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1 | Introduction

During the era of genomic biology, significant advances have been made in high-

throughput sequencing techniques, enabling the investigation of various facets of bi-

ological processes (Soon, Hariharan, & Snyder, 2013). For example, DNA micro-

arrays techniques (TAUB, DeLEO, & Thompson, 1983; Pease et al., 1994; Shalon,

Smith, & Brown, 1996; Mirzabekov, Lysov, Shick, & Dubiley, n.d.; Pollack et al.,

1999; Churchill, 2002), the next generation high-throughput RNA sequencing, single-

cell RNA sequencing (scRNA-seq) (Waern, Nagalakshmi, & Snyder, 2011; Kodzius

et al., 2006; Ingolia, Ghaemmaghami, Newman, & Weissman, 2009) and spatial tran-

scriptomic sequencing techniques (Rao, Barkley, França, & Yanai, 2021; Chen et al.,

2022a) have been developed to analyze gene expression patterns under diverse exper-

imental conditions or within specific cell types. Another technique named as Assay

for Transposase-Accessible Chromatin with sequencing (ATAC-seq) has been devel-

oped to study the accessibility of DNA sequence (Buenrostro, Giresi, Zaba, Chang, &

Greenleaf, 2013). For other aspects of biological processes, high-throughput mass spec-

trometry protein profiling has been developed for proteomics studies and Chromatin Im-

munoprecipitation Sequencing (CHIP-seq) has been designed for histone modification

study (Robertson et al., 2007) and so on. All these sequencing techniques collectively

contribute to enhancing our comprehension of the intricate molecular mechanisms un-

derlying biological processes.

Over the past decade, a significant volume of scRNA-seq data has been generated

along with the development of scRNA-seq techniques. The scRNA-seq technique usu-

ally works as demonstrated in Fig. 1.1. It begins with dissecting cells from biological

tissues, organs or organisms (Fig. 1.1-1). Then the cells are disassociated and captured

by microfluidic devices, e.g. droplet-based platforms. The cells are usually integrated

with unique molecule indices (UMIs) which allows to trace the origin of each cell (Fig.

1.1-2). The messenger RNAs (mRNAs) are extracted and converted to complementary

DNAs (cDNAs) and the amplified cDNAs are sequenced by high-throughput sequenc-

ing machines (Fig. 1.1-3). Then the sequenced reads and UMIs are mapped to reference

genome and gene expression levels are quantified by toolkits, generating a gene expres-

sion count matrix with genes as rows and cells as columns (Fig. 1.1-4).
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Figure 1.1: Single cell RNA-sequencing analysis work flow.

This data can cover diverse species, tissues, developmental stages, sequencing pro-

tocols and batch effects when the data is generated by different labs. This introduces

new challenges to data analysis as well as computational method development. Conse-

quently, several scRNA-seq analysis toolkits have been developed to assist scRNA-seq

data analysis, such as Seurat (Hao, Hao, Andersen-Nissen, et al., 2021), Monocle (Cao

et al., 2019) and Scanpy (Wolf, Angerer, & Theis, 2018a). These packages typically

share similar workflows that encompass various steps, such as quality control, data

normalization, batch correction, feature selection, dimension reduction, clustering (Fig.

1.1-5), differential gene expression analysis and cell-type annotation by detected marker

genes (Fig. 1.1-6). While these methods already allow researchers to study the cellular

heterogeneity, they still face certain common issues.

A common issue encountered in standard pipelines is the presence of the “double-

dipping" problem. Typically, in scRNA-seq analysis algorithms, clustering is performed

initially, followed by the identification of markers for each cluster using statistical tests

applied to the identified clusters. Upon closer examination of this process, it becomes

evident that the clusters are initially differentiated based on features, that is the clusters

are driven by these specific features. Subsequently, null hypotheses are formulated,

e.g. “the expression levels of gene X in cluster A and cluster B are drawn from the
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same distribution”. Statistical tests are then conducted on all the features, and those

features that exhibit significant p-values and contribute to the differentiation between

clusters are recognized as markers for the clusters, thereby aiding in the annotation of

cell types. This clustering and marker identification approach follows a circular logic,

i.e. the "double-dipping" or "snooping" problem.

To address this issue, one solution is the utilization of biclustering algorithms,

which enable the simultaneous grouping of both row and column items. The goal of

most of the biclustering algorithms is to detect the green blocks (biclusters) as shown

in Fig. 1.1-6, where darker green indicates a higher expression level of genes. This

approach helps eliminate the problem of statistical inference inherent in the traditional

methodology. It recognizes both cell clusters and cluster-specific genes at a single step,

which circumvents the "double-dipping" problem.

There have been many exsiting biclustering algorithms developed for transcrip-

tomic data analysis. The first biclustering algorithm was developed for microarray gene

expression analysis by Cheng and Church since 2000 (Cheng & Church, 2000). From

then on, more and more biclustering algorithms have emerged to detect subsets of both

genes and conditions that share similar patterns in both DNA microarray and the bulk

RNA-seq data. However, most of them are developed for microarray assays and bulk

RNA-seq data analysis. These types of techniques measure the accumulative expres-

sion levels of DNAs/RNAs and the readouts of them are dense matrices with genes as

rows and samples as columns. As for scRNA-seq data, the readout matrix are quite

sparse, due to the limitation of scRNA-seq library preparation schemes and sequencing

bias, e.g. missing labeling of UMIs, losing of RNA segments, sequencing error and so

on. The sparsity of scRNA-seq gene expression matrix can be as high as 90%. The

existing biclustering algorithms don’t take this characteristic of scRNA-seq data into

account, so some of the existing biclustering algorithms are not suitable for scRNA-seq

data analysis.

Over the past decade, the spatial transcriptomic sequencing techniques have been

developed, generating even sparser and noiser data than scRNA-seq (Rao et al., 2021;

Chen et al., 2022a). The vast amounts of scRNA-seq data and spatial transcriptomic

data has been generated, covering data from different species, tissues, developmental
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stages and sequencing protocols. The size of these data sets can be very large, with

number of cells raise up to millions This poses new challenges to the scalability of

biclustering algorithms. Besides, while scRNA-seq data analysis aims to uncover the

cellular heterogeneity and define distinct cell types, some biclustering algorithms only

focus on identifying small subsets of gene-cell biclusters, leaving a significant num-

ber of cells whose cell types remain unclassified. Therefore, biclustering algorithms

developed for scRNA-seq data is needed.

For the routine scRNA-seq analysis pipelines, the cell are always visualized by

Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-

SNE) and Uniform Manifold Approximation and Projection (UMAP). Nonlinear em-

bedding techniques such as t-SNE and UMAP can visualize high-dimensional cell co-

ordinates in a two-dimensional map. However, these methods are limited to visualizing

either cells or genes separately.

The linear embedding approach PCA has a merit over the non-linear embedding

approaches like t-SNE and UMAP. It allows for a simultaneous embedding of the genes

and cell with a biplot. A PCA biplot visualizes cells and genes with principal compo-

nent values and loadings respectively. Loadings refer to the weight of a gene in a Prin-

cipal Component (PC). However, in a PCA biplot, the scales for the cells’ PC scores

and the genes’ loadings are different, which makes interpretation of genes and cells in

this planar challenging. Correspondence Analysis (CA) biplot addresses this issue by

rescaling the coordinates of cells and genes and presenting them in the same space.

This improves the interpretability of cell-gene relationships compared to a PCA biplot

(M. Greenacre, 2007). Nonetheless, linear methods, including biplots, often discard

significant information when dealing with large and complex datasets. In single-cell

transcriptomic data, the first two PCs typically explain only a small portion of the vari-

ance. Thus, a large number of dimensions must be retained to adequately represent

the data, compromising visual interpretability. Therefore, a non-linear visualization ap-

proach is demanded for a joint visualization of genes and cells. This will provide a more

intuitive understanding of the detected biclusters.

To address these limitations, we propose Correspondence Analysis based biclus-

tering on Networks (CAbiNet), a method that facilitates joint visualization and co-
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clustering of cells and genes in a planar embedding. Instead of projecting the data into

a new space in which the covariance is maximized along the first component by PCA,

CA projects data into a new space maximizing the discrepancies of features from mean

by applying a different scaling. This scaling scheme allows CA to recognize the genes

which are highly associated with cells and be capable of dealing with the high sparsity

of scRNA-seq data. CA projects the data with two kinds of scalings, they are principal

coordinates and standard coordinates. After the data has been appropriately projected,

a suitable large number of dimensions is selected to reduce the dimensionality of data.

Following this reduction, clustering is typically performed in the lower-dimensional

space to identify distinct groups of cells. Chapter 2 provides more information on the

study background of this field, including dimension reduction approaches like CA and

PCA, existing clustering algorithms, gene module detection algorithms and biclustering

algorithms, and visualization methods.

In Chapter 3, I will discuss about the clustering in CA space. The first section lists

the simulated and experimental scRNA-seq data sets that have been used. Since CA is

sensitive to outliers, I will further discuss the preprocessing/normalization of the data in

the following section. The standard coordinates, principal coordinates and association

ration in CA space are then illustrated with a simulated data set. In the last section of this

chapter, principal coordinates, standard coordinates and singular vectors are compared

to determine which one is the the best for clustering.

In Chapter 4, I will illustrate how we leverage the properties of CA to construct a

cell-gene graph where nodes comprise both cells and genes, how the graph is pruned

and how cell-gene clusters are detected from this graph. I will then demonstrate new

biclustering visualization approaches in Chapter 5, the biMAP and cabiMAP. Both of

them allow an intuitive observation of cells and genes in a two dimensional planar.

CAbiNet, serving as a biclustering algorithm, offers the capability to not only si-

multaneously co-cluster cells and genes, but also detect gene modules within the data.

In Chapter 6, the performance of CAbiNet as a biclustering algorithm will be bench-

marked against existing biclustering algorithms to showcase its accuracy and computing

speed. Additionally, the performance of CAbiNet in gene module detection will also be

evaluated.
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Optimizing clustering results is a critical aspect of all clustering algorithms, re-

gardless of whether they are used for traditional clustering or biclustering. Different

combinations of parameters can yield varying clustering results, making it difficult to

determine which result is the most suitable for a given dataset, especially in cases where

ground truth clustering is not available. Therefore, it is crucial to develop a methodol-

ogy that can effectively find out proper parameters and optimize clustering performance.

I propose a random forest regression model to predict the clustering quality to get the

locally optimized clustering results and this can be found in Chapter 7.

The effectiveness of CAbiNet in accurately co-clustering and embedding cells and

genes into a two-dimensional space will be demonstrated using simulated and exper-

imental scRNA-seq and spatial transcriptomic datasets in Chapter 8. I will showcase

how the resulting biclusters, biMAPs and cabiMAPs generated by CAbiNet. I will il-

lustrate how CAbiNet can expedite cell type annotation and facilitate the discovery of

cell types. Our examples encompass small data sets with well-defined cell types, as well

as complex developmental data sets, highlighting the capability of biMAP to generate

informative visualizations even for intricate biological experiments.

CAbiNet has been implemented as an R package and can be freely obtained from

GitHub (https://github.com/VingronLab/CAbiNet). The package is fully

compatible with popular scRNA-seq analysis pipeline SingleCellExperiment, including

those available on Bioconductor. It is worth noting that the aspects related to distance

measurements in CA and the creation of a cell-gene graph, and applying community

detection methods to co-cluster cells and genes in the cell-gene graph by spectral clus-

tering were initiated by me and my advisor, Martin Vingron. Additionally, my colleague

Clemens Kohl contributed to CAbiNet by implementing Shared Nearest Neighbour

graph (SNN) graph strategy and adding on the gene pruning function. The construction

of the R package CAbiNet and its benchmarking were collaborative efforts between

Clemens Kohl and me. We made equal contribution to this aspect of the project.

Lastly, a comprehensive discussion will be presented in Chapter 9, covering the

strengths and limitations of all the developed algorithms. Proposed enhancements and

future directions will also be explored.
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2 | Background

2.1 Overview

This chapter provides a comprehensive overview of the literature and theoretical

foundations that form the basis of the research presented in this thesis. It discusses the

advancements and challenges in the field of single-cell RNA sequencing (scRNA-seq)

data analysis, biclustering and bicluster visualization methods, highlighting the need for

improved methods to address key issues.

The chapter begins by introducing a widely used analysis method Principal Com-

ponent Analysis (PCA) in high-throughput sequencing data analysis. A concise expla-

nation is then provided regarding the methodology and its application in the analysis

of single-cell RNA sequencing (scRNA-seq) data. Furthermore, the chapter introduces

PCA biplots and examine the advantages and disadvantages associated with their uti-

lization.

Next, a comprehensive introduction to Correspondence Analysis (CA) is presented.

CA, similar to PCA, serves as a dimension reduction technique and facilitates the gen-

eration of biplots that incorporate both features and conditions. The fundamental prin-

ciples of CA lay the basis for the biclustering and visualization methods employed in

CAbiNet. Additionally, an introduction to the Association Plot (APL) visualization

method, specifically designed for exploring dimension-reduced CA data, will be given.

APL will serve as complementary evidence to support the findings and results obtained

through CAbiNet.

As a dimension reduction method, CA has been applied to denoise the data, the

clustering then is done in the dimension reduced space to identify the groups of con-

ditions. Various clustering methods, each employing different scaling techniques, have

been implemented within the framework of CA. This chapter will provide an introduc-

tion to these methods.

Besides the clustering algorithms mentioned above, CAbiNet utilizes two commu-

nity detection algorithms to identify the clusters. The algorithms used by CAbiNet will

be illustrated in this chapter.

CAbiNet is developed as a comprehensive solution encompassing biclustering and
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biclustering visualization techniques. To provide a comprehensive overview of biclus-

tering and visualization methods, this chapter will give a brief introduction of existing

biclustering algorithms. The limitations and drawbacks associated with these meth-

ods are emphasized, underscoring the necessity of proposing a novel algorithm like

CAbiNet. Additionally, the chapter introduces various embedding algorithms that are

relevant to the context of the research.

Overall, this chapter serves as a foundation for the thesis, setting the stage for the

subsequent chapters where novel methods and their evaluations will be presented.

2.2 Singular Value Decomposition

2.2.1 Singular Value Decomposition

In algebra, the Singular Value Decomposition (SVD) refers to a factorization of

a matrix (Golub & Reinsch, 1971). Suppose we have a matrix X with m rows and n

columns, the SVD of matrix X will decompose it into left singular vectors, singular

values and right singular vectors. That is

X = UDαVT, (2.1)

where U and V are matrices consist with columns which are singular vectors and Dα

is a diagonal matrix with singular values ranking from largest to smallest as the entries.

The singular values range from 0 to 1, that is 1 ≥ α1 ≥ α2 ≥ . . . αN ≥ 0, where

N = min{m,n}.The dimension of matrix Dα is determined by the rank of matrix X.

In some cases where there are some rows(columns) proportional to each other, the rank

of matrix can be smaller than the smaller dimension of the matrix. In such situations,

reducing the original space to the number of rank of matrix preserves all the information

in data. For most of the cases, the rank of matrix X equals min{m,n}.

Eigenvalues of matrix X are the square of singular values in Dα, which provide in-

sight into the amount of preserved information in each component. A higher eigenvalue

indicates a greater amount of explainable information retained in the corresponding di-

mensions.
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Each pair of columns in matrix U are orthogonal to each other, so is that in matrix

V. That is

UTU = VVT = I, (2.2)

where I is an identity matrix with ones as diagonal and zeros as other elements.

Since the singular vectors are orthogonal to each other, they form the basis of a

new space. Therefore, the left and right singular vector matrices U and V can be used

as rotation matrices to transform the original data X into new spaces.

2.2.2 Number of dimensions

As mentioned, the eigen values are calculated as the square of singular vectors.

Typically, a significant portion of the information is captured by the first several princi-

pal components, the amount of information vanishes in the higher dimensions. There-

fore, a dimension reduction is usually done to reduce the noise in data. The dimension

reduced space should be large enough to retain the data characteristics in the meanwhile.

To determine the appropriate number of dimensions to retain, various approaches have

been developed.

One strategy is to calculate the percentage of information that each dimension

preserves. It is the ration between eigen value and the sum of all the eigen values. That

is

ri =
α2
i

ΣK
i=1α

2
i

. (2.3)

All ri sum up to 1. The first several dimensions which sum up to occupy 80% or 90%

of the eigen values are retained.

One more method is to calculate the mean of eigen values, the dimensions whose

eigen values are above the average level are retained. That is to preserve the dimension

is, which satisfy

α2
i >

ΣK
i=1αi
K

. (2.4)

Another method is the “elbow rule”, where a curve connecting the eigen values

in decreasing order is plotted (known as a scree plot). The appropriate number of di-

mensions to retain is determined by identifying the turning point or“elbow” in the curve
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(the elbow rule). Beyond this point, the slope of the curve vanishes, indicating that

additional dimensions contribute little to the inertia.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate statistical model that has

been widely used for data analysis in many research fields. Its origin can be dated

back to Pearson (Pearson, 1901) or even Cauchy (Cauchy, 1829; Grattan-Guinness,

2000), Jordan (Jordan, 1874), Cayley, Silverster and Hamilton (Stewart, 1993; Boyer &

Merzbach, 2011). Hotelling was the one who firstly termed it as principal component

analysis (Hotelling, 1933; Abdi & Williams, 2010). PCA serves to denoise and pull

the most essential information from the data. By reducing the data dimensionality,

PCA retains the primary information in the first few dimensions, leading to improved

computational efficiency for subsequent clustering analyses.

Suppose we have a data table A withm rows (representing samples) and n columns

(representing features). In the first step of PCA, the entries ai,j(i = 1, 2, . . .m, j =

1, 2, . . . n) in A are centered by substrating the mean of whole data sets. Following

this, depending on the specific normalization applied, two main types of PCA can be

distinguished: covariance PCA and correlation PCA. Covariance PCA involves dividing

the entries of the data by either
√
m or

√
m− 1, while correlation PCA divides them by

the standard deviation. Both of the schemes are widely used. Suppose the standardized

matrix is X and the entries in X are xi,j , the two variants of PCA can be noted as

CovariancePCA : xi,j =
ai,j − ai√

m

or : xi,j =
ai,j − ai√
mm− 1

,

CorrelationPCA : xi,j =
ai,j − ai
σ(A)

,

(2.5)

where ai is the mean of the i-th row in matrix A.

Then SVD can be performed on the standardized matrix X, that is
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X = UDαVT. (2.6)

Using V as rotation matrix, the matrix X can be projected into a new space in

which the columns in matrix U are the unit basis of the space, that is

P = XV = UDα. (2.7)

Rows of P give the embedding of row items (i.e. samples) in a new space in which

variance along the first component are most preserved. According to Equation 2.7, the

new embedding of rows can be understood as combination of original rows with weights

given by V.

Similarly, rotating the transformed original matrix XT with the orthogonal matrix

U, the column items can be projected into a new space where the first principal com-

ponent preserves the most variance among column items. The embedding of column

items is given by

Q = XTU = VDα. (2.8)

Eigenvalues of matrix X are calculated as the square of singular values in Dα.

For the covariance PCA, the eigen values tell how numch variance are retained in each

dimension. The dimensions that contain most of the variance are usually retained for

down-stream analysis, e.g. clustering of data. The number of dimensions is usually

determined by the ways introduced in Section 2.2.2.

PCA has been widely used in analyzing transcriptomic data, including microar-

ray data, bulk RNA sequencing (RNA-seq) data and scRNA-seq data (Alter, Brown, &

Botstein, 2000; de Haan et al., 2007; Marini & Binder, 2019; Townes, Hicks, Aryee,

& Irizarry, 2019; Tsuyuzaki, Sato, Sato, & Nikaido, 2020). PCA condenses the infor-

mation into a dimension reduced space and gives new representation of features and

conditions in this space. The embedding of items in the lower dimensions is then used

to find out the clusters of items, which is one of the most common practices in large

biological data analysis.
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2.4 Correspondence Analysis

2.4.1 Introduction to Correspondence Analysis

PCA can be generalised to Correspondence Analysis (CA) (Abdi & Williams,

2010). CA is a method to represent data matrix in a new space, enabling the visual-

ization and observation of the relationship among rows, columns and between rows and

columns (M. Greenacre, 2017). CA was proposed by a German American statistician

Herman Otto Hirschfeld and later on developed independently by two French statisti-

cians, Jean-Paul Benzecri (Cazes, Chouakria, Diday, & Schektman, 1997) in the 1970s.

CA has been widely used in many research fields, e.g. ecology (Ter Braak & Verdon-

schot, 1995), sociology (Clausen, 1998), marketing (Bendixen, 1996) and so on. During

the past two decades, many researchers have contributed to CA (M. J. Greenacre, 1984;

Řeháková, 1986; M. Greenacre, 2007; Beh & Lombardo, n.d.). Based on Greenacre’s

book (M. Greenacre, 2017), I will introduce what is the canonical CA and how it works.

The computation of CA involves several steps. Let A be a matrix with positive

values and with m rows and n columns. Firstly, CA transforms the matrix A into a

frequency/proportion matrix P in which element pij in i − th row and j − th column

can be written as

pij =
aij
a++

. (2.9)

Here, aij denotes the value in the i−th row and j−th column in matrix A, and a++ the

grand total of A. Considering A as a gene expression count matrix with genes as rows

and cells/conditions as columns, each element in P represents the observed probability

that a gene is expressed in a cell/condition. The expected probability of each entry can

be denoted by the multiply of row and column masses, that is

eij = ri ∗ cj , (2.10)

where ri is the sum over row i in P, and cj the sum of j − th column of P:

ri =

m∑
j=1

pij , cj =

n∑
i=1

pij . (2.11)
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Then the CA calculates Pearson residuals

sij =
pij − eij√

eij
(2.12)

to indicate how much an observed value is different from the expected probability.

Taking the gene expression matrix as an example, the more a gene is specifically highly

expressed in a cell/condition, the larger the Pearson residual is.

Then the Pearson residuals matrix S is submitted to singular value decomposition

(SVD), factoring it into product of three matrices

S = UDαVT . (2.13)

Columns of U are the left singular vectors of S, columns of V are the right singular

vectors. Dα is a diagonal matrix with singular values ranking from largest to smallest

as the entries. The dimension of Dα is determined by the rank of matrix S, we denote

it as K,K ≤ min{I, J}.

Re-scaling the singular vectors, the row and column items in P can be transformed

into new low dimensional spaces, call it CA spaces. Re-scaling the singular vectors with

different weights gives different coordinate systems: standard coordinates and principal

coordinates. The standard coordinates are obtained by weighting singular vectors with

square root of row or column masses.

Standard coordinates Φ of rows:

Φ = D
− 1

2
r U. (2.14)

Standard coordinates Γ of columns:

Γ = D
− 1

2
c V. (2.15)

Furthermore, re-scaling the standard coordinates gives the principal coordinates of
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rows and columns. Principal coordinates F of rows:

F = D
− 1

2
r UDα = ΦDα (2.16)

Principal coordinates G of columns:

G = D
− 1

2
c VDα = ΓDα. (2.17)

2.4.2 Inertia

The total inertia in the Pearson Residual matrix S is defined as the sum of squares

of entries, which is

inertia = trace(SST) =
I∑

i=1

J∑
j=1

(pij − ricj)
2

ricj
. (2.18)

The sum of squares of singular values (i.e the eigen values) of matrix S also recovers

the total inertia:

inertia =
K∑
k

α2
k =

K∑
k

λk. (2.19)

Rows and columns have the same total inertia. The contributions of each dimension to

to the total inertia is:

contribution :
λk∑K
k λk

(2.20)

Different with PCA which maximizes the variance, CA maximize the inertia of

data. The first dimensions preserve most of the inertias. But similar with PCA, the

dimension reduction can also be done as the ways mentioned in Section 2.2.2.

