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Magnon band structures in altermagnets are characterized by an energy splitting of modes with opposite
chirality, even in the absence of applied external fields and relativistic effects, because of an anisotropy in the
Heisenberg exchange interactions. We perform quantitative atomistic spin dynamics simulations based on ab
initio electronic structure calculations on rutile RuO2, a prototypical “d-wave” altermagnet, to study magnon
currents generated by thermal gradients. We report substantial spin Seebeck and spin Nernst effects, i.e.,
longitudinal or transverse spin currents, depending on the propagation direction of the magnons with respect to
the crystal, together with a finite spin accumulation associated with nonlinearities in the temperature profile. Our
findings are consistent with the altermagnetic spin-group symmetry, as well as predictions from linear spin-wave
theory and semiclassical Boltzmann transport theory.
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I. INTRODUCTION

The study of magnons, low-energy collective excitations of
magnetic systems, offers important insight into fundamental
properties of condensed matter systems. In addition to that
magnons have been extensively explored in light of their
potential for novel applications [1–6]. These efforts lead to
the foundation of the field of magnon spintronics, which aims
at developing energy-efficient information storage and pro-
cessing strategies by eliminating energy loss caused by Joule
heating associated with charge transport.

Magnons in ferromagnetic materials are characterized by a
well-defined chirality, as a result of time-reversal symmetry
breaking, and can hence carry spin currents, enabling their
usage for magnon spintronics [1]. However, their dispersion
relation is typically quadratic, rendering the group velocity
wave vector dependent and thus hindering the propagation of
stable magnon wave packets.

Antiferromagnetic magnons, on the other hand, typically
have a linear dispersion relation close to the center of the
Brillouin zone, as long as relativistic effects are neglected,
and reach the THz regime [7,8]. Because of conserved sym-
metry under inversion and time reversal, the corresponding
two magnon modes with left- and right-handed chirality
are degenerate across the entire Brillouin zone in conven-
tional collinear antiferromagnets [9]. Hence, the observation
of magnon currents carrying finite spin angular momentum
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requires either an externally applied magnetic field [10–12],
or the presence of higher-order exchange interactions, such
as, e.g., the Dzialoshinskii-Moriya interaction. The latter in-
troduces a directional modulation (or nonreciprocity) of the
dispersion relation [13,14]. The magnitude of this modulation
will, however, depend, approximately, on the strength of spin-
orbit coupling (SOC).

We turn therefore our attention to altermagnetism, which
has been recently established as a special case of collinear
antiferromagnetism that is characterized by a spin-split band
structure for electrons [15,16] and magnons [17,18], even in
the absence of relativistic effects and external fields. In the
presence of crystal-field splitting acting along different direc-
tions on antiparallel magnetic atoms, the (scalar) Heisenberg
exchange interactions can also pick up a sizable direction
dependence, i.e., anisotropy, even regardless of SOC [19]. As
a consequence, one can predict that the magnon dispersion
will be, in general, nondegenerate across the Brillouin zone,
except for a marginal set of k points [15,20] (corresponding to,
e.g., nodal planes, and depending on the specific spin-group
symmetry of the ground state), as schematically illustrated in
Fig. 1.

As for any collinear antiferromagnet, the wave-like pre-
cession of atomic magnetic moments will involve to variable
extent, in general, the different magnetic sublattices as a func-
tion of k: Approaching the boundary of the Brillouin zone,
magnons will tend to be hosted exclusively by one or by
the other sublattice, while they will equally involve both of
them towards the � point. Away from it, the different, now
energy-split two magnon dispersions describe excitations that
carry (spin) angular momentum with opposite sign [17,21–
23]. This can pave the way for a variety of concept applica-
tions revisiting earlier proposals, initially put forward, based
on the different, higher-order Heisenberg exchange interac-
tions route in order to achieve nonreciprocity [24].
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FIG. 1. Schematic representation of the magnon dispersion in “d-
wave” altermagnets, such as in particular in the case of rutile unit
cells. The dispersion of both magnon modes is linear around the �

point, with an alternating frequency split across the Brillouin zone.
The solid lines correspond to sections through the dispersion relation
for some constant energy (projected onto the kx, ky plane), for ky = 0
(kx , energy plane) and for kx = 0 (ky, energy plane).

Of course, in a real sample both SOC-driven and crystal-
field-driven mechanisms for anisotropic exchange interactions
would normally occur concurrently.

In this paper, we aim to investigate magnon currents in
altermagnets by means of quantitative ab initio electronic
structure and atomistic spin dynamics calculations, as well
as by analytical linear spin-wave theory derivations. We will
study the steady spin current set in motion by a thermal
gradient between two heat reservoirs mediated by magnons,
i.e., the magnon spin Seebeck and spin Nernst effects [18].

In particular, we will examine how these emerge as a
function of relative direction between temperature gradient,
anisotropy in the (scalar) Heisenberg exchange interactions,
and the resulting nondegenerate magnon dispersion. This sce-
nario is realized by altermagnets in full analogy with their en-
ergy split and alternating spin-polarized electronic band struc-
ture and beside possible further effects proportional to SOC
[25,26], because of the interplay between orientation of crys-
tal field splitting from nonmagnetic atoms, which introduces
strong anisotropy in the magnetization density [15,27,28], and
the direction of antiparallel magnetic sublattices.

We adopt as prototype material for our calculations the
example of rutile RuO2. While other studies have started
to examine electronic-mediated thermal transport [29], we
focus here on the magnonic degree of freedom of altermag-
nets. In addition to its thermally generated, magnon-mediated
steady-state spin currents between two heat reservoirs, our
simulations also predict the emergence of a finite local mag-
netic moment, or spin accumulation, in correspondence with
nonlinearities in the temperature gradient profile.

This paper is structured as follows. We begin by recall-
ing the essential features of this material, highlighting those

aspects that qualify it as an altermagnet. In particular, details
for the spin model parameters and the ensuing magnon disper-
sion for RuO2 are given in Sec. II. Theoretical methods used
for the simulation of magnon dynamics because of tempera-
ture gradients in terms of a stochastic Landau-Lifshitz-Gilbert
equation of motion are briefly introduced in Appendix C. We
then report numerical results from such atomistic spin dynam-
ics simulations (Sec. III). These are also confirmed through
comparison with predictions from linear spin-wave theory, in
combination with semiclassical Boltzmann transport theory
(Appendix B). We then summarize our findings and offer our
conclusions (Sec. IV).

II. MAGNON DISPERSION IN RuO2

We perform numerical calculations based on ab initio
electronic structure calculations and atomistic spin dynamics,
in order to provide a realistic estimate of magnon-mediated
Seebeck and Nernst effect associated with the nonrelativistic
component of nondegenerate spin-wave dispersion in alter-
magnets [17,22].

We choose in particular RuO2 as prototype altermagnet
[30], because of the growing body of theoretical and exper-
imental literature dedicated to this compound. This material
received initial attention because of its metallic conductiv-
ity, relatively rare for oxides, in combination with reports
of collinear antiferromagnetic order up to room temperature
[31], leading to high expectations for possible electron-
mediated spintronics applications [29,32–35].

