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Abstract: Missing data and class imbalance hinder the accurate prediction of rare events such as dairy
mastitis. Resampling and imputation are employed to handle these problems. These methods are
often used arbitrarily, despite their profound impact on prediction due to changes caused to the data
structure. We hypothesize that their use affects the performance of ML models fitted to automated
milking systems (AMSs) data for mastitis prediction. We compare three imputations—simple imputer
(SI), multiple imputer (MICE) and linear interpolation (LI)—and three resampling techniques: Syn-
thetic Minority Oversampling Technique (SMOTE), Support Vector Machine SMOTE (SVMSMOTE)
and SMOTE with Edited Nearest Neighbors (SMOTEEN). The classifiers were logistic regression (LR),
multilayer perceptron (MLP), decision tree (DT) and random forest (RF). We evaluated them with
various metrics and compared models with the kappa score. A complete case analysis fitted the RF
(0.78) better than other models, for which SI performed best. The DT, RF, and MLP performed better
with SVMSMOTE. The RF, DT and MLP had the overall best performance, contributed by imputation
or resampling (SMOTE and SVMSMOTE). We recommend carefully selecting resampling and impu-
tation techniques and comparing them with complete cases before deciding on the preprocessing
approach used to test AMS data with ML models.

Keywords: oversampling; undersampling; missing-value imputation; dairy cows; performance metrics

1. Introduction

Mastitis is the most costly and frequent disease in dairy farming, contributing to
considerable (about EUR 125 per cow and year) and recurring costs incurred through
a reduction of milk quantity and quality, as well as the reproductive performance and
longevity of cows [1–3]. The disease affects 20–40% of lactating cows annually, leading
to a potential 11 to 18% of gross margins of dairy farms. Subclinical mastitis contributes
about 48% of these costs through either subsequent milk yield reduction (72%) or the
subsequent culling of infected cows (25%). This disease can be caused by a wide diversity
of pathogens but is dominated by only few species. The most important mastitis-causing
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bacterial species are Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis,
Staphylococcus aureus, and Escherichia coli [2,4]. The subclinical form of mastitis, without
overt symptoms, is by far more prevalent than the clinical form and causes high economic
losses [2,5]. Simultaneously, subclinical mastitis is, due to the low level of symptoms,
difficult to detect. Mastitis affects both the economic viability of farms and the health of
dairy cows, hence impacting the viability of the dairy industry [6]. Mastitis leads to reduced
milk yield, increased veterinary costs, and higher culling rates [7]. Mastitis affects both the
quantity and quality of the milk produced. Infected cows produce less milk, and the milk
often has altered composition, including higher somatic cell counts (SCCs) and lower levels
of key components like casein [8]. This not only reduces the volume of milk available but
also its suitability for processing into dairy products. The effective management of mastitis
involves both preventive measures and timely treatment. Strategies include maintaining
good milking hygiene, using proper milking techniques, and implementing selective dry-
cow therapy to reduce the use of antibiotics. Early detection and treatment are crucial to
minimize the impact of the disease [9]. Therefore, modern data analysis tools like machine
leaning could help us to identify subclinical mastitis cases more often and accurately.

Managing mastitis is even a bigger challenge in large-scale dairy farms despite the
use of automated milking systems (AMSs) that has steadily increased in Germany and
across European countries over the last few years [10]. The AMS uses sensors to collect
data such as milk yield and milk components, and through management programs, alerts
are given in case of variations of either milk production (milk yield and milk flow), electric
conductivity, somatic cell counts (SCCs), milk temperature, milk color or a combination of
these parameters as an indication for mastitis occurrence [11,12]. The data collected at each
milking, or through monthly milk recording programs, are routinely used to help farmers
for better decision-making in production, reproduction and health. This is specifically the
case for mastitis predictions based on milk yield, milk parameters (conductivity, SCC, blood
in milk, temperature) and cow characteristics [11,13]. For this prediction purpose, several
machine learning (ML) approaches have been used that aim to improve the monitoring
of udder health status in general or mastitis specifically, whether subclinical or clinical.
Bobbo et al. [14] compared eight ML models and achieved a prediction accuracy above 75%
for all in a binary classification, with 200,000 cells/mL SCC as a threshold for positivity.
Hyde et al. [15] trained random forest models to predict mastitis infection patterns in a
binary classification where the predictor was contagious vs. environmental mastitis or
environmental lactation vs. an environmental dry period. They obtained 98% prediction
accuracy. Post et al. [16] applied ML models to a group of animals with historical records
of diseases and achieved higher prediction accuracy than when the model was applied to
the whole population. Findings from other studies using similar methodologies showed
also high prediction accuracy [16,17]. Despite these encouraging results, the application
of mastitis-prediction ML models in real-life conditions remains limited because of a
discrepancy between the performance on the training and validation datasets and the
actual data. The nature of data recording by sensor systems and the low occurrence of the
disease appear as major reasons for the difference [18].

