that metamorphic reactions are
considered.
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where all parameters with subscript “0” indicate initial values determined by the initial total mass of solid without
structurally bound H2O. To study the zero‐porosity limit, we assume that ϕ0 = 0 and solve Equation 13 for ϕ
which yields (e.g., Malvoisin et al., 2015)

ϕ = 1 −
ρs0 (1 − C

H2O
s0 )

ρs (1 − CH2Os )
. (14)

We assume that the thermodynamic pressure in the equation for Gibbs free energy is quantified by Pf. The
thermodynamic calculations are described further below (see Section 3.7). We apply thermodynamic phase
calculations for a specific reaction and calculate values of densities and mass fraction for different values of Pf.
Densities and mass fraction are, hence, a function of Pf. This dependence is expressed by

ρs = ρs (Pf )

ρ f = ρ f (Pf )

CH2Os = CH2Os (Pf )

. (15)

Due to these dependencies of densities and mass fraction on Pf, ϕ from Equation 14 also indirectly depends on Pf
and we can write

ϕ = ϕ(Pf ). (16)

We will provide explicit relations between ρs, ρf, CH2Os , and Pf based on thermodynamic equilibrium calculations
for specific reactions in the next section. Substituting Darcy's law, Equation 2, and a Kozeny‐Carman perme-
ability formulation, Equation 7, into the conservation Equation 11 for total mass yields

∂ρT (Pf )
∂t

=
∂
∂x
(ρ f (Pf )

kref
η f

(
ϕ(Pf )
ϕref

)

n∂Pf
dx

), (17)

in which we indicated for clarity the dependencies of ρT, ρf, and ϕ on Pf.

3.5. Hydro‐Mechanical‐Chemical Model IV Involving (De)hydration Reactions and Viscous Solid
Deformation

We elaborate the HC model presented above to an HMC model by considering the solid volumetric deformation.
First, the solid deformation is added in the conservation equation for total mass, Equation 11, to yield (e.g.,
Schmalholz et al., 2020)

∂ρT
∂t

= −
∂
∂x
(( v f − vs)ϕρ f ) −

∂
∂x
( vsρT), (18)

where vs is the velocity of the solid phase. The particular form of Equation 18 is derived in detail in Schmalholz
et al. (2020).We assume a viscous solid volumetric deformation and the constitutive equation for this deformation
can be written as

∂
∂x
(vs) =

Pf − P
ηϕ

, (19)

where ηϕ is the compaction viscosity (e.g., McKenzie, 1984) and P is the total pressure. For simplicity, we assume
that P is a constant ambient pressure, for example, the lithostatic pressure, and that ηϕ is constant. We use the solid
strain rate, ∂vs /∂x, to calculate vs by

vs =∫

x

0

∂
∂x
(vs) dx. (20)
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Second, solid deformation is added to the conservation equation for the solid without structurally bound water,
Equation 12, to yield

∂
∂t
(ρs(1 − ϕ) (1 − CH2Os )) = −

∂
∂x
( vsρs(1 − ϕ) (1 − CH2Os )). (21)

The solid strain rate, ∂vs /∂x, can be related to a change in volume, V, via

∂
∂x
(vs) =

1
V
dV
dt
=
d
dt
(ln V). (22)

Using Equation 22, the Equation 21 can be rearranged after some algebraic operations (Khakimova & Pod-
ladchikov, 2024; see also Appendix A) to

d
dt
(ρs(1 − ϕ) (1 − CH2Os )V) = 0. (23)

Equation 23 can be integrated in time, such as Equation 12, to provide

ρs(1 − ϕ) (1 − CH2Os )V = ρs0 (1 − ϕ0) (1 − C
H2O
s0 )V0, (24)

where V0 is the initial volume. Assuming again ϕ0 = 0, ϕ is then given by Khakimova & Podladchikov (2024)

ϕ = 1 −
ρs0 (1 − C

H2O
s0 )

ρs (1 − CH2Os )

V0
V
. (25)

Equation 25 quantifies the change in ϕ caused by both (de)hydration and solid volumetric deformation.

3.6. Numerical Method and Model Configuration

We discretize the governing PDEs (6), (9) and (17) using the finite difference method on a 1D regular Cartesian
grid (e.g., Patankar, 2018; Virieux, 1986). The linear and nonlinear diffusion Equations 6 and 9 without reactions
are solved with a standard explicit time marching scheme (e.g., Patankar, 2018).

For the numerical solution of Equation 17 in combination with Equations 14 and 15, we apply the accelerated
pseudo‐transient (PT) method to solve the discretized Equation 17 for Pf in an iterative and matrix‐free fashion
(e.g., Chorin, 1997; Räss et al., 2022). We use a relaxation, or continuation, approach to handle the nonlinearities,
such as ϕ‐dependent permeability as well as Pf‐dependent densities and ϕ, within the iterative procedure (e.g.,
Räss et al., 2019; Schmalholz et al., 2023; Wang et al., 2022). Upon convergence, these iterations provide results
equivalent to results of a numerical‐implicit method, since the gradients of the numerical variables are updated in
each iteration.

For solving the diffusion‐type Equations 6 and 9 for ϕ, we apply as initial condition a Gaussian distribution of ϕ
and keep the values of ϕ at the two model boundaries constant during the simulations, representing Dirichlet
boundary conditions.

For solving Equation 17 for Pf, we apply initially constant values of Pf in the model except at one boundary where
the value of Pf is either larger or smaller. The boundary values of Pf are also kept constant during the simulations.
We provide more details on specific initial and boundary conditions when we present the results in the Results
Section 4.

3.7. Thermodynamic Calculations

We consider local thermodynamic equilibrium and isothermal conditions to calculate the variation of ρs and ρf for
varying Pf for specific reactions based on Gibbs free energy minimization. We apply the software Perple_X (e.g.,
Connolly, 2005) for the thermodynamic calculations based on Gibbs free energy minimization. The solid and
fluid densities required for our calculations are thermodynamically constrained and we obtain them from the

Geochemistry, Geophysics, Geosystems 10.1029/2023GC011422

SCHMALHOLZ ET AL. 10 of 37

https://agupubs.onlinelibrary.wiley.com/action/rightsLink?doi=10.1029%2F2023GC011422&mode=


thermodynamic calculations (e.g., Malvoisin et al., 2015). We consider two relatively simple representative re-
actions: (1) For dehydration, we consider a simple MSH system and the reaction: antigorite + brucite = for-
sterite + water at 500°C (e.g., B. W. Evans, 2004; Padrón‐Navarta et al., 2013; Schmalholz et al., 2023). In the
following, we refer to this reaction as the serpentinite to olivine reaction (SOR). This reaction represents the
brucite‐out reaction at which brucite breaks down, but antigorite can still be stable at higher temperatures and
pressure (e.g., Plümper et al., 2017). The SOR is:

Mg48Si34O85(OH)62
antigorite

+
20Mg(OH)2
brucite

→
34Mg2SiO4
forsterite

+
51H2O
water

. (26)

In a pressure‐temperature phase diagram, the corresponding reaction boundary has a positive Clapeyron slope
(e.g., Plümper et al., 2017). A similar dehydration reaction is the antigorite‐out reaction occurring at higher
temperatures: antigorite = forsterite + enstatite + water (e.g., Malvoisin et al., 2015; Ulmer & Tromms-
dorff, 1995). This antigorite‐out reaction can occur for a positive Clapeyron slope at lower pressure and a negative
Clapeyron slope at higher pressure (e.g., Malvoisin et al., 2015; Ulmer & Trommsdorff, 1995). We will focus on
the brucite‐out reaction, SOR, but also discuss the application of the results for the SOR to the antigorite‐out
reaction.

(2) For hydration, we consider the reaction: “felsic granulite” + water = “felsic eclogite” at 700°C (Bras
et al., 2023). In the following, we refer to this reaction as the granulite to eclogite reaction (GER). The GER is:

4Na(AlSi3O8)

albite
+
4Ca(Al2Si2O8)

anorthite
+
H2O

water
→
4NaAl(Si2O6)

jadeite
+
Al2SiO5

kyanite
+
2Ca2Al3(SiO4)3(OH)

zoesite
+
5SiO2

quartz
.

(27)

In the GER, the “granulite” represents a granulite facies rock consisting of plagioclase only and “eclogite”
represents consequently a felsic eclogite facies rock (e.g., Bras et al., 2023; Wayte et al., 1989).

For both reactions, the thermodynamic calculations will provide the values of ρs and ρf as function of P which we
present in more detail in the Result Section 4. For the isothermal conditions and for simple univariant reactions,
the reaction occurs at a specific value of P which we term the reaction pressure PR. The values of CH2Os for each
side of the reaction can be calculated from the molar masses of the involved elements and minerals (e.g., Bras
et al., 2023; Schmalholz et al., 2023). The values of CH2Os are constant on each side of the reaction and change
at P = PR.

We are here interested in fundamental features of (de)hydration coupled with fluid flow and solid deformation
and, therefore, approximate the relation between densities and Pf, resulting from thermodynamic calculations
with Perple_X, with a simple analytical equation. Two effects control the variation of ρs and ρfwith a variation of
Pf: First, the elastic compressibility, quantified by βs and βf, respectively, and second, the amount of change in
solid density across the reaction, quantified by ΔρRs . Consequently, we approximate the dependence of ρs and ρf
on Pf by

ρs = ρs0 (1 + βs (Pf − PR)) + ΔρRs
Pf − PR

ΔPf + Pf − PR

ρ f = ρ f0(1 + β f (Pf − PR))
, (28)

where ΔPf is the width of the Pf interval within which the change in ρs occurs. ϕ depends on the density of the
solid without the mobile, structurally bound water. We refer to this density as the immobile solid density,
ρim = ρs (1 − CH2Os ). We also approximate the relation between ρim and Pf with

ρim = βim (Pf − PR) + ΔρRim
Pf − PR

ΔPf + Pf − PR
, (29)
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where ΔρRim is the magnitude of the change in ρim across the reaction. In the numerical algorithm, we will use the
approximation for ρim to calculate ϕ.