On the other hand, this paper focuses on transport proper-
ties mediated by magnons, not by electronic charge carriers.
Other spin-split antiferromagnets (or altermagnets) with a
gap at the Fermi level, but with alike unit-cell geometry and
magnetic order (such as, e.g., MnF2, FeF2, or CoF2, just to
remain within the subclass of rutile structures), would also
be valid candidate materials. Our conclusions will also apply,
qualitatively, to cases with more than two sublattices with
antiparallel magnetic moments and/or with a symmetry dif-
ferent from fourfold rotation, such as in the examples of ferric
oxide Fe3O4, or of MnTe [17].

RuO2 crystallizes in the rutile structure, see Fig. 2(a), with
two opposite-spin sublattices [31], as further discussed in
Refs. [36–38]. Because of the nonmagnetic atoms occupying
the Wyckoff position 4 f , equivalence between Ru1 and Ru2

cannot be achieved through pure time reversal, i.e., flipping
the sign of the Néel vector, but only when this symmetry
operation is also accompanied by a space rotation, by 90◦ in
this rutile example geometry. The requirement of such com-
bination of time and space symmetry operations characterizes
altermagnets, in comparison with conventional collinear anti-
ferromagnets.

In this paper we adopt RuO2 Heisenberg exchange pa-
rameters calculated from density functional theory in its
spin-polarized relativistic Korringa-Kohn-Rostoker imple-
mentation by means of the magnetic force theorem, in the
same fashion as Ref. [17]. For details, see Appendix E.

In the corresponding Heisenberg Hamiltonian

H = −
∑

i j

∑
ss′

Jss′
i j Sis · S js′ , (1)
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FIG. 2. (a) Unit cell of the altermagnetic rutile phase of RuO2.
Collinear antiparallel magnetic order across Ru sublattices is rep-
resented via red and green colors and arrows. Nonmagnetic O atoms
are depicted as smaller blue spheres. The most significant anisotropic
Heisenberg exchange interactions J, J ′ are also highlighted via thin-
black arrows. (b) Magnonic band structure of RuO2 shown along a
Brillouin-zone path (inset, highlighted in red) within the kx–ky plane
crossing the � point. The bold arrows indicate the net spin of the
modes. (c) Corresponding amplitude ratio between the tilting of the
Ru moments at each sublattice.

Jss′
i j denotes scalar coupling constants, and Sis is a unit vector

describing the direction of the Ru magnetic moment at posi-
tion ri + bs, with ri being the location of the unit cell within
the periodic lattice, and bs the sublattice position within the
unit cell. The full list of Heisenberg exchange parameters can
be found in Appendix E.

Notably, exchange constants between atomic magnetic mo-
ments at relative position Rss′

i j = r j − ri + bs′ − bs not only

depend on their distance |Rss′
i j |, but also on the direction of

Rss′
i j . In this particular example, this is mainly because of

the occurrence of O atoms in the low-symmetry Wyckoff 4 f
position. Their biggest influence can be noted for the intra-
sublattice exchange constants between Ru atoms at a distance
of |Rss′

i j | = √
2Alat (with Alat being the length of the edge for

the square unit-cell section in the x, y plane of a rutile lattice).
This displacement vector either intersects oxygen atoms along
the [110] direction, or it passes in-between them along the or-
thogonal [1̄10] direction, or vice versa for the other sublattice
[Fig. 2(a)].

We calculate here the magnon band structure from the
spin Hamiltonian Eq. (1), using the Holstein-Primakoff trans-
formation up to second order in magnon variables and
diagonalizing the resulting Hamiltonian via the Bogoliubov-
Valatin transformation [9]. The eigenenergies of both magnon
branches along different paths of the kx, ky Brillouin-zone
section are shown in Fig. 2(b) for kz = 0. Similar to the results
of Ref. [17], we obtain a linear dispersion close to the � point,
and a characteristic energy splitting of the magnon branches
away from nodal manifolds of the Brillouin zone, which for
this rutile geometry coincide for instance with the kx, kz or
with the ky, kz planes. The corresponding eigenfrequencies
have opposite sign along each of the two branches, i.e., the
Ru moments of the first sublattice rotate in opposite direc-
tion with respect to the moments of the second sublattice
(Fig. 3).

This angular velocity defines the chirality of each branch,
and it corresponds to the angular momentum carried by each
magnon mode. We denote here as right handed the counter-
clockwise rotation of the Ru moment on the first sublattice,
and conversely we denote as left handed the opposite, clock-
wise rotation.

These two possible chiralities are accompanied by a
different tilting away from the ground-state direction for
the Ru moments at each sublattice. Upon approaching the
Brillouin-zone boundary, the magnon modes involve tilting
and precession for the atomic magnetic moments of only one
or only the other Ru sublattice. Conversely, in the limit k → �

both sublattices are equally affected, eventually realizing a
twofold degenerate Goldstone mode, which costs zero-energy
when neglecting magnetocrystalline anisotropy (MCA), and
in which the Néel vector precesses while remaining straight
(Fig. 3).

Away from these two extremes, i.e., for generic k points,
the magnitude of tilt away from ground-state magnetization
direction for the two antiparallel Ru sublattices, i.e., their
involvement in hosting the magnon excitation, varies continu-
ously. In the following, we quantify it as the ratio between the
smaller and the larger tilt, which lies within the interval [0,1].
In other words, for one magnon chirality it is the ratio between
the deviation from the ground-state magnetization direction of
Ru1 atoms, compared to the deviation of Ru2 atoms; and vice
versa for the other magnon chirality.

We note that, although the amplitude ratio varies through-
out the Brillouin zone [Fig. 2(c)], the net angular momentum
carried by each magnon is either +1 or −1 along the z direc-
tion, depending only on the chirality of the magnon branch
and not on k. Additional information on the calculation of the
magnon band structure can be found in Appendix A.

III. SIMULATION RESULTS

In order to account for a thermal gradient, in the following
we resort to atomistic spin dynamics simulations based on
the time-evolution of the stochastic Landau-Lifshitz-Gilbert
(sLLG) equation of motion [39–41]. This describes the dy-
namics of the Ru magnetic moments coupled to a heat bath
(see Appendix C, for details). In particular, a thermal gradient
is simulated by assuming that each moment, within a large
ensemble of replicas for the RuO2 unit cell, is coupled to
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FIG. 3. Schematic depiction of the precessing atomic magnetic moments from antiparallel Ru sublattices (red or green arrows), belonging
to a magnon eigenmode with wave vector k. (a) Their deviation from the ground-state magnetic order is given by the azimuth angle δθ via
Sz

n = cos(θn + δθn), where θ1 = 0 and θ2 = π for the two magnetic sublattices. (b) In the k → � limit, both tilts are the same. [(c), (d)] Upon
approaching the Brillouin-zone boundary, the excitations involve predominantly only one or only the other sublattice, with largest difference
along � → S or vice versa along the orthogonal � → S′ directions. (e) For generic k, both tilt angles are finite but different.

its own heat bath with a fixed temperature, which varies as
a function of position [42–49].