Indeed, farm sensor data present, in general, two types of challenges that make them
difficult to handle by prediction algorithms. First, the data are often noisy, with missing
values, outliers and skewed values accounting for about 30% of data loss prior to analysis.
They occur because of sensor failure during signal transmission or the interruption of the
milking process, e.g., by the detachment of a teat cup [19]. The missing values or wrongly
recorded values fall into the type of either missing values completely at random or missing
values at random. Missing values together with a clear definition of positive cases represent
a major hindrance for ML algorithms trained on ‘experimental datasets’ to be used under
farm conditions [20]. To handle the problem, it is common in practice to delete missing
values completely or at least to apply methods such as listwise deletion, but less common
is the reporting of the magnitude of missing values or the use of missing data handling
methods [21]. Although working without missing values is convenient, it only produces
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reliable estimates in limited situations where missing values occur completely at random
and only for the dependent variable. In other situations, this results in severely biased
estimates, not to mention the potential waste of information in the omitted data and the
low practical application of the obtained results [22]. This is of particular importance in
disease prediction, where metrics obtained from the training datasets need to be applied in
real-life situations [20]. Indeed, it is very common to have large amounts of missing values
in sensor-generated datasets [21].

Various techniques have been developed to deal with the challenge of missing values
in large datasets. The common imputation methods are simple imputation, multiple
imputation and linear interpolation. The simple imputation method replaces missing
values with mean, median or mode values [23]. This method is largely applied because of
its computational convenience, although, in many cases, the results and conclusions are not
sensible or generalizable [24]. Multiple imputation uses the MICE (multiple imputation
with chained equations) algorithm, which is a Markov chain Monte Carlo method that
imputes incomplete data in a variable-by-variable way, starting with a random draw of the
observed data. For instance, a first regression of the first variable with missing values is
applied to all other variables, provided that the rows have observations for the variable of
interest. Then, missing values for the variable of interest are replaced by simulated draws
from its posterior predictive distribution. The process is repeated for all other variables
with missing values in turn; this is called a cycle. This process is repeated several times to
generate a single imputed dataset, and the whole process is repeated three to five times
to obtain stable results [25]. Although recognized for its robustness, the method suffers
the limitation of a lack of theoretical rationale [23,25,26]. Linear interpolation estimates
the value of the missing data based on the two data points adjacent to the missing one in
a one-dimensional data sequence [27]. It is reputed to perform well on time-dependent
data and on datasets with a small to moderate number of missing values between adjacent
points [26].

The second major hurdle when training models on AMS data to predict mastitis is the
class imbalance between positive and negative cases [18]. Although frequently observed in
dairy farms, mastitis is a rare occurrence when the data resolution is increased to either a
daily basis, an animal level, or both. This imbalance causes a bias when fitting standard
learning classifiers, reflected in their inability to correctly predict the minority class, de-
spite sometimes achieving high prediction accuracy [28]. Johnson and Khoshgoftaar [29]
noted that the total number of the minority class is more important than the percentage
of imbalance. Various methods to handle class imbalance are reported in the literature to
improve disease prediction [18,28]. Johnson and Khoshgoftaar [29] categorized them into
three groups: data-level methods, algorithm-level methods and hybrid methods. Data-level
methods change the dataset structure by either reducing the majority class (undersam-
pling), increasing the minority class (oversampling), or both, to achieve a more balanced
class distribution [24]. Among popular resampling techniques is the Synthetic Minority
Oversampling Technique (SMOTE), which produces synthetic samples by interpolating
minority samples with their k-nearest neighbors. The algorithm seems to be improved by
taking into consideration the minority class lying along the borderline, hence expanding
the minority class area towards the side of the majority class where only few instances
of majority class are found [30]. However, oversampling techniques may lead to overfit-
ting. Random undersampling is among the first undersampling techniques developed and
works by discarding random samples in the majority class. The technique has been im-
proved with several techniques using nearest neighbors to reduce instances in the majority
class. Edited Nearest Neighbors (ENN) tests every instance with the rest of the samples
using k-NN and disqualifies incorrectly classified samples. Undersampling methods have
the disadvantage of discarding information that may be useful. Techniques combining
oversampling and undersampling have been developed to overcome the limitations of
individual methods. The SMOTE-ENN technique combines SMOTE and Edited Nearest
Neighbors for undersampling [28].
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Studies on mastitis prediction with machine learning classifiers use the above-mentioned
data (pre)processing techniques almost interchangeably, making the comparison and evalu-
ation of effectiveness across studies more complex. Hence, starting with an analysis based
on complete cases where all missing values are removed from the dataset prior to analysis,
we evaluated whether the imputation techniques at three levels of complexity, namely
simple imputation, multiple imputation with a chained equation, or linear interpolation
would improve the performance of ML classifiers. The second of our hypotheses was
to evaluate the improvement of ML classifiers’ performance when class imbalance was
handled by resampling techniques of varying levels of complexity with SMOTE, SMOTEEN
and SVMSMOTE, respectively. Thirdly, we compared performance metrics across models
with both imputation and resampling techniques in order to decipher individual models’
suitability and robustness for mastitis prediction using data collected through automated
milking systems. We used several metrics, including accuracy, F1 score, precision, recall
and kappa score.