4. Results
4.1. Overview

We first present the thermodynamic results and their representative approximations. Then, we present the results
from the hydro‐mechanical, HM, models (model I and II). Subsequently, we show the results from the hydro‐
chemical, HC, model (model III), and then from the HMC model (model IV). We focus on the dehydration
and hydration scenarios mentioned in our hypothesis since the main results for the dehydration‐inflow scenario
closely resemble the results of the hydration scenario. An overview of the main features of the presented models is
given in Table 2. For model III and IV we also present systematic results for reaction‐induced porosity generation
during (de)hydration. Finally, we present the results of a systematic analysis with HC model III to determine the
parameters controlling the width of (de)hydration zones.

4.2. Thermodynamic Results and Their Approximations

For the dehydration of antigorite serpentinite (i.e., the SOR), Equation 26, at 500°C the values of ρs have been
calculated with Perple_X. The value of ρs exhibits a sharp decrease from ca. 3,200 to ca. 2,550 kg/m

3 when the
minerals transform from forsterite into antigorite + brucite (Figure 4a). The higher‐density solid forsterite is on
the low‐pressure side of the reaction and the lower‐density solid antigorite + brucite is on the high‐pressure side
of the reaction (Figure 4a). The reaction occurs at PR = 1.265 GPa. For P smaller and larger than PR the values of
ρs slightly increase with increasing P due to elastic compressibility (Figure 4a), which is quantified by the
compressibility parameter βs. Values of ρf (not displayed) increase monotonously from ca. 1,025 to ca. 1,125 kg/
m3 for P from 1 to 1.55 GPa due to compressibility βf. The value of 1 − CH2Os for forsterite is 1 and for anti-
gorite + brucite is 0.83 (Figure 4b). With ρs, ρf and 1 − CH2Os as function of P we can calculate the variation of ϕ
with P using Equation 14. We assume that ϕ = 0 in the serpentinite, which represents the initial rock (Figure 4c).
The dehydration of serpentinite forms forsterite with a porosity of ca. 0.33, required to store liberated water
(Figure 4c). With ρs, ρf, and ϕwe can calculate the total density, ρT, as function of P (Figure 4a). In contrast to ρs,
values of ρT increase with increasing P across the reaction. In fact, ρT of any system must increase with increasing
P so that the compressibility is positive, and the system is thermodynamically stable (e.g., Callen, 1998; Landau &
Lifshitz, 1980).

For the GER, which represents the hydration of granulite facies rock, Equation 27, we perform also Perple_X
calculations (Bras et al., 2023) to obtain relations between ρs, ρT, 1 − CH2Os and ϕ with increasing P (Figures 4d–
4f). The value of ρs exhibits a sharp increase from ca. 2,700 to ca. 3,228 kg/m

3 when the reaction from granulite to
eclogite facies occurs (Figure 4d). The reaction occurs at PR = 1.941 GPa. Values of ρf (not displayed) increase
monotonously from ca. 987 to ca. 1,250 kg/m3 for P from 1.2 to 3.2 GPa due to compressibility βf. The value of
1 − CH2Os for granulite is 1 and for eclogite is 0.993 (Figure 4e). We assume that ϕ = 0 in the granulite, which
represents the initial rock (Figure 4f). The hydration of granulite requires a porosity of ca. 0.16 in the eclogite so
that water for the hydration can be provided (Figure 4f). Values of ρT increase again with increasing P across the
reaction, as required by thermodynamic stability (Figure 4d).

For the following numerical simulations, we approximate the relations between ρs, ρf, ρim, 1 − CH2Os , ϕ and P
using Equations 28 and 29 (Figure 5). These approximations also yield an approximation for the change of ρTwith
changing P (Figures 5a and 5d). Applying these approximations has two reasons: First, we want to make the
simulations as general as possible and the approximations include parameters, which can be determined for any
metamorphic reaction, namely the three compressibilities βs,f,im, and the two parameters ΔρRs and ΔρRim which
quantify how much ρs and ρim, respectively, change across the reaction. The parameter ΔPf specifies the width of
the P‐interval over which the reaction takes place. Such P‐interval can, for example, represent the transition zone
for divariant reactions. In systematic simulations presented later, we vary the value of ΔPf to consider simulations
with a sharper, mimicking an univariant reaction, and smoother, mimicking a divariant reaction (e.g., Padrón‐
Navarta et al., 2013; Philpotts & Ague, 2022; Plümper et al., 2017), variation of densities across the reaction
(Appendix D and Figure A1). Second, using explicit functions in the numerical algorithm to describe the relations
between ρs, ρf, ρim, 1 − CH2Os , ϕ and P avoids the need to interpolate between the numerical values and the
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thermodynamic results calculated externally with Perple_X. For the numerical simulations, we will need the
relations between ρs, ρf, ρim, ϕ, and P only on one side of the reaction, since on one side ϕ = 0 and consequently
ρs = ρT (Figure 4). For the SOR, we refer to the density value for which ρs = ρT just across the reaction as ρHP
because this value occurs on the high‐pressure side of the reaction (Figures 4a and 5a). The corresponding value of
P we term PHP (Figures 4a and 5a). Similarly, for the GER, we refer to the density value for which ρs = ρT just
across the reaction as ρLP because this value occurs on the low‐pressure side of the reaction (Figures 4d and 5d and
solid line). The corresponding value of P we term PLP (Figures 4d and 5d solid line).

The applied parameterization for the brucite‐out SOR (Figures 5a–5c) is also applicable to the antigorite‐out
reaction for a positive Clapeyron slope, mentioned above, because the corresponding changes in ρs, ρf, ρim,
and 1 − CH2Os are similar for the two reactions when crossing the reaction boundary from low to high values of P
(e.g., Malvoisin et al., 2015).

Furthermore, the parameterizations for ρs and ϕ for the GER (solid line in Figure 5d) applies also to the antigorite‐
out reaction with a negative Clapeyron slope. For a negative slope, the antigorite with lower ρs is on the low‐
pressure side of the reaction and the enstatite + forsterite with higher ρs are on the high‐pressure side. Hence,
the GER and the antigorite‐out reaction with a negative Clapeyron slope exhibit a similar increase in ρs when
crossing the reaction boundary from low to high pressure (solid and dashed lines in Figure 5d). The main

Figure 4. Profiles of densities, mass fraction and porosity versus thermodynamic pressure for the considered dehydration (a–c) and hydration (d–f) reaction. The density
versus pressure relations have been calculated using the Perplex_X software (Connolly, 2005). See text for the details on the reactions.
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difference between the GER and the antigorite‐out reaction with a negative Clapeyron slope is that for the GER
the rock with structurally bound H2O is on the high‐pressure side of the reaction while it is on the low‐pressure
side for the antigorite‐out reaction with a negative Clapeyron slope. This difference can be parameterized with a
different profile of 1 − CH2Os versus P. The dashed line in Figure 5e shows a profile of 1 − CH2Os versus P which
corresponds to reactions similar to the antigorite‐out reaction with a negative Clapeyron slope: toward higher P
there is no more structurally bound H2O which corresponds to enstatite + forsterite. The applied parameteri-
zations for ρs and 1 − CH2Os provide the same variation of ϕ versus P (superposed solid and dashed lines in
Figure 5f). We will show further below that the parameterizations for the antigorite‐out reaction with a negative
Clapeyron slope (dashed lines in Figures 5d–5f) generate the dehydration‐inflow scenario mentioned in the
hypothesis.

To emphasize the general applicability of these relations we present them with dimensionless quantities. For the
dehydration scenario, represented here by the SOR, values of densities are divided by ρHP and for the hydration
scenario, represented here by the GER, values of densities are divided by ρLP. For P, for dehydration, we subtract
PHP from P and divide the difference by the minimum pressure, Pmin, of the considered density profile. The
dimensionless P is then (P − PHP)/Pmin and varies from − 1 to 0 (Figures 5a–5c). For P, for hydration, we subtract
PLP from P and divide the difference by the maximum pressure, Pmax, of the considered density profile. The
dimensionless P is then (P − PLP)/Pmax and varies from 0 to 1 (Figures 5d–5f).

Figure 5. Parameterized relationships of densities (a and d), mass fraction (b and e) and porosity (c and f) vs. thermodynamic pressure applied in the numerical
simulations. Only the relationships on the side of the reaction where solid density, ρs, and total density, ρT, are different are parameterized. For orientation, the circles
with coordinates PHP,ρHP in panel (a) and PLP,ρLP in (d) indicate the same points as indicated in the density versus pressure relation resulting from Perple_X (see
Figures 4a and 4d). The dashed lines in panels (d–f) show the parameterizations applied for a simulation corresponding to the dehydration‐inflow scenario for which
results are presented in Figures 9g–9i. Symbols are explained in Table 1.
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4.3. Diffusion‐Type HM Models Without Reaction (Models I and II)

We present numerical results for the linear and nonlinear Equations 6 and 9, respectively. For the linear case, the
permeability can be either constant in space and time or is initially variable in space but does not change in time.
For the nonlinear case, the permeability is a function of ϕ and can vary in space and time. We illustrate the impact
of a ϕ‐dependent permeability and show that fluid infiltration into an initially zero‐porosity, zero‐permeability
region is feasible for a ϕ‐dependent permeability (Figure 6). The diffusion equations are formulated for ϕ
which represents the unknown variable and is calculated numerically. For the variable permeability,
k = kref (ϕ/ϕref)

n, we assume that kref> 0 always so that k= 0 only if ϕ= 0. The profiles of the initial porosity, ϕ0,
are described by a Gaussian distribution and the initial permeability distribution is termed k0 (Figure 6). For
models with variable permeability, the applied value for ϕref is the average value of the maximum and minimum
value of ϕ0.

For scenarios with k0 > 0 everywhere in the model domain, ϕ diffuses across the entire model domain for both
constant (Figure 6a) and ϕ‐dependent (Figure 6b) permeability. The evolving ϕ‐profiles for constant and ϕ‐

Figure 6. Numerical results of the HMmodels I (panels a and c) and II (b and d) showing the evolution of porosity, ϕ, with dimensionless time (displayed in legend). For
models in panels (a) and (b) the initial permeability, k0, in the lateral model domains is larger than zero while for models in panels (c) and (d) the initial permeability is
zero. See also Table 2 for the characteristics of the models.
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dependent permeability have a different geometry and the ϕ‐profiles for ϕ‐
dependent permeability have a steeper diffusion front (Figures 6a and 6b). For
scenarios with k0 > 0 only in the center of the model domain and k0 = 0 in the
lateral regions, ϕ diffuses into the zero‐permeability domain only for ϕ‐
dependent permeability (Figures 6c and 6d). For constant permeability,
values of ϕ > 0 cannot propagate into regions where k0 = 0 because k cannot
change with time. Values of ϕ become constant in the region where k0> 0 and
the diffusion stops (Figure 6c). In contrast, for ϕ‐dependent permeability
values of ϕ > 0 can propagate into regions where k0 = 0, because the
permeability is a function of ϕ (Figure 6d). For ϕ‐dependent permeability, the
diffusion front exhibits sharp, nearly vertical profiles of ϕ. The diffusion of a
quantity into a region with initially zero diffusivity is a well‐known phe-
nomenon of so‐called nonlinear degenerate second‐order parabolic equations
(e.g., Barenblatt et al., 2000; Kalashnikov, 1987).

