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Index of abbreviations

AUC Area under the curve i.e under the receiver operating curve (ROC)

AMINO Amino acid

bp Base pairs

CLR C-type lectin receptors

cov Covariance

CpG Sites of DNA where a cytosine is followed by a guanine

EPE Expected prediction error

Feature Covariate or risk factor in machine learning

FN False negative or type II error or β error

FP False positive or type I error or α error

GWAS Genome-wide association study

k-mer Substrings of length k of a string

n Sample size i.e. a group of patient of size n

NGS Next generation sequencing

MSE Mean square error

p Covariate or risk factor of a regression model

ppv Positive predictive value

Pr Probability

read Short DNA string of 50bp to 300bp

RMSE Root mean square error

ROC Receiver operating curve

Σ Covariance matrix

sens Sensitivity

SNP Single nucleotide polymorphism

spec Specificity

tidyverse R package

TN True negative

TP True positive

var Variance
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[...] which robust/resistant methods you use is not important-
what is important is that you use some. It is perfectly proper
to use both classical and robust/resistant methods routinely,
and only worry when they differ enough to matter. But when
they differ, you should think hard.
Tukey, J. W. Huber (2002) taken from Tukey (1979)

1 Introduction

1.1 Robust statistical methods

In the recent years science has faced major struggles. One the one hand the discussion of “fake
news” in the social media and the answer of science to the search of the “truth” has emerged.
This discussion stands in contrast to the overall falsification principle of hypothesis testing. We
do not prove a hypothesis, we reject a hypothesis. On the other hand the crisis of reproducibility
in science is a major topic in many journals today. The journal of The American Statistician
(Vol. 73, 2019) has come up with the issue topic “Statistical Inference in the 21st Century: A
World Beyond p < 0.05” and Wasserstein et al. (2016) discussed beforehand to abandon the
p-value entirely. All three topics, fake news, reproducibility, and the discussion of p-values, face
the demand of robust statistical analysis, which makes scientific findings reliable for the public.
Therefore, the question emerged, how can statistical methods help to translate basic research into
the clinical routine? In this work, I will discuss different approaches to validate new statistical
methods and make these algorithms more robust in real world data settings.

The translation form basic research findings to the patient, from bench to bedside, is a
important aim in clinical research (Woolf, 2008). Four steps, T1 to T4, must be taken in the
actual 4T model for clinical translation for the full translation of a basic research finding to
the clinical application: discovery from basic research or basic knowledge on potential clinical
application (T1) to evidence based guidelines or efficacy knowledge (T2) to clinical care or
intervention and applied knowledge (T3) to finally the health of a community or population
into the health knowledge (T4). Biometry and statistical bioinfomatics can take part in these
processes by presenting and using robust methods and tools for quality assessment of clinical
research studies. A statistical method should be robust and therefore help to reproduce findings
of experiments (Maronna et al., 2018). A well known example of a robust method is the median
x̃ for the calculation of the “middle” of a set of numbers. In difference to the arithmetic mean
x̄, the median is robust against outliers. Therefore, if a very high number is included, the mean
will be biased while the median changes only slightly.

More data, denoted as X, is produced nowadays than ever before. This data processing
is also covered by the naming “big data”. The storage of big data is even called “data lakes” to
describe the enormous amount of data. The problematics of data handling and visualization has
given birth to a new discipline, the data scientist or data analyst, which works mainly on the data
processing. In classical biometry big data was first introduced by the micro array technology in
genetics. At the time of the late 90’s the problem was named high dimensional data or p � n
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problem (“p larger n problem”). The first time in biometry more parameters (p) where available
than sample size n. The rule of thumb demanded 10 samples per factor to use a regression
model, hence with genetic data including over 500,000 genetic variants and only five samples,
in the early days, and up to 10,000 samples nowadays, the standard model approaches did not
work. Figure 1 shows the results of a genome wide association study (GWAS) on rheumatoid
arthritis. The data as been used in Kruppa et al. (2012) for the prediction and classification of
rheumatoid arthritis patients by machine learning algorithms. The data consist of 506,665 SNP
but only ∼ 2000 patients.

Figure 1 – Manhattan plot of a GWAS on rheumatoid arthritis with 506,665 SNPs plotted after
quality control. The data set consists of 868 cases and 1,194 controls. The x-axis shows
the position of the single SNP on the genome; the y-axis shows the − log10 transformed
p-value of the SNP. Taken from Kruppa, J. et al. (2012). Risk estimation and risk
prediction using machine-learning methods. Human genetics, 131(10), 1639-1654.

1.2 The inflation of false positive findings

Ioannidis (2005) stated, that most scientific findings are false. What is the core of this statement
and how is a false positive finding defined in classical hypothesis testing? The inflation of the type
I error (α error; false positive findings) becomes the first time really challenging and problematic
in genetics with the large amount of markers to test. We assume stochastically independent
tests with k null and alternative hypotheses, where in fact all null hypotheses are valid. Then,
we test all null hypotheses to a local level α = 0.05. The probability that at least one false
null hypothesis will be rejected and we will find one false positive is 1 − (1 − α)k. Hence, if
50 hypotheses are tested, 1 − (1 − 0.05)50 = 0.92 ≈ 100%, the probability of making at least
one wrong test decision is almost 100%. In the above shown GWAS on rheumatoid arthritis
(Figure 1) with 500,000 single nucleotide polymorphisms (SNP) we will find roughly 25,000 false
positive SNPs with a significant difference though the null hypothesis is true and there is no
association. Hence, we will assume the finding of significant associations between the genotype
and the disease even though there is no dependency in the real world. How can we control the
type I error, also known as a “false positive” or the type II error, also known as a “false negative”?
In hypotheses testing the type I error will be controlled. Normally, the Bonferroni adjustment
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and the Benjamini Hochberg (FDR) are suggested (Thissen et al., 2002). Most of the the time
the Bonferroni adjustment of the type I error is to conservative, hence less than 5% of the Null
hypothesis are rejected. The principle idea of FDR is to sort the p-values and reject the null
hypothesis in the sense of a hierarchical testing principle. The used threshold Q has not to be
5% and allows a more flexible and liberal results.

To overcome these multiple testing problem and hold an overall α-level of 5% for all compar-
isons Hothorn et al. (2008) introduced simultaneous contrast test and simultaneous confidence
intervals. The analysis is possible in R package multcomp and is based on the multivariate t
distribution. The multivariate t distribution allows generate critical t values for the decision
against the null hypothesis by taking into account the correlation between t statistics (Mi et al.,
2009). In a pairwise comparison different treatment groups will be compared frequently and
therefore the test statistic is not independent anymore. In my master’s thesis I applied these
approach on linear mixed models to control the false positive findings (Kruppa, 2009). To model
the data in a correct way and adjust for confounder and after wards for possible inflation of the
false positive findings, we must understand the structure of the data and the statistical summary
statistics. The understanding of the correlation structure between the t test statistics was the
key to solve the multiple comparison problem.

1.3 The structure of omics data

Due the large amount of data, the analysis pattern in genetics has also overall changed. The new
idea of a analysis pipeline was born (Leipzig, 2017). A bioinformatic pipeline consists of many
sequential algorithms, which can be single R, Perl, or C++ functions or even whole stand alone
statistical programs. Each step of the pipeline needs some input data, processed the data and
gives the output to the next step of the pipeline. Often the data is stored into different files to
keep redundancies low and speed the analysis (Köster and Rahmann, 2012). Hence, each software
has its own file needs, like the standard genome wide association study (GWAS) analysis tool kit
PLINK (Purcell et al., 2007), which uses a special type of input data with defined column names
and structure. Often these data types are stored in binary data format, which saves hard disk
space. In addition, binary files can processed very fast but are not human readable anymore.

The equation 1 shows the typical transposed genetic data structure XT . In contrast to
the typical data structure of biometrical data, where each row is a patient, the data matrix is
transposed for the analysis of high dimensional data (Aulchenko et al., 2007). The main reason
is computational power. It is easier to add a row than to add a column. This different data
structure causes many adjustments in the analysis pipelines. Standard statistical methods can
not process such data and therefore wrapper must be written to transform the data for each
analysis algorithm. The most important consequence of the transposed data is the usage of two
data sets: one data set containing only the genetic information per variant and sample. Further,
an additional phenotype data set, where the information on each single sample is saved. A
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typical transposed genetic data set XT with n patients and p SNPs for a GWAS looks like the
following.