2. Materials and Methods
2.1. Data Collection

The dataset included records of 232 cows and 75,217 milking events, for which daily
milk yield, electric conductivity at quarter and cow levels, and somatic cell counts were
recorded. Data were collected between January 2015 and September 2017 from a dairy farm
that used an AMS as well as a dairy herd management program. The Lely Astronaut system
(Lely Industries N.V., Maassluis, The Netherlands) equipped with in-line sensors for electric
conductivity (EC) and SCC was used to milk cows and monitor their performance. The
main features used in this study were measured by the AMS (EC, SCC, daily milk yield), to
which we added six engineered features representing the class-wise 7-day moving average
(Ma) of SC, EC and milk yield, as well as their standard deviations. Hence, the mastitis
cases used in this study referred to the alarm raised by the AMS due to changes detected
in milk. Descriptions of abnormal milk (n = 54), mastitis (n = 398), high conductivity
(n = 14), watery milk (n = 2) were classified as positive cases, while instances where no
alarm was raised were classified as negative cases (n = 74,749). The average conductivity
was 68.44 ± 3.42 µS/cm, and the average SCC was 93.86 ± 188.29 × 103 cells/mL. The
dataset contained missing values for predictors, as presented in Table 1.

Table 1. Description of the dataset.

Variable Total Cases Missing Values

Alarm * 75,217 0
EC_FL 39,189 36,028
EC_FR 39,189 36,028
EC_BR 38,902 36,315
EC_BL 39,075 36,142
EC_ALL 37,891 37,326
SCC 16,548 58,669
Milk yield 75,188 29
Ma_mlk 75,217 0
Ma_EC 41,201 3220
Ma_SCC 23,691 36,449
Std_EC 40,304 10,581
Std_mlk 75,215 2
Std_scc 17,370 57,847

* refers to both presence (value = 1) and absence (value = 0) of alarm, EC: electric conductivity, FL: front left udder
quarter, FR: front right, BR: back right, BL: back left, ALL: average of all quarters, SCC: somatic cell count, mlk:
mily yield, Ma: moving average of 7 days.
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2.2. Data Preparation
2.2.1. Libraries and Packages Used for Data Preparation and Modeling

All analyses were performed in Python, using numpy, pandas, scikit learn and imblearn
libraries. The main scikit-learn modules used were preprocessing and calibration to scale the
data with a standard scaler and calibrate the classifiers. The model selection module was
used to split training, validation and test sets and to perform grid-search cross-validation.
The fivefold cross-validation using the k-fold strategy was also performed with the Grid-
searchCV function to obtain optimal parameters and conduct hyperparameter tuning for
each model. The impute and experimental modules were used to impute missing values
with simple and multivariate imputers. Machine learning models were implemented with
the linear model, tree, ensemble and neural network modules. We selected four common
supervised learning models: logistic regression (LR), decision tree (DT), random forest
(RF) and multilayer perceptron (MLP) [27]. We imported confusion matrix, roc_auc_score,
ross_val_score, cross_val_predict, fscore, cohen_kappa_score, precision, recall roc_curve from the
metrics module to compute precision metrics and plot the ROC curves. We used the
oversampling and combine modules of imblearn to perform the resampling methods [28].
The plotting of ROC curves was aided by the pyplot package of matplotlib library [20].
Finally, we used the statsmodels library to compare the metrics of the models tested and
determine for each model type whether resampling, imputation or both influenced the
observed performance.

2.2.2. Training, Validation and Test Data Split

The dataset was loaded and checked for inconsistencies before further processing.
Inconsistencies such as missing dates, missing all values across one observation, outliers
that could have resulted from erroneous measurement or recording, and the corresponding
data were cleaned. The data were then split into training and test sets at a ratio of 80:20.
The test set was excluded from further processing and model building. This split ratio and
procedure have been previously applied in studies of mastitis prediction using machine
learning with a sample size comparable to that of the current study [14,18,31]. The training
set was further split into training and validation sets and subjected to further processing
and model evaluation.