2.4.3 CA biplot

The row and column items can not only be plotted separately in the low dimen-

sional space, they can also be visualized in a single plot, called the biplot. CA allows

a combination of the row and column visualization in a single planar. The rows and

columns can either be plotted with principal coordinates or the standard coordinates,
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which gives four different combinations in total, namely four kinds of biplots. Depend-

ing on which coordinates are used, the biplots can be categorized into two classes: the

symmetric biplots and asymmetric biplots.

• Symmetric biplot: both row items and column items are with either principal

coordinates or standard coordinates.

• Asymmetric biplot: row items are with principal coordinates and column items

with standard coordinates, or row items are with standard coordinates and row

items with principal coordinates.

An illustration of the biplots of a simulated data set can be found from the next

Chapter in Section 3.3.

2.4.4 χ2 distance

A proper choice of distance measure is a key step in finding clusters from a CA

space. As mentioned above, χ2 statistic measures overall discrepancies between ob-

served and expected frequencies. The χ2 distance between two rows is given by

χ2(i, i′) =
J∑
j

(
pij
ri
− pi′j

ri′
)2

cj
. (2.21)

The χ2 distance between two columns is

χ2(j, j′) =

I∑
i

(
pij
cj
− pij′

cj′
)2

ri
. (2.22)

The χ2 distance between one row profile and row average vector (the vector of columns

masses cj) can be written as

χ2 =

J∑
j

(
pij
ri
− cj)
cj

. (2.23)
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Similarly, the χ2 distance between one column profiles (mij/mi+ or pij/cj) and col-

umn average vector (the vector of rows masses ri) can be written as

χ2 =

I∑
i

(
pij
cj
− ri)
ri

. (2.24)

With those notations, the total inertia formula can be explained by a weighted sum of

χ2 distances between row profiles and row average profile, which is

Inertia =
χ2

m++
=
∑
ij

(pij − ricj)2

ricj
=
∑
ij

ri
(
pij
r[i
− cj)2

cj
. (2.25)

Similarly, it can also be written as a weighted sum of χ2 distances between column

profiles and column average profile, which is

Inertia =
∑
ij

cj
(
pij
c[j
− ri)2

ri
. (2.26)

2.4.5 χ2 Statistic

It is clear that the observed frequencies are always going to be different from the

expected frequencies, though it is assumed the rows/columns are homogeneous. χ2

Statistic gives a measure of how large the discrepancies between observed and expected

frequencies are. Accumulating the discrepancies between all the observed entries and

their corresponding expected frequencies results the χ2 Statistic

χ2 =
∑ (observed− expected)2

expected
, (2.27)

which can be written by the frequency table elements as

χ2 =
∑
ij

(mij −m++ricj)
2

m++ricj
=
∑ m++(pij − ricj)2

ricj
. (2.28)

The larger this value, the more discrepant the observed and expected frequencies are,

i.e. the less convinced that the assumption of homogeneity is correct. Furthermore, the

square root of the χ2 statistic is defined as χ2 distance.
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2.4.6 Relationship between inertia, Pearson Residuals and χ2 Statistic

Recall the definition of total inertia (2.19), it can also be re-written as the χ2 Statis-

tic divided by the ground total of observed values in M.

Inertia =
χ2

m++
=
∑
ij

(pij − ricj)2

ricj
=
∑
ij

s2ij , (2.29)

which is the sum of squares of Pearson Residuals. If all the profiles are identical and

thus lie at the same point (their average), all chi-square distances are zero and the total

inertia is zero. On the other hand, maximum inertia is attained when all the profiles lie

exactly at the vertices of the profile space, in which case the maximum possible inertia

can be shown to be equal to the dimension of the space.

2.4.7 Reconstitution formula

Due to Equation 2.13, 2.14,2.15,2.16,2.17, the relationship between original count

and the standard and principal coordinates of rows and columns can be written as

pij − ricj
ricj

=
K∑
k=1

fikγjk + εij . (2.30)

This is named as reconstitution formula, which can also be written as

pij = ricj

(
1 +

K∑
k=1

fikγjk + εij

)
. (2.31)

2.4.8 Association Plots

Association Plot (APL) is a recently developed method to visualize associations in

high-dimensional correspondence analysis biplots (Gralinska & Vingron, 2023; Gralin-

ska, Kohl, Fadakar, & Vingron, 2022).

AP is designed for data sets which have well-defined column (sample) clusters, it

permits to visualize association between samples (columns) and genes (row profiles).

In AP, a cluster of conditions C = j1, j2, . . . , jK can be represented by the centroid of
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its condition vectors ωjl , l = 1, 2, . . . ,K in CA-space. The centroid is defined as
−→
X ,

−→
X =

1

K

K∑
l=1

ωjl . (2.32)

Take row asymmetric map as an example, the AP is calculating association ratio be-

tween row principle coordinates fik and column standard coordinates γjk. Let fi donat-

ing i-th row (gene) vector in CA-space, then the association between fi and the selected

clusters C is

a(fi, C) =
1

K

K∑
l=1

〈fi, ωjl〉+ ε =
1

K

K?∑
k=1

K∑
l=1

fikγkjl + ε. (2.33)

where K? is the reduced dimension, which is determined by the strategies mentioned

in Section 2.2.2.

Notably, when K? = rank(STS), γj(forj /∈ C) is orthogonal to
−→
X , a(γj , C)

theoretically equals zero.

Now use −→v to represent any row or column vector. AP visualizes the association

ratios in a 2-D space, by projecting the vector to the centroid of the defined cluster

of items φ(−→v ). Suppose the angle between vectors −→v and
−→
X is θ(−→v ), then the 2-

dimensional Association Plot for cluster C will contain points (x(−→v ), y(−→v )),

x(−→v ) = |−→v |cos(φ(−→v ))

y(−→v ) = |−→v |
√

1− cos2(φ(−→v )).
(2.34)

For any user-defined clusters, AP will calculate the centroid of the cluster and

project all the other profiles, both rows and columns, to the centroid. With the projection

(x(−→v ), y(−→v )), the points can be visualized as an association plot.

Points closer to the x-axis, indicating a smaller value of y(−→v ), are more indicative

of the chosen cluster’s specificity, whereas larger values suggest that other clusters also

exhibit a competitive presence. Hence, the gene points that more to the right of x-axis,

the more associated with the cells in the observed cluster. In addition to the association

ratio, a supplementary heuristic statistic denoted as Sα is introduced. It can be written
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as

Sα(x, y) = x− y

tanα
. (2.35)

where x and y are the coordinates of a point in the association plot. When points have

the same projection onto x-axis in the association plot, this statistic prioritizes points

with smaller projection onto the y-axis. α is determined by permutation of the data.

The data is firstly permutated, then the association plot of the permutated data is drawn.

There is usually a ’V’-shape cloud of points close to origin in the association plot.

Angle between points and the x-axis is calculated. The angle α that delineates 1% of

the points to the right of the V is denoted as the cutoff used in Equation 2.35.

The Sα score aims to assign higher scores to points further to the right, while

simultaneously decreasing scores as one moves upward. This selection of Sα enables

differentiation among observations that would otherwise possess identical association

ratios with respect to a cluster.

2.5 Clustering methods

Clustering is an algorithm to group a set of data points into clusters, such that data

points in the same cluster are more similar to each other comparing with those from

other clusters. The clustering algorithms are aimed at uncovering hidden structure of

the data. Many clustering algorithms have been proposed, including connectivity based

clustering methods, e.g. hierarchical clustering (Murtagh & Contreras, 2012, 2017);

centroid based methods, such as K-means clustering (Hartigan & Wong, 1979) and

spherical K-means clustering (Hornik, Feinerer, Kober, & Buchta, 2012); density based

algorithms (Ester, Kriegel, Sander, & Xu, 1996); graph based algorithm, e.g. Lou-

vain clustering (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008), Leiden clustering

(Traag, Waltman, & Van Eck, 2019) and spectral clustering (Von Luxburg, 2007); and

so on. Depending on the characteristics of data points and the purpose of study, the

clustering algorithms can be applied.

I will introduce several clustering algorithms that are used, including centroid

based clustering algorithms, e.g. K-means clustering and spherical K-means cluster-

ing, and graph based clustering algorithm: spectral clustering, Louvain clustering and
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Leiden clustering. I will also introduce some widely used metrics for evaluating clus-

tering results.

2.5.1 K-means clustering

K-means clustering is a popular algorithm developed for partitioning a dataset into

K distinct, non-overlapping clusters (Hartigan & Wong, 1979). The goal of the al-

gorithm is to group similar data points together and assign them to clusters based on

certain features or characteristics. Here’s a brief overview of how the K-means algo-

rithm works:

• Initialization: Choose K initial cluster centroids randomly from the data points.

These centroids represent the initial cluster centers.

• Assignment: Assign each data point to the cluster whose centroid is the closest

based on some distance metric, commonly Euclidean distance. The data points

are assigned to the cluster with the nearest centroid.

• Update Centroids: Recalculate the centroids of the clusters by taking the mean of

all data points assigned to each cluster. These new centroids represent the updated

cluster centers.

• Repeat: Repeat steps 2 and 3 until convergence. Convergence occurs when the

centroids no longer change significantly or when a predefined number of itera-

tions is reached.

Selecting the appropriate value for K (the number of clusters) is a critical factor

in the K-means algorithm and holds substantial influence over the outcomes. Various

techniques (Ray & Turi, 1999; Sugar & James, 2003), such as the elbow method, can be

employed to identify an optimal value forK. In the elbow method, K is varied within a

specified range (typically from 1 to 20), and the within-cluster sum of squares (WCSS)

— representing the sum of the squared distances between points within a cluster and

the cluster centroid — is calculated and visualized as a scatter plot. The point at which

a distinct bend or "elbow" occurs in this plot indicates a suitable choice for K.
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K-means clustering is computationally efficient and works well for many real-

world applications. However, K-means clustering has some limitations. It assumes that

clusters are spherical and equally sized, which may not be suitable for all types of data.

Additionally, the algorithm’s performance can be sensitive to the random initialization

of centroids.

2.5.2 Spherical k-means clustering

The spherical k-means clustering (Hornik et al., 2012) is a variant of the traditional

K-means clustering. It works similarly with the traditional k-means clustering. The only

difference is that the distance between data points is calculated by cosine dissimilarity

instead of Euclidean distance. The objective of this algorithm is to minimize the within

cluster cosine distance. This approach eliminates the bias brought by the length of

vectors without losing too much speed of calculation.

2.5.3 Spectral Clustering

Spectral clustering (Von Luxburg, 2007) is a clustering algorithm that leverages

graph theory and linear algebra techniques to partition data points into distinct groups,

with the aim of grouping together points that exhibit similarity. The process begins by

building a graph which consists of data points as nodes and similar nodes are connected

with edges. Then the adjacency matrix of this graph is transformed into graph Lapla-

cian, the spectrum of which is further calculated to assist the identification of clusters.

More details about this algorithms are offered as below.

For a given set of data points (e.g., columns in the matrix M), similarity among the

points can be calculated using metrics such as cosine similarity or Pearson correlation.

This similarity measures allow the construction of a graph, denoted as G = (V,E),

where vertices V represent the data points, and E represents the edges that connecting

the vertices.

The similarity graph can be built up based on different criteria: 1). connecting all

the vertices with edges weighted by the similarity scores generates a fully connected

graph. 2). Only connect nodes when their similarity score are positive or larger than a

threshold, weighted either with the similarity scores or binary values. A graph with bi-
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nary weights are called unweighted graph. 3). Alternatively, the similarity graph can be

constructed by connecting each vertex to its k nearest neighboring vertices, known as a

k-Nearest Neighbour graph (kNN) graph. If the similarity between vertex pairs (xi, xj)

and (xj , xi) is the same, then the similarity graph is an undirected graph and its adja-

cency matrix is symmetric. Otherwise, the graph becomes directed and the adjacency

matrix of the graph is asymmetric.

SupposeG = (V,E) is an undirected graph with non-negative weights. We denote

the adjacency matrix of the graph as W = (wi,j)i,j , the degree of a vertex vi ∈ V is

defined as

di =
n∑
j=1

wi,j . (2.36)

A degree matrix D is defined as a diagonal matrix with the degrees di, i = 1, . . . , n on

the diagonal. The unnormalized graph Laplacian matrix is defined as

L = D −W. (2.37)

The graph Laplacian can be normalized by several ways, one of which is through sym-

metric normalization. In this approach, the graph Laplacian is normalized by the degree

matrix:

Lsym = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 . (2.38)

Another way of normalization is defined as

Lrw = D−1L = I −D−1W. (2.39)

Lsym and Lrw are positive semi-definite and can be diagonalized as follows

L = V TΛV, (2.40)

where Λ is a diagonal matrix with eigenvalues of the graph Laplacian. Different from

the standard eigenvalue decomposition where the eigen values are ordered in decreasing

manner, the eigenvalues are in an increasing order: 0 = λ1 ≤ · · · ≤ λn with at least one

eigenvalue equals 0 for the decomposition of graph laplacian. The columns in matrix V
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are eigenvectors which are orthogonal to each other. The eigenvalues again can be used

to determine how many clusters are there in the data set and the eigen vectors can be

applied with clustering algorithms to detect clusters in the data.

For an undirected graph G with non-negative weights, the number of connected

components in the graph equals the number of eigenvalues equal to 0 of the normalized

Laplacian Lsym and Lrw (Von Luxburg, 2007). This property of the Laplacian can be

used to detect the connected components in the graph, namely the clusters in data, hence

this algorithm is named as (normalized) spectral clustering.

In some cases, the normalized Laplacian of certain graphs may have only one

eigenvalue equal to zero, indicating that the graph is fully connected with only one con-

nected component. However, within this graph, there may still be variations in connec-

tivity strength among the nodes, with some nodes being strongly connected and others

weakly connected. To detect the strongly connected components or clusters within this

graph, the eigengap rule can be applied (Bolla, 1991). The eigengap method aims to

determine the number of eigenvectors, k, to be used for clustering. The first k eigen-

values λ1, λ2, . . . , λk approximate zero, while λk+1 is significantly larger, and the gap

between λk and λk+1 is the largest comparing with the differences between all the other

successive eigenvalues. This value k is then used as the estimated number of clusters

in the data, and then clustering algorithms can be applied to the first k eigenvectors to

define the clusters. The applicable algorithms include K-means clustering, DBSCAN

and so on.

2.5.4 Modularity based clustering algorithms

Louvain clustering (Blondel et al., 2008) and Leiden clustering (Traag et al., 2019)

are two modularity based clustering methods, which have been widely used by scRNA-

seq data analysis tools, e.g. Seurat (Stuart et al., 2019; Hao, Hao, Andersen-Nissen, et

al., 2021), Scanpy (Wolf, Angerer, & Theis, 2018b). Both Louvain and Leiden cluster-

ing aim to maximize the modularity of a graph, although they differ in their optimization

procedures.

For a simple undirected unweigted graph, the modularity is defined as (Newman,
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2006):

Q =
1

2E

∑
ij

(Aij −
didj
2E

)
sisj + 1

2
=

1

2E

∑
c

(Ac −
dcdc
2E

) (2.41)

where

• Aij is adjacency matrix of the graph,

• E is the number of edges in graph, and 2E =
∑

i di =
∑

ij Aij ,

• di and dj are the degree of vertices. di =
∑

j Aij ,

• si = 1 if vertex i belongs to group 1 and si = −1 if it belongs to group 2,

• didj
2E is the expected number of edges between vertices i and j if edges are placed

at random.

Louvain clustering. The louvain clustering is designed to minimized the mod-

ularity of the graph, such that the strongly connected components can be detected. It

works as the following steps:

• Initialization. Each node is initialized as a cluster.

• Move nodes and Agglomeration. Then the pair of adjacent clusters by merging

which results the maximized increase of modularity is joined into a new cluster.

• Iteration. The second step is repeated until there is no increase of modularity

when merging any pair of the adjacent clusters.

The Louvain algorithm is computationally efficient, allowing it to deal with large com-

munity networks. However, it suffers the problem of disconnected communities. This

problem happens when a node which is the only connection between two subclusters

being moved to another cluster. The two subclusters that are bridged by this node are

partitioned into one cluster while being disconnected.

Leiden clustering The Leiden clustering is developed to solve the drawbacks of

Louvain algorithm, but it allows a user defined resolution parameter to control the size

of detected connected components. The modularity of Leiden clustering is similar with
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Equation 2.41, but with an extra resolution parameter γ(γ > 0)

Q =
1

2E

∑
c

(Ac − γ
dcdc
2E

). (2.42)

A larger resolution produce more clusters, while smaller resolutions produce fewer clus-

ters. Similar with Louvain algorithm, Leiden algorithm works as follows:

• Initialization. Each node is initialized as a cluster.

• Local move of nodes. Different from Louvain algorithm, Leiden algorithm al-

lows nodes to be merged with neighbouring nodes/clusters which lead to modu-

larity increase instead of largest modularity increase in Louvain algorithm. The

neighbouring node/cluster that being merged is randomly selected. The larger the

increase in modularity, the more probably to be merged.

• Refine of the clusters. The nodes that on their own can be merged into to clusters

until there is no increase of modularity.

• Iteration. The processes above are repeated until no further improvement can be

made.

The Leiden algorithm solves the problem of dis-connectivity with the random local

move and node refining procedures. The Leiden algorithm is shown to outperform

Louvain algorithm both in speed and clustering accuracy(Traag et al., 2019).

2.5.5 Clustering Evaluation metrics

The quality of clustering results can be assessed by many criteria, including in-

trinsic measures and extrinsic measures. The silhouette score, entropy (Meilă, 2007),

Calinski Harabatz score (Caliński & Harabasz, 1974), and Davies-Bouldin score are

intrinsic measures. These measures are based on intra- and inter-cluster distances and

only require detected clusters and the original matrix as input. On the other hand, extrin-

sic measures, e.g. Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), calculate the

overlap between detected clusters and ground-truth clusters, which requires the ground-

truth of clusters as extra input. Here I give a brief introduction of the metrics that have

been used in this thesis.
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Suppose we have a set of data points x1, x2, . . . , xn, xi ∈ Rm and the data points

are clustered intoN clusters: C1, C2, . . . , CN and the number of points in each cluster is

denoted as |C1|, |C2|, . . . , |CN |. The centroid of each cluster is c1, c2, . . . , cN . Denote

the centroid of all the points as e and number of all points as n. The following lists

some of the intrinsic measures.

Silhouette score. Suppose sample xi belongs to cluster CI . The Silhouette score

for a particular sample xi is calculated as follows:

• Calculate the average distance between the sample xi and all other samples within

the same cluster:

a(i) =
1

|CI − 1|
∑

i,j∈CI ,i 6=j
d(xi, xj), (2.43)

where d(xi, xj) is the Euclidean distance between points with principal coordi-

nates, standard coordinates or singular vectors.

• For each neighboring cluster (CJ , J 6= I), calculate the average distance between

the sample xi and all samples in the cluster CK . Take the minimum of these

average distances across all neighboring clusters, and denote it as b(i):

b(i) = min
J 6=I

1

|CJ |
∑
I∈CJ

d(i, j). (2.44)

• Compute the Silhouette score s(i) for the sample xi using the formula:

s(i) =


0, if |CI | = 1,

b(i)−a(i)
max a(i),b(i) , if |CI | > 1.

(2.45)

Entropy. Assuming points in the data set have the same opportunity to be grouped

into each cluster, then the possibility that a point is clustered into cluster Ck is

P (k) =
|Ck|
n
. (2.46)

The uncertainty of the grouping of clusters is defined as entropy of the random variable
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P (k), that is

H(C) = −
N∑
k=1

P (k)logP (k). (2.47)

Since the probability P (k) is no larger than 1, the entropy is always non-negative. The

entropy equals 1 when and only when there is no uncertainty in clustering the points,

i.e. when there is only one cluster.

Calinski Harabatz score is the ratio between intra-cluster and inter-cluster dis-

persion. The inter-cluster dispersion is defined as

OC =

N∑
i=1

|Ci|(ci − e)(ci − e)T . (2.48)

The intra-cluster dispersion is defined as

IC =

N∑
i=1

∑
x∈Ci

(x− ci)(x− ci)T . (2.49)

The Calinski Harabatz score is defined as

CH =
OC

IC
∗ n−N
N − 1

. (2.50)

Davies-Bouldin score also measures the ratio between within-cluster distance and

between-cluster distance. Firstly, the within cluster distance is calculated as

Si =

 1

|Ci|

|Ci|∑
j=1

||xj − ci||q
 1

q

. (2.51)

If q = 1, Si turns out to be the average Euclidean distance of vectors in cluster i to the

centroid of cluster i. If q = 2, Si is the standard deviation of the distance of samples

in a cluster to the respective cluster centroid. The separation between cluster Ci and Cj

can be measured as

Mij = ||ci − cj ||p =

(
K∑
k=1

|ccki − cckj |p
) 1

p

. (2.52)
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ccki is the k-th element of the centroid of cluster ci and there are K elements/features

in each data point. If p = 2, Mij measures the Euclidean distance between centroids of

clusters.

Then for each pair of clusters, the ratio of within cluster and between cluster dis-

tance is calculated as

Rij =
Si + Sj
Mij

. (2.53)

The larger the Rij is, the worse the cluster Ci and Cj are separated. For cluster Ci, the

worst separation between it with all the other clusters is written as

Di = max
i 6=j

Rij . (2.54)

The Davies-Bouldin score is then defined as

DB =
1

N

N∑
i=1

Di. (2.55)

The smaller the DB is, the better the clustering result is. For all the usage of Favies-

Bouldin score in this study, the values of p and q are all set as 2.

One of the extrinsic measures is the Adjusted Rand Index (ARI).

ARI. The Adjusted Rand Index (ARI) (Steinley, 2004) is a metric used to quantify

the similarity between two clusterings of data, normally one is the detected clustering,

the other one the ground-truth clustering. It is an improvement over the Rand Index,

which is a simple measure of similarity between set of clusters but is susceptible to

chance. The ARI addresses this limitation by incorporating a correction factor that ac-

counts for the expected similarity due to random chance. By considering this correction,

the ARI provides a more reliable measure of the agreement between two set of clusters.