4.4. Representative HC Numerical Simulations of (De)hydration and
Porosity Generation (Model III)

Based on the thermodynamic results, we consider two 1D model configura-
tions for the simulations involving reactions (Figure 7). For the configuration
for simulations with dehydration (Figures 7a and 7b), we assume a narrow
central region consisting of rock without structurally bound H2O which is
bounded by two large regions consisting of rock with structurally bound H2O
and zero‐porosity. This configuration applies to the SOR. Based on the
thermodynamic results, P in the central region must be smaller than in the
lateral regions to potentially trigger the SOR (Figure 7a). The initial value of
P in the lateral regions represents the ambient pressure that is constant during
the simulation and P in the central region represents an initial negative
perturbation from the ambient pressure. For the hydration configuration

(Figures 7c and 7d), we assume a narrow central region consisting of rock with structurally bound H2O and with
porosity which is bounded by two large regions consisting of rock without structurally bound H2O and zero
porosity. This configuration applies to the GER. Based on the thermodynamic results, P in the central region must
be larger than in the lateral regions to potentially trigger the GER (Figure 7c). The initial value of P in the lateral
regions represents the ambient pressure that is constant during the simulation and P in the central region rep-
resents an initial positive perturbation from the ambient pressure.

For comparison reasons, we apply the relations between ρs, ρf, ϕ, and P presented in Figure 5 for both the
(de)hydration simulations, because the absolute magnitudes of variations of ρs, ρf, andϕwith varyingP are similar
for these relations. We also perform a simulation for the parameterization indicated by the dashed lines in
Figures 5d to 5f which corresponds to the dehydration‐inflow scenario we mentioned in the hypothesis. For the
dehydration‐inflow scenario themodel configuration is the same as for the dehydration scenario except that there is
a positive pressure perturbation in the central domain (dashed black line in Figure 7a). A main difference between
the simulations is the absolutemagnitude of variation of 1 − CH2Os , which is significantly larger for the dehydration
scenario (Figures 4b and 5b) than for the hydration and dehydration‐inflow scenario (Figures 4e and 5e).

We refer now to the pressure as Pf because changes in pressure occur only in regions with ϕ > 0. We present all
numerical results in dimensionless form. We use three characteristic scales for the nondimensionalization: the
characteristic time, tc, is the duration of the applied pressure perturbation which drives the (de)hydration; the
characteristic pressure, Pc, is the absolute magnitude of the applied pressure perturbation, which in our model is
the absolute difference between the pressure applied at the left and right model side; and the characteristic hy-
draulic parameter, kc= kref/ηf. With these three scales we calculate the characteristic length, Lc =

̅̅̅̅̅̅̅̅̅̅̅̅
tcPckc

√
, and the

characteristic velocity, vc = Lc /tc. For dehydration simulations, we display the dimensionless pressure
P̃ f = (Pf − PHP)/Pc and for the hydration simulation P̃ f = (Pf − PLP)/Pc (see also Figure 5). For both hy-
dration and dehydration simulations, we remove the pressure perturbation after the time tc so that for model times
>tc the values of P̃ f = 0 at both model boundaries. Setting P̃ f = 0 represents a stop in the fluid supply and we

Figure 7. Sketch of the model configuration for a dehydration scenario
(panels a and b) and a hydration scenario (c and d). Panels (a) and (c) show
the applied initial fluid pressure distribution and (b) and (d) show the initial
distribution of porosity and rock with and without structurally bound water
(see Figure 3). The dashed line in (a) shows the initial fluid pressure
distribution applied for a simulation corresponding to the dehydration‐
inflow scenario for which results are presented in Figures 9g–9i.
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continue the simulations until the fluid pressure gradients inside the model domain are significantly decreased by
hydraulic diffusion so that the propagation of the (de)hydration front becomes negligibly slow. For both hydration
and dehydration simulations, the value of ϕref is the maximum value of the initial porosity profile. Therefore, the
maximum value of k in the simulations is given by kref.

For the simulation for the dehydration configuration (Figures 7a and 7b), P̃ f is initially constant inside the model
except at the left boundary, where it is smaller (Figure 8a). With progressive time, the region with P̃ f < 0 becomes
wider and within this region the profile of P̃ f is approximately a straight line (Figure 8a). For the applied pa-
rameters, the maximal ϕ is ≈0.15. The region with ϕ > 0 widens and values of ϕ are close to 0.15 in most of this
region (Figure 8b). The front of the dehydration zone propagates in the direction of positive x‐coordinates, toward
the right model side. While P̃ f = − 1 at the left model boundary, values of the dimensionless fluid velocity,
ṽ f = v f / vc, are always negative which means that the fluid flows in direction of the negative x‐coordinate, that is
in the opposite direction compared to the propagation direction of the dehydration front (Figure 8c). Once P̃ f = 0
at the left model boundary, the propagation of the dehydration front slows down significantly and the fluid
pressure variation across the model continuously decreases due to hydraulic diffusion.

Figure 8. Representative numerical simulations with the HC model III for dehydration (panels a–c) and hydration scenarios (d–f; see also Table 2 for model
characteristics). Panels (a) and (d) show spatial profiles of the temporal evolution of the dimensionless fluid pressure (also referred to as P̃ f in the text), (b) and (e) the
evolution of porosity and (c) and (f) the evolution of the dimensionless fluid velocity (also referred to as ṽ f ; see text for nondimensionalization). The different profiles
correspond to different dimensionless times. The legend in panel (a) applies to panels (a) to (c) and the legend in (d) to panels (d) to (f). The arrows in panels (c) and
(f) indicate the propagation direction of the (de)hydration front and the direction of fluid flow.
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For the hydration configuration (Figures 7c and 7d), P̃ f is initially also constant inside the model except at the left
boundary, where it is larger (Figure 8d). With time, the region with P̃ f > 0 becomes wider and within this region
the profile of P̃ f is approximately a straight line (Figure 8d). Since we applied the same parameters as for the
dehydration simulation, the maximal ϕ is also≈0.15 (Figure 8e). The front of the hydration zone propagates in the
direction of positive x‐coordinates, toward the right model side. Values of ṽ f are always positive which means that
the fluid flows in the direction of the positive x‐coordinate, that is in the same direction as the propagation di-
rection of the hydration front (Figure 8f). Like for the dehydration simulation, once P̃ f = 0 at the left boundary,
the propagation of the hydration front slows down and the fluid pressure variation across the model continuously
decreases.

The simulation results for the dehydration‐inflow scenario are essentially the same as for the hydration scenario.
The main difference between the hydration and dehydration‐inflow simulations is that for the dehydration‐inflow
simulation, the porosity is generated by dehydration and consequently a dehydration front is propagating.

To study the fluid mass balance during the simulations, we calculate the time evolution of the fluid mass in the
model domain until t/tc= 1. There are three different fluid masses in our model domain that must be balanced: The
fluid mass that is liberated or taken up during (de)hydration, termed mfs, the fluid mass that is stored in the
porosity, termed mfϕ, and the externally derived fluid mass that flows in or out of the model domain, termed qfe.
To calculate the time evolution of these three fluid masses in the model domain, we integrate at every numerical
time step each fluid mass in the x‐direction over the model domain and then integrate these fluid masses over time.
The three fluid masses evolve with time and can be calculated by

mfϕ(t) =∫

t

0
∫

Lx

0

⎛

⎜
⎜
⎝

∂(ϕρ f )

∂t

⎞

⎟
⎟
⎠ dxdt′ = (∫

Lx

0
ϕρ f dx)

⃒
⃒
⃒
⃒
⃒

t′=t

t′=0

mfs(t) =∫

t

0
∫

Lx

0
(
∂( (1 − ϕ)CH2Os ρs)

∂t
) dxdt′ = (∫

Lx

0
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⃒
⃒
⃒
⃒
⃒
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t′=0

qfe(t) =∫

t

0
∫
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0

⎛

⎜
⎜
⎝

∂(v f ϕρ f )

∂x

⎞

⎟
⎟
⎠ dxdt′ = − ∫

t

0
(v f ϕρ f )

⃒
⃒
⃒
x=0
dt′

, (30)

where Lx is the width of the model domain. We calculate the integrals numerically. During the simulations, the
total fluid mass must be balanced which means that the sum of the three fluid masses must remain zero during the
simulations (Figures 9a, 9d, and 9g). In the simulations for the dehydration, hydration and dehydration‐inflow
scenario the total fluid mass is always balanced showing both the correctness of the mass balance calculations
and the conservativeness of the applied numerical scheme (Figures 9a, 9d, and 9g). For the dehydration scenario,
some of the liberated mass of H2O (red line in Figure 9a) is stored in the porosity (blue line in Figure 9a) and the
remaining liberated H2O that cannot be stored in the porosity flows out of the model domain (black line in
Figure 9a, a positive value of qfe indicates outflow). For the hydration scenario, most of the mass of H2O that
flows into the model domain (black line in Figure 9d, a negative value of qfe indicates inflow) is stored in the
porosity (blue line in Figure 9d) and a small amount of mass of H2O is taken up by the solid (red line in Figure 9d).
For the dehydration‐inflow scenario, all of the mass of H2O that flows into the model domain (black line in
Figure 9g, a negative value of qfe indicates inflow) is stored in the porosity (blue line in Figure 9g) and addi-
tionally a small amount of mass of H2O is liberated by the solid (red line in Figure 9d) and is also stored in the
porosity. For comparison, the fluid pressure distribution for the dehydration scenario shows an underpressure at
the left model side indicating H2O outflow (Figure 9b) whereas for the hydration and dehydration‐inflow sce-
narios the fluid overpressure at the left side indicates inflow (Figures 9e and 9h). The distribution of CH2Os in-
dicates the result of the dehydration front propagation for the dehydration and dehydration‐inflow scenarios
(Figures 9c and 9i) and of the hydration front propagation for the hydration scenario (Figure 9f).