2.3. Missing-Value Imputation

We followed two directions for further data processing. On one hand, all missing
values were deleted from the dataset, meaning only complete cases (CCs) (for which no
missing imputation was required) remained. On the other hand, data with missing values
were processed with one of three selected imputation techniques: simple imputer (SI),
multiple imputer (MI) and linear interpolation (LI). We performed the simple imputer
technique with the strategy of replacing missing values with the mean. Due to the simplicity
of its computation, the SI method is widely used for imputing missing values in livestock
datasets used for disease prediction with machine learning. Previous studies on the
prediction of several diseases in dairy cows using sensor data found this imputation
method satisfactory to impute missing values where less than 20% of data for a variable
were missing [9,10]. The MI works by modeling missing values of a given variable on
the basis of other features in the data frame, and in an iterative process, it designates a
column as the output (y) and the others as inputs (X). Then, a regressor is fit on (X, y) for the
known y and used to predict the missing y. The process is repeated for the set maximum
number of iterations (n = 10 for this study), and the final imputation round is returned [32].
Although the method is reputed for its robustness, it is not widely reported in disease
prediction studies for dairy cows. Some use cases include the modeling of the perinatal
mortality of calves and the application of machine learning to animal breeding [11,12].
The LI procedure is mostly used in cases where the pattern of missingness is associated
with a time dimension (days or hours). Hence, a timewise replacement of the missing
value is preferred to SI or MI. This procedure is reported for the prediction of lameness,
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mastitis and milk yield in dairy cows [13,14]. In the current study, we implemented the
interpolate function with the linear method and the bidirectional replacement of missing
values (forward and backward). Hence, two datasets—one with only complete cases and
one with missing replaced values—would form the basis for data processing. They had
imbalance ratios of 53.76 and 156.52, respectively (Table 2).

Table 2. Imbalance ratio of the initial datasets.

Imbalance Ratio Negative Cases Positive Cases

Complete cases
Training set 38.31 4061 106
Validation 39.07 1016 26

Data with replaced missing values
Training set 158.92 47,837 301
Validation 151.34 11,956 79

Test set 42.93 601 14

2.4. Resampling Methods

The two sets of data were submitted to the three resampling methods described in
the introduction, namely the Synthetic Minority Oversampling Technique (SMOTE), the
SMOTE technique combined with Edited Nearest Neighbors (SMOTEEN) and the SMOTE
technique combined with Support Vector Machine (SVM) classifier (SVMSMOTE). The
SMOTE technique oversampled the minority class without altering the majority class, and
we set the k neighbors to implement the oversampling at n = 5. The ‘k neighbors’ represent
the neighborhood of samples used to generate the synthetic samples [30]. The SMOTEEN
technique not only oversampled the minority class but also undersampled the majority
class, and here, the k neighbors were set at n = 5, while for the Edited Nearest Neighbors,
the undersampling was set at n = 3. The SVMSMOTE technique oversampled the minority
class along the borderline and used the Support Vector Machine (SVM) classifier to predict
new cases. We used n = 5 for k neighbors and n = 10 for m_neighbors, which represents the
nearest neighbors used to determine if a risk of misrepresenting a minority sample exists
(Table 3) [30]. The settings used for implementing the resampling methods are reported to
provide the best results [31,33,34].

Table 3. Imputed datasets without resampling and resampled with SMOTE, SMOTEEN, and
SVMSMOTE methods.

Imbalance Ratio Negative Positive

Complete cases

No resampling 38.31 4061 106
SMOTE 1.00 4061 4061
SMOTEEN 1.005 4021 4000
SVMSMOTE 1.00 4061 4061
Simple Imputer

No resampling 158.92 47,837 301
SMOTE 1.00 47,837 47,837
SMOTEEN 0.99 47,157 47,834
SVMSMOTE 1.00 47,837 47,837
Multiple Imputer
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Table 3. Cont.

Imbalance Ratio Negative Positive

No resampling 158.92 47,837 301
SMOTE 1.00 47,837 47,837
SMOTEEN 1.01 47,830 47,159
SVMSMOTE 1.00 47,837 47,837
Linear Interpolation

No resampling 158.92 47,837 301
SMOTE 1.00 59,859 59,859
SMOTEEN 1.03 59,834 58,599
SVMSMOTE 1.00 59,859 59,859

2.5. Model Building, Evaluation and Parameter Tuning

We obtained 16 datasets from the implementation of resampling and imputation meth-
ods that were subjected to four common machine learning classifiers: logistic regression
(LR), decision tree (DT), random forest (RF) and multilayer perceptron (MLP). The classi-
fiers were chosen because of their different approaches of segregating classes to predict
each category for a binary outcome variable. The LR is best for simple, interpretable cases
where linear relationships can be drawn. It is often the first choice for simple datasets and
was selected to find out how it would perform with the complexity of missingness and
imbalance. Hence, the other models (DT, RF and MLP), with increasing levels of robustness
and reducing levels of interpretability, were chosen to compare their performance on this
type of data with the basic LR model. Hence, for each classifier, four datasets were applied
to each imputation method, and there were four others for resampling techniques, while
sixteen (one for each combination) were applied to the combination of resampling and
imputation. The performance of the classifiers was evaluated using accuracy, precision,
recall, F1 score and Cohen’s kappa score from the scikit-learn metrics. They were computed
from a confusion matrix (Table 4), where the correctly classified positive and negative cases
are labelled true positive (TP) and true negative (TN). Positive cases incorrectly classified
as negative are labelled false negative (FN), while negative cases incorrectly classified as
positive are labelled false positive (FP).