Suppose U1, U2, . . . , UI and V1, V2, . . . , VJ are two sets of clustering results. De-

note the size of Ui ∩ Vj is nij The ARI can be written as

ARI =

∑
ij

(nij

2

)
−
[∑

i

(|Ui|
2

)∑
j

(|Vj |
2

)]
/
(
n
2

)
1
2

[∑
i

(|Ui|
2

)
+
∑

j

(|Vj |
2

)]
−
[∑

i

(|Ui|
2

)∑
j

(|Vj |
2

)]
/
(
n
2

) . (2.56)
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2.6 Existing clustering methods in CA space

2.6.1 Hierarchical clustering in full dimensional space

Greenacre proposed a method to partition rows or columns into groups by min-

imizing with-in group inertia and maximizing between-group inertia (M. Greenacre,

2007). Taking row clustering as an example, the χ2 distance measure between rows and

the centroid of the row group can be written as di,

di =
(
pij
ri
− cj)2

cj
. (2.57)

Combining equations (2.25, 2.57), the total inertia can be written as

Inertia =
∑
i

rid
2
i . (2.58)

Suppose the row items can be divided into G groups, we can note the row sets of

merged groups as rg(g = 1, 2, ..., G), row centroid of merged rows in each group as cg,

the χ2 distance between row groups and group centroid as dg, the χ2 distance between

row group centroids as dig, the total inertia then can be rewritten as

Inertia =
∑
i

rid
2
i =

∑
g

rgd
2
g +

∑
g

∑
i∈g

rid
2
ig, (2.59)

which is the addition of intra- and inter-group inertia.

To identify the clusters among row items, the initial step involves treating each item

as an individual cluster, where the inter-group inertia is equivalent to the total inertia.

The inter-group inertia is maximized at the initialization. Whenever two clusters are

merged as a new cluster, the inter-group inertia would be reduced. The next step aims

to identify the pair of clusters that, when merged, minimizes the reduction in total inter-

group inertia, resulting in a new cluster. This process is repeated iteratively for the

updated clusters, merging groups that yield the least reduction in inter-group inertia and

eventually leading to the formation of clusters with the lowest intra-group inertia and

highest inter-group inertia. Clustering for column items follows a similar approach.

29



However, this method copes with the entire dimensional frequency table, which

could include uninformative noise when dealing with complicated biological data sets.

Therefore, clustering in a dimension reduced space is necessary. Hereby, methods have

been developed to identify clusters in the dimension reduced space of CA. I will discuss

some of the published methods in the following Section 2.6.2 and 2.6.3.

2.6.2 Combined K-means clustering and dimension reduction approaches

Numerous algorithms have been developed to cluster the columns (categories-

/conditions) within the dimension reduced CA space. Some of the algorithms tried

to do the dimension reduction and clustering simultaneously. For example, Van Buuren

and Heiser (Van Buuren & Heiser, 1989) developed a joint dimension reduction and

clustering algorithm GROUPALS. It clusters the categories of columns with K-means

algorithm (MacQueen, 1967) and detected optimal number of low dimensions by min-

imizing the average within group variances while updating the K-means clusters. An-

other algorithm that combines dimension reduction and K-means clustering to identify

column clusters is the cluster CA, which is proposed by M. van de Velden, et al.(Van de

Velden, D’Enza, & Palumbo, 2017). Instead of minimizing the within group variances

by GROUPALS, cluster CA is done by maximizing the sum of between group vari-

ances. It has been shown to perform comparably with GROUPALS. Additionally, MCA

K-Means (Hwang, Montréal, Dillon, & Takane, 2006) also combines the dimension

reduction and clustering in one goal. It integrates the objective function of dimension

reduction and K-means clustering by assigning user defined weights that sum up to 1.

As evaluated by M. van de Velden, et al., all the methods mentioned above outper-

form K-medoids clustering using Gower distances in the full dimensional space (Van de

Velden et al., 2017). Notably, the distance measure used by all the methods mentioned

above is the Euclidean distance among standard coordinates of columns. However, there

are methods that measure the distance by different ways. I will introduce them in the

next subsection 2.6.3.

Another important concern is that all K-means-based algorithms share a common

challenge, which is the requirement of a user-defined input for the number of clusters,

denoted as k. The chosen value of k influences both the clustering and dimension
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reduction processes. However, determining an appropriate number of clusters is often

subjective and difficult. Several methods have been proposed to address this issue,

such as the “elbow method” 2.2.2 or “silhouette analysis” 2.5.5. It is typically done by

varying the value of k and running the clustering algorithms with different values of k.

Then the number of clusters that minimizes or maximizes the objective function will be

used as the determinant of the value of k. However, these methods might not always

yield a definitive answer. A general strategy that helps to optimize the clustering results

is still needed.

2.6.3 Graph based clustering in dimension reduced CA space

The dimension reduction and clustering steps can also be performed independently

of each other. Community detection methods, such as graph clustering, can be em-

ployed to group data points in the dimension-reduced space obtained through CA. An

example of this is the application of the walktrap nearest neighbor graph clustering al-

gorithm, as implemented in the corral tool (Hsu & Culhane, 2023a), to cluster cells.

In the graph built by corral, the edges between nodes are determined based on the Eu-

clidean distance calculated from the singular vectors (Hsu & Culhane, 2023a). In this

approach, dimension reduction is first conducted using the elbow rule with a scree plot.

By selecting the components corresponding to the "elbow" point in the scree plot, the

dimensionality of the data is effectively reduced.

After dimension reduction, the authors employ the walktrap nearest neighbor graph

clustering algorithm (Pons & Latapy, 2005) to perform clustering in the reduced singu-

lar vector space V. This graph-based clustering technique aims to identify distinct cell

types from scRNA-seq data by leveraging the connectivity patterns of the data points.

By constructing a graph representation where each node represents a cell and edges rep-

resent the similarity between gene expression landscape in the cells, walktrap clustering

detects densely connected regions within the graph, which correspond to different cell

types.

This two-step approach, separating dimension reduction and subsequent graph-

based clustering, allows for a comprehensive analysis of the data. It provides a means to

reduce the dimensionality of the data while capturing the underlying structure and iden-
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tifying distinct cell types. By separating the dimension reduction and clustering pro-

cesses, researchers have the flexibility to explore different combinations of techniques,

adapting to the specific characteristics of their data and the goals of their analysis.

2.7 Biclustering Methods

Biclustering is a method to co-cluster both rows (i.e. features) and columns (i.e.

conditions) at the same time. Hartigan (Hartigan, 1972) first introduced biclustering in

the 1970s, but it was Cheng and Church (Cheng & Church, 2000) who first applied it to

gene expression data analysis. After that, biclustering has been widely used to study the

gene expression data, including DNA microarray data, bulk RNA-seq and scRNA-seq

data. In this paper, the gene expression matrix always has genes as rows and conditions

(for microarray and bulk RNA-seq data) or cells (for scRNA-seq data) as columns.

Biclusters are groups with both genes and conditions/cells, where the genes comprise

similar expression profile in the co-clustered experimental conditions or subset of cells.

The aim of biclustering algorithms is to identify the block structures in data, e.g. the

green blocks as shown in the heatmap in Fig. 1.16. In this section, we will explore

the characteristics of biclusters and provide a brief overview of some of the existing

biclustering algorithms.

2.7.1 Structure of bicluster

Bicluster structures can be categorized based on how rows and columns are grouped.

Dependending on the number of genes and conditions in all the biclusters, the bicluster

patterns can be categorized as following (Pontes, Giráldez, & Aguilar-Ruiz, 2015):

• Row exhaustive. Every gene must belong to at least one bicluster.

• Column exhaustive. Every condition must belong to at least one bicluster.

• Non exhaustive. The genes and conditions can be not assigned to any bicluster.

• Row exclusive. Each gene can be assigned to one bicluster at most.

• Column exclusive. Each condition can be assigned to one bicluster at most.
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• Non exclusive. The biclusters can be fuzzy clusters, i.e., several biclusters can

share genes and/or conditions.

2.7.2 Existing Biclustering methods

There are several existing biclustering methods developed for detecting the above

mentioned bicluster structures in data. To benchmark performance of the biclustering

algorithm developed in this study, I will compare it with nine well-known existing bi-

clustering algorithms: CCA (Cheng & Church, 2000), Plaid (Lazzeroni & Owen, 2002),

Xmotifs (Murali & Kasif, 2002), BiMax (Prelić et al., 2006), QUBIC (Li, Ma, Tang,

Paterson, & Xu, 2009), s4vd (Sill, Kaiser, Benner, & Kopp-Schneider, 2011), Unibic

(Z. Wang, Li, Robinson, & Huang, 2016), BCSpectral (Kluger, Basri, Chang, & Ger-

stein, 2003) and IRIS-FGM (QUBIC2) (Xie et al., 2020; Chang et al., 2021). These 9

algorithms have been selected because a) they are producible and convenient to use. b)

the methods cover different biclustering methodologies. c) most of them are developed

for gene expression data analysis or stated the capability to deal with multi-omics data,

including DNA microarray data, bulk RNA-seq, and scRNA-seq data.

CCA. The CCA algorithm, introduced by Cheng and Church (Cheng & Church,

2000), was the first biclustering algorithm applied to gene expression data, the microar-

ray data. This algorithm first preprocesses the data matrix by replacing missing values

with random numbers. Then it initializes the bicluster as the whole matrix and propor-

tions the matrix into non-overlapping biclusters by assessing the quality of biclusters by

thresholding Mean Squared Residue (MSR) which indicates the overall within-cluster

similarity of row and column items. Though the preprocessing of missing values in-

creases the possibility of applying this method to sparse scRNA-seq data, the thresh-

olding is data set dependent and MSR is limited to only capture shifting tendencies in

the data (Bozdağ, Kumar, & Catalyurek, 2010). Besides, the iterative greedy searching

slows down the speed of the algorithm. Moreover, both genes and cells are allowed to

be assigned into multiple biclusters, making the interpretation of results challenging.

Plaid. The Plaid models proposed by Lazzeroni and Owen (Lazzeroni & Owen,

2002) are a series of probabilistic models, which aim to simulate expression level in

each entry with a probability function. This function calculates the likelihood of the en-
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try being observed in all possible biclusters. The probability function incorporates both

the background information of each data and the number of biclusters. The models are

optimized by minimizing the sum of squared errors between original and approximated

expression levels. As a result, the estimated probabilities indicate the membership of

each entry in the biclusters. The Plaid models are initially designed for microarray data

analysis, they allow one gene to belong to multiple biclusters or none at all.

Xmotifs. A gene’s expression level is considered conserved if it remains the same

across all samples. A conserved gene expression motif refers to a group of genes that

consistently exhibit the same expression pattern within a subset of samples. Xmotifs,

developed by Murali et al. (Murali & Kasif, 2002), is a method to identify the conserved

gene expression motifs, which are also referred to as biclusters. Xmotifs employs an

iterative searching approach where genes and conditions that forms a Xmotif is removed

from the data and the remaining undergo the iteraction until all samples are processed.

This method is a non-exhaustive biclustering method, a gene or a cell is allowed to

not be assigned to any biclusters. This method is also applied to DNA microarray data

analysis when it was developed.

Bimax. Prelić et al. (Prelić et al., 2006) proposed the Bimax algorithm, which

follows a divide-and-conquer approach and aims to identify the largest possible binary

sub-matrix where valuable information is represented by either 1 or 0. This method was

also initially developed for microarray data analysis.

QUBIC. QUaliative BIClustering algorithm (QUBIC) (Li et al., 2009) starts by

transforming the values in data matrix into integers in either a qualitative or semi-

qualitative manner. Subsequently, a weighted graph is constructed based on the trans-

formed matrix, where the gene vertices are connected and weighted according to the

number of columns that share the same nonzero integer for each pair of rows (genes). In

essence, a bicluster is defined as a group of nodes that form a large, connected subgraph

within the graph, exhibiting relatively strong edges on average compared to randomly

selected subgraphs that do not intersect with such biclusters. By incorporating informa-

tion from both the genes and column conditions in the graph (vertices and node weights,

respectively), QUBIC is capable of simultaneously partitioning the rows and columns.

It is noteworthy that QUBIC can not only detect the positively correlated genes and
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conditions, but also negatively related ones. This method was also initially applied to

microarray data.

s4vd. Different from the methods mentioned above, s4vd (Singular Value Decompo-

sition-based Biclustering) (Sill et al., 2011) is a singular value decomposition (SVD)

based algorithm. This approach involves decomposing the expression matrix with SVD.

Subsequently, the left and right singular matrices, which corresponds to the row and

column embedding respectively, are partitioned coordinately with a subsampling-based

variable selection technique that controls Type I error rates. The original publication of

s4vd included a benchmarking study using microarray data, but the algorithm has since

been applied to various other datasets as well (Yang & Vingron, 2018). The algorithm

allows one gene to be assigned into several biclusters.

Unibic. Unified Biclustering (Unibic) (Z. Wang et al., 2016) is an algorithm for

biclustering that operates at the row level. The algorithm starts with generating an index

matrix, where the order of genes in each row is encoded. The rows of the index matrix

are then divided into subsets. Unibic applies the longest common subsequence frame-

work to these row subsets, identifying and extracting trend-preserving biclusters from

the data. The original publication of Unibic also applied the algorithm to microarray

data in order to assess its performance.

BCSpectral. Spectral BiClustering algorithm (BCSpectral) is a method that re-

lies on Singular Value Decomposition (SVD). The first step of BCSpectral involves

rescaling the genes and conditions independently and in a bistochastic manner. This

rescaling process ensures that the SVD of the normalized matrix increases and connects

the eigenvectors of the genes and conditions. The matrix can then be partitioned using

the eigenvectors corresponding to the largest eigenvalues. Next, the genes and condi-

tions are clustered separately based on the row and column eigenvectors, respectively.

Finally, the results of the row and column clustering are merged to form biclusters. Ini-

tially, this method was applied to analyze microarray data. However, it has also been

adapted for scRNA-seq data analysis (Zhao et al., 2021).

IRISFGM. IRISFGM (Chang et al., 2021) is the package name associated with

the biclustering algorithm QUBIC2 (Xie et al., 2020), which is a consecutive work of

QUBIC. The development of QUBIC2 was motivated by the limitations of previous
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Algorithms
Biclustering

for scRNA-seq

One gene is
assigned to

only one cluster

One cell is
assigned to

only one cluster

Exhaustive
cluster of

genes

Exhaustive
cluster of

cells
CAbiNet Yes Yes Yes Yes/No Yes
Bimax No No No No No
CCA No No No No No

QUBIC No No No No No
IRISFGM Yes No No Yes Yes

Plaid No No No No No
s4vd No No Yes No No

Unibic No No No Yes Yes
Xmotifs No Yes No No No

Table 2.1: Overview of existing biclustering algorithms and CAbiNet.

biclustering algorithms in effectively analyzing bulk RNA-seq and scRNA-seq data,

where low expression levels and drop-out values are commonly observed. QUBIC2

addresses these challenges by employing a left-truncated mixture Gaussian model to

assess the presence of multiple modes in expression data enriched with zero values.

Additionally, QUBIC2 incorporates a dropout regression step to account for and miti-

gate the impact of dropouts. Moreover, it provides a robust statistical test to evaluate

the significance of the obtained biclusters.

Besides, there are other algorithms designed for detecting biclusters from microar-

ray and RNA-seq data, e.g., RecBic (Liu, Li, Liu, Su, & Li, 2020). Since most of

the biclustering algorithms mentioned above are developed for analysing microarray

data, they didn’t take the sparsity and low expression level of scRNA-seq data into ac-

count consciously. It is critical to know if they can directly applied to scRNA-seq data

analysis. In one study (Xie et al., 2020), the authors compared QUBIC2 with 8 previ-

ous published algorithms, including QUBIC, Plaid and Bimax, by using four types of

data sets, namely synthetic data, microarray, bulk RNA-seq and scRNA-seq data sets.

QUBIC, Plaid and Bimax were shown to be applicable to bulk and scRNA-seq data,

though performing worse than QUBIC2.

Biclustering algorithms, still encounter several challenges when applied to scRNA-

seq data analysis. Firstly, most existing algorithms are unable to effectively handle the

issue of dropouts commonly observed in scRNA-seq data. Secondly, these algorithms

exhibit limited capacity in interpreting time series data, as highlighted by QUBIC2’s in-
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ability to distinguish cells collected at different time points. Additionally, the growing

volume of scRNA-seq data necessitates the development of more scalable algorithms.

Consequently, there is a need for a sensitive and scalable biclustering algorithm to ad-

dress these challenges. As a result, a novel biclustering algorithm Correspondence

Analysis based biclustering on Networks (CAbiNet) is developed in this study and will

be introduced in Section 4. A brief introduction of the characteristics of CAbiNet can

be found in Table 2.1.

2.7.3 Biclustering evaluation criteria

Various metrics have been devised to assess the degree of overlap between ground

truth biclusters and detected biclusters. These metrics include the Recovery score

(Prelić et al., 2006), relevance score (Prelić et al., 2006), clustering error (Horta &

Campello, 2014), Jaccard index (Jaccard, 1912), among others. Let’s assume that b1

and b2 represent two biclusters.

Jaccard index. The Jaccard index (Jaccard, 1912) is employed to measure the

similarity between them, and it can be computed as follows:

J(b1, b2) =
|b1 ∩ b2|
|b1 ∪ b2|

, (2.60)

where |b1 ∩ b2| is the intersection of biclusters and |b1 ∪ b2| is the union of biclusters.

Recovery score and relevance score. Suppose G1 and C1 are the gene sets and

cell sets of a bicluster b1, G2 and C2 are the gene sets and cell sets of bicluster b2,

the recovery score of the similarity between these two sets of biclusters M1 and M2 is

defined as

R(M1,M2) =
1

|M1|
Σb1∈M1 max

b2∈M2

ms(b1, b2), (2.61)

where ms(b1, b2) is the match score between two biclusters b1 and b2:

ms(b1, b2) =
|G1 ∩G2|
|G1 ∪G2|

, (2.62)

which is the Jaccard index between the gene sets of two biclusters. The relevance score

is defined as R(M2,M1).
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As can be seen from the definition of recovery score and relevance score, the sim-

ilarity of two biclustering sets are determined by the overlapping between gene sets in

the biclusters. The information of cell sets is missing from the evaluation. Therefore,

I modified the definition of recovery score as the average Jaccard index between two

biclusters, that is

R(M1,M2) =
1

|M1|
Σb1∈M1 max

b2∈M2

J(b1, b2). (2.63)

The recovery and relevance scores are both values in range between 0 and 1, 0 means

there is nothing in common between two bicluster sets, while 1 indicates a perfect

match.

Clustering error. The clustering error (CE) (Patrikainen & Meila, 2006) is defined

as

CE(b1, b2) =
dmax
|U |

, (2.64)

where |U | = |b1 ∪ b2| is the union of two biclusters and dmax measures how much the

biclusters in two biclustering results intersect:

dmax = max
Ii,Ji

Σ
min(I,J)
i=1 |bIi ∩ bJi |. (2.65)

CE ranges from 0 to 1. The larger the CE is, the more similar the detected biclusters

and the ground-truth biclusters are.

2.8 Visualization Approaches

2.8.1 Linear Approaches

The most commonly employed technique for visualizing cell-gene relationships

is the PCA biplot. In this method, cells are plotted in a two-dimensional space us-

ing principal components, while genes are represented by loadings that indicate their

contribution to each principal component. The distance between genes or cells in the

PCA biplot reflects their similarity. However, it is important to note that the distance

between gene and cell points lacks meaningful interpretation since they originate from
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two distinct spaces with different bases.

Another type of linear two-way visualization is the CA biplot, which has found

extensive application in economic and environmental studies. The CA biplot enables

the representation of cells and genes in spaces defined by principal coordinates and

standard coordinates (refer to Section 2.4.3 for details on the method). In a CA biplot

where cells are represented by principal coordinates and genes by standard coordinates,

the Euclidean distance between cells in the lower-dimensional space approximates the

χ2 distances in the original space, similar to the property observed in the PCA biplot.

Furthermore, the inner product between cells and genes in this space provides insight

into their association. Specifically, a smaller angle between cell points and gene points

suggests a higher likelihood of gene-specific expression in the cell. Additionally, the

inner product in the lower-dimensional space approximates the Pearson residuals, which

indicate the dependencies between a cell and a gene.

When compared to the PCA biplot, the CA biplot provides a more informative

representation of the relationship between cells and genes. However, both biplots suffer

from certain limitations. Firstly, for a data set like the nowadays scRNA-seq data which

is sparse and noisy, the first two dimensions of the biplots only capture a small fraction

of the total variance (PCA) or inertia (CA), which is around 10% to 50% (Luecken &

Theis, 2019; Northcutt et al., 2019; Slovin et al., 2021). Consequently, the differences

between clusters may not be fully visible in the 2D space, and examining variations

among clusters in higher dimensions requires adjusting the biplot axes to the relevant

dimensions of interest. Secondly, as human spatial perception is limited to 3D space,

linear embedding approaches fail to provide a comprehensive understanding of the het-

erogeneity of data.

2.8.2 Nonlinear Approaches

Based on the limitations of linear visualization approaches mentioned above, a

non-linear two-way embedding technique is needed to address these limitations and

enhance our comprehension of cell-gene relationships. t-distributed Stochastic Neigh-

bor Embedding (t-SNE) (van der Maaten & Hinton, 2008) is a widely used nonlin-

ear dimension reduction technique, often used to visualise high-dimensional data in
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two or three dimensions. Uniform Manifold Approximation and Projection (UMAP)

(McInnes, Healy, & Melville, 2020) is another nonlinear dimension reduction technique

which was first introduced in 2018 as an alternative to t-SNE.

t-SNE constructs a probability distribution over pairs of high-dimensional objects

and a similar distribution over pairs of low-dimensional objects. It then defines con-

ditional probabilities that measure the similarity between pairs of points. A random

initialization of the low dimensional embedding of points is generated. Furthermore,

it minimizes the divergence between the conditional probabilities in high dimensional

space and low dimensional space by using a gradient descent method. This proce-

dure ensures the lower dimensional representations approximate the distribution of the

higher dimensional data. t-SNE is particularly effective at preserving the local structure

of the data, but can be computationally expensive and may require careful tuning of its

hyperparameters.

UMAP operates by constructing a graph representation of the high-dimensional

data, where each data point is connected to its nearest neighbors. The graph embedding

is then optimised using a process called stochastic gradient descent with eigenvectors of

the normalized graph Laplacian as initialized embedding. UMAP seeks to minimise a

cost function that balances the preservation of both local and global structure in the data.

The result is a low-dimensional representation of the data that captures the underlying

structure of the original high-dimensional space.

UMAP offers several advantages, including speed. It is capable of efficiently pro-

cessing large datasets containing millions of data points and high-dimensional feature

spaces. UMAP can generate high quality visualisation of a scRNA-seq data set with

20,921 cells in about 100 seconds (McInnes et al., 2020). UMAP is also designed to

handle missing data, making it a versatile tool for a variety of data analysis scenarios.

UMAP claims to provide users with valuable features such as the ability to ad-

just the balance between preserving local and global structure in the data. However,

the authors also mentioned some limitations of UMAP. Performance of UMAP can be

sensitive to the hyperparameters, especially the number of nearest neighbours for the

kNN graph. Besides, UMAP is not as interpretable as linear embedding approaches,

such as PCA and CA, there is no specific meaning of the axes, while the first principal
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component in PCA retains the most variances. The authors also claimed that UMAP

tends to preserve topology instead of preserving the pure metric distances. This makes

UMAP perform badly when evaluated by metric measurements, e.g. multi-dimensional

scaling (MDS) (Kruskal, 1964)

However, an increasing number of biological studies are making overstated con-

clusions out of the UMAPs they have generated. In response, a recent paper by (Chari &

Pachter, 2023) examined the distance metrics in UMAP 2D embeddings to assess their

reliability. This study employed L1 and L2 (Euclidean distance) metrics to investigate

distance distortions in UMAP. The findings reveal that UMAP distorts both local and

global data structures according to both L1 and L2 metrics. This investigation suggests

that some current applications of UMAP in biological data analysis may pose problems.

