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1| Introduction

During the era of genomic biology, significant advances have been made in high-
throughput sequencing techniques, enabling the investigation of various facets of bi-
ological processes (Soon, Hariharan, & Snyder, 2013). For example, DNA micro-
arrays techniques (TAUB, DeLEO, & Thompson, 1983; Pease et al., 1994; Shalon,
Smith, & Brown, 1996; Mirzabekov, Lysov, Shick, & Dubiley, n.d.; Pollack et al.,
1999; Churchill, 2002), the next generation high-throughput RNA sequencing, single-
cell RNA sequencing (scRNA-seq) (Waern, Nagalakshmi, & Snyder, 2011; Kodzius
et al., 2006; Ingolia, Ghaemmaghami, Newman, & Weissman, 2009) and spatial tran-
scriptomic sequencing techniques (Rao, Barkley, Franca, & Yanai, 2021; Chen et al.,
2022a) have been developed to analyze gene expression patterns under diverse exper-
imental conditions or within specific cell types. Another technique named as Assay
for Transposase-Accessible Chromatin with sequencing (ATAC-seq) has been devel-
oped to study the accessibility of DNA sequence (Buenrostro, Giresi, Zaba, Chang, &
Greenleaf, 2013). For other aspects of biological processes, high-throughput mass spec-
trometry protein profiling has been developed for proteomics studies and Chromatin Im-
munoprecipitation Sequencing (CHIP-seq) has been designed for histone modification
study (Robertson et al., 2007) and so on. All these sequencing techniques collectively
contribute to enhancing our comprehension of the intricate molecular mechanisms un-
derlying biological processes.

Over the past decade, a significant volume of scRNA-seq data has been generated
along with the development of scRNA-seq techniques. The scRNA-seq technique usu-
ally works as demonstrated in Fig. 1.1. It begins with dissecting cells from biological
tissues, organs or organisms (Fig. 1.1-1). Then the cells are disassociated and captured
by microfluidic devices, e.g. droplet-based platforms. The cells are usually integrated
with unique molecule indices (UMIs) which allows to trace the origin of each cell (Fig.
1.1-2). The messenger RNAs (mRNAs) are extracted and converted to complementary
DNAs (cDNAs) and the amplified cDNAs are sequenced by high-throughput sequenc-
ing machines (Fig. 1.1-3). Then the sequenced reads and UMIs are mapped to reference
genome and gene expression levels are quantified by toolkits, generating a gene expres-

sion count matrix with genes as rows and cells as columns (Fig. 1.1-4).
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Figure 1.1: Single cell RNA-sequencing analysis work flow.

This data can cover diverse species, tissues, developmental stages, sequencing pro-
tocols and batch effects when the data is generated by different labs. This introduces
new challenges to data analysis as well as computational method development. Conse-
quently, several scRNA-seq analysis toolkits have been developed to assist sScRNA-seq
data analysis, such as Seurat (Hao, Hao, Andersen-Nissen, et al., 2021), Monocle (Cao
et al., 2019) and Scanpy (Wolf, Angerer, & Theis, 2018a). These packages typically
share similar workflows that encompass various steps, such as quality control, data
normalization, batch correction, feature selection, dimension reduction, clustering (Fig.
1.1-5), differential gene expression analysis and cell-type annotation by detected marker
genes (Fig. 1.1-6). While these methods already allow researchers to study the cellular
heterogeneity, they still face certain common issues.

A common issue encountered in standard pipelines is the presence of the “double-
dipping" problem. Typically, in scRNA-seq analysis algorithms, clustering is performed
initially, followed by the identification of markers for each cluster using statistical tests
applied to the identified clusters. Upon closer examination of this process, it becomes
evident that the clusters are initially differentiated based on features, that is the clusters
are driven by these specific features. Subsequently, null hypotheses are formulated,

e.g. “the expression levels of gene X in cluster A and cluster B are drawn from the




same distribution”. Statistical tests are then conducted on all the features, and those
features that exhibit significant p-values and contribute to the differentiation between
clusters are recognized as markers for the clusters, thereby aiding in the annotation of
cell types. This clustering and marker identification approach follows a circular logic,
i.e. the "double-dipping" or "snooping" problem.