XT =



Patient1 Patient2 · · · Patientn
SNP1 x11 x12 x1n

SNP2 x21 x22 x2n
...

. . .

SNPp xp1 xp2 xpn

 (1)

It is important to remember the transposed structure of the data. Nevertheless, all summary
statistics are calculated on the original data structureX but the data is stored in the transposed
state XT . This is especially important for the calculation of the variance/covariance matrix,
which describes the dependencies or correlation between the columns of the data set.

Correlation and covariance are measure both the relationship or dependency between two
variables x1 and x2 or in our example SNP1 and SNP2. The covariance describes the direction
of a linear relationship of the two variables, while the correlation measures the strength and the
direction of the linear relationship of x1 and x2. The correlation is a function of the covariance.
The covariance is calculated, like the variance on the quadratic scale of the variables, while the
correlation is the standardized covariance matrix. We can derive the correlation matrix by divid-
ing the covariance matrix by the product of corresponding standard deviations. The correlation
runs threfore from −1 to 1 while the covariance from −∞ to +∞. Both, the correlation matrix
and the covariance matrix, have a size of p× p, determined by the columns of the data set. The
covariance matrix is symmetric, therefore cov(x1, x2) is the same as cov(x2, x1). The covariance
of the diagonal is the variance of the variable.

Σ =



SNP1 SNP2 · · · SNPp

SNP1 var(SNP1, SNP1) cov(SNP1, SNP2) cov(SNP1, SNPp)

SNP2 cov(SNP2, SNP1) var(SNP2, SNP2) cov(SNP2, SNPp)
...

. . .

SNPp cov(SNPp, SNP1) cov(SNPp, SNP2) var(SNPp, SNPp)

 (2)

The covariance matrix Σ is important for the modeling of the data. In more simple words, statis-
tics does not model mean differences but the dependencies between the covariates described by
the covariance matrix. If we want to run a simulation to validate new statistical algorithms, we
want to generate artificial data. If we generate data in the most simple case and ignore correla-
tion between the samples and covariates our algorithm will most like not produce reproducible
outcomes on real world data. Real world data is very often correlated and our simulation should
somehow model correlated data.

1.4 Assessing in silico simulation studies

Simulation studies in biometry consist of many steps proposed by Burton et al. (2006). A more
detailed description of setting up a simulation study delivers Kleijnen (2017) and Sanchez (2005).
In the following a brief summary of the essentials is described. First, data must be generated
fulfilling a given set of properties. Therefore, a outcome must be chosen and the distribution
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of the outcome must be determined. In genetics the decision is often made between a normal
distributed outcome, like expression intensities of genes, a Poisson distributed endpoint, like
mapped read counts or binomial distribution, like the presence of absence of a methylation region
in epigenetics. After the outcome distribution is determined by the scientific background, the
simulation model must be selected. In the most simple case, we can chose a normal distributed
endpoint Y depending on one independent variable x1 shown in equation 3.

Yi = β0 + β1xi + εi (3)

Depending on the wanted effect of β1 we can draw the outcome Yi for each patient from a normal,
Poisson or binomial distribution. The statistical software R supports different functions among
others like rnorm, rpois, rnbinom, and rbinom, for the generation of data from the normal, Pois-
son, negative binomial, or binomial distribution. Therefore, we can easily generate data for a
group comparison of 20 patients between placebo and treatment with an mean difference of β1 = 4

by using x1 = (xplacebo, xtreat) with xplacebo = N (10, σplacebo) and xtreat = N (14, σtreatment) as-
suming homogeneous variances between the groups (σplacebo = σtreatment) or heterogeneous vari-
ances (σplacebo 6= σtreatment). The model can be easily extended by adding further independent
variables x2, ..., xp resulting into X = x1, ..., xp and a vector of corresponding effects β shown in
equation 4.

Y = βX + ε (4)

If we want to model dependent variables x1, ..., xp, we use a multivariate distribution. This
changes the data generation forX. Hence, the data is now drawn from a multivariate distribution
taking into account the correlation between the dependent variables by the covariance matrix Σ

and predefined effects µ = µ1, ..., µp for each covariate.

X ∼ N (µ, Σ) (5)

The multivariate normal distribution is technical available (Mi et al., 2009). If all x1, ..., xp are
independent the covariance matrix is a uniform matrix including 1’s on the diagonal. In this
special case, the n× p-dimensional data generated by the multivariate normal distribution is the
same as from single normal distributions for each p covariate and then combined to one data set.

In biology genetic factors like SNP’s or alleles are not independent from each other. The
genes are ordered on the chromosomes in a specific order and can not be seen as random. The
genetic recombination in the meioses changes blocks of chromosomes by chromosomal crossover
and therefore SNP’s are organized in blocks of high correlation. Between the blocks, the cor-
relation might be different. Hence, genetic factors are not inherited independently, they are in
linkage disequilibrium. The multivariate distribution allows to model such dependencies between
the genes (x1, ..., xp) by the off-diagonal elements including the covariance of the genes.

If the outcome is somehow normal distributed, we can use the multivariate normal dis-
tribution and generate correlated data sets, like genes combined in a pathway have a higher
correlation then genes in another pathway. Very often this is not the case. Next generation
sequencing is based on the count of reads to a given part of a reference genome and epigenetic
uses CpG sites with the percentage of methylation of the given CpG. For both cases, the Poisson
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distribution and the binomial distribution, no multivariate distribution to model dependentX is
available. Kruppa et al. (2016) solves the generation of correlated count data of dependent gene
sets included in biological pathways. In Kruppa et al. (2018b), we were able to use a genetic
algorithm, as a Monte Carlo simulation, to generate binary correlated data holding the marginal
correlation. Both methods mimic the data generation of a multivariate normal distribution for
other distributions. The simulation can be even more complex like a circular frequency distribu-
tion shown in figure 2 by the Mease model for three categorical outcomes used in Kruppa et al.
(2014a).

Figure 2 – On the left, the frequency distribution of the independent variables for the Mease model
with three catagories. The frequencies follow a circular distribution. On the right the
probabilities for the Mease model with decision line for the “black” dot class. Individuals
left to the dashed lines are classified as “black” dots. Taken from Kruppa, J. et al. (2014).
Probability estimation with machine learning methods for dichotomous and multicategory
outcome: Theory. Biometrical Journal, 56(4), 534-563.

1.5 Dimension reduction of high dimensional data

Different methods have been developed to reduce the complexity of a data set. How many
variables, x1, ..., xp, must be included into a model to achieve a good variance/bias trade off?
If too many variables are included, the model will be to specific for the training data and will
perform poorly on new validation data. Further, multivariate methods, like multiple regression
and machine learning, have methodical limitation by including to much high correlated variables,
i.e. variables with a high covariance, into the model (Libbrecht and Noble, 2015). We can
use different approaches for the dimension reduction. One way is the classical approach using
principle component analysis (PCA) or machine learning like random forests (Díaz-Uriarte and
De Andres, 2006; Saeys et al., 2008). Especially, random forests can be used for generating
smaller sets of important genes (Kruppa et al., 2012). Using these reduced list, we were able
to predict the status of rheumatoid arthritis with a higher precision than the standard logistic
regression approach.
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The principle component analysis uses the p × p-dimensional variance/covariance matrix
Σ of the data and generates p principle components based on the data set. It is important to
run the PCA on the z-transformed data space (Cheadle et al., 2003). The z-transformation is
also called standardization, because the denominator includes the standard deviation. The PCA
models the variance and assigns to each the first component as much variability as possible. A
variable with a natural high variance due to the unit will have a higher load than variables with
a natural smaller unit. To avoid such a bias, the z-transformation is used. In the case of machine
learning a standardization is also advised (Lantz, 2013). Given x is a random variable with the
expected value E(x) = µ and a variance of V ar(x) = σ2 with σ =

√
V ar(x) the standardized

variable Z is calculated by the following.

Z =
x− µ
σ

(6)

The Z is now standard normal distributed with Z ∼ N (0, 1). This transformation is repeated p
times for each x inX. In a real world data set, when the real data distribution is not known and
therefore using the arithmetic mean and the empirical standard deviation, the standardization
is called studentization. The studentization can be seen as the equivalent from the z-test to the
t-test.