For instance, the trajectory inference of single-cell RNA sequencing data from devel-

opmental tissues relies on the layout of 2D UMAP embeddings. Certain tools (Wolf

et al., 2019) determine the cellular developmental trajectory based on UMAP visual-

ization with field vectors. However, because the arrangement of cells distorts the data

structure in the ambient space, the inferred trajectory may appear discontinuous, and

the direction of the vector field could be misinterpreted (Chari & Pachter, 2023). Fur-

thermore, biological conclusions drawn from UMAP embeddings may be unreliable;

for example, two cell types appearing close in UMAP are not necessarily similar. Ad-

ditionally, UMAP is often used to evaluate algorithm performance, such as trajectory

inference algorithms (Saelens, Cannoodt, Todorov, & Saeys, 2019) and data integration

algorithms (Hao, Hao, Andersen-Nissen, et al., 2021), potentially leading to erroneous

conclusions (Chari & Pachter, 2023).

Despite the truth that both t-SNE and UMAP have been applied to challenging

problems, including image processing, natural language processing, social science and

biological data analysis. They provide a comprehensive representation of the similar-

ities and dissimilarities among samples. Researcher still have to be careful when they

draw conclusions from the data, especially the UMAP application scenarios mentioned

above.

A common limitation of both t-SNE and UMAP is that neither of them is capable of

embedding genes and cells simultaneously in lower dimensional space. Both of them

41



can only visualize genes or cells separately. A joint embedding of genes and cells is

needed.

Single-cell embedding along with features (SIMBA) is developed to visualize both

genes and cells in a non-linear embedding space. Moreover, it allows integration of

multi-modalities, e.g. scRNA-seq, scATAC-seq, histone modifications and so on. scRNA-

seq creates a graph that represents cells and features from multi-modalities as nodes,

and their relationships are encoded as edges. The graph is then embedded into a low-

dimensional space using a multi-entity graph embedding algorithm, which is similar

to techniques used in social networking. scRNA-seq also uses a Softmax-based trans-

formation to help analyze the cells and features based on their distance in this low-

dimensional space. This allows for a more comprehensive analysis of the cells and

features and their relationships. Even though applying community detection algorithms

to the graph constructed by scRNA-seq naturally gives co-clustering of cells from input

modalities and features. However, scRNA-seq doesn’t provide a function to cluster the

cells with features and its performance is not evaluated either. Therefore, an approach

that can bicluster and jointly embed the cells and features in a non-linear embedding is

still needed. This motivates the creation of CAbiNet.

2.9 Gene Module Detection Methods

Besides the application on classifying the cell types to study the heterogeneity

of cells, clustering algorithms are also applied to gene expression data to group genes

into co-expression modules using transcriptomic data (Yosef et al., 2013; Jojic et al.,

2013; Paul et al., 2015; Alsina et al., 2014; Eren, Deveci, Küçüktunç, & Çatalyürek,

2013; Marbach et al., 2012; Roy et al., 2013; Rotival et al., 2011). The detected gene

modules are supposed to be genes co-expressed or share similar expression patterns

among samples/cells. Different gene modules usually represent different functional

pathways. Knowing the gene modules helps to understand which biological pathways

or regulatory networks are activated under the observed experimental conditions or cell

types interested in.

There have been many algorithms developed for detecting the gene modules in
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microarray data, bulk RNA and scRNA-seq data. The methods can be classified into

mainly four categories: clustering methods (Yosef et al., 2013; Jojic et al., 2013; Paul

et al., 2015; Alsina et al., 2014), biclustering methods (Eren et al., 2013), graph based

methods (Marbach et al., 2012; Roy et al., 2013) and decomposition methods (Rotival

et al., 2011).

Instead of clustering the cells, the clustering methods applied to gene module de-

tection work on the genes and group them into clusters. Clustering methods like K-

means, hierarchical clustering and density based clustering algorithm (DBSCAN)(Ester,

Kriegel, Sander, Xu, et al., 1996) partition the genes by the similarity of genes’ expres-

sion along samples/cells. The similarity is normally measured by Euclidean distance.

These methods are shown to perform well on detecting co-expressed genes in some

cases(Yosef et al., 2013; Jojic et al., 2013; Paul et al., 2015; Alsina et al., 2014).

However, the clustering methods suffer from some issues. Firstly, the clustering

results may be influenced by noise or outliers in the data. Secondly,the pattern of gene

expression may not be shared among all the samples, and some gene modules may be

presented in a subset of the data only. Thirdly, one gene can be co-expressed with many

genes or more than one gene modules. However, the hard clustering methods can only

divide one gene into a single cluster.

To overcome the problem of hard clustering methods, fuzzy clustering methods

(Fu & Medico, 2007), like the fuzzy c-means, are applied to allow overlapping between

gene modules. Then, one gene can be assigned to multiple modules simultaneously.

To solve the other limitation of clustering methods, decomposition methods have

been developed to do dimension reduction to remove noise, e.g. PCA and ICA (Rotival

et al., 2011). By decomposition methods, the original count table is transformed into a

new space where the components are a linear combination of the unit vector of original

space. The first several dimensions in the new space conserve most of the variations

in the data. Reducing the space into the first several components, noise in data can be

reduced, while still preserving the heterogeneity. Then clustering methods are applied

to the dimension reduced space to find the gene modules.

The biclustering algorithms are developed to detect local co-expression patterns

of genes. As mentioned in Section 2.7.1, the detected biclusters will not necessarily
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cover all the genes or the cells, meaning that the biclustering can define local gene-

sample/cell clusters, which naturally solves the issue of clustering methods fail to detect

local structures. Some biclustering algorithms also allow for assigning one gene/cell

into more than one bicluster, such that the comprehensive gene co-expression patterns

can be recovered.

The network based algorithms, for example, the direct Network Inference method

(Marbach et al., 2012), are developed to infer gene-gene regulatory relationships.

Among all the methods mentioned above, the decomposition methods are shown

to be the best performing gene module detection methods (Saelens, Cannoodt, & Saeys,

2018). Wouter Saelens, et. al. benchmarked some existing gene module detection

methods covering all four categories with both synthetic data and experimental data

sets. The detected gene modules of each algorithm are evaluated by comparing with the

gene regulatory networks. It has been shown that the decomposition methods work best

at recovering known modules consistently across data sets. The decomposition methods

are also capable of detecting overlapping and local co-expressed gene modules, while

the clustering based gene detection methods failed to do that.
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3 | Clustering in Correspondence Analysis space

As outlined in the previous section (Section 2.6), CA serves to reduce the dimen-

sion of large datasets for noise removal. Subsequently, clustering algorithms can be

employed on these dimension reduced spaces to segment the data into clusters. How-

ever, there exist three types of dimension reduced CA spaces: those featuring principal

coordinates, standard coordinates, and singular vectors (Section 2.4.3). When conduct-

ing clustering in a CA space, it becomes crucial to determine which coordinate system

is best suited for the clustering process. In this chapter, I will first introduce the datasets

that will be used for illustration and testing in Section 3.1. The procedures utilized for

data preprocessing will then be elaborated upon in Section 3.2. Following this, I will

introduce the application of CA on preprocessed simulated data in Section 3.3. A com-

prehensive examination of distance measurements in symmetric and asymmetric CA

spaces will also be presented in Section 3.3. Finally, I will deliberate on the selection

of the appropriate coordinate system for clustering within the dimension reduced space

in Section 3.4.

3.1 Data sets

In this study, three simulated scRNA-seq data sets with different sizes and bicluster

structures and six experimental scRNA-seq data sets are used to evaluate and benchmark

the algorithms.

The simulated scRNA-seq data sets are generated by R package SPARSim. The

function learns the variation among genes and cells from an experimental single-cell

RNA-seq data PBMC, and then the parameters are used to generate three simulated

data sets. The PBMC data that has been used as template is downloaded from R package

ExperimentHub with ExperimentHub_ID as EH5407. There are 3312 cells with 22735

genes being detected in this data set.

Three data sets are generated with different parameters. For all the simulated data

sets, four cell types with five gene modules are simulated in the simulated data. There

are 500 cells in each cell type, 2000 cells in total. Four out of five gene modules con-

tain genes that are highly specifically expressed in four corresponding cell types, while
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Easy Medium Hard

Figure 3.1: Simulated scRNA-seq data sets. Three simulated data sets are designed
for this study, the data sets are named as “easy”, “medium” and “hard” according to the
level of noised in data ranging from the least to the most.

genes in the other gene module are lowly expressed in one of the cell types. There are

1000 genes in each of the four gene modules, and 18735 genes in remaining module.

For all the simulated data sets, the variance among cell types is the same, while mean

value of designed gene modules varies from smallest to largest. The data set with largest

mean value is supposed to be the one that biclustering algorithms can easily recognize

biclusters in it. Figure 3.1 visualizes the simulated data sets.

The information on the utilized experimental scRNA-seq data sets are listed in

Table 3.1. The data sets were downloaded from the citation listed in the table. For the

listed data sets, we have the information of the cell types of cells, which are annotated

by researchers who published the data. The cell-type annotations will be used as ground

truth of the cell clusters and be used for benchmarking the algorithms. All the data sets

listed in the table are single-cell transcriptomic data, but are generated with various

techniques, including SMART-seq2, 10x, Fluidigm CI, CEL-seq, Stereo-seq. Readouts

from different sequencing techniques varies in sequencing depth, gene coverage and

dropout rates. Besides, the data sets are selected to have various sizes, with number

of genes ranging from 13,000 to 60,000 and number of cells ranging from about 500

to 35,000. The variation of sequencing techniques and data sizes allow us to have a

comprehensive evaluation of the algorithms applied.
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Short Name Dataset description # Cells # Genes Protocol Ref.

Darmanis Human adult cortical samples 466 22,085 SMART-Seq2 (Darmanis et al., 2015)

FreytagGold
Three human lung adenocarcinoma cell

925 58,302 10x (Freytag, Tian, Lönnstedt, Ng, & Bahlo, 2018)
lines, HCC827, H1975 and H2228

zeisel
Mouse somatosensory cortex and

2,874 14,508 Fluidigm C1 (Zeisel et al., 2015)
hippocampal CA1 region (ZeiselBrain)

pbmc3k
Human peripheral blood

2,700 32,738 10x (10x Genomics, 2016)
mononuclear cells

Tirosh
Human melanoma tumor

2,887 23,686 SMART-Seq2 (Tirosh et al., 2016)
nonmaglignant cells

PBMC10x
Human peripheral blood

3,362 33,694 10x (Ding et al., 2020a)
mononuclear cells (FACS sorted)

BaronPancreas Human Pancreas 8,569 20,125 CEL-seq (Baron et al., 2016)

DemlSpatial
Drosophila melanogaster late stage

15,295 13,668 Stereo-seq (M. Wang et al., 2022)
embryo (14-16h after egg laying)

TabulaSapiens Human endothelial cells 32,701 58,559 10x (THE TABULA SAPIENS CONSORTIUM, 2022)
BrainOrganoids Human cerebral organoids 35,291 33,538 10x (Rosebrock et al., 2022)

Table 3.1: Experimental scRNA-seq data sets with expert annotation of cell clusters. These data sets are used for benchmarking of the
biclustering algorithms and illustration of the algorithms developed in this paper.
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3.2 Data Preprocessing

Correspondence analysis is sensitive to outliers, so it is important to detect and

remove the outliers before applying correspondence analysis to the data (Langovaya,

Kuhnt, & Chouikha, 2012). We firstly processed real and simulated scRNA-seq data

by removing cells with too low coverage or too few detected genes by sequencing tech-

niques. This step not only speeds up the computation but also allows correspondence

analysis to represent data in a more reasonable embedding. Outlier cells were filtered

with the functions perCellQCMetrics and perCellQCFilters from the Bio-

conductor tool scuttle (McCarthy, Campbell, Lun, & Wills, 2017).

We also applied a filtering step of genes to eliminate redundant genes. This step

further reduces the size of data and improve downstream analysis efficiency. The se-

lection of highly variable genes was performed by fitting a trend to the variance of log

counts for all genes with respect to the mean expression. This process was carried

out using the modelGeneVar function from the scran package. In addition, we

removed genes that were expressed in less than 1% of all cells.

Next, the filtered matrix can undergo the application of CA to all remaining genes

and cells. Further down-sizing of data can be achieved by retaining only the genes

ranked as the top variable genes, the number of the most variable genes varies among

2000, 4000 and 6000, depending on the data and parameter choice. It is important to

note that even though the original count matrix is normalized and subsetted to a matrix

with most variable genes, it still maintains sparsity. Table 3.2 presents the sparsity of

the filtered matrix in the first column, followed by the sparsity of the subset matrices,

which include the matrix with the top 2000, 4000 and 6000 most variable genes in

the second, third and fourth columns correspondingly. The sparsity is calculated as

the ratio between number of zeros divided by the number of elements in the matrix.

The sparsity of all the experimental datasets ranges from approximately 55% to 95%,

with the exception of the ’FreytagGold’ dataset, which exhibits denser characteristics

compared to the others.

It has been reported previously that log-transformation can help to reduce overdis-

persion in RNA-seq data when applying PCA for dimension reduction. It is also re-
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Dataset Sparsity
Sparsity
(2000)

Sparsity
(4000)

Sparsity
(6000)

BaronPancreas_filtered 0.847 0.762 0.834 0.871
Darmanis_filtered 0.758 0.576 0.65 0.7
FreytagGold_filtered 0.575 0.237 0.323 0.461
PBMC_10X_filtered 0.903 0.822 0.879 0.904
Tirosh_nonmaglignant_filtered 0.763 0.636 0.709 0.764
ZeiselBrain_filtered 0.735 0.605 0.679 0.732
brain_organoids_filtered 0.93 0.876 0.916 0.933
tabula_muris_sub 0.829 0.693 0.784 0.833
tabula_sapiens_tissue_filtered 0.822 0.665 0.764 0.815

Table 3.2: Sparsity of experimental scRNA-seq data sets.

ported that applying log-transformation prior to applying PCA to count tables in scRNA-

seq analysis can help to mitigate the artifacts generated by applying PCA directly to

the count table (Nguyen & Holmes, 2019; Hsu & Culhane, 2020, 2023b). Because

PCA is most suitable for continuous data that is approximately normally distributed, it

may exhibit artifacts when applied to data with gradients or non-continuous count table.

However, there is an argument that normalizing with log-transformation distorts the dis-

tribution of data. The scRNA-seq gene expression levels are assumed to follow negative

binomial distribution or Poisson distribution, the log-transformation makes the data not

follow the distributions any more. This will influence the down-stream statistical tests

(Lause, Berens, & Kobak, 2021; Townes et al., 2019). Furthermore, opinions differ on

whether log-transformation should be applied before conducting CA on the data. One

study (Langovaya et al., 2012) suggested that log-transformation can help eliminate the

influence of outliers on correspondence analysis, while the other study (Hsu & Culhane,

2023a) recommended against log-transformation prior to applying CA.

Since the preprocessing of data is to prepare it for CAbiNet algorithm to find out

the biclusters of cells and genes, the impact of log-transformation will be evaluated

based on the biclustering accuracy of CAbiNet. The CAbiNet algorithm will be intro-

duced in the next chapter. Data sets listed in Table 3.1 will be used for testing. These

data sets were pre-processed following the methods described in the first two paragraphs

of Section 3.2. Then the matrices are subsetted into count matrix with top 2,000, 4,000

49



and 6,000 most variable genes. Subsequently, subsets of matrices containing either the

original counts or log-transformed data were used as inputs for CA. The CA process

follows the routine procedures: firstly, Pearson Residuals were calculated. Secondly,

the matrix with Pearson Residuals was subjected to singular value decomposition to

achieve dimension reduction to a 40, 60 and 80 dimensions, separately. Then CAbiNet

was applied to the dimension reduced data to build cell-gene graph with the number of

nearest neighbours varies from 30, 60 to 90. Both leiden clustering and spectral cluster-

ing are utilized to identify the biclusters. The resolution parameter of leiden clustering

are set as 0.1, 0.8 and 1. The number of clusters for spectral clustering was set as the

number of ground-truth clusters for each data set.

0.00

0.25

0.50

0.75

1.00

BaronPancreas

Darm
anis

DmelSpatial

FreytagGold

PBMC10x
Tirosh

zeisel

dataset

A
R

I

algorithm

CAbiNet_leiden_log

CAbiNet_leiden_logF

CAbiNet_spectral_log

CAbiNet_spectral_logF

Figure 3.2: Evaluation of log-transformation effect on clustering of real scRNA-
seq data sets with silver standard ground truth. The boxplot shows the accu-
racy of clustering results of CAbiNet with leiden algorithm applied on data sets
with log-normalization (CAbiNet_leiden_log) and without log-normalization (CAbi-
Net_leiden_logF). Similarly, the ARI of clusters detected by CAbiNet with spectral
clustering on data sets with and without log-normalization are plotted with labels: CAb-
iNet_spectral_log and CAbiNet_spectral_logF.

The comparison results are depicted in Fig. 3.2. The the accuracy of clustering

results ARI are grouped into the following groups: CAbiNet with leiden algorithm

applied on data sets with log-normalization (CAbiNet_leiden_log) and without log-
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normalization (CAbiNet_leiden_logF), CAbiNet with spectral clustering on data sets

with and without log-normalization are plotted with labels: CAbiNet_spectral_log and

CAbiNet_spectral_logF. There are 54 runs for each group. The boxplot as shown in Fig.

3.2 summarises the overall distribution of ARIs over all parameter choices. Among the

data sets that have been tested, CAbiNet demonstrates superior performance when the

original counts are utilized as input for two of the data sets (BaronPancreas and Darma-

nis). Conversely, for two out of the seven data sets, employing log-transformed counts

yields slightly improved biclustering results (FreytagGold and PBMC10x). In the re-

maining three data sets, the original and log-transformed counts yield similar clustering

accuracy.

A recently published paper (Ahlmann-Eltze & Huber, 2023) made a comprehen-

sive evaluation of the effect of normalization methods on scRNA-seq analysis. They

benchmark the influence of four types of normalization algorithms including delta method-

based variance-stabilizing transformations, residuals-based variance-stabilizing trans-

formations, latent gene expr-ession-based transformations and count-based factor anal-

ysis models. They show that the log-normalization methods are the best performing one

for scRNA-seq data analysis comparing with the other three types of methods, and it is

better than using the raw counts as well.

Based on this study and considering that CA is sensitive to outliers and log-transf-

ormation can moderate the influence of outliers and help with the mean-variance disper-

sion, we employ log-transformed counts as the input for both CA and CAbiNet during

the application and benchmarking of CAbiNet.

3.3 Understanding different coordinates

To provide a clearer explanation of correspondence analysis, a demonstration data

set is used to showcase the process and biplots. The data set was synthesized with R

package SPARSim. It consists of 5000 rows representing simulated genes and 2000

columns representing simulated cells. The genes are divided into five groups, with each

group containing 1000 genes, and the cells are evenly grouped into four clusters, with

500 cells in each cluster. Additionally, specific dysregulated marker genes, exhibiting
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both upregulation and downregulation, have been designed for each of the four cell

types. Fig. 3.3A shows the simulated data sets with genes as rows and cells as columns

in the heatmap. The brighter the color is, the higher the gene is expressed in the cells.
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Figure 3.3: Correspondence Analysis of a simulated scRNA-seq data. A, The log-
transformed simulated scRNA-seq count matrix. B, Then the correspondence analysis
calculates a matrix of Pearson Residuals. C, Scree plot visualizes the percentage of
inertia per dimension. The first three dimensions contains 76.05% of the total inertia
and there is a sharp decrease from the third dimension to fourth dimension suggesting
the CA space can be reduced into first three dimensions.

By applying correspondence analysis to the data set which is visualized in Fig.

3.3A, we first transform it into a matrix using Pearson residuals. Then, we perform sin-

gular value decomposition (SVD) on the matrix using Equation 2.13. The columns in

the matrices U and V represent unit bases of new spaces for row and column items, re-
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spectively, known as the CA space. Each dimension’s inertia corresponds to the square

of its singular value. Figure 3.3C illustrates the percentage of inertia for each dimen-

sion. The first three dimensions account for more than 76.05% of the total inertia, and

there is a sharp decline between the third and fourth dimensions. This suggests that

the majority of the information of the data is captured by the first three dimensions,

while the remaining dimensions largely contain uninformative noise. By employing the

dimension reduction techniques discussed in Section 2.2.2, the dimension of the CA

space can be reduced to 3. Hereby, the dimension-reduced space can be used for data

visualization and clustering.

The CA biplots of the simulated data are shown as Fig. 3.4, in which the row

(genes) are plotted as blue circles and column items (cells) are plotted as red crosses.
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Figure 3.4: Correspondence Analysis of a simulated scRNA-seq data. A-B, The
symmetric biplots. Both genes and cells are plotted with principal coordinates in panel
A, while both of them are drawn with C-D, The asymmetric biplots.
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In the symmetric biplots, both the genes and cells are plotted with principal co-

ordinates in Fig. 3.4A, while with standard coordinates in Fig. 3.4B. The asymmetric

biplots are shown as Fig. 3.4C-D, in which the genes and cells are plotted in differ-

ent types of coordinates. The genes are in principal coordinates and cells in standard

coordinates in Fig. 3.4C, while the other way around in Fig. 3.4D.

Based on Equation 2.17 and 2.16, the standard coordinates can also be interpreted

as the principal coordinates divided by their corresponding singular values. Suppose

the first k singular values of a matrix happen to be equal to 1, then the re-scaling would

make the first k standard coordinates identical to the principal coordinates. In some

cases where the singular values of chosen dimension are similar to each other, i.e.

the standard coordinates are almost proportionally re-scaled along principal axes, the

Euclidean distance between standard coordinates then becomes informative and more

applicable than that in normal cases.

However, in reality, these scenarios rarely occur, so the re-scaling will generally

cause the standard coordinates to deviate from the principal coordinates. Consequently,

calculating cosine or Euclidean distances between items using principal coordinates

versus standard coordinates will yield different results.

This study puts effort into understanding the distance measurements in standard

and principal coordinated spaces, because it is important for the clustering to use a

good distance measure. A proper distance measure is the prerequisite for getting a good

clustering result. I will give a more detailed illustration of the distance measured in

principal coordinates and in standard coordinates in Section 3.3.1 and 3.3.2.

The biplots also allow an interactive intepretation of the relationship between rows

and columns. In symmetric biplots (Fig. 3.4A-B), it may appear that certain gene points

are located close to cell points, leading to the misconception that the row features con-

tribute to distinguishing neighboring column categories. However, this interpretation

is incorrect because the genes and cells are plotted in two separate spaces with differ-

ent bases. As a result, the Euclidean distance between gene and cell points lacks a

theoretical meaning in this context.

In the asymmetric biplots (Fig. 3.4C-D), genes and cells pointing in the same di-

rection indicate a strong positive association, while those pointing in opposite directions
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are negatively associated. The association between a gene and a cell is represented by

the angle between the vectors connecting the origin to the gene and cell points in the

asymmetric biplot. A smaller angle indicates a stronger association between them. The

theoretical explanation can be found in Section 3.3.4.