To address this issue, one solution is the utilization of biclustering algorithms,
which enable the simultaneous grouping of both row and column items. The goal of
most of the biclustering algorithms is to detect the green blocks (biclusters) as shown
in Fig. 1.1-6, where darker green indicates a higher expression level of genes. This
approach helps eliminate the problem of statistical inference inherent in the traditional
methodology. It recognizes both cell clusters and cluster-specific genes at a single step,
which circumvents the "double-dipping" problem.

There have been many exsiting biclustering algorithms developed for transcrip-
tomic data analysis. The first biclustering algorithm was developed for microarray gene
expression analysis by Cheng and Church since 2000 (Cheng & Church, 2000). From
then on, more and more biclustering algorithms have emerged to detect subsets of both
genes and conditions that share similar patterns in both DNA microarray and the bulk
RNA-seq data. However, most of them are developed for microarray assays and bulk
RNA-seq data analysis. These types of techniques measure the accumulative expres-
sion levels of DNAs/RNAs and the readouts of them are dense matrices with genes as
rows and samples as columns. As for scRNA-seq data, the readout matrix are quite
sparse, due to the limitation of sScRNA-seq library preparation schemes and sequencing
bias, e.g. missing labeling of UMISs, losing of RNA segments, sequencing error and so
on. The sparsity of scRNA-seq gene expression matrix can be as high as 90%. The
existing biclustering algorithms don’t take this characteristic of scRNA-seq data into
account, so some of the existing biclustering algorithms are not suitable for scRNA-seq
data analysis.

Over the past decade, the spatial transcriptomic sequencing techniques have been
developed, generating even sparser and noiser data than scRNA-seq (Rao et al., 2021;
Chen et al., 2022a). The vast amounts of scRNA-seq data and spatial transcriptomic

data has been generated, covering data from different species, tissues, developmental




stages and sequencing protocols. The size of these data sets can be very large, with
number of cells raise up to millions This poses new challenges to the scalability of
biclustering algorithms. Besides, while scRNA-seq data analysis aims to uncover the
cellular heterogeneity and define distinct cell types, some biclustering algorithms only
focus on identifying small subsets of gene-cell biclusters, leaving a significant num-
ber of cells whose cell types remain unclassified. Therefore, biclustering algorithms
developed for scRNA-seq data is needed.

For the routine scRNA-seq analysis pipelines, the cell are always visualized by
Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-
SNE) and Uniform Manifold Approximation and Projection (UMAP). Nonlinear em-
bedding techniques such as t-SNE and UMAP can visualize high-dimensional cell co-
ordinates in a two-dimensional map. However, these methods are limited to visualizing
either cells or genes separately.

The linear embedding approach PCA has a merit over the non-linear embedding
approaches like t-SNE and UMAP. It allows for a simultaneous embedding of the genes
and cell with a biplot. A PCA biplot visualizes cells and genes with principal compo-
nent values and loadings respectively. Loadings refer to the weight of a gene in a Prin-
cipal Component (PC). However, in a PCA biplot, the scales for the cells’ PC scores
and the genes’ loadings are different, which makes interpretation of genes and cells in
this planar challenging. Correspondence Analysis (CA) biplot addresses this issue by
rescaling the coordinates of cells and genes and presenting them in the same space.
This improves the interpretability of cell-gene relationships compared to a PCA biplot
(M. Greenacre, 2007). Nonetheless, linear methods, including biplots, often discard
significant information when dealing with large and complex datasets. In single-cell
transcriptomic data, the first two PCs typically explain only a small portion of the vari-
ance. Thus, a large number of dimensions must be retained to adequately represent
the data, compromising visual interpretability. Therefore, a non-linear visualization ap-
proach is demanded for a joint visualization of genes and cells. This will provide a more
intuitive understanding of the detected biclusters.