As further discussed below, magnons will in general flow
from the hot to the cold terminals, maintaining a steady cur-
rent regime across the two heat reservoirs.

In this case study we examine this effect as a function of
both changing the steepness of the thermal gradient, and its
direction relative to the crystal lattice. As a first temperature
profile we consider the limiting case of a very abrupt temper-
ature step, with a sudden drop in temperature between hot and
cold region. We then repeat simulations for the more realistic
case of a gradual, linear temperature slope spanning many unit
cells.

We consider the direction of these temperature profiles
both along the [100] and along the [110] axis of the lat-
tice, which correspond, respectively, to energy-degenerate or
to energy-split magnon dispersions in reciprocal space (see
Fig. 2).

In all these cases we examine in particular the time average
of net magnetization per RuO2 unit cell at a given temperature,
i.e., within the same layer perpendicular to the direction of
the chosen thermal profile. In general, this will be nonzero
when the tilt of either Ru atoms away from ±z ground-state
direction is inequivalent. We then also estimate the similarly
layer-resolved longitudinal spin current, which can again be
nonzero because of the flow from hot to cold regions of more
magnons with a given chirality than with the opposite one.

We begin with results for the thermal profile charac-
terized by an abrupt temperature step (Fig. 4). When this
thermal profile is aligned along the direction corresponding
to the maximal energy splitting between the two magnon
eigenmodes, i.e., along the [110] direction (or conversely,
along [1̄10]), we observe the largest unbalance in the flow
of magnons propagating in the same hot-to-cold direction,
but with opposite chirality. As a result, we obtain a numeri-
cal demonstration of a magnon-mediated spin Seebeck effect
[45,50], now associated with anisotropic scalar Heisenberg
interactions and altermagnetic low symmetry of bulk RuO2,
rather than higher-order exchange terms such as, e.g., DMI,
which scale in magnitude with the strength of SOC.

We observe peaks in the spin accumulation, i.e., the net
magnetization per unit cell, in the vicinity of the temperature
step [Fig. 4(b)]. These peaks get reproduced with opposite
sign upon rotating the thermal profile from [110] to [1̄10]
direction.

On the other hand, if the direction of the temperature
profile is aligned with any nodal plane for the magnon band
structure, such as, e.g., with the [100] direction, we still have
a magnon current from hot to cold regions, but no transport
of angular momentum. This is a consequence of populating
the Bose-Einstein statistics with equal number of magnons
with opposite chirality, leading to zero net angular momentum
current and zero emerging net magnetization per unit cell
along the whole thermal profile.

FIG. 4. Simulated abrupt temperature profile (a), local magnetic
moment as a percentage of the ground-state magnetic moment (b),
and longitudinal spin current (c), for different crystallographic di-
rections (color coded). The grey arrow marks the sign switch of the
emergent magnetization.
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The above features, within numerical accuracy and statis-
tics of the sLLG treatment, are in accordance with the time
reversal and fourfold space rotation symmetries of altermag-
netic RuO2.

Returning to the case of the abrupt thermal profile (Fig. 4)
we also observe a sign change in the emergent magnetization
at a certain distance � = x − x0 from the temperature step at
x0. This feature occurs at the same distance when simulations
are performed along orthogonal directions, e.g., along [110]
and [1̄10], which both correspond to thermal gradient orienta-
tions leading to the largest Seebeck effect.

We interpret it as evidence of competition between the two
magnon bands, which coexist but contribute to a different
extent and with opposite sign to the net spin current. In terms
of Boltzmann transport theory we have

Sz(x) =
∑

k

nβ

k (x) − nα
k (x), (2)

where α and β denote the left- and right-handed magnon
chirality, and nα(β )

k (x) is the position-dependent number of
magnons.

In this first case of an abrupt thermal gradient, we obtain
nα(β )

k (x) = nα(β )
k (x0)e−(x−x0 )/λα(β )

k , i.e., an exponential decay in
the number of magnons as a function of distance from the
abrupt temperature drop at x0, with chirality-dependent decay
length λ

α(β )
k .

As shown in Appendix B, this formula qualitatively repro-
duces the features of the emergent magnetization depicted in
Fig. 4(b) from numerical solution of the stochastic LLG equa-
tion of motion. In particular, the key parameters controlling
the sign and magnitude of the emergent magnetization are the
occupation number (which itself depends on the temperature
at each x), the decay length and the chirality-dependent spin
angular momentum from the magnon band structure.

Within the same framework of Boltzmann transport theory,
an expression for the spin current,

j(x) =
∑

k

nβ

k (x)vβ

k − nα
k (x)vα

k , (3)

in terms of number of magnons and their group velocity
v

α(β )
k = ∂ω

α(β )
k /∂k for each chirality can also be introduced.

This quantity is not explicitly computed within atomistic spin
dynamics calculations, which only provide the values of an
ensemble of atomic moments Sis(t ) over the chosen interval
of time.

Following the template of Refs. [1,51] for ferromagnets,
we therefore introduce the following quantity:

jμ(ri ) = − γ

μs
AlatJ (〈Sia × Si+1,a〉 + 〈Sib × Si+1,b〉) · eμ,

(4)

where the average 〈. . .〉 is performed over time and J :=
Jaa

i,i+1 = Jbb
i,i+1, with a, b being sublattice indices. The param-

eters μs and γ are the saturation magnetic moment and the
gyromagnetic ratio. Eq. (4) describes the transfer of the μth
component of the spin angular momentum from the unit cell
i (located at ri) to the adjacent unit cell j = i + 1 and can
thus be used to estimate the spin current along different spatial
directions ri j = r j − ri. Note that we have neglected here the

FIG. 5. Simulated linear temperature gradient profile (a), local
magnetic moment (b), and longitudinal spin current (c), again for
different crystallographic directions (color coded).

intersublattice correlations 〈Sis × Si+1,s′ �=s〉, which we found
to be much smaller than the intrasublattice correlations. A
detailed discussion as well as the derivation of Eq. (4) can
be found in Appendix D.

Results from this equation for the spin current, selecting in
particular the z spin component of the longitudinal current jL,
are shown in Fig. 4(c) for the abrupt thermal drop profile along
different crystallographic directions. In the product between
statistically sampled moments at positions ri and ri+1, the ef-
fect of stochastic fluctuations gets magnified leading to a more
noisy outcome, more pronounced in the high-temperature
regime. We also expect that jL should average to zero over
the whole x range when the thermal profile is aligned along
the [100] direction; but this appears to require an increase in
the system size and/or the sLLG simulation time beyond the
scope of this paper.