3.3.1 Distance measured in principal coordinates

Recall the definition of χ2 distance in Section 2.4.4 between two rows (Equation

2.21) and the reconstitution formula (Equation 2.30 and 2.31), I substitute pij in the

Equation 2.21 by the reconstitution function and prove that the χ2 distance of two rows

χ2(i, i′) in the original data can be written as the Euclidean distance among them in

principal coordinates in the ambient space,
∑K

k=1(fik − fi′k)2, where K is the rank of

input matrix. That is

χ2(i, i′) =
J∑
j

(
pij
ri
− pi′j

ri′
)2

cj

=

J∑
j

(
ricj(1+

∑K
k=1 fikγjk)
ri

− ricj(1+
∑K

k=1 fi′kγjk)
ri′

)2

cj

=
J∑
j

cj(
K∑
k=1

fikγjk −
K∑
k=1

fi′kγjk)
2

=

J∑
j

cj(

K∑
k=1

γjk(fik − fi′k))2

=
J∑
j

cj(
K∑
k=1

c−1j ujk(fik − fi′k))2

=
K∑
k=1

(fik − fi′k)2.

(3.1)

where fik is the principal coordinate of entry in row i and column j (see also the Equa-

tion 2.16). This formula states that the Euclidean distance between rows in principal

coordinates is meaningful, it recovers the χ2 distance between rows in the frequency ta-

ble P. This is described by Fig. 3.4A, 3.4C, where the genes are plotted as blue circles

with principal coordinates and cells as red crosses.

Suppose K ′ dimensions are retained in the dimensional reduced space, Equation
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3.1 can be written as

χ2(i, i′) =
K′∑
k=1

(fik − fi′k)2 + eii′ , (3.2)

where eii′ is the error term representing the difference of distance between item i and i′

in ambient space and dimensional reduced space.

Similarly, χ2 distance between two columns (as shown as red crosses in Fig. 3.4A,

D) can be approximated by the Euclidean distance between their principal column co-

ordinates in a dimension reduced space, that is

χ2(j, j′) =
K′∑
k=1

(gjk − gj′k)2 + ejj′ .

In conclusion, in this section we proved that the Euclidean distances between rows

or columns in the dimension reduced CA space using principal coordinates hold mean-

ingful interpretations. These distances reflect the χ2-distance between rows or columns

in the frequency table, bridging the original space and the CA-transformed space.

3.3.2 Distance measured in standard coordinates

As defined in Equation 2.15 and 2.14, the standard coordinates are the singular vec-

tors divided by square root of row/column masses. In this way, the mean of row/column

standard coordinates gets normalized to 1. Therefore, comparing with principal coor-

dinates, the standard coordinates lose the explanation of the weights of items. This

rescaling changes not only the vector length of items in a biplot, but also the direction

of vectors. For example, in Fig. 3.4A v.s. C where the genes are plotted with the same

coordinates while cells are in different coordinates. The vectors linking the origin and

cell points are in different lengths and directions.

Comparing Fig. 3.4A to Fig. 3.4C, in both of which the genes are plotted with

principal coordinates but cells are plotted differently, it is visible that the standard coor-

dinates shift the column (cells) items away from the origin. The dissimilarities among

cells are more apparent in standard coordinates comparing with principal coordinates.

Therefore, if one is particularly interested in observing the cells, it is preferable to plot

them with standard coordinates and the genes with principal coordinates. This arrange-
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ment allows for an exaggeration of the differences between cells. Similarly, if the focus

is on the variation among genes, an asymmetric biplot can be drawn with the opposite

configuration.

3.3.3 Distance measured in singular vectors

In the dimension reduced space, the rows and columns can also be presented with

coordinates in singular vectors. Since the singular vectors are orthogonal unit vectors

and the singular values of each direction are the inertia preserved by each direction,

the inertia of each singular vector is standardized as 1. As mentioned in the previous

chapter (Section 2.6.3), the distance of points coordinated in singular vectors is used

to measure the dissimilarity between points to build a graph to cluster the points (Hsu

& Culhane, 2023a). Different from the distance measured in principal and standard

coordinates, points that are close to each other represent categories that have a similar

profile in terms of their distribution across the variables analyzed. This implies that

these categories have a similar pattern of association with the variables.

3.3.4 Distance in Asymmetric Maps

As illustrated in Section 2.4.3, the asymmetric map refers to a biplot with either

principal coordinates of rows and standard coordinates of columns, or principal coor-

dinates of columns and standard coordinates of rows. Figure 3.5 shows the first sce-

nario, where the rows/genes are plotted with blue circles with principal coordinates

and columns/cells are plotted as red crosses with standard coordinates. The Euclidean

distance between principal coordinates in an asymmetric map still approximates the

χ2-distance between data points in the frequency table, while the Euclidean distance

between standard coordinates are meaningless when the corresponding singular values

are not equal to 1.

Besides representing the correlation among row or column items, asymmetric map

further tells the association between row and column points. The inner product between

row item i and column item j in the asymmetric map reconstructs the deviation of the

probability pij from the expectation, which is explained by the reconstruction formula
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2.30. That is
pij − ricj
ricj

=
K′∑
k=1

fikγjk + εij . (3.3)

The left-hand side of the equation can be interpreted as the extent to which the observed

frequency deviates from the expected frequency, denoted as ricj . A deviation of 0

signifies that the probability of a gene (row) i expressing in a cell (column) j is equal to

the expectation. A higher deviation indicates that the gene’s expression level is higher

than expected. In this case, the gene is more likely to be considered a marker gene for

the cell compared to other genes. This term on the left-hand side of the reconstitution

formula 3.3 is commonly referred to as the association ratio. It gets approximated

by the inner product between gene point and cell point in the asymmetric biplot.

The closer the ratios are to 0, the more independent the items are. Looking at Fig. 3.5,

the inner product between gene point P1 and cell point C1 is larger than that between

gene point P2 and C1, meaning that P1 is more likely to be a marker gene of cell C1,

while P2 and C1 are more likely to be independent due to the inner product between

them tends to be 0.

Although the row and column points are simultaneously plotted in the biplot, their

coordinates are actually based on different basic unit vectors of different spaces. There-

fore, the Euclidean distance between a row and a column item in a biplot doesn’t make

sense. Instead, the association between row and column items should be measured by

the inner product between the points.

3.3.5 Numerical experiments on the choice of coordinates and distance

measurements

Dimension reduction in CA space usually is followed by clustering of the data,

usually clustering of the row items or column items. As mentioned in Section 2.6, the

existing clustering algorithms in CA space group clusters based on the similarities mea-

sured in principal coordinates, standard coordinates or singular vectors. These studies

don’t explicitly illustrate the reason of the distance choices. Based on the illustrations

in Section 3.3.1-3.3.3, I will discuss about which distance measurement is the best for

clustering rows or columns in the dimension reduced CA space.
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Figure 3.5: The association between row and column items in a CA asymmetric
map. This is Fig. 3.4C annotated with points and vectors P1, P2 and C1. In this plot,
the row points are plotted as blue circles with principal coordinates while columns are
plotted as red crosses with standard coordinates. The inner product between row point
P1 and cell point C1 in an asymmetric biplot indicates the association between two
points. The larger the inner product is, the higher two points are associated. Comparing
with row point P2, P1 is more associated with C1.

In the previous sections, I showed that the Euclidean distances between rows or

columns in the dimension-reduced CA space using principal coordinates hold meaning-

ful interpretations. These distances reflect the χ2-distance between rows or columns in

the frequency table, bridging the original space and the CA-transformed space. On the

other hand, the standard coordinates and singular vectors do not have a clear explana-

tion as the principal coordinates do. This suggests that the Euclidean distances in

the principal coordinates space are preferable for identifying clusters of rows and

columns.

To validate the claim regarding the choice of coordinates, I conducted an experi-

ment using the simulated data set described in Section 3.1. The objective was to com-

pare the efficiency of using three different dimension-reduced spaces (i.e., spaces with

principal coordinates, standard coordinates, and singular vectors) in accurately recov-

ering the ground-truth clusters of cells within the data. Evaluation was performed by

computing the Silhouette score (Rousseeuw, 1987) for each item. The Silhouette score
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measures the similarity among items within the same cluster and dissimilarity between

items from different clusters (see Section 2.5.5). The silhouette score is calculated for

each data point with range from -1 to 1. A higher Silhouette score indicates that an item

is closer to other items in the same cluster than items in other clusters. Conversely, a

negative Silhouette score suggests that an item has been assigned to an incorrect cluster.

To mitigate potential bias introduced by clustering algorithms, no clustering was

performed in this analysis. Instead, the Silhouette score was directly computed using

the known ground-truth clusters of items. Initially, the simulated data set underwent

CA, followed by dimension reduction using the scree plot of calculated singular values,

resulting in a reduction to 3 dimensions. The Silhouette scores for the ground-truth

clusters were then calculated in the dimension-reduced spaces using three types of co-

ordinates: principal coordinates, standard coordinates, and singular vectors, with the

Euclidean distance metric. The dimension-reduced space that yielded the most suitable

results for clustering would have the highest average Silhouette score across all items.

To account for the impact of the number of dimensions on clustering, the average Sil-

houette score was computed for spaces with varying dimensions, ranging from 1 to

30.

Figure 3.6 demonstrates the testing results. The average silhouette scores within

spaces with principal coordinates (blue), standard coordinates (red) and singular vectors

(green) are plotted as curve. It shows that in spaces with 1 to 3 dimensions, the silhou-

ette scores for all three types of spaces are relatively similar. However, as the number

of dimensions increases, the average silhouette scores in the standard coordinate space

and singular vector space decrease significantly, while they decrease more gradually in

the principal space. This suggests that if an appropriate number of dimensions is se-

lected for dimension reduction (in this case, 3 according to the scree plot in Fig. 2.6.3),

the Euclidean distance within each of the three types of dimension-reduced spaces can

effectively differentiate between clusters of items. However, if more noisy dimensions

are included, clustering with Euclidean distance in the spaces with standard coordinates

and singular vectors becomes problematic.

This is because singular vectors are orthonormal vector that only provide direction

information without indicating the variation of inertia along the direction, lacking the
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information which is crucial for distinguishing clusters of data points. Similarly, the

standard coordinates rule out row or column masses, such that the mean of each row

or column is standardized. This also makes the standard coordinates fail for clustering.

For the simulated data set, the first three singular values (the square root of inertia)

are close to 1. Therefore, whether or not the three types of coordinates scaling by the

singular value is applied does not make a significant difference, resulting in roughly

similar silhouette scores for the three types of dimension-reduced spaces within the first

three dimensions.
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Figure 3.6: Evaluation on simulated data set with gold standard ground truth of
clusters. The average silhouette score with the Euclidean distance between principal
coordinates is robust and much higher than using the standard and singular coordinates
when including more dimensions, indicating using the principal coordinates gives the
best recovery of clustering ground-truth.

To test if the claim still holds true for complex experimental data, I conducted a

similar evaluation on six scRNA-seq datasets with expert-annotated cell types to de-

termine the most suitable coordinate type. The scRNA-seq datasets utilized in this

study are listed in Table 3.1, they are data sets BaronPancreas, Darmanis, FreytagGold,

PBMC, Tirosh and ZeiselBrain (refer to Table 3.1). The evaluation procedures em-

ployed were the same as those used for the simulated data.

The results are shown in Fig. 3.7, with the sub-figures representing results from

six data sets respectively. The average silhouette score calculated from spaces with

principal coordinates are shown as the blue curves, while for standard coordinates as
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Figure 3.7: Evaluation on real scRNA-seq data sets with silver standard ground
truth of clusters. The Euclidean distance among the principal coordinates gives the
best recovery of clustering ground-truth. The higher the silhouette score is, the better
the result is.

green curves and singular vectors as red curves. The results show similar patterns with

the results for simulated data. The average silhouette score, calculated based on the

Euclidean distance between the principal coordinates in the dimension-reduced space,

remains the most robust and highest compared with the other two coordinate spaces

(see Fig. 3.7). The principal coordinates are less affected by the increasing number

of dimension, i.e. increasing extent of noise, indicating that Euclidean distance in the

space with principal coordinates is the most suitable for subsequent clustering analyses.

3.4 Choice of coordinates for clustering in CA space

Most of the existing clustering algorithms can be applied to the dimension-reduced

CA space to cluster data points within the matrix. As described in Chapter 2, methods

such as hierarchical clustering, K-means, and graph-based community detection meth-

ods like spectral clustering and Leiden can all be applied to clustering in the CA space.

When employing these clustering algorithms, an essential consideration is the selection
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of a suitable distance measure. As discussed in previous sections, when using methods

like hierarchical and K-means clustering, similarity among items should be calculated

based on the Euclidean distance between principal coordinates. Similarly, for graph-

based algorithms, the similarity between vertices should also be determined using the

Euclidean distance among the principal coordinates. Despite the distance choice, the

number of dimensions can also influence clustering results.

To investigate the impact of coordinate choice and the number of dimensions on

clustering, four scRNA-seq datasets: Darmanis, FreytagGold, PBMC, and ZeiselBrain

(refer to Table 3.1) were used for the evaluation. Prior to clustering, the data sets were

preprocessed according to the method described in Section 3.2, with the number of top

variable genes varying between 2000, 4000, and 6000. Selecting different numbers of

top variable genes helps to assess the susceptibility of different coordinates to noise and

evaluate their robustness. I conducted K-means clustering on dimension-reduced spaces

using principal coordinates, standard coordinates, and singular vectors separately. The

dimension of the spaces ranged from 1 to 100. For the K-means method, the heuristic

input of the number of clusters was determined by the ground-truth number of clusters in

simulated data and the number of expert-annotated cell types in scRNA-seq data. Since

K-means clustering relies on a random initialization, the random seed of initialization

was set as 66 for all runs.

The quality of K-means clustering results was assessed using four criteria: silhou-

ette score, entropy, Calinski Harabatz score (Caliński & Harabasz, 1974), and Adjusted

Rand Index (ARI) (Hubert & Arabie, 1985) (refer to Section 2.5.5). Higher values for

these indices indicate better clustering performance. The results are presented in Fig.

3.8.

Among the five data sets analyzed in Fig. 3.8, the optimal number of dimensions

corresponds to the dimensions with the highest indices, as shown in Figure 3.7. Tthe

optimal number of dimensions for all the data sets is below 25. Preserving more di-

mensions beyond the optimal number introduces more noise to the dimension reduced

space, which poses a challenge for the clustering algorithm in distinguishing true signals

from the noise.

As the number of dimensions increases, the evaluation indices for K-means clus-
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ZeiselBrain principal ZeiselBrain singular ZeiselBrain standard

Tirosh principal Tirosh singular Tirosh standard

PBMC principal PBMC singular PBMC standard

FreytagGold principal FreytagGold singular FreytagGold standard

Darmanis principal Darmanis singular Darmanis standard
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Figure 3.8: Influence of coordinate choice on clustering in CA space. The first col-
umn of figure shows the evaluation results on principal coordinates over five scRNA-
seq data sets (Darmanis, FreytagGold, PBMC, Tirosh and ZeiselBrain). The second and
third columns represent the evaluation results on singular vectors and standard coordi-
nates respectively.
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tering in spaces with standard coordinates and singular vectors either decrease or exhibit

drastic fluctuations. However, the evaluation indices for the space with principal coor-

dinates remain the most robust for four out of five data sets (excluding the PBMC data

set). The explanation for this observation is that principal coordinates project the origi-

nal data into a space where the first several dimensions preserve most of the meaningful

signals by assigning them higher weights, while assigning smaller weights to higher

dimensions. Therefore, it is more robust than the other two types of coordinates.

In contrast, singular vectors and standard coordinates do not take the contribution

of items to the inertia into account, so they will result in skewed downstream clustering

when more dimensions are included. This finding confirms that the re-scaling approach

used by principal coordinates is the best among the three coordinates.
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Figure 3.9: Inertia contained in each dimension after singular decomposition in
correspondence analysis. The x-axis shows the number of dimensions, the y-axis
shows the singular values of each dimension which is the square root of inertia. The
singular values of different data sets are colored differently.

An interesting observation from Fig. 3.8 is that the FreytagGold data set exhibits

the most unstable evaluation indices in spaces with singular vectors and standard coor-

dinates compared to the evaluation values of other data sets. To gain insights into why

the standard coordinates and singular vectors are more sensitive for this particular data

set, the first 100 singular values were plotted in Fig. 3.9 for all the data sets.

From Fig. 3.9, we can see that FreytagGold data has the lowest singular values

in dimension 12 to 100. Since the standard coordinates are scaled by singular values,
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the decrease of singular values reduces the contribution of higher dimensions (12 to

100). This allows the K-means algorithm to be less influenced by the additional noises

present in the higher dimensions. This finding suggests that the effectiveness of princi-

pal coordinates stems from the singular values, as neither the standard coordinates nor

the singular vectors exhibit stability for clustering in this context.

In conclusion, in addition to the theoretical evidence supporting the approximation

of Euclidean distance between principal coordinates and the χ2 distance between data

points in the original frequency table, the aforementioned results indicate that principal

coordinates are more effective in preserving the meaningful signal in the scRNA-seq

data. Moreover, they consistently yield more robust K-means clustering results com-

pared to the other two types of coordinates.
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4 | Correspondence Analysis based biclustering on Net-

works (CAbiNet)

In the last chapter, two properties of CA were discussed. One property is that the

Euclidean distance measured in principal coordinates leads to a better clustering com-

pared with standard coordinates and singular vectors. The other property of correspon-

dence analysis is that the association between a gene and a cell can be approximated by

the inner product of gene and cell vectors in the dimensional reduced asymmetric map.

These geometric properties allow us to establish a connection between similar or

associated genes and cells through a single graph, denoted as cell-gene graph. In this

graph, cells are not only connected to other cells that exhibit similar gene expression

profiles but also to genes that tend to have a high expression level specifically in those

cells. By performing clustering on the cell-gene graph, biclusters can be generated

consisting of both cells and genes. These biclusters not only distinguish different cell

types but also identify gene modules that are specific to each cell type. Leveraging

the cell-gene graph constructed from the CA space, we designed a novel biclustering

algorithm called Correspondence Analysis based biclustering on Networks (CAbiNet),

which facilitates the co-clustering of row and column items. The details of the algorithm

will be discussed in Section 4.1 - 4.3. In section 4.4, I will talk about some strategies

have been used to accelerate our R package CAbiNet.

4.1 Dimension reduction with Correspondence Analysis

Consider a gene expression matrix obtained from scRNA-seq, where the rows

represent genes and the columns represent cells. To start, the matrix undergoes pre-

processing steps outlined in Section 3.2, which involve removing unwanted cells and

genes. The processed matrix is then subjected to CA to calculate the Pearson Residuals,

do Singular Value Decomposition and then reduce the dimension of the data set with

scree plot (Fig. 4.1). The columns of the matrix U in Fig. 4.1 are the left singular

vectors, and the columns of the matrix V are the right singular vectors. The principal

coordinates and standard coordinates can be calculated with formula 2.14, 2.15, 2.16,
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2.17. These coordinates can be used to draw CA biplots to visualize the data in lower

dimensional space.

Step 1. Correspondence Analysis and Dimension Reduction
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Figure 4.1: CAbiNet step 1: Apply correspondence Analysis to the matrix. Data ma-
trix is firstly transformed into Pearson Residuals by Correspondence Analysis, then the
residual matrix is decomposed by singular value decomposition to get the unit basis of
CA space. Based on the scree plot of explained inertia, that is the eigen values, dimen-
sion of the new space can be reduced to K. Scaling the singular vectors, the principal
coordinates and standard coordinates of rows and columns can be calculated.

4.2 Build up a gene-cell graph based on Correspondence Anal-

ysis

Based on the dimension-reduced CA space, the cell-gene graph is constructed us-

ing three main steps. Firstly, k-Nearest Neighbour graph (kNN) cell-gene graph is gen-

erated, where each cell and gene is connected to its k closest neighbors. Subsequently,

the kNN graph is transformed into a Shared Nearest Neighbour graph (SNN) graph by

considering the common neighbors of each node. Finally, an optional step involves

trimming out isolated genes to refine the cell-gene graph. The detailed procedures are
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as follows:
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Figure 4.2: Distance measure in CAbiNet. To build up a cell-gene SNN graph, the
distance between cells are measured in principal coordinates, distance between genes
are in principal coordinates as well, while the distance between cells and genes are
measured by the inner product between the vectors pointing to cells and genes in a CA
asymmetric biplot.

• Cell-gene kNN graph. Firstly, a cell graph is built up. In the cell graph, each

cell is linked to its k-nearest neighboring cells based on the Euclidean distance

measured in their principal coordinates as illustrated in Fig. 4.2A. This is an un-

weighted graph with 1 representing a connection and 0 for no connection. Sim-

ilarly, a gene graph is built, in which each gene is connected to its k-nearest

neighboring genes based on the Euclidean distance measured in their principal

coordinates in the dimensional reduced space as well (Fig. 4.2B).

Moreover, a cell-gene bipartite graph is constructed. The connections between

genes and cells are determined by their association ratio, which is calculated as

the inner product between the cells and genes in the dimensional reduced asym-

metric biplot (see Section 3.3.4 and Fig. 4.2). Specifically, the cell nodes are

connected to the top k most associated gene nodes, with the edge direction from

the cell to the gene. The edges from genes to cells can be either the same as

from cells to genes, resulting in an undirected cell-gene graph (default behavior

of package CAbiNet), or determined by the top k highly associated cells of the

genes, creating a directed cell-gene graph.
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Step 2. Build up Cell-gene Graph (Shared-nearest-neighbor Graph)

Figure 4.3: CAbiNet step 2: Build up a cell-gene SNN graph. The cell-gene graph
is composed of three sub-graphs, they are the cell-cell graph built with Euclidean dis-
tance between cells measured in principal coordinates, the gene-gene graph built with
Euclidean distance between genes measured in principal coordinates and the cell-gene
bipartite graph built with the cell-gene association ratio.

Merging all the sub-graphs, we get the cell-gene graph with cells connected with

similar cells and highly associated genes, genes connected with similar genes (see

Fig. 4.3).

In CAbiNet, users have the flexibility to choose the number (k) of gene-gene

neighbors, cell-cell neighbors, cell-gene neighbors, and gene-cell neighbors sep-

arately, allowing customization of the graph structure.

• Transform kNN graph to SNN graph. For each pair of nodes, suppose the sets

of their neighbouring nodes are b1 and b2. The overlap between neighbourhoods

of each pair of nodes then can be calculated by the Jaccard index in Equation
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2.60. The Jaccard scores are then utilized as weights for the edges between pairs

of nodes in the gene-cell graph. This transforms the binary adjacency matrix of

gene-cell graph into a weighted adjacency matrix with Jaccard scores, represent-

ing the strength of connection between genes and cells.

• Graph pruning. In practice, even though two nodes are connected in the graph,

the neighbouring nodes of these two nodes can be totally different, i.e. the Jaccard

index of this pair of nodes are as small as 0, that is |b1 ∩ b2| = 0 such that

J(b1, b2) =
|b1 ∩ b2|
|b1 ∪ b2|

= 0. (4.1)

When the intersection |b1∩b2| is small, it means these two nodes don’t have many

neighbouring nodes in common, thus the connection between them is too weak to

be informative. Therefore, we set a threshold of the Jaccard index to trim off this

type of edges. The threshold is set as 1/15 by default. It can be adjusted upon the

size of neighbourhood.