On the standardized data set XZ we can now apply the principle component analysis.
The central idea is to generate p principle components, called PCA1 to PCAp, each carrying as
much variance as possible, starting with PCA1. Hence, the principle component analysis tries
to load maximal information on PCA1, then PCA2 and so on. We organize the information and
can after wards drop the PCA’s with low explained variance. As a drawback, PCA’s are less
interpretable and have no real meaning. The principle components methods uses the eigenvectors
and eigenvalues of the covariance matrix ΣZ . Each p × p matrix has p eigenvectors and p

eigenvalues corresponding to the eigenvectors. The eigenvectors of the covariance matrix are the
axes where the most variance is orientated. We call this eigenvectors principle components. The
eigenvalues are the coefficients added to the eigenvectors. Therefore, the eigenvalues describe
the amount of variance contributed by each principle component. We rank the eigenvectors by
their eigenvalues and will get the principle components in order of their importance (Abdi and
Williams, 2010).

The principle component analysis is frequently used for dimension reduction in genetic data
(Reich et al., 2008) as well in GWAS data for estimating population stratification (Price et al.,
2006). We used the PCA method in Kruppa et al. (2017) and Kruppa and Jung (2017) to
reduce the dimension of a multidimensional k-mer space into a three dimensional space and
for the detection of outlier by introducing the three dimensional boxplot. Further, we used the
eigenvalues of the covariance matrix in Kruppa et al. (2016) to compare the simulated covariance
matrix Σ′ with the predefined one Σ.

1.6 Evaluating in silico simulation and classification methods

In contrast to the before described hypothesis testings of two groups and the decision if the null
hypothesis can be rejected, in the case of classification a subject should be assigned to group
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given. The assignment of the subject can be done in different ways using different approaches.
In the simplest case, we have two groups healthy people and ill people; a group of patient has
cancer, the other group of patient not. In classification the data set is split into two data sets:
the training and testing data set. We train a model or algorithm on a training data set consisting
of 2/3 of the patients. Then we validate the model of the training process by the testing data
set. Very often, the testing data set consists of the remaining samples of the whole data set.
Nevertheless, there is the possibility to use a external validation from data of a different study
or to use a temporal validation, with patient data from different time points in a study. In the
latter, the patient correlation can cause problems. The results of the testing data set are then
summarized in a contingency table shown in table 1.

Table 1 – The contingency table for the summary of a classification algorithm and used for the
assessing of the quality. The columns indicating the known truth, therefore the known
cancer status of the patients; the rows indicating the estimated or predicted cancer status.
In hypothesis testing the false positive (FP) are controlled by the α error and the false
negative (FN) by the β error.

Response / Outcome / Condition

Positive/Present n Negative/Absent n Total

Predictor Positive/Present True Positive (TP) a False Positive (FP)
or α error

c a+ c

Negative/Absent False Negative
(FN) or β error

b True Negative
(TN)

d b+ d

a+ b c+ d

Table 1 shows the possible outcomes of a classification algorithm. This table can be created
on the training as well as on the testing data. We report the results of the testing or validation,
because the results of the training data might be biased. This is due the fact, that we use the
same subjects for model building and group assignment. Therefore, each patient in the test data
set has a cancer status yi = {0, 1} inscribed in the columns. On the left column the sum of
patients with present outcome (maligned) and on the right on the sum of the patient with absent
outcome (benign). In the rows the predicted status of the patients with a predicted present
outcome, below the sum of patients with a absent outcome. The prediction outcome will be at
first a probability Pr to have the outcome status i.e. the probability Pri that the given patient
is maligned. In the next step, the continuous probability outcome is dichotomized by a decision
rule: Pri ≥ 0.5→ 1 and Pri < 0.5→ 0.

Looking at the table 1 the upper left and the lower right field of the table representing
a true classification. The patients in this fields have a positive or negative outcome and the
classification algorithm classifies the patients in the correct manner. The lower left are the false
negative findings, in hypothesis testing the β error, and in the upper right the false positive
findings, also called α error in hypothesis testing. Given this table, we are able to calculate
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different measures for the goodness of the classification algorithm. Common measures are the
sensitivity also called recall in machine learning,

Sensitivity = sens = recall =
TP

TP + FN
(7)

the specificity also called selectivity,

Sensitivity = spec = selectivity =
TN

TN + FP
(8)

and the corresponding receiver operating curve (ROC) with the area under the curve (AUC).
The positive predictive value (ppv) or called precision in machine learning gives the ratio of true
classified patients described by

Positive predictive value = ppv = precision =
TP

TP + FP
(9)

Further measures are the accuracy describing the amount of true assigned patients of all patients
with

Accuary =
TP + TN

TP + TN + FP + FN
. (10)

All described measures are done on the contingency table after dichotomization. It is also possible
to asses the probabilities directly and compare these to the outcome by the mean square error
(MSE) and the root mean square error (RMSE). The MSE is an estimator for the imperfection
of the fit f̂(x) of the training model to the real test data f(x).

MSE
(
f̂(x)

)
= E

[(
f̂(x)− f(x)

)2]
(11)

RMSE
(
f̂(x)

)
=

√
MSE

(
f̂(x)

)
= E

[(
f̂(x)− f(x)

)2]
(12)

In general a lower MSE and RMSE is better. Therefore the model describes the data well
and the error is small. As a general problem, the RMSE is sensitive to outliers. After the
simulation is run a sensitivity analyis is also possible to check the influence of single samples
in a experiment (Kleijnen, 2005). Schrider and Kern (2018) discuss in more detail the shown
classification measures in a genetic context of population genetics.

Kruppa et al. (2014a) and Kruppa et al. (2014b) applied the MSE for the comparison
of different machine learning algorithms on classification and probability estimation of class
membership. Further, the ROC curves are used for the visualization of the sensitivity and
specificity. The extended application was shown in Kruppa et al. (2013). In the actual work,
Kruppa et al. (2016) and Kruppa et al. (2018b) uses the MSE and RMSE error to evaluate the
simulation studies (Section 3.1). Kruppa et al. (2018a) uses different measures for the assessment
of the classification quality of virus detection (Section 3.2).
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1.7 Variance bias trade off

Like mentioned above the evaluation of the classification algorithm is done on the testing data.
Because the training error tends to decrease as the model becomes more complex and therefore
more flexible. This is called overfitting. Hence, the training data underestimates the testing
error. Looking in more detail, the mean square error consists of two parts, the bias and the
variance.

MSE
(
f(x), f̂(x)

)
= bias2

(
f̂(x)

)
+ var

(
f̂(x)

)
(13)

In an ideal setting a classification algorithm would have a bias
(
f̂(x)

)
of zero combined with a

low variance near to zero as well. In a real world setting this is very unlikely and hard to achieve.
A low variance means, that the fitted line hits nearly each point in a regression analysis. Hence,
the model does overfit the training data. On the other hand, a low bias means, that the model
is a straight line to a cubic data model. The model has not enough parameter to fit a good
regression line trough the data. Here the bias variance trade off becomes obvious. If a model fits
to less parameters, the model does not describe the data. Otherwise, if to much parameters are
estimated, the model tends to overfitting the data.

Finally, we can extend the mean square error, which describes the reducible error, by the
irreducible error or noise σ2. The expected prediction error (EPE) describes the reducible error
combined with the noise, i.e. irreducible error.

EPE
(
f(x), f̂(x)

)
= bias2

(
f̂(x)

)
+ var

(
f̂(x)

)
︸ ︷︷ ︸

reducible error

+ σ2︸︷︷︸
noise

(14)

Figure 3 shows the dependency of the model complexity and the different types of errors on the
left subplot. The expected prediction error is the sum of the Bias2 and the variance plus noise.
While the Bias2 decreases with model complexity, the variance will increase. Hence, the best
model is a trade off between the Bias2 and the variance located where the expected prediction
error has its minimum. On the right subplot the dependency between the model complexity and
the error of the training and test data is demonstrated. While in general the training error will
decrease with the increase of the model complexity due to overfitting, the test error will decrease
in the beginning and than increase with the model complexity. The trained model models to the
training data with too much precision.

In section 3.1, we model the variance and noise on different biological genetic pathways
(Kruppa et al., 2016, 2018b). In section 3.2, Kruppa et al. (2017) and Kruppa and Jung (2017)
uses dimension reducing methods to decompose the covariance matrix and visualize the variance
between the samples. In Kruppa et al. (2018a), we use a decoy database to determine the
bias of each sample, because the true infection status of the biological sample is not known.
Nevertheless, detection results will be delivered by the algorithms, even with no viral infection.