For any (de)hydration reaction corresponding to the considered scenarios, the porosity can be calculated with
Equation 14, which assumes that the initial rock has ϕ0 = 0. For dehydration, the initial rock with ϕ0= 0 is on the
high‐pressure (HP) side of the reaction whereas for hydration the initial rock with ϕ0 = 0 is on the low‐pressure
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(LP) side of the reaction (Figures 7 and 8). To display general results for ϕ for both (de)hydration on the same
diagram, we apply the relation between ϕ and the ratio ρs0 (1 − C

H2O
s0 )/ρs (1 − CH2Os ) given in Equation 14. The

ratio represents the mass ratio of the immobile solid mass before the reaction to the immobile solid mass after the
reaction. However, we do not plot ϕ versus the parameter ρs0 (1 − C

H2O
s0 )/ρs (1 − CH2Os ), because general results

for hydration and dehydration would look identical. Instead, we plot ϕ versus the ratio
ρsHP (1 − C

H2O
sHP )/ρsLP (1 − C

H2O
sLP )where quantities with subscript “HP” refer to the quantities on the high‐pressure

side of the reaction and with subscript “LP” to quantities on the low‐pressure side. For the considered dehydration
reaction, ρsHP < ρsLP and 1 − C

H2O
sHP < 1 − CH2OsLP whereas for hydration, ρsHP > ρsLP and 1 − C

H2O
sHP < 1 − CH2OsLP

(Figure 4). If the ratio ρsHP (1 − C
H2O
sHP )/ρsLP (1 − C

H2O
sLP ) = 1, then no porosity is generated during (de)hydration. If

this ratio <1 for a reaction, then porosity is generated during dehydration while if this ratio >1 then porosity is
generated during hydration (Figure 10a). Equation 14 shows that porosity generation during (de)hydration does
not only depend on the change of ρs but also on the change of CH2Os . Figure 10b displays the contours of ϕ for
corresponding values of the mass fraction ratio on the horizontal axis and solid density ratios on the vertical axis.
As examples, we indicate the corresponding ratios of solid density and mass fraction for several (de)hydration
reactions (see caption of Figure 10b).

4.5. Representative HMC Numerical Simulations of (De)hydration and Porosity Generation (Model IV)

We perform two similar (de)hydration simulations as in the section above, but we now consider additionally the
solid volumetric deformation by poroviscous compaction and decompaction. This (de)compaction and associated
spatial variations in solid and fluid velocities occur over a characteristic length scale that is termed the compaction

Figure 9. Fluid mass balance during (de)hydration simulations based on the HC model III. Panels (a–c) show results for the dehydration simulation presented in
Figures 8a–8c. Panel (a) shows the fluid mass balance with time until t/tc= 1. The legend is displayed in panel (d). The label qfe indicates the flow of external fluid, with
positive values indicating flow out of the model domain, mfs indicates the fluid mass liberated by dehydration (negative) or taken up by hydration (positive), mfϕ
indicates the fluid mass stored in the porosity and m‐balance represents the mass balance, that is, qfe + mfs + mfϕ. Panel (b) shows the spatial distribution of the
dimensionless fluid pressure (also referred to as P̃ f in the text) at t/tc= 1 (dashed line indicates initial distribution). Panel (c) shows the spatial distribution of fluid mass
structurally bound in the solid at t/tc = 1 (dashed line indicates initial distribution). Panels (d–f) show the corresponding results for the hydration simulation presented in
Figures 8d–8f. Panels (g–i) show results for a simulation like the hydration simulation shown in panels (d–f) but for a dehydration reaction; compare red lines in panels
(d) and (g). This simulation corresponds to the dehydration‐inflow scenario mentioned in the hypothesis (Section 2).
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length (e.g., McKenzie, 1984). The compaction length is proportional to the

value of
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ηϕk/η f

√
(e.g., McKenzie, 1984). We assume that the characteristic

scale in our model, Lc, is like the compaction length of our model and, hence,
apply as compaction viscosity the value of L2c/ kc. The overall evolution of P̃ f
and ϕ is similar for the corresponding simulations with and without solid
deformation (Figures 8 and 11). However, for simulations with solid volu-
metric deformation, ϕ varies now in space and time on the left model side
(Figure 11). For dehydration, ϕ is decreasing and the largest decrease occurs
at the left model boundary (Figure 11b) where the rock volume is decreasing
the most (V/V0< 0; Figure 11c). Values of P̃ f are negative and smallest on the
left model side indicating values of Pf which are smaller than the total rock
pressure, P. This fluid underpressure causes a decrease in V (Equations 19 and
22; Figure 11c). For the hydration simulation the situation is opposite, and a
fluid overpressure causes ϕ and V to increase on the left model side
(Figures 11d–11f). Figures 8 and 11 show that the velocity of the dehydration
front is not considerably affected by the solid deformation because the front
shifts a similar distance within the same time.

Like in Figure 10, we plot the variation of ϕ for a variation of the ratio of
ρsHP (1 − C

H2O
sHP )/ρsLP (1 − C

H2O
sLP ) , and consider additionally a variation of V/

V0 (Figure 12).

For dehydration and no volume change, V/V0 = 1, the ratio
ρsHP (1 − C

H2O
sHP )/ρsLP (1 − C

H2O
sLP ) must be <1 to generate ϕ > 0 (Figures 10a

and 12a). The contours of ϕ indicate that for a fixed value of
ρsHP (1 − C

H2O
sHP )/ρsLP (1 − C

H2O
sLP ) , an increase in V/V0 causes an increase in ϕ.

For hydration and no volume change, the ratio
ρsHP (1 − C

H2O
sHP )/ρsLP (1 − C

H2O
sLP ) must be >1 to generate ϕ > 0 (Figures 10a

and 12b). The contours of ϕ indicate that for a fixed value of
ρsHP (1 − C

H2O
sHP )/ρsLP (1 − C

H2O
sLP ) , an increase in V/V0 also causes an increase

in ϕ.

4.6. Systematic Simulations and Application to the Time Scale of (De)
hydration

We performed hydration simulations without solid deformation (as displayed
in Figures 8d–8f) and vary systematically the value of the porosity exponent,
n, and the width, or sharpness ΔPf, of the density, mass fraction and porosity
transition around the hydration reaction (see Figure A1). High values of n > 5

can mimic permeability increase due to fractures and different values of ΔPf cause sharper or smoother density
variations across the reaction boundary (Figure A1) which can mimic simpler univariant or more complex
bivariant reactions. We run the simulations until the velocity of the hydration front becomes negligibly small after
the fluid pressure perturbation was removed at the time tc. In practice, this situation was achieved when the total
simulation time was one order of magnitude longer than tc. For each simulation, we record the total width L of the
hydration zone at the end of the simulation. For n between 1 and 10 and ΔPf between 0.01 and 0.1 (Figure A1) the
simulations show that the dimensionless distance, L/

̅̅̅̅̅̅̅̅̅̅̅̅
tckcPc

√
, only varies between 3 and 4.25 (range of contour

values in Figure 13). The width of the hydrated region is, hence, only weakly dependent on n and ΔPf. Therefore,
we apply the approximation:

L/
̅̅̅̅̅̅̅̅̅̅̅̅
tckcPc

√
≈ 4. (31)

We modify Equation 31 in the Section 5.7 to estimate reaction‐induced permeabilities in rock.

Figure 10. Porosity, ϕ, as function of solid density and mass fraction ratios.
Porosity is calculated with Equation 14. Symbols are explained in Table 1.
(a) Profile of porosity versus combined solid density and mass fraction ratio.
Subscript “HP” indicates that the corresponding quantity is on the high‐
pressure side of the reaction and subscript “LP” that it is on the low‐pressure
side (see also Figure 5). (b) Contours of porosity versus mass fraction ratio
and solid density ratio. The red circles with numbers indicate the ratios for
particular mineral reactions that are described in the corresponding
references: (1) Dehydration of brucite to periclase (Schmalholz et al., 2020);
(2) Dehydration of antigorite + brucite to forsterite (Schmalholz
et al., 2023); (3) Dehydration of serpentinite to dunite (Malvoisin
et al., 2015, 2021); (4) Hydration of granulite to eclogite (Bras et al., 2023);
(5) Hydration of granulite to eclogite (Centrella, 2019); (6) Dehydration‐
inflow scenario for antigorite breakdown to forsterite + enstatite for a
negative Clapeyron slope, that is, antigorite is on the low‐pressure side of the
reaction (densities after Malvoisin et al., 2015; their Figure 1A).
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5. Discussion
5.1. Hydro‐Mechanical‐Chemical Models

There exist many different types of models that describe the coupling of fluid flow, rock deformation, chemical
reactions and transfer of heat and mass (e.g., Gerya, 2019; Ghorbani et al., 2016; Katz, 2008; Keller & Suck-
ale, 2019; Pesavento et al., 2017; Roded et al., 2018; Xu et al., 2005). In our model, the (de)hydration reaction and
the fluid flow is driven by a fluid pressure perturbation that we apply as a boundary condition. We do not model
the process that generates this fluid pressure perturbation. In nature, fluid pressure variations, like fluid under-
pressure in serpentinite, can be generated by rock deformation, for example, as modeled in Schmalholz
et al. (2023). Fluid overpressure could develop during deserpentinization (e.g., Huber et al., 2022; Plümper
et al., 2017) especially if gravity‐controlled viscous compaction of the rock is considered (e.g., McKenzie, 1984;
Scott & Stevenson, 1984). For the considered scenario of hydration of granulite, fluid entered the system likely
through fractures and these fluids likely were overpressured, which might have been one of the causes for the
fracturing (i.e., hydrofracturing). Also, the hydration front in the granulite propagated in the two directions
orthogonal away from the initial fracture (Figure 1a). Hence, fluid flow was not controlled by a gravity‐controlled
fluid pressure gradient which would cause fluid flow only in the upward direction.