If the specified number of neighbors, denoted as k, is too small when constructing

the cell-gene graph, there is a possibility that certain genes will not be connected

to any cells (although they may still be connected to other gene nodes), particu-

larly after transforming the kNN graph into the SNN graph. These unconnected

genes indicate a lower degree of association with any specific cells, suggesting

that they may not serve as marker genes for any particular cell types. These genes

can be removed in the context of identifying cell types and their corresponding

marker genes. To address this, CAbiNet provides an option to remove these genes

from the graph. After removing these genes, the cells are supposed to be more

associated with remaining genes, which are potentially the marker genes of cells.

The cell neighbours of genes are further check. The overlapping of cell neigh-

bours of each pair of genes are calculated by Jaccard index as well. There could

be pair of genes do not share sufficient cell neighbours. This can happen when

these genes are associated with more than one cell clusters, such that one of the

genes is connected with cells from one of the cell clusters, while the other gene
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having more connection with cells from another cluster, making the overlapping

of the neighbourhoods of two genes small. Therefore, in the case of detecting

marker genes of cell clusters, the connection between this kind of genes can

be eliminated to give a clear cut between biclusters. CAbiNet allows to set a

threshold on the overlap of the cell neighbours of each pair of genes to remove

redundant edges between genes.

It is important to note that graph pruning is not mandatory and its application de-

pends on the specific research objectives. If the aim is to identify cell clusters and

the corresponding marker genes, it is recommended to trim the genes. However,

if the objective extends beyond identifying cell clusters to include analyzing gene

expression patterns across the cell population, the graph pruning can be disabled.

4.3 Detection of biclusters

The cell-gene graph combines three sub-graphs: the cell graph, gene graph, and

cell-gene bipartite graph. This integrated graph facilitates the reconstruction of not only

the correlation between cells and genes but also the similarities among genes or cells.

The cell-gene graph can be utilized with various state-of-the-art community detection

methods to identify modules, resulting in clusters that may consist of cells, genes, or

both (referred to as biclusters).

In CAbiNet, we have incorporated two graph clustering algorithms, namely leiden

and spectral clustering. These algorithms assist in uncovering meaningful patterns and

structures within the graph, facilitating the identification of distinct clusters.

The Leiden algorithm is the default clustering algorithm integrated into CAbiNet.

As explained in Section 2.5.4, the Leiden algorithm is designed to minimize the modu-

larity of the graph, thereby reducing the deviation of node degrees within clusters from

the expected values. A crucial parameter for the Leiden algorithm is the resolution,

which determines the number of clusters to be identified. Increasing the resolution

value leads to the detection of a greater number of clusters.

Another implemented community detection method is spectral clustering, which

has been introduced in Section 2.5.3. The adjacency matrix of the cell-gene graph is
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first transformed into a graph Laplacian (see Section 2.5.3) by subtracting the degree

matrix (refer to Equation 2.37). The graph Laplacian is then normalized by the square

roots of the node degree matrix (see Equation 2.38). This normalized graph Laplacian

is decomposed into a diagonal matrix containing eigenvalues and a matrix consisting of

orthogonal eigenvectors. The eigenvalues are also known as the spectrum of the matrix.

The eigengap criterion, discussed in Section 2.5.3, can be applied to automatically

determine the number of clusters. CAbiNet allows the automatic detection of number

of clusters by eigengap when applying spectral clustering. If the eigengap determines

the number of clusters as N , then the first N eigenvectors will be utilized for clustering

using either K-means or spherical K-means. Therefore, CAbiNet also allows the user to

specify the number of clusters by providing an integer input nclust when using spectral

clustering to detect the biclusters alternatively.

Step 3. Biclustering (Cell-gene Clusters)
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Figure 4.4: CAbiNet step 3: Detection of biclusters. Community detection methods,
like leiden algorithm and spectral clustering, can be applied to the cell-gene SNN graph
to detect the biclusters.
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Due to the random initialization of cluster centroids and the local optimization

nature of K-means and spherical K-means clustering, running these algorithms with

different random seeds can yield different locally optimized results. Since the locally

optimized clustering results may be inaccurate, CAbiNet provides the option to run K-

means or spherical K-means multiple times. The final clustering result is determined by

selecting the run with the least intra-cluster standard deviation. Although the generated

clustering is still locally optimized, this approach helps improve the performance of

K-means and spherical K-means by selecting the most consistent clustering outcome.

The outputs of Leiden clustering and spectral clustering consist of nodes from

the cell-gene graph, without distinguishing between genes and cells. As a result, the

clusters can include either genes, cells, or both. Clusters that exclusively consist of

genes are referred to as gene modules, which represent distinct gene expression patterns

across cells and identify co-expressed genes. Clusters comprising only cells aid in

differentiating cell types. Biclusters, which include both genes and cells, are assumed

to contain genes that are highly expressed specifically in the grouped cells. Some of

these genes may be known marker genes that assist in annotating cell types.

CAbiNet provides non-exhaustive biclustering results, as described in the bicluster

structure introduced in Section 2.7.2. This means that some genes and columns may

not be assigned to any bicluster. However, unlike traditional biclustering algorithms,

CAbiNet not only outputs biclusters with genes and cells but also allows for the output

of clusters containing only genes or cells. Genes (or cells) are not forced into biclusters

if there is no correlation with cells (or genes).

4.4 R package CAbiNet

During the initialization process of our R package, CAbiNet which is developed

by Clemens Kohl and me, we observed that it was relatively slow when dealing with

large data sets containing numerous cells and genes. To enhance the scalability of

CAbiNet, we implemented various optimizations to accelerate the package. Here, I

highlight three key modifications that were made by me to improve the code’s speed.

Firstly, the original SVD function was designed to decompose the entire matrix,

74



which becomes time-consuming when dealing with large data sets containing a substan-

tial number of genes and cells. Additionally, for downstream analysis, typically only

the first 30-100 dimensions are utilized, rendering the calculation of all dimensions

unnecessary.

The efficiency of the calculation of SVD is also influenced by the matrix storage

method. In our package, CAbiNet, the singular value decomposition (SVD) is per-

formed twice. The first SVD is conducted by Correspondence Analysis on the Pearson

residual matrix, which is usually a dense matrix. The second SVD is carried out on

the adjacency matrix of the cell-gene graph when applying spectral clustering to the

cell-gene graph in CAbiNet. When a small value of number of nearest neighbours,

k, is set for a large data set, the adjacency matrix can become highly sparse. In such

cases, converting the adjacency matrix into a sparse matrix representation can save a lot

computing memory.

There are many existing packages can be used to calculate SVD and truncated SVD

for dense and sparse matrice, including full SVD functions for dense matrix: svd func-

tion from R base, svd function from python package torch, svd function from python

package scipy; and also truncated SVD functions for both dense and sparse matrices:

irlba function from R package irlba and svds function from scipy. To test which algo-

rithm is the fastest in doing SVD for sparse and dense matrices, I simulated 20 random

square matrices with 10 in dense matrix format and the other 10 in sparse matrix for-

mat. The sparsity of sparse matrices is 90%. The dimensions of matrices range from

100 to 1000. The running time evaluation of each algorithm on each data set is run for

10 times to get an overall evaluation. The partial SVDs are run to calculate the first 10

singular vectors.

The evaluation results are shown in Fig. 4.5, in which the figures on the first row

show the results of full SVD of dense matrices (titled as ’Full_svd_dense’) and partial

SVD of dense matrices (’Partial_svd_dense’) and the remaining two figures refer to

results of full and partial SVD of dense and sparse matrices (’Full_svd_sparse’ and

’Partial_svd_sparse’). The dimension of data sets is shown on the x-axis, and running

time with millisecond unit in log10 scale is shown on y-axis. The boxplots summarize

the running time of each algorithm on each data among the 10-time trials. For the
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dense matrices, the svd function from python package torch (’torch_svd’) is the fastest

approach for calculating full SVD and irlba is the slowest. For a data with fewer than

500 dimensions, irlba is the fastest to get partial SVDs while svds function from scipy

package is the fastest for matrices larger than 500 dimensions. For sparse matrices,

’torch_svd’ is also the fastest for calculating full SVDs while irlba is the fastest in

calculating partial SVDs.
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Figure 4.5: Running time evaluation of full and partial SVD functions on dense and
sparse matrices. The figures from left to right, from up to bottom are the running time
of algorithms doing a full SVD of dense matrices (’Full_svd_dense’), partial SVD of
dense matrices (’Partial_svd_dense’), full SVD of sparse matrices (’Full_svd_sparse’)
and partial SVD of sparse matrices (’Partial_svd_sparse’). The running time is in mil-
lisecond unit and shown in log10 scale. The x-axis shows the dimension of each data
set. Results of different algorithms are in different colors and the boxes summarise
running times amog 10 trials.

I further tested influence of number of truncated singular vectors on the computing

speed of partial SVDs. For each sparse data set, I range the number of truncated singular

vectors from 10 to 90. Each algorithm on each data set with each number of truncated

singular vectors is run repeatably for 10 times. The overall evaluation on running time is

shown in Fig. 4.6. Each sub-figure in Fig. 4.6 represents the running time of a data set,
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with the number of dimension of each data is shown as the title. The x-axis shows the

number of truncated singular vectors to calculate, while y-axis shows the running time

in log10 scale. As shown, for small data sets, e.g. data with 100 dimensions, calculating

the first 10-20 singular vectors with irlba is the fastest, whereas torch_svd becomes the

fastest when more singular vectors should be calculated. However, as shown by the

height of the box, the running time of torch_svd varies in a wide range. For large data

sets, e.g. data with 800 and 900 dimensions, irlba is still the robustest and fastest when

only calculating the first 10-90 dimensions. However, irlba gets slower than svd_base

when more singular vectors should be calculated. Notably, the running time evaluated

for svd_base, scipy and torch_svd is the time of running full SVD, while the other

two algorithms for running truncated SVD. Therefore, truncated SVD could be more

expensive than calculating the full SVD when too many dimensions are reuired.

Based on the discussion on Fig. 4.5, we make use of torch_svd to calculate the full

SVD of pearson residuals in CA. We also offer the option of calculating partial SVD

with irlba in the cacomp function from the APL package when a number of dimensions

to keep is given by the user. For the SVD of graph Laplacian in spectral clustering, we

use irlba in our package to calculate the truncated SVD. Since the single cell data

sets are usually large and irlba is more efficient in calculating truncated SVD on

large sparse data sets. By adopting the partial SVD approach (for sparse matrix), we

have greatly improved the speed of the SVD calculation in our package.

Secondly, I implemented the transformation from a kNN graph into a SNN graph

by using C++ implementations, which greatly improves the calculation speed. The

source code can be found from https://github.com/VingronLab/CAbiNet/

blob/main/src/ComputeSNNasym.cpp.

Thirdly, in the graph pruning step, it is necessary to determine the degree of over-

lap between neighboring cell nodes for each pair of gene nodes. Previously, this cal-

culation was quite computationally intensive when using R functions. To improve ef-

ficiency, we replaced it with a C++ function. The source code for this function can

be accessed at https://github.com/VingronLab/CAbiNet/blob/main/

src/calc_overlap.cpp.
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Figure 4.6: Running time evaluation of partial SVD functions on sparse matrices.
Each sub-panel shows the running time of each data set, with the size of data sets shown
in the title of each panel. The running time is in millisecond unit and shown in log10
scale as the y-axis. The x-axis shows the number of truncated singular vectors that has
been calculated. Results of different algorithms are in different colors and the boxes
summarise running times among 10 trials.
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5 | Visualization of biclustering results

PCA and CA biplot provide visualizations of genes and cells in a maximum of

three dimensions, limiting the ability to visualize the heterogeneity of data across higher

dimensions. Heatmaps, on the other hand, can be difficult to read and extract informa-

tion from when dealing with large data sets. In order to address these limitations, we

aim to develop a non-linear embedding technique for the cell-gene biclusters. This will

allow for the visualization in a two-dimensional plane, facilitating a more comprehen-

sive understanding of the data. I will introduce biMAP (Section 5.1) and cabiMAP

(Section 5.2) which are created to visualize both cells and genes in a 2D planar in a

non-linear manner in this chapter.

5.1 BiMAP with the cell-gene SNN graph

As discussed in Section 2.8.2, UMAP is a technique that reduces the dimension of

data by constructing a nearest neighbor graph and optimizing it based on a cost function

that preserves both local and global structure in the data. In the context of CAbiNet, a

cell-gene SNN graph has already been constructed, so we utilize it as input for UMAP.

This allows the lower-dimensional embedding to capture the balance between the local

and global structure present in the cell-gene SNN graph. The resulting embedding,

referred to as biMAP, positions cells and cell-type-specific marker genes in proximity

to each other in a two-dimensional space.

The implementation of biMAP in the CAbiNet package involves calling the umap

function from the R package umap. Since the SNN graph is used as input, the function

doesn’t require the number of neighbors of kNN graph as an input any more, since

the neighbourhoods have already been decided in the SNN cell-gene graph. The SNN

graph will be directly used for nonlinear embedding. An important parameter for the

umap function is n_component, which is typically set to 2 to generate a two-dimensional

embedding, serving as the default parameter.

In the CAbiNet package, an interactive output of biMAP is provided, allowing

the names of cells and genes to be displayed on the screen and observed by hovering the

mouse cursor over the corresponding points in the biMAP. This functionality enables
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users to explore the detected marker genes of cell clusters in a more convenient and

intuitive manner. Examples of biMAP and interactive biMAP can be seen in Fig. 5.1.

The points with black boundaries in the biMAP represent genes, while the others are

cells. In a biMAP, the points can be colored by the biclusters they belong to, thus the

grouping of cells and corresponding marker genes can be easily observed. With labeling

the genes with their names on biMAP or moving mouse over points on an interactive

biMAP to print the information of genes onto screen, the marker genes can be easily

read and used to annotate cell clusters. This function of biMAP helps scientist with the

cell annotation process.
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Figure 5.1: CAbiNet step 4: Visualization of biclusters. CAbiNet offer a function to
generate a simultaneous embedding of cells and genes in a biMAP. The cells and genes
can either be color-coded by the biclustering results or the annotation of cell types. The
points with black boundaries in the biMAP represent genes, while the other points cells.
CAbiNet also allows an interactive exploration of the biMAP. The name of genes and
cells can be printed onto the screen with hovering mouse cursor on the data points on
the biMAP.
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5.2 CabiMAP

The biMAP embedding heavily relies on the structure of the SNN graph, which

itself is determined by the parameters used during the construction of the cell-gene

graph. One of the key parameters that significantly influences the results is the number

of neighbors in the SNN cell-gene graph, denoted as k. Choosing a value of k that

is either too large or too small may adversely affect the representation of cell-gene

relationships.

Furthermore, the choice of the parameter k significantly impacts the spatial ar-

rangement of genes in the SNN graph-based biMAP. When a specific value of k is

chosen, the biMAP may position a subset of marker genes in close proximity to the

corresponding cells, while other genes that exhibit similar expression patterns to the

marker genes could end up being placed far away from their associated cells. This

phenomenon arises from the inherent characteristics of the cell-gene graph construction

process. If an inappropriate value of k is used for determining the number of neighbors,

certain genes might lose their connections with the cells they should be associated with

in the cell-gene graph. Consequently, these genes would be excluded from the biclus-

ters they should belong to. Furthermore, missing of edges/connections between nodes

in the graph will lead to segmentation of clusters in the biMAP visualization.

To address these issues, I propose an improvement to the embedding process by

generating an embedding directly from the CA projections of cells and genes. This

alternative approach aims to mitigate the limitations associated with the SNN graph-

based biMAP and provide a more accurate representation of the relationships between

genes.

Since the goal is to embed both genes and cells together, the first step is to merge

the gene and cell coordinates into a single matrix. This is achieved by row-wise con-

catenating the cell’s principal coordinates F (Equation 2.17) with the gene’s principal

coordinates G (Equation 2.16). Let’s assume the concatenated matrix as A, which can

be represented as follows:

A =

F

G

 .
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The next step is to calculate a distance matrix between the features (including both

genes and cells) in the matrix A. Since the direction of gene and cell vectors matters

for gene-cell association interpretation, using cosine distance to calculate the similarity

of items (both genes and cells) in matrix A would be an alternative to using Euclidean

distance. The matrix of cosine distance measure can be written as

D =
AAT

|AAT |
=

FFT FGT

GFT GGT

 /|AAT |.

Next, the cosine distance matrix D is utilized as input for UMAP to generate

lower-dimensional embedding, the correspondence analysis factor based MAPping

of biclusters (cabiMAP).

The cabiMAP is applied to one of the simulated data sets mentioned in Section 3.1

and two experimental scRNA-seq data sets. The results and discussion can be found

from Section 8.1, 8.2 and 8.3.
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6 | Benchmarking

In this chapter, I will evaluate the performance of CAbiNet by comparing it with

the existing algorithms with both simulated and experimental scRNA-seq data sets. The

evaluation strategies will be introduced in Section 6.1. The evaluation of CAbiNet on

simulated data sets will be demonstrated in Section 6.2 and evaluation on experimental

data sets will be introduced in Section 6.3. The performance of CAbiNet on detecting

the gene modules will be illustrated in Section 6.4.

6.1 Evaluation strategies

CAbiNet is developed for dealing with scRNA-seq data. Its objective is to identify

cell clusters characterized by cell-cluster-specific expressed genes, known as cell-gene

biclusters. To assess its performance, a comparison is conducted against eight existing

biclustering algorithms. Among these algorithms, seven are primarily designed for mi-

croarray and bulk RNA-seq data analysis, while the remaining algorithm is specifically

designed for scRNA-seq data. The existing biclustering algorithms considered in the

evaluation are Xmotifs, Unibic, s4vd, Plaid, IRISFGM, QUBIC, CCA, and Bimax (see

brief introduction of these algorithms in Section 2.7).

The effectiveness of biclustering algorithms can be assessed by comparing the

identified biclusters with known ground truth biclusters. However, in real experimental

data, there is no available ground truth for biclusters. To address this, three simulated

data sets with varying levels of variation in the designed block biclusters were generated

following the procedures introduced in Section 3.1. The effectiveness of the bicluster-

ing algorithms on experimental data is evaluated by utilizing the data sets presented in

Table 3.1 for the analysis.

The simulated and experimental datasets undergo a preprocessing step outlined in

Section 3.2. Specifically, the rows of all data sets are subsetted to include the top 2000,

4000, and 6000 variable genes. These sub-matrices containing log-transformed counts

are then used as input for the biclustering algorithms.

Each algorithm has several adjustable parameters, and different parameter combi-

nations can lead to different clustering results. To ensure fairness, each algorithm is
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run 108 times with different parameter combinations for each matrix. The parameter

values are either suggested by the algorithms or are set close to their default values. The

combinations of parameters allows a fair comparison of the algorithms, eliminating of

the influence of parameter choices.

For the simulated data sets, where the ground-truth biclusters are available, the

agreement between the detected biclusters and the known ground-truth biclusters is as-

sessed using clustering error, recovery, and relevance scores (see Section 2.7.3). Higher

scores indicate a greater consistency between the detected biclusters and the ground-

truth biclusters. The overlapping between detected and ground-truth cell clusters and

gene clusters are evaluated by ARI (see Section 2.7.3). The detailed evaluation results

can be found in Section 6.2.

As for the experimental scRNA-seq data sets, since the ground-truth information

of cell-gene biclusters is unavailable, the biclustering results are evaluated based on the

clustering of cells and genes separately. ARI score is used in this case to evaluate the

overlapping between detected cell clusters and the ground-truth clusters. The results

will be introduced in Section 6.3.

In addition to evaluating the clustering results, the scalability of the algorithms is

assessed by recording their running times. The results can be found in Section 6.3 as

well.

6.2 Benchmarking of biclustering algorithm on simulated data

sets

Figure 6.1 presents the evaluation results of biclustering algorithms on simulated

data sets. The data sets are categorized based on the level of noise present in the data,

ranging from the least noisy to the most noisy, and are named accordingly as easy,

medium, and hard. Each algorithm is run 108 times with different parameter combina-

tions for each data set, and the evaluation results are displayed as boxplots in the figure.

Each boxplot displays a unique category of the clustering result. Figure 6.1 displays the

ARI scores for cell clustering, gene clustering, the recovery score of biclustering, and

the relevance score of biclustering, represented as subfigures a-d, respectively.
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Figure 6.1A illustrates the ARI scores of cell clustering results. It shows that CAb-

iNet with Leiden and spectral clustering achieves the highest ARI scores, indicating

that CAbiNet provides the most accurate cell clustering results. Plaid also performs

well and is ranked second in terms of cell clustering. Notably, CAbiNet demonstrates

robustness to noise in the data, as its ARI scores remain consistently high regardless of

the amount of noise present.
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Figure 6.1: Benchmarking of CAbiNet biclustering against other biclustering algorithms with simulated data sets. A, The ARI of cell
clustering in the biclustering results gotten with all parameter choices for each algorithm on simulated scRNA-seq data sets are displayed as
boxplot. B, The ARI of gene clusters in the biclusters detected by CAbiNet. C shows the recovery score of biclusters, it tells the overlapping
between detected and ground-truth biclusters. D shows the relevance scores of biclusters.
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Figure 6.2: Benchmarking of CAbiNet biclustering against other biclustering al-
gorithms on simulated data sets. The mean ARI of cell clusters in the (bi-)clustering
results over all parameter choices for each algorithm on both real and simulated scRNA-
seq data sets are shown on figure. The values are visualized as color-codes and values.
The entries colored as grey indicate failure occurs while running the respective algo-
rithm on a certain data set. This can be due to either a few runs failing on a data set or
the algorithm only detecting a single bicluster.

In terms of gene cluster detection, CAbiNet demonstrates the second-best perfor-

mance among the algorithms (Fig. 6.1). It is important to note that although Plaid may

appear superior to CAbiNet in terms of cell clustering based on the boxplot, it does not

consistently perform well in detecting biclusters under certain parameter combinations

(Fig. 6.2 and 6.3). Figure 6.2 represents the mean ARI values for cell clustering, while

Fig. 6.3 for gene clustering. Brighter grids indicate higher values and better clustering

results. Gray blocks indicate cases where the ARI values of some algorithm runs are

not applicable (NA), resulting in NA mean ARI values.

In terms of evaluating biclusters using recovery and relevance scores, CCA emerges

as the top-performing algorithm (Fig. 6.1C-D), with CAbiNet achieving the second-best

performance.
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Figure 6.3: Benchmarking of CAbiNet biclustering against other biclustering al-
gorithms on simulated data sets. A displays the mean ARI of gene clustering in the
(bi-)clustering results over all parameter choices for each algorithm on both real and
simulated scRNA-seq data sets. The values are visualized as color-codes and values.
The entries colored as grey indicate failure occurs while running the respective algo-
rithm on a certain data set. This can be due to either a few runs failing on a data set or
the algorithm only detecting a single bicluster.