Table 4. Representation of a confusion matrix.

Predicted Positive Predicted Negative

Actual Positive True positive, TP False negative, FN

Actual Negative False positive, FP True negative, TN

Accuracy is the most commonly used metric and the starting point to evaluate the
performance of classifiers. Accuracy is the proportion of correct predictions (true positive,
true negative) among all examined cases [7]. The formulae to compute performance metrics
are presented below:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Sensitivity, recall, true-positive rate TPR = TP/(TP + FN) (2)

Positive predictive value, precision PPV = TP/(TP + FP) (3)

False-positive rate FPR = FP/(FP + TN) (4)

Specificity, true-negative rate TNR = TN/(TN + FP) (5)

Negative predictive value NPV = TN/(TN + FN) (6)

F1 score = 2 × TP/2 × (TP + FP + FN) = 2 × (precision × recall)/(precision + recall) (7)
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Kappa score = (p0 − pe)/(1 − pe), where p0 is the observed agreement ratio on the as-
signed label assigned to any sample, and pe is the expected agreement when both annotators
assign labels randomly [27].

Since the accuracy score for unbalanced problems often provides an overoptimistic esti-
mation of the classifier ability to predict the majority class [24], the use of other performance
metrics and ROC plots could strengthen the obtained meaning of model performance. The
ROC plots the true-positive rate and the false-positive rate at various thresholds values.
The F1 score is a weighted (harmonic) mean of sensitivity and precision. The Cohen’s
kappa value compares the classifier’s performance to the probability that its performance
may only be based on chance. In general, predictions from models with kappa values <0.20
are considered poor; values between 0.21 and 0.40 are fair; values from 0.40 to 0.60 are
moderate; and above 61 is considered substantial to almost perfect [25]. Twenty-nine out of
eighty models tested for the current study had a kappa score <20, and none of the models
had a kappa value >50.

Model tuning consisted of finding the best parameters for each model resulting from
the imputation and resampling methods. We performed a fivefold cross-validation and a
grid search of parameters to obtain the best values for each model. A full description of the
parameter tuning and model fitting can be found in Supplementary File S2. In a nutshell,
the grid-search cross-validation for LR models included solver (lbfgs, liblinear), penalty
criteria (l2, l1, elasticnet), and C (0.1 to 100) in a fivefold cross-validation. The liblinear
solver, the l2 penalty and the C value of 100 were selected for the best LR model. The C
value of 0.1 was selected for all datasets except for the one from LI, whose C value was 10.

The grid-search cross-validation for DT models included the criterion (gini, entropy),
max depth (None, 2–20), max features (None, sqrt, log2, 0.2 to 0.8), and splitter (best or
random). The cross-validation was set to fivefold. The selected criterion was gini, the max
depth was n = 8 and the splitter criteria set to best. (See Supplementary File S1).

For RF models, criterion (gini, entropy and log_loss), max depth (None, 2–20), and
max features (None, sqrt, log2, 0.2–0.8) in a fivefold cross-validation were included in the
grid search. The best-performing RF model was fitted with the criterion set to entropy, the
max depth n = 20, max features = None and class weight = balanced.

The grid search cross-validation parameters for MLP models included activation
(identity, logistic, tanh, relu), solver (lbfgs, sgd, adam), alpha (0.0001 to 0.01), learning
rates (constant, invscaling, adaptive) and cross-validation (cv = 5). The best-performing
MLP model was fitted with activation logistic, learning rate = invsaling, solver= lbfgs, and
alpha= 0.05 (See Supplementary File S1).

Thus, we ranked the classifiers’ performance metrics first by kappa value and then by
the f1 score and precision/ recall scores, regardless of the accuracy score. We also examined
the ROC curves of the best models to evaluate their performance at various thresholds.
Finally, we assessed the contribution of resampling or imputation techniques or both on
the prediction performance of the ML classifiers using AIC values. An overview of the
complete workflow performed in this study is shown in Figure 1.
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Figure 1. Data processing and analysis workflow. The figure shows how the test set was split from
the original dataset. The two lines of processing with complete cases and with missing values. The
data with missing values were imputed with SI, MI and LI, while the complete case analysis was
without missing values. All the datasets were then submitted to resampling, creating 16 datasets that
were split into training and validation sets to train and evaluate the models before testing the final
model on the test set.