For the [110] and [1̄10] orientations of the thermal profile,
the spin current has an extremum directly at the step. Its sign
follows from the sign of emergent magnetization in Fig. 4(b),
because of the propagation of the current always from hot to
cold [18]. Same as Sz, the longitudinal spin current shows a
flip in sign, but closer to the thermal drop at x0. We obtain
three extrema of jL, same as the number of zero crossing
of Sz. This feature is consistent with Boltzmann transport
theory within the constant relaxation time approximation,
which for a steady-state solution prescribes −∂x jL ∝ Sz (see
Appendix B).

We then repeat calculations for a more realistic setup where
the two heat reservoirs are connected by a thermal gradi-
ent with linear slope over a finite thickness [Fig. 5(a)]. The
emergent z magnetization reproduces some of the features
of the previous scenario of an abrupt drop in temperature
(Fig. 4), such as the relationship between the sign of Sz and
the direction of the thermal profile.

The main difference is that Sz changes linearly within
the region with the linear temperature gradient, with peaks
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FIG. 6. Maximum of spin accumulation for a linear temperature
gradient in [110] orientation (red) and Néel order parameter (blue)
vs temperature.

exactly at the kinks of the temperature profile [Fig. 5(b)].
Qualitatively, the position and sign of these peaks can be un-
derstood using again linear spin-wave theory and Boltzmann
transport theory. Within this framework, the spin current is
proportional to the temperature gradient jL = σ L∂xT , with σ L

being the longitudinal component of the magnon spin con-
ductivity [18], and, same as above, −∂x jL ∝ Sz. Combining
the two expressions, we obtain Sz ∝ −σ L∂2

x T . This means
that the emergence of a finite Sz requires nonlinearities of the
temperature profile.

However, while this simple formula is helpful in predicting
whether a finite magnetization emerges at all, it cannot explain
its length scales. Quantitative values require numerical sLLG
simulations.

We also want to point out that a longitudinal spin current
could, in principle, lead to a spin accumulation at the edge
of the system in propagation direction. Since in the scenario
considered here the magnon propagation length is shorter
than the region of constant temperature at the cold end of
the system, the magnon current is effectively damped before
possibly accumulating at the edges.

Next, we want to discuss the temperature scaling of the
spin Seebeck effect by adding a constant temperature offset
to the linear temperature gradient profile depicted in Fig. 5(a)
in the [110] orientation. We quantify the strength of the spin
Seebeck effect via the maximum of the spin accumulation at
the right kink of the temperature profile, which we obtain by
fitting Sz(x > x0) = Aβe−(x−x0 )/λβ − Aαe−(x−x0 )/λα

to the spin
accumulation in the constant temperature regime to the right
of the linear gradient. This expression is inspired by the two-
current picture of the Boltzmann transport theory [cf. Eq. (2)]
and is found to agree remarkably well with the simulation
data. The maximum of the spin accumulation is calculated
as Aβ − Aα and shown in Fig. 6 versus temperature offset. In
contrast to what was reported in Ref. [18], where a substan-
tial increase of the spin Seebeck coefficient with temperature
was reported, spin accumulation is significantly reduced with
increasing temperature. We attribute this discrepancy to the
fact that the authors of Ref. [18] used linear spin-wave the-
ory, where temperature only affects the magnon population
via the Bose-Einstein distribution, whereas here we use the
nonlinear stochastic LLG, which automatically includes all

FIG. 7. Maximum of spin accumulation (a) and propagation
lengths λα(β ) (b) vs Gilbert damping parameter α for a linear tem-
perature gradient in [110] orientation. Dotted lines are fits of ∝ α−1

to the data and serve as guide to the eye and the grey dashed line is
the relation λ = Alat/(2

√
3α).

higher-order magnon terms responsible for magnon-magnon
scattering and magnon softening. Comparison with the tem-
perature scaling of the Néel order parameter (see Appendix C
for details) reveals that the drop of the spin Seebeck effect
with temperature cannot be fully explained by a thermally
induced renormalization of the effective spin length, but that
other effects—most likely a reduction of the magnon lifetime
because of magnon-magnon scattering—also play a role. This
is further underlined by the fact that the propagation lengths
λα(β ) obtained by the fitting procedure described above drop
by more than 15% above 20 K.

The impact of Gilbert damping on the spin Seebeck effect
is addressed in Fig. 7. Again, we consider a linear temperature
gradient profile as shown in Fig. 5(a) in the [110] orientation.
As can be seen in Fig. 7(a) from the maximum of the spin
accumulation (obtained from the same fitting procedure as
above), the magnitude of the spin Seebeck effect is strongly
reduced by a higher Gilbert damping, because of the impact of
Gilbert damping on the magnon lifetimes and the propagation
lengths [see Fig. 7(b)]. The latter roughly obey the relation
λ = Alat/(2

√
3α), which was derived as an approximation of

the magnon propagation length in conventional antiferromag-
nets in Ref. [51]. Note that, irrespective of Gilbert damping,
we find that λα > λβ , giving rise to the sign change of the
spin accumulation at an α-dependent distance from the tem-
perature gradient, visible in Figs. 4(b) and 5(b).

We finally investigate the generation of transverse spin
currents jT via the spin Nernst effect. In a recent study [18]
it has been predicted that strength of the spin Nernst effect in
altermagnets can be significantly larger than in other collinear
antiferromagnets, where it emerges because of nonzero Berry
curvature [52,53].

In Fig. 8 we depict results for the transverse spin current
obtained using Eq. (4) for the same temperature step profile
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FIG. 8. Simulated abrupt temperature profile (a) and transver-
sal spin current (b), for different crystallographic directions (color
coded).

discussed above. In line with the predictions of [18], our
simulations clearly show that only magnon currents traveling
along the [100] and [010] directions lead to the emergence of
a transverse spin current. The fluctuating values of jT for the
[110] case can be attributed to the aforementioned slow con-
vergence of this quantity. This is underlined by calculations
within Boltzmann transport theory (shown in Appendix B),
which support our numerical findings for the [100] and [010]
cases and predict a vanishing transverse spin current for the
[110] case. Remarkably, the spatial profile of the transverse
spin current is found to be very similar to the one of the
longitudinal spin current, with a magnitude that is roughly a
factor two smaller.

Note that in our simulations the emerging transverse spin
current cannot lead to a finite spin accumulation, because of
the lack of translational symmetry breaking along the trans-
verse direction. This is because we use periodic boundary
conditions along y, z, i.e., perpendicularly to the direction x of
the temperature profile, in order to reduce possible numerical
artifacts because of finite simulation size. The simulation of
real 2D (or even 3D) systems with diameters of several hun-
dred nanometres (containing more than 108 Ru moments) is
beyond the scope of this work. Real systems, of course, are fi-
nite and thus we expect that the transverse spin current results
in a spin accumulation—a finite net magnetization—with
the same spatial profile (with opposite sign) at the opposing
edges. We propose that this spin accumulation could be exper-
imentally detected using, e.g., magneto-optical measurement
analogous to the detection of spin [54] or orbital Hall effects
[55,56].