Figure 11. Representative numerical simulations with the HMC model IV for dehydration (panels a–c) and hydration scenarios (d–f; see also Table 2 for model
characteristics). Panels (a) and (d) show spatial profiles of the temporal evolution of the dimensionless fluid pressure (also referred to as P̃ f in the text), (b) and (e) the
evolution of porosity and (c) and (f) the evolution of the solid volume change (see text for nondimensionalization). The different profiles correspond to different
dimensionless times. The legend in panel (a) applies to panels (a) to (c) and the legend in (d) to panels (d) to (f).
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A crucial feature in most existing coupled models is the evolution of the porosity. For example, the importance of
porosity variations has been shown by studies on porosity waves that can result from the gravity‐driven
compaction of poroviscous rock (e.g., McKenzie, 1984; Scott & Stevenson, 1984). Porosity waves are a ubiq-
uitous feature arising from the governing equations of compressible two‐phase flow (e.g., McKenzie, 1984;
Scott & Stevenson, 1984) and such waves have been observed also in analog experiments (e.g., Scott et al., 1986).
Porosity waves are of interest because these waves are a potentially important mechanism of fluid and melt mass
transport in the lithosphere (e.g., Bessat et al., 2022; Jordan et al., 2018). Our HMC (de)hydration model IV is
relevant for porosity waves because the changes in effective pressure during the propagation of porosity waves
could trigger (de)hydration like the applied fluid pressure perturbations in our model. The largest values of
effective pressure corresponding to fluid overpressure are likely limited by the tensile strength of rocks, which is
in the order of a few tens of MPa (e.g., Perras & Diederichs, 2014).

A key difference between the various coupled two‐phase models is the treatment of density changes. In many
models, especially in models for melt migration, the densities of the solid and fluid constituents are assumed to be
constant (e.g., Aharonov et al., 1995; O. Evans et al., 2018; Jones & Katz, 2018; Katz, 2008; McKenzie, 1984;
Schiemenz et al., 2011; Spiegelman, 1993), whereas in other models mainly derived in the context of fluid‐rock
interaction the densities are determined by thermodynamic calculations, making them variable and consistent
with the changing chemical and phase composition of the system (e.g., Beinlich et al., 2020; Huber et al., 2022;
Malvoisin et al., 2015; Plümper et al., 2017; Schmalholz et al., 2020, 2023; Vrijmoed & Podladchikov, 2022). The
consideration of density changes has an important impact, for example, on the propagation behavior of porosity

Figure 12. Contours of porosity, ϕ, as function of solid density and mass fraction ratios (vertical axis) as well as solid volume
change (horizontal axis). Porosity is calculated with Equation 25. Symbols are explained in Table 1. Subscript “HP”
indicates that the corresponding quantity is on the high‐pressure side of the reaction and subscript “LP” that it is on the low‐
pressure side (see also Figure 5). (a) Contours of porosity for dehydration scenario. (b) Contours of porosity for hydration and
dehydration‐inflow scenario.
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waves (e.g., Malvoisin et al., 2015; Omlin et al., 2017). Malvoisin et al. (2015) show that density variations related
to local equilibrium reactions enable porosity waves to propagate into a medium at the limit of zero initial
connected porosity, without any viscous or elastic deformation. Furthermore, Omlin et al. (2017) show that the
consideration of the kinetics of the chemical reactions that cause the density variations may enable porosity waves
to potentially rise also in low‐temperature regimes so that porosity waves are not necessarily limited to the high‐
temperature, viscous regions in the lithosphere (Chakraborty, 2017).

Several studies have investigated (de)hydration reactions with density changes like the ones studied here (e.g.,
Beinlich et al., 2020; Huber et al., 2022; Klein & Garrido, 2011; Lacinska et al., 2017; Malvoisin et al., 2015;
Picazo et al., 2020; Plümper et al., 2017; Vrijmoed & Podladchikov, 2022). A particular feature of our approach is
the addition of viscous volumetric strain of the solid in the analytical expression for the porosity, Equation 25
(Khakimova & Podladchikov, 2024), compared to many previous studies that neglect solid deformation in the
porosity calculation (e.g., Beinlich et al., 2020; Huber et al., 2022; Plümper et al., 2017; Vrijmoed & Pod-
ladchikov, 2022). Furthermore, we consider both hydration and dehydration scenarios in a unified approach and
provide the conditions required for the propagation of hydration or dehydration fronts.

5.2. Importance of Nonlinear Porosity‐Permeability Relation for the Sharpness of the Reaction Front

In our model, the mechanism generating the sharpness, or steepness, of the (de)hydration front is governed by the
nonlinear relation between porosity and permeability (Figure 6). We have analyzed here the propagation of the
reactive (de)hydration front, which is characterized by the propagation of a sharp porosity front, accompanied by
evolving porosity and permeability (Figures 8, 11, and 13). We discuss briefly the context between our model and
other models of porosity and reaction front propagation.

The propagation of a sharp porosity front can be considered as a particular type of wave motion, like shock waves
or jumps in nonlinear kinematic waves (e.g., Bhatnager, 1979; Orr, 2007; Panfilov, 2018; Whitham, 1965).
Another mechanism for producing sharp reaction fronts is related to chemical reactions between the fluid and the
solid matrix. Recent numerical calculations show that a small difference in the composition of the infiltrating fluid
can change the morphology of the reaction zone from a diffusive zone to a considerably sharp front (e.g.,

Figure 13. Contours of the dimensionless width, L, of the hydration zone resulting from systematic simulations with the HC
model III for a hydration scenario. The porosity exponent, n, is varied from 1 to 10 and the parameter ΔPf from 0.01 to 0.1.
ΔPf controls the pressure interval over which the reaction occurs. The applied parameterized density, mass fraction and
porosity profiles for ΔPf = 0.01 and 0.1 are indicated in Figure A1. The geometry of the contours is not important but their
values since they only vary between 3 and 4.25 although both n and ΔPf vary each by one order of magnitude.
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Guy, 1993; Vrijmoed & Podladchikov, 2022). These numerical results agree with classical findings that indicate
the significance of linearity or nonlinearity in the dependence between fluid and solid concentrations (e.g.,
Fletcher & Hofmann, 1974; Vrijmoed & Podladchikov, 2022). A linear dependence, with constant equilibrium
partitioning coefficients between phases, is characteristic of ideal solutions or simple trace element partitioning.
Such linear dependence will lead to a linear advection of any inhomogeneities in chemical compositions without
changing their shape in space. Conversely, a nonlinear dependence changes the sign of the curvature of the
functional dependence of the concentration of a fluid component on the concentration of the same component in
the solid. Such nonlinear dependence is characteristic of major chemical components and determines the
morphology of the reaction front (e.g., Fletcher & Hofmann, 1974; Vrijmoed & Podladchikov, 2022). The
chemical partitioning is nonlinear for all trace and major elements for phase transitions that change the equi-
librium phase assemblages (e.g., Vrijmoed & Podladchikov, 2022). In the numerical simulations presented by
Vrijmoed and Podladchikov (2022), there is a change in front morphology from a diffusive zone, such as for
rarefaction waves in gas dynamics, to a sharp front, such as for shock waves or jumps in nonlinear kinematic
waves (e.g., Panfilov, 2018; Whitham, 1965) when the CO2 concentration in the infiltrating fluid is increased
from less than one to over one weight percent. Hence, the propagation of sharp reaction fronts can be caused by a
nonlinear porosity‐permeability relation, as considered in our model, and/or by a nonlinear dependence between
fluid and solid concentrations.

5.3. Importance of Density Variations for Porosity Evolution

A fundamental feature of the thermodynamics of metamorphic and melting reactions is that the density of the
solid changes during the reaction. These density variations contribute proportionally to the variations in porosity
which significantly affects the permeability resulting from the strongly nonlinear porosity versus permeability
relation (e.g., Beinlich et al., 2020; Bessat et al., 2022; Bras et al., 2023; Huber et al., 2022; Malvoisin et al., 2015;
Plümper et al., 2017; Schmalholz et al., 2023). Many studies, however, neglect these density changes. Recently,
Hu et al. (2022) showed that the assumption of constant density causes a volume error of 15% in their model for
melt migration. The reason is that the assumption of constant density degenerates the fundamental equation for
the conservation of mass to an equation for the conservation of volume which is not a fundamental law in
thermodynamics or continuum mechanics.

In our model, we apply the mass conservation law for the chemically immobile solid component of the system,
without the simplifying assumption of constant density. Vrijmoed and Podladchikov (2022) documented this
approach for several reactions like the ones considered here. A particular feature of this approach is the calcu-
lation of porosity by analytically integrating the mass conservation equation for the immobile solid component.
Bessat et al. (2022) extended this approach to a scenario where all components are mobile but, therefore, could not
calculate the porosity anymore by analytically integrating a mass conservation equation of an immobile solid
component. They had to calculate the porosity numerically. For simplicity, we returned here to a scenario for
which the porosity can be calculated by analytical integration of the mass conservation of an immobile solid
component. This analytical integration resulted in our Equations 14 and 25.

5.4. Mass Transport

An important question is whether high porosity domains can transport significant pore fluid mass while propa-
gating through low porosity domains because the high porosity domain could propagate similarly to a seismic
wave so that pore fluids would only be moved locally but not be transported together with the propagating high
porosity domain. Jordan et al. (2018) show that mass can be transported in 2D and 3D porosity waves; a fact that
has been doubted based on 1D porosity wave studies. Therefore, porosity waves are a potential mechanism to
transport significant fluid and melt mass in a channelized style across the lithosphere‐asthenosphere boundary and
the viscous lithospheric mantle. In our model, involving regions with zero porosity, the porosity front travels with
the same velocity as the chemical alteration front and, hence, must transport the fluid mass.