3. Results
3.1. Performance Metrics of ML Models Trained on Data with Different Missing-Value Imputation
Techniques

The results show a concordance between performance metrics for SGD, DT, and MLP,
while for LR, the accuracy and recall scores concur, and for RF, accuracy concurs with
F1 and kappa scores only. Based on the kappa scores, the CC performed highest with
RF (0.782). The SI performed better with LR (0.277), DT (0.668) and MLP (0.574). The
precision score was highest with LI for DT, RF and MLP (precision = 0.580, 0.634 and 0.462,
respectively), while it was highest with CC for SGD (0.329) and with SI for LR (0.250).
Overall, RF had the highest kappa score (0.782), followed by DT (0.668), MLP (0.574), SGD
(0.370) and LR (0.277), respectively (Table 5 and Table S1).

Table 5. Performance metrics of ML models from data without missing-value imputation techniques
(CC), with simple imputer (SI) linear interpolation (LI) and multiple imputer (MI). The score of the
performance metrics for each imputation method represents the mean of four datasets tested for each
model (n = 4).

CC SI MI LI

Accuracy

LR 0.877 0.859 0.857 0.815
DT 0.968 0.98 0.974 0.98
RF 0.991 0.981 0.983 0.984
MLP 0.817 0.966 0.959 0.951
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Table 5. Cont.

CC SI MI LI

Precision

LR 0.157 0.25 0.236 0.232
DT 0.575 0.571 0.489 0.584
RF 0.837 0.6 0.632 0.634
MLP 0.166 0.462 0.396 0.462

Recall

LR 1 0.893 0.804 0.821
DT 0.786 0.857 0.857 0.768
RF 0.75 0.821 0.929 0.857
MLP 0.661 0.946 0.875 0.75

F1 Score

LR 0.271 0.305 0.257 0.22
DT 0.613 0.677 0.615 0.652
RF 0.787 0.674 0.733 0.717
MLP 0.366 0.588 0.5 0.36

Kappa

LR 0.241 0.277 0.229 0.191
DT 0.602 0.668 0.603 0.642
RF 0.782 0.665 0.725 0.71
MLP 0.224 0.574 0.484 0.344

3.2. Performance Metrics of ML Models Trained on Data with Different Resampling Techniques

The results for resampling indicate that most models had higher precision but lower
recall without resampling. The F1 and kappa scores concurred with the precision score for
all models except the MLP. The precision of the LR models were lowest and decreased with
the complexity of the resampling methods (0.69 for no resampling, vs. 0.13, 0.12 and 0.11
for SMOTE, SMOTEEN, and SVMSMOTE). On the other hand, the recall increased from
0.46 for no resampling to 0.98 for SVMSMOTE. The RF had the overall highest performance
(kappa = 0.81), of which the highest accuracy (0.99) and precision scores (0.90) were without
resampling, while the highest recall was with SVMSMOTE (0.98) (Figure 2 and Table S1).
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Figure 2. Performance metrics of ML models from data with resampling techniques: Models tested
were LR (a), MLP (b), DT (c) and RF (d).

3.3. Ranking of the Prediction Scores of Individual Machine Learning Models with Both
Resampling and Imputation Methods*

The RF models exhibited the highest performance, with four out of the top five
rankings, while LR had the lowest ranking. The top-performing classifiers did not undergo
resampling, were imputed with MI for RF (kappa = 0.962), LI for DT (0.811) and SI for
MLP (0.781), and for LR (0.607). The best-performing resampling methods used were
SVMSMOTE and SMOTE, that produced fair to moderate kappa scores (>0.35). The best
discriminative classifiers had lower kappa scores (0.239–0.607). MLP models recorded low
prediction accuracy (kappa = 0.229 − 0.332) with LI, CC and MICE, both with and without
resampling methods. (Table 6).

Table 6. Performance metrics of best-ranked ML models. Top five models with kappa > 0.20 were
selected for each model category. The full list of ranked models can be found in Table S1).

Imputation Resampling Accuracy F1Score Precision Recall Kappa Overall Rank

LR models
SI None 0.984 0.615 0.667 0.571 0.607 27
MI None 0.980 0.455 0.625 0.357 0.445 42
LI None 0.980 0.400 0.667 0.286 0.392 46
CC SVMSMOTE 0.886 0.286 0.167 1.000 0.257 49
CC None 0.876 0.269 0.156 1.000 0.239 59

MLP models
SI None 0.990 0.786 0.786 0.786 0.781 7
SI SVMSMOTE 0.966 0.571 0.400 1.000 0.557 29
MI None 0.982 0.560 0.636 0.500 0.551 30
SI SMOTE 0.958 0.519 0.350 1.000 0.502 36
MI SMOTE 0.954 0.500 0.333 1.000 0.482 36