1.8 Summary

The clinical translation of basic research in genetics is based on data of a high quality. The data
must be free of outliers and the statistical properties must be known. Hence, the reproducibility
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Figure 3 – Graphical representation of the variance bias trade off. On the left side with the increase of
the model complexity the bias will decrease while the variance will increase. The expected
prediction error is the sum of both errors plus noise. On the right side with the increase
of the model complexity, the training error will increase into overfitting. The testing error
increases after a given point again. The model is perfectly fitted on the training data.
Modified from the supplement of James et al. (2013).

of experiments is connected to many factors. Knowing the data, assumptions for the right
statistical methods can be made and the methods can be combined into one bioinformatical
pipeline. Each of the used methods must beforehand tested and evaluated on artificial simulation
data to understand the limitations of the algorithms. Hence, the generation of multivariate data
is needed. Only a multivariate distribution can generate dependent data, which is mostly the
case in genetics. On this multivariate data, the dimension reduction methods allow to filter
only important variables and therefore reduce beforehand possible false positives. Finally, the
visualization of data distributions and outcomes is a crucial step for evaluating bioinformatical
results. The number of false positives in an experiment must be controlled, like in statistical
testing, or estimated and reported by receiver operating curves or by other classification quality
measures.

2 Research question / Aim of the work

Advanced statistical methods like machine learning or the analysis of high-dimensional omics
data is often done in a pipeline like fashion. The pipeline is run without any visual inspection
of the single steps. Therefore, without any consideration of the assumptions of the inherent
statistical methods. Here, I present a collection of methods to achieve more robust statistical
outcomes using i) computer simulation of correlated artificial data and ii) the visualization of
complex data dependencies.
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3 Results

The results section is divided into two parts. First, two publications dealing with in silico sim-
ulation of complex correlation structures are presented. We show the generation of multivariate
data for Poisson distributed data as well for the binomial distribution. Both distributions are
common in genetics, like next generation sequencing and therefore gene expression or the per-
centage of methylation sites in epigenome wide association studies. Second, three publication
showing the visualization of high order dependencies between individuals are described. The
dimension reduction of high dimensional viral sequence data and the outlier detection by three
dimensional boxplots is presented. Further, both methods are used for the quality assessment for
virus detection pipeline in the last publication. In addition, a decoy database is demonstrated
for the estimation of false positive. The algorithms are available as R packages.

3.1 In silico simulation of complex correlation structures

In the following section two methods for the generation of multivariate data for the Poisson and
binomial distribution is shown. While the multivariate normal distribution is theoretical and
practical available Mi et al. (2009), the multivariate distributions of other statistical distributions
must be generated by a iterative process. We present a simulation framework for correlated count
data and a iterative genetic algorithm for the generation of correlated binary data.

3.1.1 A simulation framework for correlated count data of features subsets in
high-throughput sequencing or proteomics experiments

Refers to: Kruppa, J., Kramer, F., Beißbarth, T., and Jung, K. (2016). A simulation framework
for correlated count data of features subsets in high-throughput sequencing or proteomics exper-
iments. Statistical applications in genetics and molecular biology, 15(5):401-414
https://doi.org/10.1515/sagmb-2015-0082

In my dissertation I used different machine learning algorithms to estimate the classification
probabilities of belong to a given group (Kruppa et al., 2012, 2013, 2014a,b). Machine learning
does not have directly assumptions to the data, but like support vector machine the user must
decide which kernel to use to run the SVM algorithm. Depending on the machine algorithm,
different tuning parameters must be chosen. Further, depending on the these chosen tuning
parameters the results can differ in great extend (Kruppa et al., 2014a). I decided, that new
developments in machines learning must be trained and evaluated first on data, where the truth
is known. Afterward, the new algorithms can be used on real data sets, where the properties of
the data can be extracted.

The microarray technology for the detection of different expression levels is based on in-
tensities of different light spots. If a gene is expressed a specific region on the array will emit
light. Depending of the array type and technology the emitted light or the calculation of the
final signal might differ. Nevertheless, light signals as intensities, as a continuous outcome, is
measured. The standard pipeline for analysis such expression data on a continuous scale is done
by the limma R package, which is the actual state of the art for such data (Ritchie et al., 2015).
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The central idea of the limma package is not to use the variance connected to the compared
genes, but to include the whole variance of the sample in a Bayesian approach (Smyth, 2004).
This is called a moderate t test (Yu et al., 2011). Therefore, the t test calculates the variance
from the data that is available for each variant, while the moderated t test uses information of
all the variants in the data set. Many bioinformatic analysis pipelines are based on the limma

package and of the concept of using the whole data variance and not only from a small subset. In
my work, Kruppa et al. (2016), we asked the question, how to generate correlated data of gene
subsets of next generation sequencing (NGS) data? In contrast to micro array data, NGS data
has not a continuous outcome, which is normal distributed, but read counts mapping to a given
gene of a reference genome. The outcome “read counts” is Poisson distributed with X ∼ Pois(λ)

or negative binomial with X ∼ NegBin(λ; γ) with γ as dispersion parameter describing the
mean/variance ratio.

If we now want to generate correlated count data, we need a multivariate Poisson or negative
binomial distribution. Both multivariate distributions are not available. Therefore, we used the
multivariate normal distribution and rounded the generated continuous numbers to discrete
numbers without digits. At first it seems that has not a big influence, but if the numbers are
small, the effect becomes big. Rounding 1.5 to 2 has an big effect on the numbers. Rounding
54.5 to 55.0 has not a big influence. We compared effect of the rounding by different simulation
settings. Further, the main advantage of the multivariate normal distribution is to simulate
correlated data on the subject level. Hence, we were able to simulate gene sets, which have the
same correlation among each other. This represents a biological pathway, where the assumption
of independent genes can not be hold. One main task was to determine a realistic correlation
matrix. Our approach was two fold. First, we simulated different correlation structures, which
are common: autocorrelation structure of order 1, compound symmetry structure corresponding
to a constant correlation, a blocking structure, and an unstructured random correlation (Shown
in Figure 1.A of Kruppa et al. (2016)). Second, we estimated the correlation structure from real
world data sets and used these correlation structures to generate artificial count data (Shown in
Figure 1.A of Kruppa et al. (2016)).

We were able to achieve good performance in the case of the artificial data generation of
constructed covariance matrices as well as on the usage of estimated covariance matrices out of
real world data. Even if the overall count numbers are small, the covariance matrices differ not
from the original one. Hence, we were able to use the multivariate normal distribution using
rounding and estimated as well as constructed covariance matrix to generate correlated count
data. In the next step, we were able to simulate multivariate distributed binary data in Kruppa
et al. (2018b).

3.1.2 A genetic algorithm for simulating correlated binary data from biomedical research

Refers to: Kruppa, J., Lepenies, B., and Jung, K. (2018b). A genetic algorithm for simulating
correlated binary data from biomedical research. Computers in biology and medicine, 92:1-8.
https://doi.org/10.1016/j.compbiomed.2017.10.023

15 | 36

https://doi.org/10.1016/j.compbiomed.2017.10.023


In the work of Kruppa et al. (2016) we used the rounding of a multivariate normal distribu-
tion to generate a multivariate Poisson distribution of count data. We checked if the simulated
covariance matrix is nearly the same as the predefined covariance matrix by comparing the eigen-
values and calculating the RMSE as a distance measure. In the following work of Kruppa et al.
(2018b) we generated a multivariate binomial data set consisting of binary outcome. In genetics
the methylation pattern of given CpG sites show a binomial distribution of presence or absence
of a methylation. In Kruppa et al. (2018b) the simulation is based on a genetic algorithm. A ge-
netic algorithm mimics the mutation of the DNA to achieve new sets of numbers. While a Monte
Carlo simulation is a pure random search a genetic algorithm is a random searching algorithm
including genetic ideas like selection method, cross over, and mutation operators.

Figure 4 – Reduced example for the genetic algorithm. The columns can be seen as chromosomes
representing m variables and the translocation as mutations. In each iteration step t two
entries of the data matrix X are randomly swept. Taken from Kruppa, J. et al. (2018b).
A genetic algorithm for simulating correlated binary data from biomedical research. Com-
puters in biology and medicine, 92:1-8

The algorithm works as follows. First, a start matrixX0 with randomly assigned 0’s and 1’s
is given, a desired covariance or correlation matrix Σ, and a set of stop criteria, when the genetic
algorithm should stop the iteration process. As a common stop criteria, we use ε as the RMSE
error for the difference between the desired Σ and the actual one Σi in iteration i. Further,
we set the iterator counter to a maximal value of iterations depending on the computational
power of the hardware. In each iteration step i two positions between xij and xij are swept.
Then the empirical correlation on the margins is determined and checked, if the distance to the
desired correlation matrix is smaller. If this is the case, the mutation will be saved and the
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algorithm goes on with the changed position. If the RMSE is higher, the change of the positions
is discarded. This process of sweeping positions is done until the RMSE is below the threshold.