Porosity waves have been proposed as a mechanism forming observed seismic chimneys above hydrocarbon
reservoirs (e.g., Yarushina et al., 2021). The application of decompaction weakening (e.g., Connolly & Pod-
ladchikov, 1998, 2007) and the consideration of viscous shear deformation of the solid (Räss et al., 2019) enables a
significant channelization of porosity waves for 2D and 3D flow. Furthermore, Connolly and Podladchikov (1998)
show that employing a visco‐elastic volumetric deformation of the solid enables porosity waves to travel through
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rock in the limit of zero initial connected porosity, whereas viscous porosity waves are trapped in the zero‐porosity
limit and, hence, cannot transport mass into regions with initially zero porosity (e.g., Barcilon & Richter, 1986;
Connolly&Podladchikov, 1998, 2015).We showhere that porosity fronts are not trapped in the zero‐porosity limit
in a viscous medium if (de)hydration takes place. Hence, reactive porosity waves are a potentially important
mechanism of fluid transport across viscous regions in the limit of zero‐connected porosity. Suchmass transport by
pore fluids in the zero‐porosity limit may have been important during the formation of continental crust, as an
alternative or complementary mechanism to mass transport by diapirism (e.g., Hacker et al., 2015).

5.5. Discussion of the Hypothesis for (De)hydration Mechanisms

The presented numerical simulations support our hypothesis for reaction‐induced porosity generation by
(de)hydration front propagation. We considered the two representative reactions SOR and GER (Figure 4). There
is a fundamental difference between SOR and GER: For both reactions, the solid with structurally bound H2O is
on the high‐pressure side of the reaction, but for the SOR ρs decreases across the reaction boundary from lower to
higher P (Figure 4a), while for GER, ρs increases across the reaction boundary from lower to higher P (Figure 4d).
In other words, for the dehydration scenario the reactant (serpentinite) is on the high‐pressure side of the reaction
and has a smaller ρs than the product (olivine). Conversely, for the hydration scenario the reactant (granulite) is on
the low‐pressure side of the reaction but also has a smaller ρs than the product (eclogite). Since the reactant for
both hydration and dehydration scenarios always has a smaller ρs than the product, the reaction generates porosity
and, hence, permeability. Fluid flows always from high to low fluid pressure so that the occurrence of the hy-
dration or dehydration scenarios is controlled by the change of ρs across the reaction, namely an increase or
decrease of ρs with increasing pressure. The thermodynamic results for SOR and GER are representative for a
wide range of (de)hydration reactions that can involve zero‐porosity rock. The main differences are whether ρs
increases or decreases when crossing the reaction from lower to higher pressure and whether, consequently, ϕ
increases or decreases (Figure 4).

In our model, the rock initially has zero porosity, which means the most unfavorable case for fluids to flow. From
a thermodynamic point of view, a zero‐porosity rock is consistent with the applied reactions, because they have no
free fluid phase on one side of the reaction, implying zero porosity. Concerning the transport model, the zero‐
porosity case is an end member and representative of rocks with very low permeability and porosity. Ductile
serpentinite (as shown in our Figure 1b) at>12 kbar and 500°C likely has such very low porosity and permeability
because most of the porosity might have been “closed” by viscous compaction during burial. Estimates for
permeability relevant for metamorphism are as low as 10− 23 m2 (e.g., Ague, 2014; Katayama et al., 2012) or even
lower in serpentinite when extrapolated to confining pressures >10 kbar (e.g., Hatakayama et al., 2017). Also, the
granulite in W‐Norway (our Figure 1a) was likely extremely dry at its maximum burial depth and, hence, did not
transform everywhere into eclogite. A rock such as a “dry” granulite that experiences fluid influx along a fracture
network on a large scale (10–1,000s of meters), will be affected by fluid influx from such a fracture‐like structure
(with a porosity near 1) into the wall rock system (with porosity as low as 10− 3; Kaatz et al., 2023) on a small scale
(millimeters to meters) as it is valid for the Holsnøy case (our Figure 1a) and would exactly reflect such a case of
fluid infiltration into granulite in the limit of zero‐permeability. The main fluid pressure gradient‐driven flow
would occur along the fracture network, but some fluid would be also infiltrating the adjacent low‐permeability
wall rocks. Therefore, we consider the (de)hydration of zero‐permeability rocks as a reasonable endmember for
many natural situations in which sharp (de)hydration fronts propagate. Our models also work when the rocks do
have an initially small porosity and permeability. If both reactant and product initially have a porosity and a free
fluid phase, then more (de)hydration scenarios as considered here may be possible, depending on the initial
porosity magnitudes.

For our model, the two representative simulations for the dehydration and hydration scenarios share some
common fundamental features, such as the propagation of a sharp reaction front into a rock that is either
dehydrated or hydrated. The (de)hydration front is characterized by a strong spatial variation of ϕ to 0 where the
profile of ϕ versus x is nearly vertical (Figures 8b, 8e, 11b, and 11e). The timing of (de)hydration is similar and the
(de)hydration front propagates with a similar velocity (Figures 8 and 11). The dehydration and hydration sce-
narios also exhibit some fundamental differences, since for the hydration scenario the hydration front and the fluid
move in the same direction while for the dehydration scenario the fluid moves in the opposite direction as the front
(Figures 8 and 11).
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To quantify and predict (de)hydration front propagation and its consequences on other processes such as fluid
migration, faulting and melting, it is not sufficient to study only the chemical aspects of (de)hydration.
(De)hydration involves the flow of aqueous fluid, which we refer to here as fluid flow. This fluid flow occurs in
porous rock whereby the permeability of these rocks and the fluid viscosity control the length and time scale of
fluid flow. Furthermore, porous fluid flow is controlled by gradients in fluid pressure, Pf, which control the
velocity and direction of fluid flow. Hence, hydraulic parameters like permeability, fluid viscosity and fluid
pressure gradients control the amount of fluid mass that can be transported within a certain time over a certain
distance along a certain direction. Furthermore, (de)hydration can also change the rock volume and generate solid
deformation which causes stress variations in the rock (e.g., Kelemen & Hirth, 2012; Lindgren, 1912; Plümper
et al., 2022; Schmalholz et al., 2020).

For the dehydration‐inflow scenario, the change of ρs with P is similar to the hydration scenario. A reaction
corresponding to this scenario is the breakdown of antigorite to forsterite + enstatite + H2O for high pressure
where the Clapeyron slope of the reaction is negative (e.g., Malvoisin et al., 2015; Ulmer & Trommsdorff, 1995).
The antigorite is on the low‐pressure side of the reaction and has a smaller ρs than forsterite + enstatite (e.g.,
Malvoisin et al., 2015). Concerning the propagation direction of the reaction front and the direction of fluid flow,
the dehydration‐inflow scenario is like the hydration scenario.

5.6. Simplifications

To keep the mathematical model as simple as possible but as complex as necessary to capture the fundamental
features of (de)hydration font propagation, we applied several simplifications. A main simplification of our model
is that we consider only (de)hydration that generates porosity and, hence, permeability. The porosity generation
results mainly from the change in solid density associated to (de)hydration. With our simple model, we cannot
describe (de)hydration reactions that cause density changes that consume porosity. For example, the opposite
reaction of the SOR would be the hydration of olivine to form serpentinite and a more general reaction would be
the hydration, or serpentinization, of peridotite. If the peridotite has very low porosity, then the solid density
changes associated to the reaction would reduce the porosity to zero because the reaction tends to close porosity
(clogging). For such reactions, the porosity cannot be mainly generated by the reaction itself but likely must be
generated by significant solid deformation. Important geological examples of such scenario for which porosity is
decreased by the reaction are the hydration of high‐pressure rocks during exhumation along the plate boundary,
such as the transformation of eclogite into blueschist (e.g., van der Straaten et al., 2008), or the serpentinization of
the slab mantle during bending‐related faulting at the outer rise (e.g., Ranero et al., 2003). Both of these rock
transformation processes occur basically in a daily manner and both have major implications for the long‐term
behavior of the respective subduction zone systems and even the global water budget. Several studies pro-
posed mathematical models to describe and quantify such serpentinization (e.g., O. Evans et al., 2018, 2020;
Malvoisin et al., 2021). However, these models still face several challenges. For example, O. Evans et al. (2018,
2020) assume in their model that solid densities are constant during the serpentinization and treated them as
constants in their mass conservation equations. Malvoisin et al. (2021) show that there are two different possi-
bilities to treat volume changes in the mathematical model, either by reducing existing pore space (clogging) or by
compressing the solid material. More research is required to eventually derive a mathematical model for ser-
pentinization that captures the significant changes in solid density and porosity as well as the solid deformation.

Furthermore, we do not consider the dissolution of solid components into the fluid and the input or loss of solid
components into the system. Such dissolution as well as input and loss of solid components is considered
important for many pseudomorphic replacement reactions during which the rock volume presumably does not
change (e.g., Lindgren, 1912; Putnis, 2009; Putnis & John, 2010), such as the eclogite‐to‐blueschist conversion
(e.g., van der Straaten et al., 2008) mentioned before. Our models can be considered as a starting point for
studying replacement reactions with mathematical models.

Moreover, we only consider 1D scenarios and volumetric solid deformation and, hence, neglect shear defor-
mation. Such 2D and 3D shear deformation can have an important impact on channeling of fluid flow (e.g., Räss
et al., 2019) or the formation of dehydration veins (e.g., Schmalholz et al., 2023). Furthermore, we consider an
isothermal system only and, hence, do not consider heat transfer and the effects of latent heat related to the
considered reactions. Such thermal effects can be similarly added to our model as Bessat et al. (2022) have done in
their model of reactive porosity waves.
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5.7. Estimating Permeabilities of Natural (De)hydration Zones

Measuring values of porosity for metamorphic rocks is challenging. In a sequence of measurements with
increasing confinement and temperature the compliant porosity gets closed. Then laboratory‐derived data must be
extrapolated to the relevant P‐T conditions (e.g., Katayama et al., 2012; Taetz et al., 2018). Such a procedure is
even more complicated for measuring permeability as it must be determined via flow‐through experiments, which
take very long for very low permeabilities (e.g., Katayama et al., 2012). Importantly, these measured values for
porosity and permeability are background values only, as they cannot account for transient reaction‐induced
changes in the porosity and permeability of the reacting rock (see discussion in Ingebritsen & Mann-
ing, 2010). Reaction‐induced porosity can be one order of magnitude larger than the background porosity (e.g.,
John et al., 2012; Taetz et al., 2018). Since permeability scales with a power‐law relation with porosity, the related
uncertainties for permeability become very large. We show here how the results of our systematic simulations
(Figure 13) can be used to estimate bounds for the reaction‐induced permeability of natural (de)hydration zones.