To address these limitations, we propose Correspondence Analysis based biclus-

tering on Networks (CAbiNet), a method that facilitates joint visualization and co-




clustering of cells and genes in a planar embedding. Instead of projecting the data into
a new space in which the covariance is maximized along the first component by PCA,
CA projects data into a new space maximizing the discrepancies of features from mean
by applying a different scaling. This scaling scheme allows CA to recognize the genes
which are highly associated with cells and be capable of dealing with the high sparsity
of scRNA-seq data. CA projects the data with two kinds of scalings, they are principal
coordinates and standard coordinates. After the data has been appropriately projected,
a suitable large number of dimensions is selected to reduce the dimensionality of data.
Following this reduction, clustering is typically performed in the lower-dimensional
space to identify distinct groups of cells. Chapter 2 provides more information on the
study background of this field, including dimension reduction approaches like CA and
PCA, existing clustering algorithms, gene module detection algorithms and biclustering
algorithms, and visualization methods.

In Chapter 3, I will discuss about the clustering in CA space. The first section lists
the simulated and experimental scRNA-seq data sets that have been used. Since CA is
sensitive to outliers, I will further discuss the preprocessing/normalization of the data in
the following section. The standard coordinates, principal coordinates and association
ration in CA space are then illustrated with a simulated data set. In the last section of this
chapter, principal coordinates, standard coordinates and singular vectors are compared
to determine which one is the the best for clustering.

In Chapter 4, I will illustrate how we leverage the properties of CA to construct a
cell-gene graph where nodes comprise both cells and genes, how the graph is pruned
and how cell-gene clusters are detected from this graph. I will then demonstrate new
biclustering visualization approaches in Chapter 5, the biMAP and cabiMAP. Both of
them allow an intuitive observation of cells and genes in a two dimensional planar.

CAbiNet, serving as a biclustering algorithm, offers the capability to not only si-
multaneously co-cluster cells and genes, but also detect gene modules within the data.
In Chapter 6, the performance of CAbiNet as a biclustering algorithm will be bench-
marked against existing biclustering algorithms to showcase its accuracy and computing
speed. Additionally, the performance of CAbiNet in gene module detection will also be

evaluated.




Optimizing clustering results is a critical aspect of all clustering algorithms, re-
gardless of whether they are used for traditional clustering or biclustering. Different
combinations of parameters can yield varying clustering results, making it difficult to
determine which result is the most suitable for a given dataset, especially in cases where
ground truth clustering is not available. Therefore, it is crucial to develop a methodol-
ogy that can effectively find out proper parameters and optimize clustering performance.
I propose a random forest regression model to predict the clustering quality to get the
locally optimized clustering results and this can be found in Chapter 7.

The effectiveness of CAbiNet in accurately co-clustering and embedding cells and
genes into a two-dimensional space will be demonstrated using simulated and exper-
imental scRNA-seq and spatial transcriptomic datasets in Chapter 8. I will showcase
how the resulting biclusters, biMAPs and cabiMAPs generated by CAbiNet. I will il-
lustrate how CAbiNet can expedite cell type annotation and facilitate the discovery of
cell types. Our examples encompass small data sets with well-defined cell types, as well
as complex developmental data sets, highlighting the capability of biMAP to generate
informative visualizations even for intricate biological experiments.

CAbiNet has been implemented as an R package and can be freely obtained from
GitHub (https://github.com/VingronLab/CAbiNet). The package is fully
compatible with popular scRNA-seq analysis pipeline SingleCellExperiment, including
those available on Bioconductor. It is worth noting that the aspects related to distance
measurements in CA and the creation of a cell-gene graph, and applying community
detection methods to co-cluster cells and genes in the cell-gene graph by spectral clus-
tering were initiated by me and my advisor, Martin Vingron. Additionally, my colleague
Clemens Kohl contributed to CAbiNet by implementing Shared Nearest Neighbour
graph (SNN) graph strategy and adding on the gene pruning function. The construction
of the R package CAbiNet and its benchmarking were collaborative efforts between
Clemens Kohl and me. We made equal contribution to this aspect of the project.