IV. CONCLUSIONS

We predict that spin-split antiferromagnets (or altermag-
nets) host magnon currents traveling from the hot to the
cold reservoirs. Specific to this class of materials, the
nondegenerate, chirality-dependent energy splitting of the
magnon band structure, which is present even in the ab-
sence of higher order Heisenberg Hamiltonian terms (such
as, e.g., Dzialoshinskii-Moriya interactions), leads to different

propagation of magnons with antiparallel spin angular mo-
mentum depending on the direction of the thermal gradient
with respect to the crystal, and in particular to the anisotropy
in the nonrelativistic (scalar) Heisenberg exchange interac-
tions.

This outcome is consistent with the symmetry of the spin
currents and the ensuing spin accumulation according to spin-
group analysis, and it has been both quantitatively explored
through numerical stochastic Landau-Lifshitz-Gilbert (sLLG)
calculations based on parameters from ab initio electronic
structure theory, and through Boltzmann transport theory in
the constant relaxation time approximation.

In particular, we provide an estimate of magnon-mediated
Seebeck and Nernst effects associated with the nonrelativis-
tic component of the nondegenerate spin-wave dispersion in
altermagnets, in the particular case of RuO2, chosen here as
a reference example for altermagnets. Our conclusions also
apply, qualitatively, to other materials with alike unit-cell ge-
ometry and magnetic order, such as, e.g., MnF2, FeF2, CoF2,
and to cases with more than two sublattices with antiparallel
magnetic moments and/or with a different than fourfold rota-
tion symmetry, e.g., Fe3O4 or MnTe.

Since the sign and spatial profile of the spin accumulation
generated by the emergent magnon currents are fundamentally
linked to the altermagnetic spin-group symmetry, we propose
that experimental detection of the ensuing spin accumulation,
e.g., by magneto-optical measurements, could be a feasible
method for an indirect identification of materials, particularly
insulators, as altermagnetic.
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APPENDIX A: CALCULATION OF MAGNON DISPERSION
IN ALTERMAGNETS

In this Appendix we derive the magnon band structure for a
general altermagnet using second quantization. We start from
a two-sublattice Heisenberg Hamiltonian,

Ĥ = − 1

S2

∑
i j

∑
ss′

Jss′
i j ŝis · ŝ js′ , (A1)

with ŝis denoting spin operators with spin quantum number S
and Jss′

i j the (scalar) exchange coupling between the magnetic
moments for the atoms respectively at ri + bs and at r j + bs′ ,
where ri (r j) is the location of the unit cell within a periodic
lattice, and bs (bs′ ) the sublattice position within it.
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We follow the usual scheme for the derivation of an
antiferromagnetic magnon dispersion relation based on the
Holstein-Primakoff transformation [57], which up to second
order in magnon variables is given by

ŝ+
ia ≈

√
2Sâi, ŝ−

ia ≈
√

2Sâ†
i , ŝz

ia = S − â†
i âi,

ŝ+
ib ≈

√
2Sb̂†

i , ŝ−
ib ≈

√
2Sb̂i, ŝz

ib = −S + b̂†
i b̂i, (A2)

with ŝ±
is = ŝx

is ± iŝy
is, and the magnon creation (â†

i , b̂†
i ) and

annihilation operators (âi, b̂i).
Inserting into the Hamiltonian (A1) and Fourier trans-

formation (with â(†)
i = √

1/N
∑

k exp(−ik · ri )â
(†)
k and anal-

ogous for b̂(†)
i ) yields Ĥ ≈ const. + Ĥmag, with

Ĥmag =
∑

k

(â†
k b̂k)Hk

(
âk

b̂†
k

)
, (A3)

Hk = −2

S

(
J̃aa

k − J̃aa
0 + J̃ab

0 J̃ab
k

J̃ab
k J̃bb

k − J̃bb
0 + J̃ab

0

)
. (A4)

Note that we have introduced the Fourier transformed ex-
change coupling constants J̃ ss′

k = ∑
j exp(ik · r j )Jss′

i j .
Next, we perform a bosonic Bogoliubov-Valatin transfor-

mation [58,59] to diagonalize the Hamiltonian. We introduce
new magnon variables (α̂(†)

k , β̂
(†)
k ) via

âk = ukα̂k − vkβ̂
†
k , (A5)

b̂†
k = ukβ̂

†
k − vkα̂k, (A6)

where the real coefficients uk and vk fulfill u2
k − v2

k = 1 in
order to conserve the canonical commutation relations. From
this we get the diagonalized magnon Hamiltonian

Ĥmag =
∑

k

h̄ωα
k α̂

†
k α̂k + h̄ω

β

k β̂
†
k β̂k (A7)

with the magnon frequencies

ωα
k = ωa

k − ωb
k

2
+

√(
ωa

k + ωb
k

2
− SJ̃ab

0

h̄

)2

−
(

SJ̃ab
k

h̄

)2

,

(A8)

ω
β

k = ωa
k − ωb

k

2
−

√(
ωa

k + ωb
k

2
− SJ̃ab

0

h̄

)2

−
(

SJ̃ab
k

h̄

)2

.

(A9)

Here, we introduced ωa
k = 2(J̃aa

0 − J̃aa
k )/(Sh̄) and ωb

k =
2(J̃bb

0 − J̃bb
k )/(Sh̄). For zero intersublattice coupling one re-

covers two decoupled ferromagnetic dispersion relations
ωα

k = ωa
k and ω

β

k = ωb
k, which are separately hosted on

the distinct sublattices. Similarly, the magnon frequen-
cies reduce to the typical antiferromagnetic magnon dis-
persion relation ωα

k = 2
√

(J̃ab
0 )2 − (J̃ab

k )2/(Sh̄) and ω
β

k =
−2

√
(J̃ab

0 )2 − (J̃ab
k )2/(Sh̄) in the absence of intrasublattice

coupling. The magnon eigenmodes for RuO2 are depicted in
Fig. 2(b).

Unlike the magnons in the original (â(†)
k , b̂(†)

k ) basis, which
only have a finite amplitude at one of the sublattices, the

magnons in the new (α̂(†)
k , β̂

(†)
k ) basis are characterized by a

tilting of the moments in both sublattices,

�ŝz
a =

∑
i

S − Ŝz
ia

=
∑

k

u2
kα̂

†
k α̂k + v2

k (β̂†
k β̂k + 1)

− ukvk(α̂†
k β̂

†
k + α̂kβ̂k), (A10)

�ŝz
b =

∑
i

S + Ŝz
ib

=
∑

k

u2
kβ̂

†
k β̂k + v2

k (α̂†
k α̂k + 1)

− ukvk(α̂†
k β̂

†
k + α̂kβ̂k). (A11)

From that we get that the sublattice amplitudes for
the α magnon branch are 〈0|α̂k�ŝz

aα̂
†
k |0〉 = u2

k + v2
k and

〈0|α̂k�ŝz
bα̂

†
k |0〉 = 2v2

k , while for the β magnon branch they are
〈0|β̂k�ŝz

aβ̂
†
k |0〉 = 2v2

k and 〈0|β̂k�ŝz
bβ̂

†
k |0〉 = u2

k + v2
k . Here,

|0〉 denotes the ground state of the system. Henceforth, the
ratio Rk of the respective smaller and larger magnon amplitude
at each sublattice is given by Rk = 2v2

k/(u2
k + v2

k ) = 2v2
k/(1 +

2v2
k ) � 1. This quantity calculated for the case of RuO2 is

shown in Fig. 2(c).
The operator for the total z magnetization in the new

basis set is given by the difference in magnon numbers
in each branch before and after the Bogoliubov-Valatin
transformation,

ŝz =
∑

i

Ŝz
ia + Ŝz

ib =
∑

k

b̂†
kb̂k − â†

kâk =
∑

k

β̂
†
k β̂k − α̂

†
k α̂k.