Our models III and IV show that the hydration and dehydration of a zone are similar if the corresponding reactions
exhibit a similar change in density across the (de)hydration reaction and if the absolute magnitude of the pressure
perturbation, driving the (de)hydration, is identical (Figures 8 and 11). Therefore, Equation 31, resulting from
systematic hydration simulations, is also applicable to dehydration. To estimate permeabilities from natural
(de)hydration zones, we substitute kc = kref/ηf in Equation 31 and solve for the permeability which yields

kref ≈
L2 η f
16 tc Pc

. (32)

In our simulations, kref represents the maximum reaction‐induced permeability in the (de)hydration zone since we
use the maximum porosity in the model as ϕref (see Equation 7). In our model, the fluid pressure at the end of (de)
hydration, at tc, varies approximately nearly linearly across the (de)hydration zone with a width of L (Figures 8a
and 8d for t/tc = 1). The absolute value of Pc is difficult to estimate for natural situations and for the following
applications we introduce the absolute value of the pressure gradient dP/dL = |Pc /L|. We further introduce the
average propagation velocity of the (de)hydration front as vF = L/tc. The permeability is then

kref ≈
η f
16
vF
dP
dL
. (33)

For the following permeability estimations, we assume typical values in the order of ηf = 10
− 4 Pas (e.g.,

Walther & Orville, 1982). However, the permeabilities can easily be recalculated for different viscosity values.
For example, if the viscosity is 10− 3 Pas instead of 10− 4 Pas the permeability would be a factor of 10 larger
according to Equation 33.

Permeabilities in rock can be highly variable (e.g., Ingebritsen & Manning, 2010). Typical values for ductile
crustal rocks at depths deeper than ∼10 km are between 5 × 10− 19 and 10− 16 m2 (e.g., Ingebritsen & Mann-
ing, 2010). The light gray area in Figure 14 shows such typical values of kref that we calculated with Equation 33
for a range of values of vF and dP/dL. Some studies could estimate values of vF and dP/dL for natural
(de)hydration zones. For example, Beinlich et al. (2020) studied a ∼2.6 m thick reaction zone in which ser-
pentinite was replaced by soapstone (a talc‐magnesite‐chlorite assemblage). This replacement proceeded as a
coupled carbonation and partial dehydration reaction (Beinlich et al., 2020) and the reaction is, hence, slightly
more complex than the serpentinite dehydration considered in our model. Beinlich et al. (2020) estimated the
duration for the generation of the 2.6 m thick zone to range between 15 and 29 years, which provides average
propagation velocities, vF, between 9 and 17 cm/yr. They further assume a pressure gradient driving the fluid flow
of ∼0.019 MPa/m which is controlled by the difference between fluid and solid densities. In our model, the
calculated pressure represents the difference between the fluid pressure and ambient total pressure and, hence,
represents a fluid overpressure of the form Pf − P (see also Equation 19). Hydration requires a positive fluid
overpressure while dehydration requires a negative fluid overpressure, or fluid underpressure. The fluid over-
pressure is likely limited by the tensile strength of rocks which is typically in the order of 10 MPa (e.g., Perras &
Diederichs, 2014). Using 10 MPa as the maximum value for Pc yields for the 2.6 m wide reaction zone a value of
dP/dL ≈ 4 MPa/m. Values of dP/dL between 0.019 and 4 MPa/m and vF between 9 and 17 cm/yr provide es-
timates of permeabilities, kref, between 10

− 20 and 10− 18 m2 (blue dashed rectangle in Figure 14). These
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permeabilities agree with typical permeabilities for ductile crustal rock (Figure 14). To provide a sharp reaction
front, the permeability of the serpentinite should be smaller than the permeability of the produced soapstone
through which the fluid flows. Therefore, we expect that the permeability of the serpentinite should have been
significantly smaller than 10− 20 m2 at the lithostatic pressure of ∼3 kbar (Beinlich et al., 2020) at which the fluid
infiltration occurred. Katayama et al. (2012) measured the permeabilities of serpentinite at low confining pres-
sures of 50 MPa and obtained values between 10− 21 and 10− 20 m2. Hatakayama et al. (2017) propose that the
serpentinite permeability can be smaller than 10− 21 m2 for a lithostatic pressure of 3 kbar. Therefore, the ser-
pentinite permeability was likely ∼10− 21 m2, or even smaller, and, hence, significantly smaller than 10− 20 m2.
Consequently, a sharp reaction front between produced soapstone and reacted serpentinite could have been
generated and propagated by a mechanism like the one described in our mathematical hydration model.

Another potential application of our model is the eclogitization of granulite studied by Camacho et al. (2005).
They investigated eclogite lenses with dimensions between 10 and 30 m in granulite and proposed that the
duration of fluid injection, causing the eclogitization, was less than 10 years. Using values between 10 and 30 m as
representative values of L, and values between 5 and 10 years as representative values of tc provides values of vF
between 1 and 3 m/yr. Assuming again 10 MPa as maximum value of Pc provides a maximum value of dP/
dL= 1MPa/m for L= 10 m. As minimum value for dP/dLwe assume again 0.019MPa/m. These estimates for vF
and dP/dL provide permeability estimates between 10− 18.5 and 10− 17 m2 (red dashed rectangle in Figure 14).
These permeability estimates again agree with typical deeper crustal permeabilities (Figure 14).

Our permeability estimates are based on models that assume that (de)hydration front propagation is controlled by
advection due to porous fluid flow. Generally, (de)hydration front propagation can be controlled by advection or
diffusion, or by a combination of both processes whereby advection and diffusion have approximately equal
importance (e.g., Ague, 2014; Bickle & McKenzie, 1987; Fletcher & Hofmann, 1974). Two case studies by John
et al. (2012), for a dehydration zone in the Chinese TianshanMountains, and Taetz et al. (2018), for a dehydration
zone in the Pouébo Eclogite Mélange, New Caledonia, used lithium‐diffusion modeling to estimate the duration
of dehydration pulses during subduction. For these two case studies, diffusion is required to explain the observed
lithium fractionation taking place on the time scale of the dehydration. Hence, John et al. (2012) and Taetz
et al. (2018) assume dehydration front propagation was diffusion‐controlled. Nevertheless, advection could have
contributed to the propagation of these dehydration fronts. However, if advection contributed to dehydration front
propagation, the advection velocity was limited by the duration constrained by the observed lithium fractionation.
In other words, the maximal advection velocity is determined by the thickness of the dehydration front and the

Figure 14. Estimates of permeabilities as a function of pressure gradient, dP/dL, and (de)hydration front velocity, vF
(Equation 33). The left vertical axis indicates vF in units of cm/yr and the right axis in m/s. The fluid viscosity ηf = 10

− 4 Pas.
The gray region shows the range of typical permeabilities in the ductile crust at depths <10 km (Ingebritsen &
Manning, 2010). The colored dashed rectangles indicate the range of estimates of dP/dL and vF for observed reaction zones
described in the respective references displayed in the same color (see Section 5.7).
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diffusion‐controlled duration of dehydration. We estimate the permeability for these two case studies with our
method to constrain an upper bound on the transient permeability. Natural permeabilities could not have been
higher than the maximum permeabilities estimated with our method, because otherwise, the dehydration zone
would have developed too fast so that the observed lithium fractionation would not have had enough time to
develop. John et al. (2012) and recalculations with updated partition coefficients and porosity data by Taetz
et al. (2018) estimated a dehydration duration of approximately 760 years (we use here the range 760–1,000 years)
for an approximately 1 m thick zone. Taetz et al. (2018) estimated a dehydration duration between 0.07 and
0.29 years for a zone with approximately 4 cm thickness. To estimate a maximum value of dP/dLwe assume again
10 MPa as maximum difference across the dehydration zone and we use again 0.019 MPa/m as minimum value
for dP/dL. For the case of Taetz et al. (2018) the maximum permeability estimate is ∼5 × 10− 18 m2 and for John
et al. (2012) ∼10− 20 m2 (Figure 14). We suggest that these maximum permeability estimates represent upper
bounds for natural, reaction‐induced permeability for the two respective case studies.

6. Conclusions
We present a 1D HMC model that predicts the propagation of hydration and dehydration fronts. We consider
reactions for which the solid density of the reactants, such as serpentinite or granulite, is smaller than the solid
density of the products, such as olivine or eclogite. Our models indicate that reactions can drive the prop-
agation of (de)hydration fronts, characterized by sharp porosity fronts, into a viscous medium with zero
permeability. Previous studies showed that in the absence of reactions porosity fronts cannot propagate into a
viscous medium with zero permeability and get trapped. Therefore, reactions and the associated transient,
reaction‐induced porosity likely play a key role in the natural migration of fluids across viscous regions with
very low background permeability, such as the mantle wedge, the deeper regions of the lithosphere, or the
lower crust.

We present an analytical expression for the transient, reaction‐induced porosity generated by (de)hydration re-
actions. This porosity depends on (a) changes in solid density, (b) changes in the mass fraction of structurally
bound water, and (c) solid volumetric deformation. We show that this porosity expression can be used to
numerically simulate (de)hydration front propagation into a medium with zero initial porosity.

Our numerical simulations confirm the proposed hypothesis for three different (de)hydration scenarios: (a)
hydration with an inflow of external fluid, (b) dehydration with an outflow of the liberated fluid, and (c)
dehydration‐inflow for which despite fluid liberation additional external fluid flows into the reaction‐induced
porosity. A representative reaction for the hydration scenario is the hydration (eclogitization) of granulite, for
the dehydration scenario the dehydration of serpentinite (brucite‐out) at conditions for which the Clapeyron
slope is positive, and for the dehydration‐inflow scenario the dehydration of serpentinite (antigorite‐out) at
conditions for which the Clapeyron slope is negative. Fluid pressure gradients control fluid flow and fluid
flows from higher to lower fluid pressure. Therefore, the fluid flow direction is governed by the positioning of
the free fluid phase in the pressure‐temperature phase diagram. If the free fluid phase resides above the
reaction pressure, the fluid can flow in the same direction as a propagating hydration or dehydration front.
Conversely, if the free fluid phase sits below the reaction pressure, the fluid flows away from a propagating
dehydration front. The positioning of the free fluid phase is governed by the change of solid density across the
reaction boundary. If the solid density increases for a pressure increase across the reaction boundary, the free
fluid phase is located above the reaction pressure, favoring the propagation of both hydration and dehydration
fronts. Conversely, if the solid density decreases for a pressure increase across the reaction boundary the free
fluid phase is located below the reaction pressure, favoring only the propagation of dehydration fronts. For the
zero‐porosity limit, mass transport by fluid flow is guaranteed because the chemical signal in the fluid
propagates with the same velocity as the porosity front.