We achieved mean RMSE errors near to zero. With an decrease of the predefined correlation
going to zero, more translocation steps are needed for a RMSE of zero. We run the simulation
study on low dimensional setting with 1000 patients and three variables. Further, we used
the algorithm on the high dimensional setting with up to 100 variables and a lower number of
patients. In both cases we were able to achieve a small RMSE error and construct the desired
correlation matrix. In general the RSME is smaller, if a larger sample size is given. Also the
number of needed translocations to achieve the threshold ε is smaller, if the sample size becomes
larger. In addition, we compared our approach to three existing ones. All three approaches can
only achieve the same results as the genetic algorithm on low dimensional settings. In the case of
high dimensional settings, we were only able to test the three competitors on 20 variables. With
a higher number of variables the computational efforts can not be handled. Hence, the presented
genetic algorithm by Kruppa et al. (2018b) is a flexible tool for the generation of multivariate
binary data from a binomial distribution in a high dimensional setting.

Finally, we checked our approach on a real world example for novel carbohydrate ligands of
C-type lectin receptors (CLRs). Glycan arrays will give binary data matrices where rows repre-
sent glycans of different types and columns represent samples. In brief, we applied our genetic
algorithm to simulate glycan array data. Then we checked whether a global test procedures is
useful tool to reveal gene set differences between experimental groups. Diagnostic plots allow to
check visually the differences between the original and achieved correlation matrix. The devia-
tions should be dispensed over the full matrix and not clustered on one position. Because in both
cases the RSME would be the same. All described functionality is available in a corresponding
R package.

3.2 Visualization of high order dependencies by dimension reduction

In the following sections we will use parts of the presented methods for data generation for sim-
ulation studies to evaluate different methods for the dimension reduction of high dimensional
data. First, the kmerPyramid a tool to visualize k-mer distributions of higher order of DNA
sequences using the principle component analysis (Kruppa et al., 2017). Further, the gemplots
for the detection of outliers or suspicious samples out of the principle components of the vari-
ance/covariance matrix (Kruppa and Jung, 2017). Both tools are used for the quality assessment
for the final virus detection without a reference genome of the host described in Kruppa et al.
(2018a). All three methods are available as R packages with corresponding code and examples.

3.2.1 kmerpyramid: an interactive visualization tool for nucleobase and k-mer frequencies

Refers to: Kruppa, J., van der Vries, E., Jo, W. K., Postel, A., Becher, P., Osterhaus, A., and
Jung, K. (2017). kmerpyramid: an interactive visualization tool for nucleobase and k-mer fre-
quencies. Bioinformatics, 33(19):3115-3116.
https://doi.org/10.1093/bioinformatics/btx385
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The genetic code consist of only four letters indicating four nucleobases: adenine (A),
cytosine (C), guanine (G), and thymine (T), beside uracil (U), which is only present in RNA
data. In Kruppa et al. (2017) we focus on the DNA sequence. A string of DNA can be cut into
smaller pieces of the length k. This smaller pieces of length k are called k-mers. The smallest
possible k-mer is the 1-mer, which consists of {A,C,G, T}. All possible 2-mer’s can be seen
as a matrix off all two by two combinations of {A,C,G, T}. Hence, we can count how many
2-mers of each representation we will find in our DNA sequence. Adding more dimensions to
the matrix allows to determine higher k-mers. The 2-mer matrix has the the properties like a
variance/covariance matrix seen in formula 2.

2-mer =



A C G T

A AA AC AG AT
C CA CC CG CT
G GA GC GG GT
T TA TC TG TT

 (15)

We were able to use the principle compounded analysis as dimensional reducing method to achieve
a smaller representation of the data if we look at k-mers larger than three. This is important
because each species has a special fingerprint of nucleobase distribution. The individuals might
differ, but the overall distribution of the nucleobases is the same for a species. Nevertheless, the
deviation is so small, that we will not be able to use this information on the level of nucleobases.
Therefore, we k-mers of higher order to achieve a separation. Using principle compounded
analysis we were able to plot the k-mer distribution of a higher order larger than k = 3. By
doing this we project the higher order of the k-mers distribution into the 3-dimensional space
of the principle components. Interestingly, this dimension reduction will form always a pyramid
structure.

The edges of the pyramid will always include the single nuceleobases. Therefore, even a
1-mer dimension reduction looks in the 3D PCA space like a pyramid. Adding more k-mers
the pure k-mers consisting only of one nucleotide will be on the tops of the pyramid and the
mixtures of them, like {AG, ..., CG}, on the edges between the pure tops. We added a additional
layer by counting the umber of the k-mer appearance indicated by bubbles. We now have
a visualization of higher k-mer distribution in DNA sequences. Hence, we are able to compare
different species. We can calculate different measures between the pyramids, because each species
will be projected into a pyramid. On this distances we can build up phylogenetic trees or other
relationship measures. Further we can also look at the single gene level and decide if a gene
is maybe transposed from a different species. Like viral genes, which are build in into a host
genome or bacteria, which are including resistance genes from other sources. Finally, we can also
use the kmerPyramid for the quality control of next generation sequencing reads. We can check
if all reads have nearly the same distribution has the source sample or if we get artifacts, like
reads consisting only of one nucleotide.

The kmerPyramid was used to help and find more reproducible findings by the viral detec-
tion pipeline published in Kruppa et al. (2018a). Therefore, to make the virus detection pipeline
more robust. The kmerPyramid is a visual tool to be used, if the virus detection pipeline might
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have problems or find suspicious outcomes, like virus families of hosts never could interfere with
the analysis sample. Finally, we used the kmerPyramid to check if given regions might be trans-
mitted from a different virus or virus family. The kmerPyramid is available as R package.

3.2.2 Automated multigroup outlier identification in molecular high-throughput data using
bagplots and gemplots

Refers to: Kruppa, J. and Jung, K. (2017). Automated multigroup outlier identification in
molecular high-throughput data using bagplots and gemplots. BMC Bioinformatics, 18(1):232.
https://doi.org/10.1186/s12859-017-1645-5
This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/).

The detection of outliers in biological data is a complex task. First, a biological definition
of a outlier must be given. Depending on the biological context, a sample might be a outlier and
will be discarded, like in the comparison of patients with a illness to healthy patients. In this
case the ill and healthy patients should somehow be the same on the genetic level. A healthy
patient with a genetic expression like a ill one might be an outlier. The sample might have the
wrong label or the measures might be biased. Hence, the sample will be dropped. On the other
hand, we might want to analyse samples detected as outliers, like the detection of novel viral
strains or new phylogenetic taxa in a biological sample. In this case we are searching for the
outlier to analyze.

In genetics a single sample has thousands of covariate measured like SNPs or expression of
genes. All the variables together describe the single biological sample. To compare each sample
to the other ones, the dimension must be reduced. Normally, the outlier detection is done after
dimension reduction by the principle compounded analysis. The first two components are plotted
in a 2-dimensional space. In Kruppa and Jung (2017) we are extend the 2-dimensional plotting
by a additional third dimension . Therefore, we present the gemplot as a extension of the bagplot,
the 2-dimensional boxplot. Therefore, we are able to visualize a additional dimension of principle
components.

In our work we were able to show the advantages of the gemplot on different simulation
settings with artificial data. Here, we used the multivariate normal distribution with a autore-
gressive covariance matrix to model the dependencies between the genes. Therefore, the genes
were not independent modeled. In addition, we used a real world data example of kidney tumors
and control samples. We were able to show the advantage of the third PCA dimension by de-
tection further outlier, which would be unseen on the first component and the first and second
combined.