(A12)

Consequently, the α and β magnons carry opposite
spin angular momentum along the z-direction, since
〈0|α̂k ŝzα̂

†
k |0〉 = −1 and 〈0|β̂k ŝzβ̂

†
k |0〉 = 1.

APPENDIX B: BOLTZMANN TRANSPORT THEORY FOR
MAGNON CURRENTS AND SPIN ACCUMULATION

Within our approach, the z component of the magnetiza-
tion Sz = 〈ŝz〉 is given by the difference of the total magnon
numbers in each branch,

Sz =
∑

k

〈β̂†
k β̂k〉 − 〈α̂†

k α̂k〉 =
∑

k

nβ

k − nα
k . (B1)

To describe spatially nonhomogeneous and possibly time-
dependent magnon occupations, we use Boltzmann equa-
tions within the relaxation time ansatz,

∂nσ
k (r, t )

∂t
+ ∂nσ

k (r, t )

∂r
· ∂ωσ

k

∂k
= −nσ

k (r, t ) − f σ
k (r, t )

τσ
k

, (B2)

with σ ∈ [α, β]. Here, ∂ωσ
k /∂k = vk and τσ

k are the branch-
and k-dependent magnon velocities and lifetimes, respec-
tively, and f σ

k (r, t ) is the equilibrium magnon occupation.
In steady state and for the current along the x direction, we

get that

∂nσ
k (x)

∂x
= −nσ

k (x) − f σ
k (x)

vσ
k τσ

k

. (B3)
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Hereinafter, we solve this equation for the case of a tem-
perature step at x = 0 that connects two regions of constant
temperature. In this case, we have a constant equilibrium
magnon occupations f σ

k (x < 0) = cσ
k and f σ

k (x � 0) = dσ
k in

the two regions. A simple calculation yields that the occupa-
tion number of any magnon with v > 0 has the solution

nσ,v>0
k (x) =

{
cσ

k for x < 0(
cσ

k − dσ
k

)
e−x/(vσ

k τσ
k ) + dσ

k for x � 0
(B4)

and, analogously, the occupation number of magnons with
v < 0 follows

nσ,v<0
k (x) =

{(
dσ

k − cσ
k

)
e−x/(vσ

k τσ
k ) + cσ

k for x < 0

dσ
k for x � 0.

(B5)

To simplify the following calculations we assume that
T (x > 0) is zero, which implies that dσ

k = 0, and compute
the solution only in the region x > 0. Inserting into Eq. (B1)
yields

Sz(x > 0) =
∑

k

nβ,v>0
k (x) − nα,v>0

k (x)

=
∑

k

cβ

k e−x/λβ

k − cα
k e−x/λα

k , (B6)

where the decay length λσ
k = v

β

k τ
β

k was introduced. To evalu-
ate the above expression, it is necessary to know the lifetimes
τσ

k of the magnon modes. Following Ref. [18], we apply
a constant lifetime approximation τσ

k ≡ τ0. Since we want
to compare with spin dynamics simulations based on the
sLLG, we assume a classical equilibrium occupation cσ

k =
kBT/(h̄ωσ

k ) [60], rather than a Bose-Einstein distribution. The
result for the emergent magnetization for different orienta-
tions of the temperature step is shown in Fig. 9(a) and agrees
qualitatively very well with what we obtained via simulations
(see Sec. III).

Summation over k transforms Eq. (B2) to the respective
continuity equations for each magnon branch,

∂

∂t
Nσ (r, t ) + ∇ · jσ (r, t ) = −�σ (r, t ), (B7)

where Nσ (r, t ) = ∑
k nσ

k (r, t ) is the total magnon number in
each branch, jσ (r, t ) = ∑

k nσ
k (r, t )vσ

k is the magnon current
carrying z-component spin angular momentum and �σ (r, t ) =
(Nσ (r, t ) − N0(r, t ))/τ0 is a sink term. Note that the total
number of magnons in the equilibrium N0(r, t ) is the same
for both magnon branches because of the summation over the
entire Brillouin zone.

Recalling that the z magnetization is determined by the
difference between the respective magnon numbers in each
branch [cf. Eq. (B1)] we subtract the continuity equation for
the α branch from the one for the β branch, yielding

∂

∂t
(Nβ (r, t ) − Nα (r, t )) + ∇ · ( jβ (r, t ) − jα (r, t ))

= −Nβ (r, t ) − Nα (r, t )

τ0
. (B8)

FIG. 9. Spin Seebeck and spin Nernst effect in altermagnetic
RuO2 induced by a temperature step at x = 0 calculated by Boltz-
mann transport theory. Spin accumulation Sz (a), longitudinal spin
current (b), and transverse spin current (c) are shown versus position
coordinate for different crystallographic directions (color coded).

By that, we arrive at the continuity equation of the emergent
magnetization

∂Sz(r, t )

∂t
+ ∇ · j(r, t ) = −Sz(r, t )

τ0
, (B9)

where we introduced the spin current as

j(r, t ) =
∑

k

nβ

k (r, t )vβ

k − nα
k (r, t )vα

k . (B10)

Unsurprisingly, it is given by the sum of the magnon currents
jσs (r, t ) = ∑

k nσ
k (r, t )vσ

k of each sublattice multiplied by the
respective spin angular momentum along the z direction of
±1. In Figs. 9(b) and 9(c) we demonstrate that the longitudinal
and transverse magnonic spin currents are again in good qual-
itative agreement with the simulation results shown in Sec. III.

For steady state [∂Sz(r, t )/∂t = 0], we get

∇ · j(r) = −Sz(r)

τ0
. (B11)

While we found this relation to be not exactly fulfilled in the
simulations (see Sec. III)—most likely because of shortcom-
ings of the constant lifetime approximation—it nonetheless
provides a useful relation between between the magnonic spin
current and the emergent magnetization.

APPENDIX C: SIMULATION METHODS

We perform atomistic spin dynamics simulations based
on the stochastic Landau-Lifshitz-Gilbert (sLLG) equation of
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motion for a sufficiently big ensemble of atomic magnetic
moments [39–41],

∂Sis

∂t
= − γ

(1 + α2)μs
Sis × (H is + αSis × H is). (C1)

Here Sis denotes a unit vector in the direction of the Ru
magnetic moment of sublattice s in the unit cell i, α is the
Gilbert damping parameter, μs is the saturation magnetic mo-
ment, and γ is the gyromagnetic ratio.