6.3 Benchmarking of biclustering algorithm on experimental

data sets

For the experimental data sets, the top five algorithms in defining cell clusters are

CAbiNet with the leiden algorithm (CAbiNet_leiden), CAbiNet with spectral clustering

algorithm (CAbiNet_spectral), Seurat, Monocle3, and Plaid (see Fig. 6.4). Among the

eight other biclustering algorithms, CAbiNet with leiden performs the best on nine out

of ten data sets, while Plaid performs the best on the Tirosh data set. Surprisingly, the

scRNA-seq-oriented biclustering algorithm IRISFGM does not perform as well as ex-

pected. When comparing with cell clustering algorithms such as Seurat and Monocle3,

CAbiNet with leiden outperforms them on eight out of ten data sets, performs similarly

to Monocle3 on the FreytagGold data set, and performs worse than Monocle3 on the

Tirosh data set. It is worth noting that when observing the x-axis of Fig. 6.4, which

represents the data sets ordered from smallest to largest sizes, CAbiNet is successful
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Figure 6.4: Benchmarking of CAbiNet biclustering against other biclustering al-
gorithms and scRNA-seq analysis toolkits on experimental scRNA-seq data sets.
Mean Adjusted Rand Index of (bi-)clustering results over all parameter choices for each
algorithm on both real and simulated scRNA-seq data sets. The entries colored as grey
indicate a failure of the respective algorithm on a certain data set, the values are N/As
(Not applicable). This can be due to either all runs failing on a data set or the algorithm
only detecting a single bicluster.

on all data sets, while Monocle3, Xmotifs, and s4vd failed to handle large data sets

(indicated by gray blocks in the figure). It is important to note that the gray blocks in

the Fig. 6.4 indicate a complete failure of the algorithms rather than the occurrence of

failures during their execution.

It is important for a good biclustering algorithm to not only generate accurate bi-

clusters but also run efficiently on large data sets. To assess the scalability of algo-

rithms, the running time of each algorithm on each experimental data set was recorded

and summarized in Fig. 6.5. Among the most accurate algorithms, including CAbiNet

with leiden (denoted as CAbiNet_leiden) and spectral clustering (CAbiNet_spectral),

Seurat, Monocle3, and Plaid, the running time of CAbiNet is comparable to the other

three algorithms on small data sets. However, on larger data sets, Plaid runs slightly

faster than the other four algorithms (for data set sizes, refer to Table 3.1). It is worth
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Figure 6.5: Running time of algorithms on experimental data. The boxplots demon-
strate the running time of each algorithm on each data set over all the 108 runs. The
x-axis shows the running time in second.

noting that Bimax has the fastest running time on all tested data sets, but its ARI scores

are significantly lower, indicating that it can hardly detect meaningful cell clusters. Fur-

thermore, when compared to IRISFGM, which is specifically designed to handle high

drop-outs in scRNA-seq data, CAbiNet is faster on all tested data sets.

6.4 Gene module detection and evaluation

The biclusters produced by biclustering algorithms naturally partition the genes

into gene clusters, also known as gene modules. These gene clusters consist of genes
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that exhibit similar expression patterns across the cells. Such genes are considered to

be co-expressed, meaning they share common expression landscapes. Co-expressed

genes often participate in specific biological pathways, working collectively to regulate

various cellular processes. In this section, I will evaluate the gene modules detected by

CAbiNet and other clustering algorithms and benchmark the algorithms to investigate

their performance on identifying biological meaning gene clusters.

Notably, the gene node pruning procedure in CAbiNet (see Section 4.2) is designed

to preserve genes that are more likely to serve as marker genes for cell clusters while

discarding those that do not exhibit similar cell neighbors among their gene neighbors.

However, setting a threshold on graph pruning may result in the removal of a significant

number of genes, thereby hindering the detection of gene modules. To utilize CAbiNet

as a gene module detection method, it is necessary to deactivate the gene selection

function.

6.4.1 Evaluation criteria of gene modules

CAbiNet and the biclustering algorithms discussed in Section 2.7.2 were employed

to analyze the experimental data sets provided in Table 3.1. Each algorithm was exe-

cuted using 108 different parameter combinations on each data set, as previously men-

tioned. It should be noted that certain methods, including CAbiNet, can produce clus-

ters consisting of cells, genes, or both. In this context, gene modules refer to the gene

partition within all the generated (bi-)clusters containing genes.

To assess the gene modules in the biclustering results, gene enrichment analy-

sis was conducted on the gene clusters identified by each biclustering algorithm. The

gene enrichment analysis was done with the R package clusterProfiler. Three gene an-

notation databases, namely Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genome (KEGG), and Reactome, were employed for gene module enrichment. A

meaningful biclustering algorithm should partition the genes into modules that exhibit

significant enrichment in biological processes or regulatory networks.

Enrichment analysis was conducted on the biclusters identified by each algorithm.

Each bicluster may exhibit enrichment in multiple pathways, although the significance

of these enriched pathways may vary. As a result, we obtain a range of pathways associ-
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ated with each bicluster across all the algorithms. This diversity of pathways makes the

comparison between biclusters challenging. To simplify the comparison, the enriched

pathway with the lowest p-value for each bicluster was selected as a representative. For

the biclusters identified by each algorithm in each run, the most significantly enriched

pathway was retained for the gene modules in each cluster. Subsequently, the p-values

for the pathways were compared across different algorithms. The best-performing algo-

rithm is expected to exhibit the lowest p-values for all the biclusters obtained from the

108 runs with different parameter combinations. The evaluation results can be found in

Section 6.4.2.

6.4.2 Benchmarking of gene modules

The evaluation of gene clustering results involves assessing the enrichment of path-

ways associated with each gene cluster obtained from nine biclustering algorithms on

five experimental data sets. The p-values corresponding to the most significant pathway

for each cluster are collected and compared across different algorithms. The distribu-

tion of these p-values is presented as boxplots in Fig. 6.6. The results indicate that

CAbiNet achieves the most significant p-values for enriched pathways in two out of

the five data sets (Darmanis and FreytagGold), while obtaining the second most signif-

icant p-values in one data set (PBMC_10X) and the third most significant in two data

sets (BaronPancreas, Tirosh_nonmaglignant). Bimax performs the best on two data sets

(BaronPancreas, PBMC_10X) and the second best on three data sets. This suggests that

CAbiNet exhibits comparable performance to Bimax in detecting biologically mean-

ingful co-expressed gene modules.

Furthermore, the percentage of significantly enriched pathways for each gene mod-

ule is calculated, and the mean percentages for each algorithm on each data set are

shown in Fig. 6.7. Bimax is demonstrated to be the best-performing algorithm, as the

gene modules detected by Bimax exhibit greater significance compared to other algo-

rithms. S4vd shows the second best performance, while CAbiNet, Plaid, and QUBIC

demonstrate similar effectiveness in this regard.

To sum up, CAbiNet is comparable with existing gene module detection bicluster-

ing algorithms that have been compared with.
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7 | Finding optimal parameter settings for clustering

Determining the optimal clustering results for a data set with unknown cell types

can be challenging. In current scRNA-seq data analysis, researchers often adjust pa-

rameters multiple times to obtain clustering results. They then identify marker genes

for each cluster using statistical tests and compare them to prior knowledge to assess

the quality of the results. This iterative process can be tedious, especially for algo-

rithms with numerous parameters. Therefore, an algorithm which can automatically

determines the best clustering results within several trials is necessary. Adjusted rand

index (ARI, see Section 2.5.5) is used to determine the overlapping between detected

clusters and the ground-truth clusters, which tells the goodness of the clustering result.

Parameters that optimizing ARI will generate the best clustering result. This initialized

my idea to create a model to predict the ARIs of data without ground-truth of clusters.

The created random foreset model will be introduced in this chapter.

As mentioned earlier (see Section 2.5.5), the Silhouette score, Calinski-Harabasz

index, Davies-Bouldin score and entropy are commonly used to assess the quality of

clustering results. Firstly, people will try different parameter combinations of clustering

algorithms and then calculate the scores for the clustering results of each run. These

metrics theoretically indicate the effectiveness of the clustering outcome. A higher

Silhouette score, Calinski-Harabasz score, and a lower Davies-Bouldin score, lower

entropy generally suggest better clustering results. The larger the ARI is, the better the

clustering quality is. However, in practical scenarios, the relationship between these

metrics and the quality of clustering results is not always consistent.

Figure 7.1 depicts the relationship between the evaluation metrics and the cluster-

ing quality, which is measured by Adjusted Rand Index (ARI) to determine the overlap-

ping between detected clusters and ground-truth clusters. The clustering was performed

on eight experimental scRNA-seq datasets (as listed in Table 3.1) using CAbiNet with

both spectral clustering and Leiden clustering. For each data set, the algorithms were

run with 360 parameter combinations by varying number of top variable genes, the

dimensions of CA space, the number of nearest neighbours. The clustering results

were then evaluated using the aforementioned intrinsic metrics and extrinsic measure

ARI. The pairwise correlation between ARI, Silhouette score, Calinski-Harabasz score,

94



Davies-Bouldin score, entropy and number of detected clusters ("Nrcluster") is illus-

trated in Fig. 7.1. In this figure, the scatter plots show the correlation between each pair

of scores with each point representing a clustering trial. The points are colored by the

data sets the clustering was tested on. The first row of the figure shows the correlation

between ARI and the other four types of metrics. It can be observed that neither of

these metrics is linearly correlated with ARI. Moreover, a higher silhouette score does

not necessarily coincide with a high ARI, which means a higher or lower value of these

metrics can not indicate accurately the clustering is good or bad. Therefore, relying

solely on one of these intrinsic score may mislead the interpretation of quality of clus-

tering. Hence, there is a need for a novel measure that accurately reflects the quality of

clustering.

Based on the insights gained from Fig. 7.1, which suggests that a single metric can

not effectively indicate the true quality of clustering results in most cases, I propose an

approach to combine these metrics to predict the clustering quality, i.e. to approximate

the ARI. This is achieved by employing a Random Forest regression model, where the

Silhouette score, Calinski-Harabasz index, Davies-Bouldin score, entropy and ’Nrclus-

ter’ serve as input features, while the ARI is used as the output value.

Since the data sets are sequenced by different techniques and by different labs,

the distributions of each score in different data sets can be different. This can also be

observed from the density plots on the diagonal of Fig. 7.1. The mean and variance of

metrics vary along data sets. To eliminate the batch effect on model training, I trained

several random forest regression models separately on each data set. Besides, in order

to make the model applicable to new data sets, the eight data sets are divided to two

groups: a training group with 7 data sets and a validation group with one data set. Then

the model is trained on the training group and tested on the test group. This strategy

avoids the model from over-fitting.

The model was constructed with the following steps:

• Select 7 out of 8 data sets as training sets and the remaining one as testing set.

The input features are Silhouette score, Calinski-Harabasz index, Davies-Bouldin

score, entropy and ’Nrcluster’, the predictable value is ARI.
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• Train random forest regression models on each training set separately.

• Predict the ARI score of the testing set by using all the trained models, and cal-

culate the average predicted ARI score and output it as the predicted ARI value.

Once the user has a clustering result, they can compute the mentioned metrics and

use them as input values for the well-trained Random Forest model. By utilizing this

model, the ARI of the clustering results can be predicted. These indices are assigned

different weights in the RF regression model to achieve accurate ARI prediction for the

clustering results.

This process was repeated for 8 times, with each time leaving out one of the data

sets. The predicted ARI scores on the leave-out data set are shown in Fig. 7.2. It is

shown that this model can predict ARI of four out of eight data sets quite well, includ-

ing PBMC_10X, ZeiselBrain, BaronPancreas and brain_organoids data. The model has

difficulties in predicting the ARI of FreytagGold and Tirosh data. For some runs the

predicted ARI values are not as high as expected. However, this model fails for Dar-

manis and tabula_sapiens data ARI prediction, where no correlation can be observed

between the predicted and true ARI values.

Potential reasons for the failure of model on some data sets could be

• Sequencing techniques. Darmanis and Tirosh data sets are sequenced by SMART-

Seq, while most of the other training sets are sequenced by 10X. Readouts of

different techniques influence the metrics values.

• Sparsity. Failure on FreytagGold data may be due to the data sparsity. According

to Table 3.2, this data set is denser than other ones. Therefore, the intrinsic values

of this data set are smaller than that of other data sets, making the prediction

inaccurate.

• Insufficient training data. The model is only trained on seven data sets now, and

the data sets only cover limited sequencing techniques, data sparsity and data

resources (tissue types, species etc).

Considering the potential reasons listed above, this model can further be improved

by involving more data sets covering different sequencing techniques and more various
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Figure 7.1: Correlation between evaluation indices of clustering results. For each
combination of parameter choices, a biclustering result is defined by CAbiNet. For
each clustering, the ARI, Silhouette score, Calin Harasz, Davies Bouldin score, entropy
and number of detected clusters ("Nrcluster") are calculated to evaluate the clustering
quality. The correlation between each pair of the metrics are visualized by the scatter
plots. Points of different data sets are colored differently.

data characteristics. This model is particularly valuable when working with data sets

that lack a ground truth for evaluating clusters. The predicted ARI can serve as an

indicator for parameter tuning and assessing the quality of the clustering. In an ideal

scenario where an exhaustive parameter search is conducted, the parameter combination

that yields the highest predicted ARI would be considered the optimal choice, leading to
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the best clustering outcomes. However, performing a comprehensive parameter search

is often impractical in real-world situations. Instead, a local grid search of parameters is

commonly employed to achieve locally optimized clustering results. The predicted ARI

can then serve as a criterion for determining when the clustering is locally optimized.

0.52

0.56

0.60

0.0 0.2 0.4 0.6 0.8
ARI

P
re

di
ct

io
n

Prediction on  DarmanisA

0.52

0.54

0.56

0.58

0.60

0.4 0.6 0.8 1.0
ARI

P
re

di
ct

io
n

Prediction on  FreytagGoldB

0.40

0.45

0.50

0.55

0.4 0.5 0.6 0.7 0.8 0.9
ARI

P
re

di
ct

io
n

Prediction on  PBMC_10XC

0.45

0.48

0.51

0.54

0.25 0.50 0.75
ARI

P
re

di
ct

io
n

Prediction on  TiroshD

0.45

0.50

0.55

0.60

0.4 0.6 0.8
ARI

P
re

di
ct

io
n

Prediction on  ZeiselBrainD

0.48

0.52

0.56

0.4 0.6 0.8
ARI

P
re

di
ct

io
n

Prediction on  BaronPancreasE

0.45

0.50

0.55

0.3 0.4 0.5 0.6
ARI

P
re

di
ct

io
n

Prediction on  brain_organoidsF

0.45

0.50

0.55

0.60

0.65

0.0 0.1 0.2 0.3 0.4 0.5
ARI

P
re

di
ct

io
n

Prediction on  tabula_sapiensG

Figure 7.2: Predictive performance of random forest. The scatter plot depicts the
relationship between the ground-truth ARI, represented on the x-axis, and the predicted
ARI, shown on the y-axis. A linear regression model is applied to fit the scatter plot,
and the fitted equation along with the residuals between the fitted and original values
are presented on the figure.
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8 | Application to particular data sets

8.1 Applying CAbiNet to synthetic data

To provide a comprehensive demonstration of the data analysis capabilities of

CAbiNet, I initially applied CAbiNet to the simulated scRNA-seq data set mentioned in

Section 3.1. The simulated data set with name easy was firstly pre-processed following

the steps mentioned in Section 3.2. Then the most variable 6,000 genes were retained.

The cutoff 6,000 was chosen to cover all five gene modules that have been designed.

CA was done on the truncated data set with R package APL. The cell-gene graph then

was built up by CAbiNet with k = 100.

CAbiNet successfully divides the cells and genes into six biclusters. The ARI of

the cell clustering result is 0.948, and the ARI of the gene clustering result is 0.947,

indicating that CAbiNet accurately identifies the biclusters.

However, the performance of the biMAP, which embeds the SNN cell-gene graph,

is not satisfactory. Figure 8.1 illustrates the embedding of the SNN graph constructed

from a simulated dataset without gene pruning (Fig. 8.1). biMAP in Fig. 8.1A shows

the cells colored by ground truth cell clusters. The cells supposed to be from the same

cluster are split into two clouds (e.g. cells labeled as ’cell_B’). Figure 8.1B shows that

the marker genes are distant from their corresponding cell types, indicating that the

biMAP fails to capture the relationships in this simulated data set. This issue may be

attributed to the construction of the SNN graph, where the connections between cell and

gene nodes are too weak due to parameter choices, causing the link between them to be

lost in the biMAPs. This observation triggers the development of cabiMAP.

Figure 8.2 presents the cabiMAP embedding of the same simulated data set, with

the panel on the top showing the embedding of cells colored by ground-truth cell clus-

ters. The panel on the bottom shows the cabiMAP embedding of both cells and genes

colored by the biclustering detected by CAbiNet. The points with black borders repre-

sent genes while the others representing cells.

Comparing with Fig. 8.1, the cabiMAP in Fig. 8.2 improves the embedding of

cells and genes. CabiMAP positions cells with their marker genes closer to each other.

The cell clusters and corresponding co-clustered genes can be easily recognized from
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Figure 8.1: BiMAPs of simulated data set. A, biMAP only showing cell clusters and
cells are colored by the ground-truth clusters. B, biMAP with cells and genes colored
by biclusters detected by CAbiNet.

the figure.

The underlying reason could be concerned with UMAP algorithm. UMAP tends

to distort the actual distance between points when calculating the non-linear embed-

ding. biMAP uses different distance measures for cell-cell/gene-gene and cell-gene

subgraphs and the number of nearest neighbours on each graph can also be different,

while cabiMAP uses cosine distance to measure similarity between all of the points, it

is more likely for UMAP to place the points in proper embeddings in cabiMAP.
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with black borders represent genes, while the remaining points represent cells.

8.2 Analysing scRNA-seq data with CAbiNet: PBM-C10x data

To showcase the fundamental capabilities of CAbiNet, we utilize a single-cell

PBMC10x RNA-seq data set (Ding et al., 2020b) as an example. This data set consists

of 3,176 cells, which have been categorized into nine distinct cell types. The annotation

of cells has been performed by experts using fluorescence-activated cell sorting (FACS)

methodology. Notably, the annotated cell types encompass B cells, CD14+ monocytes,

and natural killer cells, among others. The data set encompasses a total of 11,881 ex-

pressed genes.

The PBMC10x data set (as listed in Table 3.1) was pre-processed according to pre-
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Figure 8.3: Application of CAbiNet on PBMC10x data. A, Joint biMAP visualiza-
tion of the cell-gene biclustering results by CAbiNet, with genes and cells from the
same bicluster colored identically. Genes are black circles filled in with the color of the
associated cell cluster and cells are smaller dots. Some known marker genes have been
labeled manually. An interactive version of this figure can be found in the Supplemen-
tary Data. B, The agreement between the expert annotation and CAbiNet biclustering
results is shown in the Sankey plot.

processing procedures illustrated in Section 3.2 and the top 2,000 most variable genes

were retained. This data matrix was subjected to CA and 80 dimensions were kept using

the Bioconductor package APL. The cell-gene graph was built up with CAbiNet with
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kc = 20, kg = 20, kcg = 10 and kgc = 50. Then Leiden clustering was applied to the

graph to find biclusters. Getting the biclustering results from the function caclust

in our package, we removed those clusters which contain fewer than 10 genes. The

biMAP coordinates were calculated with the function biMAP with k = 10 and plotted

with the function plot_biMAP. The feature biMAPs in Fig. 8.4 and 8.5 were drawn

using plot_feature_biMAP.

As mentioned earlier, CAbiNet encompasses dimensionality reduction, cluster-

ing, and visualization steps. Following standard pre-processing procedures (Section

3.2), CAbiNet calculates the CA and applies it to project the PBMC10x data into a

lower-dimensional space. Additionally, CAbiNet constructs the SNN graph. The algo-

rithm proceeds by identifying biclusters and visualizing the outcomes using a biMAP

(Fig. 8.3A), achieved by applying the Uniform Manifold Approximation and Projection

(UMAP) technique on our cell-gene SNN graph. The number of genes and cells in each

cluster is shown in Table 8.1.

cluster ncells ngenes

1 868 98
2 666 30
3 488 100
4 372 124
5 312 23
6 227 59
7 90 13
8 67 553
9 54 54
10 31 55
11 0 837
12 0 14

Table 8.1: Number of cells and genes in each bicluster.

There are 12 clusters in total, including 10 biclusters which contain both genes

and cell, and two mono-clusters which only have genes. The clustering quality of cell

clusters is measured by the ARI. CAbiNet achieves an ARI of 0.79 on this data set,

indicating a good agreement between the CAbiNet clustering and the expert annotation.

Figure 8.3B shows a Sankey plot illustrating the correspondence between annotation

and computed clusters. The large agreement allows us to compare our results with the
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expert annotations.

The biMAP visualization in Fig. 8.3A displays the cell and gene clusters. The

genes are represented by black circles filled with the color corresponding to their asso-

ciated cell cluster. Within the biMAP, there are clusters located in the center (clusters 11

and 12) that solely consist of genes. These gene clusters are not specific to any particu-

lar cell cluster. In Fig. 8.4, the location of cells and genes are determined by the biMAP,

while the color of cell points is determined by the expression level of the gene which is

highlighted as a red dot in the plot. The higher the expression level of the gene is, the

brighter is the color. It is demonstrated that these genes exhibit ubiquitous expression

across various cell types. Consequently, they do not provide meaningful information

for differentiating the clusters. Therefore, it is reasonable for CAbiNet to place these

genes in the cloud in the center.

The biMAP representation effectively positions cell-type specific genes in close

proximity to their corresponding cell clusters. To facilitate interpretation and validation,

we manually labeled known marker genes for each cell type on the biMAP. For instance,

the genes S100A9 and CD14 are located near cluster 4 in Fig. 8.3A, and these genes

are established markers for CD14+ Monocytes. This proximity strongly suggests that

cluster 4 corresponds to CD14+ Monocytes. The feature plots in Fig. 8.5 confirm the

high expression of these two marker genes within cluster 4. The Sankey plot in Fig.

8.3B further supports the identification of cluster 4 as CD14+ Monocytes.

Similarly, the marker genes FGFBP2 and GNLY for natural killer cells are situated

near cluster 6, indicating the identity of this cell cluster. The expression pattern of

these marker genes in the feature plots (Fig. 8.5) and their alignment with the expert

annotation in the Sankey plot (Fig. 8.3B) also confirm the assignment of cluster 6 as

natural killer cells.

Interestingly, the biMAP reveals a distinction among the expert-annotated B cells,

represented by two clusters labeled 3 and 5 in Fig. 8.3. Each subgroup exhibits its

own unique set of marker genes, indicated by the colors that correspond to the cells in

the same cluster. Cluster 3, depicted in cyan-blue, appears to consist of naive B cells

based on its proximity to the marker genes FCER2 and TCL1A (Fig. 8.3A) (Ramesh et

al., 2020). On the other hand, cluster 5 (light-yellow color) includes genes AIM2 and
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Figure 8.4: Feature biMAPs for PBMC10x data. In these biMAPs, cell points are
colored by the expression level of the gene that has been highlighted and labeled in red
and gene points are colored in gray. The highlighted genes are located at the center of
biMAP, without being close to any cell clusters, they have roughly even express levels
in the cell clusters which is consistent with the biclustering result that these genes are
not specifically expressed in any cell cluster.

TNFRSF13B, which are associated with memory B cells (Ramesh et al., 2020; Franzén,

Gan, & Björkegren, 2019), suggesting the identity of cluster 5 as memory B cells in

Fig. 8.3A. The expression levels of these genes, as depicted in the feature plot in Fig.

8.5, provide further support for this interpretation.