In the theme of the virus detection we used the gemplot to detect host samples which
might be outliers given the measured variables and sequence reads. Therefore, we were able to
select interesting samples beforehand and use these samples for the next steps in virus detection
procedure. Combined with the information from the kmerPyramid (Kruppa et al., 2017), we were
able to achieve more robust detections of viral strains, which could afterward be reproduced in
the wet lab. The gmplot is available as R package.
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3.2.3 Virus detection in high-throughput sequencing data without a reference genome of
the host

Refers to: Kruppa, J., Jo, W. K., van der Vries, E., Ludlow, M., Osterhaus, A., Baumgaertner,
W., and Jung, K. (2018a). Virus detection in high-throughput sequencing data without a refer-
ence genome of the host. Infection, Genetics and Evolution, 66:180 - 187.
https://doi.org/10.1016/j.meegid.2018.09.026

In my recent work, we faced a special problem in high-throughput sequencing data in virus
detection (Kruppa et al., 2018a). So far, the discussed data was high dimensional with much
more variables p than samples n. In the case of virus detection by high-throughput sequencing
data single biological samples are used. This is the most extreme high dimensional setting with
one biological sample n = 1. Therefore, we have one single animal infected with a potential
pathogen. We used high-throughput sequencing data to reveal the infection of harbor seals with
a batai virus (Jo et al., 2018) or the detection of novel canine circovirus strains and bocavirus
(Piewbang et al., 2018a,b).

A biological sample, like a dog, died of a pathogen. There are many specialized and very
sensitive and specific laboratory tests to determine if a given virus is in the sample. Due to the
enormous variety of viral strains not all tests can be conducted limited by time and monetary
costs. High-throughput sequencing allows to sequence and detect all the DNA in a given sample.
The data produced consist of millions of sequence reads up to 300bp, but very often have lower
read length around 100bp. Each sequence read is a fragment of the whole DNA in the sample
consisting of the dog DNA, different viral DNA, bacteria DNA and other organisms. In standard
pipelines, developed for human tissue, first the reads are mapped to the human reference genome.
Then all reads belonging to the human DNA can then removed. If the genome reference of the
host is not available or has a lower quality, the host reads can not be removed from the sample.
In addition, a single biological sample has not one single virus but whole families of same types
or a variety of harmless viruses like the herpesvirus in humans.

Therefore, we had the idea to skip the filtering of host reads. Instead, we mapped the
sample sequence reads to all available virus sequences of the NCBI Genbank of approx. 2.4
million DNA sequences. Further we translated the DNA reads to the corresponding amino acid
sequences and mapped these reads to approx. 3.3 million virus amino acid sequences of the NCBI
Genbank. This overcomes the problem, that host reads will be included into the detection list.
On the other hand, we will always detect a virus. It will always map some reads to a sequence of
the 2.4 million viral references. Overall, adding a second layer of the amino mapping results in
more confidence of the finding. To overcome this problem, we designed a decoy database of viral
sequencing reads. The decoy database consists of random shuffled sequence reads of the same
size as the original reference genome of the 2.4 million viral reads. While running the detection
pipeline, we draw ndr = 1000 decoy reads from the decoy database and added these decoy reads
to the sample reads.

Table 2 shows the possible outcome of the mapping. A virus read can be mapped to the true
virus, the false virus or the decoy sequences. On the other hand, a decoy read can be mapped
to the virus or to the decoy reference. Therefore, we can determine the true positive rate for
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the decoy reads (tprd) and the false positive rate (fpr), if a decoy read is mapped to the virus.
reference. Using a biological sample, we can not distinguish between the true virus (a, d) and
the false virus (b, e). We will find a 2x2 table again. Finally, we can estimate how much a read
will be mapped multiple times by determining the deviation of the mapping of the one thousand
decoy reads.

We validated the decoy approach by a simulation study with random drawn reads from
different virus strains. Further we analyzed two samples of a tinamou and a fin whale of DNA
and RNA sequencing data. In both samples the infection was know. The tinamou was infected
with a avian hepadnavirus and the dolphin with a morbillivirus. We were able to detect both
strains using the virus detection pipeline. Finally, we were able to detect virus stains even if a
host reference genome is not available or the coverage of reads is very low. Further, the results
can be judged by a decoy database, which allows to assess error rates so that the quality of the
final result can be classified.

Table 2 – Contingency table of the possible outcomes by the decoy approach for the viral detection
pipeline. In real world examples the true virus can not be distinguished from the false
virus. The decoy reads allow to assess the error rates in the detection results.

Reference

True virus False virus Decoy Total

Read Virus a c e a+ c+ e
Decoy b d f b+ d+ f

a+ b c+ d e+ f n

In this work we combined the results of the kmerPyramid (Kruppa et al., 2017) and the
gemplot (Kruppa and Jung, 2017) to serve as quality control for the final virus detection run of
the host sample with unknown host genome. A final overview of the top 25 hits of the pipeline
is finally visualized in a complex figure with additional information (Supplementary material,
Kruppa et al. (2018a)). This is done after the sequence reads have been classified. The order is
determined by DNA and amino reads of the detected viral strains. The pipeline is available as
R package.

4 Discussion

4.1 Crisis of reproducibility in science

I started my habiliation with a quote of Tukey and I would like in the end refer to him. Tukey
(1980) proposed that we need both exploratory and confirmatory studies. The idea of exploring
the data in a circling process is already mentioned in his work. From an idea a question emerged
and determines a design. Maybe the possible design will not match the question and therefore
a circle of readjusting will begin. How has this idea passed on in the scientific community and
how can we balance exploratory and confirmatory studies? This is especially important, if we
want to generate new findings and translate these findings into the clinical everyday work. In
the following different additional solutions are discussed. With the increase of available data
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and variables the amount of significant results also increases. Very often the inflation of the
type I error is ignored or the influence is not known. Therefore, each bioinformatic pipeline
run will produce some significant results. Form here on it becomes more complex, if we want
to produce more repeatable results. In the case of clinical translation this is the fundamental
layer. If a experimental finding can not repeated, the finding is a false positive finding and
therefore meaningless for the patient. Not for the scientific community, a false positive might
carry information, but the patient will not profit from a not working medical treatment.

The idea of translation medicine is to transfer the findings from basic research to the patient.
Often said “from bench to bedside”. If a experiment can not be reproduced the result is not valid
and therefore can not be used to cure a sick patient. There is no evidence anymore, that
the basic research has found a mechanism in the sickness that can be used for a medicament.
Recent developments, like the QUEST criteria emerging of the attributes of robust and innovative
research (MERIT), are suggesting a broader spectrum of criteria to asses translation (Kip and
Dirnagl, 2019). The central idea of the QUEST criteria are to combine different strategies to map
robustness, reproducibility, and confirmation in a research project. The combination of priority
setting, which references and literature are available, the strategies for establishing scientific
rigor, how to handle bias and are there protocols and guidelines available, the transperancy
and dissemination of results, is the study registered or open source strategies, and finally the
participation, how will the study stackholder, from patient to funder, be included in the research.
A combination of all these principles will help to overcome problems of reproducibility.

Fanelli (2018) stated, that the crisis is not a really crisis but a challenge and is not undermin-
ing the scientific enterprise as a whole. Maybe, the expectations on science are unrealistic (França
and Monserrat, 2018). If the sample size is small, different results or a failure in replication should
not cast doubt on the experiment findings. The sources of different errors must be modeled and
controlled correctly. Especially, real world studies have a much higher variability than in vivo
experiments. Peng (2015) offers a final way out by investing more time in the statistical educa-
tion. Data collection has to become much to cheap and easy. Therefore, much data is collected
without a analysis strategy. Statistical software and standardized data analysis protocols must
be combined with clean data to teach people the basics of statistical analysis. Hence, in our work
we always published our simulation and analysis code together with simple to complex examples
as R packages. All source code is available on GitHub (https://github.com/jkruppa). Users
and developers can look up the examples and the fundamental R code.

Miotto et al. (2017) describes the problems of data quality in deep learning. Challenges are
open beside the great opportunities on the fields of clinical imaging, literature review, electronic
health records, and genomics. Data in health care is mostly heterogeneous with data sparsity,
redundancy, and missing values. To train valid deep learning algorithm clean and well struc-
tured data is demanded. The interpretability of machine learning and deep learning prediction
outcomes are often treated as black boxes and must be communicated in a more sophisticated
way to convince the medical professional of the usage. Especially in genetics more computational
modeling techniques can be applied by deep learning, again the key for using such techniques is
a good data quality (Eraslan et al., 2019).
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4.2 Exploring data correlation patterns

Wickham et al. (2014) proposed to generate at first tidy data. The data should be imported into
a software, here the statistical programming software R. In a next step, a great effort should be
made to achieve “tidy data”. Tidy data should mean more than to clean data form missing and
wrong labels. The cleaning is also included but tidy data is more. A tidy data set should always
look the same. If two tidy data setsX1 andX2 are compared, the single entries might differ, but
the overall structure should be the same. Hence, Wickham et al. (2014) puts the programming
into a larger theme, shown in figure 5. The data will be imported and after wards “tidied” by
a special theme. After the data is tidy, a exploring phase will be performed. The exploring
phase is a circle, while different transformation on the data is visualized and then modeled. If
the model does not fit to the data, different transformation might be better and feasible. Tong
(2019) gives guidance for good data modeling. Finally, the model with the best properties to the
data is communicate to the public. Mogil and Macleod (2017) supposed therefore only to publish
experiment results with conformation. A journal article should follow the best clinical-research
practices to lower false conclusions drawn form animal models and publication bias. Hence,
Mogil and Macleod (2017) aim is to strengthen the translation medicine by better exploring the
data in more circles.