DT models
LI None 0.992 0.815 0.846 0.786 0.811 4
SI None 0.990 0.800 0.750 0.857 0.795 6
CC None 0.990 0.750 0.900 0.643 0.745 9
MI None 0.987 0.750 0.667 0.857 0.743 10
CC SVMSMOTE 0.985 0.743 0.619 0.929 0.735 11

RF models
MI None 0.998 0.963 1.000 0.929 0.962 1
CC None 0.993 0.833 1.000 0.714 0.830 2
CC SMOTEEN 0.992 0.815 0.846 0.786 0.811 3
LI SVMSMOTE 0.990 0.813 0.722 0.929 0.808 5
CC SVMSMOTE 0.989 0.759 0.733 0.786 0.753 8



AgriEngineering 2024, 6 3438

4. Discussion

This study demonstrated the influence of resampling and imputation techniques on
the prediction performance of three machine learning models trained to detect mastitis
incidences from automated milking systems data. Features included quarter and cow-
level conductivity, milk yield and in-line somatic cell count, with their seven-day moving
averages and standard deviations, from a conventional dairy farm in Germany. The
study is based on the analysis of data collected by a milking robot and hence should be
understood in the context of mastitis prediction with sensor-collected data. The sensors
offer the advantage of data with high time resolution, but they bring along the issues of
misrecording and missing values. Handling the latter is the purpose of the current study.
Although the nature of data recording with sensors can be seen as a limitation compared
to data generated in controlled conditions, it offers greater opportunities for applications
in practice in dairy farms, especially because of the increasing use of automated milking
systems. Three types of classifiers were evaluated: classical discriminative classifiers
(LR), ensemble classifiers (DT and RF), and a neural network-based classifier (MLP). We
considered the data with complete cases (without missing values) as the control or ground-
truth dataset to which resampling methods were compared for each classifier. The dataset
without resampling was used to control ML classifiers’ performance using resampling
techniques (namely SMOTE, SMOTEEN, and SVMSMOTE). Additionally, within each case
of imputation (CC, SI, MI, and LI), we evaluated the performance improvement contributed
by both imputation and resampling methods.

We found that, on average, the recall scores of DT, RF and MLP classifiers subjected
to CC analysis were lower than those subjected to imputation techniques. In contrast,
the precision score was higher than that of imputation techniques for RF and DT only.
The CC analysis was considered in this study as the reference dataset for the ones with
the imputation methods. Mukaka et al. [35] argue in the same direction, stating that
CC analysis can generate unbiased estimates for binary outcomes while achieving high
statistical coverage. Therefore, they recommended using CC analysis to complement that
with imputation techniques.

The analysis of model-specific performance revealed that ensemble models had the
highest performance metrics with the lowest difference between precision and recall regard-
less of the imputation technique used. In contrast, the discriminative models (LR) had the
highest difference between precision and recall scores. Bobbo et al. [14], comparing machine
learning models for the prediction of udder health status, also reported a better performance
for ensemble and neural network-based models than linear models. In our study, for in-
stance, the RF classifier had the best performance with MI (kappa = 0.96), CC (kappa = 0.83)
without resampling, and SMOTEEN resampling without imputation (kappa = 0.811). The
best two DT models were with LI and SI without resampling (kappa = 0.81 and 0.79, re-
spectively). This trend was confirmed by the ROC curves for RF and DT that had higher
TPR (>90%) and lower FPR (<10%) for RF with imputation methods compared to CC (Sup-
plement). Findings by Tiwaskar et al. [36] confirm this improvement in machine learning
models’ performance with imputation techniques in a study where they tested RF models
with various levels of missing values. Performance improvement was observed not only
for ensemble models but also for others. Simple imputer improved the performance of
LR (kappa = 0.61 vs. 0.24) compared to CC without resampling. Overall, the LR models
had high recall and lower precision scores for CC than imputation techniques, leading
to lower kappa scores than ensemble models. The ROC curves with higher or similar
performance for CC than imputation techniques, regardless of the resampling techniques,
confirm this (Supplement). Mukaka et al. [35] also found better CC analysis results than
imputation techniques for binary outcomes with LR. Other authors [29,30] found the op-
posite and suggested that imputation was better than CC analysis. On the one hand, this
can be explained by the fact that imputation techniques, especially for MI, increase the
variability in the outcome values that inflates the standard error of the effect-size estimate,
probably caused by a random component added to the missing outcome values [24,25,35].
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On the other hand, the difference can also be attributed to the mechanisms of occurrence of
missing values, for which [35] provided an in-depth analysis and suggested a thorough
examination before deciding on the imputation method to apply. Hence, in-depth feature
engineering with techniques such as interaction features, binning and more domain-specific
transformation than only moving averages can be explored in further studies to improve
ML performance with the resampling and imputation techniques presented in our study.
Looking at the time-series dimension as well as applying weighted loss to discriminative
classifiers such as LR may also be explored to improve their performance.