Lastly, a comprehensive discussion will be presented in Chapter 9, covering the
strengths and limitations of all the developed algorithms. Proposed enhancements and

future directions will also be explored.



https://github.com/VingronLab/CAbiNet

2| Background

2.1 Overview

This chapter provides a comprehensive overview of the literature and theoretical
foundations that form the basis of the research presented in this thesis. It discusses the
advancements and challenges in the field of single-cell RNA sequencing (scRNA-seq)
data analysis, biclustering and bicluster visualization methods, highlighting the need for
improved methods to address key issues.

The chapter begins by introducing a widely used analysis method Principal Com-
ponent Analysis (PCA) in high-throughput sequencing data analysis. A concise expla-
nation is then provided regarding the methodology and its application in the analysis
of single-cell RNA sequencing (scRNA-seq) data. Furthermore, the chapter introduces
PCA biplots and examine the advantages and disadvantages associated with their uti-
lization.

Next, a comprehensive introduction to Correspondence Analysis (CA) is presented.
CA, similar to PCA, serves as a dimension reduction technique and facilitates the gen-
eration of biplots that incorporate both features and conditions. The fundamental prin-
ciples of CA lay the basis for the biclustering and visualization methods employed in
CAbiNet. Additionally, an introduction to the Association Plot (APL) visualization
method, specifically designed for exploring dimension-reduced CA data, will be given.
APL will serve as complementary evidence to support the findings and results obtained
through CAbiNet.

As a dimension reduction method, CA has been applied to denoise the data, the
clustering then is done in the dimension reduced space to identify the groups of con-
ditions. Various clustering methods, each employing different scaling techniques, have
been implemented within the framework of CA. This chapter will provide an introduc-
tion to these methods.

Besides the clustering algorithms mentioned above, CAbiNet utilizes two commu-
nity detection algorithms to identify the clusters. The algorithms used by CAbiNet will
be illustrated in this chapter.

CAbiNet is developed as a comprehensive solution encompassing biclustering and



biclustering visualization techniques. To provide a comprehensive overview of biclus-
tering and visualization methods, this chapter will give a brief introduction of existing
biclustering algorithms. The limitations and drawbacks associated with these meth-
ods are emphasized, underscoring the necessity of proposing a novel algorithm like
CAbiNet. Additionally, the chapter introduces various embedding algorithms that are
relevant to the context of the research.

Overall, this chapter serves as a foundation for the thesis, setting the stage for the

subsequent chapters where novel methods and their evaluations will be presented.

2.2 Singular Value Decomposition

2.2.1 Singular Value Decomposition

In algebra, the Singular Value Decomposition (SVD) refers to a factorization of
a matrix (Golub & Reinsch, 1971). Suppose we have a matrix X with m rows and n
columns, the SVD of matrix X will decompose it into left singular vectors, singular

values and right singular vectors. That is

X =UD,VT, 2.1

where U and V are matrices consist with columns which are singular vectors and D,
is a diagonal matrix with singular values ranking from largest to smallest as the entries.

The singular values range from O to 1, thatis 1 > a3 > a2 > ...an > 0, where
N = min{m,n}.The dimension of matrix D,, is determined by the rank of matrix X.
In some cases where there are some rows(columns) proportional to each other, the rank
of matrix can be smaller than the smaller dimension of the matrix. In such situations,
reducing the original space to the number of rank of matrix preserves all the information
in data. For most of the cases, the rank of matrix X equals min{m,n}.

Eigenvalues of matrix X are the square of singular values in D, which provide in-
sight into the amount of preserved information in each component. A higher eigenvalue
indicates a greater amount of explainable information retained in the corresponding di-

mensions.




Each pair of columns in matrix U are orthogonal to each other, so is that in matrix
V. That is
vl'u=vvT =1, (2.2)

where I is an identity matrix with ones as diagonal and zeros as other elements.
Since the singular vectors are orthogonal to each other, they form the basis of a
new space. Therefore, the left and right singular vector matrices U and V can be used

as rotation matrices to transform the original data X into new spaces.

2.2.2 Number of dimensions

As mentioned, the eigen values are calculated as the square of singular vectors.
Typically, a significant portion of the information is captured by the first several princi-
pal components, t