Figure 5 – Programming theme for tidy data. Data will be imported, tidied and explored. After
the exploring phase, including transforming, visualizing, and modeling the data, the final
results will be communicated. Modified from Wickham and Grolemund (2016).

We used the circle of exploring the data supposed by Wickham et al. (2014) before we
communicate the results in Kruppa et al. (2018a). Virus detection is a very complex process.
Most importantly, the bioinformatical pipeline will always give a result of a detected virus.
Beside the decoy approach discussed in the section 3.2, the focus is now on the communication
of the results shown exemplary in figure 6. The host sample was a fin whale. The fin whale
died of a possible virus infection. Looking at the most important measure, the number of DNA
sequence reads mapping to a reference genome, the MF360246 Frog virus 3 isolate has 134589
sequence reads mapped in contrast to the Aj608288 Dolphin morbillivirus with 39490 sequence
reads mapped. From the raw numbers the Frog virus seems to be more “significant” or “relevant”
than the Dolphin virus. We would now communicate to the biologist, that the fin whale sample
is infect by a frog virus. This would be beside this sample a stunning result, because normally
no frog samples are analyzed as a host. Hence, a species boundary has been crossed. We already
know from Jo et al. (2017), who was able to detect the dolphin morbillivirus in the wet lab, that
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the fin whale died of a morbillivirus. The detection of the frog virus would be a false positive
finding.

Figure 6 – Visualization of virus detection by next generation sequencing (left) and problematic
mapping (right). The name and the NCBI GenBank ID (1), the number of overall mapped
DNA and amino acid reads is reported (2), the number of aligned reads by the algorithm
(3), the single mapped reads on the reference genome (4), the reference genome (5)
with genes indicated by red lines and gray shaded area (6), mapping of the amino acid
reads (7), the number of mapped amino acid reads (8) and the coverage of the reference
by the DNA reads (9). Taken from Kruppa, J., Jo, W. K., van der Vries, E., Ludlow,
M., Osterhaus, A., Baumgaertner, W., and Jung, K. (2018a). Virus detection in high-
throughput sequencing data without a reference genome of the host. Infection, Genetics
and Evolution, 66:180 - 187.

To achieve more robust findings, we advanced the circle of data exploring by further visu-
alization. Beside the raw number of mapped DNA sequence reads, we plotted the reads by the
position of the mapping to the genome. Figure 6 shows that the reads are homogeneous mapped
to the dolphin sequence (4), but on one point stacked on the frog genome. As a second layer,
the amino mapping gives more confidence. The DNA reads are translated into amico acids and
then mapped to the proteome. Again, the amino reads are spread over the full dolphin reference
(7). Finally, we also show the coverage of the reads in a second subplot (9). If the genome of
the host is covered, a blue color is shown. In addition, a black line indicates the frequency of
the most mapped base over alle DNA sequence reads on this position. All information brought
together, the evidence is clear, that the fin whale was infected by a Dolphin morbillivirus instead
of a Frog virus. The decision would be different on raw mapped read numbers.

In Kruppa et al. (2018b) we also used a visualization to determine the deviation between
the outcome correlation matrix Σ′ and the predefined one Σ. The genetic algorithm is a random
walk and we measure the deviation by the RMSE. A small RMSE points out that the two
correlation matrices Σ′ and Σ are equal in the sum of their deviations. The sum, represented
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Figure 7 – Diagnostic plot for the evaluation of the outcome correlation matrix to the predefined
one. In an ideal setting the deviation is spread homogeneous over the matrix without
any cluster. Taken from Kruppa, J. et al. (2018b). A genetic algorithm for simulating
correlated binary data from biomedical research. Computers in biology and medicine,
92:1-8

by the RMSE, might be misleading, because a region of high deviation and a region of lower
deviation would be averaged out. To avoid such biased matrices, we added a diagnostic plot
shown in figure 7. The colors should be spread equally to indicate a good correlation matrix.
Without these visualization misleading correlation matrices could be generated by the genetic
algorithm. Hence, a tested new algorithm on these biased data would get similar biased results.
In our previous work of Kruppa et al. (2014a), we showed different probability distributions and
the complications of estimating such distributions by machine learning. The visualization of
distribution is important to judge the final outcomes, especially if these outcomes are reduced
form multi dimensional space to single numbers. The results are supported by Jebb et al. (2017)
and Kuznetsova et al. (2018). Jebb et al. (2017) describe exploratory data analysis (EDA) as
a tool that helps maximize the value of data. They present different graphical tools to detect
data patterns, which help researches to foster reproducible research. Kuznetsova et al. (2018)
describes the problems of the visualization of hierarchical biological data. Due to the fact that
that most biomedical data is high dimensional, there are no direct visual and interactive tools
available. Data visualization is the most crucial step in conveying biomedical results and therefore
indispensable. The human understanding is limited to lower dimensions and therefore dimension
reduction and well designed visualization tools must be applied to understand. Kuznetsova et al.
(2018) focus on hierarchical data structures and shows different designs of illustration.

4.3 Problematic data correlation patterns

It is well known that correlation does not mean causation. To have a high accuracy does not
mean to have a good classifier. Only a combination of quality measures can give evidence for a
good classifier algorithm. Beside the discussed variance/bias trade off pattern recognition can
be problematic on specific data collections. Libbrecht and Noble (2015), Leung et al. (2015)
and Minhas et al. (2019) describe different problematic settings in genetic and biomedical data
sets. Some of the problematic settings are also discussed in Kruppa et al. (2014b) in context of
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machine learning. Nevertheless, the concerning properties can be generalized for other methods.
Algorithms are mostly trained and tested on ideal data settings or data, which properties fitting to
the methods. In the following different types of problematic features are discussed in the context
of pattern recognition or classification. Most of them can be faced by good data exploratory
tools like visualization or by simulation studies to measure the deviation by a set of common
classification quality measures.

The accuracy of a training algorithm might be heavily biased if a imbalanced class size is
present (Haixiang et al., 2017). If we assume nine patients in the test data with a benign tumor
status and one patient with a maligned status ytest = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, hence a overall
prevalence of 10% in the training and testing data set. Now we train the algorithm on the data.
On the test data we getting only 0’s predicted. Nevertheless, we will get an accuracy of 90%
correctly predicted patients. Tough, we have not predicted one maligned patient. This scales
also for higher sample size with a overall imbalanced class size. Hence, the algorithm has a very
high accuracy by predicting only one class overall. A receiver operating curve as visualization
tool will reveal the misleading prediction. A high correlation between the variables in a data
set will inflict the feature selection and classification. The body weight and the body height are
strongly correlated. Hence, an algorithm will have problems to decide, which of both will have a
good selectivity to divide the classes of each other. Misleading correlation patterns can also be
caused by outliers in the patients groups. Sometimes such correlation can be removed beforehand
or can be seen by a principle component analysis. To test how an algorithm can handle complex
correlation structures, a simulation of a multivariate data set must be conducted. This comes
together with often very heterogeneous data. The different sources of biomedical data are causing
a high variance, which must be modeled in a correct way. The best model can not be found
in a first step and must be found by tuning and adjusting the hyper parameter of the machine
learning algorithms. Finally, machine learning algorithms can not handle missing data. This can
become a severe problem, if all missing data points must be removed and the missing values are
totally spread at random over the full data set. Hence, a large data set can become a very small
one, if all missing values must be removed. Data imputations methods might help, but must be
visually inspected. The new artificial data is not a biological representation.