This numerical approach goes beyond noninteracting spin-
wave theory, as used in previous studies such as, e.g.,
Ref. [17,18], and may provide a more realistic description of
experiments [61] in terms of adiabatic magnon dispersion. On
the other hand, it neglects intrinsic damping effects because of
the Stoner continuum, which can be large in metallic magnetic
materials and would show up as a possibly shifted position
of the peaks associated with magnon dispersion, and their
their progressively broader FWHM, particularly toward the
boundary of the Brillouin zone. Within the framework of the
sLLG, damping is included via the Gilbert term (proportional
to the Gilbert damping parameter α), because of which each
individual atomic magnetic moment tends to gradually spiral
back toward its ground state direction.

Since we are only interested in steady-state solutions of the
sLLG, we can set μs = γ = 1. To the best of our knowledge,
the Gilbert damping parameter for RuO2 is unknown. That is
why we choose an intermediate value of α = 0.001 for the
simulations presented in Sec. III. We have also performed
simulations with α = 0.01 (not shown) and found that this
only affects the magnitude and length scale of the resulting ef-
fects, while they are qualitatively the same. The effective field
H is = −∂H/∂Sis + ζis contains both a deterministic field that
stems from the spin Hamiltonian (1) and a stochastic field ζis
in the form of Gaussian white noise [62],

〈ζis〉 = 0, (C2)

〈ζis(t )(ζis(0))T〉 = 2
αkBTiμs

γ
δi jδss′δ(t )1, (C3)

which models a coupling to a heat bath—incorporating the
interaction of localized spins with electronic and phononic
degrees of freedom—with a local temperature Ti. The numer-
ical integration of the sLLG is carried out using the Heun
algorithm [41]. To reduce the computational cost we introduce
an energy cutoff for the Heisenberg exchange constants such
that only those with |Jss′

i j | � 0.0625 meV are included. By

calculating the Néel order parameter L = 1
2N | ∑N

i Sia − Sib|,
with N being the number of unit cells and a and b de-
noting the Ru respective sublattices, versus temperature we
estimate a critical temperature of Tc ≈ 125 K (see Fig. 10).
In our simulations of the magnon currents and the emergent
magnetization we consider a system extended in the direc-
tion of the temperature step/gradient consisting of 36 × 36 ×
1600 unit cells (equalling to 4 147 200 Ru moments). More-
over, we apply periodic boundary conditions in the directions
perpendicular to the temperature step/gradient to eliminate
finite-size effects.

FIG. 10. Néel order parameter L of altermagnetic RuO2 for a
system consisting of 128 000 Ru moments calculated using the sLLG
and spin model parameters from Ref. [17]. The simulation results are
fitted to the expression L(T ) = (1 − T/Tc )0.33 (shown as solid line),
which yields a fitted Tc ≈ 125 K.

APPENDIX D: NUMERICAL CALCULATION
OF SPIN CURRENTS IN ATOMISTIC SPIN

DYNAMICS SIMULATIONS

When doing magnon transport calculations, theoretical
models based on linear response theory and Boltzmann trans-
port theory typically only compute the spin current, rather
than the associated magnetization dynamics. Atomistic spin
dynamics simulations, on the other hand, are used to directly
calculate the temporal evolution of the magnetic moments,
which only indirectly contains information about the spin
currents via a possibly arising spin accumulation. To bridge
this gap, earlier studies introduced formulas to obtain the
spin currents in ferromagnets within continuum theory [1]
and atomistic descriptions including only isotropic nearest-
neighbor Heisenberg exchange [51]. Hereinafter, we derive
an expression to calculate the spin current for multisublat-
tice systems such as, e.g., antiferro- and altermagnets, with
arbitrary Heisenberg exchange interaction extending beyond
nearest neighbors.

Neglecting losses caused by Gilbert damping, the time-
averaged change of spin in a single unit cell with index i
follows from the Landau-Lifshitz-Gilbert equation as〈∑

s

Ṡis

〉
= − γ

μs

∑
ss′,δ

Jss′
i,i+δ〈Sis × Si+δ,s′ 〉, (D1)

with s, s′ being the sublattice indices. For simplicity, we con-
sider only a 1D chain of unit cells. Generalization to 3D
systems, however, is straightforward. The right-hand side of
Eq. (D1) can be viewed as the difference between incoming
(δ < 0) and outgoing (δ > 0) spin momentum. Note that the
terms for δ = 0, i.e., within the chosen unit cell, mutually can-
cel because of the antisymmetry of the cross product. Thus,
we can write a discretized continuity equation, 〈∑s Ṡis〉 =
−( jin

i − jout
i )/d , with the incoming and outgoing spin currents

jin
i = γ

μs
d

∑
ss′,δ<0

Jss′
i,i+δ〈Sis × Si+δ,s′ 〉, (D2)
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FIG. 11. (a) Intra- (s = s′) and intersublattice (s �= s′) corre-
lations for a temperature step with T = 10 K to the left of the
vertical-dotted line and zero to the right. (b) Spatial profile of the
z component of the longitudinal spin current calculated considering
only intrasublattice correlations and both intra- and intersublattice
correlations with the next unit cell. Note that the resulting curves
have been scaled to the same magnitude.

jout
i = − γ

μs
d

∑
ss′,δ>0

Jss′
i,i+δ〈Sis × Si+δ,s′ 〉. (D3)

In steady state (for which 〈∑s Ṡis〉 = 0) incoming and out-
going currents are equal, jin

i = jout
i := ji, and henceforth ei-

ther of the expressions above can be used to calculate the spin
current ji for arbitrary Jss′

i j and ground-state configuration.

When applying this method to obtain the spin currents from
our simulations on RuO2, we consider only the spin transport
to the respective nearest unit cells to simplify the calculations.
As demonstrated in Fig. 11(a), the intrasublattice correlations
turn out to be much larger than the intersublattice correlations,
i.e., 〈Sis × Si±1,s′=s〉 
 〈Sis × Si±1,s′ �=s〉. This is because of
the fact that only in the vicinity of the � point of the Brillouin
zone the magnon excitations involve both sublattices while
they are primarily hosted by only one of them at the rest of
the Brillouin zone.

Henceforth, we use the following expression for estimating
spin currents in RuO2:

ji ≈ − γ

μs
AlatJ (〈Sia × Si+1,a〉 + 〈Sib × Si+1,b〉), (D4)

where we have introduced J := Jaa
i,i+1 = Jbb

i,i+1. We checked in
Fig. 11(b) that neglecting intersublattice correlations indeed
has no qualitative impact on the spin current profile.