Moreover, we draw association plots (APLs, see Section 2.4.8) for cluster 3 and 5

to see if the detected potential marker genes are reasonable. Firstly, the centroid of each

cluster is calculated and all the cells and genes are projected to the direction of centroid

and the orthogonal direction of the centroid. The projection are visualized as the APL

as shown in Fig. 8.6, where Fig. 8.6A shows the APL of cluster 3 and Fig. 8.6B shows

the APL of cluster 5. The red crosses in Fig. 8.6A and B represents cells belonging
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and position of selected marker genes are shown on the biMAP. The grey points are
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CD14+ monocytes marker genes S100A9 and CD14 in bicluster 4 are highly expressed
in cells that co-clustered with them. The natural killer cells marker genes FGFBP2 and
GNLY are highly expressed in the co-clustered cells in bicluster 6. FCER2 and TCL1A
are highly expressed in bicluster 3, while AIM2 and TNFRSF13B are highly expressed
in bicluster 5, indicating that cells in these two clusters are different B cell subtypes.

to cluster 3 and 5 correspondingly. The red circles in plots represent the co-clustered

potential marker genes for each cluster. The remaining blue points represent genes from
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other clusters and remaining dark red crosses represent cell from other clusters. Most

of the detected marker genes are located at the same quadrants with the cells and have

large positive values in x-axis, meaning that the genes are positively associated with the

co-clustered cells, i.e. the genes are potential marker genes of the cells. The genes that

are further to the right and closer to x-axis, the more likely these genes are marker genes

of the cells in the observed cluster.

We identified six known marker genes associated with B cells in clusters 3 and 5

of the APLs (Fig. 8.6A and B). In these plots, marker genes are denoted by red circles.

Notably, in cluster 3, FCER2 and TCL1A appear as the rightmost genes along the x-

axis, while AIM2 and TNFRSF13B which are co=clustered with cluster 5 are positioned

closer to the origin. The B cell common marker, CD19, falls between these two sets

of marker genes. Conversely, the arrangement is reversed in Fig. 8.6B. These APLs

illustrate that clusters 3 and 5 possess distinct sets of cluster-specific marker genes,

suggesting that cells within these clusters represent subtypes of B cells.

Notably, even though the detected marker genes are positively associated with the

co-clustered cells in Fig. 8.6, there are still some genes that are close to zero, meaning

that the association between these genes and the co-clustered cell are weak. To test if

the detected marker genes are significant or not, we calculated the Sα-score (Gralinska

& Vingron, 2023) of the genes in cluster 5. As shown in Table 8.2, 21 out of 23 detected

marker genes have positive Sα-scores (see Section 2.4.8), while the other two having

negative values. The larger the Sα score of a gene is, the more likely the gene is a marker

gene of the observed cluster. This indicates that most of the co-clustered genes are the

potential marker genes, but there is still a chance to have false positive predicted marker

genes in the co-clusters. Therefore, it is recommended to apply APL and Sα-score to

the detected bicluster to double check the significance of the co-clustered genes. The

genes that with positive Sα-scores are the ones that are true positive marker genes.

The biMAP depicted in Fig. 8.3A provides a visual representation of cells and their

associated marker genes, highlighting both the similarities and differences among cells.

However, it may introduce some distortions in capturing the homogeneity and hetero-

geneity among genes due to the construction of the cell-gene graph. To address this

limitation, we applied cabiMAPs to the PBMC data, resulting in different embeddings
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Figure 8.6: Association plots for bicluster 3 and bicluster 5 in which some marker
genes are highlighted. A, Association plot for bicluster 3. The genes in bicluster 3 are
points in red, while the other genes are in blue. The cells in bicluster 3 are crosses in
red, while the other are crosses in dark red. B, Association plot for bicluster 5. The
genes in bicluster 5 are points in red, while the other genes are in blue. The cells in
bicluster 5 are crosses in red, while the other are crosses in dark red. The more a gene
is to the right of x-axis, the more likely this gene is a marker gene of the cells that are
highlighted in red. The known marker genes are located at the positive x-axis, showing
high association with the corresponding cell clusters.

for cells and genes compared to the biMAP with the SNN graph. These alternative em-

beddings aim to provide a clearer representation of the homogeneity and heterogeneity

among genes in the data set. This is shown in Fig. 8.7.

Figure 8.7 shows cabiMAP which was built on the cosine distance between prin-

cipal row and column coordinates (see Equation 5.2). Figure 8.7A shows the caniMAP

embedding of cells and the cells are colored by the expert annotated cell types. Figure

8.7B shows the cabiMAP of cell-gene biclusters, with genes being plotted as points

with black boundaries and remaining points as cells. Both cells and genes are colored

by CAbiNet detected biclusters.

The marker genes that have been shown in Fig. 8.3 are also labeled in Fig. 8.7B.
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Genes Alpha Score Rank

ENSG00000253701 2.82 1
IGHA1 2.56 2
AIM2 2.19 3
TNFRSF13B 2.07 4
LINC01781 2.06 5
POU2AF1 1.29 6
BLK 1.15 7
LYPLAL1 0.86 8
CD24 0.82 9
JCHAIN 0.82 10
PDLIM1 0.54 11
GNG7 0.53 12
RALGPS2 0.52 14
ARHGAP24 0.5 16
SPIB 0.5 17
PPP1R14A 0.49 18
BASP1 0.48 19
SP140 0.41 21
PNOC 0.41 23
DDAH2 0.35 26
CHCHD10 0.13 52
ZCWPW1 -0.08 202
DUS2 -0.34 1147

Table 8.2: Sα scores and ranking of the detected marker genes. The Sα scores are
calculated by APL (see Section 2.4.8). The larger the alpha score of a gene is, the more
likely the gene is a marker gene of the observed cluster.

Similar with Fig. 8.3A, the marker genes are locating close to their corresponding cell

cluster. For example, gene AIM2 and TNFRSF13B is overlaying with cells in cluster 5

which is annotated as memory B cells. Gene PLPP5 and TCL1A from bicluster 3 are

with the cells which are naive B cells. The B cell marker CD19 is locating in the middle

of cluster 3 and 5 which are all B cells. The placement of gene CD19 in this cabiMAP

is more reasonable than that in the biMAP (Fig. 8.3), since CD19 is evenly expressed

in these two B cell subtypes and it does not have a preference over these two cell types.

The expression level of CD19 can be observed in Fig. 8.8, in which the expression

levels of the genes on x-axis are visualized as points and each cell is colored by the

bicluster it belongs to. CD19 shows equally high expression level in cells in cluster 3

and 5.

For the genes in cluster 11 which is a monocluster with only genes, biMAP tend to
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Figure 8.7: The cabiMAPs for PBMC data. A, The cabiMAP with only cells and the
cells are colored by the expert annotated cell types. B, CabiMAP with both cells and
genes. The points with black boundaries represent genes, while the remaining points
represent cells. Both cell and gene points are colored upon the biclusters detected by
CAbiNet.

place them in the middle of the plot separating with cell clusters (as shown as points in

the middle of Fig. 8.3A), while cabiMAP overlaying with the cell clusters. As shown

in Fig. 8.9, I randomly selected 6 genes in bicluster 11 and labeled them with text.

These genes are close to cell clusters that they are not co-clustered with. For example,

FTH1 is close to cell cluster 9. To see if the positioning of these genes is meaningful

or not, the expression levels of these genes in all the cells are visualized in Fig. 8.9.
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FTH1 seems to have a higher expression level in cell cluster 9 (blue dots in Fig. 8.9B)

comparing with other cell clusters. Therefore, the closeness of FTH1 to cell cluster 9 in

the cabiMAP makes sense.
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Figure 8.8: The expression level of genes that not co-clustered with cells by CAbiNet
in PBMC data. Expression levels of genes in each cell cluster are colored differently.

This demonstrates that the cabiMAPs maintain a closer correspondence to the un-

derlying data compared to the biMAP with the cell-gene SNN graph. The cabiMAP

allows to visualize the cell clusters with more differentially expressed genes. However,

the biMAP with the cell-gene SNN graph performs better in terms of grouping cell-type

specific marker genes together with their respective clusters and placing house-keeping

genes in the center of the graph. It gives a more concrete visualization of the most

specific marker genes.

8.3 Application to Spatial transcriptomic data

Analyzing spatial transcriptomic data poses a unique challenge due to the pres-

ence of a large number of drop-outs, where gene expression measurements are missing

(M. Wang et al., 2022; Chen et al., 2022b). To investigate the performance of CAbiNet

on such sparse data, we applied it to spatial transcriptomic data obtained from late-stage

Drosophila melanogaster embryos (14-16 hours after egg laying, E14-16h) (M. Wang

et al., 2022). The data was generated using Stereo-seq, a technique that resolves the

gene expression profile into 14,808 pseudo-cells (corresponding to bins of pixels on a

chip) with 7,178 genes (Chen et al., 2022b). In the original publication, 10 cell types
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Figure 8.9: The expression level of genes in PBMC data. Expression levels of genes
in each cell cluster are colored differently.

were annotated based on unsupervised clustering. However, when visualized using the

standard UMAP projection in Fig. 8.10A, the boundaries between cell types are poorly

defined, making it challenging to distinguish cell types and identify marker genes asso-

ciated with each cell type. This highlights the difficulty in analyzing and interpreting

cell types in spatial scRNA-seq data.

The E14-16h Drosophila melanogaster embryo scRNA-seq data by Wang et. al

(M. Wang et al., 2022) was pre-processed as described in Section 3.2 and batch effects

between spatial slices were removed with the ComBat (Johnson, Li, & Rabinovic, 2007)

function from the sva package sva. The data was then reduced to 150 dimensions

by CA, and the cell-gene kNN graph was built up by using kc = 60 for the cell-cell

subgraph and k = 10 for gene-gene/cell-gene subgraphs. The gene-cell graph was set
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Figure 8.11: Spatial Drosophila melanogaster Stereo-seq data. A, The feature-
biMAPs show the expression levels of known marker genes ( fax (CNS), TwldC
(foregut), CG6347 (head epidermis) and Pebp1 (gastric caecum)) in the cells. The
cells are colored by the log2-expression levels of the highlighted genes. B, The Sankey
plot shows the consistency among the expert annotation, the biclustering results from
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to the transpose of the cell-gene graph and genes were trimmed by graph pruning with

overlap = 0.1. The resolution of Leiden was 1.2. For a clearer visualization of

results, we trimmed out clusters with only genes or cells when plotting Fig. 8.10 and

8.11.
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Figure 8.12: Spatial Drosophila melanogaster Stereo-seq data. Spatial distribution of
the cells. The left panel is the 3D visualization of the embryo with cells colored by the
biclustering. The right panel shows four cell types out of the left panel. From head to
tail they are head epidermis, foregut, gastric caecum and midgut. Interactive versions
of panel b and e can be found in the supplementary materials.

CAbiNet successfully identifies 13 biclusters from the spatial transcriptomic data

(Fig. 8.10B), each containing co-clustered genes that are biologically meaningful. No-

tably, cluster 7 consists of 8 out of 14 genes (fax, CG14989, Cam, Gbeta13F, Obp44a,

ctp, fabp) known to be marker genes for the central nervous system (CNS). Similarly,

cluster 10 contains 6 out of 11 genes (TwdlC, CG12164, Cpr50Cb, Cpr56F, Cpr65Av,

Cpr66D) known to be foregut marker genes. The expression levels of fax and TwdlC, as

shown in Fig. 8.11A, indicate that these genes are highly expressed specifically in the

co-clustered cells, further validating their role as marker genes.

CAbiNet effectively captures the intricate cluster structure present in the spatial

transcriptomic data and provides a clear visualization of biclusters, enabling intuitive

cell type annotation. Our analysis reveals that the cells originally annotated as midgut

in the original publication can be further subdivided into two distinct cell types, as

indicated by their assignment to clusters 3 and 11 in the biMAP (Fig. 8.10, 8.11B). By

examining the marker genes detected in cluster 11, such as Pebp1 and Acbp4, which are

known markers of gastric Caecum, we find that these genes exhibit higher expression

levels in cluster 11 compared to other clusters (Fig. 8.11A). This suggests that cluster

11 represents gastric caecum, a sub-structure of the midgut that was not previously

identified in the original analysis. Similarly, we identify cluster 5 as head epidermis, a

specific subtype of epidermis, supported by the expression level of the head epidermis
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Figure 8.13: cabiMAP of spatial Drosophila melanogaster Stereo-seq data. A,
cabiMAPs of both cells and gens colored by biclustering result of CAbiNet. Four known
marker genes are labeled with text. B, cabiMAPs of cells colored by new annotation of
cell types.

marker gene CG6347 shown in Fig. 8.11A.

Using the biclustering results obtained from CAbiNet, we performed new anno-

tations of the cell clusters, and the resulting annotated cell types are presented in Fig.

8.11B. To visualize the spatial distribution of these annotated cell types, Fig. 8.12
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color-codes the cells in the embryo according to the enhanced annotations. Notably,

the spatial arrangement of the annotated head epidermis, foregut, gastric caecum, and

midgut cells (shown in the right panel of Fig. 8.12) aligns with the actual embryonic

anatomy, displaying a sequential arrangement from head to tail.

Figure 8.13 illustrates the visualization of cabiMAP. In Fig. 8.13A, both genes

and cells are colored by the biclusters detected by CAbiNet, the genes are the points

with black boundaries and cells represented as points without boundaries. Four known

marker genes Pebp, fax, CG6347 and TwdlC are labeled with text on the plot. Figure

8.13B shows the cabiMAP of cells which are colored by our new annotation of cell

types based on CAbiNet biclusters. Similarly with the biMAP mentioned above, the

marker genes again are locating close to their corresponding cell types. For example,

gene fax is overlaying with cell cluster 5 which is annotated as CNS.

Different from biMAP in Fig. 8.10B that it tends to force the genes to the boundary

of cell clusters, the cabiMAP positions the genes more evenly in the embedding. This

may be influenced by how the cell-gene graphs are built, and how the UMAP embeds

the graph. The embedding of cells are similar in these two types of plots. Both of them

allow to distinguish the cell cluster differences. However, since both of the methods

employ UMAP to calculate the low dimensional embeddings of the cell-gene graph and

the distance in the 2D UMAP is distorted. Therefore, any interpretation of the distance

in the biMAP or cabiMAP should be carefully made.

To sum up, CAbiNet offers a more informative and comprehensive integration

of genes and cells in its joint embedding compared to the visualization shown in Fig.

8.10A. Additionally, CAbiNet produces detailed biclustering results and facilitates cell

type annotation for spatial transcriptomic data with both biMAP and cabiMAP.
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9 | Discussion

Correspondence analysis (CA) provides an interpretable approach to understand-

ing the relationship between rows (features) and columns (conditions). This inspired

the development of CAbiNet, a method that constructs a graph connecting cells with

their highly associated genes.

In this study, I firstly demonstrate that the principal coordinates are the most suit-

able choice for clustering in the Correspondence Analysis dimension reduced space.

The Euclidean distance between principal coordinates approximates the χ2 distance be-

tween the original values in this space. Furthermore, the principal coordinates exhibit

greater robustness compared to standard coordinates and singular vectors, particularly

in handling data noise. This conclusion is supported by analyses conducted on both

simulated and experimental single-cell RNA sequencing (scRNA-seq) datasets.

Based on the distance measured by Euclidean distance between principal coordi-

nates of cells and genes, as well as the cell-gene association measured by the associ-

ation ratio, a cell-gene graph is constructed. By applying community detection algo-

rithms to the cell-gene graph, CAbiNet naturally identifies biclusters of cells and genes.

Our study demonstrates that CAbiNet outperforms existing biclustering algorithms, as

evaluated on both simulated and experimental scRNA-seq datasets, in terms of biclus-

ter detection. Furthermore, CAbiNet exhibits comparable performance to established

scRNA-seq analysis pipelines, such as Seurat and Monocle3, in accurately distinguish-

ing cell clusters. CAbiNet also demonstrates superior computing speed compared to

certain existing biclustering algorithms.

In scenarios where CAbiNet is run without gene pruning, gene modules are rec-

ognized naturally by the biclusters. The significance of the gene modules detected by

CAbiNet is compared to other biclustering algorithms, the results indicate that CAbi-

Net can identify biologically meaningful gene modules with greater significance, except

when compared to CCA.

Like other existing biclustering algorithms, determining the optimal parameter

choices for CAbiNet can be challenging. To address this issue, we employed a ran-

dom forest regression model to assist in finding locally optimized clustering results.

The random forest model takes six scores which measure the clustering quality as input
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and generates predicted ARI scores for the clustering results. The ARI scores indicate

how well the clustering approximates the “ground-truth” clustering results. Importantly,

we observed a strong alignment between the predicted ARI scores and the actual ARI

values, demonstrating the accuracy of our model in assessing clustering performance.

We also introduced a visualization technique called biMAP, which allows for the

simultaneous embedding of cells and genes in a two-dimensional space. In the biMAP

visualization, cells and their associated marker genes are positioned in close proxim-

ity, facilitating the visual identification of cell clusters and their corresponding marker

genes. This direct spatial relationship between cells and genes eliminates the need for

additional statistical tests when annotating the detected cell clusters. Additionally, our

CAbiNet package includes an interactive biMAP function, enabling users to hover their

mouse cursor over points and retrieve information, thereby simplifying and enhancing

the process of cell cluster annotation compared to traditional methods.

In order to address limitations observed in certain scenarios where biMAP was

not performing well, such as simulated data sets with simple structures or when im-

proper parameters were used leading to distorted connections between cells and genes,

I introduced an improved version of biMAP called cabiMAP. This new version of the

visualization technique utilizes the factors derived from CA. cabiMAP can overlay the

cells and genes properly in a 2D embedding not only for a simulated data with simple

structure, but also for experimental scRNA-seq data with complicated structures. Addi-

tionally, cabiMAP not only provides meaningful embedding of cells but also facilitates

the identification of gene modules. To cater to different research needs, I have devel-

oped four distinct types of cabiMAPs, each reflecting different aspects of gene-cell and

cell-gene relationships. Users have the flexibility to choose the most suitable cabiMAP

variant based on their specific research objectives.

CAbiNet has demonstrated its effectiveness in detecting cell clusters and identify-

ing marker genes from scRNA-seq data, as illustrated in the PBMC data set and spatial

transcriptomic data from Drosophila melanogaster embryos. The utilization of biMAPs

and cabiMAPs has provided a more intuitive approach to annotating cell types, even

enabling the distinction of sub-cell types within the data. However, it is important to

note that CAbiNet currently focuses solely on up-regulated genes, thereby disregarding
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the valuable information from down-regulated genes. This limitation restricts the appli-

cation of CAbiNet to scenarios involving drug-treated samples and CRISPR-screening

libraries, where down-regulated genes play a significant role. To overcome this limi-

tation, a potential enhancement for CAbiNet would involve modifying the process of

constructing the cell-gene graph by incorporating a signed graph approach that con-

siders both up-regulated and down-regulated genes. By doing so, CAbiNet would be

able to capture a more comprehensive view of gene expression patterns and enhance its

applicability to a broader range of experimental conditions.

Another concern regarding CAbiNet is its utilization of Leiden clustering and k-

means based spectral clustering, which produce non-overlapping biclusters. This means

that each cell and gene can only be assigned to a single (bi)cluster. However, certain

genes may act as common markers for multiple cell types. For example, CD19 is a

marker gene for various B cell types, including Naive B cells and memory B cells. In

such cases, CD19 could potentially be assigned to both sub-cell clusters, whereas CAb-

iNet currently assigns it to only one of the sub-cell clusters. To address this issue, we

aim to enhance CAbiNet by implementing fuzzy clustering algorithms, allowing genes

to be assigned to multiple cell clusters. However, it is worth noting that fuzzy clustering

may also blur the boundaries between cell clusters. Assigning the same cell to multiple

cell clusters can make downstream analyses, such as differential gene expression analy-

sis, more challenging compared to having a definitive clustering result. Therefore, there

is a need to develop a biclustering approach that provides solid clustering for cells and

fuzzy clustering for genes, striking a balance between accuracy and interpretability.
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A | Summary

Cell clustering is a crucial step in current single-cell RNA sequencing (scRNA-seq)

methods, where marker genes are identified and used for cell type annotation. However,

this process can be time-consuming and laborious. To address this, biclustering algo-

rithms have been developed to simultaneously identify functional gene sets and cell

clusters. However, most existing biclustering algorithms are designed for microarray

and bulk RNA sequencing data, and only a few are suitable for scRNA-seq analysis.

These algorithms often suffer from issues such as limited scalability and accuracy. In

this study, we propose Correspondence Analysis based biclustering on Networks (CAb-

iNet), a graph-based biclustering approach specifically designed for scRNA-seq data.

CAbiNet integrates multiple analysis steps by efficiently co-clustering cells and their

marker genes, and visualizing the biclustering results in a non-linear embedding. We

introduce two visualization approaches that enable the joint display of genes and cells

in a two-dimensional space. Additionally, a random forest regression model is trained

to predict the quality of clustering results, facilitating the selection of optimal parame-

ters. CAbiNet fills the gap for a high-performing biclustering algorithm in scRNA-seq

and spatial transcriptomics data analysis. It streamlines existing workflows and offers

an intuitive and interactive visual exploration of cells and their marker genes in a single

plot for efficient cell type annotation. CAbiNet is available as an R package on GitHub

at https://github.com/VingronLab/CAbiNet.
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B | Zusammenfassung

Das Clustering von Zellen ist ein entscheidender Schritt bei den derzeitigen Meth-

oden der Einzelzell-RNA-Sequenzierung (scRNA-seq), bei denen Markergene identi-

fiziert und zur Annotation von Zelltypen verwendet werden. Dieser Prozess kann jedoch

zeitaufwändig und mühsam sein. Aus diesem Grund wurden Biclustering-Algorithmen

entwickelt, um gleichzeitig funktionale Gensätze und Zellcluster zu identifizieren. Die

meisten vorhandenen Biclustering-Algorithmen sind jedoch für Mikroarray- und Massen-

RNA-Sequenzierungsdaten konzipiert, und nur wenige sind für die scRNA-seq-Analyse

geeignet. Diese Algorithmen leiden oft unter Problemen wie begrenzter Skalierbarkeit

und Genauigkeit. In dieser Studie schlagen wir Correspondence Analysis based bi-

clustering on Networks (CAbiNet) vor, einen graphbasierten Biclustering-Ansatz, der

speziell für scRNA-seq-Daten entwickelt wurde. CAbiNet integriert mehrere Analy-

seschritte durch effizientes Co-Clustering von Zellen und ihren Markergenen und vi-

sualisiert die Biclustering-Ergebnisse in einer nichtlinearen Einbettung. Wir stellen

zwei Visualisierungsansätze vor, die die gemeinsame Darstellung von Genen und Zellen

in einem zweidimensionalen Raum ermöglichen. Zusätzlich wird ein Random-Forest-

Regressionsmodell trainiert, um die Qualität der Clustering-Ergebnisse vorherzusagen,

was die Auswahl der optimalen Parameter erleichtert. CAbiNet füllt die Lücke für

einen leistungsstarken Biclustering-Algorithmus in der scRNA-seq- und räumlichen

Transkriptomik-Datenanalyse. Es rationalisiert bestehende Arbeitsabläufe und bietet

eine intuitive und interaktive visuelle Erkundung von Zellen und ihren Markergenen

in einem einzigen Diagramm für eine effiziente Zelltyp-Annotation. CAbiNet ist als

R-Paket auf GitHub unter https://github.com/VingronLab/CAbiNet ver-

fügbar.
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