Estimating transient, reaction‐induced permeabilities associated with the propagation of natural (de)hydration
fronts is challenging. We propose a new method to estimate reaction‐induced permeabilities which can be
applied if estimates for the duration of (de)hydration and fluid pressure gradients are available. We estimate
reaction‐induced permeabilities for natural (de)hydration zones and obtain permeability values like those sug-
gested for deep crustal and subduction zone conditions based on other methods.
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Appendix A: Porosity Change Due To Reaction and Solid Deformation
Here, we show the steps to transform Equations 21 into 23. Applying the product rule of differentiation to the
right‐hand side of Equation 21 and moving the term multiplied by vs to the left‐hand side yields

Figure A1. Applied limits of the parameterized relationships of densities (a), mass fraction (b) and porosity (c) versus
pressure applied in the systematic numerical simulations for hydration which were used to generate Figure 13. The thicker
lines correspond to ΔPf= 0.1 and the thinner lines to ΔPf= 0.01. The value of ΔPf controls the sharpness of the reaction (see
vertical axis of Figure 13). Symbols are explained in Table 1.
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∂
∂t
(ρs(1 − ϕ) (1 − CH2Os )) + vs

∂
∂x
(ρs(1 − ϕ) (1 − CH2Os )) = − ρs(1 − ϕ) (1 − CH2Os )

∂
∂x
(vs) (A1)

The term on the left‐hand side, which is multiplied by vs, represents an advection term for the quantity
ρs(1 − ϕ) (1 − CH2Os ) . The left‐hand side can, hence, be combined to the total time derivative, d/dt, of
ρs(1 − ϕ) (1 − CH2Os ) and both sides of the equation can be divided by ρs(1 − ϕ) (1 − CH2Os ) to yield

1
ρs(1 − ϕ) (1 − CH2Os )

d
dt
(ρs(1 − ϕ) (1 − CH2Os )) = −

∂
∂x
(vs) (A2)

The left‐hand side can now be replaced by the time derivative of the natural logarithm of ρs(1 − ϕ) (1 − CH2Os )

and the right‐hand side can be modified by using Equation 22 to yield

d
dt
ln(ρs(1 − ϕ) (1 − CH2Os )) = −

d
dt
ln V (A3)

All terms can be combined on the left‐hand side of the equation inside the total time derivative and using the
product rule for logarithms yields (Khakimova & Podladchikov, 2024):

d
dt
ln(ρs(1 − ϕ) (1 − CH2Os )V) = 0. (A4)

When the time derivative of the logarithm of a quantity that can change with time is equal to zero then the time
derivative of this quantity must be equal to zero. Therefore, Equation A4 can be transformed into Equation 23.

Appendix B: Mass‐ and Molar‐Based Porosity Calculations
A particular challenge when studying the literature on (de)hydration is that more chemically oriented studies
commonly base their calculations for porosity and volume change on quantities with units involving moles (e.g.,
Centrella et al., 2015) while more physically oriented studies commonly base such calculations on quantities with
units involving kilograms (e.g., Plümper et al., 2017). Several controversies and contradictory results, concerning
typically the quantification of changes in porosity, volume, and pressure during metamorphic reactions, are often
related to calculations based on either molar‐ or mass‐based quantities (e.g., Hess et al., 2022; Powell et al., 2018;
Tajčmanová et al., 2015, 2021). If the molar‐ and mass‐based calculations are each internally consistent, then they
must provide the same result for the same process because each calculation is based on the same fundamental laws
of physics and thermodynamics. To show the consistency of our mathematical model, we discuss some results for
porosity change during (de)hydration with both molar‐ and mass‐based calculations and show that they are
identical.

Equation 14 to calculate ϕ has been derived from general mass conservation equations involving densities and
mass fractions. We refer to this approach to calculate ϕ as mass‐based calculation. One advantage of the mass‐
based calculation is that no matter how many minerals are involved in a (de)hydration reaction, we need to use
only one value of ρs and ofCH2Os for each side of the reaction, because values of ρs and of CH2Os represent the entire
rock, or mineral assemblage. However, in petrological studies, calculations of ϕ change during (de)hydration are
frequently based on moles and molar volumes (e.g., Putnis, 2009). We show here that Equation 14 to calculate ϕ
due to (de)hydration can be reformulated to alternatively calculate ϕ with molar‐based quantities, such as molar
volumes.

The calculation of ϕ with Equation 14 can be done with moles and molar volumes if the quantities ρs0, ρs, C
H2O
s0 ,

and CH2Os are expressed in moles and molar volumes. To do this, we introduce the parameters Ns0, Ns, N
H2O
s0 , and

NH2Os which are the initial number of moles of solid components, the final number of moles of solid components,
the initial number of moles of H2O in the solid and the final number of moles of H2O in the solid, respectively. For
didactical reasons, we illustrate the parameters for the simple dehydration reaction:
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Mg(OH)2
brucite

→
MgO

periclase
+
H2O

water
. (B1)

Brucite is the initial solid and periclase the final solid. For this simple reaction we have only one solid component,
namely MgO. Hence, for this reaction we have Ns0 = 1, Ns= 1, N

H2O
s0 = 1, and NH2Os = 0. Next, we introduce Vmols0

and Vmols which are the initial (here brucite) and final (here periclase) molar volumes of the solid, respectively.
The molar mass of the pure solid component, that is the component without structurally bound water, is termed
hereMmolspure, which for the considered reaction is the periclase, MgO, component. In our models, the molar mass of
the pure solid component does not change during the reaction, henceMmols0pure = M

mol
spure. The molar mass of water is

termed MmolH2O. The molar mass of the initial solid is then M
mol
s0 = Ns0Mmols0pure + N

H2O
s0 MmolH20 and of the final solid

Mmols = NsMmolspure + N
H2O
s MmolH20. With the molar masses and the molar volumes, we can calculate the densities of

the initial and final solids with ρs0 = Mmols0 /V
mol
s0 and ρs = M

mol
s /Vmols . The mass fraction of the solid component in

the initial solid is Cs0 = Ns0Mmols0pure/M
mol
s0 and in the final solid is Cs = NsMmolspure/M

mol
s . These two mass fractions

are related to the mass fractions of H2O which is structurally bound in the solid by the relations Cs0 = 1 − C
H2O
s0

and Cs = 1 − CH2Os . We can now replace the densities and mass fractions in Equation 14 by their molar ex-
pressions given above and apply the relation Ns0 = Ns, which yields

ϕ = 1 −
Vmols
Vmols0

. (B2)

At room temperature, ρs ≈ 2,380 kg m− 3 and Cs = 1 − CH2Os ≈ 0.69 for brucite, and ρs ≈ 3,585 kg m− 3 and
Cs = 1 − CH2Os = 1 for periclase. Using the mass‐based calculation and assuming that brucite is the reactant, the
initial rock, with ϕ0 = 0 and periclase is the product, Equation 14 provides ϕ = 1 − (2,380 × 0.69/3,585) ≈ 0.54.
Using the molar‐based approach and employing Vmols0 = 24.63 cm3 for brucite and Vmols = 11.248 cm3 for peri-
clase yields ϕ = 1 − (11.248/24.63) ≈ 0.54. The mass‐ and molar‐based porosity calculations yield, hence, the
same results.

Next, we show the calculation of ϕ for the considered SOR. At room temperature, ρs ≈ 2,573 kg m− 3 and
Cs = 1 − CH2Os ≈ 0.84 for the solid made of antigorite + brucite, and ρs ≈ 3,213 kg m− 3 and Cs = 1 − CH2Os = 1
for forsterite. Using the mass‐based calculation and assuming that the rock made of antigorite + brucite is the
reactant with ϕ0= 0 and forsterite is the product, Equation 14 provides ϕ= 1 − (2,573 × 0.83/3,213) ≈ 0.34. The
molar‐based approach becomes more elaborated because we have to consider the stoichiometric coefficients for
antigorite, νs01 = 1, brucite, νs02 = 20, and forsterite, νs1 = 34. The molar volumes of the minerals are Vmols01 =

1,754.8 cm3 for antigorite, Vmols02 = 24.63 cm
3 for brucite and Vmols1 = 43.79 cm3 for forsterite. Following the same

procedure as above, we can derive the equation for the porosity for the molar‐based approach in the form:

ϕ = 1 − (
νs1Vmols1

(νs01Vmols01 + νs02V
mol
s02 )

). (B3)

Using the values for the stoichiometric coefficients and molar volumes yields ϕ = 1 − (34 × 43.79/
(1 × 1,754.8 + 20 × 24.63)) ≈ 0.34. Again, the mass‐ and molar‐based approach provide the same values for
porosities.

Appendix C: Thermodynamic Pressure
In a rock without porosity under a hydrostatic state of stress, the thermodynamic pressure is given by the mean
stress of the rock (e.g., Moulas et al., 2019). In a porous rock involving differential stress, it is currently debated
which pressure or stress magnitude should be used as magnitude for the thermodynamic pressure in the Gibbs
equation, for example, fluid pressure, total mean stress or normal stress on crystalline interfaces (e.g., Moulas
et al., 2019; Wheeler, 2014, 2018, 2020). This debate has minimal impact on our models as we do not consider
deviatoric stress, and the assumed fluid over‐ and underpressure is small (<10 MPa). Hence, the fundamental
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features of the coupling between reactions, fluid flow and solid deformation during (de)hydration would not
change significantly for our models.

Appendix D: Systematic Hydration Simulations
In the systematic hydration simulations used to generate the results presented in Figure 13, we varied the porosity
exponent, n, in the porosity‐permeability relation and the parameter ΔPf that controls the pressure interval over
which the reaction occurs. The smaller the value of ΔPf the sharper the change of the density, mass fraction, and
porosity across the reaction boundary. The sharpest and smoothest parameterized density, mass fraction and
porosity profiles for ΔPf = 0.01 and 0.1, respectively, which we used in the systematic simulations, are indicated
in Figure A1.

Data Availability Statement
The numerical algorithm for the HC model III and the HMC model IV is openly accessible via Schmaste (2024).
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