APPENDIX E: HEISENBERG EXCHANGE PARAMETERS

The exchange parameters for the Heisenberg Hamilto-
nian (1) were obtained from density functional theory in
the spin-polarized relativistic Korringa-Kohn-Rostoker imple-
mentation [63]. We use the local spin density approximation
in the Vosko-Wilk-Nusair parametrization [64] and the
DFT+U procedure with the rotationally invariant approach of
Dudarev et al. [65], to improve the description of Ru d orbitals
responsible for the finite magnetic moments. The results for
the electronic structure were calculated by solving the Kohn-
Sham equation in its fully relativistic formulation [66].

The exchange constants between Ru magnetic moments
at relative position Rss′

i j = r j − ri + bs′ − bs, with ri( j) being
the location of the unit cell within the lattice and bs(s′ ) the
sublattice position within the unit cell, are listed in Table I.

TABLE I. Cartesian components of Rss′
i j in Å and Heisenberg exchange constants Jss′

i j in meV for s = 1. The exchange constants for s = 2
can be obtained using the crystal symmetry.

X ss′
i j Y ss′

i j Zss′
i j Jss′

i j X ss′
i j Y ss′

i j Zss′
i j Jss′

i j

0.000 0.000 3.106 1.8659 4.493 −8.986 0.000 0.0667
0.000 0.000 −3.106 1.8659 8.986 −4.493 0.000 0.0667
2.247 −2.247 1.553 −2.6739 −8.986 4.493 0.000 0.0667

−2.247 −2.247 1.553 −2.6739 −4.493 8.986 0.000 0.0667
2.247 2.247 1.553 −2.6739 0.000 −4.493 9.318 0.0738

−2.247 2.247 1.553 −2.6739 4.493 0.000 9.318 0.0738
2.247 −2.247 −1.553 −2.6739 −4.493 0.000 9.318 0.0738

−2.247 −2.247 −1.553 −2.6739 0.000 4.493 9.318 0.0738
2.247 2.247 −1.553 −2.6739 0.000 −4.493 −9.318 0.0738

−2.247 2.247 −1.553 −2.6739 4.493 0.000 −9.318 0.0738
0.000 −4.493 0.000 0.1185 −4.493 0.000 −9.318 0.0738
4.493 0.000 0.000 0.1185 0.000 4.493 −9.318 0.0738

−4.493 0.000 0.000 0.1185 4.493 −8.986 3.106 0.0707
0.000 4.493 0.000 0.1185 8.986 −4.493 3.106 0.0707
2.247 −2.247 4.659 −0.3963 −8.986 4.493 3.106 0.0707

−2.247 −2.247 4.659 −0.3963 −4.493 8.986 3.106 0.0707
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TABLE I. (Continued.)

X ss′
i j Y ss′

i j Zss′
i j Jss′

i j X ss′
i j Y ss′

i j Zss′
i j Jss′

i j

2.247 2.247 4.659 −0.3963 4.493 −8.986 −3.106 0.0707
−2.247 2.247 4.659 −0.3963 8.986 −4.493 −3.106 0.0707

2.247 −2.247 −4.659 −0.3963 −8.986 4.493 −3.106 0.0707
−2.247 −2.247 −4.659 −0.3963 −4.493 8.986 −3.106 0.0707

2.247 2.247 −4.659 −0.3963 −4.493 −4.493 9.318 0.2732
−2.247 2.247 −4.659 −0.3963 4.493 4.493 9.318 0.2732

0.000 0.000 6.212 −2.1635 −4.493 −4.493 −9.318 0.2732
0.000 0.000 −6.212 −2.1635 4.493 4.493 −9.318 0.2732
4.493 −4.493 0.000 −1.2611 8.986 −8.986 0.000 −0.6292

−4.493 −4.493 0.000 0.5636 −8.986 −8.986 0.000 −0.0631
4.493 4.493 0.000 0.5636 8.986 8.986 0.000 −0.0631

−4.493 4.493 0.000 −1.2611 −8.986 8.986 0.000 −0.6292
4.493 −4.493 3.106 0.2252 8.986 −8.986 3.106 0.0721

−4.493 −4.493 3.106 −0.0897 −8.986 −8.986 3.106 −0.1845
4.493 4.493 3.106 −0.0897 8.986 8.986 3.106 −0.1845

−4.493 4.493 3.106 0.2252 −8.986 8.986 3.106 0.0721
4.493 −4.493 −3.106 0.2252 8.986 −8.986 −3.106 0.0721

−4.493 −4.493 −3.106 −0.0897 −8.986 −8.986 −3.106 −0.1845
4.493 4.493 −3.106 −0.0897 8.986 8.986 −3.106 −0.1845

−4.493 4.493 −3.106 0.2252 −8.986 8.986 −3.106 0.0721
2.247 −6.740 1.553 −0.0644 4.493 −4.493 12.424 0.2271

−2.247 −6.740 1.553 −0.0644 −4.493 4.493 12.424 0.2271
6.740 −2.247 1.553 −0.0644 4.493 −4.493 −12.424 0.2271

−6.740 −2.247 1.553 −0.0644 −4.493 4.493 −12.424 0.2271
6.740 2.247 1.553 −0.0644 8.986 −8.986 6.212 −0.1377

−6.740 2.247 1.553 −0.0644 −8.986 −8.986 6.212 −0.2474
2.247 6.740 1.553 −0.0644 8.986 8.986 6.212 −0.2474

−2.247 6.740 1.553 −0.0644 −8.986 8.986 6.212 −0.1377
2.247 −6.740 −1.553 −0.0644 8.986 −8.986 −6.212 −0.1377

−2.247 −6.740 −1.553 −0.0644 −8.986 −8.986 −6.212 −0.2474
6.740 −2.247 −1.553 −0.0644 8.986 8.986 −6.212 −0.2474

−6.740 −2.247 −1.553 −0.0644 −8.986 8.986 −6.212 −0.1377
6.740 2.247 −1.553 −0.0644 0.000 0.000 15.530 0.2962

−6.740 2.247 −1.553 −0.0644 0.000 0.000 −15.530 0.2962
2.247 6.740 −1.553 −0.0644 8.986 −8.986 9.318 −0.1075

−2.247 6.740 −1.553 −0.0644 −8.986 8.986 9.318 −0.1075
2.247 −2.247 7.765 0.0645 8.986 −8.986 −9.318 −0.1075

−2.247 −2.247 7.765 0.0645 −8.986 8.986 −9.318 −0.1075
2.247 2.247 7.765 0.0645 0.000 0.000 18.636 0.1332

−2.247 2.247 7.765 0.0645 0.000 0.000 −18.636 0.1332
2.247 −2.247 −7.765 0.0645 13.479 −13.479 0.000 0.1164

−2.247 −2.247 −7.765 0.0645 −13.479 13.479 0.000 0.1164
2.247 2.247 −7.765 0.0645 13.479 −13.479 6.212 0.0713

−2.247 2.247 −7.765 0.0645 −13.479 13.479 6.212 0.0713
0.000 0.000 9.318 −0.7234 13.479 −13.479 −6.212 0.0713
0.000 0.000 −9.318 −0.7234 −13.479 13.479 −6.212 0.0713
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