The comparison among imputation methods showed that LI performed either sim-
ilarly or worse than SI or MI for all models. According to [19], this could be due to the
lack of data segregation before applying linear imputation to datasets. They suggested that
LI methods estimate the value of the missing data based on two adjacent data points in a
dimensional sequence. Hence, for datasets where many consecutive data points still need
to be included, such as in the AMS data used in the current study, the performance of LI
may need to be improved. The LI imputation method relies mainly on time-dependent
missing-value imputation instead of inter-attribute correlations employed by other im-
putation techniques [35]. For this reason, LI is incredibly efficient for time series and has
been reported to improve the performance of neural network-based classifiers in other
studies [36,37]. This is less of an issue for ensemble models that work by segregating data
into similar packets small enough to identify their inherent patterns in the terminal nodes.
For example, decision trees have two kinds of nodes and determine, for each leaf node, a
class label with a majority vote of training examples reached by the leaf. Further, they treat
each internal node as representing a question on features that will branch out according to
the answers found. Hence, they split the leaves of a tree until questions are exhausted [38].
Therefore, these intrinsic characteristics of the ensemble models and LI led to no significant
performance improvement compared to other imputation techniques or complete cases.
Following the approach suggested by [27], it could be beneficial to segregate the data before
submitting it to LI for better results. This data segregation may not be helpful for ensemble
models, which are reputed to be robust enough to yield good performance with SI and MI
and sometimes without imputing missing values, as explained above [39]. Indeed, four of
the top ten models in this study were RF or DT without missing imputation.

The performance of ML models from resampled datasets showed similar behavior to
that of the missing-value imputation. The RF models had the highest metrics, followed by
DT, MLP and LR. Resampling improved the recall scores of all classifiers. The SVMSMOTE
had the best recall score for all models and the best or comparable precision scores for DT,
RF and MLP. Nithya et al. [40] similarly suggested that integrating ensemble models with
SVMSMOTE allows for the more effective handling of imbalanced datasets. The SMOTE
was slightly better than other resampling techniques for LR, which are reported to perform
better with more balanced datasets [41,42]. The evaluation of model fit revealed that both
resampling and missing-value imputation are relevant to explaining the performance of
most of the tested ML models.

The MLP model performed moderately with imputed data, even without resampling.
This finding aligns with reports that the method improves the performance of neural
network-based models; hence, it could be applied to these ML models without resam-
pling [36,37]. The same behavior was observed for SI and MI data fitted to DT and RF
models, resulting in better performance than CCs. The SVMSMOTE for LR performed
better without imputation than the data where missing values were imputed. This improve-
ment suggests that an improvement in the class imbalance between the classes (majority
and minority) is beneficial for the performance of these classifiers [41,43,44]. Indeed, some
studies have applied resampling methods without imputation with satisfactory predic-
tion performance. Random forest, DT, and, to some extent, MLP, had models with good
performance without resampling or missing-value imputation [37,39,45]. These models
are reported to have robust mechanisms to handle imbalances and missing values. They
are sometimes used to preprocess data and predictions [46,47]. However, in the case of
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AMS data for mastitis prediction, it always seems reasonable to compare results from
resampling/imputation techniques and those without to assess the extent of performance
improvement. In this context, the data without resampling or imputation may serve as the
ground truth to evaluate the preprocessing techniques.

5. Conclusions

Based on our research, the choice between missing-value imputation and resampling
techniques for machine learning models depends on the specific model being used. We
found that complete case analysis yielded higher kappa scores than missing-value im-
putation techniques for logistic regression (LR), while random forest (RF), decision tree
(DT), and multilayer perceptron (MLP) performed better with imputation techniques. We
also noticed significant variations between models and agreement between accuracy, F1
score, precision, and recall metrics with kappa. For ensemble models, resampling with the
Synthetic Minority Oversampling Technique (SMOTE) or Support Vector Machine SMOTE
(SVMSMOTE) improved classification performance using simple imputations or complete
cases. In addition, linear interpolation (LI) and SMOTE resampling improved MLP clas-
sification, while LR performed better with complete cases and SVMSMOTE resampling.
Therefore, we suggest using SVMSMOTE sampling for studies with similar class-imbalance
problems when using LR or ensemble models for classification, and SMOTE when using an
MLP classifier. However, in cases where missing values are significant, simple imputation
for ensemble models and linear interpolation for MLP will enhance classifier performance.
When dealing with missing-value imputation, we recommend comparing results from
imputed datasets with complete cases.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agriengineering6030195/s1, Supplementary File S1. ROC
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with resampling methods.
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