The pattern recognition in biomedical data, especially in genetic data sets is challenging.
More data an different omics layers is generated and produced (Figure 8). Chaki and Dey
(2019) describes an open task of generation digital genomic data. Beside the expose of private
information if genomic data is stored, different data bases exist with different storing properties
exists. Chaki and Dey (2019) stated, that the storage and the procedure of analysis must be
enhanced to have a better exchange and comparability of the experiments. In addition, genetic
data does not exists in one state. Different preprocessing steps, normalization, and dimension
reducing methods are multiplying the amount of data to be stored. Finally, a better professional
training in the fields of machine learning in practical and theoretical knowledge is demanded
from Chaki and Dey (2019).
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4.4 Open questions and ongoing research

In our work, we were able to generate multivariate distributions representing gene sets or methy-
lation patterns in different groups of patients. These clusters can be generated with different
outcome properties like Poisson, Gaussian or binomial distribution. The next step would be
a multi omics approach. The simulation of different gene sets defined by their corresponding
KEGG or GO pathways would be the first step. On these data a second layer of methylation
differences can then be applied. The effect on the outcome is then not determined by the single
gene effect but also by the effects of the methylation pattern and the interaction between both
omics layer (Karczewski and Snyder, 2018). Depending on the amount of layers the computa-
tional problems can scale very fast. In addition, the complexity of possible research questions
will also increase.

Figure 8 – Different layers of omics including the genome, as baseline layer, the epigenome, the
transcriptome, the proteome, the metabolome, and the microbiome. The analysis can
be driven by the genome, as first layer, or by the phenotype. Figure 1 of Kruppa et al.
(2012) can be seen as a genomic layer represented as GWAS. The arrows indicating
possible interactions between the omics layers. Taken from Hasin et al. (2017).

Figure 8 shows the different layers of omics. Very often the genome level will be set as
baseline. On the changes of the genome the other omics layers, the epigenome, the transcriptome,
the proteome, the metabolome, and the microbiome, will be adapted and modeled. On the other
hand, the phenotype can drive the effects as first layer. Depending on the phenotype the different
omics layers are then modeled. We plan to simulate the different interactions between the layers
to test and develop new methods for the interaction of multiple data omics layers (Rohart et al.,
2017). In addition, the source of the biological sample also plays an important role and can have
effects of the viability. In the case of methylation, a sample has different CpG sites methylated
depending on the biological tissue (Rodger and Chatterjee, 2017). The different concentration of
different types of cells in a tissue can alter the methylation state and therefore bias the analysis
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(Zheng et al., 2018). For different tissues and organs data bases of cell compositions are available.
The oral tissue is not covered. The generation of cell fractions for oral tissue will be one of the
next tasks.

Du et al. (2010) describes the outcome variables of a methylation analysis in epigenetics. A
methylation analysis is special in the case, that two outcome measures will be produced. From
the laboratory machine m-values are generated and reported. These m-values follow a normal
distribution with two peaks, one peak describing the distribution of methylated sites and another
peak picturing the unmethylated sites. The m-values are than transferred into β-values, which
describe the percentage of methylation at a given CpG site. Hence, the m-values are normal
distributed and the β-values follow a binomial distribution. Comparing different treatments or
the influence of a risk factor on the methylation state, differences in m-values are calculated.
Due to the good statistical properties of the normal distributed m-values the analysis is run on
the m-values. As a drawback the differences in m-values are not biological interpretable like
the difference in percentage of the β-values. The transformation of differences of m-values into
differences of β-values is not directly possible. A next research project will deal with this question
for reliable and biological interpretable effect measures in epigenetics.

Preprocessing biomedical data is a common step in the bioinformatical data analysis. Each
bioinformatic pipeline has at least one quality step or normalization method included. Hence,
the analysis will not be conducted on the raw data extracted from a laboratory machine but
on the transformed scale. In the metabolome analysis the preprocessing can alter the results
of the analysis pipelines in a huge margin. This is mainly caused by the 3D structure of the
metabolic data. In our future work, we examine the effects of different preprocessing steps on
the annotation of metabolome data. The aim should be to generate a gold standard database
with well defined peaks of different properties. The gold standard database can then be used
for the assessment of different analysis pipelines and will allow to compare these methods on the
same basis.
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5 Summary

The clinical translation of basic biomedical research is challenging. In an ideal setting omics
experiments would deliver biomarker, which can be then used for the classification of cancer
status or other serve diseases. Often this is only the case for very specific genetic markers of
genes in a special functional gene, like the p58 gene in human breast cancer. Other findings in
mouse experiments or human cell tissue can not always be reproduced in clinical trails. Here
the question emerged, does this mean, that there is no effect, hence a false positive finding, or
does the biology is such different that a transfer from mice to human of the gained knowledge is
not possible. In this work, I focused on the methodical aspects of reproducible research. How
can scientist produce reliable and reproducible biological findings? In classical hypothesis testing
the type I error or the false positive rate is controlled by different methods like the Bonferroni
adjustment or in bioinfomatics the Benjamini Hochberg method. In this case multiple treatment
groups are compared and after wards adjusted in that way, that a global type I error of 5% is hold.
Classification and prediction methods like machine learning ask a different question. Does a new
patient belong to a group given a statistical model. In the center of a classification task stands
the model or the algorithm. The model can only be as good as the training data. Understanding
the properties of the data is the key to achieve a good classification and prediction algorithm.
This comes especially important in a high dimensional data setting, where more variables are
modeled than patients are available.

In my work, I introduced different simulation approaches for the generation of complex data
with dependent correlation structures, which representing complex biomedical data. Normally,
data can be easily generated by drawing samples from a given normal, Poisson, or binomial
distribution depending on the outcome of interest. In this simple case, the samples are all
independent from each other. The multivariate normal distribution allows to generate dependent
samples with a predefined correlation matrix. Hence, we can simulate complex dependencies
between genes ordered in pathways or patients doctored in different clinics. Nevertheless, the
outcome must be overall normal distributed. In the first section of this work, we extended the
possibility of generating multivariate data from a Poisson distribution. A Poisson distribution is
demanded, if the outcome consists of count data. Using the multivariate normal distribution and
rounding to the next number, we were able to generate multivariate count data. We showed that
this simple transformation can hold the predefined correlation matrix, even under very small
count numbers, where the rounding has a larger effect. Further, we used the genetic algorithm
to generate multivariate binary data following a binomial distribution. The genetic algorithm is
a random walk, related to the Monte Carlo simulation. In an iterative process single values of a
predefined matrix are swept and the differences to the intended correlation matrix is calculated.
Depending on the marginal correlation the iteration process needs more time. We were able to
show, that genetic algorithm can generate multivariate distributed binary data in a fast manner.
In addition, the algorithm runs especially well on high dimensional data. Combining these to
approaches, we were able to generate multivariate data beside the standard normal distributed
outcomes. The processes are iterative, but achieve low deviations from the researcher predefined
correlation matrices. The methods allow us to find the limitations of methods and problematic
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data settings, where a algorithm might produce biased results or a unacceptable amount of false
positive or false negative findings.

In the second part of my work, I introduced different dimension reducing methods. While
the above presented approach does model the correlation and dependencies on the level of the
variables, the next approaches focus more at the level of the subjects. The principle component
analysis uses the above described correlation between samples to reduce the overall dimension
of the data. This is especially important in a high dimensional setting, which is very often the
case in genetic data. The dimension reduction of sequencing data allows to visualize high k-mer
distributions. A reduction generates always a pyramid independent of the dimension of the k.
Hence, it is possible to compare the sequence properties and composition of different organisms
or genes. The composition of genes can be compared to each other and possible transferred
genes, like antibiotic resistance in bacteria, can be detect. Next, the gemplot allows to extend
the 2-dimensional boxplot in the third dimension. Hence, it is possible to consider an additional
principle component for the outlier detection by a principle component analysis. We used both
methods in combination for the quality control of samples for the virus detection pipeline by next
generation sequencing data. The detection in itself is a easy task, because every bioinformatic
pipeline will detect a virus in any host sample. This is due the fact, that the sequencing reads are
very short and a organism is always infected by viral particles or strains ignoring any integrated
viral DNA of the host genome. Hence, I introduced a decoy database to estimate possible false
positive and false negative rates. Further, a visualization tool to judge the discovered virus by
many additional measures like amino mapping. Further the position and spread of the sequence
reads on the detected viral genome.

To concise this work, two additional approximative methods to achieve multivariate bino-
mial and Poisson distributed data is now available. Hence, any binomial and Poisson distributed
correlated artificial data can be produced to test the limitations of algorithms. Further, visu-
alization and explanatory methods for high dimensional sequencing data is at disposal. The
combination of both achievements allows to attain more robust methods and strengthen the
steps to clinical translation.
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